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Abstract

In virtual reality systems the computer is used to create an artificial environment. To
visualise this environment as if it were real, a head-mounted display coupled to a tracking
system can be used; this is called immersion. Interaction with such an artificial environ-
ment requires special input devices such as a data-glove or a 3-D mouse. The technology
for displaying the environment has reached the level where it can be implemented in
a software library. Speed and resolution are only limited by hardware capacities. The
development of techniques for interaction in virtual environments is, however, still very
immature.

At the University of Groningen a virtual reality system, consisting of a head-mounted dis-
play, a 3-D mouse, a tracking system and high-performance graphics hardware, is available.
To use this system, a method for interacting using the 3-D mouse has been developed,
based on existing literature. This method is tested using the VR system and a software
library, specific for VR applications. A simple version of a chemistry program is created
for this, in which it is possible to build a molecule from single atoms, move the whole or
parts of the molecule and delete parts of it.





Sa menvatting

In virtual reality-systemen wordt de computer gebruikt om een kunstmatige omgeving te
creëren. Een head-mounted display, die is gekoppeld aan tracking-apparatuur, kan worden
gebruikt om deze omgeving te visualiseren alsof het echt is; dit wordt immersie genoemd.
Om een wisseiwerking met zo'n kunstmatige omgeving mogelijk te maken is het gebruik
van een driedimensionaal input-device, zoals een data-glove of een 3D-muis, noodzakelijk.
De technologie voor het afbeelden van de omgeving heeft het niveau bereikt waarop het
in een software-bibliotheek kan worden geImplementeerd. Snelheid en resolutie worden
slechts begrensd door de mogelijkheden van de hardware. De ontwikkeling van technieken
voor interactie in virtuele omgevingen staat echter nog in de kinderschoenen.

Aan de Rijksuniversiteit Groningen is een virtual reality-systeem aanwezig, dat bestaat
uit een head-mounted display, een 3D-muis, tracking-apparatuur en high-performance
grafische hardware. Om met dit systeem te kunnen werken is een methode voor interactie
ontwikkeld, die gebruik maakt van de 3D-muis en die is gebaseerd op bestaande literatuur.
Deze methode is op het VR-systeem getest. Hiervoor is een eenvoudig programma op het
gebied van chemie geschreven, waarmee het mogelijk is een molecuul op te bouwen uit
losse atomen, het hele molecuul of delen ervan te manipuleren of delen weg te gooien.
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degree in Computing Science.
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Andrea Hin for spending so much ink on every draft version of this thesis that I wrote,
even though she left the department to work for TNO in Soesterberg.

Ronald Pijnacker
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1 Introduction

In the field of virtual reality (VR), one uses the computer to create the illusion of being
immersed inside a real world. There is a number of areas where one could apply this.
One of these areas is obviously entertainment. Another is tele-presence, where a robot is
remotely operated, so it can work in hazardous environments. Numerous kinds of design,
such as architecture, aircraft and car design also benefit from yR. In these design fields
the traditional drawing board is replaced with a computer. The whole design process from
initial design through to prototyping is carried out digitally. Now also the evaluation of
designs can be experienced with computer technology, using virtual worlds. Traffic and
flight simulators can be used as a substitute to (potentially dangerous) training with real
cars or air-plains. One can easily imagine applications in medicine, such as medical training
on a virtual cadaver, ultra-sound imaging or molecular docking for drug synthesis.

Interaction with computers started with command driven interfaces, where commands
were typed on a keyboard. These commands were subsequently processed by some kind of
interpreter. An improvement to this situation were the menu driven interfaces; the menu
selections were however still done using the keyboard. With the introduction of the desktop
mouse, this also changed. This lead to the development of graphical user-interfaces, which
are the standard for performing interaction in current computing systems. Some believe
that with the right level of development, virtual reality and virtual environments will
provide the ultimate means of interacting with computers. Future will tell if this is really
true. We believe that few users will be willing to immerse themselves in a VR system for
normal operation of a computer. For a limited group of applications VR will, however,
provide a necessary extension to ordinary computers.

When one wants to immerse oneself in a virtual environment, one must use a number
of devices. Firstly, an alternative to the computer monitor should be used that enables
stereoscopic viewing. This so-called head-mounted display can either completely shield the
real surroundings and display a completely artificial world, or it can let the surroundings be
visible and overlay an image of virtual objects on it. An alternative to wearing the display
on the head is the BOOM, where the two displays are mounted on a counterbalanced
arm. A big advantage of this is that the user does not have to carry the weight of the
display, so a high-resolution CRT-display can be used, instead of the LCD-displays used
in HMD's. A disadvantage is the limited freedom imposed by the BOOM's arm.

1



2 - 1 Introduction

To be able to interact with a virtual environment a number of different special devices
is available. The best known is without doubt the glove. Other typical input devices in
VR systems are 3-D mice, voice recognition and (the more exotic) haptic devices, that
supply force feedback to further complete the experience.

In the following chapter the virtual reality system that we have used for this study is
described. Chapter 3 discusses some different methods for interacting with objects in a
3-D space. A method that is applicable in our system is also developed in this chapter.
This method is applied in a case study in the field of chemistry. A description of this case
study is given in Chapter 4. In Chapter 5 some conclusions are presented.



2 The virtual reality system

Current virtual reality systems are build out of a number of devices. These devices include
a head-mounted display (HMD), a glove, 3-D mouse or track-ball as input device and some

tracking sensors to follow the users movements. To operate them, a high-performance
graphics workstation is necessary.

In the first quarter of 1996 the department of Computing Science and the Centre for
High Performance Computing at the University of Groningen have purchased a virtual
reality system. This chapter gives an overview of the hardware components this system is
built from. It also discusses WorldToolKit, a virtual reality software library.

2.1 Head-mounted display

One of the goals of virtual reality is to give the user the impression of being immersed inside
the created virtual world. A virtual reality system can be used, e.g. to get an idea of what
a building would look like (architecture) or how objects with extraordinary proportions in

the real world are constructed (e.g. chemical structures or astronomical phenomena). To
create this illusion, many virtual reality systems are equipped with a head-mounted display
(HMD), a device that is placed at short distance in front of the eyes. This device consists
of two screens, one for each eye. On these screens images are displayed, that correspond
to the position and viewing direction of the eyes as they are looking at the scene (see
Fig. 2.1).

When one displays a three-dimensional scene on a two-dimensional screen information
is lost. To regain this information, which might be necessary to estimate depth, for
example, a number of so-called 'cues' — occlusion, fogging, applying shadows — can be
used. A more complicated technique is that of stereoscopic viewing, where two images,
taken from a different angle are positioned in front of the eyes. If the parallax between
the images corresponds to the distance between the eyes, the human brain is capable of
reconstructing some of the 3-D information from these two 2-D images.' This is exactly
what a HMD is used for.

The system in Groningen uses a HMD called VR4, manufactured by Virtual Research
Systems (see Fig. 2.2). Specifications of the VR4 can be found in (VRS 1994).

'This is actually still a topic of extensive research and things are more complicated than discussed here.
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4 2 The virtual reality system

Figure 2.1 (a) Scene with two eyes (E1 and Er) looking at object 0. (b) Resulting images

Figure 2.2 The head-mounted display used in this project: VR4.

E1

(a)

'I Ir
(b)

l and 'r-



2 The virtual reality system 5

2.2 3-D mouse

Another important aspect of a virtual environment is the ability of user interaction. In

most modern systems this is done with a glove that monitors the position of the fingers
with respect to the hand and the overall position and orientation of the hand itself. This
glove is commonly used to operate a virtual image of the hand. Commands are issued by
making gestures, which are interpreted, e.g. by a neural network. In our system, however,
the input device is a 3-D mouse (see Fig. 2.3).

Figure 2.3 The 3-D mouse.

The 3-D mouse (also called flying mouse or flying joystick) is a stick that is held in
the hand. A receiver of the tracking system (see section 2.3) is placed inside it, so the
position and orientation information can be used. Just like a regular desktop mouse, the
3-D mouse has a number of control-buttons (four in our case). These can be used to
issue commands. Note that this is easier than making gestures as is done with a glove.

On top of the 3-D mouse a little knob, called the hat, is attached, which can be
moved from a default position in four directions (up, down, left and right). The position
of the hat is obtained as an analogue signal. This information can be used for example to
establish continuous zooming or rotation.

2.3 Position and orientation tracking

In the previous section we already mentioned the tracking system, which is an essential
part of a virtual reality system. It enables direct response to a change in e.g. the orientation
of the users head, and processing of this new information. It is very important that this
is done with minimal time-delay, also called lag. Firstly, handling the application gets less
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intuitive when a visible reaction to some movement occurs only after some perceptible
time. Secondly, when one uses the head-mounted display, with a large lag, it is very easy
to get motion sick. This should of course be prevented, because no one would be willing
to operate a system in which one gets ill.

The basic part of the Poihemus Fastrak tracking system, of which more information
can be found in (Polhemus 1993), is a stationary transmitter unit. This unit generates
a magnetic field in which up to four remote sensing antennas, called receivers, can be
placed. The position and orientation of these receivers can be computed from the signal
that they receive. The strength of the magnetic field limits the spatial extent in which
one can accurately use the tracking information coming from the receivers to about two
metres from the transmitter. This means that large-scale movements in the virtual world

must be performed in another way.

The tracking system we are working with (see Fig. 2.4) is equipped with two of these
receivers. One is placed on top of the head-mounted display and can thus be used to
monitor the users head position and orientation. The other is fixed inside the 3-D mouse,
so that all movements of the mouse can also be used.

Figure 2.4 The Polhemus Fastrak tracking system, consisting of the transmitter unit,
some receivers and the control box.

2.4 Graphics hardware

The last part is the workstation that operates all these devices. We are using a Silicon
Graphics' Onyx workstation for this. This workstation is capable of rendering 600.000
polygons per second, using two 200 MHz R4400 processors and a Reality Engine2 graphics
subsystem equipped with two RM4 boards. The workstation has 128 Mb internal and 4.3
Gb external memory.

For the HMD two images must be generated. To display these images in the two
screens of the HMD the system is extended with a Multi-Channel Option (MCO, see also
SGI). This system reads the frame-buffer and splits it into two parts, both with a resolution
of 640x480 pixels, which are then displayed in the HMD at a resolution of about 244x230
pixels. This is done at 30 Hz (interlaced), which is about the minimum frame-rate that is
acceptable.
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2.5 Software

Programming a virtual reality system is a complex task. It involves a number of unrelated
fields, which must be combined into a single program, preferably in a well-organised way.
These fields include:

Simulation Having objects behave or react in a certain way to input by the user is a field
known as simulation. Objects must react to the various input commands the user
can give — such as mouse or keyboard input, but also tracking information — as
well as perform some tasks of their own (one could think of the bouncing of a ball).

Playing a sound effect as a reaction to an action is for example one of the things
that is handled in the simulation.

3-D graphics The simulation acts on the internal structures of the underlying model of
the virtual world. Creating images of such a model from a certain viewpoint, using
techniques like Z-buffering, texture mapping and shading, with the right parallax
when using stereoscopic viewing, requires knowledge from the field of computer
graphics.

User-interface When one is programming a 'desktop virtual world' (i.e. a virtual world in
a window, also called 'fish tank virtual reality', see (Ware, Arthur & Booth 1993))
the user-interface is an important aspect of the design of the program. In a way, a
virtual environment can be considered as a very advanced user-interface.

Modelling Since the objects in a common virtual world are not trivial, it should be possible
to build such an object inside the program. The program should at least be capable
of loading object descriptions created by other 3-D modellers.

Problem domain Virtual reality is applied in a lot of fields that have no intrinsic relation
with yR. These fields include architecture, chemistry, scientific visualisation, enter-
tainment, etc. Virtual reality is merely used as an advanced interface to get a better
look at the problem or just for fun.

It is very difficult to actually deal with all (and possibly more) fields at one time. Therefore,
it is advisable to implement the techniques of certain fields into a software library and use
them a number of times.

One of these libraries is the WorldToolKit, developed by a company called Sense8.
WorldToolKit is a software library of over 900 C-functions in which the techniques from
the fields of simulation, 3-D graphics, modelling, user-interfacing etc. are implemented.
The functions in the library are grouped into classes and are object-oriented in their
naming convention. Classes include for example the Universe, in which the simulation is
handled, Geometries, Sensors, Lights and others. There is also a C++ wrapper library
which implements a (object-oriented) C++ binding of the functions.2 Information about
the WorldToolKit can be found in (Sense8 RM 1996), (Sense8 C++ 1996) and (Sense8
HG 1996). In Appendix. B an introduction in operating the VR system is given, which
includes an introduction in WTK.

2This library at this point is still a beta-version, but most of it works fine.
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2.5.1 The simulation loop

The heart of a WTK application is the simulation loop. In this loop a number of actions

are performed. These are (in sequence):

1. Read new sensory input.

2. Execute the 'action function'.

3. Objects that are linked to sensors are updated according to the new sensory input.

4. Objects perform a task.

5. The virtual world is rendered.

It is also possible to record the actions that are performed in the simulation and play these

back at a later time. As one can see, a lot of aspects of the simulation and almost all

of the graphics have been taken out of the hands of the programmer. The functionality

offered by this library makes programming a virtual reality application much easier.

2.5.2 The scene graph

Creating a virtual world in WTK is done by assembling the various parts that have to
be rendered in a structure that is called the scene graph. This graph is a hierarchal
arrangement of nodes which describe the scene that is to be rendered. This graph is
rendered in depth-first order. A number of different types of nodes are available:

Geometry Nodes of this type are the visible objects on the display.

Transformation These nodes affect the position/orientation of the nodes that are pro-

cessed after this node.

Separator Separator nodes separate the position/orientation information of their children

from the rest of the scene graph.

Group When one wants to treat a number of geometry nodes as one geometry, one can
group them by adding them as children of a group node.

Switch This node type makes it possible to render only one of a number of children at

one time. Which one of the children is rendered can be controlled at run-time.

Light Light nodes control the light intensity of the scene in the part of the scene graph

where this node is found.

There are also some other types of nodes available, but these are not important for this

project.
By structuring the model of the virtual world in this way it is possible to have an

intuitive understanding of the structure of the model and still being able to use the

graphics hardware is the most efficient way.



3 Interaction in a virtual environment

In the previous chapter it has already been stated that the ability to interact with ob-
jects in a virtual world is an important aspect of virtual reality systems. Due to the
design of the virtual world, this interaction is by nature three-dimensional. (Actually it
is six-dimensional, since it involves positioning with three degrees of freedom, but also
orientation of the objects with three degrees of freedom.) Classical input devices like a
mouse, a light pen or a joystick are restricted, however, to a two-dimensional plane.

This chapter discusses some methods for performing 3-D interaction with a classical
2-D input device. We then present some three- or higher-dimensional input devices, which
have been developed especially for three-dimensional interaction. This makes them very
suitable for application in virtual reality.

To conclude this chapter, some remarks are made about issues found in literature that
are important for creating a intuitive and convincing virtual environment.

3.1 Mouse-based interaction

The mouse is one of the mostly used input devices for contemporary computers. It is
placed on a flat surface, like a desk, and moved across it to operate a cursor that is
displayed on the computer screen. This provides the user with two degrees of freedom
of movement. One, two or three buttons are fixed on it that can be used to trigger
actions. For most of the programs running on graphical workstations the mouse provides
an accurate selecting, dragging and pointing facility.

An important point that can be made here is that users can relax their arm while
operating a mouse. This point has turned out to be a crucial one. It may explain why
input devices like a light pen, that require the user to keep an arm stretched out, have
not received great popularity.

Using a 2-D mouse to manipulate 3-D objects in a 3-D space is not at all straight-
forward. A number of techniques have been developed to augment the three-dimensional
rotation and translation of objects into actions that can be performed using a two-
dimensional mouse.

9



10 3 Interaction in a virtual environment

3.1.1 Virtual controllers

Chen, Mountford & Sellen (1988) have investigated ways of using the mouse for performing

translation, rotation and sizing operations on 3-D objects. In their article direct rotation

using a mouse is discussed. They describe and evaluate four 'virtual controllers'. For the

evaluation of these controllers they perform rotation operations on a simple model of a

house, which is displayed in Fig. 3.1(a).1 All rotations are performed with respect to the

user's frame of reference, depicted in Fig. 3.1(b).

x

___________________________

z

(a) (b)

Figure 3.1 (a) Object that is used to evaluate the controllers. (b) Coordinate system

used in the 'virtual controller' study.

Graphical Sliders

The first controller presented is the Graphical Sliders Controller (see Fig. 3.2(a)). This
controller consists of three sliders, one for each axis. These sliders are placed horizontally

below the object to be rotated. One can rotate the object by depressing the mouse button

inside the slider that corresponds to the axis around which one wants to rotate, then

moving the mouse horizontally and subsequently releasing the mouse button. The amount

of rotation is proportional to the amount of horizontal translation of the mouse while
keeping the mouse button depressed. A full sweep across one of the sliders corresponds

to 180 degrees of rotation around the corresponding axis.

This controller is easy to understand, but one can only rotate the object around one

axis at one time. It is included in the study by Chen et al. mainly as reference point for
performance comparison.

Overlapping Sliders

The second controller is the Overlapping Sliders Controller (see Fig. 3.2(b)). In this
controller the x-, y- and z-axes are represented by a vertical, horizontal and circular slider,

'The figures presented are exactly as in the article (Chen et at. 1988).

y
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xI I

yl Izt I

(a) Graphical sliders (b) Overlapping sliders

(c) Continuous .xy + z (d) Virtual sphere

Figure 3.2 Screen displays of the four virtual controllers with object in centre.
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respectively (see Fig. 3.3(a)). These sliders are overlapped and simplified to look like a
nine-square grid (see Fig. 3.3(b)), that is superimposed on the object to be rotated. One
can rotate the object around its vertical axis (y-axis) by moving the mouse horizontally
inside the middle row, with the mouse button depressed. Rotation around the x-axis is
performed in the same way with the middle column. Rotation around the z-axis is done by
making a circular movement in the outside squares. These movements are also displayed
in Fig. 3.3(b). Movements other than these three are ignored.

With this controller, it is still only possible to rotate around one axis at a time. The
difference with the conventional sliders, however, is that users feel they are more directly
manipulating the object.

—,T
(a) (b)

Figure 3.3 (a) The three overlapped sliders. (b) Recognised user movements in the
overlapping sliders controller.

Continuous xy with Additional z

When one takes the idea of the overlapping sliders controller one step further, one comes
to the third controller. This is the Continuous xy with Additional z Controller (see
Fig. 3.2(c)). When the user depresses the mouse button inside the circle, left-and-right
movement and up-and-down movement of the mouse corresponds to rotation around the

y-axis and the x-axis respectively. Moving the mouse diagonally will result in a combination
of both rotations. If the mouse button is depressed while the mouse cursor is outside the
circle, the user can rotate the object about the z-axis, by going around the circle.

In this way either arbitrary rotation in the xy-ptane, or exact rotation about the z-axis
is possible. This controller could therefore be described as a 2+1-D controller.

Virtual Sphere

The last of the four presented controllers, called the Virtual Sphere Controller, is depicted
in Fig. 3.2(d). Although the controller has the same appearance as the previous one, the
idea behind it is different. In this controller the object is thought to be fixed inside a glass
sphere. Rotating the object is now a question of rolling the sphere (and therefore the
object) with the mouse. Up-and-down and left-and-right movement at the centre of the
circle corresponds to rotation around the x-axis and the y-axis, respectively. Movement
along the edge of the circle is equivalent to rolling the sphere at the edge and produces
rotation about z.
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In the Continuous xy with Additional z Controller the mouse cursor must be outside
the circle for rotation around the z-axis and inside it for rotation about the other two axes.
With the Virtual Sphere Controller it is possible to rotate around all three axes without
having to move the mouse outside the sphere. The report by Chen et al. states that this
makes the Virtual Sphere Controller the most intuitive of the four controllers to use.

Although the presented controllers give a nice way of rotating a 3-0 object in a 3-D
space, the question rises of how much value these controllers have. Beside rotation, the
operations translation and scaling are very important for most applications. One could
implement these by using one button for the rotation operation and other buttons for
translation and scaling. A similar model for translating objects in a 3-D space should then
be created.

As second problem is that in most applications rotation of one object is not enough.
When one wants to rotate a number of objects inside a scene, one has the problem of
how to differentiate between rotating the entire scene, one of the individual objects, or a
number of objects with respect to the rest of the scene.

One final drawback of this method is that superimposing the controller on the object
to be rotated, is possible in some applications — provided that the controller is transparent
enough to keep a good view of the object — but for some applications it might not be
desirable.

3.1.2 Applying narrative handles to objects

Another study, performed by Houde (1992), considers both translation and rotation of
objects. A user interacts with a three-dimensional scene of a living room using a one
button mouse. When the user selects one of the objects inside the room (e.g. a chair,
a lamp or a picture), a bounding box appears around this object. To indicate what the
possible operations on the object are, a number of handles are placed on specific places
on the bounding box, with a hand attached to it that indicates the operation that is
performed when selecting it. In the lower corners of its side-planes the bounding box has
four of these handles. They can be used to rotate the object about its y-axis. On the
top-plane of the box another handle is placed, with an image of a grasping hand attached
to it. This handle can be used to translate the object perpendicular to the xz-plane (i.e.
along the y-axis). Sliding the object in the xz-plane is accomplished by depressing the
mouse button somewhere in the bounding box, except on the handles. Originally there
were also handles for this, but users tended to ignore them, so they were removed.

The interaction method described in this study has obvious drawbacks. Although it pro-
vides a very nice way to rotate objects that have a natural 'upright position' like chairs and
lamps, other rotations (e.g. about the x- or z-axis) are not possible. One of the outcomes
of the study was, however, that this actually facilitated interaction with the environment.
Firstly, because the objects were not supposed to be rotated in that way — one of the
test users said: 1 don't mind not being able to rotate the chair [around the x- or z-axis],

because it is a chair."; secondly, it facilitated interaction because of the reduced number
of degrees of freedom. This argues for manipulating objects in a 3-D world by making
repetitive operations with not too many degrees of freedom.
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3.2 Interaction using a 3-D mouse

As we have seen there is a number of ways to use the mouse for manipulating objects in a
three-dimensional space. They restrict interaction to a sequence of operations with fewer
degrees of freedom. They also require mode shifts in order to switch between rotation
and translation operations. To improve on this, tracking technology has been developed

that addresses this problem more efficiently. One of the devices in which this technology

is used, is what we call the 3-D mouse.
A 3-D mouse can be seen as a direct extension of a conventional desktop mouse

to three dimensions.2 Whereas the conventional mouse is placed on a flat surface and
moved across it to specify a particular point, with the 3-D mouse this is done by holding

the mouse at a specific point in the air. A receiver of the tracking system is fixed inside

the 3-D mouse. With it the position and orientation of the 3-D mouse can be calculated

(see also Section 2.2). A 3-D mouse has a number of buttons, just like the regular mouse,
which can be used to trigger actions like selecting or picking up an object.

3.2.1 A 3-D mouse with a 2-D screen

A study that investigates the effectiveness of a 3-D mouse is done by Ware & Jessome
(1988). They tested a 3-D mouse, which they call a bat, by manipulating a hierarchical
scene of objects that is displayed on a standard computer screen. The whole scene can be

manipulated by selecting the top-most object of the hierarchy, and translating or rotating
it. When another object is selected, all objects in the subtree starting at that object are
moved with respect to the rest of the objects in the scene.

On the screen a cursor is displayed. Movement of the bat in the ty-plane causes
this cursor to move correspondingly on the screen — one could think of the xy-plane as
a vertical version of the surface on which a conventional mouse is moved. Selecting an
object is now done by moving the cursor over it on the computer screen and pressing the

(only) button.

Image workspace
—i---
-U--

Figure 3.4 Screen layout used for evaluating the bat.

The user is allowed to manipulate the object in the scene in a number of interaction
modes, which are selected from a fixed menu (see Fig. 3.4). These are:

• Full 6-D interaction consisting of all translations and all rotations.

2Again, this should actually be six dimensions.
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• 3-D interaction consisting of all translations.

• 1-D interaction consisting of translation along one of the three axes.

• 3-D interaction consisting of all rotations.

• 1-D interaction consisting of rotation around one of the three axes.

The full 6-D interaction mode is reported to be the most useful for initial object placement,
while some subset of the manipulations is used for precise placement.

As mentioned earlier, displaying a three-dimensional scene on a two-dimensional display
causes loss of information. To regain some of this information, three special manipulation
modes are suggested. These are:

Auto-rotate In this mode, the three-dimensional scene that is projected on the two-
dimensional screen rotates about the vertical axis, oscillating through 900. By doing
this, the displayed scene strongly appears three-dimensional. This phenomenon is
called kinetic depth. Although the scene is rotating, one can still perform movement
operations. Ware & Jessome state that approximate object placement is possible
in this mode. For precise placement it is however necessary to stop the scene from
rotating. This mode is most useful for having a relaxed look at the scene.

Ninety-degree flip When an object has a correct xy-placement, the user can flip the
scene over 900 and then perform xz-placement. So, in this way placing an object in
a 3-D space is done by two times placing it on a 2-D plane. This mode is stated to
be the most effective.

Dual mode One way to visualise the whole scene is by picking it up using the bat and
rotating it freely. In dual mode, the rotational movement of the bat is used for this.
Translational movement is at the same time used for object placement. This mode,
however, is reported to be very confusing, partly because rotating the bat inevitably
causes unintended translation.

The conclusions of this study are that object placement using the bat is a trivial
task, which is quickly learned. Ware & Jessome adjudge this fact mostly to the kinetic
correspondence between hand and object movement. Addressing the problem of arm
fatigue, it is stated that this is not a problem when using the bat, because it operates on
relative motion. It can therefore be held relaxed at waist level, or one can rest one's arm
on the arm of a chair during interaction.

3.2.2 A 3-D mouse with a '3-D screen'

In the previously discussed study, the displaying of the scene is done on a standard com-
puter screen. The reason for this is that at the time of writing (1988) there were no
powerful enough graphics workstations for providing the necessary quality of images at
the required speed for an immersive system. Also, Ware & Jessome believed "that for
most applications there is little point in placing the user['s limbs] in the graphics environ-
ment." This decision requires that they devise a way for specifying different viewpoints for
letting the user watch the scene from different angles. This requirement is conveniently
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circumvented by letting the user rotate the entire scene — by selecting the top-most
object and rotating it — instead of specifying a new viewpoint.

In the years that have passed since, the computational power of computers has in-

creased significantly. The probtem of not being able to create realistic images fast enough

no longer exists. Also, it is not possible to require of 3-D applications that they al-
ways structure their objects hierarchically. We would therefore like to discuss a method
of manipulating objects in a 3-D space using a 3-D mouse, displaying the scene in a
head-mounted display, with stereo vision.

In the discussed study, the 3-D mouse (or bat) is actually used as a 2-D input device as
long as no selection is made. A cursor is moved over the computer screen in correspondence

to movements of the bat in the xy-plane. This means that when an object is completely

occluded by (an)other object(s) — i.e. it lies behind other objects when looking along
the z-axis — the whole scene has to be rotated before that object can be selected. Once

a selection is made, manipulating the object can only be done for approximate object
placement (in Auto-rotate mode), or manipulation is done by consecutive manipulations
in a 2-D plane (in Ninety-degree flip mode). The method we are suggesting uses not just
one tracking sensor, but two: one for the 3-D mouse, and the other to track the user's

head movements.

(a) (b)

Figure 3.5 Two views of the scene with different viewing directions. (a) Viewing direction
is along the z-axis. (b) Viewing direction not along one of the axes.

The scene is initially displayed as in Ware & Jessome (1988). The viewpoint and
position of the cursor are arranged in such a way that selecting an object is done by
moving the cursor over the object (see Fig. 3.5(a)). This is still done by moving the 3-D
mouse in the xy-plane of its own frame of reference. Instead of keeping the viewpoint
stationary — which inevitably means having to rotate the entire scene now and then —
we let both the position of the viewpoint and the viewing direction be dependent on the
tracker that is fixed on the user's head. One could now move one's head in such a way
that the scene is displayed in the HMD as shown in Fig. 3.5(b).

-
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z

(a) (b)

Figure 3.6 Same scene as in Fig. 3.5, seen from above. (a) The cursor lies 'over' the
object, so the broken line stops at the intersection. (b) The cursor does not
lie 'over' the object, so the broken line extends toward infinity.

This method seems to solve the problem of specifying the viewpoint, but a new problem
arises. Provided that the various parameters involved in using stereo vision are set correctly,
the user gets a fairly good impression of depth in the HMD. It can be very difficult, however,
to see if the cursor lies 'over' an object or not, e.g. when the z-axis in the viewpoint's
frame of reference is perpendicular to the z-axis in the frame of reference of the 3-D
mouse. This is illustrated in Fig. 3.6. To solve this problem, the broken line in the figures
will actually be present in the virtual world as a pointing ray. If the cursor intersects an
object, the ray stops there. If it does not intersect any object, the ray extends to (virtual)
infinity. This provides a good way of determining whether or not the cursor points to the
object.

Now that we have extended the cursor to have a pointing ray, we can drop the re-
striction of using the 3-D mouse as a 2-D input device before having made a selection.
In the study by Ware & Jessome, the z-axis of the frame of reference of the 3-D mouse
and that of the viewpoint are aligned. This means that, when we move the 3-D mouse
along the z-axis, the change in depth is hard to see, since in perspective projection only
the scale of the cursor changes. This is no longer true when both z-axes are not aligned,
which is possible in our approach by rotating one's head but not the 3D mouse. Instead
of rotating one's head one could also rotate the 3-D mouse slightly, so that the pointing
ray becomes visible. Because the cursor now has this pointing ray, one can judge visually
which object one is about to select. In this way, one could select an object 'from a dis-
tance' by pointing the ray at it, picking it up, moving it for some distance by rotating the
3-D mouse, and releasing it. As one can see, moving an object can thus be done using
only wrist movements. During this time the user can relax his arm on the arm of a chair.
Therefore the problem of arm fatigue is absent in this method.

We have seen that all movements of the 3-D mouse are directly translated into corre-
sponding movements of the 3-D cursor in the virtual world. Because we have succeeded
in applying a kinetic correspondence in all six dimensions between mouse and cursor, we

z
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expect that this method will prove to be a very intuitive way of interacting with the virtual

world. Another approach would be to have the discussed correspondence between mouse

and cursor as long as no object is selected, but to transfer the correspondence from the

cursor to the selected object when a selection is made. The movements of the 3-D mouse

are then directly translated into movements of the object. Note that this is the way it is

done in the study by Ware & Jessome. Having a correspondence between the 3-D mouse

and the selected object, instead of the mouse and the cursor, basically comes down to

moving the centre point for rotation from the centre point of the cursor to the centre

point of the object. Approximately the same thing, however, can be done by selecting the

object with the cursor near by, so that the difference between both centre points is almost

negligible.
In the discussed literature, one important aspect of the presented methods is the fact

that in most cases reducing the number of degrees of freedom improves precise placement

of objects. One of the ways of using our method is manipulating an object from a distance.

This, however, disables the possibility of very precise manipulation. The other way is that

of manipulating an object, selected from near by, which requires the user to raise an arm.

An inevitable consequence of this is that the arm starts trembling, thus disabling precise

manipulation. We think that it is therefore necessary to introduce some modes in which

the user can perform exact object placement. In these modes the possible manipulations

are restricted to either translation in a 2-D plane or rotation around the two axes of this
plane. The specification of the plane will be dealt with later in this report in Section 4.2.

3.3 Interaction using a glove

When people think of virtual reality, they generally seem to imagine someone wearing a

head-mounted display, a body suit and using one or two gloves as input device, seeing

and feeling the environment as if it is real. This view is very exaggerated, probably due

to misleading information given by the media, and all kinds of TV-series. The glove

is, however, probably the mostly used input device in present VR systems. Glove-like

input devices generally consist of at least a 6-D tracking sensor to measure the overall

position and orientation of the user's hand. Additionally the position of the user's fingers

is measured. The way in which this is done is still a growing field of technology, so

different gloves use different ways. When taking one degree of freedom for every joint

in every finger, one comes to a total of 6 + 5 * 3 = 21 degrees of freedom. However,

since the joints are not really independent — it is very hard to move the upper two joints
independently — we could reduce this number to something like 16. As one can see, this

is still a very large number, and in current applications probably too large.

In Brijs (1992) the glove is used as an input device to model objects in a virtual
environment. Different modes of interaction are performed by selecting one of a number

of tools, e.g. a pair of scissors, a stapler, etc., that is then used to perform an operation

on an object. A tool is selected by bringing an image of the user's hand in the virtual
world sufficiently close to the representation of that tool. If it is close enough, a sound
identifying the tool is played. By making a fist with the hand, the tool is picked up from

the tool pallet, which can then be moved around. Opening the hand near the tool pallet

causes the tool to be put back onto it. Although this seem natural movements when
comparing them to a real world situation, it requires that the user physically moves the
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hand towards the tool pallet and that he makes a fist. This is more complicated than e.g.
pointing a cursor at the tool and pressing a button, both for the user, and with respect
to the required software, that must recognise the action of making a fist. The user can
operate the tool on an object, by first selecting the tool as described. When the hand is
moved far enough from the pallet, the user can open his hand without 'losing' the tool.
When he places the hand, holding the tool, close to the object and again makes a fist,
the operation represented by the tool is performed on the object. We can observe two
things here. The first is that the operation is started by making a fist. In contrast to
picking up a tool, this is not according to how this is done in reality and it is therefore not
obvious that this is an intuitive action. The second remark is, that the user is required
to physically move his arm from the tool pallet to the object, in the mean time making
a fist, or opening his hand. One can imagine that doing this over an extended period of
time will become very fatiguing.

Making a fist is an example of something that is generally accepted as the best way
to issue commands with a glove-like device, namely the issuing of commands by making
gestures. In Bryson & Levit (1991), probably one of the best known projects in which VR is
used for scientific visualisation, a VPL Data-glove is used to interact with the environment.
In this project the interaction consists of moving (rakes of) seed points to new positions,
placing new seed points or deleting existing ones. The way to issue these commands is
also done by making gestures.

In our opinion, using gestures as the basic way of interaction with the environment has
a number of drawbacks. Firstly, a way must be devised to recognise the various gestures
from the input signals coming from the glove. This is mostly done using neural networks.
A consequence of this is that it takes some time to compute the outcome of the network,
which could increase the system lag, thus reducing intuitiveness. Secondly, the glove has
to be recalibrated when it is used by different users. Lastly, and maybe most importantly,
the users have to learn a number of different gestures, that might or might not be easy
to reproduce. For users that are accustomed to operating a mouse, making gestures is
clearly more complicated than pressing one of the buttons of a 3-D mouse.

3.4 Advanced input devices

To improve on the use of the glove with gestures, one should try to design a method
of interaction that is as natural as possible, e.g. picking up an object by grabbing it at
an appropriate place, such as a handle. Efforts going into this direction are reported in
Figueiredo, Böhm & Teixeira (1993). For this to become really natural, however, one
should be able to feel if one is touching an object or not. Devices that are capable of
displaying force feedback are called haptic displays or haptic devices. One well known
example is the Grope project (Brooks, Ouh-Young, Batter & Kilpatrick 1990). In this
project a haptic display called Argonne Remote Manipulator (ARM, see Fig. 3.7) is used
for examining the effectiveness of force feedback in a 3-D application. The operations in
the program used for testing come from the field of molecular docking. Because these
devices are only sporadically available, the best way of interacting in an virtual environment
with these devices is not clear. One could imagine that techniques that are useful for the
3-D mouse are applicable for the ARM too. The question remains, however, which forces
are to be displayed, and how this should be done. Because of these open issues, and
because these devices are still very new, we will not discuss them further.
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Figure 3.7 The Argonne Remote Manipulator (ARM) used in the Grope project at the

University of North Carolina.

3.5 Design issues in Virtual Environments

As we can see from the discussed studies, creating a method of interaction for virtual
worlds is not a simple task. A lot of research should and will be done to improve the
existing methods. Although this chapter is about interaction methods, a few words must
be said about issues that may help in designing an easy to learn and easy to use virtual
environment.

3.5.1 Constraints

As remarked several times, one aspect in making interaction easier is that of applying
constraints. This can be applied even stronger than we discussed before. As a first
example, it is important that a virtual environment has boundaries that define the space
in which the user can move around. Inside this space the user is able to move freely, but
he cannot go outside it. Although this might seem trivial, in Bowman & Hodges (1995)
it is reported that in many VR applications they are not defined, leading to confusion or
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even frustration because the user flies through e.g. the floor, and thus outside the work
environment altogether.

A second way in which interaction can be made easier, is by constrained object ma-
nipulation, as we have seen already. Bowman & Hodges report that providing multiple
— and thus redundant — methods for doing the same with different levels of constraint
is helpful. The user can then choose which one is the best at a certain moment, using
movement in all degrees of freedom for easy approximate manipulation, and movement in
only few degrees of freedom for precise manipulation.

Constraints can also be applied to the way in which various tools or interaction modes
are selected. Bowman & Hodges argue that pull down menus that 'stick' to the user's field
of view, are a very good way to select tools or modes with. Firstly, pull down menus are
two-dimensional, which means fewer degrees of freedom. Secondly, they give an overview
of all possible commands that can be issued in the program. They also recommend
combining pull down menus with voice recognition. Where pull down menus are not a
direct way to issue commands, giving a spoken command is. It is however not a good
idea to use only voice recognition as input device. The number of degrees of freedom in
speech is very large, and it requires that the user has a vocabulary of valid commands.
As we saw when we were looking at glove-like devices, both can form a problem. We can
do something about the first, by ordering the valid commands in a menu structure, from
which the user can pick commands. After some time the user will know some commands
by heart, so he can then issue them directly by speaking. This automatically reduces the
second problem somewhat, since the only voice commands that are accepted are the ones
that are in the menus.

3.5.2 Environment

A point made by Brijs (1992) that agrees with placing boundaries in the environment, is
that it is important to actually have an environment in which one performs the interaction.
This provides the user with some orientation cues, that prevent him from getting lost,
something that can easily happen in a badly designed virtual world. Applying textures
to large planes in this environment facilitates estimating depth, especially when the user
moves around, because in this way he can experience motion parallax, which provides a
very strong depth cue.

3.5.3 Feedback

Because there are no natural constraints like gravity or solid objects in a virtual world,
anything is possible. It is the responsibility of the designer to create these as he thinks
is necessary. The users that are going to operate the program also have to know what is
allowed and what is not. It is therefore very important, that whenever the state of the
program changes, the user gets feedback indicating what the change was.
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4 Molecular modelling

In the previous chapter, we have studied various ways of manipulating objects in a 3-D
virtual environment. Based on this, we have developed a method of interacting in such an
environment using a 3-D mouse as input device. This method is applied in a case study in
the area chemistry. In this chapter we will describe the implementation of this case study
on the virtual reality system.

4.1 Concepts of the design

Since the molecules that are examined in the field of chemistry are three-dimensional
structures, this is one of the areas where virtual reality is commonly used. We will develop
an application which is directed towards Molecular Modelling. In this application the laws
of chemistry will not (yet) be respected, but nevertheless we will use words like atom,
bond and molecule. For now, this is merely to facilitate the discussion.

4.1.1 Problem domain

We will now present the requirements that are placed on the program. First we will see how
the various structures in the problem domain are represented in the virtual environment,
and what the possible manipulations on these representations are.

Atoms

The application we are going to develop, consists of creating and adapting a virtual model
(which will also be called molecule). This model is built out of building blocks; these
are spheres which represent the atoms. The spheres have a colour and radius which is
characteristic of the type of the atom they represent (one can think of hydrogen, carbon,
etc.).

The operations that the user can perform on the atoms are:

• Creating a new atom of a specified type.

• Deleting an existing atom.

• Moving an atom, i.e. translating an atom inside the virtual environment.

23
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Bonds

In the 'real world of chemistry', atoms that are within a certain range attract each other.
As a result the atoms may form a bound state, called a bond. Such a bond between two
atoms will exist in the application if some attraction-relation is satisfied. This relation is
dependent on the type of the atoms and the distance between them. It will be graphically
displayed with a cylinder, drawn from the centre of one atom to the centre of the other
atom. The colour and the radius of the cylinder represent the 'type' of the bond and its
strength, respectively.

When one is moving an atom close to another atom, the representation of the bond
is automatically created as the attraction-relation is satisfied. If the atom is moved suf-
ficiently far away, thus violating the attraction-relation, the representation of the bond is
removed.

Moving an atom away from or closer to another atom has effect on the strength of
the bond. Since the radius of the cylinder represents the strength of the bond, this also
has effect on the size of the radius. The radius of the cylinder will be updated in real-time
to create visual feedback for the position of the atom and the distance between the atom
and the other atoms.

Creating and deleting bonds is automatically done by the program. This means that
there are no user-handled operations to do this.

The molecule

Aside from adding and deleting atoms to and from the model of the molecule, which is
done by creating new atoms and moving them toward the model or by moving an atom
away from the model, respectively, it is possible to manipulate the entire model.

The following operations are possible:

• Making a copy of the molecule.

• Deleting the molecule.

• Moving the molecule, i.e. translating as well as rotating it inside the virtual environ-
ment.

• Scaling the molecule.

When one is moving the molecule, the structure of the molecule, i.e. the distances between
the atoms, remains the same.

Groups

It is possible to select a number of atoms and treat them as a unit. This is called a group.
Atoms that are to form the group are selected in such a way that there is only one bond
connecting the group to the rest of the molecule. This presupposes that the molecule has
a tree structure.

After a group of atoms has been selected, the following operations are possible:

• Copying the group.
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• Deleting the group.

• Moving the group.

When one is moving the group, the atoms inside this group are moved with respect to the
atoms outside the group. Any existing bonds between the group atoms and external atoms
will be continuously updated to reflect changes in the bond strength and, if necessary,
bonds are removed or added.

4.1.2 Virtual environment

In addition to requirements on the objects inside the environment, we also have require-
ments on the environment itself.

Environment

One of the common problems people experience when they are moving inside a virtual
environment is that they tend to 'get lost'. Brijs (1992) has reported that it is therefore
important to create a background environment in which one is situated. This environ-
ment should have textures applied to large planes, which facilitates estimating depth and
provides cues for rotational motion. Adding some objects to the environment gives one
the possibility of orienting oneself inside the environment. One does not have to be able
to interact with this environment, it should just be present.

In the current application the environment consists of the following elements:

• A room in which the user is situated. The room is made out of a floor, four walls
and a ceiling, which all have an appropriate texture applied to it. It is not possible

to exit from this room.

• A working table. The model of the molecule is placed above this table. Since there
is no gravity in the virtual world this is not necessary, but the table provides a strong
orientation cue and also an extra depth cue for the structure of the molecule due to
its texture.

There are also some objects in the environment which are not interactive in the sense that
one can move them, but in the sense that they provide a means of interacting with the

model. They are:

• A tool pallet. This is the place where the tools can be found.

• Some trash cans. One can use these to delete (parts of) models. Moving an object
into a trash can and putting it down there causes the object to be deleted from the
environment.

Tools

In Brijs (1992) the different operations are selected by picking a tool from a tool pallet,

which is then held in the virtual hand. This tool represents the action that is going to take

place. In the current program, this approach would not be completely satisfactory, because



26 4 Molecular modelling

the operations (selecting, creating/copying, moving and scaling) need to be performed on

either one atom, a group of atoms or the whole molecule. Thus, one also has to indicate

on which one of these three 'units' the operation must be performed. To do this, there
exists the notion of current unit of operation, which is one of atom, group or molecule.

One can change the current unit by selecting it from a pop-up menu.
A number of modes now exists, represented by the following tools:

• Moving mode: the tool that represents this mode is a three-dimensional cross. When

a unit of operation is selected, one changes automatically into moving mode.

• Copying/moving mode: the tool that represents this mode is an augmented cross.
When a unit is selected in this mode, a copy of this unit is made which is then
moved as in the moving mode.

• Scaling mode: this mode is only possible for the entire molecule and is represented

by a balloon.

• Unit-changing mode: this mode changes the current unit of operation. This is done
by using a pop-up menu with three possible choices: Atom, Group and Molecule.

• Group defining mode: defining a number of atoms as a group is done in this mode.

The three-dimensional cursor

Interaction in the virtual world is done using a 3-D mouse as input device. To reflect the
position of the 3-D mouse and the direction in which it is oriented, a cursor is visible inside

the environment. Selection is done via 'tele operation', e.g. when one issues a command

to pick up an atom, a virtual ray is shot from the centre of the cursor in the direction
the cursor is pointing to. The first object that this ray intersects is then selected (if it is
selectable). This method is explained in more detail in section 3.2.2.

Because it is rather difficult to estimate the precise direction from the orientation of
the cursor only, the ray that will be shot to select an object is constantly visible as a (three-

dimensional) line. The ray emanates from the cursor, and stops at the first intersection
with either an object or the environment.

4.2 Specification of the interaction

Now that we know what the various functional parts of the virtual world are, we can
specify the way in which the 3-D mouse is used to perform interaction with the virtual
world.

4.2.1 Selecting the tools

On the tool pallet there are five tools. When the pointing ray intersects one of the
moving, copying or scaling tools and the selection button is depressed, the tool (and
thus the corresponding mode) is selected. To reflect this, the cursor is changed into the
three-dimensional icon representing this mode. In Fig. 4.1 a finite state machine (F.S.M.)
illustrating this is presented. For an explanation of the notation used in the F.S.M.'s, see
Appendix. A.
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io/ao

S Ray on tool; no tool is selected
s Tool is selected
io Depressing and releasing selection button
00 Cursor is changed

Figure 4.1 F.S.M. for selecting a tool

4.2.2 Applying the tools

Once a tool is selected, the operation corresponding to that tool can be applied to either
the atom, a group of atoms or the whole molecule (depending on the current mode of
operation, see section 4.2.3). Applying an operation to an object is done in the same way
as selecting a tool, by navigating the ray emerging from the cursor so that it intersects
the object, and subsequently pressing the selection button.

The moving, copying and scaling tools are operated as follows.

Moving tool

After depressing the selection button, the movements of the input device (3-D mouse)
are connected to the object; this means that when one is moving the mouse in a certain
direction, the selected object moves accordingly inside the virtual world. Changes in
orientation of the mouse cause the object to be rotated accordingly. Since the hand has
limited freedom, it is also possible to rotate objects with a 'button' which is called the hat
(see section 2.2). For very accurate positioning the hat is very effective.

After pressing the top button of the mouse, moving the hat left or right causes the
object to rotate continuously around the y-axis (in the WTK axes system). Moving the
hat up or down causes rotation around the z-axis. In this way precise rotation is possible,
without having to break one's wrist. Exiting 'rotation mode' is done by pressing the top
button a second time, or by pressing the bottom button. While using the hat in this way,
movements of the mouse have no effect on the position of the selected unit.

To position an object accurately, the middle button is pressed. Just as in rotation
mode, movements of the mouse have no effect. Moving the hat up or down causes
translational movement along the y-axis. Moving the hat left or right causes the object
to be moved in the xz-plane, perpendicular to the direction ray of the 3-D mouse. Precise
positioning of objects, not interfered by vibrations of the hand is thus possible.

Deleting the molecule or a part of the molecule is also possible. This is done by
selecting the part that has to be thrown away and moving it toward one of the trash
cans that can be found within the environment. When the object comes within a certain
distance from these trash cans (for example, such that their bounding boxes intersect) the
object is coloured with a warning colour to indicate that one is about to throw it away.
Releasing the selection button while the part is coloured in this way causes it to be deleted
from the environment.
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A finite state machine for the moving tool can be found in Fig. 4.2.

Copying tool

When one selects an object in copying mode, this object stays in place. A copy of this
object is made (including bonds, if the selection was a group of atoms or the whole
molecule). This copy can then be moved around as if it were selected by the moving tool

in the first place. The finite state machine for the copying tool is therefore the same as

the one for the moving tool, noting that instead of moving the selected object, a copy is

made of it that is then moved.
One of the most elementary operations is adding new atoms to the model. This is

done by copying an atom from a number of predefined atoms that can be found inside the

virtual environment. Adding new atoms is therefore equivalent to copying one of these

atoms and moving it to the model.

Scaling tool

In this mode it is only possible to scale the entire molecule, i.e. the distances between

the atoms as well as the atoms themselves. This can be done in alt operation modes by

selecting an arbitrary atom. The centre of the selected atom will then become the centre
around which the molecule is scaled.

Selecting an atom causes a bounding box to be displayed around the molecule. When

moving the mouse away from the centre, the molecule is enlarged. This is indicated by

a second bounding box that is representative of the size of the new molecule. Moving
toward the centre has the opposite effect. When the molecule is scaled in the desired

proportion, the selection button is released to actually scale the molecule.
The finite state machine for the scaling tool is displayed in Fig. 4.3.

4.2.3 Changing current mode of operation

Interacting with the fourth tool (for changing the current mode of operation) goes as

follows: selecting this tool, represented by 3-D push-button with the text operation mode

on it, causes a pop-up menu to be displayed. This pop-up menu has three options: Atom,
Group and Molecule. Selecting an option with the pointing ray and then releasing the

selection button changes the current operation mode into the mode corresponding to the

selected option. If the ray is moved off the pop-up menu, which means that no selection

is (being) made, then the mode is unchanged. See Fig. 4.4.

4.2.4 Defining a group

A number of atoms can be put together in a group, so that the moving, copying or deleting
operations will apply to all atoms inside this group in the same way. This is where the
fifth tool' comes in. After selecting a push-button, which is the representation of this
tool, one is in group defining mode.

A group of atoms is defined as all atoms that are on one side of a particular bond.
This can be half of the molecule, or (a part of) a side chain. Selecting a group is done
by identifying that bond and first selecting the atom that is not to be part of the group
and subsequently selecting an atom on the other side of the bond that is to be part of
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u/a4, ai

so Ray is on object; no object is selected
Si Object is selected
S2 Object is selected and near trash can
53 No object is selected
s. Object is selected; hat operates as rotator
s5 Object is selected and is rotating
So Object is selected; hat operates as translator
si Object is selected and is translating
io Depressing selection button
i1 Releasing selection button
i2 Moving 3-D mouse
i3 Pressing rotation button
i4 Pressing translation button
i5 Pressing cancel button
i6 Depressing hat
i, Releasing hat
ie Entering deletion range
i9 Exiting deletion range

o Object is coloured with selection colour
01 Object is coloured with normal colour
02 Object is moved; bonds are updated
03 Object starts rotating
04 Object stops rotating
05 Object starts translating
06 Object stops translating
0 Object is coloured with warning colour
a Object is removed from scene

Figure 4.2 F.S.M. for moving an object
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so Ray on atom; no atom is selected
Si No atom is selected
io Depressing selection buttoni Releasing selection button
i2 Moving 3-D mouse toward centre
i3 Moving 3-D mouse away from centre
ao Bounding box appears
ai Bounding box disappears, molecule is scaled
a2 Bounding box shrinks
a3 Bounding box grows

Figure 4.3 F.S.M. for scaling the molecule

so Ray on push-button, no tool is selected
si push-button is selected, ray on pop-up menu
52 push-button is selected, ray off pop-up menu
i0 Depressing selection button
ii Releasing selection button
i2 Moving 3-D mouse 'inside' pop-up menu
is Moving 3-D mouse 'outside' pop-up menu
ao Pop-up menu appears, mode = current mode
ai Pop-up menu disappears mode = selection
a2 mode is updated to selection
a3 mode is current mode
a4 Pop-up menu disappears, mode is unchanged

Figure 4.4 F.S.M. for changing the current mode of operation

io/ao

io/ao
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the group. All atoms that are (transitively) connected to the second atom are contained
in the newly formed group, stopping the transitivity relation at the selected bond. This is
displayed in Fig. 4.5.

so Ray on atom; no atom is selected
s First atom is selected
S2 Ray on second atom
S3 Group defined
io Depressing and releasing selection button
ij Moving 3-D mouse
a Atom's bonds are coloured with 'indicating colour
ai Pointing ray is updated
02 Group atoms are coloured with group colour

Figure 4.5 F.S.M. for defining a group

One can now perform operations on this group by selecting the tool corresponding
to the desired operation and then selecting one of the atoms in the group. When one
selects an atom that is not part of the group while in 'group mode', this individual atom
is selected. Thus, for atoms not belonging to the group, there is no difference between
'atom mode' or 'group mode'.

4.3 Implementation

We pointed out in Section 2.5 that programming a virtual environment is a complex task,
that involves a number of fields. We will now present an implementation of a part of the
design as described above. In doing this, we will resolve the following issues:

• Representing the objects in the problem domain.

• Reacting in the specified way to user-input.

• Organising the representations for the objects both in the problem domain and in

the visual context (i.e. the visual environment as discussed in section 3.5.2). This
involves building and maintaining a scene graph.

Since a large part of this involves dealing with objects, we have chosen to use an object
oriented language for the implementation. Because WTK only has bindings for C and
C++, we will use the latter. For an introduction in C++ see Stroustrup (1991) or van
Winkel & Willems (1993).

In Appendix. B an introduction to using the VR system is given, including an overview
of interesting WTK-functions. We recommend that the information presented there is
looked through before reading this section.

i1 /ai
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4.3.1 Initialisation

The application that we are developing makes use of the WorldToolKit. The first step in
using WTK in any application is initialising the various internal structures of the library
as discussed in Appendix B.3. Because we want to use the head-mounted display for
stereoscopic viewing, we supply the values WTDISPLAY_STEREO and WTWINDOW_NOBORDER

to the WtUniverse: :New() method that performs the initialisation.
We insert a light node as the first node in the scene graph, so the whole scene will

be illuminated. We then initialise the scene by loading a room, with inside it the working
table, and putting the viewpoint in a convenient position. The next step is to open the
sensors. We have incorporated this action, along with the rest of the functionality into a
separate class, called Actor. We will discuss this class later. We now simply initialise this

class by calling the method Actor: :InitialiseO.
Now that all initialisations are completed, we start the simulation by calling the meth-

ods WtUniverse::Ready() and WtUniverse::GoO. Note that we have not set an
action function. This is because we will implement all activity of the program with tasks.

4.3.2 The Actor class

We already mentioned that all functionality of the application will be controlled by the
Actor class. All attributes and methods of this class will be static, just as in the
WtUniverse class. The reason for this is that pointers to these methods are stored
in a table. This can only be done with static methods. Initialising the class with
Actor: :Initialise() causes a number of actions. These are:

• Opening the sensor through which the configuration of the buttons of the 3-D mouse

is obtained.

• Creating an EventHandler object. This object will drive the application by polling
the configuration of the buttons every time the simulation loop is executed. When
the configuration changes, the object generates an event that is handled by passing it
to an instance of a class that implements the finite state machines that are described

in Section 4.2. Depending on the current state of this object and the new input
symbol (i.e. the generated event) a transition is made, and the corresponding output
symbol is generated. This output symbol is actually a call to a method of the Actor
class that causes the desired change in internal and visual state. Pointers to these
methods are stored in a table (just as the transitions). This is why the methods of
the Actor class are defined as static methods.1 The set of methods in the Actor
class thus defines the functionality of the program.

• The tracking sensor on the HMD is opened and the viewpoint is connected to this
sensor using a motion link (see Appendix B.3.9).

• The tracking sensor inside the 3-D mouse is opened. A 3-D cursor is loaded from
file and is connected to the sensor with a motion link. This cursor has a pointing
ray, as discussed in section 3.2.2. Later we will discuss this extensively.

'Note that to access attributes in static methods, these attributes must a'so be defined static.
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• A graphical object that is used to toggle between molecule-, atom- and group-mode

is placed in the scene

• Another graphical object which is used to initiate the definition of a group is placed

in the scene.

In the design we planned to make it possible to create molecules from scratch by copy-
ing atoms and arranging them into a molecule. For now we will create a molecule at
initialisation and operate on this.

To be certain the tracking sensors are opened in the correct order, we have cre-
ated a class called Tracker, that opens both sensors once and in the correct order.
To obtain a pointer to either the HMD sensor or the 3-D mouse sensor, one can call
InitialiseTrackerO, supplying an argument that indicates in which of the two point-
ers one is interested.

4.3.3 Objects in the problem domain

The objects that are coming from the problem domain are the molecule, atoms, bonds
and a possible group of atoms. The set of atoms together form the molecule. We can
therefore implement the molecule simply by an attribute that is a set of atoms.

The atoms have a type, a flag that indicates whether or not the atom is part of the
group and a set of bonds. They also have a pointer to the molecule they are part of.

A bond represents the fact that two atoms are close enough to satisfy the attraction-
relation. We implement the bond by having references to the two atoms.

Graphical representation

In WTK the atoms will be represented with WtMovGeometry sphere objects. A pointer to
the WTK-object will therefore also be included in every atom object. Creating this object
is done in the classes constructor-function.

The attributes of the atom class are therefore:

class Atom

type: atom type

molecule: Molecule

bonds: set of Bonds

inGroup: boolean

atoxnNode: WtflovGeometry

endclass

A bond is represented with a WtMovGeometry cylinder object that starts at the centre
point of one of the atoms and ends in the other atom.

class Bond
atom: set of two Atoms
bondNode: WtMovGeometry

endclass

The molecule has no graphical representation. Its functionality is that of a container
and this is implemented in WTK as a WtGroup object. Because the molecule can have
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its own position and orientation independent of the rest of the scene, we are using the
WtMovSep subclass.

The atoms that are in the group have a position and orientation with respect to the
molecule as a group. We therefore insert an instance of the WtMoveSep class as a child
of the molecule's group object to represent atoms that are inside the group. Note that if
two atoms inside the group are close enough to have a bond, this bond will also be moved

under the group's group object. The scene graph that includes the representation of these
objects is depicted in Fig. 4.6.

Figure 4.6 Scene graph in which
is included.

representation of the objects from the problem domain

When we move one of the molecule's atoms, bonds should be automatically inserted,
removed or just updated. This is done using a task. The molecule class therefore also
has a WtTask attribute that performs this action. This task is created in the molecule's
constructor-function, but initially it is disabled. When an atom or the group of atoms
is being moved, the task is temporarily enabled, until the atom is released again. The
attributes of the molecule class are

class Molecule
atoms: set of Atoms
moleculeNode: WtMovSep

groupNode: WtMovSep

bondTask: WtTask

endclass

4.3.4 The 3-D cursor

We have inserted a number of graphical objects into the scene, namely the surrounding
room (including the table), the atoms and bonds and the two objects for toggling the
operation mode and defining the group. These objects can be selected by the user. For
this purpose another graphical object has been inserted: the 3-D cursor. This cursor is

light moleculeNode

bondsatoms I
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connected to the tracking sensor in the 3-D mouse. We discussed the necessity of a point-
ing ray for selecting objects in section 3.2.2. We insert this ray into the scene graph near
the 3-D cursor. Therefore we have inserted a WtMovSep object as a child of the root node,
which is actually connected to the sensor. Because the position/orientation information
that is constantly updated to this object affects its entire subtree, all nodes that are in-
serted under it will also be updated with the new position/orientation of the mouse-sensor.
The cursor and the pointing ray will therefore be inserted under the separator node. This
is depicted in Fig. 4.7. One can see in this figure that other objects can also be inserted

Figure 4.7 Scene graph in which the cursor and pointing ray are inserted.

under the WtMovSep node. In this way, one can e.g. move a selected atom, or a group of
atoms around by simply relocating the corresponding node in the scene graph under this
separator node. Note that this requires some repositioning to keep the node in the same
position/orientation with respect to the world coordinate frame, when moving it from one
local frame to another.

4.3.5 Selecting objects

The position of the 3-D cursor and the direction in which it is pointing is obtained each
time the pointing ray is updated. This information is then also to determine which object
one is currently pointing to. The WtNode method Raylntersect() is supplied with the
direction and position of the cursor, and it stores a pointer to a node path that leads to
the nearest object along this ray as well as the distance to this object.2 Since the ray
starts in the centre of the cursor, it is temporarily disabled. Otherwise, the cursor would
be the nearest object,

For updating the pointing ray the distance to the nearest object is enough, so the node
path will not be used. The action of updating the pointing ray is implemented as one of
the cursor's tasks. In this task the existing ray is deleted, and a new one is created with
a length that extends exactly to the nearest object.

When one is performing a selection, the node path is used. With this node path a
pointer to the node of the selected object can be obtained. We are not interested in the
node, however, but in the object of which the node is an attribute. E.g. we want to have
a pointer to the atom-object, not to the sphere-object which is its visual representation.

2Sometimes when one selects an object, this node path is not created and the pointer that is returned
is 0. This is probably a bug in WTK.
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We could search through all objects and try to locate the returned pointer. The C-
version of the library, however, gives an alternative. It is possible to store a pointer to an
arbitrary structure (e.g. a pointer to an atom-object) in a WTK-node with the function
WTnode...setdataO. This function takes a pointer to the node as the first parameter
(note that this is a pointer to a WTnode of the C-binding) and a void pointer as the
second parameter. The function WTnode_getdata() takes a pointer to a WTnode as the
only parameter; it returns the void pointer that was stored in the node.

Since the C++-version of the WTK library only 'wraps' the C-version into a C++-
binding, the WTnode pointer is available somewhere in the WtNode object. It can be
obtained using the WtBase method GetwTKStructureO,that returns the required pointer
(as a void*). We use this method to obtain a pointer to the C-structure WTnode and

then we store a pointer to our C++-object in it, using the functions described above.
The code that performs this action is presented in Fig. 4.8. The code that retrieves our
C++-object from a WtNode is presented in Fig. 4.9.

Object* object; // Pointer to the object that has to be stored

WtNode* node; II Node in which the pointer should be stored

WTnode* wtkNode = (WTnode*) node->GetWTKStructureQ;

WTnode_setdata( wtkNode, (void*) object );

Figure 4.8 Code for storing a pointer to an object in the WTK-object.

WtNode* node; // Node in which the pointer is stored

WTnode* wtkNode = (WTnode*) node->GetWTKStructureO;

Object* object = (Object*) WTnode_getdata( wtkNode

Figure 4.9 Code for retrieving the pointer stored in a WTK-object.

We have a number of different classes that have selectable representations: the room,
the atoms, the bonds, the class for changing the operation mode and the class for defin-
ing a group. When we retrieve the pointer for objects from these classes, we do not
know of which class the object is. Therefore these classes are subclasses of the class
GraphicalObject, which has a type attribute that indicates the type of the object. In
this way, we know that a pointer to a GraphicalObject is returned. By looking at its
type, one can determine its correct subclass.

N.B. We mentioned above that a pointer to the selected node can be obtained using
the node path that is created by R.aylntersectO. This is done with the WtNodePath
method GetNodeQ. When we use the procedure as we just described to store information
in the C-structure, the method does not return a pointer to the selected WtNode from
which a pointer to the desired object must be retrieved, but directly to the desired object.
This is probably either a bug in the library or in the C++-compiler. However, we get what
we wanted, so we will not complain about this.
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4.3.6 Continuous translation and rotation

Let us have a look at the actions that have to be performed to implement the functionality
of our application. A lot of the operations involve relocating nodes in the scene graph,
e.g. to move an atom-node into the group, or to 'pick up' an atom. This requires some
programming using the WTK-methods, but it is quite straightforward. We also have to
update some of our own structures, such as the lists of bonds per atom. We have to
enable or disable some of the tasks now and then such as updating the ray, which e.g.
does not have to be done as long as a selection is being performed. There is one specific
action that we have not yet discussed, that of continuous translation or rotation using the
hat. We will briefly discuss them here.

When the hat is moved in 'fine-tune' mode, the action of rotation or translation is
started. The action is finished when the hat is released again. We implement these actions
using tasks. When the fine-tune mode is entered, the 2-D plane in which the fine-tuning
will take place is calculated from the orientation of the 3-D cursor. If the hat is used, a
moving action is started by enabling a task that performs a translation or rotation over
some small amount in this plane in every execution of the simulation loop. During the
time one is in fine-tune mode, the motion link between the cursor and the sensor of the
3-D mouse is disabled, so hand movements will have no effect.

4.4 Working with the application

In this section a short guide to operating the application in its current state of development
is given.

Starting the application

When the application is started, the tracking sensors in the head-mounted display and the
3-D mouse are initialised. The position and orientation that the sensors have at the time of
initialisation are going to correspond to the default state of the coordinate systems of the
viewpoint and the cursor that will be connected to the sensors. It is therefore important
that during the initialisation the HMD and the 3-D mouse are held in the position that
one wants to operate in.

Selecting objects

After the initialisation is complete, a number of objects are present in the virtual environ-
ment, some of which can be selected by pointing the ray at them and pressing the trigger
button. The objects are:

• The 3-D cursor, from which the pointing ray emerges. The pointing ray extends
from the cursor to the first object that it intersects. This object is the one that is
selected if the trigger button is depressed.

• The enclosing room and the working table. These objects belong to the visual
context and are therefore not selectable. If one tries to select one of them, a short
'beep' is generated.
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• The molecule, constructed of atoms and bonds, is situated above the table. The
atoms be selected, but bonds cannot be selected. When one tries to select a bond,
a short beep' is generated.

• On the left-hand side of the table a graphical text-object is placed for changing the
operation mode. Initially the text in this object spells: 'molecule mode".

• On the right-hand side of the table another graphical text-object is placed, that is
used to initiate a group definition. The text therefore spells: "define group".

A screen shot of the application in which the objects are displayed is presented in Fig. 4.10.

Figure 4.10 The virtual environment for a chemical application. It consists of a room
with a work table, a molecule and a 3-D cursor.

Selecting an atom can either initiate a moving action of the whole molecule, a single
atom or a group of atoms. This depends on the current mode of operation, that is
indicated in the text of the graphical object to the left of the table. While the trigger
button remains depressed, the selected part of the molecule will move according to the
movements of the 3-D mouse. If the trigger button is released, the object no longer moves
along with the 3-0 mouse.

Continuous translation/rotation

During a selection of a part of the molecule, the object will follow the movements of the
3-D mouse. It is also possible, however, to fine-tune the placement of the object, by using
the hat. To enter the fine-tune mode, one can press either the top button for continuous
rotation, or the middle button for continuous translation, while keeping the trigger button
depressed. This will remove the connection to the 3-0 mouse; the object will therefore
remain in its place in the environment. Pressing the same button for a second time will
reconnect the object to the mouse. One can toggle between the two fine-tune modes
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by pressing the corresponding button. Note that the connection will not be restored by
toggling from translation to rotation or vice versa.

In fine-tune mode, the object can be translated or rotated in a 2-D plane with the hat.
The axes of this plane are: the y-axis of the 3-0 scene (i.e. the vertical axis) and the line
in the xz-plane of the 3-D scene perpendicular to the pointing ray. Moving the hat left
or right causes either translation along the horizontal axis, or rotation around the vertical
axis. Moving the hat up or down causes translation along the vertical, or rotation around
the horizontal axis.

Releasing the trigger button in one of the fine-tune modes ends the selection. It is
therefore not necessary to exit the fine-tune mode before releasing the trigger button.
That would probably involuntarily move the object somewhat after one has just carefully
positioned it correctly.

Changing the operation mode

The current mode of operation can be one of "molecule mode", "atom mode" and "group
mode". The text displayed on the left side of the table indicates the mode in which one
is currently operating. Selecting the text with the pointing ray and pressing the trigger
button causes a change of the current mode, cycling through the modes every time the
text is selected. Note that the group mode is equivalent to the atom mode when no group
has been defined, or if an atom not part of the group is selected.

Defining a group

On the right-hand side of the table the text "define group" is displayed. Selecting this
text with the pointing ray and pressing the trigger button starts a group definition. The
text changes into "select #1".

A group is defined by selecting the two atoms which are on both sides of a bond. First
the atom that should not be part of the group must be selected. If that is done, the text
changes into "select #2" and atoms on the other side of the bonds that the selected atom
has are coloured red. One of these atoms has to be selected as the second atom, that is
to be part of the group. All atoms that are (transitively) connected with bonds to this
second atom are going to be part of the newly formed group. The bond between the two
atoms will not be considered while the group is being created.

If anything other than an atom is selected during the definition, the define group'
operation will be broken off. The group that possibly existed before the definition was
started will still exist and the text will be restored to "define group". One can of course
try a second time to define a group.

Other operations

If no selection is currently in progress, pressing the top button causes the viewpoint to be
restored in its default position. This is the same position it has at start up.

Pressing the middle button under the same circumstances causes the 3-D cursor to
be reset to its default position. Note that only the position, and not the orientation is
restored.

Pressing the bottom button without a selection causes the program to exit.



40 4 Molecular modelling



5 Conclusion

5.1 The virtual reality system

One of the goals of this research has been to work with the system that was purchased in
the beginning of 1996 and to investigate its potential for application. About the hardware
part of the system it can be said that the head-mounted display works fine. The 3-D
mouse has some problems — some of the buttons stopped working, and the tracking
sensor inside it sometimes passes incorrect information to the computer. The rest of the
tracking system works all right. The graphics hardware works well too, but the question
arises if the maximal rendering capacity of 600.000 polygons per second is enough for
a serious VR application. This is, however, probably one of the problems in computing
science that will never be solved, because with the increasing capacity of the hardware
there will always be new applications that require even more.

The software that we use to operate the hardware uses the WTK-library. The pro-
gramming paradigm of the scene graph that is used in this library is a very good one. It
gives the user a clear idea of how the scene is built. Using the functions that are available,
one can manipulate this scene graph in an easy way. It should be noted, however, that
some people are convinced that by using the scene graph, WTK does not create the most
efficient way of rendering the scene.

5.2 Interaction using the 3-D mouse

The method we have developed for using the 3-0 mouse to interact with the virtual
environment seems to be a good one. The user can easily judge which object is about to
be selected by looking at the pointing ray. Objects that are occluded by other objects can,
in most cases, be selected by moving the cursor around these objects. One can select the
object as soon as the pointing ray is able to hit it. Ware & Jessome (1988) claim that it
is not necessary to immerse oneself in a VR system. We have seen, however, that using
the HMD for stereo vision improves the understanding of the 3-D structure of the scene
very much. We therefore think that our method will be applicable in a wider range of
applications than that of Ware & Jessome. One should however restrict use of the HMD
as much as possible, because using it over a longer period of time might lead to health
problems, such as motion sickness or strained eyes.
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With our method of interaction using the 3-D mouse, it is possible to interact with the
environment while holding one's arm relaxed at waist level, or on the arm of a chair. This
prevents the user from getting a tired arm from holding it stretched out. The fine-tune
modes enable accurate placement of objects in a nice way. In future projects it will be
interesting to try out variations of the way fine-tuning is implemented — other 2-D planes
could be chosen, but one could also try performing fine-tuning by having the same physical
movement correspond to a finer movement in the virtual world.

5,3 Future work

In the introduction it has already been pointed out that there are many areas where virtual
reality could be applied. In Groningen the research started by this project is aiming at
application of virtual reality in the field of molecular modelling. Other fields of application
that are currently considered are visualisation of data from computerised tomography,
graphical animation in the context of driving simulation, and visualisation of fluid flows.



A Finite State Machines

In this chapter, I will give a short introduction in notation I use for the finite state machines
(F.S.M.) in this report.

The particular type of F.S.M. I use are called Mealy machines. More information about
Mealy machines can be found in (Cohen 1991).

A finite state machine is built out of a finite number of states. These states represent
a particular configuration of the program. One can step from one state into another by
means of a transition. This is done as a reaction to an input symbol, which in our case is
an operation on one of the buttons of the flying joystick.

The states in a F.S.M. are graphically represented by circles, with a label of the form 5?
inside (see Fig. A.1(a)). Since not every state represents a situation in which a complete
set of actions has been made—for example, in all states s1 through 6 in Fig. 4.2, the
selection button is still depressed, while the moving action can only stop if it is released—
some states have to be identified in which this is the case. The representation of these
end states is given in Fig. A.1(b).

Just as one has to be able to finish the action by means of end states, one also has to
find a state—typically state s0—in which to begin traversal of the F.S.M. A start state is
denoted by a fat dot with an arrow to this state (see Fig. A.1(c)).

Transitions are represented by arrows, starting at one state and ending in another,
possibly the same state. Normally a transition is labelled with one label, which represents
the input symbol, but as I mentioned earlier, the F.S.M.'s I use are Mealy machines. This
means that besides an input symbol (typically i?) there is also a second label (of the form
a?). This label is used to indicate that there is output on this transition. Output in our
case is visual output. This output the change in graphical representation of the model
etc., e.g. colouring the object with a warning colour if it is about to be thrown away. In
cases where there is no necessity for visual output, a default label (—) will be used. The
representation of a transition is given in Fig. A.1(d).
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Figure A.1 Different parts of a finite state machine: (a) State; (b) End state; (c) Start
state; (d) Transition.
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B Using the VR system

In this appendix we give an overview of what actions must be performed to operate the
VR system as described in Chapter 2. Also a short introduction to the WTK-library (the
C++-wrapper) is given, that covers the functions mostly used in this work.

The workstation on which the applications are executed is virtual . service . rug. ii].
and will from now on be referred to as the virtual. Another workstation presently available
in the research laboratory is visual.service.rug.nl and will be called the visual. It is
possible that in the future the facilities in the laboratory will be extended with additional
terminals or workstations. The procedures that are described below will probably apply to
those machines as well.

N.B. Currently we are running WTK release 6. It is possible that the procedure for later
versions is different from what is discussed here or that paths will change.

B.1 Preparing for the first session

Before the first WTK-application can be run on the virtual, a few environment variables
must be set, so the WTK-library knows where to find its resources. The first thing
that must be dealt with is finding the licence code. This code can be found in the file
/usr/wtk/WTKCODES. One can copy this file to the working directory so WTK can find
it, but a simpler approach is to set the environment variable WTKCODES to the directory in
which the code file is found. The variable can be set by typing

'I. WTKCODES=/usr/wtk
'I. export WTKCODES

under the Bourne-Again shell (or by placing the lines in .bashrc), or by typing

'I, setenv WTKCODES /usr/wtk

under the c-shell (or by placing the lines in . csh). If the WTKCODES file cannot be found,

an error-message is issued.
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When the application requires models or texture images it is advisable to set directory
paths so that WTK is able to retrieve them from the standard distribution or via addi-
tional user-defined paths. The path for directories containing images is set by defining
the WTIMAGES variable, e.g. to /usr/wtk/images in the same way as above. For the
model path, the WTMODELS variable is used. This can be set to e.g. /usr/wtk/models.
When multiple multiple directories should be searched, they are separated by a colon,
e.g. /usr/wtk/models : /usr/wtk/buttons. For both images and models the current
working directory is first searched and subsequently the directories in the path specified in
the corresponding environment variable.

More information about these and additional environment variables can be found in
the hardware guide (Sense8 HG 1996).

B.2 Using the head-mounted display

After defining the environment variables we are ready to start our first WTK-application.
If we want to make use of the head-mounted display (HMD) in the application, we must
configure the system to use the Multi-Channel Option (MCO) to send the created image as
a stereo pair to the HMD. Since this process kills any running sessions on the virtual, and
makes using the console impossible, we must operate from another terminal or workstation.

When we are logged in on another workstation, e.g. the visual, we can operate the
virtual via remote login. This is done with the riogin command.

% riogin virtual.service.rug.nl [-1 <username>]

The first step is now to disable console output and redirect the output to the MCO. This
is done by typing

'h mcoGxf

This kills any login processes directly running on the console. Since the output is now
directed through the MCO, the console display is no longer usable as output device. The
keyboard and mouse, however, can still be used to input commands in a running WTK-
application.

The process of switching from console to MCO or back (with consoleGfx) can take
some time, occasionally even several minutes. The program gfxinfo can be used to see
whether the program is ready or not.

'h /usr/gfx/gfxinf 0
Graphics board 0 is "REV" graphics.

Managed (IS:ØØS) 1280x1024
Display 1280x1024 60Hz
12 GE (GE1O rev. 0x7)
2 RN4 boards
Medium pixel depth
10—bit RGBA pixels

Not using Multi-Channel Option
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This output of gfxinfo states that the console is functional, and that the MCO is not
being used. If the output states that the display is unmanaged, in either resolution, one
should wait longer. When the output is as follows

% /usr/gfx/gfxinf0
Graphics board 0 is HREVU graphics.

Managed (":0.0") 640x972

MCO Display 0 640x486 D 30Hz interlaced, origin (0, 0)

MCO Display 1 640x486 30Hz interlaced, origin (0, 486)

12 GE (GE1O rev. 0x7)

2 RM4 boards
Large pixel depth

10-bit RGB pixels

Driving Multi-Channel Option

the system is ready to be used. If the VR4 control box (for the HMD), the immersion
interface box (for the mouse buttons) and the control box of the tracking system' are all
switched on, we can start the WTK-application.

When one is finished with the system, or one does not need to use the HMD any more,
one should restore the console output by typing

'h consoleGfx

Further information, concerning error-messages etc. can be found in /usr/VE/info.

B.3 Programming with WorldToolKit

Now that we are ready to run a WTK-application, we should know a little more about
how to make programs that use WTK-functions. In this section a number of functions will
be presented that give rudimentary knowledge of the WTK-library. With this it should be
possible to create some simple applications. For more information the WTK manuals can
be consulted (Sense8 RM 1996, Sense8 C++ 1996). We will present the examples using
the bindings from the C++-wrapper library. The bindings from the C library are not very
different, e.g.

WTnode* node;
WTnode...gettranslation(node, ...);

in the C library is equivalent to

WtNode* node;
node->GetTranslation(...);

in the C++Iibrary. Where this is not the case, we will make a comment.

'Note that after switching on the control box of the tracking system, the power-indicator will turn on
and off a few times, indicating that it is performing an initialisation. One should wait until the LED stays
on, then the box is ready to be used.
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B.3.1 Joining the WTK User's Group

When one is planning to do some serious programming in WTK, one should consider
joining the WTK mailing list. Common problems are discussed in this group. When one
has a problem, one can post it there and reactions (possibly solutions) can be expected
within a few days. More information about how to join is described in the WTK-manual.

B.3.2 Compiling programs

To create an executable, one must tell the compiler where to find the header-files, and
the linker where to find the libraries. Compiling a program that only uses the C-functions
can be done in the following way

ncc —c wtk.c -I/usr/VE/include -I/usr/wtk/include

When the C++-bindings are used, one should use the following line

NCC —c wtk.cc \
-I/usr/VE/include -I/usr/wtk/cppwrap/include -I/usr/wtk/include

Linking all object-files into an executable requires specification of a lot of libraries. For

C-programs this goes as follows

ncc —o a.out *. \
-L/usr/VE/lib -L/usr/wtk/lib \

—ijoystick -lwtk -lvsiaudiostub -lsgiaudiostub \

-1GLw -1GL -lXm -lXt -lxii -im

and for C++-programs as follows

NCC —o a.out \
-L/usr/VE/lib —L/usr/vtk/cppwrap/lib -L/usr/wtk/lib \

-ljoystick -lwtkcpp -lvtk -lvsiaudiostub -lsgiaudiostub \

-1GLw -1GL -lXm -lXt -1X11 -lm

It is clear that using make to recompile programs is strongly recommended. In the
directory /usr/wtk a sample program, as well as a sample makefile can be found.

B.3.3 Header files

Now that we know how to compile and link programs, we can look at how WTK is used in
program code. In every code file that uses WTK-functions, a header file must be included
so the compiler can do type-checking.

#include <wt.h>

The C++-functions come with their own header file. The header file for the C-version
should also be included, though.

#include <wt.h>

#include <vtcpp .h>
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B.3.4 Initialising the application

static void WtUniverse::New(int display_config, mt window_config)
Before we can use functions from WTK-library, we have to initialise its run-time
data structures using the method WtUniverse: :NewO. This method should be the
first WTK-function in the program, and it should only be used once. It initialises
the internal state of the universe and opens and initialises the graphics device. A
viewpoint that is attached to this device is also created. This is by default the
viewpoint through which the scene is displayed.

The disp].ay_config argument is used to specify which type of display is needed.
Possible values are either WTDISPLAY_MONO (or equivalently WTDISPLAY_DEFAULT)
for use on a standard display or WTDISPLAY_STEREO for use with the HMD.

The vindow_config argument is used to specify whether or not 'decorations' should
be applied to windows. One of the values WTWINDOW_DEFAULT for normal use or
WTWINDOW_NOBORDER for use with the HMD should be passed as parameter.

static void WtUniverse: :SetActions(void (*actionfn) (void))

The action function can be used to control the activity in the simulation. It is a user-
defined function that is called every time the simulation loop is executed. A possible
use is programming termination by having a button-press trigger the termination of
the simulation loop or to handle events for user interfacing. The action function
can be set using WtUniverse: :SetActionsO.

static void WtUniverse: :F(eady(void)

Every time that the execution of the simulation loop is started (i.e. before the
method WtUniverse: :Go() is called) WtUniverse: :Ready() must be called to

prepare the application for entering the loop. This should be done after all graphical

entities have been created.

static void WtUniverse::Go(void)
static void WtUniverse::Gol(void)

Starting the simulation is done by making a call to WtUniverse: :GoO. This

passes the control of the application to the simulation handler. One can influence

the control by using the action function or tasks.

When one wants to execute the simulation loop only once (e.g. to draw something
on the display before doing a time consuming initialisation) one can use the method
WtUniverse: :GolQ.

static void WtUniverse: :Stop(void)
One is able to exit the simulation loop by making a call to WtUniverse: :StopO.
After this method is called, the current execution of the loop is continued to the end

and then the control is returned to where WtUniverse: :Go() was called. One can

for example make a call to WtUniverse: Stop 0 from the action function when
the user presses a certain button.

static void WtUniverse: :Delete (void)
When the simulation is ended, one should call WtUniverse: :DeleteQ. It deletes
all objects in the universe, and frees all used memory. It also closes the graphics
device. This must be the last WTK call in the application.

The framework of a standard WTK-application is displayed in Fig. B.1.
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#include <wt.h>

#include <wtcpp.h>

void act ionfn(void);

void main(int, char*)

{

WtUniverse::New( );

II Set up lights; open sensors; initialise scene graph; etc.

WtUniverse: : SetAct ions (actionfn);

WtUniverse: :ReadyO;

WtUniverse: :GoQ;

// WtUniverse::StopO has been called!!!

WtUniverse: :DeleteQ;

}

void actionfn(void)

{

// Do your own stuff here!

if(...) WtUniverse::StopO;

}

Figure B.1 Framework of a WTK-program.

N.B. Normally, methods are dependent on an instance. They should be called as
<Instance>.<Method>() or <InstancePtr>—><Method>O. For example

WtP3 position; position.Norm();

WtP3* positionPtr; positionPtr—>Norni();

Methods that are defined as static methods, however, are not dependent on an instance.
They can be invoked at all times by calling them as <Class>: :<Method>O. Examples
of this are

WtUniverse: :ReadyQ;
WtUniverse: :GoQ;

Note that all methods of the WtUniverse class are defined as static methods.

B.3.5 Creating a scene graph

The scene graph is a hierarchical structure in which the scene is defined that has to be
displayed at the end of every simulation loop. The scene graph consists of a number of
different types of objects, which are called nodes. Examples of these are geometry nodes,
light nodes, transform nodes, group nodes, switch nodes, etc. The scene is displayed in a
depth first order, starting at the root of the scene graph.

static WtRoot* WtUniverse: :GetFirstRootNode()
When the universe is created with WtUniverse: :NewQ, a number of lists are ini-
tialised. One of these lists is the list of scene graphs. A pointer to the first scene
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graph2 can be obtained using the WtUniverse: :GetFirstRootNode() method. In

the C-version this function is called WTuniverse_getrootnodesO.

Handling nodes

All nodes in the scene graph are instances of derived classes of the WtNode class.

FLAG WtNode: :IsEnabled(void)
Instances of some derived classes of WtNode can be disabled to (temporarily) remove
them from the scene. One can check with the method IsEnabled() whether or not
a node is enabled. The returned value can be either TRUE if the node is currently
enabled or FALSE if it is not enabled.

FLAG WtNode: :IsMovable (void)
One of the derived classes of WtNode is WtMovable. The position and orientation
in the scene of instances of this derived class can be changed during the simulation.
One can check with the method IsMovable() whether or not a node can be moved.

WTpoly* WtNode: :Raylntersect(WtP3 ray, WtP3 origin,
float* distance, WtNodePath** npath)

In the program it will be necessary once in a while to obtain the nearest object along
a certain ray. This can be done with the RaylntersectO method. It returns a
pointer to a WTpoly structure.

The first parameter is the direction of the ray, given in the node's own reference
frame. The second parameter is the point where the ray starts, also in the node's
reference frame. As the third parameter the address of a floating point variable
can be passed. If the value passed is not 0, then the distance to the front-most
object will be stored at that address. If the fourth parameter is unequal to 0, a
node path is created that starts at the node on which the method was called and
ends in the node that was selected as being the front-most node. A pointer to this
node path is stored at the address specified by the fourth parameter. Note that it
is the responsibility of the programmer to delete the created node path when it is
no longer needed.

FLAG WtNode: :Remove(void)
When one wants to remove a certain node from all of its parents in the entire scene
graph, one can use the method Remove C). If this node has any associated tasks (see
section B.3.8), they will no longer be performed. When one also wants to remove
the object from memory, delete should be used.

Group nodes

The WtRoot class is a derived class of the WtGroup class. It offers little extra functionality
with respect to its base class, so we will discuss WtGroup here. Note that WtGroup is a
derived class of the WtNode class, so the methods discussed in the previous section also
apply to instances of the WtGroup class.

2Although it is possible to have multiple scene graphs, most applications will only use one. Typical
applications that use more than one scene graph have multiple rooms, with one graph per room, or have
multiple windows, with one scene graph per window.
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When making an instance of the WtGroup class, it will probably be an instance of one
of its derived classes, because they do provide extra functionality that is essential.

FLAG WtGroup: : AddChild(WtNode* child)

Assembly of the scene graph is done by creating new nodes and adding them as
children to a group node, somewhere in the scene graph. This is done using
AddChildO. The only parameter is the node (that can itself be a group node)
that one wants to add.

In the C-version this method is called WTnode_addchildQ.

It is of course also possible to remove nodes from the scene graph. This can
be done in two ways. The first is using one of the methods DeleteChild() or
RemoveChildO. They require the programmer to keep track of the child's number,
when it was inserted. The second way is easier, but can only be applied when the
node that has to be deleted only occurs once in the scene graph. If that is true,
WtNode: :Remove() will do the same as the other two methods mentioned above.

FLAG WtGroup: :GetExtents(WtP3& extents)
FLAG WtGroup: :GetMidPoint(WtP3& midpoint)
float WtGroup: :GetRadius(void)

One can obtain information about the geometrical properties of single nodes or
subtrees of the scene graph using three methods. GetExtents() supplies the user
with a vector from the midpoint to any corner of the extents box of the node.
GetMidPoint() returns the midpoint of the extents box. GetRadiusO gives the
distance between the midpoint and any corner of the extents box, i.e. the length of
the vector returned by GetExtentsQ. Note that using GetRadius() on the root
node of the scene graph gives the radius of the entire virtual world.

mt WtGroup: :NumChildren(void)
One can obtain the number of children a group node has at a certain moment with

the method NumChildrenO.

Separator nodes

The WtSep class is a derived class of WtGroup. Instances of this class prevent state
information from propagating from their descendent nodes to their sibling nodes. This
can be used to have transformation or light nodes apply to one part of the scene graph,

but not to the rest. This makes using separator nodes the natural way to group objects
that have a common orientation which should not apply to the rest of the scene.

WtSep: :WtSep(WtGroup* parent)
New separator nodes can be created with new WtSepO. The only parameter indi-
cates the parent in the scene graph.

If 0 is passed as parent, the separator node will not be inserted into the scene graph.
This can then be done at a later time using WtGroup: :AddChildO.

FLAG WtSep::Enable(FLAG enable)
Instances of the WtSep class can be enabled or disabled using the Enable() method.
It is passed a parameter indicating whether it should be enabled (TRUE) or should
not be enabled (FALSE).
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Switch nodes

The WtSwitch class is also a subclass of WtGroup. It allows the programmer to determine
which of its children should be processed.

WtSwitch: WtSwitch(WtGroup* parent)
New switch nodes can be created with new WtSwitchO. The only parameter
indicates its parent in the scene graph.

If 0 is passed as parent, the switch node will not be inserted into the scene graph.
This can then be done at a later time using WtGroup: :AddChildO.

mt WtSwitch: :GetWhichChild(void)
FLAG WtSwitch: :SetWhichChild(int which)

Switch nodes allow the programmer to determine which of its children should be
processed at a certain time. The number of the child that is currently being displayed
can be obtained using the GetWhichChild() method.

Switching between children is done with the SetWhichChi].d() method. This
method is passed a parameter that indicates the child that should be displayed.
Valid values are 0, 1 NumChildrenQ—1 to select one of the children; addi-
tional values are WTSWITCH_ALL to select all children and WTSWITCH_NONE to select
none of the children. By default no children are processed, i.e. WTSWITCH_NONE.

Geometry nodes

In WTK graphical objects are also a part of the scene graph. They are called geometry
nodes. When the scene graph is traversed and a geometry node is encountered, it is

rendered in the frame buffer.
There are three ways of creating geometries. The first is by constructing them oneself;

we will not discuss this. The second way is by using one of the predefined geometries
available. The third way is by loading them from file.

Predefined geometries There are a number of types of predefined geometries avail-
able in WTK. These include cylinder, blocks, cones, etc. A constructor function is available
for all types that takes some parameters that specify the properties of the geometry. The
first parameter reflects the type of geometry. This can be one of WTBLOCK, WTCONE,

WTCYLINDER, WTEXTRUSION, WTHEMISPHERE, WTB.ECTANGLE, WTSPHERE or WTTRUNCONE.

Depending on the type, the WtGeometry method accepts different parameters. The
bothsides parameter is accepted in all methods, however. This parameter specifies
whether both sides of each polygon in the geometry should be visible. If FALSE is passed,

then back-facing polygons (i.e. their inside surfaces) are not rendered.
Most of the geometry node constructor functions also accept the gouraud parameter.

This parameter influences the rendering of the geometry. When it is passed TRUE Gouraud-

shading is applied, which looks better, but takes longer to render.

WtGeometry::WtGeometry(int type, float height, float radius, mt tess,
FLAG bothsides, FLAG gouraud)

When creating a cylinder geometry, this method is used. The height of the cylinder
and its radius are set with the height and radius parameters, respectively. The
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tess parameter defines the number of polygons that should be used to create the
cylinder; e.g. passing a value of 4 creates a block.

WtGeoinetry::WtGeometry(int type, float radius, mt niat, mt niong,
FLAG bothsides, FLAG gouraud)

When creating a sphere geometry, this method is used. The size of the sphere is
set using the radius parameter. The number of latitude and longitude subdivisions
used in creating the sphere is set with niat and niong, respectively.

For other geometry types, consult Sense8 C++ (1996, page 13).
In the C-version creating geometries is done somewhat differently. First a geometry is

created using e.g. WTgeometry_newcylinderO. This function accepts the same param-
eters as the C++-method used to create a cylinder, except for the type parameter, which

is not necessary. It creates a WTgeometry, from which a WTnode can be constructed using
the WTgeometrynode_new() function. For more information one should consult Sense8
RM (1996).

Loading geometries from file

WtGeometry* GeometryNodeLoad(char* filename, float scale=1.f)

WtGeometry* WtGroup: :GeometryNodeLoad(char* filename, float scale=1.f)
WTKcan load geometries from files in the following formats: Autodesk DXF, Wave-
front OBJ, VRML, WorldToolKit NFF and others. These files are loaded using the
GeometryNodeLoad() method. The first parameter is the filename, the second the
scale at which it should be loaded.

This method is defined as a method of the WtGroup class, but also as a 'classless'
method. The loaded geometry node is inserted as a child of the group instance if it
is used in the former way, otherwise the loaded geometry node will have no parent.
It can be inserted in the scene graph at a later time using WtGroup: :AddChildO.

Other geometry node methods

FLAG WtGeometry: :Enable(FLAG enable)

Instances of the WtGeometry class can be enabled or disabled using the Enable()
method. It is passed a parameter indicating whether it should be enabled (TRUE) or
should not be enabled (FALSE).

FLAG WtGeometry: :GetExtents(WtP3& extents)

FLAG WtGeometry: :GetMidPoint(WtP3& midpoint)

float WtGeometry: : GetRadius (void)

See Group Nodes, p. 52.

void WtGeometry::SetRGB(unsigned char r, unsigned char g,
unsigned char b)

The colour of an instance of the WtGeometry class can be changed using the
SetRGB() method. It takes three parameters, that have values from 0 to 255.
They define the colour in which the geometry should be rendered.
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Transform nodes

The position and orientation of the geometries is dependent on the state information at
the time they are rendered. This state information can be altered using transform nodes.
A transform node consists of a 4x4 matrix in which position and orientation information
can be stored. If a transform node is encountered when the scene graph is traversed,
the current transform matrix is multiplied with the matrix in the encountered node. Any
geometry nodes that are encountered will be rendered using the result of this multiplication.

WtXform: : WtXform(WtGroup* parent)
A new transform node is created with the WtXform() method. The only parameter
indicates its parent in the scene graph.

If 0 is passed as parent, the transform node will not be inserted into the scene graph.
This can then be done at a later time using WtGroup: :AddChildO.

WtMotionLink* WtXform: :AddSensor(WtSensor* sensor)
void WtXform: :RemoveSensor(WtSensor* sensor)

It is possible to make the position and orientation of the transform node dependent
on a sensor. This is achieved with the AddSensorQ method. The sensor, to which
the transform node should be linked is passed as the single parameter. Deleting the
connection can be done using RemoveSensorO, to which the sensor from which
the transform node should be disconnected is passed.

More information about creating motion links is provided in section B.3.9.

FLAG WtXform: :GetOrientation(WtQ& on)
FLAG WtXform: :GetRotation(WtM3& mat)
FLAG WtXform: :GetTransform(WtM4& mat)
FLAG WtXform: :GetTranslation(WtP3& pos)
FLAG WtXform: :SetOrientation(WtQ on)
FLAG WtXform: :SetRotation(WtM3 mat)

FLAG WtXform: :SetTransform(WtM4 mat)
FLAG WtXform: :Setlranslation(WtP3 pos)

The position and orientation information can be stored in WTK in a number of
different formats. These are a vector of three floats (WtP3), for positions; a quater-
nion (Wtq), which is a compact way of storing orientations; a 3x3 matrix (WtM3),
for storing rotations; and a 4x4 matrix (WtM4), for storing both positions as well as
orientations. For more information about these classes, see section B.3.1O.

WTK offers functions both for retrieving and setting the position and orientation of
a transform node in all available formats.

FLAG WtXform::Rotate(float ang_y, float ang_x, float ang_z, mt frame)
FLAG WtXform::RotateQ(WtQ rot, mt frame)
FLAG WtXform::Translate(WtP3 pos, mt frame)

To change the orientation and position relative to the current value, one can use
the RotateQ, the RotateQ() and Translate() methods.

The Rotate C) parameter takes four parameters, the first three being the amount
of rotation (in degrees) that is applied to the transform matrix. The rotations are
applied around the y-, x- and the z-axis in that order. Note that this is also the
order in which the parameters are passed to the method. The RotateQO and
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Translate() take an instance of the WtQ and a WtP3 class, respectively, as the first
parameter.

The last parameter in all three methods specifies the frame of reference in which
the transformation is applied. This can be either WTFRAME_LOCAL, which means
that the transformation is applied with respect to the transform node's own frame
of reference; or it can be WTFRAME...PARENT, if the transformation is to be applied
with respect to the reference frame of the transform node's parent.

Movable nodes

When one wants to create a geometry that can have its own orientation and position in
the scene, one has to create a transform node that sets the correct transformation, and

a geometry node that is inserted in the scene graph after this transform node. All nodes
that are processed subsequently will, however, also have the transformation applied to
it. To prevent this from happening, one will generally also create a separator node and
insert the transform and geometry nodes as children of this separator node. In this way a
movable geometry is created.

This idea can also be applied to other node types. A derived class of WtXform has been
created, that is called WtMovable. The WtMovable class has some extra functionality with
respect to the WtXform class, but that functionality will only be interesting in a limited
range of applications. Some derived classes of WtMovable have been created, however,

that are interesting. For the example given above, an instance of the WtMovGeometry
class can be made. It has exactly the same functionality as the three separate instances,
but combined into one object. The WtMovGeometry is created as a derived class of both
WtMovable and WtGeometry. Note that multiple inheritance is used here. The derived

class has no additional functionality with respect to both its base classes. Other classes
to which a similar procedure has been applied are WtMovSep and WtMovSvitch.

N.B. Using multiple inheritance in this way is very elegant, but it also creates a prob-
lem. Suppose one wants to use a method of the WtNode class, e.g. Remove Q, for an
instance of WtMovGeometry. Since WtMovGeometry does not define that method it-
self, the compiler will try to find this method in its base class. In this case these are
WtMovable and WtGeometry. Both these classes are a derived class of WtNode, which

defines the Remove() method. The compiler must, however, use a unique way of going
from the derived class to the base class. We must therefore first pretend that the in-
stance of WtMovGeometry is actually an instance of e.g. Wtflovable before we can use
the Remove C) method. This is done by casting the instance to one of its base classes, in
this case WtMovable. Invoking Remove() is e.g. done in the following way

WtMovGeometry* ball;
((WtMovable*) ball)—>Remove0;

Node paths

In WTK it is allowed to insert a node several times into the scene graph. This can
be necessary, e.g. when one wants to display a memory consuming geometry more than
once, in different places. One can instantiate multiple separator and transform nodes and
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insert the geometry node as a child in all separator nodes. When one is interested in the
properties of a specific instance of such a geometry, e.g. its orientation with respect to the
world's coordinate system, one could traverse its ancestors and keep track of the desired
information. The same can be done using a node path, which is a way of distinguishing
between multiple occurrences of the same node.

WtNodePath::WtNodePath(WtNode* leaf, WtNode* root, mt instnum)
Creating a node path is done with the method new WtNodePathO. A unique node
path is defined by specifying three arguments: the node in which one is interested
(leaf), the ancestor (root), and the occurrence number instnum, which must have
a value between 0 and the total number of ways, minus 1, that one can go from

root to leaf.
Deleting a node path is done using the delete function.

WtNode* WtNodePath: :GetNode(int nwn)

One can obtain a pointer to a node in the node path using the GetNodeO method.
It is passed one argument that indicates the required node, 0 being the first node
and NumNodesO—1 the last node along the path.

FLAG WtNodepath: :GetOrientation(WtQ& on)
FLAG WtNodePath: :GetTra.nsform(WtM4& mat)
FLAG WtNodePath: :GetTranslation(WtP3& pos)

One can obtain information about the transform a node has with respect to one
of its ancestors by creating a node path between these nodes and using one of the
functions GetOrientationO, GetTranslation() and GetTransformO. These
supply the orientation, translation or transformation, respectively, of the node with
respect to the specified ancestor. Note that when the root node of the scene graph
is given as ancestor, the transform with respect to the world coordinate system is
obtained.

mt WtNodePath: :NumNodes(void)

NwnNodes() returns the number of nodes in the node path.

B.3.6 Controlling the viewpoint

static WtViewPoint* WtUniverse: :GetFirstViewPoint (void)

When the universe is created with WtUniverse: :NewQ, a graphics device is opened.

This provides the user with a view at the scene from a certain point. This is called
the viewpoint. In WTK a pointer to the first viewpoint in a list of viewpoints3
can be obtained using the WtUniverse: :GetFirstViewPoint() method. In the
C-version this function is called WTimiverse_getviewpointsO.

void WtViewPoint: :SetParallax(float p)
When one wants to use stereoscopic viewing in the HMD, the images for the left
and the right eye should be drawn from a different position. The distance between
the points from which the two images are generated is called parallax. The function
SetParallax() is used to set the parallax. Its default value is 0.0; this means that
in order to benefit from using the HMD it should be set to an appropriate value. We
have found that a value of 0.05 times the scenes radius gives a satisfactory result.

3Although it is possible to have multiple viewpoints, most applications will only use one.
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void WtViewPoint: :SetPosition(WtP3 pos)
void WtVievPoint: :SetOrientation(WtQ on)

It is possible to directly set the position of the viewpoint and the orientation of
the viewing coordinate system using the SetPositionO or SetOrientation()
methods, respectively. The SetPositionO method is passed a WtP3 object, in
which positional information has been stored. The SetOrientationO method is
passed a WtQ object, in which orientational information has been stored.

void WtViewPoint: :GetPosition(WtP3& pos)
void WtViewPoint: :GetOrientation(WtQ& on)

One can also obtain information regarding the viewpoint's current position and the
orientation of the viewing coordinate system. This is done using the GetPositionO

and GetOrientation() methods, respectively. The GetPosition() method is
passed (a reference to) a WtP3 object, in which the position of the viewpoint will
be stored. The SetOrientationO method is passed a WtQ object, in which the
orientation of the viewing coordinate system will be stored.

WtMotionLink* WtVieuPoint: :AddSensor(WtSensor* sensor)
It is possible to make the position and orientation of the viewpoint dependent on a
sensor. This is achieved with the AddSensor() method. The sensor, to which the
viewpoint should be linked is passed as the single parameter. Since updating the
sensors is done relative to the value in the last execution of the simulation loop, one

can place the viewpoint somewhere in the virtual world, and have it linked to the

sensor with relative movements.

More information about creating motion links is provided in section B.3.9.

B.3.7 Opening and addressing the sensors

Fastrak sensors

WTK supports a number of different sensors. Among these a class for the Poihemus
Fastrak tracking system is included. This class is called WtFastrak. It initialises the
tracking system to operate on the default baud rate. Opening the tracking sensors is done

using

WtFastrak* hnid_trak = new WtFastrak(SERIAL2, 1); // For the HMD
WtFastrak* tdm_trak = new WtFastrak(SERIAL2, 2); II For the 3-D mouse

where SERIAL2 is the port on which the tracking system is connected to the virtual and 1

and 2 are the sensor numbers. Note that they should always both be opened, and always

in this order. For the C-version the macro definition WTfastrak_new() with the same
parameters can be used.

We have changed the default setting to increase the update rate. In the C-version this

is no problem, since we can redefine the WTfastrak_new() macro. For the C++-version,
however, things are more difficult, since we cannot redefine a class-definition. We can use
a different way, though, because the WtSensor class allows a valid WTsensor* — e.g. the

one created by WTfastrak_new() — to be passed as parameter. Since we do not need
the methods that the WtFastrak class offers extra, we can simply use WTfastrak_new()
to open the sensors at the higher baud rate and pass the thus obtained WTsensor* to the

WtSensor class.
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WtSensor* hmd_trak = new WtSensor(WTfastra.k_new(SERIAL2, 1));

WtSensor* tdm_trak = new WtSensor(WTfastrak_new(SERIAL2, 2));

Note that the sensors still have to be opened in this order.

void WtSensor: :SetSensitivity(float s)
It is necessary to scale the amount of translation of the sensors (in the case of the
tracking sensors) to match the dimensions of the virtual world. This can be done
using the method SetSensitivityQ. The value that is passed as parameter can

be made dependent on the scene, using the WtRoot: :GetR.adius() method.

3-D mouse buttons

The buttons of the 3-D mouse are not included as a standard class in WTK. It is, however,
possible to create an interface so that WTK can pretend that it is a standard class. This
has been done for the buttons. The functions that define this interface are placed in
/usr/VE/lib/libjoystick.a.4 A header file for these functions called joystick.h is
also provided. This file defines a macro IWlfloystick_new (without parameters) that
returns a WTsensor*. For the C++-version this pointer can again be used to create an
instance of the WtSensor class, in a similar way to the tracking sensors.

#include <joystick.h>
WtSensor* buttons new WtSensor(IWlfloystick_new);

The header file also defines some constants that can be used when accessing the config-

uration of the buttons.

mt WtSensor: :GetMiscData(void)

The configuration of the buttons can be accessed using the GetMiscDataO method.

This method returns the current configuration as an integer value. From this value
the state of the various buttons can be obtained by performing a bit-wise AND (&)
of the desired button on the returned value.

mt configuration = buttons->GetMiscDataO;
if (configuration & FLOY_TRIGGEP.DOWN) {

II Trigger button is pressed

} else {

II Trigger button is not pressed

}

Other sensor methods

FLAG IsValid(WtBase* base)
Opening a sensor always creates an instance of the WtSensor class, also if the
initialisation has not been correct. We must therefore check if the instance is valid.
For this the method IsValidO is provided. Although this method is intended to
be used for instances of any WTK-class, for the sensors it is very important. For

4This explains the —L/usr/VE/lib and —ijoystick in the link command.
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the C-version such a function does not exist, but here testing if the returned pointer
equals NULL is sufficient.

When IsValid() is used, it returns either TRUE or FALSE. It should be noted
that in the current version of the C++-wrapper the meaning of the returned
values has been switched; i.e. the function returns TRUE if the class is not
valid and it returns FALSE if it is valid. In future versions this will probably
be corrected.

Although it might seem necessary to obtain the orientation or position of the sensors
once in a while, this is actually not the case. There are methods for doing this, but using
them to have moving objects requires a lot of unnecessary programming. When one wants
to couple objects in the virtual world to the tracking sensors, this can best be done using
a motion link, see section B.3.9.

To ensure that the sensor is closed in the proper way when the application is ended,
one should always use the provided method for this. In the C++-version this is handled
using the delete function, conform to deletion of regular objects. In the C-version one
can use the WTsensor._delete() function, to which the sensor that has to be closed is
passed as the only parameter.

B.3.8 Using tasks

Defining the behaviour of the program is achieved by using the action function. It defines
which operations need to be executed in every simulation loop. Some operations, however,
are very specific for a certain object, e.g. the bouncing of a ball. Therefore, a second
method to define program behaviour is created in WTK, namely tasks. Tasks can be
assigned to any object in the simulation. In it one can program the behaviour of the
associated object.

WtTask::WtTask(void* object, WTtask_function func, float priorityl.f)
A task can be created using new WtTaskO. A pointer to the object to which the
task should be assigned is given as the first parameter. The second parameter is
the function that should be executed. When this function is executed, the object
specified in the first parameter is given as the only argument. Valid functions
therefore accept one parameter, a pointer to a void, and should not return any
value. A (optional) third parameter specifies the priority of the task; tasks with a
low-numbered priority are executed before tasks with a high-numbered priority. If
this parameter is not specified, it is set to 1.0.

FLAG WtTask: :Add(void)
FLAG WtTask: : Remove (void)

Tasks can be dynamically added or removed from the simulation using the Add()
and Remove() methods, respectively. If a task is removed from the simulation it is
no longer executed, but it still exists. Deleting it is done using the delete function.

B.3.9 Using motion links

A motion link is a connection between a source of position and orientation, such as a
tracker sensor, and a target that moves correspondingly to changes in that position and
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orientation. We have already seen that making such a connection can be done using
AddSensor() methods that are defined in some classes. It can also be done by making
an instance of the WtMotionLink class.

WtMotionLink::WtMotionLink(void* source, void* target,
mt source_type, mt target_type)

A motion link is created using new WtMotionLinkO. The first parameter is a

pointer to the source from which the new positional and orientational information
should be taken; possible sources are sensors and paths (which we will not discuss).
The second parameter is a pointer to the object to which the new information
should be applied; possible targets are viewpoints, movable nodes, transform nodes,
and node paths. The third parameter specifies the type of the source, which is
one of WTSOURCE_SENSOR and WTSOURCE_PATH. The fourth parameter specifies the
type of the target. This can be either WTTARGET_VIEWPOINT, WTTARGET_MOVABLE,
WTTARGET_TRANSFORN or WTTARGET_NODEPATH.

FLAG WtMotionLink::AddConstraint(int dof, float mm, float max)
FLAG WtMotionLink: :RemoveConstraint(int dof)

The motion link can be constrained so that position or orientation of the tar-
get stays within a certain range. The constraint is applied for one degree of
freedom (at a time) that is specified in the first argument. Possible values are

WTCONSTRAIN_X, WTCONSTRAIN_Y and WTCONSTRAIN_Z for translational constraints

and WTCONSTRAIN_XROT, WTCONSTRAIN_YROT and WTCONSTRAIN_ZROT for rota-

tional constraints. The mm and max arguments specify the range within which
the target is constrained. For rotational constraints these values are in radians.

A constraint can be removed using the RemoveConstraint() method. The degree
of freedom from which the constraint should be removed is passed as the only
argument.

B.3.1O Mathematical operations

The position and orientation information that is contained in transform nodes can be stored
in WTK in a number of different formats. These are a vector of three floats (WtP3), for
positions; a quaternion (WtQ), which is a compact way of storing orientations; a 3x3 matrix
(WtM3), for storing rotations; and a 4x4 matrix (WtM4), for storing both positions as well
as orientations.

These formats are available in the C++-wrapper as classes that define a number
of methods for manipulating the transformational information. Because most of these
methods speak for themselves, comments will be scarce.

WtP3
WtP3: :WtP3(void)
WtP3::WtP3(float x, float y, float z)

Creating an instance of WtP3 can be done in two ways. The first is without specifying
parameters; the values will then be initialised to 0.0. The second way is by specifying
these values as parameters.
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void Frame2Frazne(WtPQ franiel, WtPQ frame2, WtP3& pout)
void Local2WorldFrame(WtPQ frame, WtP3& pout)
void World2LocalFrame(WtPQ frame, WtP3& pout)

Transforming position information from one frame of reference to another can be

done using the specified three methods.

double WtP3: :Mag(void)
Returns the size of the vector.

void WtP3: :Norm(void)
Normalises the vector.

WtP3 WtP3: :operator (void)
Returns the reflection of the vector with respect to the origin.

WtP3 WtP3: :operator+(WtP3& second)
WtP3 WtP3: :operator-(WtP3& second)
WtP3 WtP3::operator*(float scalar)
WtP3 WtP3::operator/(float scalar)

Redefinitions of the +, —, * and / operators. With these operator one can easily
add, subtract, etc. WtP3 objects. E.g. one can use

WtP3 a,b,c;
c = a+b;

to add two WtP3 objects.

WtQ

The components of a quaternion can be thought of as representing a vector in 3-D and a

twist around that vector. Quaternions in WTK are defined in the WtQ class.

void WtQ: :WtQ(void)

void WtQ::WtQ(float x, float y, float z, float w)
Creating an instance of WtQ can be done in two ways. The first is without specifying
parameters; the first three values will then be initialised to 0.0, the last value to
1 .0. The second way is by specifying these values as parameters.

void WtQ::Frame2Frame(WtPQ framel, WtPQ frame2, WtQ& qout)

void WtQ::Local2WorldFrame(WtPQ frame, WtQ& qout)
void WtQ::World2LocalFrame(WtPQ frame, WtQ& qout)

Transforming orientation information from one frame of reference to another can be

done using the specified three methods.

double WtQ: :Mag(void)

Returns the size of the quaternion.

void WtQ: :Norm(void)

Normalises the quaternion.

WtQ WtQ: :operator (void)
Returns the inverse of the quaternion.
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Wt M 4

A transform can be described using a 4x4 matrix.

void WtM4: :M42PQ(WtPQ& pq)
Transform an instance of WtM4 into an instance of WtPQ.

WtM4 WtM4: :operator*(WtM4& second)

Matrix multiplication.

WtPQ

A transform can also be described with a position (WtP3) and an orientation (WtQ). These
are combined into the WtPQ class.

WtPQ: :WtPQ (void)

WtPQ::WtPQ(WtP3 p, WtQ q)

A WtPQ instance can be created without or with parameters. In the former case
the values are initialised as in the separate classes, in the latter case the values are
initialised according to the arguments.

void WtPQ::Frame2Fraine(WtPQ framel, WtPQ frame2, WtPQ& pqout)
void WtPQ::Local2worldFrame(WtPQ frame, WtPQ& pqout)
void WtPQ::World2LocalFrame(WtPQ frame, WtPQ& pqout)

Transforming position and orientation information from one frame of reference to
another can be done using the specified three methods.

void PQ2M4(WtM4& mat)

Transform an instance of WtPQ into an instance of WtM4.

B.4 Inheritance graph

Fig. B.2 shows the inheritance relation that the classes have. In this graph it can clearly be
seen that the classes WtMovGeometry and WtMovSep are created by multiple inheritance.
In this way two inheritance paths to WtNode are possible.

The classes WtUniverse, WtP3, WtQ, WtPQ and WtM4 are separate classes.
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Figure B.2 Inheritance graph for a number of WTK-classes.
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