
L[II1iJ

NIET

UIThEEN-

BMR

LTIONAAL LUCHT- EN RUIMTEVAARTLABORATOR[UM
NATIONAL AEROSPACE LABORATORY NLR THE NETHERLANDS

NEC

MEMORANDUM IR-94-030

FINAL REPORT

PARALLELISING NaS/RVS VISUALISER

Klaas Jan Wierenga
for National Aerospace Laboratory NLR

and University of Groningen
The Netherlands

Supervisors:
Ir. G. Westenberg (NLR)

Dr. J.B.T.M. Roerdink (RuG)
Prof.Dr. N. Petkov (RuG)

March 30, 1995

Rijk nversiteit Groningen
• oek Informatic. / R.k.nc.ntrum

Lcncven 5
Postbus 800
9700 AV Groningen

Contents

List of abbreviations iv

Foreword v

Project description vi

I Parallel Environment 1

1 The Cenju-3 Parallel Computer 3

1.1 Hardware Configuration 3

1.1.1 Cenju-3 Processing Elements 3

1.1.2 Interprocessor connection network 4

1.1.3 Host workstation 5

1.1.4 NLR configuration 6

1.2 Software Configuration 7

12.1 Message-passing programming 7

1.2.2 Data-parallel programming 11

1.2.3 Parallelisation tools 12

2 Cenju-3 Communication Bandwidth 15

2.1 Interconnection network bandwidth 15

2.2 Cenju-3/Workstation connection bandwidth 16

2.3 Interference between parallel programs 18

2.4 Conclusions 20

3 Programming system 21

3.1 Automatic parallelisation tools 21

32 Data-parallel programming 22

33 Message-passing programming 23

3.4 Why choose MPI?

II Parallel Visualiser 27

4 The NaS/RVS System 29

4.1 The flow-solver 31

42 me visualiser 31

42.1 Object renderer 32

4.2.2 Contour plot 33

4.2.3 Particle tracer

11 CONTENTS

5.3.1 Parallel main loop
5.3.2 Parallel visualiser
5.3.3 Parallel contour plot

5.4 Discussion of the design
5.4.1 Scalability
5.4.2 Parallel overhead.

55 Performance
55.1 Measurement setup
5.5.2 Rendering times
5.53 Speedup
55.4 Load balance .

6 Parallel Image Composition

39

59
59
61

64
66

III Message Passing Interface 69

7 MPI Standard: An Overview
7.1 Point-to-point communication

7.1.1 Communication modes
7.1.2 Blocking and Non-blocking communications
7.13 Persistent communications
7.1.4 Derived data types
7.15 Pack and unpack

7.2 Collective Communication
72.1 Barrier synchronisation
7.22 Broadcast
7.2.3 Gather, scatter, allgather, and alltoall
7.2.4 Reduction operations
7.25 Reduce, alireduce, and reduce-scatter
7.2.6 Scans
72.7 User defined operations

7.3 Support for libraries
7.3.1 Communicators
7.3.2 Intra-communicators
733 Inter-communicators

7.4 Environmental Management

4.2.4 Volume rendering

5 Parallelisation of a visualisation tool
5.1 Design considerations

5.1.1 Performance metrics .

5.12 Scalability
5.13 Parallel overhead

5.2 Data partitioning
52.1 Partitioning of object space
52.2 Partitioning of screen space

5.3 Parallel algorithms

6.1 Image composition as a reduction operation
6.2 Efficient parallel reduction
63 Performance
6.4 Implementation

71

CONTENTS Ill

7.4.1 Implementation information
7.4.2 Error handling
7.43 Error codes and classes
7.4.4 Timers
7.4.5 Starting and terminating parallel

73 Profiling interface

IV Parallel Direct Volume Rendering

10 Parallel Direct Volume Rendering
10.1 Volume Rendering Model
10.2 Sequential Rendering Methods

10.2.1 Ray Casting
10.2.2 Splatting
10.23 Volume Shearing

103 Parallel Algorithms
103.1 Object Partition, Object-Order Rendering
103.2 Object Partition, Image-Order Rendering
10.3.3 Image Partition, Object-Order Rendering
103.4 Image Partition, Image-Order Rendering

10.4 Parallel Rendering on the Cenju-3

95

98

100
102
102
102
103
104
104
105

107
107
108
109
109

111
111
111
112
113

79
79
80
80
80
80

81
81
81
82
82
83
83
83
83
84
84
84
85

87
87
88
89

93

programs

S Uterature study: MPI
8.1 Introductory
82 Writing libraries
83 Extending MPI
8.4 Language binding
8.5 MPI implementations

85.1 MPICH
85.2 CHIMP
853LAM
8.5.4 Unify

8.6 Applications
8.7 Profiling and debugging MPI programs
8.8 Performance of MPI

9 Porting full MPI to Cenju-3
9.1 Porting approach
92 The Abstract Device Interface
93 Example of operation

11 Conclusions
11.1 Parallel Environment
112 Parallel Visualiser
113 Message Passing Interface
11.4 Parallel Direct Volume Rendering

A Full MPI on the Cenju-3
A.1 Resources on the internet
A.2 The Cenju-3 device
A3 Installation on the Cenju-3
A.4 Using the MSU MPI implementation

I

List of abbreviations

ADAPTOR Automatic Data Parallelism Translator
ANL Argonne National Laboratory
API Application Program Interface
CFD Computational Fluid Dynamics
CHIMP Common High-level Interface to Message Passing

Cenju process
CPU Central Processing Unit
CT Computed Tomography
DALIB Distributed Array Library
DNS Direct Navier-stokes Simulation
EPCC Edinburgh Parallel Computing Centre
FEM Finite Element Methods
FLOPS Floating Point Operations per Second
GUI Graphical User Interface
GRAVICS GUI and Visualisation system for computational steering
HOS Host Server
HPF High Performance Fortran
HPFF High Performance Fortran Forum
LAM Local Area Multi-computer
MIPS Million Instructions per Second
MPE Multi-Processing Environment
MPI Message Passing Interface
MPIF Message Passing Interface Forum
MPIX MN eXtension library
MPMD Multiple Program Multiple Data mode of parallel programming
MRI Magnetic Resonance Imaging
MSU Missisippi State University
NaS/RVS Navier Stokes Real-time Visualisation System
NEC Nippon Electric Company, Limited (founded 1899). Renamed NEC

Corporation, effective April 1, 1983, both referred to as NEC
NLR National Aerospace Laboratory LR, The Netherlands
PARC Polygon Assisted Ray Casting
PE Processing Element; CPU in a multi-processor computer
PUL Parallel Utilities Library
RISC Reduced Instruction Set Computer
RPC Remote Procedure Call
SPMD Single Program Multiple Data mode of parallel programming
SU Switching Unit
2D 2-dimensional
3D 3-dimensional

Foreword

This report is the result of my work during the last year of my studies in computer
science at the 'Rijksuniveiiteit Groningen', the Netherlands. The work was done at the
'National Aerospace Laboratory NLR the Netherlands' to whom I am very grateful for
providing me with the resources necessary to perform this work.

During the last months of the year 1993 I started looking for an institution external
to the university to do my final project. My goal was to do a project on parallelisation,
if possible combined with some visualisation work. I applied for a position at the
'National Aerospace Laboratory (NLR) The Netherlands' and was successful. I started
working at the NLR in the 'Noordoostpolder' on March 1st 1994. The project was
concerned with the parallelisation of visualisation software; a combination of both my
fields of interest. After an initial period of changing the setup of the software to fit the
NLR environment I had to decide how to parallelise the 7500 lines of Fortran 77 code.

The options were to use an automatic paralleliser, transform the fortran source into a
data-parallel program, or use explicit message-passing. The requirement that the code
should eventually be portable to the NEC Cenju-3 limited the possibilities. Due to the
fact that the machine was not available until June 1994 and that without the machine
automatic paralleliser output and data-parallel programs could not be tested, I decided
to use the brand new message-passing standard MPI (Message Passing Interface).
A big advantage of using MPI was that public domain implementations for clusters
of workstations were available at that time so the parallelisation and testing of the
visualiser could start right away. When the Cenju-3 became available I moved the
parallel visualiser to the Cenju-3 and continued development. This report describes
the development of part of the parallel visualiser and evaluates the first experiences
with the Cenju-3 and MPI. A short introduction to MPI as well as literature studies of
MPI and 'parallel direct volume rendering' are also contained in this report.

V

Project description

The project is concerned with the parallelisation of existing visualisation code on the
Cenju-3 computer. There is a twofold purpose for this project.

1. Performance improvement of the visualisation code.

2. Investigating the effectivenessof the Cenju-3 architecture for visualisation applic-
ations.

The NLR does contract work for NEC in the area of Real-time Visualization for CFD

flow-solvers. The project takes as a starting point the NEC software consisting of:

• A flow-solver, currently running on the NEC SX-3 vector-supercomputer. This
flow-solver will be parallelised for the Cenju-3 and can also be replaced by NLR
solvers.

• A user-interface (X/Motif), currently running on a NEC EW54800 workstation.
This user-interface will be changed intensively to integrate with the GRAVICS
system for interaction with applications.

• Visualisation-code, currently running on the SX-3 and using an UltraNet frame
buffer for presentation of graphics.

The visualisation-code will be reviewed to remove dependencies on a certain hard-
ware infrastructure. This will result in a version that can be used in the NLR environ-
ment. Part of the low-level graphics code will probably move to a graphics workstation
and it is the high-level visualisation-code that should be parallelised for the Cenju-3.
The parallelisation should be performed in such a way that the code optimally uses
the MPP architecture independent of the number of available processing elements. Es-

sential part of the project is the evaluation of the Cenju-3 hardware and software for
suitability for this kind of application. This might result in suggestions for improve-
ment of hardware or software to NEC.

vi

Introduction

This report is the result of my work at NLR during the last year of my studies in
computer science at the 'P.ijksuniversiteit Groningen'.

The report consists of four parts. Part one is concerned with the parallel environment
of the NEC Cenju-3 parallel computer and its programming systems. Chapter one
gives a description of the processing elements and the interconnection network of
the Cenju-3, and an overview of how the Cenju-3 can be programmed. In chapter
two, the communication bandwidth between the processing elements of the Cenju-3
as well as the bandwidth between the Ceriju-3 and the host workstation are measured
and evaluated. This chapter also analyses the effect on the bandwith between the
processing elements when multiple parallel programs are run on separate partitions
of the Cenju-3. The final chapter of the first part, chapter three, motivates the choice
of the programming system that has been used for the parallel implementation of the
NaS/RVS visualiser.

The second part of the report is about this parallel implementation of the visualiser.
Chapter four gives a description of the NaS/RVS system and introduces the tools of the
visualiser. In chapter five, the design and implementation of the parallel visualiser and
one of the tools is presented. Two approaches have been taken to parallelise a visual-
isation tool and performance results are included for both approaches. Finally, chapter
six shows that parallel image composition, which is used in one of the parallelisation
approaches, can be viewed as a reduction operation and implemented efficiently on a
parallel computer.

The parallel visualiser uses the new message-passing standard MPI and the work
done related to MPI is presented in part three. Chapter seven provides an overview of
the MPI standard followed by chapter eight which is concerned with literature on MPI.

The last chapter of this part shows how a public domain implementation of MPI was
ported to the Cenju-3.

The last part of the report contains a literature study on Parallel Direct Volume
Rendering'. Chapter ten studies sequential rendering algorithms and their parallel
counterparts, and concludes with a discussion on parallel rendering using the Cenju-3.

The conclusion of the report are contained in the eleventh and final chapter.

vii

VIII

Partl

Parallel Environment

1

Chapter 1

The Cenju-3 Parallel Computer

1.1 Hardware Configuration

The Cenju-3 system isa distributed memory parallel computer system. Each processing
element (node) has its own private memory and the nodes communicate by passing
messages to each other. A workstation is used as the host computer for the Cenju-3
and pmvides services for compiling and loading pmgrams on the parallel computer.

1.1.1 Cenju-3 Processing Elements

Each node consists of a RISC processor with a primary on-chip cache and a secondary off-
chip cache, a memory controller for the local memory and interprocessor connection

1Ceiu and Ceru-2 are it commercially available.

3

The Cenju-3 system is a new development from NEC. It is based on the Cenju and
Cenju-2 parallel computers1, developed by NEC's research and development group.
This chapter will introduce the Cenju-3 haniware and software configuration.

hardware for sending and receiving messages (Figures 1.1). It also has an on-chip
floating point unit (FPU) which runs at a clock speed of 75 MHz. The FPU consists of
three independent operation units: an adder, a multiplier, and a divider. The multiplier
and divider can overlap with the adder. Some restrictions are imposed on multiplication
and division, since they both use the adder in their last cycle. The adder starts the
next operation one cycle before the current intruction has been completed. Therefore,
execution can be started every three cycles, addition/substraction requiring four cycles
to be executed. On the other hand, the multiplier can start the next double-precision
multiplication every four cycles, and the next single-precision multiplication every
three cycles. (Single-precision multiplication requires seven cycles. Double-precision
multiplication requires eight cycles.) So for single-precision operations 2 instruction,
namely multiplication/division and addition, can be executed every 3 cycles. With
a clock speed of 75MHz this leads to a theoretical single-precision peak performance
of 50 MFlops. For double-precision operations 2 instruction can be executed every 4
cycles, leading to a theoretical peak performance of 37.5 MFlops.

The Cenju-3 is available in configurations ranging from 8 nodes to the largest model
with 256 nodes.

1.1.2 Interprocessor connection network

The nodes can communicate with each other over a multi-stage switching network.
Each node can be directly connected to every other node in this fully inteivonnected
network. When a message is sent from one node to another there is no need to pass
messages through other nodes on the way. The network uses packet switching. Every
message has a destination and passes through the network by acquiring a connection
path at each switching unit (SU) until it reaches its destination. A 4-input x 4-output
switching unit is used as a building block. The routing algorithm is static and determ-

4 CHAPTER 1. 11-IF CENJU-3 PARALLEL COMPUTER

Figure 1.1: Block Diagram of a processing element

1.1. HARDWARE CONFIGURATION 5

message
rcooio' 2to11oJ1

0

Figure 1.2: Routing algorithm used in Cenju-3 interconnection network.

inistic. Each packet on the Cenju-3 has a packet header, consisting of up to 10 bits.
The upper two bits are used to specify the host id, the remaining 8 bits specify the
destination. Since each SU is a 4 x 4 cross bar switch, the swith at each stage decodes the
two bits corresponding to the stage and detennines which of the 4 ports the message
should be sent to. If the port is currently not being used, the packet is immediately
forwarded. If the port is currently used, then the packet is not forwarded until the port
is free. Figure 1.2 illustrates the routing algorithm. Assume we have a sixteen node
machine, and 4 bits are used for the destination. A message is being send from node 2
to node 6, so the destination address is 0110. At each switch, twobits of the destination
are inspected, starting with the most significant bits, to determine the port on which
to forward the message. In our example the message is forwarded on port01 because
the two most significant bits in the destination 0110 are 01. At the next switch, the next
two bits are inspected and the message is forwarded on port 10 which is connected to
node 6.

Besides the normal packet communication function the SUs have a packet copying
function to perform effective one-to-many communication. Eight SUs are intercon-
nected to form a single 16-input x 16-output switch as shown in figure 1.2. A single
network board contains such a 16 x 16 switch and can subsequently fully interconnect
16 nodes. The interprocessor distances are small and equal in length between all nodes
when this type of network is used, e.g. messages are passing 2 SUs when 16 nodes are
interconnected and 4 SUs when 64 nodes are used.

The specifications of the switching network are shown in table 1.1.

1.1.3 Host workstation
The EWS4800 Series workstation, which acts as the Cenju-3 host computer, is respons-
ible for

• Compilation and loading of parallel programs.

• File access from the nodes

• Network access

15
14
13
12

11
10
9
8

6 CHAPTER 1. THE CENJU-3 PARALLEL COMPUTER

Topology Multi-stage (baseline)
Switching method Packet switching
Transfer word width 16 bits
Clock rate 20 MHz
Throughput 40 Mbyte/second
Delay 5 clk/stage (Single-cast)

6 clk/stage_(Multi-cast)
Packet length Variable from 18 to 518 bytes
SU 4x4crossbars
Built-in function Multi-cast, synchronization

It is connected to the Cenju-3 by a 20 Mbytes/second link for data communication and a
RS232 diagnosis link for detecting hardware errors in the switching network. The host
workstation is used to compile and link parallel programs. The resulting executables
can then be run on the Cenju-3.

1.1.4 NLR configuration

The Cenju-3 system installed at NLR is configured with 16 nodes. Since each node can
perform 50 Mflops the theoretical peak performance of a 16 node system is 800 MFlops.
Figure 13 shows the configuration of the Cenju-3 system at NLR. Table 1.2 shows the
specifications of the system.

Table 1.1: Specifications of the switching network

\44400SC RISC processol
(Cache: 32 Kbytes + 1 Mbyti)

Local memory
(64 Mbytes)

Interprocessor
connection mechanism

.4 —(To
interconnection
network)

Figure 1.3: Configuration of Cenju-3 at NLR.

1.2. SOFTWARE CONFIGURATION

Cenju-3 NLR Configuration

Model 16
VR4400SCCFU

Number of nodes 16
75 MHzCPU external clock rate

Floating point
peak performance

Per node 50 MFLOPS
0.8 GFLOPSTotal performance

Instruction execution
peak performance

Per node 150

Total performance 2400 MIPS

Local memory
capacity

Per node 64 MBytes
Total Capacity 1 GByte

Primary on-chip cache capacity 32 Kbytes

Secondary of-chip cache capacity Mbyte

Interprocessor Topology
connection network [Data transfer rate per node

Multi-stage switching network
40 Mbytes/second

EWS Cenju-3 link speed 20 Mbytes/second

Table 1.2: Specification of the NLR configuration of the Cenju-3.

exit read write open
close creat unlink time
stat

access
Iseek
ioctl2

getpid
rmdir

fstat
lstat

xstat lxstat fxstat rename

Table 1.3: SVR4 support on the nodes of the Cenju-3.

1.2 Software Configuration

The basis of the Cenju-3 software environment is the Cenju process (CJP) management
system, MASER. A CJP is equivalent to a process in UNIX and can be thought of as

one process distributed over multiple nodes. MASER is run on the host computer arid

manages the usage of the nodes and the operating states (loading, running, finishing) of

the CJPs. A CJP consists of one or more Cenju workers (CJWs). Each worker executes

its code on a single node and most likely communicates with other workers via the
communication network. Each CJW is connected to the host server (HOS) which in
turn is connected to the MASER. The HOS is used to process requests, such as file access
requests, received from the CJWs (figure 1.4).

The CJWs are controlled by a kernel that implements a few SVR4 compatible system
calls. ibey are listed in table 13. 10-requests, such as a file system access, are handled
by the host workstation via the HOS. The relationship between software and hardware
components is shown in figure 1.5.

1.2.1 Message-passing programming
There are several ways to program the Cenju-3. One can choose between using explicit
message-passing, data-parallel programming or (interactive) automatic parallelisation

tools.
When writing a parallel program using the message-passing paradigm, the pro-

gramrner has to determine explicitly how to distribute the computations over the

2Partiafly supported. Only ioctl for terminal-lOis supported.

-'

7

CHAPTER 1. THE CENJU-3 PARALLEL COMPUTER

Figute 15: Relationship between Cenju-3 software and hardware components.

Figure 1.4: Cenju-3 software configuration.

1.2. SOF1WARE CONFIGURATION 9

Master PE Slave PE Slave PE Slave PE

Only master
PEisactive I fl act iv e

fork

Normal proces-
sing on all PEs

Figure 1.6: Initiating parallel processing.

available nodes. The communication between the nodes also needs to be programmed
explicitly. It is the programmers responsibility to prevent deadlocks. This complicates
message-passing programming, but programs using explicit message-passing can be
optimised much better than automatically generated parallel programs.

Message-passing programming on the Cenju-3 is done under the Single Program
Multiple Data (SPMD) model of parallel programming. There is only one program
(executable) that runs on all nodes, but each node operates on different data. Differences
in flow of control on each node can be controlled using the logical identification of the
node. For example, when a parallel program uses 4 nodes these nodes are logically
numbered 0 up to and including 3, and this identification number is available to
the programmer. Each node can execute different statements based on this logical
identification.

The Cenju-3 has two Application Program Interfaces (APIs) for message-passing.
There is the low-level Paralib/CJ library and the Message Passing Interface (MPI).

ParalibICJ

The Paralib/CJ library provides the lowest level support for parallel programming on
the Cenju-3. Initiating parallel programming is done using a call equivalent to the
UNIX fork system call. A parallel program is started on one node (called the master
node) which forks copies of the program on a given number of nodes (called the slave
nodes). The master node may call the fork routine only once, it is not permitted to fork

more copies of copies of the program once, it is not permitted to fork more copies of
the program after calling fork for the first time. Once fork has been called each node
executes the same program (figure 1.6).

The parallel programming functions can be used once each node has received its
copy of the program. These functions are mainly for enabling communication between
nodes in several ways as listed here.

• Distributed shared memory

• Remote memory data copying

• Remote procedure call (RFC)

• Barrier synchronization

Distributed shami memory can be described as follows. A node can map a memory
area of a remote node into its own address space. Whenever a node accesses a mapped
memory location in the local memory area the operating system automatically performs
communication for reading or writing the remote memory location. The programmer

—

10 CHAPTER 1. THE CENJU-3 PARALLEL COMPUTER

PE PEm

request + parameter interrupted
RPC,

suspbnded

return value
I

continued
normal processing

Figure 1.7: Execution of a remote procedure call.

should prevent the following situations: Reading or writing the mapped memory when
the remote node or some other node is writing to the mapped memory and writing
the mapped memory when the remote node or some other node is reading from the
mapped memory If these situations are avoided data consistency is guaranteed. Note
that communication is performed for every single access into the mapped memory area.
This may lead to performance problems when distributed shared memory is accessed
frequently.

Remote memory data copying is used to transfer the contents of memory between
nodes. Data can be transferred to a remote node (write) or from a remote node (read).
No cooperation is needed from the remote node for the transfer itself but again the
programmer should ensure data consistency.

A remote procedure call (RPC) is used to execute a procedure (routine) on a remote
node. A program requests a RPC, the remote node interrupts its normal processing
to execute the procedure and continues normal processing after the call has finished
and the result is sent to the node that issued the RPC (figure 1.7). If two node's
simultaneously request a RPC to a third node, the execution of the RPC for the first
node that is served will not be interrupted by the execution of the second RPC. This
facility enables critical sections to be controlled easily.

Barrier synchronization is used to ensure that all nodes have reached a certain point
in their processing. It can be used to guarantee data consistency For example before
copying an area of a remote node's memory, a node can issue a barrier synchronization
to ensure that the remote node has finished writing into that memory area. It is assumed
that the remote node requests a barrier synchronization after writing to that memory
area.

Message Passing Interface (MPI)

The Message Passing Interface is a standard for writing message-passing programs. It

was defined by the Message Passing Interface Forum (MPIF) and the goal of this forum
was to develop a widely used standard for writing message-passing programs. As
such the interface should establish a practical, portable, efficient, and flexible standard
for message-passing. The final report, Version 1.0, of the Message Passing Interface
Forum [221 has been the basis for various vendor and public domain implementations
of the standard. The Ml'! standard is extensively discussed in chapter 7. Some features
of the standard are.

Point-to-point communication: e.g. (non-)blocking point-to-point communica-
tions, packing, buffering, complex data types.

12. SOFIWARE CONFIGURATION H

• Collective communication: e.g. broadcast, gather/scatter, reduction operations,
scans.

• Groups, Contexts, Communicators, and Caching: e.g. collective communication
in a subset of the available processors, enabling portable libraries.

• Process Topologies: problem oriented naming scheme, efficient mapping to ma-
chine topology.

• Profiling interface: general interface for profiling purposes.

Mini-MPI Built upon the Paralib/CJ library is a subset implementation of the Mes-
sage Passing Interface (MPI) called the mini-MPI libraiy Some of the features of MN
that have been implemented in the mini-MPI library are:

• Non-blocking point-to-point communications

• Broadcasting

• Gather/Scatter operations

• Reduction operations

A summary of the mini-MPI implementation can be found in [47].

Full-MPI The lack of an MPI library that implements the full standard has been the
motivation for porting a public domain implementation of MPI to the Cenju-3. The
implementation that resulted from a joint-effort project between Argonne National
Laboratory and Missisippi State University has been ported to the Cenju-3. A descrip-
tion of the port can be found in chapter 9. We will refer to this implementation of MPI

as the ANL/MSU implementation.
This MPI library has the full standard MPI functionality. Users can thus write

standard MPI programs and these programs will be portable to a variety of parallel
computers or clusters of workstations.

1.2.2 Data-parallel programming
The Cenju-3 can also be programmed using the data-parallel programming paradigm.
This is implemented in the High Performance Fortran (HPF) pie-compiler. HPF is
a standard defined by the High Performance Fortran Forum (HPFF). It is based on
Fortran 90 which in turn is based on Fortran 77. The relationship isshown in figure 1.8.
The standard is defined in the High Performance Fortran Language Specification [21].
The goal of the HPF Forum was to define language extensions for Fortran supporting:

• Data parallel programming.

• Top performance on MIMD and SIMD computers with non-uniform memory
access costs.

• Code tuning for various architectures.

HPF is based on Fortran 90 but due to the incompatibility of some features of the
Fortran 90 language with the distribution of data in 11FF restrictions were necessary on
the Fortran 90 standard.

The HPF Forum also defined a subset HPF ([211 Section 8) to provide a portable
interim HPF capability The HPF pie-compiler on the Cenju-3 is an implementation of

12 CHAPTER 1. THE CENJU-3 PARALLEL COMPUTER

High Performance Fortran (HPF)T

Fortran 90

rtran 77j:j
Figure 1.8: Relationship of Fortran 77, Fortran 90 and HPF.

Fortran 90 HPF Subset
DO WHILE statement multi-dimensional distribution and pro-

cessor array declaration
arithmetic and logical array features cyclic distribution
intrinsic procedures all HPF intrinsic functions
declarations
optional procedure arguments
keyword argument passing

Table 1.4: Unsupported features of the NEC subset HPF implementation.

this subset and its configuration is shown in figure 1.9. Unsupported features of the
NEC subset HPF implementation are listed in table 1.4. Features supported outside the
subset HPF specification are listed in 13.

1.2.3 Parallelisation tools
The last method of programming the Cenju-3 is to use PCASE, an automatic interactive
parallelisation tool. PCASE allows users to interactively parallelise their sequential
Fortran 77 programs with minimal effort. The PCASE programming environment has
the following functionality:

• Automatic data transfer insertion to transfer data between shared/distributed
memory and local memory

• Dependency analysis of do-loops which tests loop optimisation possibilities such
as vectorisation, parallelisation, and loop restructuring.

• Interactive parallelisation to utilize theprogrammer's high level knowledge of the
application. Users can change the decisions made by the parallelisation software
in order to improve performance.

• REALIGN, REDISTRIBUTE, and DYNAMIC directives
• IrIHERIT directive used with a dist-format-clause or dist-target
• EXTRINSIC function attribute
• NEC directives

Table 13: Features supported by the NEC HPF pre-compiler that are outside the subset
HPF specification.

11. SOFI WARE CONFIGURATION

Figure 1.9: HPF Compiler configuration on Cenju-3.

• Performance prediction. The effect of changes in the parallelisation pmcess, made
by the user, on the performance of the application can be predicted.

Further information regarding PCASE can be found in [351.

HPF subset NEC extension

object code

*
Cenju

14

Chapter 2

Cenju-3 Communication
Bandwidth

This chapter reports on some communication bandwidth tests that have beenconducted
on the Cenju-3 system during the first months after installation at the NLR. Three
different tests have been performed in order to investigate the maximum bandwidth of
the interconnection network, the communication bandwidth between the Cenju-3 and
the host workstation, and the communication interference between different parallel
programs running on different partitions of the system. The tests use the three different
message-passing libraries: Paralib/CJ, mini-MPI, and full-MPI.

2.1 Interconnection network bandwidth

To measure the maximum bandwidth of the interconnection network two tests have
been conducted for each of the three available message-passing libraries. The amount
of data sent in the tests is 8 MBytes since this has been shown to be the smallest amount
of data resulting in the maximum measured bandwidth. Using larger amounts of data
does not improve the bandwidth calculated in these tests. The first test sends data
from one processor to another and calculates the bandwidth from the obtained timing
information. The second test broadcasts data to respectively 2,4,8 and 16 processors.
Again the measured time is used to calculate the bandwidth. Two test sessions have
been performed, one for the initial 13c release of the Cenju-3 software environment
(table 2.1) and one for the next release (1.4c) of the Cenju-3 environment (table 2.2).

Note that in table 2.1 no timing for the broadcast using the mini-MPI library is listed.
This is because the broadcast routine in mini-MPI erroneously does not handle buffers
with a size in excess of 256 kBytes.

Paralib/CI mini-MPI full-MPI
pt2pt 14.2 8.17 8.48

bcast 2 14.2 — 8.47

bcast4 4.72 — 4.08
bcast8 2.03 — 2.72

bcast 16 0.95 — 2.04

Table 2.1: Bandwidth in MBytes/sec of interconnection network for point-to-point and
broadcast communication for 1.3c release of Cenju-3 environment.

15

16 CHAPTER 2. CENJU-3 COMMUNICATION BANDWIDTH

Paralib/CJ mini-MPI full-MN
pt2pt 13.9 8.18 —
bcast2 12.4 10.8 —
bcast 4 4.22 4.99 —
bcast8 1.84 3.45 —
bcast 16 0.88 3.37 —

Table 2.2: Bandwidth in MBytes/sec of interconnection network for 1.4c release of
Cenju-3 environment.

Note also that in table 2.2 no figures are listed for the full-MPI library. This is
because the full-MPI implementation did not work with the 1.4c release of the Cenju-3
environment at the time of the tests. In this table there are figures for the mini-MPI
library, but they were obtained by repeating the broadcast communication 32 times for
a buffer size of 256 kBytes and the resulting bandwidth will thus be smaller than it
would be for one broadcast of 8 MBytes.

Point-to-point communication For point-to-point communication the bandwidth of
the low-level Paralib/CJ library is significantly larger that the bandwidth for the mini-
MPI library that is built ontop of Paralib/CJ. This is because for these tests no synchron-
isation was needed for the Paralib/CJ program where the mini-MN program suffers
synchronisation protocol overhead. The full-MPI implementation however outper-
forms the mini-MPI library for point-to-point communication. No cause has been
found for this small difference.

Broadcast communication For broadcast communication using Paralib/CJ a special
routine (CJrmwr item ()) was used that is supposed to use the packetcopying function-
ality of the interconnection network to perform broadcasting. One would expect this
to outperform a software solution for broadcast in which data is communicated expli-
citly between processors. The results however show that the bandwidth for Paralib/CJ
broadcast is significantly smaller than the bandwidth for mini-MPI and full-MPI. No
explanation was found for this disappointing performance since the source code of
the Paralib/CJ libary is not available, but it is expected that this behaviour is due to a
software error in the Paralib/CJ libary.

2.2 Cenju-3lWorkstation connection bandwidth

Since the primary goal of the work presented in this report is to apply the Cenju-3 to
visualisation tasks, one is interested in the bandwidth between the parallel machine
and the host workstation, since all graphical output will use this connection. This
bandwidth determines the rate at which the framebuffer can be updated and should
thus be large enough. In oider to measure the bandwidth of the connection between
the Cenju-3 processing elements and the hosts workstation, a test was conducted in
which different amounts of data were read from and written to the host workstation.
To eliminate diskcaching artifacts the test program reads data from /dev/zero1, and
writes data to /dev/null2. In this way, the I/O is constrained to memory-accesses
only and the calculated bandwidth will only be limited by the speed of the connection
between the Cenju-3 and the host workstation. All tests have been conducted on

'A file that when read produces an unlimited amount of zero bytes.
2A file that discards all bytes that are written to it.

2.2. CENJU-3/WORKSTATION CONNECTION BANDWIDTH 17

kBytes sent read kBytes/sec write kBytes/sec
64 133.6 463.8

128 177.8 5333
256 178.0 572.7

512 183.2 6103
1024 1852 621.4

2048 186.9 6325
4096 187.5 636.3
8192 186.6 637.1

Table 2.3: Bandwidth in kBytes/sec for file read and file write between Cenju-3 and
host workstation for the 1.3c environment.

kBytes sent read kBytes/sec write kBytes/sec
64 755.2 969.7

128 782.3 979.0

256 782.0 987.5

512 894.0 9993
1024 832.8 1006.6

2048 829.8 983.9

4096 813.1 994.4

8192 8373 947.3

Table 2.4: Bandwidth in kBytes/sec for file read and file write between Cenju-3 and
host workstation for 1.4c environment.

a system with only one user running programs. Tests have also been conducted to
measure the bandwidth while more than one parallel program performed I/O via the
host workstation.

The documentation of the Cenju-3 does not specify the bandwidth of the connection
between the Cenju-3 and the host workstation. However, NEC technicians stated that
this bandwidth could be 40 MBytes/sec, but that it is limited to 20 MBytes/sec due to
lower clockspeed of the hardware at the host workstation. They expect that in practice
the bandwidth degrades further to approximately 14 MBytes/sec due to software
overhead.

Table 23 shows the bandwidth measured for the 1.3c release of the Cenju-3 envir-
onment. It shows that the maximum bandwidth for both read and write is achieved
for transfers larger than approximately 2 MBytes. The bandwidth for file read is very
disappointing and is shown to be caused by a software error that was fixed in release

1.4c of the Cenju-3 envimnment.
Table 24 shows the bandwidth measured when using the 1.4c release of the Cenju-3

environment. A large improvement can be seen for the file read, with a maximum
bandwidth of 894 kBytes/sec. The bandwidth of the file write is also improved and
reaches a maximum of 1006 kBytes/sec which is almost one Mbyte/sec but this figure
is nowhere near the expected 14 MBytes/sec and improvement in this area is necessary
The difference between file read and file write bandwidth is now of normal proportions.

In table 2.5 the bandwidth is listed when more than one parallel program performs
i/O. The amount of data transfered in this test is 4 MBytes. Thebandwidth listed is the
average of the measured bandwidths for all programs performing I/O. It is obvious
from the table that the bandwidth decreases linearly with the number of programs
performing I/O.

18 CHAFFER 2. CENJU-3 COMMUNICATION BANDWIDTH

No. parallel progs. read kBytes/sec write kBytes/sec
1 775.5 931.3
2 427.1 631.1
4 236.1 324.1
8 111.5 135.2
16 59.5 76.6

Table 25: Bandwidth in kBytes/sec for file read and file write when more than one
parallel program is performing file I/O. Results are for the 1.4c release of the Cenju-3
environment.

2.3 Interference between parallel programs

The Cenju-3 allows multiple users to run parallel programs on non-overlapping par-
titions of the parallel system. It is interesting to know if the communication of one
parallel program affects the bandwidth for communication in another parallel pro-
gram. If two different parallel programs use the same switch in the interconnection
network it is apparent that these two programs will interfere with each other and the
bandwidth for communications within the programs will degrade. On the other hand
if the programs do not use the same switches, they should not interfere with each
other's communication and the bandwidth for communication within the programs
should not be affected.

Figure 2.1 shows two parallel programs that interfere with each others communic-
ation. Program I uses processing elements 0 and 1, and program 2 uses processing
elements 2,3,4 and 5. In this example, program one possibly uses the bottom two
switches for communication, and program two possibly uses all four marked switches.
At any point in their execution, these two programs may want to use any of the two
switches that are necessary for communication in both programs, leading to interfer-
ence.

Figure 2.2 shows two parallel programs that do not interfere with each other because
they do not use the same switches. Program 1 uses the bottom two switches while
program 2 uses the upper two switches, so they will not use the same switch at any
point in their execution.

To measure the interference of parallel programs running on non-overlapping parti-
tions, a test was performed in which the programs used to measure the broadcast band-
width of the interconnection network were loaded multiple times on non-overlapping
partitions in such a way that they were running (and communicating) at the same time.
Again the bandwidth was measured and compared to the bandwidth for the tests where
only one program was running. The tests were performed for both the Paralib/CJ and
the mini-MN library and the results are shown in table 2.6. The first two entries in
the table are for one and two programs broadcasting data over eight nodes each. If

both programs would use the same switches it would be expected that the bandwidth
be half the bandwidth for one program. However the bandwidth degrades but is not
halved. This shows that there is some interference, but it is not due to the fact that both
programs use the same switches because in that case the bandwidth is expected to be
half the bandwidth for a single program. 2.2. However, the bandwidth for the last one
of the next three entries (4x4 procs) does not follow our expectations. If each of the four
programs uses nodes connected to a single switch, then the bandwidth for 4x4 procs
should be similar to the results for I and 2 times 4 procs. The results for programs
running on two nodes are also unexpected. In the 2x2 procs configuration we expect
the programs to use the same switches and therefore the bandwidth should be half the
bandwidth for 1x2 procs. This however is not the case, the bandwidth is almost the

23. INTERFERENCE BE7WEEN PARALLEL PROGRAMS 19

Two switches used by both programs

Figure 2.1: The communication of two parallel programs that use the same switch will
interfere.

No switches used by both programs

Figure 2.2: The communication of two parallel programs that do not use the same
switch should not interfere.

20 CHAPTER 2. CENJU-3 COMMUNICATION BANDWIDTH

Paralih/CJ mini-MPI
1x8 procs
2x8 procs

2.02
1.92

2.44
1.59

1x4 procs
2x4 procs
4x4 procs

4.72
4.48
2.90

4.94
4.06
2.70

1x2 procs
2x2 procs
4x2 procs
8x2 procs

14.2
13.4
8.95
4.51

10.7
10.6
7.58
6.82

Table 2.6: Bandwidth in MBytes/sec for broadcast communication for various parti-
tions running the same program.

same. For 4x2 procs the bandwidth drops to 8.95 which is roughly what we would also
expect for 2x2 procs. The 8x2 procs should give a similar bandwidth, because at any
point in time only two parallel programs will use the same switch.

In the above the assumption is made that the system program that loads the parallel
programs onto the machine allocates the nodes in sequence, starting from node zero
up to node sixteen. The output of the program that lists the state of the processors
confirms this assumption. If the allocation would be random we can nothing about
which program uses which switch, but in general the switches will be used by more
parallel programs.

2.4 Conclusions
In this chapter we have investigated the bandwidth provided to the user on the Cenju-
3. It shows that the l'aralib/CJ library provided the largest bandwidth which is to be
expected since full-MPI is implemented ontop of mini-MN, which is built ontop of
Paralib/CJ. However, for some reason, that we have not been able to reveal, in some
cases the full-MN implementation performs better than the mini-MPI library on which
it is implemented. The Paralib/CJ library does have a problem with broadcasting data
using the function that was specifically designed for this purpose. At this moment it is

better to use explicit communication between nodes when broadcasting is needed than
to use the Paralib/CJ routine.

The bandwidth between the Cenju-3 and the host workstation is disappointingly
small compared to what should be theoretically possible. Even using an improved
release of the software environment the maximum transfer rate between the Cenju-3
and the host is less than I MByte/sec. This is a major disadvantage for I/O bound
applications such as visualisation tasks.

Multiple parallel programs degrade the bandwidth of the interconnection network
even when they do not use the same switches. No explanation can be given for this un-
less more detailed information about the haniware and software of the interconnection
network is available.

The bandwidth provided on the interconnection network is relatively high. This
makes the Cenju-3 suitable for programs written in a data-parallel language although
explicit message-passing programs will most likely perform better.

Chapter 3

Programming system

The project description of parallelising the visualiser of NaS/RVS does not specify the
programming system to be used for the parallelisation task. This chapter discusses
the choice of parallel programming system that will be used for the parallelisation of
the NaS/RVS visualiser. The following three possible classes of programming systems
have been investigated:

• Automatic parallelisation tools.

• Data-parallel programming systems.

• Message-passing programming systems.

Several programming systems from these three classes will be introduced. They will
be evaluated for the task of parallelising NaS/RVS visualiser.

3.1 Automatic parallelisation tools

Automatic parallelisation tools generate parallel programs or parallel object code, for
a particular parallel machine and software platform, from a sequential program in
some language (most often Fortran 77). They do this by analysing dependencies in
loops and where possible parallelising the loops. Parallelising compilers fall into this
category. On the Cenju-3 an automatic paralleliser called PCASE is available which
will be discussed next.

PCASE PCASE is an interactive source-to-source translator that automatically paral-
lelises Fortran 77 programs and generates code for the Cenju-3 (section 1.23, [351). The

parallelisation process can be controlled with a graphical user interface (GUI) which
allows the user to make explicit parallelisation decisions in order to improve perform-
ance. In addition to this PCASE enables the user to investigate the consequences of
changes in the parallelisation by predicting the performance of the application. When a
user makes an explicit parallelisation decision he can evaluate the effect of that decision
by predicting the performance and comparing this to the situation before the change.
The output of PCASE is either a Fortran 77 program with mini-MPI message-passing
calls or a Fortran 77 program with parallelisation directives for a parallelisingcompiler.

21

22 CHAPTER 3. PROGRAMMING SYSTEM

Evaluation The PCASE parallelisation tool is easy to use and it has nice features. It
enables the user to create an initial parallel version of his Fortran 77 program. Once
this version runs fine on the parallel machine the programmer can use his high-level
knowledge of the application to improve the performance. All this is done in an
interactive manner. The user can for example select a loop and remove dependencies
that where found by PCASE and remove them because they are not necessary soPCASE
can parallelise the loop. PCASE performs interprocedural analyses which may result
in a better initial parallelisation thus reducing the need for extensive optimalisation.
Source code can be generated for both HPF and Fortran 77 with MPI message-passing
calls.

3.2 Data-parallel programming

Data-parallel programming is a paradigm in which there is one global name space
(as with 'normal' sequential programs) but the data is distributed over a number of
processors. The compiler generates code for communication in case data is needed
that is located on a different processor. Compiler directives can be used to control
the distribution of data in order to minimize the necessary communication for a given
computation. No explicit communication code is written by the programmer; it is the
compiler that is responsible for correct deadlock-free communication.

High Performance Fortran (HPF) HPF is the new Fortran standard which can be
used for writing data-parallel programs [21]. It is designed as a set of extensions and
modifications to Fortran 90 to support data-parallel programming, top performance on
MIMD ans SIMD computers with non-uniform memory access costs, and code tuning
for various architectures. An important goal of HPF is to achieve portability across a
variety of parallel machines. This requires not only that HPF programs compile on all
target machines, but also that an efficient HPF program on one parallel machine be able
to achieve reasonably high efficiency on another parallel machine with a comparable
number of processors, otherwise the effort in optimising the program on one machine
would be wasted when the HPF code is ported to another machine. HPF has various
features to express both the parallelism as well as the communication inherent in a
computation. In this way the programmer has control over the efficiency of the parallel

application.

Evaluation HPF is a data-parallel language which would require the transformation
of a Fortran 77 program to data-parallel form. Most Fortran 77 programs use large
arrays extensively which suits data-parallel programming well. This is also the case for
NaS/RVS visualiser thus a data-parallel implementation could be implemented natur-
ally. The performance of such an implementation is dependent on the the underlying
HPF implementation; in our case the HPF p re-compiler delivered with the Cenju-3.

ADAPTOR Adaptor (Automatic DAta Parallelism TranslatOR) [3] is a tool for trans-
forming data-parallel programs written in Fortran with array extensions, parallel loops,
and layout directives to parallel programs with explicit message-passing. The input
language is a subset of CM Fortran arid HPF although not all features of these lan-
guages are supported. The generated message-passing programs will run on different
multiprocessor systems with distributed memory, but also on shared or virtual shared
memory architectures. The Adaptor tool is a source-to-source translator and uses a
basic set of routines for message passing and operations on sequential and distributed

3.3. MESSAGE-PASSING PROGRAMMING 23

arrays. To parallelise NaS/RVS using the Adaptor system the Fortran 77 program
would have to be converted to data-parallel form in either subset CM Fortran or subset

HPF or a mixture of these two.

Evaluation ADA VIOR can be used in both batch and interactive mode. In batch mode

it acts as a source-to-source compiler generating Fortran 77 programs with message-
passing calls without intervention of the user. In interactive mode the result of the
transformation, such as the chosen distribution for a specific array, can be investig-
ated but the transformation can not be influenced in the way one can influence the
parallelisation process in PCASE.

3.3 Message-passing programming

Message-passing is the parallel programming paradigm in which communication ne-

cessary in the parallel program is explicitly programmed. It is a much more complex
task to write a message-passing program than it is to write a data-parallel program,
but message-passing programs can yield better performance. Using message-passing
programming the programmer has much lower level control over the communications
performed in a parallel program than with data-parallel programming.

Parallel Virtual Machine (PVM) PVM is one of the most well known message-passing

systems. It has become the defacto standard for message-passing and many parallel
computer vendors support the PVM application interface for message-passing. PVM

is a software package that allows a heterogeneous network of parallel and serial com-

puters to appear as a single concurrent computational resource. Using PVM one can
write Multiple Program Multiple Data (MPMD, a super-set of SPMD in which each

node can run a different program) parallel programs that communicate with each other
by passing messages. PVM provides the following functionality.

• Process Control: functions to start and stop parallel tasks.

• Information on the possibly changing hosts configuration.

• Dynamic configuration: adding and deleting hosts from the parallel virtual ma-

chine.

• Dynamic process groups: leaving and joining groups and getting information on
process groups.

• Message buffers: creating and destroying message buffers, retrieving information

on message buffers.

• Signalling processes in the parallel virtual machine.

• Sending, receiving, packing and unpacking of messages.

• Error handling: error messages for the various functions.

Evaluation PVM is a much used message-passing library which is stable and robust.

It is available on a variety of platforms and can be used in a heterogeneous environment.
There are various tools that can be used with PVM such as tools for monitoring the
state of processes and tools for performance analysis of applications. On of the nice
features of PVM is that is allows dynamic addition of hosts and processes during the
execution of a parallel program which can be very useful in some applications.

24 CHAVTER 3. PROGRAMMING SYSTEM

Paralib/CJ The ParalibfCJ library is the native parallel programming library for the
Cenju-3. It features remote memory copying, remote procedure calls, and distributed
shared memory as well as various utility routines to support parallel programming.
The message-passing paradigm can be implemented in Paralib/CJ by using remote
memory copies and synchronisation to ensure the consistency of data. It has been
discussed in the section on the Cenju-3 software configuration (section 1.2.1).

Evaluation The low-level control one has over the Cenju-3 with the I'aralih/CJ library
enables the development of high-performance applications. But as it is with assembler
programming, the interface poses problems when writing large applications. On the
other hand the proposed method of using synchronisation to implement message-
passing with Paralib/CJ leads to inefficient applications because the synchronisation
is machine-wide which possibly involves processors that are not participating in the
communication. On could implement more elaborate mechanisms for message-passing
but this is thought to be the responsibility of the parallel computer vendor. Portability
of Paralib/CJ programs is also a problem since this library is only supported on the
Cenju-3.

Message Passing Interface (MPI) MPI is the emerging new standard for writing
portable message passing programs. One of the main features of MPI is that one can
write portable parallel libraries without the need for synchronisation on library entry
and exit. The concept behind this ability is the notion of disjunct communication uni-
verses. The communication in one universe does not interfere with the communication
in another. Another feature of MPI is the rich ensemble of collective communication
functions. Below is a short summary of MPI features:

• Point-to-point communication.

• Complex data type support.

• Collective communication.

• Virtual topologies.

• Support for libraries.

• Environmental management.

• Profiling interface.

MPI has been discussed in section 1.2.1 and an overview is given in appendix 7.

Evaluation MPI is an intuitive interface to message-passing. The concepts of intra-
and inter-communicators take time to fully understand but once the concept is clear it
serves as a consistent basis on which the rest of the interface builds. When onedoes not
need process groups one can easily use MPI without knowing about communicators.
The virtual topology functions enable a programmer to express the necessary commu-
nication in terms of the structure of the problem thus making the resulting program
much more readible. The library support functions of MPI can lead to safe, efficient and
portable parallel libraries which is an important feature to simplify the use of parallel
computers in general. Once programming systems based on MPI become available
applications will be naturally portable to a variety of parallel architectures.

3.4. WHY CHY3SE MPI? 25

3.4 Why choose MPI?

Based on the information in the previous sections we will now discuss why we chose
MPI as the programming system to be used for the parallelisation of the NaS/RVS
visualiser. Unfortunately the freedom of choice is mainly constrained by the fact that
the Cenju-3 was not available during the first four months of the project. The choice
for MPI is based on the following arguments.

Due to the unavailability of the Cenju-3 system during the first four months of the
project all tools that generate code for the Cenju-3 exclusively or use libraries for the
Cenju-3 could not be used since the resulting code could not be tested in any way. This

means that HPF, PCASE and the Paralib/CJ library could not be used to parallelise
NaS/RVS visualiser.

The ADAPTOR tool will not be used because the input language is a mixture of
subset HPF and subset CM Fortran so the portability of the resulting program will
become a problem. Would we have chosen to use ADAPTOR, only the HPF subset
should have been used to be able to port the resulting code to the Cenju. We were unable
to compare the ADAPTOR subset HPF to the Cenju subset HPF due to the unavailability
of the specifications of the Cenju HPF pre-compiler and have thus chosen not to use
ADAPTOR.

PVM has not been chosen to parallelise NaS/RVS visualiser although it was the
defacto standard for writing message-passing programs at thebeginning of the project.
PVM runs on a variety of workstation clusters which would have made development
possible as long as the Cenju-3 was unavailable, but it was known at the time that
PVM would not be supported on the Cenju-3. If NaS/RVS where written in PVM, a
conversion from PVM to a messsage-passing system that is supported by the Cenju-3
would be necessary Due to the time constraints of the project this conversion should

be avoided.
Then why did we choose MPI as the programming system for the parallelisation

of NaS/RVS visualiser? First of all, MPI is going to be the new standard for writing
message-passing programs. It is already supported on a variety of parallel architec-
tures through the public domain implementation of Argonne National Laboratory and
parallel computer vendors will develop their own optimised native versions in the
near future, and it has been shown that MPI can be implemented efficiently on vari-
ous architectures. MPI provides more functionality than PVM especially with regard
to the collective communications and the support for writing parallel libraries. The
arguments that apply to the specific case of the parallelisation task at hand are: at the
time of the start of the project various public domain MPI implementations were avail-
able for workstation clusters (MPICH,LAM,CHIMP). Secondly, it was clear at that time
that the Cenju-3 system would be delivered with an MPI interface to message-passing.
Although this interface would be a subset of the full M1'I standard the possibility
of porting an application written in MPI to the Cenju-3 was apparent. Having con-
sidered this we were able to start developing the parallel version of the visualiser on a
cluster of IBM RS6000 workstations, using both the LAM and MPICH public domain
implementations of MN.

Since the NaS/RVS code is written in Fortran 77 and has been optimised for ex-
ecution on the NEC SX/3, perhaps a better choice would have been to use HPF for
parallelisation. One would then have to transform the program into a data-parallel
program. The compiler directives for loop optimisation on a vector machine like the
SX/3 map very well to equivalent directives in HPF. This way one could put up an
initial implementation in a relatively small amount of time, and then use the directives
already present in the source to include HPF directive to improve performance of the
initial implementation without detailed knowledge of the algorithms. This approach

26 CHAFFER 3. PR(XRAMMING SYSTEM

makes advantage of the knowledge that has already been put into the optimisation of
the application for the vector supercomputer and probably enables parallelisation of
all visualisation algorithms in a fraction of the time necessary when explicit message-
passing is used. Unfortunately this approach was not feasible within the time frame of
the project, therefor we decided to use Ml'!.

Part II

Parallel Visualiser

27

S

Chapter 4

The NaS/RVS System

The Navier Stokes Real-time Visualisation System (NaS/RVS) isa system for 3-dimensional
(3D) Computational Fluid Dynamics (CFD) simulations. It could be used to investigate
the flow of fluids or gasses around objects such as cars and airplanes. The flow-solver
calculates values for the pressure, temperature, and velocity of the flow on a 3D grid
by solving the Navier Stokes equations which is a system of second order differential
equations. The output of the flow-solver is sent to a visualiser which displays the data
as a 2-dimensional (2D) image on a display.

The grid used in NaS/RVS is a so called structured or curr,ilinear grid which is
commonly used in CFD [44J. This grid consists of hexahedral (warped) cells whose
connectivity is defined in CFD as follows: a cell with address (i, j, Ic) is defined by the
eight vertices (i,j,k), (i+ 1,j, k), (i,j+ 1, k), (i+ 1,1+ 1,k), (i,j,k+ 1), (i+
1),(i,j + 1,k + l),(i+ l,j-i- l,k + 1). Theseeightverticesdefineacellinthegrid.

The flow-solution is defined on the vertices of the cells where other software some-
times defines the solution on the central point of the faces of the cells or in the center of
the grid cells. An example (extract) of a curvilinear grid is shown in figure 4.1.

There are two notions of space applicable in CFD applications. First there is the
notion of physical space in which the three directions are most often called z, y and z.

This is the space in which an object is placed for subsequent visualisation. Secondly
there is the notion of grid space in which the directions are most often called i, j and k.

k hexahedral cell is defined by eight points in this curvilinear grid space.
NaS/RVS is an integrated system in which the flow-solver sends its intermediate

solutions directly to the visualiser. This way the intermediate solutions from the flow-
solver can be visually verified right away. This is called tracking of the simulation.
NaS/RVS also allows the user to change parameters for both the flow-solver and the
visualiser during simulation. This is useful for adjusting parameters for the flow-solver
for example to achieve the desired result. The tracking feedback is necessary in this case
to evaluate the result of changing parameters to both the visualiser and the flow-solver.
This changing of parameters during the simulation is called steering.

In the NEC setup of NaS/RVS both the flow-solver and the visualiser execute on a
NEC-SX3/22 supercomputer and the output is sent to an UltraNet frame buffer (figure
4.2). This setup has been changed as suggested in the project description to adapt
the system to the NLR environment. The flow-solver now executes serially on one of
the nodes of the parallel system and the visualiser is partially parallelised (figure 4.3).
In the future the flow-solver will be parallelised as well or be replaced by a different
parallel flow-solver. Another change in the setup was that the output in now sent to a
window on an X-terminal instead of sending it to an UltraNet frame buffer. For this an
additional module was developed (the display module) during the project.

29

30 CHAPTER 4. THE NAS/RVS SYSTEM

Figure 4.1: Extract of a curvilinear grid with warped grid cells in the area of a cylinder.

EWS4800 running
- User Interface

control

messages

output

NEC-SX3/22 running
- Flowsolver
- Visualiser

Figure 4.2: NEC setup of NaS/RVS.

UltraNet framebuffer
- Visualiser output

visualiser

/4,

4.1. THE FLOW-SOLVER 31

control messages

visualiser output

EWS4BOO running NEC Cenju-3 running

- User Interface -Flowsolver (one node)

- Visualiser output -Visualiser (parallel)

Figure 4.3: NLR setup of NaS/RVS.

4.1 The flow-solver

The NaS/RVS system, as it is currently configured, contains a flow-solver based on
the Akiba' code which is a Direct Navier-stokes Simulation (DNS) code for 3D incom-
pressible flows. The output of this flow-solver is sent to the visualiser which displays
the flow solution using one or more visualisation tools. The system operates in one of

two modes at a time:

• Real-time mode, in which the flow-solver constantly calculates a new intermedi-
ate flow-solution which is sent to the visualiser. hi this way the solution of each
time-step is visualised so the user can check the solution for its visual correctness.

• Halt mode, in which the flow-solver is not executed and the current solution may
be explored further by changing parameters to the visualiser.

Which mode the system is in at a certain point in time is controlled by the user. The
main loop of the NaS/RVS system might look like the pseudo code in figure 4.4. After

reading in the file that defines the curvilinear grid the flow-solver and the visualiser
are initialised. The loop starts by calling the flow-solver if the system is in real-time
mode. When a change is made to the viewing parameters the visualiser is activated to

update the image to reflect these changes.

4.2 The visualiser
The visualiser of the NaS/RVS system consists of a few tools to investigate the flow
solution by displaying a given feature of the flow such as pressure, temperature or
velodty of the flow. The tools supported in the current implementation of NaS/RVS

are: object renderer, contour plot, particle trace and volume rendering (pseudo code for
visualiser in figure 4.5). All tools can be selected or de-selected and each tool generates
a z-buffer and an image. These z-buffers and images are combined into a single image
and z-buffer before the volume renderer is activated. The volume visualiser takes this
combined z-buffer and image and combines its output with it.

Depending on the state (selected/de-selected) a visualisation tool is activated or not
activated. After the execution of the object renderer, contour plot, and particle tracer,

1name of NEC softwaie engineer.

Jill'

32 CHAPTER 4. THE NAS/RVS SYSTEM

procedure MAIN
begin

read curvilinear grid coordinates;
initialise flow-solver;
initialise visualiser;

while (not end of simulation) do
begin

check for parameter changes by user;
if(real-time mode) then

call FLOWSOLVER;

if (changed parameters or new flow-solution) then
call VISUAUSER;

end
end

Figure 4.4: Pseudo code for the main loop of the NaS/RVS system.

the images and z-buffers of these three tools are combined into a single image and
z-buffer. This image and z-buffer is needed by the volume renderer to determine the
color of each pixel in the final image. This color depends on the opacity of the sampling
points for volume visualisation and the color that was generated by the three other
tools. The resulting final image on the screen is determined by the viewing parameters.
These are:

• View vector/view point, view reference point, view-up vector, clipping planes.

• Viewport or image size.

• Type of projection (parallel or perspective).

• Data to be visualised (flow pressure, temperature or velocity).

• Information on light sources.

• Colour tables.

How these parameters affect the final images can be found in the standard works on
computer graphics [20] chapter 6 and [48] chapter 3.

4.2.1 Object renderer
The object renderer displays object(s) that are placed in the flow. The flow around
an object can be visualised by coloring the surface of the object. One can for example
visualise the pressure or velocity of the flow on the surface of the object. Another option
is to give the object its own constant color. Apart from the total surface of the object one
can also display a wire frame model of the object with a certain color mapping. The
rest of the object will be transparent. The objects are uniquely defined by two vertices
in the curvilinear grid which define a (possibly warped) cube consisting of one or more
hexahedral cells (figure 4.1).

4.2. THE VISUALISER 33

procedure VISUALISER
begin

if(object renderer selected) then
call OBJECLDISPLAY;

if(contour plot selected) then
call CONIOURYLOT;

if(particle tracer selected) then
call PARTICLE .TRACER;

if(at least two tools activated) then
combine images of object renderer ,contour plot.

and particle tracer by comparing z-buffer values;

if(volume renderer selected) then
call VOLUMERENDERER;

send resulting image to screen;
end

Figure 4.5: Pseudo code for the visualiser.

4.2.2 Contour plot

The contour plot displays lines or areas of similar data value (pseudo code in figure 4.9)
by interpolation the data defined on the vertices of the grid (figure 4.6). For example
one can make a contour plot for the temperature in a certain plane in grid space. This
plane need not coincide with the cell vertices so an interpolation between the vertices
of the nearest cells might be necessary to calculate the data values on the selected plane
(figure 4.7). The contour plot allows a detailed inspection of the interior of the grid.
At the moment only cross-sections perpendicular to an axis (i, i or k) of the grid can
be visualised so arbitrary cmss-sections are not supported. The contour plot takes the
following parameters:

• The plane (e.g. u-plane) and the value of the free variable (in this case k) that
defines the plane (figure 4.8).

• Minimum and maximum color index. These two define the maximum possible
number of contour lines in the output image.

• Minimum and maximum data value to bevisualised. This along with the previous
parameter defines the size of the data value interval that is mapped to the same
color.

The contour plot also has a capability of filling in the space between contour lines with
the color of the nearest contour line. The resulting image is called a contour fringe.

The contour plot in NaS/RVS is adapted to meet the need for real-time visualisation.
Under the assumption that the viewing parameters as described in section 4.2 do
not change frequently certain information that is dependent only on these viewing

34 CHAPTER 4. THE NAS/RVS SYSTEM

Figure 4.6: Contour line for data value 5. The data values are interpolated along the
edges of the four grid cells.

selected plane

7
nearest gridplanes

data-value on this vertex
8.0

j-axis

Figure 4.7: Interpolation of the position of the contour plane from the grid points

Figure 4.8: u-plane on k value h

Coordinate (i.j.k) space

z-axis

I-dlr.ctlon

plan. on k=h

x-axis

y-axis

4.2. THE VISUALISER 35

procedure CON1OURPLOT
begin

if (change in viewing parameters) then
begin

calculate coordinates of selected plane by interpolating
neighbouring grid coordinates;

forall (grid cells in selected plane) do
begin

project grid cell vertices to screen space;
store interpolation parameters;
set pixels of projection of grid cell;

end

forall (active pixels) do
begin

calculate unit normal;
calculate reflection coefficient;

end
end

interpolate data to selected plane;
calculate RGB values for active pixels using

pre-stored interpolation parameters;
end

Figure 4.9: Pseudo code for the contour plot.

parameters is computed in advance. When a new data-set emerges from the flow-
solver and the viewing parameters are unchanged, the new image is computed rapidly
using the pre-stored information. The pre-stored information consists of:

• For each pixel the corresponding cell in the grid.

• Parameters for the interpolation along the edges of cells in the grid.

• Normal vectors to the selected plane.

• For each pixel the intensity of lighting.

This information is used to quickly generate a new image once new flow data is
available. This greatly reduces the time needed to generate this image improving the
performance of the contour plot. Similar techniques have been applied to other tools

aswell.

4.2.3 Particle tracer
Using this tool one can inject particles into the flow to investigate certain aspects of
the flow. The initial position of the particles is given in grid coordinate space. The
particle positions change due to the flow and every time-step the new particle position
is displayed along with the previous positions. The particles thus leave a trace in

36 CHAPTER 4. THE NAS/RVS SYSTEM

procedure PARTICLETRACER
begin

if (real-time mode) then
begin

inject new particles;
foreach(particle) do

move particle to new position;
end
else I' halt mode 4/
foreach (particle) do
begin

transform particle to physical coordinates;
calculate color for particle;
transform particle to screen space;
set RGB- and Z-buffer values;

end
end

Figure 4.10: Pseudo code for the particle trace algorithm.

the medium which may clarify certain pmperties of the flow. Again the color of the
particles can be chosen constant or they can be assigned the color corresponding to a
certain data value. The pseudo code for the particle tracer can be seen in figure 4.10.

When the visualiser is in real-time mode the particle tracer injects new particles into
the flow and moves all the particles to their new position. Next the position of the
particles (which is kept in grid space coordinates) is transformed to physical (world,
x,y,z space) coordinates. Using the light sources, the particles receive their color after
which they are transformed to screen (image/z-buffer) space.

4.2.4 Volume rendering
This tool gives an impression of the full 3-dimensional dataset by representing the data
in the volume by clouds of varying color and opacity. Depending on the data value
at each point in the grid and the gradient of these data values a color and opacity
is assigned to each sample point. This results in an image in which certain aspects
of the flow will be visible. The volume renderer might for example be configured to
show high velocity flow as opaque sample points while low velocity flow is shown
as transparent points. The following taxonomy can be given for volume renderers
[50]: surface fitting methods and direct volume visualisation. Surface fitting methods
extract a surface from the flow-solution and render the resulting 3D primitives. Direct
volume visualisation methods do not generate intermediate 3D primitives but render
the volume as is, generating an image from the flow-solution directly. There are two
major approaches in direct volume rendering: ray casting (iackward mapping)and plane

compositing (forward mapping). The volume renderer in NaS/RVS is of the latter type.
The general structure of this type of volume renderer is shown in figure 4.11 and figure
4.12 (adapted from [48]).

4.2. THE VISUALISER 37

foreach(plane in the volume data) do
foreach(cell in the plane) do
begin

find the pixels -the 'footprint'- that the cell projects onto;
calculate new color for those pixels

based on color resulting fron previous planes;
end

Figure 4.11: General structure of a
renderer.

plane compositing (forward mapping) volume

Figure 4.12: Plane compositing or forward mapping.

plane each plane

38

Chapter 5

Parallelisation of a visualisation
tool

This chapter will present the design and implementation of theparallel contour plotting
algorithm. This tool was chosen to be implemented because it is used quite often for the
visualisationofCFD data. Secondly, because there was no English' documentation, not
on paper nor as comments in the source code, on the algorithms being used in any of
the visualisers contained in NaS/RVS, the contour plot was chosen to be implemented
first since it is a relatively simple algorithm. It still took me a few weeks to unravel
the mysteries of this specific implementation of the contour plot. Due to the time
constraints of the project this is the only tool that has been parallelised.

First a few design considerations [291 will be introduced after which the sequential
and the parallel contour plot algorithms will be presented. Two parallel algorithms
using two approaches for data distribution have been implemented and the perform-
ance of the algorithms resulting from these two approaches will be discussed in the last
section of this chapter.

5.1 Design considerations

When designing a parallel algorithm one has to consider a few things. Parallelisation is
mostly aimed at improving the performance of a particular piece of software so one of
the questions is how to measure the performance of the parallel implementation. There
are a number of performance metrics that will be discussed in the next subsection. An-
other consideration is whether the parallel algorithm is scalable, meaning that adding
more processors will not lead to loss of efficiency Finally one should keep in mind that
the parallelisation of an algorithm will most probably lead to parallel overhead. These
considerations will be discussed in the following subsections.

5.1.1 Performance metrics

This section will introduce some metrics that are commonly used to measure the per-
formance of parallel algorithms.

Run time The run time of a sequential algorithm is the time elapsed between the
beginning and the end of the program. Parallel run time is the time elapsed between

1There is some documentation in Japanese.

39

40 CHAPTER 5. PARALLELISATION OFA VISUALISATION TOOL

the moment that the parallel program begins and the time the last processor finishes
execution. Serial run time will be denoted by T, and parallel run time by T.

Speedup When parallelising an algorithm we are most often interested in how much
we gain in speed by running the program on p processors, say, as opposed to running
it on a single processor. A metric for this is the speedup which is defined as the ratio
between the run time of the algorithm on a single pnxessor and the run time of the
parallel algorithm on multiple processors.

s=
For the value of T3 we have a choice of taking the run time of the parallel algorithm
on a single processor or the run time of the sequential algorithm that was parallelised.
The best choice is to use the run time of the sequential algorithm because the parallel
algorithm running on a single processor will experience ovethead from the commu-
nication routines although they may not perform any data transfer. Another possible
choice for T, is to take the run time of the fastest known sequential algorithm with the
same functionality. This might be an algorithm that is hard to parallelise, but has good
performance on sequential machines. This choice ofT, however is impractical because
most likely the fastest sequential algorithm is not available to the developer or can not
be compared to the sequential that is used as a basis for parallelisation because of extra
or missing functionality.

The value of the speedup metric will usually be greater than zero and less than or
equal to the number of processors p used. A speedup greater than p is called super-
linear speedup and is most often caused by the reduced resource needs per processor of
the parallel algorithm. For example the sequential algorithm might need the swapping
capability of a single processor machine to meet its memory needs while thedistribution
of data onto the processors of the parallel machine causes the parallel algorithm to be
less consumptive with memory per processor which consequently does not need the
performance degrading swapping mechanism.

Efficiency This metric is defined as the fraction of time the processor is usefully
employed. It is defined as the ratio of the speedup S to the number of processors p.

E=
p

An optimal parallel algorithm will have speedup p and thus efficiency 1.0, but for
super-linear speedup the efficiency will be larger than 1.0.

Cost The last commonly used metric is cost. It is defined as the product of parallel
run time T and the number of processors p.

C=pT,, = =

A parallel algorithm is said to be cost-optimal if the cost of solving the problem on a
parallel computer is proportional to the run time of the sequential algorithm on a single
processor. This is equivalent to the statement that a parallel algorithm is cost-optimal
if the efficiency is independent of the number of processors.

5.2. DATA PARTITIOMNG 41

5.1.2 Scalability

When parallelising an algorithm for a certain parallel computer one wants to be able to
increase the number of processors and the problem size while maintaining the efficiency
of the parallel algorithm. This property is called the scalability of a parallel algorithm.
If for example, a scalable algorithm running on a certain number of processes yields
a certain efficiency the same efficiency can be achieved if we multiply the number of
processors by two and the problem size by a number of the same order of magnitude.
Thus if the increase in the number of processors and the increase in the problem size are
of the same order of magnitude, while maintaining the same efficiency the algorithm
is scalable, This property is valuable because the tendency in parallel computing is to
add more and more processors to parallel systems to be able to handle more complex
problems (increase in problem size).

5.1.3 Parallel overhead

The parallelisation of an algorithm often introduces parallel overhead. Three types of
parallel overhead will be presented here.

Interprocessor communication. Any nontrivial parallel program requires commu-
nication among the processors to solve a problem. The time spent communicating is
usually the most significant source of parallel overhead. In the ideal situation where
one can make communications and computation overlap using non-blocking commu-
nications this type of overhead will be reduced.

Load imbalance. Parallel programs usually divide the problem into subtasks. In

many cases the size of the subtask can not be predicted so the problem can not be
subdivided statically among the processors, resulting in a nonuniform load balance.
This leads to less efficient parallel programs because the end time of parallel processing
is the time the last processor ends processing. In the case of a load imbalance this time
is larger than the optimum case in which all processors spend an equal amount of time
processing.

Extra computation. The last source of parallel overhead are the extra computations
that might be necessary if for example certain results, that would be reused in a sequen-
tial algorithm, can not be reused in the parallel algorithm and need to be recomputed.
Often the boundaries between the subtasks are replicated in neighbouring processors
to eliminate the need to communicate these boundaries but the consequence is that the
computations for the boundaries are replicated as well.

5.2 Data partitioning

In the parallelisation of rendering applications two approaches are commonly used.
One can partition the object space meaning that multiple objects, in our case the grid
cells, are distributed over the available processors. The second approach would be
to partition screen space meaning that each processor is responsible for a collection of
pixels that contribute to the final image. These two different approaches are illustrated
in figure 5.1. This section will evaluate the parallelisation of the contour plot algorithm
using these two approaches.

42 CHAFFER 5. I'ARALLELISATION OFA VISUALISATION TOOL

Figure 5.1: Assignment to processors for parallelisation in object space (a) and screen
space (b).

The NaS/RVS system has two large data structures that are candidate for partition-
ing, the grid coordinates and the/low solution2. In general both the grid coordinates and
the flow solution may change from one time-step to another but we will only consider
the case in which grid coordinates are stable and the flow solution is unstable, since
this is the case for the NaS/RVS system.

Because the grid coordinates are stable a good choice is to replicate the grid co-
ordinates in each processor, if there is enough memory so each processor has its own
private copy of the grid coordinates. If we replicate the grid coordinates in each pro-
cessor no communication during the computation is necessary to get geometry data
from other processors. Broadcasting the grid coordinates to each processor will only
affect the setup time for the algorithm while increasing the sustained performance of
the application because of the elimination of some of the communication during the
computations.

The flow solution however is not stable. Each time-step the flow-solver calculates
a new intermediate result that needs to be visualised. Parts of the intermediate result
should be available to the processors that need it. Which part of the result is needed
depends on the partitioning chosen, that is object space partitioning or screen space
partitioning.

5.2.1 Partitioning of object space

Each visualisation tool has the same screen space but may have a different object space.
The object space for the object renderer for example is the geometry of the object that is
placed in the flow, while the object space for the contour plot is the plane that intersects
the volume and on which the contour should be displayed. The object space for the
particle tracer might be the particles that are moving through the flow or it might be
the 3D grid space as a whole. The object space for the volume renderer is the 3D grid
space. When referring to the object space we mean the object space that corresponds to
the visualisation tool in question. The partition of object space as shown in figure 5.1
would correspond to the contour plot.

5.2.2 Partitioning of screen space

The screen space is uniquely defined to be the 2D array of pixel values and z-buffer
values produced by the various visualisation tools. Each tool operates on the same
screen space and a particular partitioning of the screen space affects all tools.

2velocity in u, v and w direction, pressure and temperature.

a) b)

53. PARALLEL ALGORITHMS 43

5.3 Parallel algorithms

In this section we will give the parallel algorithms in pseudo code for the main loop,
the visualiser and the contour plot algorithm. After a description of each algorithm
there is a paragraph that describes the communication necessary in each algorithm in
order to evaluate each algorithm's scalability and parallel overhead.

Formulation of parallel algorithms The parallel algorithms listed in this chapter are
programs using the Single Program Multiple Data (SPMD) model of parallel program-
ming. This means that a copy of the same program runs on each node of the parallel
machine. The parallel functions, like for example the broadcast operation, are executed
by all nodes. Depending on the logical rank of the node in the parallel machine the
function performs the necessary actions to implement the intended functionality. In
the case of the broadcast operation one node would send the data to all the others
which in turn would receive the data from the sending node. So depending on the
logical rank the root node performs a different action than the rest of the nodes. This
is also the model of parallel message passing programming that is intended with the
MPI standard and this is the reason why it is used.

5.3.1 Parallel main loop

The parallel main loop presented in this section is equal for both the object and screen
space partitionings (Figure 5.2). The scalar parameters for the various tools are broad-
casted during initialisation and broadcasted again if they change. These scalar para-
meters control the behaviour of the various tools. All interaction with the application
is through the root node. The root node receives all user input and broadcasts this
information to the other nodes when necessary For example, if the user changes the
viewpoint,, a boolean will be set on the root node to indicate that the viewpoint has
been changed and the viewpoint parameter will consequently be broadcasted to inform
each node of the change so it can use this parameter in the various tools in the next call

of the visualiser.
The grid coordinates are broadcasted before the initialisation of the parallel visual-

iser. The barrier synchronisation before the call to the parallel visualiser is necessary to
prevent that the nodes end up in a busy wait loop, waiting for the flowsolver to com-
plete when the parameters to the visualisation tools are unchanged. It thus ensures
that the root node and the other nodes execute in lock step, meaning that the other
nodes wait for the flowsolver on the root node to complete before calling the parallel
visualiser.

Communication The communication involved in the main loop of NaS/RVS is mainly
to initialise NaS/RVS such as broadcasting the default scalar parameters and broadcast-
ing the grid coordinates. The time for this communication is added to the setup-time
and does not affect the sustained performance of NaS/RVS. The broadcast of the scalar
parameters after a change has been made to these parameters, occurs in the main loop
and may affect performance, but since the amount of data transfered is small this will
not affect the overall performance of the loop. The barrier synchronisation also implies
communication, but this again involves only very small messages and will not affect
the performance of the main loop.

44 CHAPTER 5. PARALLELISATION OFA WSUALISATION TOOL

procedure PARALLELMAIN
{ For both object and screen partitioned visualisers)
begin

broadcast scalar parameters;
if (mat node) then
begin

read curvilinear grid coordinates;
initialise flow-solver;

end
broadcast grid coordinates;
initialise parallel visualiser;

while (not end of simulation) do
begin

if(root node) then
begin

check for parameter changes by user;
if(real-time mode) then

call FLOW SOLVER;
end

if(changed parameters on root node) then
broadcast changed parameters;

barrier synchronisation;
if (changed parameters or new flow-solution) then

call PARALLEL VISUALISER;
end

end

Figure 52: Pseudo code for the parallel main loop.

5.3. PARALLEL ALGORIThIMS 45

procedure PARALLELVISUAUSER
{ For partitioning of object space)
begin

if(object renderer selected) then
call PARALLELOBJECrRENDERER;

if(contour plot selected) then
call PARALLEl_CONTOUR-PLOT;

if(particle tracer selected) then
call PARALLEl_PARflCLETRACER;

if (at least two tools activated) then
begin

combine local images of object renderer, contour plot
and particle tracer, by comparing z-buffers values;

image composition to one globally valid image
using z-buffer values;

end

if(volume renderer selected) then
begin

call PARALLELVOLUMERENDERER;
image composition to one globally valid image using

z-buffer and a-values generated by volume renderer;
end

end

Figure 5.3: Pseudo code for the parallel visualiser using partitioningof object space.

5.3.2 Parallel visualiser

For the parallel visualiser we will only consider the case in which all tools use the same
partitioning of data, either object space or screen space partitioning. This is to keep
only two essential variants of the parallel visualiser, namely the case in which all tools
use partitioning of object space and the casein which all tools use partitioning of screen
space.

Partitioning of object space

In the case of object space partitioning of the data, each node produces its own
full sized framebuffer by combining the results hum the activated visualisation tools
into one local full sized framebuffer. The contents of each of these framebuffers is not
valid independently because the images of different processors may overlap. Only
by combining these framebuffers one can obtain the final image as shown in figure
5.4. Before calling the volume renderer, the framebuffers of the other tools should be
combined based on the z-buffer values. A pixel that has a smallerz-value (closer to the
viewer) will obscure a pixel with a larger z-value. In this way the framebuffers from
all processors will be depth-sorted in order to obtain a valid intermediate image that
can be used by the volume renderer to combine its output with it.

46 CHAPTER 5. PARALLELISATION OFA VISUALISATION TOOL

node 0 node 1 node 2 node 3

Figure 5.4: Image composition of all images to one image.

The volume renderer needs the full intermediate framebuffer because the partition-
mg of the object space for the volume renderer may differ from the partitioning of the
object space of all other tools. Once each processor has combined the output of the
volume renderer, which is a convex part of the volume, with the intermediate image,
another image composition step is necessary to combine the outputs of the volume
renderer into a final image. This image composition step is different from the previous
image composition step in that it uses not only the z-value, but also the a-value, ofeach
pixel to determine the color. Since the combination of the a-values is not commutative
the order in which the results are retrieved from the processors to be combined with
the intermediate result is important; the images should be combine in depth order.

An efficient parallel implementation of the image composition operation will be
presented in chapter 6.

Communication In this algorithm communication arises in the image composition
- operations. Since this operation is executed twice when any of object renderer, contour
plot or particle tracer is active, it is important to achieve an efficient implementation of

this operation.
Two image composition operations are necessary because the partitioning of object

space in each of the object renderer, contour plot and particle tracer may be different.
The first image composition might be eliminated, if the partitioning of object space
would be uniform over these tools. The consequence of this is that if the object to
render falls entirely within a single processor's part of the volume only one processor
would be computing for the object renderer, resulting in poor load balance.

Partitioning of screen space

In the case of screen space partitioning of the data, each node produces part of the
final image. The part of the image that is produced by a node is a valid part of the
final image. The first combine statement, combines the resulting framebuffers from
the activated visualisation tools. This results in a valid part of the final image on each
node. Because we assume that the parallel volume renderer also uses the screen space
partitioning, no reduction operation is needed to combine (parts of) framebuffers from

final image

53. PARALLEL ALGORITHMS 47

procedure PARALLELVISUALISER
{ For partitioning of object space }
begin

if(object renderer selected) then
call PARALLELOBJECLRENDERER;

If(contour plot selected) then
call PARALLEL.CONTOURYLOT;

if(particle tracer selected) then
call PARALLELPAR11CLE..TRACER;

if (at least two tools activated) then
begin

combine local images of object renderer, contour plot
and particle tracer, by comparing z-buffers values;

end

if(volume renderer selected) then
call PARALLELVOLUMERENDERER;

concatenate image parts into one globally valid image;
end

Figure 5.5: Pseudo code for the parallel visualiser using partitioning of screen space.

48 CHAPTER 5. PARALLELISATION OF A VISUALISATION TOOL

node 3

Figure 5.6: Concatenating the parts of the final images from the nodes into one globally
valid image.

all nodes. The parallel volume renderer takes the local part of the final image and adds
its result for that part to it. The last statement in the code concatenates the results from
all the nodes into one valid final image on the root node (Figure 5.6).

Communication The only communication in this algorithm is in the last statement in
which the partial images on all processors are concatenated into the final image on the
root node.

5.3.3 Parallel contour plot
The design of the parallel contour plot algorithm for both the partitioning of object and
partitioning of screen space will now be presented.

Partitioning of object space

The algorithm for the contour plot algorithm that assumes partitioning of object space is
listed in Figure 5.7. This routine is invoked by the parallel visualiser and at that time the
grid coordinates have already been broadcasted to all processors by the main loop. The
only communication necessary is to get the part of the new flow solution that is assigned
to this processor. That node will then perform the necessary computations to obtain
the contour plot for that part of the selected plane. This object space algorithm does
not deviate much from the non-parallel contour plot algorithm. Instead of operating
on the whole plane it operates on the part of the plane for which it is responsible.

Communication The communication in the object partitioned contour plot algorithm
is to get that part of the flow-solution for which the processor is responsible. Apart
from this there is no communication in this algorithm.

Partitioning of screen space

The algorithm for the contour plot that assumes partitioning of screen space is listed
in Figure 5.8. Since we do not know to which part of the screen the grid cells of the

node 0 node 1I: node 2

/\

final image

5.3. PARALLEL ALGORITHMS 49

procedure PARALLELCON1OUR1'LOT
(Object space partitioning)
begin

if (change in viewing parameters) then
begin

calculate coordinates for my part of selected plane by
interpolating neighbouring grid coordinates;

forall(grid cells in my part of selected plane) do
begin

project grid cell vertices to screen space;
store interpolation parameters;
set pixels of projection of grid cell;

end

forall (active pixels) do
begin

calculate unit normal;
calculate reflection coefficient;

end
end

get my part of new flow solution;
interpolate data to my part of selected plane;
calculate RGB-values for active pixels using

pre-stored interpolation parameters;
end

Figure 5.7: Pseudo code for the parallel object space partitioned contour plot.

50 CHAPTER 5. PARALLELISATION OF A VISUALISATION TOOL

procedure PARALLELCON1OURI'LOT
{ Screen space partitioning)
begin

If (change in viewing parameters) then
begin

calculate coordinates of selected plane by
interpolating neighbouring grid coordinates.

forall(grid cells in selected plane) do
begin

project grid cell vertices to screen space;
if (a vertex of grid cell projects to my part of screen) then
begin

store interpolation parameters;
set pixels of projection of grid cell;

end
end

forall (active pixels) do
begin

calculate unit normal;
calculate reflection coefficient;

end
end

broadcast new/low solution;
interpolate data for cells whose projection fails into the

region assigned to this processor to selected plane;
calculate RGB-values for active pixels using

pre-stored interpolation parameters;
end

Figure 5.8: Pseudo code for the parallel screen space partitioned contour plot.

5.4. DISCUSSION OF THE DESIGN 51

selected plane will project we need all the grid cells on all processors. This is why the
complete new flow solution is broadcasted to all processors after the if-statement. The
main difference between the non-parallel and parallel algorithm is that the grid cells
that the procedure handles are constrained to the cells of which the projection onto the
screen falls (at least partially) within the region of the screen that was assigned to a
processor. This can be seen in the first forall loop. Only those pixels that fall within
this region are set and processed by the next forall loop. The last two statements of the
procedure only process the grid cells that map into the region assigned to a processor.

Communication Broadcasting the new flow-solution involves communication in the

screen space partitioned contour plot algorithm. A different approach would be to send
flow-solutions for grid cells when they are needed. Because of the many small commu-
nications, which are probably inefficient, and the additional program complexity this

design was not chosen.

5.4 Discussion of the design

The algorithms listed in the previous section will be discussed in this section keeping
the design considerations stated in section 5.1 in mind. We can only discuss the design
by reasoning about the scalability and the parallel overhead for each of the algorithms.
For this pupose we have summarized the communication characteristics of each of the
algorithms. The discussion of the performance of the actual implementation of the
algorithms will be postponed to section 5.5.

5.4.1 Scalability
The scalability of the main loop of NaS/RVS can only be affected by the communication
of changed scalar parameters. Since in most cases only a small number of scalar

parameters is changed at the same time, the amount of data to be communicated is
small and this will not affect scalability of the main loop.

The object space partitioned visualiser's scalability is dependent on the scalability
of the two image composition steps in the algorithm, and on the scalability of the
visualisation tools that are called by the visualiser. If all visualisation tools are scalable,
and the image composition steps are scalable, then the parallel visualiser is scalable.
Chapter 6 presents such a scalable image composition algorithm. The scalability of the
visualisation tools depends on the parallel algorithm used in their implementation.

Scalability of the parallel visualiser that uses partitioning of screen space for paral-

lelisation is apparent. Only the final step where the partial image are concatenated into

one final image requires communication. Since the image size will probably not change
in order of magnitude, this stage is scalable. The total amount of data communicated
will remain of the same order of magnitude as the sizeof the framebuffer. When more
processors are used, each processor will be responsible for a smaller part of the frame-
buffer thus concatenating these parts into one final image will involve concatenating
more smaller parts into one image. This concatenation operation is scalable.

The object space partitioned contour plot algorithm is scalable. The only commu-
nication necessary is to get the part of the new flow solution for which the processor
is responsible. Using more processors will reduce the amount of data that needs to be

communicated.
The screen space partitioned contour plot needs the complete flow solution each

time a new solution is available. If the broadcast operation is implemented as a scalable
algorithm, then this operation is scalable.

52 CHAPTER 5. PARALLELISATION OFA VISUALISATION IDOL

5.4.2 Parallel overhead
Parallel overhead in the object space partitioned visualiser is caused by necessary
communication in the parallel algorithm. The amount of communication involved
in image composition is equal to the size of the framebuffer times the number of
processors. Since not all communication uses the same communication channel, the
communication is performed in parallel. Another source of parallel overhead may be
bad load balance in any of the steps. The load balance of the visualisers depends on
the parallel algorithm used therein, and the load balance of the image composition step
will be discussed in chapter 6.

The amount of communication overhead in the screen space partitioned visualiser
is in the order of magnitude of the size of the framebuffer. With a constant framebuffer
size, this amount of communication remains constant for a larger number of processors.
Load balance depends on the load balance of the tools called in the visualiser. When
screen space is partitioned, load balancing tends to become a problem for the tools since
one does not know in advance on what part of the screen an object will be projected.
By adapting the size and shape of the parts for which a processor is responsible based
on the images from previous calls to the visualiser, one can achieve better load balance.
Extra computation in this design of the parallel visualiser might be caused by the tools
called in the visualiser. If certain objects project into more than one part of the screen,
computations will have to be performed for such an object on each processors that is
responsible for a part of the screen into which the object projects. Each processor will
only keep the part of the result that affects his part of the screen. This is especially true
for large numbers of processors.

Communication overhead in the object space partitioned contour plot algorihtm is
caused by the need to get part of the new flow solution. Load balancing should be good
when the object space is partitioned. Each processor is responsible for an equally sized
part of the object space, and this fair partitioning of the object space is easy compared
to a fair partitioning of the screen space.

The parallel overhead that is present in the screen space partitioned contour plot
algorithm is due to the need to check whether a cell projects into the part of the
screen for which a processor is responsible. This overhead becomes larger when more
processors are used because the size of the region assigned to a processorbecomes small
compared to the total size of the object's projection. This extra computation however
is only necessary when the viewing parameters have changed.

5.5 Performance
As said before the contour plot algorithm has been parallelised for both an object and
screen space partitioning. In this section the performance of both implementations will
be presented and compared in order to determine the optimal parallelisation strategy
for NaS/RVS visualisers. It is believed that the parallelisation method for the contour
plot algorithm with the best performance will also yield good performance for the other
visualisers since they all use a similar program structure.

5.5.1 Measurement setup
In order to measure and compare the performance of the two parallel implementations
of the contour plot algorithm two setups were used. The choice of the setup was
constrained by the fact that only one of the sample datasets delivered with the original
NaS/RVS system could be used on the Cenju-3 due to insufficient memory for the larger
sample dataset. This is caused by the disproportionate large memory requirements of

55. PERFORMANCE 53

partitioning
object space I

screen space
no. procs mm time max time mm time max time
sequential 2.89

2

4
8
16

1.91 1.94
1.40 1.46
1.31 1.35
1.22 1.46

1.05 1.06
0.65 0.83
0.19 0.58
0.09 0.50

Table 5.1: Rendering times for small projection and stable viewing parameters.

partitioning
object space I

screen space
no. procs mm time max time mm time max time
sequential 7.33

2
4
8
16

4.51 4.67 3.62 3.63

3.19 3.43 2.71 3.00
2.71 2.89 0.41 1.80

2.27 3.43 0.19 1.13

Table 5.2: Rendering times for small projection and unstable viewing parameters.

the NaS/RVS system which pose no problem on a large supercomputer like the SX-3
but which do limit the maximum problem size on the Cenju-3. The sample dataset
used for the performance measurements is the so called 'Karman' dataset. It consists
of a 81x41x11 curvilinear grid containing a cilinder.

Small projection setup The first setup renders a contour plot on two planes through
the volume and the settingof the viewing parameters results in an image of size5l2x5l2
of which only 26% of the total number of pixels is occupied by the rendered object.
Therefore this setup is called the small projection setup.

Large projection setup The second setup also renders a 512x512 image but in this case
the viewing parameters are such that the rendered object occupies 98% of the image.
This setup is therefore called the large projection setup.

Stable vs. unstable viewing parameters The NaS/RVS system is optimised to render
consecutive frames of a scene when the viewing parameters do not change between
frames. This is the case when the flow solver calculates a new solution ineach timestep
and these consecutive solutions are all visualised using the same viewing parameters.
The performance of the renderer is analysed both in the case of stable (unchanging)
viewing parameters and in the case of unstable (changing) viewing parameters.

5.5.2 Rendering times
Tables 5.1 through 5.4 contain the rendering times measured on the Cenju-3 for the
small and large projection setup and for stable and unstable viewing parameters. On
the left the tables contain the rendering times for the object space partitioned contour
plot algorithm and on the right the rendering times for the screen space partitioned
algorithm. These times do not indude sending the final image that has been collected
on a single processor of the Cenju-3 to the front end. In each of the tables the rendering

I

54 CHAPTER 5. PARALLELISATION OFA VISUALISATION flX)L

partitioning
object space screen space

no. procs mm time max time mm time max time
sequential 6.06

2

4
8
16

3.25 3.67
1.97 2.50
1.56 2.07
1.30 2.02

2.00 2.01
1.00 1.19
0.48 0.79
024 0.61

Table 53: Rendering times for large projection and stable viewing parameters.

- partitioning
obiect space screen space

no. procs mm time max time mm time max time
sequential 213

2
4
8

16

14.6 14.8
5.98 8.40
3.94 6.17
2.68 6.20

9.17 9.18
4.50 4.68
2.24 2.57
1.10 1.54

Table 5.4: Rendering times for large projection and unstable viewing parameters.

time for the sequential algorithm is obtained not by running the parallel algorithm on
a single processor, but by running the original NaS/RVS system on the front end of the
Cenju-3 which uses the same processor architecture as the nodes of the Cenju-3. The
time was measured while the front end was idle and only one user was logged onto
the system. Rendering times have been measured on all processors and the minimum
and maximum of these times are shown in the two colums for each algorithm in the
tables. These times will be used to estimate the load balance of the algorithms in a later
section.

5.5.3 Speedup
The performance of the parallel contour plot algorithms will be illustrated by the spee-
dup graphs for the small projection setup and the large projection setup. A comparison
will also be made between the stable and unstable viewing parameter cases of the
large projection setup for the screen space partitioned algorithm. The speedup graphs
have been created using the maximum rendering times since this is the actual time the
parallel algorithm takes to complete its task.

Small projection, unstable viewing parameters First the speedup graph for the small
projection setup with unstable viewing parameters will be discussed. The speedup
graph is shown in figure 5.9. The graph shows that for the small projection setup, the
screen space partitioned algorithm performs better than the object space partitioned
algorithm, but the speedup of 5.78 on 16 processors is not very good. The disappointing
speedup of the screen space partitioned algorithm is due to load imbalance as we will
see in the next section. The bad performance of the object space partitioned algorithm
is due to the nature of the contour plot algorithm. The contour plot algorithm is,
just like most of the visualisers in NaS/RVS, a image order algorithm. This means
that in its main loop the algorithm iterates over the image pixels. Because the object
space partitioned algorithm renders a full sized image at each processor the main loop

—
— —

Cbed space peititioned
Scseen space partkiried

5.5. PERFORMANCE 55

Speedups for smell pro3edion setup and unstable viewing parameters
16

F

14

F
FII

F

10 Nnearspeed%Y -

I
•1

5.78

6

4 —

•1•• - - - - - 2.54

2

C
0 2 4 6 8 10 12 14 16

nLtrter of pocessorS

Figure 5.9: Speedup for object and sceen space partitioned contour plot algorithm for
unstable viewing parameters and small projection setup.

algorithm still iterates over all image pixels but for a smaller dataset. This results in a
maximum speedup of 2.54 for 8 processors.

Large projection, unstable viewing parameters The speedup graph for the large
projection setup again with unstable viewing parameters is shown in figure 5.10. In
this graph the speedup for the screen space partitioned algorithm is good: 13.8 on 16
processors. Because 98% of the rendered image is occupied by the object each partition
of the screen has an equal amount of work associated with it, thus resulting in good
load balance. The super-linear speedup for 2,4 and 8 processors can be explained by
operating system overhead on the host workstation on which the sequential time was
measured. The operating system on the host is much more complex than the simple
kernel that runs on each of the nodes of the parallel system. Although the sequential
program was run on the host workstation while it was idle, a number of other operating
system related processes where using CPU time and memory. The nodes of the Cenju-3
run only one process, namely the NaS/RVS program. Another explanation could be
the improved cache hit of the algorithm because it acts on a smaller part of the image.

Again the performance of the object space partitioned algorithm is poor with a
maximum value of 3.45 for 8 processors. The image order nature of the algorithm
accounts for the very low speedup for a partitioning in object space.

Stable vs. unstable viewing parameters Until now, only the case of the unstable
viewing parameters has been discussed. This is the most common case since in order
to explore a flow solution, the user wants to navigate through the 3D volume and
thus constantly changes the viewing parameters. It is interesting however to compare
the speedup of the screen space partitioned algorithm in the large projection setup for
stable and unstable viewing parameters. Figure 5.11 shows the speedup for both these
cases. This shows that the screen space partitioned algorithm has better speedup for the

56 CHAPTER 5. PARALLELISATION OFA VISUALISATION TOOL

—
- -

Object space partitioned
Screen space partitioned

"0 2 4 6 8 10
nurTter of processors

12 14 16

Figure 5.10: Speedup for object and screen space partitioned algorithm for unstable
viewing parameters and large projection setup.

r—- -
Unsla viewing parameter.
Stable viewing parameters

knearupeedup.' 1a8

, —/ —

9.90

0 — —

—
—

—

— .'.—._/ -, —
— I.,.

F

/ •1

Figure 5.11: Speedup for screen space partitioned algorithm for stable and unstable
viewing parameters in the large projection setup.

Speedups for large protection setup and unstable viewing parameters
/

•, 13.8
linear speedip' - - -

—

16

14

12

10

6

4

2

/
— —F.

F
3.45

Speedups stable and unstable viewing paramters
16

14

12

10

8

6

4

2

I

"0 2 6 8 10 12 14 16
nunter of processors

5.5. PERFORMANCE 57

unstable viewing parameters than for the stable viewing parameters, however tables
53 and 5.4 show that the rendering time for stable viewing parameters is much smaller
than for unstable viewing parameters, which is due to the optirnisation of NaS/RVS
for stable viewing parameters as discussed earlier. The larger speedup for unstable
viewing parameters indicates that the first part of the parallel contour algorithm, the
part that is executed when the viewing parameters change, scale better than the last part
of the algorithm (See figure 5.8). The super-linear speedup has already been explained
in the previous paragraph and this applies to the case of the stable viewing parameters
as well.

5.5.4 Load balance
When all processors perform an equal amount of work an optimal situation is created
in which the total amount of work is performed in the smallest amount of time. When
there is great variance in the work load of the processors the parallel execution time
will be larger than would be the case for an equally distributed work load. Improper
load balance affects the performance of a parallel algorithm significantly. In the table
containing the rendering times for the parallel algorithms in the previous sections, the
minimum and maximum times that the processors spent during rendering have been
listed. These two times will now be used to define an estimate for the load imbalance
of each of the parallel algorithms.

Estimate Using the minimum and maximum time that the processors spent rendering
an image we define the following estimate for the load imbalance:

'mar —
zrnbahnce = 2

tmar + tmin

Thus imbalance is the value obtained by taking the difference between imax and 'mm
and dividing it by the mean of these two values. Large values of imbalance indicate poor
load balance while smaller values will result for a parallel algorithm that has good load
balance. This value is just an estimate for the load balance because only the minimum
and maximum values have been used, but it will indicate poor load balance when the

value of imbalance is large.

Screen space partitioning It is interesting to take a look at the load balance of the

screen space partitioned algorithm. Figure 5.12 shows the load imbalance for both the
large and the small projection setup. The simple partitioning of the screen in equally
sized parts accounts for a large load imbalance for the small projection setup and thus
for the low speedup as we have seen before. The rendering times for this case vary
from 0.19 to 1.13 seconds (table 5.2). On the contrary, the load imbalance for the large
projection speedup is small, with a maximum of 034. The load balance is good because
98% of the screen is occupied by the rendered object and each processor is responsible
for an equally sized part of the screen. This reflects the good speedup of 13.8 for 16

processors.

58 CHAPTER 5. PARALLELISATION OFA VISUALISATION TOOL

Load mba1ance for screen space paillioning
1.5 1.43

1
— Large proedion setup
- - Small proiection setup

I

0.5

C68lOi214
no. processors

Figure 5.12: Load imbalance for the screen space partitioned algorithm for both small
and large projection setup.

Chapter 6

Parallel Image Composition

Parallel rendering algorithms that partition the object space and use an image-order
rendering algorithm produce color, opacity and depth information for each pixel at
each processor. This type of parallel visualisation algorithm is very common. The
parallel contour plot algorithm of NaS/RVS in which the object space is partitioned
is an example of this. It generates a color and a z-buffer value for each pixel at each
processor and these should be combined to generate the final image. Most parallel
volume rendering software also uses an image-order rendering method such as ray
casting in conjunction with an object space partitioning (see chapter 10). These al-
gorithms generate a color and an opadty for segments of the ray for each pixel on each
processor and these must also be combined to produce the final image. The operation
of combining the images produced by each processor into one final image is called
image composition. This chapter will show that image composition can be viewed as
a reduction operation. An efficient parallel reduction algorithm called the binary-swap
algorithm will be presented. This algorithm was used to implement image composition
in [19], and will be applied to parallel reduction in this chapter.

6.1 Image composition as a reduction operation

Image composition can -be viewed as a reduction operation in general. A reduction
operation combines two elements of a certain type into one element of the same type
using a reduction flinction. For example, addition of integers can be regarded as a
reduction operation where the reduction function is addition (Figure 6.1). Integer
addition (a) reduces two integers into one by adding their values. The reduction function
can be extended to act on sequences of elements. In our example this would be the
addition of two vectors (b) in which the addition is performed elementwise. This can
of course be extended to more than two dimensions. The reduction function now
works on two vectors but it can just as well be defined on more that two vectors (c).
We must however keep in mind that the order in which the reduction operation is
applied is important when the reduction operator is not commutative. In the case
of a commutative operator the order in which the reduction operation is applied is
unimportant.

So how does image composition fit into this framework? Suppose we have color
and depth information for each pixel of an image (sample declarations are in 6.2).
Combining images of this type involves comparing the depth values. Suppose the

-

- depth values are larger when a point is further away from the viewer, then a pixel at
(x, y) will obscure a pixel at the same position with a larger depth value. The reduction

59

60 CHAPTER 6. PARALLEL IMAGE COMPOSITION

+ ()
=

(a) element reduction

[1LI][1
+' (20 4) = 24 (b) vector reduction

15 5 20ririi
+"() = (c) two vector reductions

Figure 6.1: Addition as a reduction operation.

typedef struct {
mt color;
double depth;

) PIXEL;

#define IMSIZEX 512;
#define IMSIZEY 512;

PIXEL image1[IMSIZEJq[lMSlZEY];
PIXEL image2[IMSIZEJ(]EIMSIZE-Y];

void deptk.combine(x, y)
mt x, y;
{

if (imagel[x][y].depth > image2[x][yl.depth) {

imagel [xJ[y].color = image2[xJ[y].color;
imagel[x][y] .depth = image2[xJ[y].depth;

}

}

Figure 6.2: Sample declarations and routine for image composition.

6.2. EFFICIENT PARALLEL REDUCTION 61

function, that combines the two images pixeiwise (imagel and image2) and stores the

result in imagel , can thus be defined as shown in figure 6.2.
So combining images of color and depth is a reduction operation that acts on two-

dimensional arrays of pixels and combines these elementwise using the depth..combine

reduction function declared above. When a parallel computer contains an image at
each processor of the system these can be combined on one processor by fetching an
image from a different processor and combining this image with the local image. When
the images of all processors have been combined, the final image is available.

In volume rendering applications that use ray-casting as the rendering method,
a segment of the casted ray is produced at each processor. This ray has a color, an
opacity and boundary depth values associated with it. To combine these segments
from different processors the segments should be combined in depth order to produce
the correct color value for a given pixel. ibis is due to the fact that the operator that
combines color and opacity tuples is not commutative. To produce the correct result the
reduction operation should fetch the images in depth-sorted order from the processors.
When this condition is met the result of the reduction operation will be correct.

6.2 Efficient parallel reduction

We have shown that image composition can be described as a reduction operation.
This section will present an efficient parallel reduction algorithm that can be used to
implement image composition.

Simple parallel algorithm The simple parallel reduction algorithm outlined in the
previous section fetches an image from each processor and combines these images with
the local image. When all images have been combined, the final image is available at
the combining processor. This scheme is shown in figure 6.3. To analyse the differences
between the algorithms shown in this section we will assume the following the images
that need to be combined are square images with d elements (pixels). The processor
time needed to combine d elements of one image with d elements of another image
is assumed to be linear in the number of elements and equal to r(d). The time for
communicating d elements over the interconnection network between the processors
of the parallel computer is assumed to be linear in the numberof elements and equal
to (d). When an algorithm is executed in parallel the execution time of that algorithm
is defined to be the maximum of the execution times of all individual processors. The
number of processors in the parallel system is denoted by p. Example: each step of the
algorithm in figure 6.3 takes c(d) + r(d) time. With four processorsthere are three steps
so the total execution time of the algorithm is 3(c(d) + r(d)). For p processors the total
execution time T,impie, which depends on p and d, is:

T,impie (p, d) = (p — 1)(c(d) + r(d))

The conclusion is that the time necessary to combine p images is linear in p. The

problem of this algorithm is that only one processor combines all the elements and
that the communication network is not efficiently used because in each step there is
communication between only two processors.

Tree reduction algorithm An improvement on the simple algorithm is targeted at
better load balance and better utilisation of the interconnection network. This is the
algorithm that is used in the NEC mini-MPI libraiy on the Cenju-3. The tree algorithm
(figure 6.4) makes better use of the processing power of the nodes in a parallel system

62 CHAPTER 6. PARALLEL IMAGE COMPOSITION

Figure 6.4: Tree parallel reduction algorithm.

Figure 6.3: Simple reduction algorithm.

6.2. EFFICIENT I'ARALLEL REDUCTION 63

and utilises the network better than the simple algorithm. The execution time of this
algorithm is not linear in the number of processors p, but logarithmic in p. Assuming
that the number of processors p is a power of 2, then the numberof steps in this algorithm

is 2log(p). Each step takes c(d) + r(d) time so the total execution time Tiree (p, d) is:

Ttree(p,d) = 21o9(p)(c(d) + r(d))

This algorithm is not optimal, because in each step half of the processors become idle,
while the other half is combining the elements. We can improve on this situation by
splitting the images in each step of the algorithm thus keeping all processors busy
during most of the computation.

Binary-swap reduction algorithm The improved parallel tree reduction algorithm
utilises all processes of the parallel computer in the first of two stages of the algorithm.
The algorithm will be explained as it is applied to image composition. It is based on
a 'divide-and-conquer' strategy and it will be called the binary-swap algorithm from
now on. In each step of the first stage the images are halved, and then sent to another
processor to be combined. The result is that d/p pixels of the final image reside at each
processor. The second stage concatenates these parts, using a tree algorithm. After this
stage one processor contains the final image. Thealgorithm is depicted graphically for
four processors in figure 6.5. In the first step processor one and two exchange half of the
image. Processor one gets the upper half, and processor two the lower half. The same
is done for processors three and four. All processors then combine the received half of
the image with their own half of the image. In the next step they again exchange a part
of the image with a processor that has the same part of the image. After 2log(p) steps,

Figure 6.5: Binary-swap parallel tree reduction algorithm.

64 CHAPTER 6. PARALLEL IMAGE COMPOSITION

each processor holds d/p elements of the final image. The second stage concatenates
the parts of the individual processors. These parts are sent to processor one (or another
processor chosen to collect the final image) in a specific order using a tree algorithm
which again needs 2Iog(p) steps. So both the first and the second stage have 2Iog(p)
steps. In the first stage communication and reduction is performed while the second
stage only involves communication. Looking at processor one we see that the time
spent in the first step is equal to 2c(d/2) + r(d/2). Because c and r are assumed to be
linear this is equal to c(d) + r(d)/2. In each step the images are halved so the total
execution time T,tage1 (p, d) of stage one is:

2log(p) 2log(p)

T,togei(p,d)

(
ii c(d)+ (

r(d)

The summations have the following closed forms:

2Iog(p): —

2' p
i=1

2Iog(p)

Replacing the sums with their closed forms we obtain:

T,tage1(p,d) = —(2c(d)+r(d))

For the second stage of the algorithm we find the following execution time:

Tatage2(p,d) =

The total execution time T,inorywap (p, d) of the algorithm is thus equal to the execution
time of stage one added to the execution time of stage two:

Tt,inory..swap(p, d) = —-(3c(d) + r(d))

By taking the limit for p -4 cc the execution time for Tbjnary.jwop(p, d) becomes
constant:

lirn —_-(3c(d) + r(d)) = 3c(d) + r(d)

The execution time of the tree algorithm does not have this pmperty because the limit
for p — cc does not exist. The time needed in the tree reduction algorithm will gmw
as more processors are used.

6.3 Performance

The theoretical performance of the tree and the binary-swap algorithm have been
plotted in figure 6.6. For c(d) and r(d) the following values have been computed for
combining two 5122 images: c(d) = 0.1215, r(d) = 0.4450. These figures show that
the interconnection network of the Cenju-3 outperforms the pmcessing elements for

6.3. PERFORMANCE 65

2.5

2.2660

— Btiary—sw.p reduction
— — Tree reduction

2

11.5

I ,_ 0.1589

0.:

numb•r ct pios,oI

Figure 6.6: Theoretical performance of tree and binary-swap reduction algorithm.

this operator. The maximum execution times (for 16 processing elements) have been
written in the figure.

The measured execution times for the reduction algorithms are different from the
theoretical execution times and in fact will not converge to a maximum value for the
binary-swap algorithm because of the assumptions made about the linearity of c(d) and
r(d). In practice these functions are not linear. Especially the communication time will
not be linear in the number of elements communicated. For a small number of elements
the relative overhead in the communication will be larger than for a large number of
elements. As the number of processors increases while the value of d is constant, the
algorithm communicates smaller amounts of data towards the end of stage one and in
the beginning of stage two. The communication overhead in these parts will limit the
performance of the algorithm.

The measured performance of the tree and the binary-swap reduction algorithms is
shown in figure 6.7. For each algorithm there are two curves. One for the reduction of
two 5122 images, and one for the same image size but a reduction operator that performs
the reduction twice. This is used to indicate that for a more complex reduction operator
the binary-swap algorithm will scale better than the tree algorithm. By comparing
figure 6.7 and 6.6 we see that the predicted performance of the tree reduction algorithm
is worse than the measured performance. This is due to the computation of c(d), which
was computed using the mini-MPI library, while the mini-MPI reduction function uses
the low-level Paralib/CJ point-to-point communication routines which perform better
than the mini-MPI point-to-point routines.

The problem of the number of elements to be communicated becoming too small
to maintain efficient communication occurs when the total number of elements to be
reduced is small compared to the number of processors. This is the case for image
composition where the number of elements will most certainly not exceed 10242. The
reduction algorithm will be efficient if the number of elements d divided by 2Iog(p) is
sufficiently large to achieve efficient communication.

'A problem that arises when using a reduction operation for image composition is the
sparsity of the images. When using reduction, all pixels in an image are combined even

66 CHAPTER 6. PARALLEL IMAGE COMPOSITION

1.3870
1.4

12

C
9

0.8

0.6
a
c

0.4

02

Figure 6.7: Measured performance of tree and the binary-swap reduction algorithm.

when maybe only a few pixels are active1. When each of many processors is rendering
only a small part of the primitives in a scene the number of active pixels tends to be
small when compared to the image size. This means that the reduction operation will
involve a lot of unnecessary element reductions. Michael Cox and Pat Hanrahan [151
identified this problem and proposed the 'distributed snooping algorithm' for image
composition. This algorithm requires the parallel machine to have a globally shared
bus on which active pixels can be sent to the framebuffer. When a pixel is sent to the
framebuffer over the bus, each processor 'snoops' the pixel from the bus and compares
it to the depth of the same pixel on the local processor. When this depth is larger than
the depth of the pixel on the bus, that pixel will not be sent to the framebuffer. In this
way the bandwidth required to send pixels to the framebuffer is limited resulting in
better compositing performance.

6.4 Implementation

The key step in implementing the binary-swap algorithm is determining with which
processor to exchange elements. Determining the 'partner' for exchange is based on
the binary representation of the rank of the processors. Assume we have a parallel
computer with four processors. Each processor has a rank from zero to three. The
binary representation of the ranks is 00,01, 10 and 11. In the first step of the algorithm
the processor with the least-significant bit (right-most bit) set to zero, exchanges half
of its elements with the processors which has that bit set to one. So to determine a
processors partner in communication, we can OR the rank of the processor with a mask.
In the first step the mask would be 01. So processor 0 communicates with processor I in
the first step, and processor 2 with processor 3. In the second step the mask is shifted left
one position and becomes 10. So in this step processor 0 communicates with processor
2, and processor I with processor 3. The net result of stage one is that each processor
holds d/p scanlines of the final image. Stage two concatenates the parts of the final
image on processor zero. Instead of simply concatenating the parts of the final image
in rank order we must calculate the order in which the images should be concatenated

1lnactive pixels have the background color and depth.

— Bin.ry-.swap r.ducbon

- - Blisry-swap rsducflon (2x)

-. - Tr.. r.duciion

Trs r,ducflon (2x

1.1120

0.7740

0 2 4 6 8 10 12 14 16
,ns,tr of pros,ors

6.4. IMPLEMENTATION 67

since stage one shuffles the order of the result in such a way that processor i holds the
jth part of the final image where j is obtained by taking the binary representation of i
and mirroring the bits. Thus with eight processors, processor 6(=11O binary) holds the

third (= 011 binary) part of the final image. The second stage of the algorithm uses this
mirroring of the binary representation of each processors rank to determine where to
get parts of the final image from in order to concatenate them to processor zero using
a tree algorithm as can be seen in figure 6.5.

The stripped down code for the binary-swap reduction algorithm is shown in figure
6.8. This code assumes that the number of processors p is a power of two and that the
number of elements to be reduced is a multiple of 2log(p). This eliminates special cases
and leaves the essential algorithm.

68 CHAPTER 6. PARALLEL IMAGE COMPOSITION

memcpy(recvbuf, sendbuf, count*extent);

mask = Oxi;
blen = 0;

/ Stage one:
* This is the actual reduction operation. It results in
* each processor having count/nr_procs elements of the final buffer.
* The loop is executed 2log(nr_procs) times.

S •1

while (mask < nr_procs
count 1= 2;
if ((mask & rank) == 0) { 1* bit set to 0 => receive *1

partner = ((rank I
mask) + root) % nr_procs;

MPI_Recv(buffer, count, datatype, partner,
SWAP_TAG, coil_comm. &status);

MPI_Send((char*)recvbuf+(coUnt*eXteflt), count, datatype,

partner, SWAP_TAG, coll_comm);
else (/ bit set to 1 => send * /

partner = ((rank & (rnask)) + root) % nr_procs;

MPI_Send(recvbuf, count, datatype, partner,
SWAP_TAG, coll_comm);

MPI_Recv(buffer, count, datatype, partner,
SWAP_TAG, coll_comm, &status);

memcpy(recvbuf, (char)recvbuf+ (count*extent), count*extent);

(*reductionfunc) (buffer, recvbuf, &count);
mask <<= 1;
blen++;

/* Stage two:
* Now each processor holds count elements. It is now time to
* transfer those partial results to the root processor. This is just a
* gather operation which uses a tree algorithm.
The loop is executed 2log(nr_procs) times.

*1

mask = Oxi;
rank = bitmirror(blen, rank);

while ((mask & rank) == 0 && mask < nr_procs
partner = (rank I mask);
if (partner < nr_procs

partner (partner + root) % nr_procs;
MPI_Recv((char*)recvbuf+ (count*mask*extent),

count*mask, datatype, bitmirror(blen,partfler),
CONCAT_TAG, coil_coma, &status);

mask <<= 1;

if (mask < nr_procs
partner = ((rank & ('mask)) + root) % nr_procs;
MPI_Send(recvbuf, countmask, datatype,

bitmirror(blen,partner), CONCAT_TAG, coll_comm);

Figure 6.8: Stripped down version of the binary-swap reduction algorithm.

Part III

Message Passing Interface

4

69

Chapter 7

MPI Standard: An Overview

During the last years more and more distributed memory parallel computers have
become available. The processors and the interconnection networks for these machines
have become faster and faster. The distributed memory parallel computer is slowly
catching up on the plain vector super computers1. To keep this development going,
stable and standardised software is needed to program these computers. Most of
the parallel systems are (on the lowest level) programmed using the message-passing
paradigm of parallel programming and this is the level where standardisation should
be accomplished to be able to increase the portability of parallel software. The Message
Passing Interface (MPI) is an attempt to standardise a library for message-passing
programming. It has been designed by the Message Passing Interface Forum (MPIF)
building on the experience gained in the design and implementation of many different
message-passing libraries (NX, Express, Vertex, I'ARMACS, Zipcode, Chimp, PVM,
Chameleon and PICL).

The main advantage of establishing a message-passing standard is portability and
ease-of-use. Once all vendors of concurrent computers support the standard, writers
of parallel software can easily port their software to new machines and program a
new machine without going through the pain of learning yet another message-passing
library with its own specific features and pitfalls.

The goal of the Message Passing Interface simply stated is to develop a widely used
standard for writing message-passing programs. As such the interface should establish
a practical, portable, efficient, and flexible standard for message passing. The standard
will be introduced below and consists of the following 7 sections:

• Point-to-point communication

• Collective communication

• Groups, contexts, communicators, and caching

• Process topologies

• Environmental management

• Profiling interface
The following is an introduction to the MPI sections containing an introductary text
on the features of a specific group of functions in MPI. Each section will end with a
discussion of the applications for the functionality presented in the section. This will
show the importance of the provided functionality

1fl current trend is a parallel computer with vector processor nodes, which combines the best of both

worlds.

71

72 CHAPTER 7. MPI STANDARD: AN OVERVIEW

7.1 Point-to-point communication

All message-passing libraries contain the send and receive mechanism, so does MN. For
these simple message-passing operations a message envelope is defined consisting of

source, destination, tag, commurrictor

Source and destination specify from where to where a message travels. Tags can be
used on the receiver side to select a message from others with different tags, this might
be used to distinguish between different types of messages. A communicator specifies
the communication context for a communication operation. Each communication context
provides a separate communication universe. Message are always received in the context
they were sent in. Thus messages sent in different contexts do not interfere with
each other. A send executed in a specific context will not be matched by a receive in
a different context. The communicator also specifies the process group that shares this
communication context. The process group is an ordered collection of processes that
are identified by their rank in the group. A predefined communicator has a process
group associated with it that contains all processes available after MPI initialisation.
All processes can thus be identified by their rank in this predefined group.

7.1.1 Communication modes

Before we continue the following definitions are necessaiy: AMP! function is called local
if the completion of the call does not depend on communication with another process.
A MPI function is called non-local if its completion depends on communication with
one or more other processes.

Each send operation can be performed in four different modes.

standard, buffered, synchronous, and ready mode.

In standard mode it is up to MPI to decide whether or not to copy the message to
a buffer to be sent later or to block the process waiting for a matching receive and the
completion of the communication. A standard mode send is a non-local function, if
the message is unbuffered communication with the receiver is necessary to check if a
matching receive has been posted.

In l,uffered mode the message is unconditionally buffered and sent when a matching
receive is posted. When using this mode the send function call may complete before
the message is actually sent. This mode of sending messages is local. There is no need
to communicate with the receiver to complete the send operation. In MPI the user can
allocate a buffer of a specific size for the buffering of the messages sent in this mode.

A send that uses the synchronous mode can be started whether or not a matching
receive has been posted. The send will not complete until the message is being received
and the send buffer can safely be reused. The synchronous send is obviously a non-local
operation.

A send using the ready mode may be started only if the matching receive is already
posted. When using this mode, the programmer provides MPI with the information
that the matching receive has already been posted. This might reduce overhead. The
ready mode send is a local operation.

These modes only apply to the send operation in MPI. There are no corresponding
semantics for the receive operation.

7.1. POINT-iD-POINT COMMUNICATION 73

7.1.2 Blocking and Non-blocking communications

Communications can be of two types: blocking or non-blocking. A blocking communic-
ation does not complete until the contents of the message buffer can be reused in the
case of a send or is available in the case of a receive. The initiation and the completion
of a communication are united in one function.

A non-blocking communication separates the initiation and the completion of a
communication. A non-blocking send for example initiates the send, meaning that
the message buffer contains the data to be sent. After this initiation the MI'! system
may send the contents of the buffer to the receiver. Separate functions can wait for the
communication to complete or check if the communication has been completed. Until
a program has the confirmation that the communication has actually been completed
the contents of the message buffer may not be changed. The use of non-blocking
communications can greatly improve performance of parallel programs by allowing
communications and computations to overlap. This is done by initiating a send as soon
as possible and wait for the completion not earlier that the completion is required by
the semantics of the application.

7.1.3 Persistent communications
Often, a communication operation with the same message envelope is executed within
a loop. In this situation one can use a persistent communication in MPI. After a setup
call that initialised the message envelope, a new message can be sent and completed
using this message envelope. In this way the communication operations within a loop
may be optimised by reducing overhead.

7.1.4 Derived data types
In most message-passing systems only contiguous blocks of basic typed elements (char-
acter,integer,real) can be used in communication. This scheme is too restricted if one for
example wants to send a section of a 2D or 3D array. To enable these kind of messages
MPI defined derived data types which enable the communication of non-contiguous
data or mixed type data in a single message. From the basic data types such as in-
teger, character and double on can construct derived data types using four different
constructors.

contiguous, vector, indexed, and struct.

The contiguous data type constructor takes a (basic or derived) data type and defines
a new data type that consists of a number of copies of the old data type concatenated
together. For example: to send 100 elements of an array of integers one can call the
send operation with data type integer and number of elements equal to 100, or one can
construct a new contiguous data type consisting of 100 integers and use this new data
type in a send with number of elements equal to 1.

The vector constructor allows the construction of a data type that consists of equally
spaced blocks of a number of copies of the old data type. A section of a 2D array can
be modeled using this constructor.

The indexed constructor allows replication of an old data type into a sequence of
blocks, where each block can contain a different number of copies of the old data type
and have a different displacement relative to the first element. Using this constructor
one can for example define a data type that contains the upper or lower triangular part
of a matrix.

The struct constructor is the most general constructor. In addition to the blocks with
different sizes and displacements each block can consist of replications of different data

74 CHAI'TER 7. MI'! STANDARD: AN OVERVIEW

to\from one all
one
all

send/receive
bcast /scatter allg

gather
ather/alitoall/allreduce

Table 7.1: Relation between the different (collective) communication routines.

types. If one wants to communicate a record from a database this constructor can be
used to model the contents of this record.

Using derived data types expressive communication statements can be formulated
that simplify programming when complex data types are involved.

7.1.5 Pack and unpack

The derived data types introduced in the previous section can be used to efficiently
communicate non-contiguous messages. The data is directly taken from the non-
contiguous buffer by the message passing system. This way no explicit packing or
unpacking is necessaty The pack and unpack functions in MPI are provided for
compatibility with other libraries and provide some additional functionality that is not
otherwise available in MPI. The pack and unpack functions can be used to receive a
message in parts in case the first part of the message determines the way in which the
rest of the message is handled. Another use for the pack and unpack functions in MPI
is for efficient explicit buffering of messages thus bypassing the system buffering.

7.2 Collective Communication

Collective communications are communications that involve a group of processes. All

collective communication functions in MPI need to be called by all processes in a
group and with matching arguments. When we refer to 'all processes' in the following
we mean all processes belonging to the group in which the collective communication
is performed. The group in which a collective communication is executed is taken
from the communicator context in which the collective communication is performed.
Collective communications whose semantics ask for a single process with aspecial task
(such as a gather operation in which one process receives and the rest sends) take the
logical rank of that process as an argument. Such a process is called the root process and
has root rank. Depending on the value of this rank a process decides which actions it
has to perform (send or receive). The root process need not be the same process every
time. A broadcast for example can be initiated by any process. The root process is the

initiator of the broadcast.
The collective communications supported in MPI are: barrier synchronisation,

broadcast, gather, scatter, global reduction, combined reduction and scatter, and scans
(also called prefix operations). All collective communication functions allow derived
data types to be used as type for the items in the send/receive buffers. The relation
between the collective communication functions is shown in table 7.1.

7.2.1 Barrier synchronisation

The barrier synchronisation function is called by all processes in a particular group and
blocks the caller until all processes in that group have called the function. It can be used
to ensure that all processes in a group have reached a certain point in their computation.

7.2. COLLECTIVE COMM UMCATION 75

7.2.2 Broadcast

The broadcast function sends a message from the process with the specified rank to
all members of a group including itself. It can be used for replication of data to all
processes in a certain group.

7.2.3 Gather, scatter, aligather, and ailtoall

This group of functions is used for communications concerning distributed data. There
are three categories: all-to-one, one-to-all, and all-to-all.

The gather function is an all-to-one operation in which each process (including the
root process) sends an equally sized block of data to the root process which stores these
blocks in rank order for the group in which the operation was executed.

Scatter is the inverse of gather in which the root process sends an equally sized block
of data to each process including itself. Using this function one can distribute data that
is located in the local memory of the root process.

The ailgat her function is equivalent to the gather function with the difference that
all processes receive the result. This is logically equivalent to a gather operation to a
certain process followed by a broadcast from the same process to all other processes.

The ailtoall function is an extension to the ailgather function where each process
sends distinct data to each other process including itself. This is logically equivalent to

a scatter or gather operation executed by every process.
All functions in this section have a 'vector' counterpart in which the length of the

buffer can vary from process to process as well as the displacements on the sending
and receiving side. This allows non-contiguous data to be send using the collective
communication functions.

7.2.4 Reduction operations

A reduction operation is an operation that combines data located at different processes

into one result using a certain combine operation. One can for example combine a
number of integers, one at each process, using summation as the operator. This will
result in the sum of the integers at the root process. The data type of the elements to
be combined determines which operations are valid. One can define a new reduction
operation which is useful to combine elements of a derived data type for which no
predefined operations exist, or for defining a new operation on a basic (non derived)

data type.

7.2.5 Reduce, alireduce, and reduce-scatter

The reduce operation is the basic reduction function. It can combine data consisting of a

single element at each process or combine data consistingof multiple elements at each

process in which case the combine operation is performed element-wise. For example,
an array of integers located at each process can be combined element-wise resulting in
a single array of the same length at the root process in which each position contains the
result of the combination of the elements of that position at each process. The result is
stored at the root process. The following operations are predefined:

• Maximum, minimum, sum, and product.

• And, or, and xor, all logical and bit-wise.

• Maximum or minimum value and location.

76 CHAPTER 7. MPI STANDARD: AN OVERVIEW

process: Po P1 P2 P3 P4 P P6 P7

values: 1 8 2 3 4 8 2 9

result: 1 9 11 14 18 26 28 37

Figure 7.1: Prefix scan using summation as the operator.

Not all operations are defined for all basic data types. The valid combinations are
specified on page 114 of[22].

Aflreduce is equivalent to reduce but the result is received by all processes. This is
logically equivalent to a reduce operation followed by a broadcast from the same root
process.

The reduce-scatter operation is a reduce operation where the result is scattered to
all processes. This function performs an element-wise reduction operation on the data
elements after which segments of the result can be sent to each process by performing
a vector scatter.

7.2.6 Scans

The scan operation is used to perform prefix reduction operations on the data at the
processes in a group. As an example we will compute the scan of an array of integers
using sum as operator. Figure 7.1 shows that the prefix reduction on process I includes
the value on process i, this is a so called inclusive scan. An alternative is that the result
on process i only includes the values from processes up to and including process i — 1

in which case the operation is called a exclusive scan. In MPI only the inclusive scan
operation if provided (see rationale on page 125 of [221). The scan operation can be used
with all the operators listed in the previous subsection. The user-defined operators can
be used as well for the scan operation.

7.2.7 User defined operations
Apart from the predeflned reduction operations such as maximum and minimum the
user can define his or her own reduction operation. This is done with the operation
create function which binds a user-defined operation to a reduction operation handle
that can be used in calls to the reduction functions. When creating a new operation it is
assumed that the operation is associative and the user specifies whether the operation
is commutative. If an operation is not commutative the order of operations is fixed and
defined to be in ascending process rank order beginning with process zero.

7.3 Support for libraries

One of the main aspects when defining a standard for writing message-passing pro-
grams is to enable the development of parallel libraries. These libraries would encap-
sulate implementation details of key algorithms such as matrix-vector operations for
example. To enable parallel libraries the message-passing system should provide fea-
tures such as a safe communication space in which communications within the library
will not interfere with communications in the user program. This is called a context of
communication. Another feature would be the notion of process groups for collective
operations that would eliminate the need for synchronisation with unrelated processes.
An abstract naming scheme or virtual topology would be beneficial in describing com-
munications for a program in terms of their data-structures and algorithms. Finally
features to extend the message-passing system with user-defined collective operations

7.3. SUPPORT FOR LIBRARIES 77

would be needed to enable user-defined collective communications. The mechanism
used for this in MPI is called attribute caching. In addition a unified mechanism is
needed td encapsulate the mentioned features. This mechanism is called communic-
ator in MPL The following subsections will describe MPI's support for writing parallel
libraries.

7.3.1 Communicators

The communicator encapsulates all support for writing parallel libraries. Amongst oth-
ers it contains pointers to the group, communication contexts, cached attributes and
virtual topologies. There are two types of communicators namely intiu-communicators
for operations within a single process group and inter-communicators for point-to-point
communication between two process groups. All MPI routines require a communic-
ator to be passed to it. This communicator provides the communication context and
group for the MPI communication routine. At initialisation a predefined communicator
exists which contains a group of all available processes. The following information is
contained in a communicator:

Process groups. A group is an ordered set of process ranks. Each process in a group
is associated with an integer rank. These ranks start from zero and are contiguous.
A group is part of a communicator and to create a new group, a new communicator
should be created with which this group is associated. MPI provides functionality
to query group information, construct new groups from previous ones by taking the
union, intersection or difference of two groups, or by explicitly listing the ranks of the
processes that should belong to the new group.

Communication contexts. A context is a property of a communicator that divides the
communication space in separate disjunct subspaces. A communication performed in
one context will not interfere with a communication in a different context. More spe-
cifically, a receive in one context will not match a send executed in a different context.
Furthermore, collective communications will never interfere with point-to-point com-
munications, they are executed in different contexts. Contexts are not explicit objects
in MPI, they are implicitly defined in communicators. Communicators enable the de-
velopment of efficient parallel libraries by eliminating the need for synchronisation of
parallel processes on library entry. Traditionally, one would synchronise all processes
before entering a library call to prevent user-program communication to interfere with
library communication. By creating a new context when entering a library the need
for synchronisation is eliminated because the communications in the new context (the
library context) will not interfere with user-program communication.

Attribute caching. The ability to attach arbitrary pieces of data to a communicator in
MPI is called attribute caching. This can be used to pass information between calls by
associating it with a communicator. There are functions to attach the information to the
communicator and subsequently retrieve that information from the communicator. It is
guaranteed that out-of-date information is never retrieved even if the communicator is
freed. Attribute caching can be used for example to store information that is computed
the first time a user-defined collective communication routine is called. In subsequent
calls to that routine this information can be retrieved without the need to recompute.
This allows for a more efficient implementation for that user-defined function. MPI
provides functionality to create attributes, assign a value to an attribute, retrieve the

78 CHAPTER 7. MPI STANDARD: AN OVERVIEW

information stored for an attribute and delete an attribute that has been associated with
a communicator.

Virtual process topologies. The virtual process topology defines a special mapping of
the ranks in a group to and from a user defined topology. It will enable the programmer
to define the communication in an application in terms of the data-structures and
algorithms as well as possibly aid in the efficient mapping of the processes to processors
in the parallel computer.

One can for example define a virtual topology in which the processes are arranged
in a grid with each process having a two dimensional rank. Sending a message from
one process to the other can now be done by using the two coordinates of the rank
instead of the linear rank that would have been used otherwise. This information
might be used by the run-time system of the MPI implementation to efficiently map
the processes onto a grid of processors.

Virtual process topologies can only be used with intra-communicators. MPI provides
functionality to create cartesian and graph topologies. A cartesian topology is defined
by the number of dimensions and the number of processes in each dimension. The
resulting grid of processes may or may not be periodic in any dimension. The graph

• topologies are specified by the number of processes in the graph and the edges between
the nodes. Various inquiry functions are defined for the cartesian and graph topologies
such as retrieving adjacency information to determine the neighbours of a process.

7.3.2 Intra-communicators

Intra-communicators are used for communication within a single process group. They
contain an instance of that group, contexts for point-to-point and collective communic-
ations and the ability to contain virtual topology and cached attributes. MPI provides
functionality to construct new intra-communicators, compare communicators, retrieve
information from a communicator, duplicate communicators and split communicators
in two communicators with associated groups.

Process groups. The group of an intra-communicator defines the participants in the
communication that uses the communicator.

Communication contexts. The context differentiates messages belonging to different
communication universes. This could be implemented using tagged messages in which
the tag defines in which communication context the message was sent. Point-to-point
communications are executed in a different context than collective communication
which guarantees that these two types of communication will not interfere.

Attribute caching. Attribute caching defines the local information the user has at-
tached to a communicator for later reference.

Virtual process topologies. Virtual topologies can only be defined on intra-communicators.

7.3.3 Inter-communicators

Communication within a process group is handled using intra-cominunicators. The
communication between members of two non-overlapping groups is handled using

7.4. ENVIRONMENTAL MANAGEMENT 79

inter-communicators. The inter-communicator binds two groups together with commu-
nication contexts shared between the two groups. Using inter-communicators it is pos-
sible to address a process in a different group using the local rank of that process in that
group. Ml'! provides functionality to create, query and merge inter-communicators.
Only point-to-point communication can be used on an inter-communicator. Collective
communications are undefined on inter-communicators.

Process groups. An inter-communicator contains a local and a remote group between
which only point-to-point communication is possible.

Communication contexts, attribute caching and virtual process topologies. Com-
munication contexts and attribute caching are defined for inter-communicators as well
as for intra-communicators. The virtual process topologies as described in the previous
subsection can not be used with inter-communicators.

7.4 Environmental Management

To properly communicate with the environment (hardware and software) the Ml'!
standard defines various environmental variables and functions to communicate with
the environment. This section will describe that functionality

7.4.1 Implementation information
A few attributes are defined on the predefined communicator that exists upon startup
of a MPI program. The upper bound for tag values used in communication routines
is defined as well as the rank of the process that acts as a host in a host-node parallel

computer. This last attribute is undefined if no such architecture exists. The last
predefined attribute gives the rank of the process that has regular I/O facilities. By

regular I/O we mean standard input/output operations defined by the language in

use. There is also a routine that returns the name of the processor the process runs on.
In a cluster of workstations this could be the name of the workstation concatenated
with the process number of the process on that workstation. In a parallel machine this
could be a string containing the physical rank or id of the processor.

7.4.2 Error handling
An MPI implementation may or may not handle some errors. Which errors are handled
by MPI is implementation dependent. Errors occurring in MPI routines are handled
by an error handler. Error handles in MPI are associated with the communicator that
is passed to all MPI routines. Two predefined error handlers are defined, one aborts
the program on all executing processes and another predefined error handler returns
without any action. A user may define its own error handler and associate it with a
communicator. New communicators inherit the error handler from their parent. So
if an error handler is assodated with the only predefined communicator this error
handler is propagated to all children of that communicator. Thus the error handler will
be used throughout the application until a different error is associated with one of the
child communicators. MPI provides functionality to create an error handler, attach an
error handler to a communicator, free an error handler and to retrieve the pointer to
the error handler from a communicator.

Another function in MPI can be used to retrieve the error string corresponding to
an error return code from an Ml'! routine.

80 CHAPTER 7. MPI STANDARD: AN OVERVIEW

7.4.3 Error codes and classes
The error codes returned by a specific MPI implementation are left entirely to the
implementors except for the return code in case a routine is successful. To reduce the
number of different error situations to be handled by an application, Ml'! introduces
error classes. A routine is provided to map an error return code to one of a few error
classes. l'his error class can be used by the application to generate an appropriate error
message.

7.4.4 Timers

Ml'! contains two routines that enable timing of (parallel) programs. The first function
retrieves the value of the timer in seconds as a real value,which is convenient to measure
the performance of a parallel application. The second routine returns the resolution of
the first function as the number of seconds between successive clock ticks. If the clock
is incremented every millisecond the value returned by the last routine would be i03.
These routines enable timing of programs and determining the accuracy of the timing.

7.4.5 Starting and terminating parallel programs
One goal of the Ml'! standard is to enable source code portability. This means that
details on how to load parallel programs onto the parallel machine or cluster of work-
stations or how to stop a parallel program should not be handled by the application
program. An implementation may include platform specific initialisation in an ini-
tialisation routine. This routine must be called before any other MPI routines can be
called. There is one routine that may be called before this initialisation however and this
routine checks whether the initialisation routine has already been called. To terminate
a parallel program there are two functions defined in Ml'!: the first one terminates the
program 'normally' in the case no error occurred. The last one terminates the program
'abnormally' in the case of a fatal error. If one of these programs is called in an MPI
program, no MPI routines may be called afterwards including the initialisation routine.

7.5 Profiling interface

Being able to profile a parallel program is an important feature of any message-passing
library since performance measurement and debugging of parallel programs are always
issues in parallel processing. An Ml'! implementation should provide two versions of
each routine in the libraiy One with the name defined in the standard and one prefixed
with the letter The normal standard versions can be replaced by wrappers that
generate profiling information and call the 1'" variants to perform the corresponding
MPI routine. The profiling interface of MPI is just the definition of an interface, it says
nothing about what information is profiled. This is all determined by the writer of the
profiling library.

A special routine is used to provide control over a profiling MP! library This
routine has the level of profiling as an obligatory argument. The meaning of this level
argument is profiling library specific except for the three values for which predefined
behaviour should be implemented. There is a level for disabling profiling, one for
enabling profiling at a normal level of detail and a level that tells the profiling library
to flush the profiling buffers. All other levels of profiling are implementationspecific.

Chapter 8

Literature study: MPI

Since the MPh (initial specification) proposal document [16] various articles on the
MPI standard and its implementation have emerged. This section tries to summarise
the literature on MPI in various categories. These categories are: introductory literat-
ure, literature on writing parallel libraries, literature on extending the MPh standard,
literature on additional language bindings, literature on MPI implementations, liter-
ature on early application written using MI'I and literature on performance of MPh
implementations, and profiling and debugging of MPh programs.

8.1 Introductory

An introductory paper on MPI can be found in [11]. This paper introduces the MPh

standard and gives an overview of MPI. Groups, contexts and communicators are
discussed as well as point-to-point, collective communications and process topologies.
Attribute caching and inter-communication are not discussed.

8.2 Writing libraries

An important feature of the MPI standard is that it enables the development of parallel
libraries. The importance of this feature has already been identified in the Common
High-level Interface to Message Passing (CHIMP) [4] and the Zipcode message-passing
system [39]. In [12] the authors of CHIMP state that a common message passing in-
terface is needed but that the portability of such a system should not compromise the
performance. To enable parallel libraries secure communication contexts are neces-
sary (MPh, CHIMF and Zipcode). The Parallel Utilities Library (PUL) project of the
Edinburgh Parallel Computing Centre (EPCC) has proven that development of port-
able parallel libraries is possible if the message-passing system contains the necessary
support.

Another article on writing libraries in MPI can be found in [40]. This article mo-
tivates the need for parallel libraries and identifies the features missing in common
message-passing libraries that have been included in the MPI standard. The support
for parallel libraries in MPI is then summarised along with guidelines on how to write

'libraries in MPh. These guidelines are then applied in a case study of a 2D-grid vector
class library.

81

I

82 CHAPTER 8. LITERATURE STUDY: MN

8.3 Extending MPI

The MPI standard contains support for extending the message-passing functionality
with for example new collective communications. An example of this can be found
in [41]. The authors describes extensions to the inter-communicators in MPI to enable
collective communications and virtual process topologies on inter-communicators; in
MPI collective communications and virtual topologies can only be used with intra-
communicators. This functionality is part of the MPI extension library (MPIX) de-
veloped by the authors. They conclude that the collective communication and virtual
topologies should be defined on inter-communicators as well to be consistent with
the functionality provided for intra-communicators. Final remark is that threads and
parallel I/O are the next logical extension to MPI to be investigated.

The next paper of the same authors identifies important extensions to MPI [421.
It gives a summary of concepts that were left from the MPI standard such as active
messages, threads, virtual shared memory, parallel I/O, dynamic load balancing, etc.
They propose possible implementations of inter-communicator extensions for collective
communications, spawning of processes during execution of a parallel program, thread
extensions to MPI, interrupt receive calls, remote memory access extensions and an
active messages extension.

A thread is a single flow of control with a process. Multi threaded processes have
independent threads of control that share the same address space. Since the context
of a thread is small, context switches by the scheduler are cheap. Threads can provide
better performance in many situations for example in the case of I/O where one thread
performs I/O while the other thread continues the computation. The issue of making
MPI thread-safe is addressed by [10]. This article discusses the implementation of MPI
atop the P4 parallel programming system [5]. To make this implementationthread-safe
the P4 system is made thread-safe first. Then the potential thread-unsafe features of
MPI such as explicit buffering are discussed.

The MPI standard specification does not address the issues of parallel file I/O.
People at IBM T.J. Watson Research Center and NASA Ames Research Center have
drafted a proposal parallel I/O interface for MPI called MPI-IO [34]. The goal of
the MPI-IO interface is to provide a widely used standard for describing parallel I/O
operations within an MPI message-passing application. The interface should establish a
flexible, portable, and efficient standard for describing independent and collective 1/0
operations by processes in a parallel application. The MPI-IO interface has the following
features: independent (no coordination between tasks) and collective (each task must
participate to the collective access) I/O requests, blocking and non-blocking I/O calls
and system maintained individual and shared file pointers. MPI-IO is designed to
be as MPI-friendly as possible. When opening a file, a communicator is specified to
determine which group of tasks can get access to the file in subsequent I/O operations.
MPI derived datatypes are used for expressing the data layout in the file as well as the
partitioning of the file data among the communicator tasks. The data access can be
performed using explicit absolute or relative offsets or by using the system maintained
file pointers. The MPI-IO interface is intended to be submitted as a proposal for an
extension of the MPI standard in support of parallel file I/O.

8.4 Language binding

The MPI standard was developed using an object-oriented approach. However inter-
faces have been defined only for the non-object-oriented C and Fortran 77 languages. In
[1] examples of a C++ interface to MPI are being discussed. This interface can be used

8.5. MI'I IMPLEMENTATIONS 83

to build object-oriented libraries in a language that directly supports object-oriented
programming. The article also proposes extensions of the MPI data types and topology
functionality by incorporating features of the Zipcode [39] message-passing system.
This would simplify creation of data types and make the data types re-sizable whereas
they are of constant size in the current MPI standard. The topology functionality could
be improved by providing predeflned topologies and simplifying the addressing in a
topology by eliminating the need to map from topology coordinates to process ranks.

8.5 MPI implementations
Since the completion of the MI'! standard in May of 1994 several implementation
projects have begun. Four public domain implementations of the MI'! standard will be
discussed in this section with appropriate references. A workshop on implementing
MPI was held at the Argonne National Laboratory of which a report is available in [24].
This workshop was attended by representatives from universities and industries from
all over the world including NEC, Intel, IBM, Cray Research, Meiko, and Convex.

8.5.1 MPICH
The MI'! Chameleon (MPICH) implementation of MPI is authored by the Argonne
National Laboratory and the Mississippi State University [171. The MPICH imple-
mentation is a portable implementation that is based on an Abstract Device Interface
(ADI) which may be used to efficiently implement MPI [23]. MPICH is based on this
ADI and to port MPICH to a new architecture a core of message-passing routines need
to be implemented. A set of extension routines that provide the rest of the necessary
functionality are implemented using the core routines. These extension routines can
be rewritten for use with a specific hardware and software platform to provide extra
performance. This way the initial effort of porting MPICH to a new architecture is
small and one has the ability to increase performance in the future. Interesting is that
the authors daim the following: "If you find that this implementation of MPI is not at
least 95% as fast as what you are currently using on any machine or network, please let
us know and we will try to fix it".

More information on the AD! can be found in chapter 9 which describes the abstract
device interface for the Cenju-3.

8.5.2 CHIMP
The Common High-level Interface to Message Passing (CHIMP) [4] is authored by the
Edinburgh Parallel Computing Centre (EPCC) at the University of Edinburgh in Schot-
land. Since the inception of CHIMP in 1991 it has evolved from prototype through
Version 1 to the current Version 2 interface specification. In recognition of the im-
portance of the MPI effort the current version of CHIMP supports the Ml'! interface
functionallity in an MPI compatibility library built directly on top of CHIME Apart
from the message-passing functionality CHIMP provides a rich environment for ex-
ecuting parallel programs on workstations to automatic placement of processes across
a combination of parallel and distributed computing resources.

8.5.3 LAM
Local Area Multicomputer (LAM) [6] is a programming environment and development
system for a message-passing multicomputer constituted with a UNIX network that

84 CHAPTER 8. LITERATURE STUDY: MI'I

was developed at the Ohio Supercomputer Center. It is a subset of a greater Trollius
[18] system which extends the software to dedicated parallel computer ensembles with
no other native operating system. LAM runs only on a network of UNIX machines and
presents the topology of the multicomputer as a fully connected graph thus allowing
nodes to communicate in 1-hop distances. The latest version of LAM includes APIs for
both MPI and PVM. The MPI point-to-point functionality is built directly upon LAM
and the collective communication functions, virtual topology mapping, and the group,
contexts and caching functionality is implemented on the point-to-point functionality.
It is thus independent of LAM.

8.5.4 Unify
Unify [9] is a subset of MPI that has been built on top of PVM. It is based on a computer
science master's project [8] of Mississippi State University Unify is dual-API in which
programs can use both MPI and PVM calls but is is also possible to use MPI calls solely.
The resulting executable will run in the PVM environment. This subset of MPI has been
built to show the relative ease of implementation of MPI, and also to ease migration of
code from PVM to MI'!. This is important because PVM still is the defacto standard or
at least has been the defacto standard for many years.

8.6 Applications

In [43] the authors decribes a number of efforts to make use of MPI in real applications.
The paper is not an definite statement of MPI development work but describes the
initial successes, progress, and impressions of application developers during porting
of their applications to MPI. A number of application and application-enabling libraries
are discussed by various aspects such as: goals of the application project, parallel for-
mulation/conversion, helpful feature of MPI, most understandable/most frustrating
features of MPI, implementation used, and early indications of performance results.
The paper concludes that there were only positive comments on porting applications
to MPI. The standard document needs to be more understandable and include much
more example programs. The variety of machines running a portable version of MI'!
was extremely interesting. Researchers use machines like the IBM SP-1, CM-5, and
nCUBE/2, but also newer machines like the Cray T3D, and less well known machines
like the A1'-IOOO.

8.7 Profiling and debugging MPI programs

In [28] the authors discuss the MPI profiling interface and three profiling libraries that
make use of it. These libraries are distributed with MPICH. The idea behind the MPI
profiling library is to use the linker to substitute "wrapper" functions for the MPI
functions called by the application. In order to do this the profiling version of the
function must have the same name. The real function should then be available by some
other name so the profiling version can call it to do the real work. This means that every
MPI function should be available by two names, one in case the profiling version is not
defined and one that is called by the profiling version. Three profiling tools for MPI
are described in the paper. These tools are supplied with MPICH. Tho of them rely on
the Multi-Processing Environment (MPE) which is also part of MPICH. MPE supplies
useful functionality such as event logging and simple graphics. The first profiling
tool just accumulates time spent in MPI routines. The second tool generates logfiles

8.8. PERFORMANCE OF MPI 85

containing time-stamped events that can be used by a variety of profile visualisation
tools. The third library does a simple form of real-time program animation. The tool
uses MPE to display communication patters and program outputgraphically.

The Edinburg Parallel Computing Centre (EPCC) authored two projects, in the
framework of their Summer Scholarship Programme, to develop a visualisation tool
for performance analysis and debugging (VISPAD) of parallel programs [45] [381. The
initial version of VISPAD supported the CHIMP message-passing system. The fol-
lowup project migrated VISPAD from CHIMP to MPI arid incorporated additional
functionality VISPAD uses an instrumentation library (INS) for event-logging. The
INS library provides structured logging of events in phases, buffered or unbuffered
instrumentation, and other functionality to log events from any program and output
these events to a so called tracefile. An instrumented MPI library, implemented using
the MPI profiling interface, is built upon the INS library. Linking an MPI program
against this profiling library and running the program will result in tracefiles of the ex-
ecution being created which can than be examined using the visualisation tool VISPAD.
VISPAD contains a navigation display for moving through the (usually large) trace-
files and it controls selection, filtering, and expansion of the structured events. It also
controls animation of the execution trace. The membership matrix display visualises
which communicators each process belongs to. The communication display visualises
the communication events in an MPI program using a visual encoding for each type
(blocking, non-blocking) of communication as well as a textual description of the com-
munication. The statistics display provides a list of communication specific metrics
for each process. Finally, the profile display presents quatitative information about the
various events in a parallel program and uses numeric values as well as a bar graph to
display that information.

8.8 Performance of MPI

Already early performance results are available on different implementations on dif-
ferent architectures. This section will present literature on performance results on the
IBM-SP1, Intel Delta, Paragon, CM-5, arid on workstations clusters.

Performance on IBM-SP1 In an early draft of [25] the authors compare the perform-
ance of IBM's proprietary library euih with IBM's experimental MPI-F implementation
on the SP1, and the MPICH implementationwhich are both built on top of the euih lib-
rary. The performance is measured using a simple round-trip bandwidth test between
two nodes of the SP1. The results show that a vendor implementation of MPI (MPI-F)
can be as fast as the vendor's proprietary system (euih), and that a public domain im-
plementation can be nearly as fast. The difference in performance between the public
domain and the vendor implementation of MN is due to copying of messagesbetween
system and user buffers in the public domain implementation which is absent in the
vendor's implementation.

In [2] the performance results for different implementations of the broadcast oper-
ation are analysed and compared on the Intel Delta, Paragon, IBM SP1, and the CM-5.
The authors recognize that MPI allows software portability and that it should lead to
efficient code since each vendor will implement it for its own hardware. The paper
evaluates the efficiency of MPICH by comparing the MPI broadcast collective opera-
tion to optimised versions written using both MPI and the native NX message-passing
system on the Intel Delta, the Paragon, the IBM-SPI and the CM-5 where appropriate.
The paper concludes that MPI is performing well on many systems, and that MPICH

86 CHAPTER 8. LITERATURE STUDY: MPI

runs correctly on many systems. However the MPICH implementation still has room
for performance improvement.

Performance on workstation clusters In [37] the authors provide a guideline on
how to select an appropriate public domain MPI implementation for a workstation
cluster, which in their case consists of DEC Alpha workstations connected by a DEC
GlGAswitch. They investigate several aspects of MPI, including its functionality and
performance, for CHIMP, LAM, MPICH, and Unify. The paper points out the strength
and weakness of each implementation. Their results indicated that software overhead
in communication is very high and should be reduced. From the four implementations
they choose LAM as the best implementation for their environment although it incurs
relatively high software overhead for short messages. Unify has good performance,
but is not a full MPI implementation. MPICH and CHIMP have memory management
problems and have therefore not been chosen.

Chapter 9

Porting full MPI to Cenju-3

Since the completion of the MPI standard a few implementations have emerged. One
of these has resulted from a joint-effort project between Argonne National Laboratory
(Gropp and Lusk) and Missisippi StateUniversity (Skjellum and Doss). We will refer to
this implementation as the MSU implementation of MPI. This implementation conforms
to the MPI standard and is a full implementation of all the routines specified in the
standard. It is also a portable implementation in the sense that it is reasonably easy
to put up an implementation for a new machine such as the Cenju-3. This is done by
implementing a small machine dependent piece of software called the Abstract Device
Interface (AD!). This chapter gives a short description of the way in which the MSU
implementation of MPI was ported to the Cenju-3 and shortly describes the interface
itself, as well as an example of its operation.

9.1 Porting approach

A paper by Gropp and Lusk [23] describes the Abstract Device Interface that was used
to provide an implementation of MPI. Essentially the interface between the AD! and
the Application Program Interface (API), in our case the MPI library is defined and
implemented. This interface consists of a number of routines provided by the device,
such as- simple message-passing routines, and a number of routines provided to the
device by the API, such as routines to transfer data between the device and the API. The
operations provided by the device are very simple routines such as routines for sending
and receiving messages, and routines for message queue management. These simple
operations can be used to implement more complex operations such as defined in the
MPI standard. However, if the device supports some of these complex operations, they
can be used directly instead of implementing them in terms of simple operations. This
allows for performance improvement once a rudimentary implementation that does
not use the extended support of the device has been completed. One can think of using
collective communication support provided by the device as a candidate for this kind
of improvement. In this way one can use as much of the features provided by the
parallel device to increase the performance of the AD! and thus the performance of the
message-passing system (in this case MPI) that is implemented on top of it.

The AD! for the Cenju-3 is based on the NEC mini-MPI library The mini-MPI library
is a subset implementation of MPI that does not conform to the standard completely.
To provide a full MPI implementation and minimise the implementation effort, the
implementation of the AD! is based on the mini-MPI library The layers of the full MPI
implementation are shown in figure 9.1.

87

88 CHAPTER 9. PORTING FULL MPI TO CENJU-3

Figure 9.1: Layers of full MPI implementation using AD!.

To support the Cenju-3 device all that was done was to copy the implementation
of the p4 (message-passing system) device and modify it to use the mini-MPI library
routines. The AD! for p4 provides messagequeuing and relies on the messagebuffering
of the message-passing system that is used for message-passing. Since mini-MPI
supplies adequate buffering it can be used as a replacement for p4. All calls to p4
message-passing routines were replaced by equivalent calls to the mini-MPI routines.
All other routines not related to message-passing were replaced by their mini-MN
counterparts. In this way a full MPI implementation that conforms to the standard was
realized on the Cenju-3.

9.2 The Abstract Device Interface

Each side of the interface between the ADI and the API provides services to the other
side. This section lists prototype data structures and routines that each side of the
interface should provide to the other.

Services provided by the device The routines and data structures provided by the
device are the definitions on which the MPI implementation (API layer) relies. The
definitions, and its implementation, are provided by the device. Two data structures
one for send..handle and one for recvhandle are provided. These data structures
contain information about the messages
Data structures provided by the device:

typedef ... A_send_handle
typedef ... A_recv_handle

A_al bc_send_handle (D_send_handle)
A_al loc_recv_handle (D_recv_handle)
A_free_send_handle (D_send_handle)
A_f ree_recv_handle (D_recv_handle)

A_post_serid(D_send_handle)

ADI

mini-MPI

Paralib/CJ

Cenju-3

9.3. EXAMPLE OF OPERATION 89

A,...post_recv (D_recv_handle)
A_complete_send (D_recv_handle)
A_check_device (blocking)

Services provided to the device The routines and data structures provided to the

device are the definitions on which the device (ADI layer) relies. The AD! will invoke
these functions and access these data structures to interact with the MPI implement-
ation. This interaction is necessary for example to transfer data from the API to the
AD! when the API runs in user address space and the ADI runs in kernel space. The
definitions, and its implementation, are provided by the MPI implementation (API
layer).
Data structures provided to the device:

typedef ... D_send_handle
typedef ... D_recv_handle

D_mark_send_completed(D_handle)
D_message_arrived(src, tag, context_id, D_recv_handle, status)
D_get_contig (D_send_handle, address, maxlen, actual_len)
D..put_contig (D_recv_handle, address, maxlen, actual_len)
D_mark_send_completed (D_send_handle)
D_mark_recv._completed (D_recv_handle)

D_check_xnpi

9.3 Example of operation

How these routines are used to implement high-level message-passing will be illus-
trated in this section by explaining the actions necessary on the User Program, the API
and the AD! layer, to perform a message-passing operation.

Table 9.1 shows the actions that are performed by each of the User Program layer,
the API layer and the AD! layer for the MPLIs end operation, which is a non-blocking
send. The MV! function MPIIsend initiates a send operation. The user program can
then perform some useful other work and once it has finished this it waits for the send

operation to complete. When the user program calls MPLIsend the first thing the
API does is to convert the user request into the correct request for the ADI. This is
done by calling A...allocsend which sets up a D...sencLhandle that can be used by
the AD! layer. Once the data structures are initialized A..postsend is called to start
the send operation in the AD! layer. The ADI is responsible for actually transmitting
the message. The AD! and API work together to actually transfer the data between
these two layers (D.gettotallen, Dgetintocontig); this allows the API to
provide a richer set of data layouts that are not supported by the device. When the
API calls the k.posLsend, the AD! initiates the send possibly using D..gettota lien
and D.getintocontig to transfer the data from the API to the ADI layer. When
the data has been transferred to the AD! layer, the AD! and the API layer return.
The user program can now perform some useful work until at a certain moment the
processor is interrupted because the message has been sent. The interrupt is handled
in the AD! layer which marks the message to indicate that it has been sent by calling
D..marksen&completed which in turn update the API data structures and frees the
device send handle by calling A...freesen&handle. After the interrupt has been
handled the user program runs again possibly calling MPLstatus which will indicate

90 CHAPTER 9. PORTING FULL MPI TO CENJU-3

User Program Al'! ADI

MPIIsend
A.al loc..send allocates
D...sendhand1e

A_post...send calls device
layer to start send operation.

Initiates send operation pos-
sibly call-
ing Dgettota11en and

Dget..contig to transfer

data (Or may just notify

destination that message is
available)

return
(User code runs)

Interrupt; message sent;
calls
Djnark.sendcomp leted

Posts send completed in MPI
data structures
A...free...send-handle frees
device's data structures

(User code runs)
MPIStatus

MPI data structures show
send completed

MP L.Wai t
MPI data structures indicate
send complated
free MPI data structures
return

Table 9.1: Nonblocking send followed by wait

93. EXAMPLE OF OPERATION 91

that the message has been sent. Finally the user program will call MPLWait to find
out that the message has been sent. It will also free the API data structures associated
with the send operation.

— I

92 CHAPTER 9. PORTING FULL MPI TO CENJU-3

Part IV

Parallel Direct Volume
Rendering

93

Chapter 10

Parallel Direct Volume
Rendering

This chapter presents recent literature on parallel direct volume rendering algorithms.
Research on direct volume rendering as opposed to surface fitting methods will be
presented. Direct volume rendering views all data in the volume at once while surface
fitting represents interesting structures in volumes by geometric primitives such as
polygons. These primitives are then rendered into an image by a geometry renderer.
Direct volume rendering does not use an intermediate geometric representation of the
data but renders the data directly by viewing the volume data as material of variable
transparency and color.

In section 10.1 we will present a model of volume rendering [36] followed by a
description of sequential (as opposed to parallel) volume rendering methods in section
10.2. Section 10.3 presents the parallel direct volume rendering algorithms described
in the literature.

Volume rendering is a technique that can be applied for visualisation and analysis
of data produced in various simulation applications such as Computational Fluid Dy-
namics (CFD) and Finite Element Modeling (FEM) or in medical imaging applications
such as Computed Tomography (CT) and Magnetic Resonance Imaging (Mm). These
applications generate data defined on different computational grids. CFD and FEM
usually produce data on curvilinear and unstructured grids, where CT and MRJ pro-
duce data mostly on rectilinear grids. Certain volume rendering algorithms are not
applicable to curvilinear and unstructured grids whereas others are applicable to all
three grid types. Another problem of some of the algorithms is that they are not capable
of handling the full range of viewing parameters. They may support parallel projection
but not perspective projection or they support only a limited number of different view
angles instead of providing arbitrary view rotation. These limitations are present in
both sequential and parallel direct volume rendering algorithms.

10.1 Volume Rendering Model

An analytical model of volume rendering will be given in this section to provide
a framework for discussing volume rendering algorithms. The volume rendering
model is based on the attenuation of light as it passes through a medium of varying
transparency and color. The volume data to be visualised is a collection of samples /
obtained from sampling some real-world continuous function G. The samples I are
used to construct a continuous function F which may be re-sampled to produce images

95

96 CHAPTER 10. PARALLEL DIRECT VOLUME RENDERING

from different view points. Reconstruction is performed by convolving the samples
with a filter K in the spatial domain. Note that in general the reconstructed function
F is not equal to the function G in the sampling points. The use of different filters in
volume rendering algorithms accounts for the different images generated.

Volume rendering can be modelled in the following three steps:

1. Reconstruction of F.

2. Classification and shading.

3. Integration of intensity and transparency along viewing-rays through the volume.

Reconstruction By convolving the sample points I with a reconstruction filter K we
obtain the reconstructed continuous 3D scalar function F.

= fi,j,k * KI_I',_',k_k'
i'j' k'

Classification and Shading Based on the values of F assign an opacity and color
to each sample point. The opacity of a data point of low importance will be small,
meaning that one will 'see through' these points and be able to look at the more
interesting points. The color can be used to highlight certain features in the data or
provide a mapping between the type of data and the color that represents this type
of data. This classification is performed by applying two functions 0 (opacity) and S
(shading) to the continuous scalar field F.

(1=0(F) E=S(F)

Integration Now that each sample point has an opacity and a color these values are
integrated along a viewing-ray through the volume. The integral may be taken toward
or away from the viewer. When taken towards the viewer the accumulated opacity T
and intensity I along the ray over [0, p1 (0 is starting point at back of volume, p end
point that is closest to the viewer) is

T(p) = e J fl(v)dv

1(p) =T(p)jdv
The intensity function can be solved analytically only if E and flare constant or
multiples of each other over the interval. This is not generally the case so numeric
methods are used to approximate the whole integral. This is done by breaking the path
into small segments on which E and (1are approximated by constants. For segment
[0, q] the approximate T and I become

T(q) =

1(q) = (1 —

These segments are composed using an operation which is consistent with the
equations for transparency and intensity. Each segment I has a color C, = I and an
opacity , = 1 — T, as shown in the picture below, which are to be composed in a
back-to-front or front-to-back order.

10.1. VOLUME RENDERING MODEL 97

00 0N—2 CN1

view direction
I I I

CO C1 C2 CN_2 CN._1

We can derive recurrences for both front-to-back and back-to-front composing. They

are shown below with the corresponding programs next to them. For the front-to-back
recurrences the final color is given by 'N....l• For the back-to-front recurrence the final
color is given by Jo.

Front-to-back recurrences

Jo = Co

i+1 j—1

Ij+1 = Cjfl1—ok
j=0 k=0

i i j—1

= Ci+1ll1—ak+Cj 111_ok The corresponding program

k=O j=0 k=O I =C(O]; 0=1;
= i+1°i+1 + It .for (i=O; czN—1; i+-s-) {

0 = (1_alpha[i))*0;

Oo = 1 i = C(i+1]*O + I;
)

O+i = 111_ok

= (1—cxk)fll—ok

= (i—ak)O.

98 CHAPTER 10. PARALLEL DIRECT VOLUME RENDERING

Viewing vector

Figure 10.1: Image versus object lattice.

Back-to-front recurrence

'N—I = CN_I

N—I j—I

u-i = E ci II i—ak
j=s—I k=i—I

1—2 N—I j—I

= ci - II + > ci II i—ak
k=i—I 1=1 k=i—I

N—I i—I

=
j=i k=i

The corresponding program

I = C[N—1];
for (i=N—1; i>O; i——)

I = C[i—1] +

(1_alpha[i_1])*I;

=

10.2 Sequential Rendering Methods

This section will present three representative sequential algorithms for direct volume

rendering of which parallel implementations will be explored in section 103. To sim-
plify discussion of the sequential and parallel algorithms we first introduce terminology
defined in [361. In his dissertation Neumann uses the term object lattice for the sample
points of the volume to be visualised and the term image lattice for the volume that lies
behind the image plane in the direction of the viewing vector (Figure 10.1). Not only the
object lattice is considered a 3D space, but the image lattice is also recognized as such.
This means that we do not restrict ourselves to a 2D image plane, but we view the image
lattice as a stack of planes behind the image plane in the view direction. In this way
the image lattice can be considered a volume as well and this makes reasoning about
distributions of the image lattice easier when the parallel algorithms are discussed.

The direct volume rendering process can be described by three steps as we have
seen in the previous section: reconstruction, classification and shading, and integration.

Obiect lattice

Image lattice

10.2. SEQUENTIAL RENDERING METHODS 99

The first step in the volume rendering process is to calculate the field values on the
image lattice. For this we must reconstruct the 3D function and re-sample this function
on the image lattice points. The second step is to classify and shade these points. This
step assigns an opacity (a value) and a color intensity to each image lattice point. The
last step is to compose the image lattice points along the viewing direction into a 2D

image.
Essentially there are two classes of direct volume rendering algorithms. The back-

ward mapping and the forward mapping algorithms [48]. These two classes differ in
the data set that is traversed in the inner loop of an algorithm. A backward mapping
algorithm traverses the image lattice and determines the contribution of the volume
to the color and opacity of each image lattice point. A forward mapping algorithm
traverses the object lattice and determines the contribution of each object lattice point
to the final image.

There are three important direct volume rendering algorithms to consider: ray cast-
ing, splattirig, and volume shearing. Ray casting is a backward mapping algorithm.
Splatting and volume shearing are both forward mapping algorithms. Splatting and
volume shearing are both considered here because they are quite different, even though
they are two instances of algorithms from the same class of forward mapping al-
gorithms. These three algorithms differ most in the reconstruction step of the volume

rendering process. This step is considered the computationally most expensive step in
the algorithm, and it is the parallelisation of this step that should improve the perform-
ance of parallel algorithms over the performance of the sequential algorithms. The
algorithms will be explained briefly below and the known optimisations (speed-ups)
will be discussed. It is necessary to discuss the optimisations because some of the
optimisations are eliminated when a certain distribution of object or image lattice is

chosen. This might result in a parallel algorithm with a disappointing speedup over
the sequential algorithm. This knowledge is necessary to choose the algorithm most
suitable for optimal parallelisation.

10.2.1 Ray Casting
The ray casting algorithm re-samples the volume along view rays calculating a color
and opacity for each image lattice point along the ray. The interpolation used mostly is
trilinear interpolation of the eight neighbouring object lattice values. The .0 (opacity)
and E (color) functions are applied to the new sample points. Successive samples along
the ray are combined to produce the pixels of the final image. Perspective projection is
supported by casting rays from one point, the eye point. In the case of parallel projection
all rays are parallel to each other. The pseudo code for the ray casting algorithm is:

void raycasling ()
{ for (each pixel).(

for (each z-step along ray) {
reconstruct field F at new sample point by trilinear interpolation;
shade and dassify new sample to obtain .0 and E;
compute new segment I and T from averaged 1? and E of new

and last sample;
combine new ray segment I and T behind accumulated ray color;

Optimlsations Ray casting is suitable for a number of optimisations. The first op-
timisation is to compute .0 and E on the object lattice and is called shade-before-

100 CHAPTER 10. PARALLEL DIRECT VOLUME RENDERING

reconstruction. Instead of reconstructing the field F and shading and classifying the
new sample [46], one reconstructs (land E from the object lattice by trilinear interpol-
ation from the (1 and E values on the eight neighbouring object lattice points [32]. The
last approach gains efficiency by using the precomputed data gradient when shading
the object lattice. This optimisation is a trade-off between speed and image quality.

Adaptive ray termination [46] [33] stops the computation for a ray whose accumu-
lated opacity exceeds a certain threshold. Samples behind this point will not contribute
to the color of the pixel anyway. This technique can only be used when steps in the
image lattice are taken from the image plane away from the viewer (front-to-back).
This technique is especially useful if the classification and shading steps produce high
opacities.

Adaptive sampling [51] casts a subset of rays into the volume. If the variance of
neighbouring samples in the object lattice is above some threshold more rays are cast
in this area of the volume. This is repeated until the variance is below the threshold or
sampling has progressed to the level of the pixels. The color of pixels through which
no ray was traced is interpolated from the color of neighbouring pixels.

Progressive refinement [30] is the technique of under-sampling the volume to
achieve high frame rates when the user is modifying viewing parameters and use
more samples once the viewing parameters are stable. This will result in high frame
rates when navigating the volume and high quality images when the users wants to
inspect the image in detail. Under-sampling can be achieved in several ways. One
can subsample the volume in all three directions or raise the threshold of variance in
adaptive sampling. Lowering the threshold on accumulated opacity in adaptive ray
termination will result in under-sampling of the image lattice. Image pixels that are not
sampled will compute the color by interpolation of the neighbouring pixels. A low-
pass filter should be used on the resulting sub-sampled images to eliminate aliasing
artifacts.

Hierarchical data-structures [331 may also be used to speedup ray casting by elim-
inating the processing of uninteresting regions of the volume. Octrees may be used to
decompose the volume recursively. Each node contains eight children representing the
eight octants into which a volume is decomposed. A node contains a summary of the
data contained in the sub-volumes. Empty sub-volumes can be skipped since they do
not contribute to the image.

Finally, ray casting may be optimised by using a distance function on the volume
[27]. This technique calculates a volume that contains the radial distance from each
point in the object lattice to the closest point with an interesting value, that is a value
above some threshold. This distance volume allows sample rays in empty regions to
be skipped in much the same way an octree does.

10.2.2 Splatting
The splatting method [50] of direct volume rendering is a forward mapping volume
rendering algorithm. The name 'splatting' comes from the similarity with throwing
snowballs at a wall. The snowballs are the object lattice points which are 'thrown'
towards the image plane and hit this plane, thereby they are splatted and distribute
their contents over the neighbourhood of the point where they bit. This depicts the
splatting method.

Splatting convolves each object lattice point with a 3D reconstruction filter and
accumulates the contribution of the filtered points on the image lattice. The slices
in the image lattice are then composed to produce the final image. Because of the
computational expense of 3D convolution, implementations have used the projection
of the 3D filter kernel on the image lattice and perform convolution in the 2D domain.

10.2. SEQUENTIAL RENDERING METHODS 101

C
0

0

0
>

—

-

zz:—

— — —- -—- —

projecting data point
on image lattice

convolution with
2D filter kernel

composite along
image lattice z-axis

Image plane (top view)

Figure 10.2: Splatting process looked at from the top.

A picture of how the algorithm works is shown in figure 10.2. The pseudo code for the

splatting algorithm is:

void splattlng 0
(for (each slice of the object lattice most perpendicular to the view direction) (

for (each point in a slice) {
project a point onto image lattice and filter (1 K);
accumulate energy at image lattice points to produce F;

}
shade and classify image lattice points to obtain 17 and E;

)
compute segment I and T from averaged £7 and E of two

adjacent slices;
combine all segments I and T values to produce final image;

}

Optimisations Since the filters used for splatting are invariant under affine trans-
formations, software lookup tables can be used to approximate the filter resulting in
faster convolution [49]. However to support perspective projection a 3D filter kernel
has to be computed for each ray. Polygon rendering hardware can be used to project
3D filter kernels [31].

Splatting is also suitable for shade-before-re-sample optimisation. In this case
object lattice points are shaded and classified to obtain 17 and E. These functions are
used in the convolution with the filter and projected onto an image lattice plane. Energy
is accumulated to incrementally produce 1? and E.

Threshold of interest is a technique that can be applied to any forward mapping
volume rendering method. Since these algorithms traverse the object lattice points they
can ignore data values below a threshold of interest. For many data sets many of the
data points are uninteresting; therefore this technique may increase the performance
significantly.

Hierarchical data structures can also be used to speedup splatting [31J. An octree
representation of the volume is created where each node contains I and T values that
approximate all that node's children and the error associated with the approximation.
At each node the error is compared with an error threshold. If the error is greater than

102 CHAPTER 10. PARALLEL DIRECT VOLUME RENDERING

the threshold, the node's children are visited, otherwise the node is splatted and none
of the children are visited.

10.2.3 Volume Shearing
Volume shearing [261 is also a forward mapping technique. It applies a sequence of
1D transformations (shears) to the object lattice transforming it one dimension at a
time into the image lattice. Once re-sampled, the volume is aligned with the image
lattice and ready for shading, classification and composing. Since the transformations
are one-dimensional, only 1D filters must be used for reconstruction. The sequence
of shears is determined by the view direction such that minimal signal degradation
occurs. The pseudo code for the volume shearing algorithm is:

void volume.shearing 0
{ shear volume I along first-axis;

shear volume I along second-axis;
shear volume I along third-axis;
shade and classify re-samples volume to obtain 1? and E;
compute I and T as the average of successive points along the image

lattice z-axis;
combine I and T of all segments along the image z-axis;

)

Optimisations Like splatting, volume shearing may be optimised by defining a
threshold of interest and ignoring all data points with a value below this threshold.
Neumann [36] has shown that two volume shears are sufficient to reconstruct the ob-
ject lattice on an image lattice. This saves one third of the transformation time without
additional costs elsewhere in the algorithm. The volume shears are suitable for fast
implementation on vector computers.

10.3 Parallel Algorithms
The literature presented in this section aims at implementing parallel direct volume
rendering on general purpose parallel (MIMD) architectures. We will divide the lit-
erature into four groups that result from the combination of two issues: whether an
image or object-partition is used and whether an image or object-order method is used.
In an image partition nodes are assigned volumes of image lattice points to compute.
Communication occurs when volume data moves between nodes. In an object par-
tition, each node renders a color and opacity image of its subset of the object lattice.
Communication occurs when the local images are composed into a complete image.
The difference between image and object-order volume rendering methods should be
clear from the previous sections. Where possible performance figures are given for a
64 processor architecture, rendering a data-set of 128 elements in a 2562 image. If per-
formance results are not available for these specifications, the closest figures available
will be taken.

10.3.1 Object Partition, Object-Order Rendering

The algorithms in this group of parallel volume rendering methods use an object-order
rendering algorithm such as splatting where the object lattice is distributed among the
processors of the parallel machine.

10.3. PARALLEL ALGORITHMS 103

In a comparative study of parallel volume rendering algorithms for non-rectilinear
computational grids, Challinger compares the performance of a cell projection render-
ing method to a ray casting rendering method [71. The architecture used is a BBN
TC2000 multicomputer which is a distributed-memory architecture which provides
virtual shared memoxy Since the cell projection rendering method is an object-order
rendering method the results for that method are presented here. The cell projection
method integrates across the depth of the cell to give a contribution at each pixel the cell
covers. Reconstruction of samples on the cell's faces or inside the cell is accomplished
by interpolation between the nodes of the cell. Each cell may be projected to the screen
independently, however composing operations from cells which project to the same
pixels must be ordered. To ensure the correct rendering order the parallel algorithm
maintains a ready list of cells that are ready for rendering. Since the cells are rendered
in back-to-front direction a cell is ready for rendering when all cells which it obscures
have been rendered. The visibilitygraph indicates when a given cell can be transferred
to the ready list. For each cell a count is kept of the number of cells that are directly
obscured by the given cell. When this count reaches zero the cell can be transferred
to the ready list. Both the ready list and the visibility graph are maintained in shared
memory and accessed using atomic operations to maintain consistency. In summary,
the parallel projection algorithm generates tasks for each cell in the volume. Each task
locks the ready list and obtains a cell for processing. The cell is rendered into the frame
buffer which resides in shared memory and the visibility graph is updated. The cells
ready for processing are transferred to the ready list.

The parallel implementation of projection methods is not very promising. Large
amounts of memory are used to maintain the ready list and the visibility graph and the
synchmnisation needed to access these lists accounts for the fact that the algorithm is
not scalable. The main problem is the size of the tasks. One cell per task is much too
small. Increasing the task size would improve performance, but introduces problems
with task generation due to the constraints on the order in which the cells should be
rendered. A 100x120x16 dataset rendered to a 5122 image on 100 processors takes 26
seconds.

10.3.2 Object Partition, Image-Order Rendering

In this group of parallel algorithms the method used is an image-order method such
as ray casting and the object lattice is distributed among the processors of the parallel
machine. Most implementations of parallel direct volume rendering use the ray casting
algorithm in combination with an object partitioning. Each node renders an image of
the same size as the final image and these images are composed using the color and
opacity values to produce the final image.

Neumann analyses the communication costs associated with parallel volume ren-
dering algorithms. Two main classes of parallel algorithms are identified: image and
object partitions. The intrinsic communication costs for algorithms in each class are
analysed independent of an implementation. Any nontrivial parallel volume render-
ing algorithm needs communication of object or image data between the nodes. The
communication costs for three classes of parallel algorithms are analysed: image par-
tition with static data distribution, image partition with dynamic data distribution
and object partition. It is shown that the redistribution cost in the image partition
algorithms is strongly dependent on the viewing angle. But for an object partition with
block data distribution the redistribution cost decreases when the number of processors
increases. An object partition volume rendering algorithm was implemented on the
Touchstone Delta and on the Pixel-Planes 5. Local images are rendered by ray casting.
The algorithm uses a dynamic block data distribution which achieves load balancing

104 CHAFFER 10. PARALLEL DIRECT VOLUME RENDERING

by storing larger blocks of data at each node than is strictly required by the partition
and adjusting the partition boundaries between the nodes. This is the first reported
implementation that uses such a load balancing method. A 64 node Touchstone Delta
using this algorithm renders a 128 data-set in a 2562 image at 2.5 frames/sec. The
same algorithm on a Pixel-Planes 5 with 32 nodes, renders the image at 2.7 frames/sec.

In [13] Silva and Kaufman propose a space-efficient, fast load balanced parallel
algorithm. The implementation uses a static object partition and an image-order al-
gorithm called polygon assisted ray casting (PARC). The idea behind PARC is simple. On
needs to integrate along a ray. By finding tighter bounds for the integral the amount
of work is reduced, substantially lowering rendering time. PARC does this by en-
closing the volume with a rough polygonal approximation, which is transformed and
scan converted into front and back Z-buffers. For each ray the front one gives us an
estimate for the lower limit of the integral, and the back one an upper limit estimate.
Load balancing is driven by the cubes generated by the PARC algorithm. As the cubes
are a very close approximation to the amount of work one has to perform during ray
casting, the number of cubes a processor holds is used as the measure of how much
work is performed by that particular processor. For ray casting to be efficient one needs
contiguous blocks of data thus making composing easier and reducing the number of
intersection calculations needed. For this reason slabs, which are consecutive slices
of the data sets aligned on two major axes, are used as the basic blocks for the load
balancing scheme. The number of cubes in a slab is used as a measure for the amount
of work necessary to render the slab. This leads to much better load balance compared
to a static distribution where each processor renders an equal part of the volume. The
implementation has the following structure: in the processors, a set of working requests
are queued and serviced on demand. There are two different kinds of requests, render-
ing requests and compose requests. The first type of request is received directly from the
host where the user is waiting for images to show up. The second request comes from
neighbouring processors. The processor keeps servicing requests by picking a message
from each queue. After servicing a rendering request the resulting image is buffered
until a compose request for that image is received. The image is composed and sent to
the neighbouring processor. The last processor sends the complete image to the host.
hi this way computation and communication are overlapped resulting in a pipe-lined
generation of images at interactive frame-rates. For an Intel Paragon with 32 processors
a certain data-set (size unknown) is rendered in a 2562 image at 15 frames/sec.

10.3.3 Image Partition, Object-Order Rendering

The algorithms in this group of parallel volume rendering methods use an object-
order rendering algorithm such as splatting, where each processor is responsible for
rendering a part of the image lattice.

Westover proposed a parallel splatting algorithm [50]. Each processor traverses a
block of the volume and acts as a splat-server for a subset of scan-lines. This makes
the algorithm an image-partition, object-order rendering method. A 4 processors Sun-
VX/MVX visualisation accelerator renders a 128x128x93 data-set in a 5122 image in
41.2 seconds.

10.3.4 Image Partition, Image-Order Rendering

In this group of parallel algorithms the volume rendering method used is an image-
order method such as ray casting and the image lattice is distributed among the pro-
cessors of the parallel machine.

10.4. PARALLEL RENDERING ON THE CENJU-3 105

Corrie and Mackeras implemented a parallel ray casting volume renderer [14] on the
Fujitsu AP1000 which is a distributed memory MIMD parallel computer. The system
uses a software distributed virtual memory system for volume data. The volume
renderer makes use of the data coherence that is inherent in rendering volume databy
means of a caching scheme. The work involved in rendering an image of a volume
data set is allocated to the processors by subdividing the image-lattice into square
pixel blocks and each block is rendered using a ray casting algorithm. This makes
the algorithm an image partition, image-order algorithm. The square pixel blocks
are shown to achieve better performance than other work item shapes because of the
potential for exploiting data coherence. thad balancing is performed by using the
worker-farm paradigm in which work items are farmed out to the available processors
on demand. Image coherence1 however, can result in poor load balance towards the
end of the computation when idle processors are waiting for processors working on
a few complex work items to complete. To improve the load balance a work item
timeout is set. When a processor is rendering a work item and the timeout expires,
it informs the master about this. If there are no more work items to be rendered and
there are idle processors, the remainder of the work item is distributed among the idle
processors. If there are no idle processors, the processor on which the timeout occurred
continues the rendering of the work item. It is shown that work items of moderate size
(800-1000 pixels) yield the best results. Data is distributed among the processors and
each processor has a least recently used (LRU) cache that contains volume cells from
other processors. When a processor requires a volume cell which it does not have, it
requests the cell from its neighbourhood. On the Fujitsu AP1000 using 128 processors
the algorithm renderes a 256x256x109 data-set in a 5122 image in 55 seconds.

10.4 Parallel Rendering on the Cenju-3

This section presents a rationale for implementing parallel rendering software on the
Cenju-3. The Cenju-3 system has been described in chapter 1. The main features
are summarized here. The Cenju-3 is a distributed memory MIMD parallel computer
in which up to 256 processors can communicate with each other via a multi-stage
interconnection network. The Cenju-3 does not have parallel I/O facilities and does not
have support for a parallel frame-buffer. Since all I/O from and to the Cenju-3 is through
the host computer, and the bandwidth of this connection is approximately IMB/sec,
the suitability of the Cenju-3 for real-time (>20 frames/sec) visualisation software in
general is limited because these applications are all I/O bound. A bandwidth of I
MB/sec for an image size of 5122 limits the frame rate to approximately 1 frame/sec.
Images of size 2562 can be updated at approximately 4 frames/sec. These frame-rates
can be increased by using compression for sending the frames from the Cenju-3 to the
host workstation but still for interactive rendering applications the bandwidth should
be increased.

An object-partition, image-order (ray-casting) algorithm is the most suitable al-
gorithm to be implemented on MIMD architectures as is apparent from the literature.
Ray-casting is a simple, general and efficient method of volume rendering the local
object space on each processor and it can be used to render embedded geometry using
parallel or perspective projection. For efficient image composition one can use the
binary-swap algorithm or employ a pipelined image composition approach as was
done in [13].

To date the parallel volume rendering algorithm presented in [13] is the fastest
direct volume rendering implementation ona MIMD parallel machine with a relatively

1A gmup of pixels requiring similar processing is said to be Image coherent

106 CHAPTER 10. PARALLEL DIRECT VOLUME RENDERING

small number of processors. The software runs on the Intel Paragon using 32 iPSC86()
compute nodes each capable of performing 75MFlop/s. This algorithm seems suitable
for implementation on the Cenju-3 as well, the only problem being the frame update
limits of the Cenju-3. A major improvement of the Cenju-3 parallel computer would
be to incorporate parallel I/O in the architecture. This way updating a framehuffer as
well as reading volume data from disk could be performed in parallel.

Chapter 11

Conclusions

This final chapter will summarise the conclusions that can be drawn from the work
presented in this report. Each part of the report has a separate section in this chapter.

11.1 Parallel Environment

Hardware During the time after the installation of the Cenju-3 atNLR, no real prob-
lems have occured with the parallel hardware. The processing elements and the in-
terconnection hardware have functioned properly. A few software problems with the
host workstation of the Cenju-3 have been reported to NEC but they where mainly
unrelated to parallel processing. Some minor problems with the parallel programming
system have been fixed by NEC.

Software The SVR4 operating system support on the nodes of the Cenju-3 is limited.
The number of SVR4 system calls supported at the moment is 20 out of 204. Most of
these system calls are not needed for parallel processing, but it would at least be bene-
ficial if socket communication where possible from the nodes to ease communication
with the host and other workstations; in our case to communicate graphical information
and control messages with the host workstation.

'The standard parallel programming environment on the Cenju-3 (Paralib/CJ, mini-
MPI) still has a few problems: The CJrmwrite () routine in Paralib/CJ has poor
performance although it is supposed to use the packet copying functionality of the
interconnection network and thus should perform better than any software imple-
mentation. Secondly, the broadcast routine of the mini-MN library is not capable of
sending buffers with a size in excess of 256 Kbytes which limits its use unnecessarily.
The documentation reports this limitation for the MPL.Send routine and suggests to
use MPLSsend instead, a routine that can send buffers of any size. However such
an alternative is not available for MPI..Bcast. To be able to broadcast buffers larger
than 256 kBytes, the broadcast routine should use MPI..Ssend'S instead of MPI..Send'S
internally. At the moment it is the user's responsibility to write a new broadcast routine

that uses MPL.Ssend.
The Cenju-3 lacks a debugger for parallel programs. It is impossible at the moment

to use a debugger to execute a parallel program step by step and inspect its variables.
Inserting 'print' statements in the source and recompiling the program is the only way
to debug a program. Furthermore, the run-time error messages generated by programs
running on the Cenju-3 are obscure. Essentially only the contents of processor registers

is printed. This information can be helpful to determine the subroutine in which

107

108 CHAPTER 11. CONCLUSIONS

a program produced the run-time error by looking up the address of the program
counter, at the time of error, in the symbol table of the executable.

Choice of programming system Although the choice of the programming system to
be used for the parallelisation of the NaS/RVS visualiser was mainly constrained by
the unavailability of the NEC Cenju-3 during the first few months of the project, and
although we would rather have used HPF for the parallelisation task because of its close
relation to the compiler directives for the NEC SX-3 that were present in the original
source code, the decision to use MPI has been advantageous. The portability of the MPI
standard has proven its effect. Initially a cluster of four IBM RS6000 workstations was
used for the development of the parallel version of the NaS/RVS visualiser using the
LAM and MPICH public domain implementations of MPI. Once the Cenju-3 system
was available it took approximately one week to port the code to the Cenju-3. Most
of the problems of porting the application to the Cenju-3 were unrelated to the use
of MPI. The program mapped well onto the subset of MPI that is available on the
Cenju, because only the most basic features of MPI were used in the parallel version of
NaS/RVS.

11.2 Parallel Visualiser

The main objective of the project was to parallelise the visualisation algorithms of
NaS/RVS. The first step in achieving this was to modify the system to adapt it to the
NLR environment. For this purpose a new module, capable of displaying the output
of NaS/RVS in an X window instead of using UltraNet framebuffer hardware, was
developed. Parts of this module have been used in the project that is concerned with
the development of a new user-interface to NaS/RVS. The use of hardware for which
NaS/RVS was not intended initially' revealed a number of non-portable sections in the
code that have been rewritten. When this phase of the project whas finished, develop-
ment of the parallel contour plot algorithm started on a cluster of IBM workstations.
Development continued on the Cenju-3 once it was available.

The work involved in adapting NaS/RVS to the NLR environment (SCI, NEC SX-3)
and porting the code to other platforms (IBM RS6000, NEC Cenju-3) have been time
consuming. The lack of proper documentation for NaS/RVS and its visualisation al-
gorithms also contribute to this. Therefor only a relatively small part of the visualisation
code (contour plot algorithm) has been parallelised in the remaining time. The resulting
parallel contour plot algorithm does show good performance when the screen space
partitioning approach to parallelisation is applied. Speedups on 16 processors of 13.8
for unstable viewing parameters and 9.90 for stable parameters have been reported. Un-
fortunately, the parallel implementation using object space partitioning has very poor
performance; 3.45 maximum on 16 processors. The main reason for this big difference
is the fact that the implementation of the visualisation algorithms in NaS/RVS is aimed
at efficient execution on a vector-supercomputer using a vectorising compiler. Therefor
any future efforts to parallelise the visualisation algorithms in NaS/RVS should aim
at screen space partitioning algorithms. In this case additional research is necessary to
achieve good load balance for these algorithms when the rendered object occupies a
small area of the final image in which case a simple partitioning algorithm such as the
one used in this report results in a large load imbalance.

It is believed that visualisation algorithms using partitioning of the object space
will scale better on large parallel systems (say more than processors) than the screen

1NaS/RVS was developed for a NEC EWS workstation in combination with NEC SX-3 supercomputer,
NLR has been using a SGI workstation with NEC SX-3 supercomputet IBM RS6000's and NEC Cerqu-3

11.3. MESSAGE PASSING INTERFACE 109

space partitioned algorithm. When partitioning of the object space is used an efficient
algorithm for combining the images from all processors is needed. Such an algorithm,
with constant run-time in theory has been presented in chapter 6.

11.3 Message Passing Interface

The MPI standard has proven to be a message-passing system well suited to message-
passing programming on the Cenju-3. During the project only the basic features of
MPI have been used to enable easy porting from the cluster of workstations to the
Cenju-3. The public domain MPICH implementation of MPI was ported to the Cenju-3
after the development of the parallel NaS/RVS visualiser was finished. The NaS/RVS
visualiser still uses the mini-MPI library provided by NEC. The public domain MN
implementation will be replaced by a native full MPI implementation from NEC once
that becomes available. It is expected that this implementation will perform equally
well as the Paralib/CJ library while on the same time providing much more function-
ality and a standard for message-passing which improves portability of applications to
a variety of parallel platforms.

Current literature on MPI can be divided into two groups: literature on how to use
the MPI standard, and literature on the possible extension of MPI. The MPI Forum is
starting an effort, called Ml'! 2, to extend MPI. MPI 2 considers extensions to the MPI
message-passing standard for parallel programming. This effort has broad participa-
tion from vendors, users, and software developers. MPI 2 is not changing Ml'!; it is
considering extending MPI. This means that programs written in M1'I will be portable
to a MPI 2 environment.

11.4 Parallel Direct Volume Rendering

Most parallel direct volume rendering software uses partitioning of the object spacein
combination with an image-order rendering algorithm such as ray-casting. This class
of algorithms shows better performance than the algorithms from any of the other three
classes presented in chapter 10.

One can use the Cenju-3 for parallel direct volume rendering although some lim-
itations exist. The total processing power and speed of the interconnection network
is sufficient to achieve interactive frame rates (> I frames/sec), but the bandwidth of
1 MByte/sec between the Cenju-3 and the host workstation is insufficient to achieve
real-time rendering (> 20 frames /sec) on the Cenju-3. By compressing the images
before sending them over to the host workstation possibly increases the maximum
frame-rate, but the gain in speed will not be sufficient to achieve a frame-rate of more
than 20 frames/sec. The operating system support for communication between the
processing elements of the Cenju-3 and the host workstation is insufficient. The fact
that all communication should use files is too constraining.

Because the Cenju-3 does not provide parallel I/O, all I/O uses the same inter-
connection between the Cenju-3 and the host workstation. Rendering applications
would benefit from parallel I/O hardware and software in order to efficiently fetch
large datasets from disk and output images to disk or a parallel display device.

110

Appendix A

Full MPI on the Cenju-3

This appendix describes how to port the MSU portable implementation of MPI to the
Cenju-3. It first describes where to get the portable MSU implementation of MPI and
provides pointers to other interesting resources on the internet. Furthermore, all new
files and files that need changes are listed with a description of the necessary changes.

A.1 Resources on the internet

The sources of the MSU implementation of MPI can be found on the following URL:
ftp: //info.mcs.anl .gov/pub/mpi in the filempich.tar.Zwhich contains the
latest version of the MSU MPI implementation. Other interesting URL's are shown
below, one for the MPI Home Page, and one for the MPI newsgroup. The MPI Home
Page contains pointers to more information concerning MPI.

MPI Home Page: http://www.rncs.anl .gov/mpi/index.html

MPI new group: news: //comp.parallel .mpi

A.2 The Cenju-3 device

The AD! for the Cenju-3 system is based on the AD! for the p4 message-passing system.
This p4 message-passing system is very similar to the mini MPI library and it is thus
reasonably simple to edit this device to support the Cenju-3 device. The sources of the
ADI's for the various devices are in mpich/mpid/ch-. The sources for the p4 device
for example is in mpich/mpid/ch-p4. We have copied the files in this directory into
the mpich/mpid/chcj 3 directory. All files have been renamed and the calls to the
p4 message-passing library have been replaced by calls to the mini-MPI library This is
basically what needs to be done to port the MSU implementation to the Cenju-3.

Next is a list of new or changed files:

• mpich/configure.in CHANGED
Configuration input file. This files is used as input for GNU autoconf which
produces the configure script. This script can then be run to configure makefiles
for installation. This file contains the necessary changes for the Cenju-3 system
but due to the unavailability of GNU autoconf and GNU m4 is not used at the
moment. Instead the generated script configure has been edited by hand to
apply the necessary changes.

111

112 APPENDIX A. FULL MPI ON THE CENJU-3

• mpich/configure CHANGED
File generated by autoconf from configure. in. This file has been edited by
hand as said before.

• mpich/Inpid/chcj3 NEW
Directory containing the AD! for the Cenju-3 parallel computer.

• mpich/mpid/chcj3/Makefile. in NEW
Makefile used by configure script to generate Makefile.
Copy of mpich/xnpid/chp4/Makefile. in to which changes have been ap-

plied for the Cenju-3.

• mpich/mpid/chcj3/cj3*.c NEW
These files are copies of the mpich/mpid/chp4/p4* .c files. All names con-
taining "P4" have been renamed with "CJ" substituted for "P4". All calls to p4
message-passing library (p4.sendx, p4recv) have been replaced by calls to
mini-MPI library (mpi ..send, mp Lrecv).

• mpich/mpid/chcj3/drncj3.h NEW
Copied from mpich/mpid/chp4 /dmp4 .h. Renaming of identifiers containing
"P4" to identifiers containing "CJ".

• mpich/mpid/chcj3/mpid.h" NEW
Copied from mpich/mpid/ch-.p4 /mpid . h. Renaming of identifiers containing
"P4" to identifiers containing "CJ".

• mpich/include/mpicj3.h NEW
Edited copy of $CENJU3 HOME! include Imp i . h. All macro's and prototypes for
the unused mini-MPI routines have been removed. Various names were changed
to prevent name conflicts with the MSU implementation. This file is included by
most of the
mpich/mpid/chcj3/*. [ch] files.

A.3 Installation on the Cenju-3

Instruction on how to install the MSU source and the changes for the Cenju-3 are in

this section. There are two archives needed for this:

mpich-Jul22 . tar. Z

which is available by anonymous ftp from info .nics .anl . gov in /pub/mpi and

cj3device . tar. Z

which is available by anonymous ftp from ftp. nir . ni in /trans it1.

The next steps should install MSU MPI implementation with the Cenju-3 device.
Lets assume that we want to install the sources in /usr/ local / src/MPI, the libraries
in /usr/local/liband the include files in /usr/local/include.

• Getthempich_Jul22.tar.Zfrominfo.TncS.anl.gOV /pub/mpiandplace

itin /usr/local/src/MPI.

• Get the cj3device.tar.Z file from ftp.nlr.nl /transit and place it in

/usr/local/src/MPI.

1Youwillnotbeableto isthefilesinthisdirctory

A.4. USING THE MSU MPI IMPLEMENTATION 113

• Uncompress and untarmpich-Ju122 .tar. z.This will create thempich direct-

ory and all its subdirectories.

• Renarnempich/configure.intOmpich/configure. jn.oRlGandmpich/configure
to mpich/configure .ORIG so untarring in the next step will not overwrite
these files.

• Uncompress and untar ci 3device . tar . Z. This will create the
mp i ch/mp id/ chcj 3 directory and all the files in it. It will also create the follow-
ingfiles: mpich/configure. in,mpich/configureafldmPiCh/iflClUde/1flPicJ3 .h.

• Run ./configure —arch=IRIX -device=ch-cj3. The settingsforthe IRIX
architecture work fine for the Cenju-3.

• Now run make profile in the /usr/local/src/MPldirectOry.

• Next run make mpilibin the /usr/local/src/MPIdirectory

• After the compilation has finished two files 1 ibmpi . a and 1 ibpmpi . a have

been created in the /usr/local/src/MPI/mpich/lib/IRIXdireCtoly Cre-

ate (symbolic) links in the /usr/ local / 1 ibdirectory which points to these files.
The links should be named libMPI .a and libPMPI .a in /usr/local/lib.
This is to distinguish them from the file $CENJU3HOME/lib/libmpi

•
directory or copy all manpages to the appropriatedirectory under /usr / local/man.

• Create symbolic links in /usr/local/ include for the files mpi .h, mpif .h,
binding, hand mpLerrno .h which are in
/usr/ local/src/MPI /mpich/ include.

The directory structure should now be as follows:

/usr/local/lib
/usr/local/lib/libMPI .a -> /usr/local/MPI/SrC/mPiCh/lib/IRlX/li)Pi .a

/usr/localIllb/11bPMPI .a -> /usr/local/MPI/SrC/ITlPiCh/llb/IRIX/libPmPl .a

/usr/ local! Include
/usr!local/Include/blfldlflg.h -> //1oca1/src/MPI!mplCh/iflclUde!b1fldIflg.h
!usr/local/include/mPi .h -> /usr/local/srC/MPI/mPich!iflClUde/TflPt .h

!usr/loCal! include!nipI_errno .h -> !usr/local/SrC/MPIhflPiCh!include/mpi_errflO .h
/usr!local/IflclUde/mPif .h -> /usr/local!srC/MPI!mpiCh/IflClUde!mPif .h

/usr/local/arc/MPI

/usr!local/fnan -> /usr/local/MPI/src/rnpiCh/mafl

The system is now installed and ready to use.

A.4 Using the MSU MPI implementation

To use the MSU MPI implementation and the accompanying documentation follow the

next steps.

• Add, if necessary, /usr/local/man to your MANPATH.

• Use the following variables in your makefiles:

114 APPENDIX A. FULL MPI ON THE CENJU-3

MPI_FLAGS = -dn \

-I/usr/local/include \
-L/usr/local/lib \
-L$ (CENJU3HOME) /lib

CFLAGS = $(MPI_FLAGS) # other flags
FFLAGS = $(MPI_FLAGS) # other flags

LDFLAGS = -1MPI —lxnpi -lparacj

or -1PMPI for profiling library

cc =cc
FC =f77

Pmgrams using MSU MPI can be launched on the Cenju-3 using the normal cj sh
or cjbr commands.

Bibliography

[1] Purushotham V. Bangalore, Nathan E. Doss, and Anthony Skjellum. MPI++: Issues
and features. In OON-SKI '94, pages 323—338, April 1994.

[2] Christian Bischof, Steven Huss-Lederman, Xiaobai Sun, Anna Tsao, and Thoman
Tumbull. A case study of MPI: Portable and efficient libraries. Technical report,
Argonne National Laboratory and Supercomputing Research Center, 1994.

[3] T. Brandes. ADAPTOR Users Guide. German National Research Center for Com-
puter Science, version 2.0 edition, March 1994.

[4] R. Alasdair A. Bruce, James G. Mills, and A. Gordon Smith. Chimp version 2.0
interface. Technical Report EPCC-KTP-CHIMP-V2-IFACE 1.7, Edinburgh Parallel
Computing Centre, University of Edinburgh, James Clerk Maxwell Building, The
King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom, February

1994.

[51 Ralph Bulter and Ewing Lusk. A users' guide to the p4 parallel programming
system. Technical report, Argonne National Laboratory October 1992.

[6] Gregory D. Bums. The local area multicomputer. In Proceedings of the Fourth
Conference on Hyperculie Concurrent Computers and Applications. ACM Press, March

1989.

[7] Judy Challinger. Scalable Parallel Direct Volume Rendering for Nonrectilinear
Computational Grids. Ph.D. dissertation, Department of Computer and Informa-
tion Science, University of California, Santa Cruz, 1993.

[8] Fei-Chen Cheng. Unifying the MPI and PVM 3 systems. Technical report, Missis-
sippi State University, Dept. of Computer Science, May 1994.

[9] Fei-Chen Cheng, Paula Vaughan, Donna Reese, and Anthony Skjellum. The Unify
System. NSF Engineering Research Center, Mississippi State University September
1994.

[10] Aswini K. Chowdappa, Anthony Skjellum, and Nathan E. Doss. Thread-safe mes-
sage passing with P4 and MPI. Technical report, Computer Science Department
& NSF Engineering Research Center, Mississippi State University, 1994.

[11] Lyndon Clark, Ian Glendinning, and Rolf Hempel. The MPI message passing
interface standard. Technical report, University of Southampton, Southampton,
S09 5N1-I, United Kingdom, 1994.

[12] Lyndon J. Clarke, Robert A. Fletcher, M. Trewin, R. AlasdairA. Bruce, A. Gordon
Smith, and Simon R. Chapple. Reuse, portability and parallel libraries. Tech-
nical Report TR9413, Edinburgh Parallel Computing Centre, The University of

115

116 BIBLIOGRAPHY

Edinburgh, James Clerk Maxwell Building, The King's Buildings, Mayfield Road,
Edinburgh EH9 3JZ, United Kingdom, 1994.

[13] Ane E. Kaufman Cláudio T. Silva. Parallel Performance Measures for Volume Ray
Casting. IEEE Visualization, pages 196—203,1994.

[14] Brian Come and Paul Mackerras. Parallel Volume Rendering and Data Coherence. In
Parallel Rendering Symposium, pages 23—26, October 1993.

[15] Michael Cox and Pat Hanrahan. Pixel Meiing for Object-Parallel Rendering: A Dis-
tributed Snooping Algorithm. In Parallel Rendering Symposium, pages 49—56, October
1993.

[16] Jack Dongara, Roif Hempel, Anthony J.G. Hey, and David W. Walker. A proposal
for a user-level, message passing interface in a distributed memory environment.
Technical Report ORNL/TM-12231, Engineering Physics and Mathematics Divi-
sion, Mathematical Sciences Section - Oak Ridge National Laboratory Oak Ridge,
Tennessee 37831, June 1993.

[17] Nathan Doss, William Gropp, Ewing Lusk, and Anthony Skjellum. A model im-
plementation of MPI. Technical Report MCS-P393-1193, Mathematics and Com-
puter Science Division, Argonne National Laboratory, Argonne, IL 60439,1993. in
preparation.

[18] Gregory D. Bums et al. All about trollius. In Occam Users Group Newsletter, August
1990.

[19] Kwan-Liu Ma et.al. A Data Distributed, Parallel Algorithm for Ray-Traced Volume
Rendering. In Parallel Rendering Symposium, pages 15—22,1993.

[20] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer
Graphics: Principles and Practice. Addison-Wesley Publishing Company, second
edition, 1990.

[211 High Performance Fortran Forum. High performance fortran language specifica-
tion. Technical report, Rice University, Houston Texas, May 3 1994. Appeared in
Scientific Programming, vol.2, no.1, June 1993.

[22] Message Passing Interface Forum. MPI: A message-passing interface standard.
Technical Report Computer Science Department Technical Report CS-94-230, Urd-
versity of Tennessee, Knoxville, TN, May 5 1994. To appear in the International
Journal of Supercomputing Applications, Volume 8, Number 3/4, 1994.

[23] William Gmpp and Ewing Lusk. An abstract device definition to support the im-
plementation of a high-level point-to-point message-passing interface. Technical
Report MCS-P342-1193, Mathematics and Computer Science Division, Argonne
National Laboratory Argonne, IL 60439,1994. in preparation.

[24] William Gmpp and Ewing Lusk. Implementing MPI: the 1994 MPI implement-
ors' workshop. Technical report, Mathematics and Computer Science Division,
Argonne National Laboratory, 1994.

[25] William Grnpp and Ewing Lusk. Some early performance results with MPI on the
IBM-SP1. Early Draft, May 1994.

[26] Pat Hanrahan. Three-Pass Affine Transforms for Volume Rendering. Computer Graphics,

24(5):71—78, November 1990.

BIBLIOGRAPHY 117

L271 Max Viergever Karel Zuiderveld, Anton Koning. Acceleration of Ray Casting Using

3D Distance Transforms. Visualization in Biomedical Computing, SPIE, 180&324—335,

October 1992.

[28] Ed Karrels and Ewing Lusk. Performance analysis of MPI programs, 1994.

[29] Vidin Kuma, Ananth Grama Anshul, and Gupta George Karypis. Introduction to
Parallel Computing. The Bejamin/Cummings Publishing Company, Inc., 1994.

[30] e.a. Larry Bergman, Henry Fuchs. Image Rendering by Adaptive Refinement. Computer

Graphics, 20(4):29—37, November 1986.

[31] David Laur and Pat Hanrahan. Hierarchical Splatting: A Progressive Refinement
Algorithm for Volume Rendering. Computer Graphics, 25(4):285—288, July 1991.

[321 Mark Levoy. Display of Surfaces from Volume Data. IEEE Computer Graphics and

Applications, 8(3):29—37, March 1988.

[33] Mark Levoy. Efficient Ray Tracing of Volume Data. ACM Transactions on Graphics,

9(3):245—261, July 1990.

[34] mpiio@nas.nasa.gov. MPI-IO: A parallel file i/o interface for mpi. Technical
Report Research Report 19841 (87784), IBM T.J. Watson Research Center, NAS
Systems Division, NASA Ames Research Center, November 18 1994.

[35] NEC Corporation. Parallel Programming Environment PCASE, User's Guide, version

I edition, October20 1993.

[36] Ulrich Neumann. Volume Reconstruction and Parallel Rendering Algorithms,
A Comparative Analysis. Ph.D. dissertation, Department of Computer Science,
University of North Carolina at Chapel Hill, 1993.

[37] Natawut Nupairoj and Lionel M. Ni. Performance evaluation of some MPI imple-
mentations on workstation clusters. Technical report, Departement of Computer

Science, Michigan State University, East Lansing, MI 48824-1027,1994.

[381 Kesavan Shanmugam and KonstantinosTourlaS. Application engineering tools for

MPI and PUL. Technical Report EPCC-SS94-01, Edinburgh Parallel Computing
Centre, James Clerk Maxwell Building, The King's Buildings, Mayfield Road,
Edinburgh EH9 3JZ, United Kingdom, 1994.

[391 A. Skjellum, S. Smith, C. Still, A. Leung, and M. Moran. The zipcode message-
passing system. Technical report, Lawrence Livermore National Laboratory,

September 1992.

[40] Anthony Skjellum, Nathan E. Doss, and Purushotham V. Bangalore. Writing

libraries in MPI. In Anthony Skjellum and Donna S. Reese, editors, Proceedings

of the Scalable Parallel Libraries Conference, pages 166-173. IEEE Computer Society

Press, October 1993.

[41] Anthony Skjellum, Nathan E. Doss, and Kishore Viswanathan. Inter-

communicator extensions to MPI in the MPIX (MPI extension) library. Technical
report, Mississippi State University, August 1994.

[42] Anthony Skjellum, Nathan E. Doss, Kishore Viswanathan, Aswini Chowdappa,
and Purshotham V. Bangalore. Extending the message passing interface (MN).
Technical report, Computer Science Department & NSF Engineering Research
Center, Mississippi State University, 1994.

118 BIBLIOGRAPHY

[43] Anthony Skjellum and Ewing Lusk. Early applications in the message-passing
interface (MPI), June 1994. Submitted to Special Issue of International Journal of
Supercomputing Applications.

[44] Don Speray and Steve Kennon. Volume Probes: Interactive Data Exploration on
Arbitrary Grids. Computer Graphics, 24(5):5—12, November 1990.

[45] Neven Tomon and Klaas Jan Wierenga. Application engineering tools for CHIMP
and PUL. Technical Report EPCC-SS93-15, Edinburgh Parallel Computing Centre,
James Clerk Maxwell Building, The King's Buildings, Mayfield Road, Edinburgh
EH9 3JZ, United Kingdom, 1993.

[46] Craig Upson and Michael Keeler. V-BUFFER: Visisbie Volume Rendering. Computer
Graphics, 22(4):59—64, August 1988.

[47] M.E.S. Vogels. Memorandum IW-94-025, report of the Cenju-3 course at NLR on
july, 12 and july 15, 1994. Technical report, National Aerospace Laboratory NLR
The Netherlands, July 25 1994.

[481 Alan Watt. 3D Computer Graphics. Addison-Wesley Publishing Company, second
edition, 1993.

[49] Lee Westover. Interactive Volume Rendering. Chapel Hill Workshop on Volume Visual-
ization, pages 9—16, May 1989.

[501 Lee Alan Westover. SPLAT11NG: A Parallel, Feed-Forward Volume Rendering
Algorithm. Ph.D. dissertation, Department of Computer Science, The University
of North Camlina at Chapel Hill, 1991.

[51] Turner Whitted. An Improved Iliwnination Model for Shaded Display. ACM Commu-
nications, 23(6):343—349, June 1980.

	Infor_Ma_1995_KJWierenga_dl1.CV
	Infor_Ma_1995_KJWierenga_dl2.CV

