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Abstract

We have investigated software development for open distributed systems in order to make
this development easier. Easier in the sense that software parts will be better reusable,
more flexible and better maintainable. The hardest part is to address evolution of these
systems because not all application requirements can be known in advance. In particular
we have investigated the coordination aspects of open distributed systems. Coordination
technology addresses the management of interaction of software agents in a distributed or
parallel environment and, therefore, typically describes architectural aspects of a system.
To reach the goal of easier software development we have applied a component oriented
approach: generic coordination solutions are provided as generic architectures with black-
box components. Applications are constructed using these architectures and composing and
parameterizing these generic components. In this way we make the interaction part of a system
reusable and flexible. The architecture of the system is also made clearer and therefore easier
understandable.

A prototype coordination framework and a set of sample applications that are repre-
sentative for open distributed systems and that use this framework, have been developed
in the concurrent object-oriented programming language Java. We show that, using our
component-oriented approach, we gain reusability, flexibility and provide clear architectures
of applications. A major problem, however, concerning the genericity of components, is the
application dependent information that may be needed by a coordination solution: the gener-
icity of the solution is strongly dependent on the possibility to separate this information from
the generic solution.



Samenvatting

In dit aistudeerproject hebben wij software ontwikkeling voor open gedistribueerde systemen
bestudeerd. Het dod IS deze ontwikkeling te vergemakkelijken door programmadelen beter
herbruikbaar, fiexibeler en beter onderhoudbaar te maken. Het moeilijkst is het om evolu-
tie van dit soort systemen voor ellcaar te krijgen, want toekomstige systeemeisen zijn niet
allema.al te voorspellen. In het bijzonder hebben wij gekeken naar de coördinatieaspecten

van open gedistribueerde systemen. Coördinatietechnologie houdt zich bezig met het organi-
seren van de interactie van software agents in een gedistribueerde of parallelle omgeving en
beschrijft, daarom, de typische aspecten van de architectuur van een systeem. Om tot een
verbeterde software ontwikkeling te komen hebben we een componentgeoriënteerde aanpak
gekozen: generieke coördinatieoplossingen worden aangeboden als generieke structuren met
black-box componenten. Applicaties kunnen geconstrueerd worden door gebruik te maken

van deze structuren en door het samenstellen en parametriseren van de generieke componen-
ten. Op deze manier maken we het coördinatiegedeelte van een applicatie herbruikbaar en
fiexibel. De architectuur van een systeem wordt op deze manier ook duidelijker gemaakt en
da.ardoor makkelijker te begrijpen.

Wij hebben een prototype van een coördinatieframework gemaakt en enkele voorbeeld-
applicaties die representatief zijn voor open gedistribueerde systemen en die gemaakt zijn
met behuip van dit framework. De gebruikte prograinmeertaal is de concurrent objectge-
oriënteerde taal Java. Wij laten zien dat we met onze componentgeoriënteerde aanpak a.an
herbruikbaarheid en flexibiliteit winnen, en dat we duidelijk de structuur van een applicatie
kunnen tonen. Bet grootste probleem dat we tegenkwamen bij bet ontwikkelen van generieke
componenten is de applicatieafhankelijke informatie die een coördinatieoplossing nodig kan
hebben: de genericiteit van een oplossing is sterk afhankelijk van de mogelijkheid om deze
informatie los te koppelen van de generieke oplossing.
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Chapter 1

Introduction

Nowadays we cannot view software systems as being closed and proprietary anymore. Most
modern software applications are open in terms of topology, platform and evolution: they
are built on ever expanding networks, on heterogeneous platforms and they are subject to
constantly evolving requirements[39J. So modern applications are just parts of distributed,
inter-operable and flexible software systems. Distribution and interoperability are relatively
easy to obtain, because these requirements are known at design time. Flexibility is the most
difficult to meet, because not all application requirements can be known in advance[26J.

The problem we address in this thesis are the difficulties that exist in the development
and evolution of open systems as described above. We particularly address the coordination
aspects of these systems.

In general systems can be described as computational parts that interact with each other.
These computational parts have to be coordinated to enable them to work together:

Systems = Computation + Coordination

Coordination, therefore, can be viewed as the management of this interaction[17], as the
"glue" between the computational parts[11]. Coordination describes typically parts of the
application architecture, because it describes which activities work together and how they
work together. Most of the work done on coordination so far has focused on the development
of particular languages that realize a particular paradigm for realizing coordination. Examples
of these languages are Linda[5] and Gamma[4]. Coordination problems, however, are not
always well-suited to a particular paradigm[6]. What coordination languages don't address
are reusable abstractions at a higher level than the basic mechanisms and paradigm supported
directly by the language.

The approach we take to tackle the problem of development and evolution of open dis-
tributed systems, particularly their coordination aspects, is a component-oriented approach.
Component-oriented approaches have become increasingly popular in the last couple of years:
software should be developed using flexible and reusable software abstractions that can be
used to compose applications. Although it is an old idea to use "pre-fabricated" and reusable
"software components"[25], it has become an issue again with renewed interest in object-
orientation and the introduction of component-based software development tools like Visual
Basic[27] and Delphi [31] ([Components:] they're baaack! [28]).

Our approach is focused on building generic coordination components. These components
realize generic solutions to standard coordination problems. They can be specialized and
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parameterized to solve specific coordination problems. With these components we provide
explicit separation of coordination and computation, so facilitating reuse and evolution of
coordination aspects. And as coordination aspects describe typically parts of the application
architecture, we make the architecture more explicit and manipulable. A description of which
components are used and how they are put together and parameterized, provides a high-level
description of what happens where in a system1. This makes a system easier to understand
and easier adaptable to new requirements[26].

Object-oriented programming languages(OOPLs) go a long way towards supporting com-
ponents. Objects hide their implementation and there are numerous object oriented design
patterns that exploit the possibilities of run-time object composition[9]. There is, however,
still to do a lot in this area to come to a more rigorous and complete approach to component-
oriented software development[26]. Typical problems with the 00 paradigm with respect to
building software components are:

• existing OOPLs emphasize reuse by programming new object classes that extend exist-
ing ones and not by composing different objects or object-parts together[26J.

• 00 properties can be hard to use in parallel without violating the advantages they
offer[30]. A typical example is inheritance and encapsulation: when using inheritance,
a programmer may need to know implementation details of a superclass, so violating
encapsulation.

• 00 leaves the architecture of a system mostly implicit. The composition of objects is
typically hidden in the implementation of the objects themselves[26]. A structural de-
scription, however, is of use during design, documentation and subsequent maintenance
of a system[18].

In this project we tried to overcome these problems by imposing extra requirements on
the way a system is designed. The project is a pilot project in applying the component idea
to coordination using an existing concurrent object-oriented programming language.

To validate our ideas we developed a prototype coordination framework in Java[12], an
object-oriented programming language particularly well-suited to modeling software entities
in a distributed environment. This language provides low-level network communication ab-
stractions and some basic synchronization primitives, that are useful to build coordination
abstractions. We tested the usability of the framework by applying it to a set of sample
applications that are characteristic of open systems.

In part I of this thesis we discuss open distributed systems and coordination (our problem
domain). We also present our component-oriented approach. In part II we present an analysis
of our sample applications with respect to coordination problems in open distributed systems
and we describe our experiences while developing the sample applications and the framework.
We show that we indeed gain reusability, flexibility and that we provide clear architectures
of the developed applications. But, as this project was a first try to develop a coordination
framework, we only have some preliminary results. We end with a summary and discussion
of these results in part III.

'As also promoted by the configuration language Darwinl22)
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Part I

Background
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Chapter 2

Problem domain

In this chapter we describe the problem domain of our project. This problem domain is open
distributed systems and coordination. We will first introduce these two notions and after that
we will discuss coordination problems in open distributed systems.

2.1 Open distributed systems
In this section we first start with a definition of distributed systems and next, we introduce
the additional requirements for open systems.

2.1.1 Distributed systems

Distributed systems are systems where different parts of such a system are geographically
separated. We call these parts entities (other common names are "active entities", "active
objects", "agents", "actors", etc.). These entities are physically distributed, but intercon-
nected. They run, for instance, on different computers in a network, but they have to exchange
information to be able to work together.

Reasons for having distributed systems as stated above are[38]:

• Information exchange: Different entities may need information from each other.

• Resource sharing: Clients make use of common resources, for instance a central database.

• Increased reliability through replication: If some nodesof a system may fail, other nodes
that still operate correctly, can take over the tasks of the failed ones.

• Increased performance through parallelization: If a number of tasks are executed in
parallel, the overall performance of a system can be better than if these tasks were
executed sequentially.

• Simplification of design through specialization (expressiveness): Different parts of a
system can do a specialized task, maybe even on specialized computers in a network.

We see that the entities are separated but interdependent: they are designed to achieve a
common goal. They shouldn't be too interdependent, because this would violate the advan-
tages of distribution that we have stated above. So the different entities form a coherent, but
loosely coupled system which provides an integrated computer facility: their common goal.
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This leads to the following definition of Distributed Systems:

A Distributed System is a collection of loosely coupled entities in a distributed
environment, working together to achieve a common goal.

Distributed systems have a set of characteristics that distinct them from non-distributed
systems. In the ISO draft for a reference model of distributed processing[14J the following
characteristics of distributed systems are mentioned:

• remoteness: follows clearly from the distributed nature.
• concurrency: any activity in a distributed systems can be executed in parallel with

other activities.
• lack of global state: it is impossible to determine the state of a distributed system

precisely, because a node in a system only knows its own state.
• partial failures: parts of a system can fail independently from other parts of the system.
• asynchrony: due to possible differences in execution speed of different activities the

system is non-deterministic.

2.1.2 Open distributed systems
Most modern applications must satisfy some additional requirements over the ones we men-
tioned in the previous section. They have to act on ever expanding networks, on heterogeneous
platforms and they are subject to constantly evolving requirements. Applications that can
deal with the above requirements are called open systems[391.

In open systems we, therefore need apart from distribution and interoperability, a great
deal of flexibility. Flexibility in the topology of a network: network architectures and, for
instance, the number of clients can change. Flexibility in platform: applications have to
run on and communicate with different platforms. The most difficult kind of flexibility is
flexibility needed to cope with evolution, because not all application requirements can be
known in advance[26].

In the same ISO draft[14] the following additional requirements are mentioned for open
distributed systems:

• heterogeneity: systems have to cope with different and changing hardware, operating
systems, communication networks and protocols, etc.

• autonomy: the various management or control authorities an organizational entities are
autonomous.

• evolution: systems have to cope with changing application requirements.
• mobility: activities and data may be moved over a network.

2.2 Coordination

Coordination has to do with interaction. Whenever active entities interact they have to act
in a coordinated way to get to a result. When people want to meet, they have to be at the
same time at the same place, otherwise the meeting will fail. Or, when multiple users want
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to read and write in a database, the access to the database has to be coordinated in order to
keep the database consistent.

So whenever multiple entities are involved we need some kind of coordination to enable
them to work together and to resolve conflicts between them. One definition of coordination
is given by Malone and Crowston[21] in an interdisciplinary study of coordination. This study
covers fields from economics and organizational theory to computer science. They say that

Coordination is the act of managing dependencies between activities.

This is consistent with the intuition that, if there is no interdependence, there is nothing
to coordinate. Kielmann[17] says the same with other words, namely that coordination is
the managing of inter-agent activities of agents collected in a configuration. He doesn't say,
however, that these inter-agent activities have to do with dependencies. A broader definition
is given in [7]:

Coordination is the organization of a group of entities in order to improve their
collective results.

This definition takes all organization of entities into account, even when there are no
dependencies between them. An example of organization without dependencies is the organi-
zation of entities, when global constraints exist, like imposed conditions on the way in which
solutions must be implemented by entities1. In this thesis, however, we focus on the first
definition.

The first definition implies that coordination is needed whenever there are some interde-
pendencies between activities. Malone and Crowston[21J present the following list of interde-
pendencies:

• Shared resource: a resource is used by multiple activities.
• Prerequisite: an activity must be completed before another can begin.
• Transfer: an activity produces something that is needed by another activity, and this

"something" should be transferred from one activity to another.
• Usability: whatever is produced by an activity should be usable by the activity that

needs it.

• Simultaneity: some activities need to occur (or cannot occur) at the same time.
• Task/Subtask: a task is divided into a set of subtasks that can be executed by different

activities.

• Group decisions: decisions are taken collectively by a group of entities.

Several generalizations and specializations are possible, for instance concerning aspects
like number of activities involved in a dependency (e.g. we can define a Multiple-Prerequisite
dependency, where some activities need to be completed before others can begin) and time
(e.g. we can define a Delta_Time-Prerequisite: an activity must begin a certain time interval
after another activity has ended)[6].

'Even in this case we can view these global constraints as interdependencies. These interdependencies,
however, are not related to the task of the entity, but to the environment.
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There are several ways of dealing with the coordination problems that arise in case of
the interdependencies stated above. Mintzberg[29], for instance, considers three fundamental
coordination styles:

• Mutual adjustment: This occurs whenever two or more entities agree to share resources
to achieve some goal. Entities must exchange information and make adjustments in their
behaviour, depending on the behaviour of other entities. In this form of coordination
no entity has prior control over the others.

• Direct supervision: This occurs when two or more entities have already established a
relationship in which one entity has some control over the others. The prior relation-
ship is commonly established by mutual adjustment. In this form of coordination the
supervisor controls the use of common resources and prescribes certain aspects of the
behaviour of its subordinates

• Standardization: This occurs when entities have to follow pre-established standard pro-
cedures in a number of situations. In this form little coordination is needed, until the
procedure itself needs to change2.

In the book "How to write parallel programs" by Carriero and Gelernter[2] it is shown
that different forms of parallelism, and therefore different kinds of interaction, may favor
different paradigms for interaction. The authors discuss three different forms of parallelism
in parallel programs (and in distributed systems): result parallelism, specialist parallelism
and agenda parallelism. With result parallelism a problem is divided into parts and there are
many workers that produce a piece of the result. This kind of parallelism naturally maps to
live data structures: processes are represented by their results. Each data element is implicitly
a process which will turn into a (sub)result data object when the process terminates. With
specialist parallelism every parallel activity has its own competence. This kind of parallelism
is a good match to message-passing: each activity can be on a network node and messages
implement communication over edges. Agenda parallelism is a kind of parallelism where
the work is organized as an agenda of activities. Workers are generalists that grab a task
that is needed to be done at that moment. This maps naturally onto a (distributed) shared
data structure: data elements are accessible through the whole (distributed) system, so every
activity can access and process these elements whenever needed.

We see, different problems need different solutions. And there are different ways of solving
problems. In our work we keep all possibilities open. Depending on the needs of our system we
can have centralized coordination, non-centralized coordination, we can use message-passing
or generative communication, or whatever is needed to solve a specific problem in a specific
system.

2.3 Coordination problems in open distributed systems

For the identification of coordination problems in open distributed systems we use the defi-
nition of Malone and Crowston in section 2.2. This definition states that coordination is the
management of dependencies between activities. We, therefore, look at dependencies in open

2Thjs is, however, viewed from a human management point of view: a manager doesn't have to do anything
unless a standard procedure changes. In computer systems, the implementation of the standard procedure will
be viewed as the coordinating entity.
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distributed systems and it appears that there are many dependencies (and thus coordination
problems) that appear over and over again in these systems. A first list of these problems is
presented in [6]:

• simultaneity constraints between activities: activities are dependent, because they need,
or cannot, occur at the same time. A well-known example of this kind of constraint
is a shared resource (e.g. only one activity can write in a database in order to keep it
consistent).

• execution ordering between activities: activities are dependent, because they need to
appear in a certain order (e.g. a file must be opened before write operations can be
done).

• transfer of information between activities: activities are dependent, because they need
information from each other and this information has to be transferred between them
(e.g. when computing the topology of a network).

• simultaneity constraints between activities: activities are dependent, because they need,
or cannot, occur at the same time (e.g. only one activity can write in a database in
order to keep it consistent).

• task/subtask dependencies: in computer systems these kind of dependencies are usually
determined at design-time, when the programmer decomposes a goal into subgoals.
Dynamic goal decomposition can be found in multi-agent systems, and we can also
think of dynamic decomposition for reasons of load balancing.

• group decisions: activities are dependent, because they need each other to take some
decision (e.g. a new main server has to be chosen in a group of servers, when the former
main server is down).

This list is not intended to be exhaustive. It is a first set that we have identified. We can
use it to analyze particular open systems and we can always extend it when we find other
dependencies in open distributed systems.

As an example we go into more detail for transfer of information and the access to shared
resources.

Transfer of information

We can view information transfer dependencies as producer/consumer relationships: one
activity produces some information that is used by another activity. We need a coordina-
tion solution to control this transfer of information3. This coordination solution must: take
care of the physical transfer of the information from one activity to another, control their
synchronization, and, in case of replicated transfer (multi-cast, broadcast, etc.), control the
replication and transfer of information and, if needed, guarantee the atomicity (all or none of
the activities will receive the information) and the order of arrival of the information[6].

In figure 2.1 a simple one-to-one transfer problem is shown. The solution should take
care of the requirements stated above. As an extra feature it could also provide buffering of
information.

3At this point it is open if this solution is implicit in the code or taken care of by an operating system, or
that we use a special coordination component to solve our problem.
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Access to shared resources

coordination problem
for transfer of information

Multiple entities may need access to the same resource. A solution to this coordination
problem should take care of serializing concurrent requests, or, at least, take care that no
requests that are harmful together, will enter the resource at the same time (e.g. this is
the case when there is a readers/writer access to shared resource. Writers have to enter the
resource alone, readers can access it with more than one at a time). The solution also should
control fairness and access rights and take care of possible hardware and software failures[6].

coordination problem
for accessing a shared resource

Figure 2.2: Shared resource access problem
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Chapter 3

Approach

3.1 A component-oriented approach to coordination

In this project we have explored a component-oriented approach: component software should
be written as black-box abstractions that can be composed and parameterized to construct
an application. Particularly we have had a look at coordination aspects in open distributed
systems. These (non-functional) aspects are typically programmed for specific classes[26]
and, therefore, difficult to reuse and not very flexible. We have tried to capture solutions to
coordination problems in generic software abstractions to improve reusability and flexibility
of these aspects and to support an explicit representation of a system's architecture.

The need for reasoning about the architecture of software systems, especially when these
systems are large and complex, is, among others, stressed by Garlan and Shaw[lO] and
Perry and Wolf[32]. Explicitness of structure can be helpful for design, documentation and
maintenance[1 8]. A clear architecture makes a system easily understandable: it is clear what
happens where in the design, and thus, in case of maintenance, where the system should be
adapted to new requirements. One way of dealing with the problem of interacting components
is the use of a configuration language like Darwin[22]. This language describes programs as
a set of component instances and their interconnections. It allows the specification of both
static structures fixed during system initialization and dynamic structures which evolve as
execution progresses[23}. Explicitness of architecture may seem to violate transparency prin-
ciples. But on every level of an application a clear picture of the underlying component
structure helps in understanding that part of an application. This, of course, without violat-
ing the transparency of the underlying black-box components. We can make a comparison
with imperative languages: a good choice of modules and procedures provides on every level
of the application a clear description of what happens on that level, but keeps the actual
implementation transparent.

Our approach is aimed at developing components to provide coordination solutions. These
solutions typically define (parts of) architectures of systems. In this way we do not only make
the structure of an application clearer (as Darwin does), but also make these non-functional
aspects of an application reusable and flexible (as components in general should do). We
introduce the concept of components and component framework in section 3.2.

We have chosen an object-oriented programming language (OOPL) as the implementation
language for our components, because 00 languages go a long way towards supporting com-
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ponents: objects provide encapsulation of data and services by hiding their implementation
details. And several design patterns exploit the possibilities of object composition to gain
reusability and flexibility[9]. Composition is also provided by class composition mechanisms
like inheritance, templates and mix-ins[11. There are, however, some problems using 00 for
building components. We discuss these problems in section 3.3.

3.2 Components and Frameworks

For a programming language to support component-oriented software development, it must
cleanly integrate both the computational and the compositional aspects of software[30]. These
aspects, however, are not always integrated in a straightforward way due to interference of
different object-oriented features (see section 3.3 for a discussion). Computational require-
ments will be fulfilled anyway (otherwise a system makes no sense). The point is how these
computational requirements are organized: how are the computational parts put together.

Although the 00 paradigm promised to provide reuse, it turned out that 00 doesn't do
this in itself. Reusability of (parts of) a system is only reached, if this aspect is taken into
account during the whole software development process[16]. The same applies for compos-
ability. Unlike, for instance, in functional programming where it is easy to construct a new
function by combining two or more others, composability is not well supported in object-
oriented technology. Therefore a similar idea as for reusability is proposed for developing
composable software: Software development should be (component) framework-driven. All
phases of the software life-cycle including requirements collection and specification should be
aimed at developing patterns and components formalized within a framework[26}.

3.2.1 Components

In [26] a component is defined as

a component is a static abstraction with plugs

An abstraction can more or less be any useful abstraction you can think of: an interface, an
object, a class, a template, a type, a function. The implementation details of the encapsulated
structure are hidden. "Static" means that a component is a long-lived entity that can be stored
independently of the applications it is a part of. "With plugs" means that the interaction of
the component with other components is well-defined. Plugs can for instance be parameters,
ports, references to objects, etc.

component

plug

Figure 3.1: A software component
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This definition doesn't say anything about reusability and flexibility. Developing com-
ponents, however, has everything to do with these two aspects. We are developing compo-
nents in the first place to be reusable and flexible to ease software development. Reusability
and flexibility lead to some extra demands on components: they have to be generic and
(re)configurable. "Generic" means that the component will be applicable in a range of com-
mon problems. So components must provide a common solution, which can be configured for
specific use. Flexibility demands that components be easily adaptable to new requirements,
for instance for maintaining and adapting evolving software systems in a simple way.

A last point about components is that encapsulation of abstractions also supports explic-
itness of architecture.

This leads to the following description of components:

A component is a generic black-box abstraction which is (re)conflgurable and corn-
posable by plugs

Applications can then be viewed as compositions of parameterized components (see figure
3.2).

rL_j

Figure 3.2: An application composed with components

This is, however, a static view of applications. Applications can also be viewed as a
dynamic assembly of cooperating and communicating "entities" (like in the configuration
language Darwin[22]). This is typically the view of an application at run-time. The boundary
between these two views is not always very clear. Nowadays, applications can be (re)composed
using means as dynamic loading or dynamic method lookup. Therefore we have to distinguish
between components at design time, components at run-time and maybe components that
exist in both these views. Another consequence is that a composition can change in (run-)time.

3.2.2 (Component) Frameworks

We saw that object-oriented technology doesn't provide reuse by itself. It depends on the
way one uses the available technology. In [26] is shown that all approaches to develop open,
adaptable systems, in some way, are based on component frameworks. In [16] frameworks are
defined as

A framework is an abstract object-oriented design, where every major part of the
design is represented by an abstract class. Usually there is a library of subclasses
that can be used as components in the design.
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00 frameworks are more than just class libraries. They provide a generic architecture (the
abstract design) and mostly act as the coordinating and sequencing application activity.

Commonly specific behaviour is induced by adding or adapting methods in subclasses of
the classes provided by the framework. We call frameworks that use this method white-box
frameworks, because typically the implementation of the superclasses must be understood to
use them. A consequence of this way of specialization is, that many new subclasses have to
be written and that these subclasses will always be dependent on their superclass(es). This
makes it difficult for a new programmer to understand an application and thus can make an
application hard to adapt.

Black-box frameworks, on the other hand, make use of components with a particular
interface (as described in the previous section). The user of the framework only has to
understand these interfaces to be able to use the components. An application is constructed
by plugging the black-box components into the generic architecture. Where the former way is
more flexible (functionality is quickly adapted by programming a new subclass), the latter is
easier to use (components are known only by their interfaces, and easily interchanged if their
interface is the same). And with black-box frameworks it is clearer what happens where: the
structure of the solution is explicit.

3.3 Components and 00 technology
Object-oriented technology supports components to a certain degree. Objects provide en-
capsulation of data and services by hiding their implementation details. And several design
patterns exploit the possibilities of object composition to gain reusability and flexibility[9J.
But there are some problems concerning component development in standard object-oriented
languages. These problems have to do with the focus on white-box reuse[26] and the fact
that several 00 features appear hard to integrate[30J. We will go into more detail on these
problems below.

A widely used method to gain reusability and flexibility is the use of design patterns.
Design patterns provide general solutions to common software design problems. A good
pattern can be used over and over again to solve the same kind of problem in different settings.
Because patterns capture mostly solutions that have been developed and have evolved over
time, the solutions tend to be more flexible, modular, reusable and understandable than ad
hoc solutions (example: Strategy pattern)[9]. Patterns aren't, however, strongly supported
by object-oriented systems. It is not possible to make patterns explicit in a design and there
aren't built-in mechanisms to enforce correct use of patterns.

00 focuses on white-box reuse

Reuse in object-oriented systems is mostly obtained by inheritance: new classes are pro-
grammed by specializing and extending superclasses[26]. In this way reuse is realized by
programming new classes that extend other ones. This approach is inherently limited, be-
cause encapsulation of the superclass is violated and subclasses can be strongly dependent of
superciasses. This kind of reuse is called "white-box" reuse: a programmer typically has to
know implementation details of the superclass. The advantage of this approach is that it is
flexible: all kinds of subtle behaviour differences can be obtained by slightly adapting classes.
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"Black-box" reuse is preferable because it is easier to use and more robust: a programmer
only has to understand the interface of the abstraction and is not able to write code that is
dependent on implementation details of the abstraction. It is, therefore, somewhat less flexible
than "white-box" reuse. With this kind of reuse whole abstractions are reused without any
additional classes to program. Behaviour is adapted by parameterizing the abstraction with
parameters, like just values, objects or even types (e.g. in C++-templates).

Another consequence of the fact that object-oriented approaches do not focus on designing
composable abstractions is that they don't provide support for explicitly representing the
architecture of an application. Links are often hidden in the extension code. This makes
a system harder to understand and more difficult to adapt. Design patterns often try to
make class structures as clear as possible (example: Strategy pattern[9]). But, as we already
mentioned, patterns are not well supported by current 00 systems. As patterns can make
a structure more explicit, it is not possible to make them explicit in a design. When using
components links and dependencies between components must be explicitly specified, thus
making the architecture explicit [26].

Interference of 00 properties

Wegner has made a classification of object-based programming languages [40]. He proposes
the following categorization of languages along with their "dimensions":

Object-based: encapsulation and identification
Object-oriented: + classes + inheritance
Strongly-typed: + data abstraction and types
Concurrent: + concurrency and distribution
Persistent: + persistence + sets

Additionally another dimension is mentioned in [26], namely homogeneity: in a homogeneous
object-oriented language, everything (within reason) is an object. So Smalltalk is a homoge-
neous object-oriented language whereas C++ is not.

These dimensions are said to be orthogonal, which in this case means that the different
elements can be found independently in different programming languages. It appears that
integrating the different dimensions is not trivial: they interfere in unexpected ways' [30]. We
saw in the previous section already that the use of inheritance violates object encapsulation
because subclasses must typically be aware of implementation details of the superclass.

Similar problems exist with concurrency. Classes that use a concurrency mechanism are
difficult to inherit from without knowing the concurrency details of the superclass. A subclass,
for instance, needs access to a mutex in the superclass in order to synchronize its own methods
with methods from the superclass. McHale[24] has shown that the cause of this problem lies in
conflicts between inheriting sequential code and inheriting synchronization code. He proposes
generic synchronization solutions to separate synchronization code from other code. In his
thesis many examples can be found of generic synchronization policies that are independent of,
but can be bound to, classes that need this synchronization. Another example of interfering

'Orthogonality from the mathematical point of view means that there is no interference between dimensions!
So, from that point of view, interfering orthogonal dimensions are a contradictio in te,-minis
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features is concurrency and objects: they interfere, because objects that function correctly in
a sequential environment, may not function in a concurrent setting.

More examples of interference can be given and they all come down to the same problem:
the interference shown above, is a consequence of an inadequate client/supplier contract[30].
Classes, for instance, provide an interface to instances and one to subclasses and these two
are not clearly separated.
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Part II

Experiments
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Chapter 4

Sample applications

Our prototype coordination component framework should be useful for the development of
coordination parts of open distributed systems. We need, therefore, a set of applications to
develop, test and evaluate our framework. These applications should be representative for the
problem domain. In this way we ensure that the solutions are solutions to actual problems
and thus that our approach has the required capabilities.

In section 4.1 we discuss the criteria for our set of sample applications. In section 4.2 we
discuss the sample applications we chose: we give a short description of the application and
a list of coordination problems in these applications. At the end we categorize the solutions
in order to do a first step towards generic solutions.

4.1 Criteria
The criteria for our sample applications are:

• They should be representative for open distributed systems: they should cover the main
properties of open distributed systems.

• They should cover a range of coordination solutions: the framework is supposed to
provide a set of coordination solutions. To develop and test a first set, the sample
applications should cover the set of problems that require these solutions.

• There should be some overlap between the sample applications: equal or comparable
coordination problems should appear in different applications in order to ensure that
the given (implementations of) solutions be general and reusable.

4.2 Chosen sample applications

Out of a longer list of possible applications (based on, among others, [37]) we have chosen five
sample applications that are representative of open distributed systems. We describe them
shortly in section 4.2.1, we discuss the coordination problems that appear in these applications
in section 4.2.2 and end with a categorization of these problems in section 4.2.3. We do this in
the form of a matrix so we see not only which solution appears where (the second criterion),
but also where the overlap of solutions in different applications (the third criterion) can be
found.
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4.2.1 Description of the sample applications
In this section we list the sample applications we chose for the development of our framework.
Distribution in these applications is mostly obvious due to the distributed nature of the
applications: parts of the system are geographically separated and/or clients need remote
access to a service. Openness isn't inherent to the applications themselves. It is encountered
in additional requirements we impose: they have to be able to cope with evolving network
topologies, heterogeneity and other evolving requirements. Basically this comes down to extra
flexibility requirements to a system.

Automated Teller Machine System: A system to support a network of ATMs shared
by a consortium of banks. Every bank has its own account database. Teller machines are
connected to a central server (one per bank). The teller machines, although owned by a
specific bank, can serve clients from other banks as well. The application should be open in
the sense that when a new teller machine is added, the system shouldn't be reconfigured or
restarted. Different banks can also work with different platforms.

Figure 4.1: Automated Teller Machine System

Library Application: A system that keeps a database of all books in a library. The
database should be accessible through a network for the following functions: searching for
books and retrieving information about them (are they in the library, have they been lent,
are they reserved). Also actions like reserving a book, registering a book as lent, updating
the library (new books in, old books out, overruling reservations) are possible.

Figure 4.2: Library Application

Game Server: There is a central game server which provides means for communication
between different players. If necessary it holds a central play-field or multiple play-fields for,
for instance, one-to-one games. These play-fields can also be at the client side, in which case
the server only provides communication.
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Chat system: a couple of users at different sites in a network can send messages to each
other that all users can see in a window.

Figure 4.4: Chat System

Multi-user drawing program: We have chosen one program in the area of computer
supported cooperative work(CSCW): a drawing program that can be used by multiple users
at the same time. (Parts of) the drawing area are lockable so that no more than one user is
drawing in an area.

Figure 4.5: Cooperative drawing system

4.2.2 Coordination problems in the sample applications
In this section we list the coordination problems per sample application'. Some coordination
problems will not appear in this list: internal communication (e.g. message passing within

'see also section 2.2 for a theoretical background of the categories.
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a client) and type-checking as usability constraint (this is also taken care of by the program
environment itself). Also time-out facilities for fault tolerance reasons are not mentioned,
because they are inherent in every open distributed application.

Another thing not mentioned in the following list is: task/subtask dependencies (because
there are none of them in these applications. See also the description of this dependency in
section 2.3). Nor do we mention, that there can be centralized and non-centralized solutions.

Automated Teller Machine System:

transfer: remote communication
redistribution of ATM requests to different banks

shared resource: account database access
service access to bank and request redistributor

prerequisite constraints: account, PIN, balance checks before deducting from an account
simultaneity constraints: (readers/writer) access policy to account database
usability: transformation of currency (according to some exchange rate)
replication: replicated account databases
group decision: choice of new replica coordinator between replica managers if

coordinator is down

Library Application:

transfer: remote communication
shared resource: book database access

service access to request manager
prerequisite constraints: allowed actions on book depend on status of book

allowed actions on books depend on status of user
updating the library only if user is library master

simultaneity constraints: (readers/writer) access policy to database

Game Server:

transfer: remote communication
two-way connection (between two players)
multi-cast connection (1-to-N connection between player and
other players)
redirection/regrouping of communication requests
(e.g. group two incoming requests from people who want to
play, so that they can play a one-to-one game)

shared resource: central play-field (depends on game)
service access to server

prerequisite constraints: conditions to start a game (e.g. at least two players)
simultaneity constraints: access policy to central play-field (if there is one)
time constraints: response time (especially if the game is real-time)
group decision: to decide who starts the game
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Chat System:

transfer: remote communication
multi-cast to all participants

shared resource: server
windows that display the messages

prerequisite constraints: conditions to start a session (e.g. at least two people)
simultaneity constraints: (restricted) access to a session

messages in same order in every window
group decision: agreement on communication channel (if the application doesn't

use a server )

Multi-user drawing program:

transfer: remote communication
multi-cast for status updates

shared resource: server
locks to lock areas

prerequisite constraints: register required to enter program
lock only possible when area is unlocked
unlock only possible when area is locked by unlocking user

simultaneity constraints: no more than one user can use a drawing area at the same time
deadlock prevention

4.2.3 Categorization of coordination solutions

The coordination solutions presented in the previous paragraph are application specific. We
have categorized these solutions in a set of more general solutions, so that every solution
should be reusable in more than one application. The result of this categorization is shown
in table 1.

The row headings are the names of the sample applications, the column headings are the
names of the coordination solutions. An / indicates that the application uses this particu-
lar coordination solution. A coordination solution should be reusable for every .../ in a column.

23



c_
C

) I

t I
c

ç
<

.<
<

re
m

ot
e 

co
m

m
un

ic
at

io
n 

(t
ra

ns
fe

r)

ç
c

re
qu

es
t r

ed
is

tr
ib

ut
io

n 
(t

ra
ns

fe
r)

<
..

on
e-

w
ay

 c
on

ne
ct

io
n 

(t
ra

ns
fe

r)

<
...

tw
o-

w
ay

 c
on

ne
ct

io
n 

(t
ra

ns
fe

r)

<
ç

m
ul

ti-
ca

st
 c

on
ne

ct
io

n 
(t

ra
ns

fe
r)

<
ç

ç
da

ta
ba

se
 a

cc
es

s 
(s

ha
re

d 
re

so
ur

ce
)

<
c

ç
ç

se
rv

ic
e 

ac
ce

ss
 (

sh
ar

ed
 r

es
ou

rc
e)

ç
<

<
ç

in
fo

ch
ec

k 
be

fo
re

 a
ct

io
n 

(p
re

re
q)

<
.

c
w

ai
t f

or
 c

on
di

tio
n 

be
fo

re
 a

ct
io

n 
(p

re
re

q)

<
...

c
<

ac
ce

ss
 p

ol
ic

y 
to

 s
ha

re
d 

re
so

ur
ce

 (
si

m
ul

t)

<
re

st
ri

ct
ed

 a
cc

es
s 

to
 s

er
vi

ce
 (

si
m

ul
t)

K
.

re
al

-t
im

e 
co

ns
tr

ai
nt

s

<
..

gr
ou

p 
de

ci
si

on



Chapter 5

Communication

This chapter describes the communication part of the coordination framework. The goal of
this part was to build coordination components to solve information transfer dependencies in
open systems.

The coordination components are based on two basic communication mechanisms the
Java language provides. First Java provides wrappers for socket communication. With these,
socket connections can be set up and data can be transmitted over these sockets using streams.
The second mechanism we used, is Remote Method Invocation (RMI)'. With RMI it is
possible to do method calls on objects that are running on other Virtual Machines.

5.1 Stream based socket connections
The first mechanism we describe is string-based. These strings are sent over a TCP/IP
network using sockets and streams.

First we have built abstractions to construct connections (see figure 5.12). On the client
side we have a SocketConnection that wraps the connection once it is instantiated. It
provides a clear interface to write to and read lines from the connection. The establishment
of the connection is encapsulated by the Connector. On the server side we have an Acceptor,
which continuously waits for Connectors that try to connect. When the Acceptor accepts a
connection it passes it on to a specialization of the Connect ionMgr. This manager determines
what has to be done with the incoming connections.

With these abstractions it is possible to build communication layers for distributed ap-
plications. For instance configurations with a central server (see figure 5.2) or a ring based
structure (see figure 5.3).

We built some sample applications using a central server. We first show a network game,
and afterwards we show with a multi-chat facility, how we can reuse and configure the different
communication abstractions.

In these central server based applications we put all the application dependent stuff (the
"computational part") at the client side. On top of that we put a communication layer that
takes care of the transfer of information between the clients.

\\ tested the Pre-beta version of this feature for Java version 1.0.2. Now it is part of the newest version
of the core Java language (version 1.1).

2For a notation guide, see appendix C.
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IccnneO
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client

j Acceptor Conn.cfonMgr

_____

putCrO
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Figure 5.1: Connection abstractions

Figure 5.2: Communication with a central server

Figure 5.3: Communication with a ring based structure
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The first example shows a simple one-to-one game using a central server (see figure 5.4).
Clients connect to the game server and this server groups two incoming connections together.

I
Acceptor ConnectioE

—1

_____________

TWConnectionugr

ITwowayconnectIon I

I0vayc0nect1on

coordinationcommunicatjon

client server game application

Figure 5.4: Network game example

We see some new coordination abstractions. On the client side we have the LineReader,
which reads lines from the connection whenever a line is available, and passes this line on to
an application part that implements a Dispatcher interface. On the server side we have the
TwoWayConnectionMgr, which connects two incoming connections via a TwoWayConnection,
which uses two OneWayConnections. Once the connection between the two clients has been
established, the connection between the two clients looks like in figure 5.5.

SocketConnectioni onewayconnei1_ — — —
SocketConneIi

readLineo — — — readLine()
writethe()

I
wflteLl,e()

connect() OneWayConnection * — — connectO
rec000ectO - - - reconnectt)

s'ivcrclkiii uiflt

Figure 5.5: Two clients connected via two OneWayConnect ions

5.1.1 Reusability and flexibility

The above system is built as a reusable and flexible layer for asynchronous string based
communication over a TCP/IP network.

We show the reusability by viewing another application using this communication layer.
In figure 5.6 we clearly see what is reused. The client side of the communication is exactly the
same with the black-boxes SocketConnect ion and LineReader. On the server side we reused
the Acceptor, but we have another connection manager, namely the MulticastConnection-
Mgr. This connection manager uses the black box MulticastConnection to connect the
clients so, that every incoming line from one of these clients is multi-cast to all connected
clients.

With the connection abstractions at the server side: the OneWayConnection, the TwoWay—
Connection and the MulticastConnection, we have a set of black-boxes that can be corn-
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J Acceptor Conn.cflonMgrpunO

MCConnectionNgr

coordination.communication

client server chat applicaton

Figure 5.6: Multi-user chat application

bined and configured to set up different kinds of connections. Examples are the two connection
managers and the TwoWayConnection shown, which is built using two OneWayConnections.

We gained flexibility by

parameterizing the application by a connection. If we want to change the connection we
can replace it (currently only at startup time) by another one with the same interface. In
this way the actual application doesn't have to know which communication mechanism
is used and to whom it is connected. This is specified during the configuration of the
system. A configuration routine could look like this:

host = "server.somewhere.ch";
port 6789;

II set up connection to host host and port port

conn = new SocketConnectionO;

conn. connect (host ,port);

// set up game

game = new BattleshipO;

II set up linereader that reads from conn and puts its

// lines to game.

linereader = new LineReader(conn, game);

The Acceptor is black box, and configurable, namely parameterizable by a Connec-

tionNgr. This provides a clear decoupling of connection establishment and connection
handling. Flexibility is reflected by the fact that both parts are now independently
changeable. Again, we did no experiments with changing configurations at run-time.

5.1.2 Comparison with Java ACE

The Adaptive Communication Environment[35J of Doug Schmidt implements a set of design
patterns for concurrent event-driven communication software. It provides abstractions for
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connection setup and connection handling. Comparable to our communication work are the
Connector[36] and Acceptor[34J pattern. In these patterns connection establishment and
connection handling are decoupled to increase reusability and flexibility.

The structure for setting up connections is more or less the same, but our approach is less
restrictive:

• In ACE a Reactor is used to demultiplex multiple events in a single thread of control.
In our approach it is open and transparent if single or multi-threaded solutions are used.
This implies a simpler basic structure: our Acceptor/ConnectionMgr pair focuses on the
communication problem, whereas in ACE complexity is added telling how to manage
the Acceptor and the event handlers linked to the connections (by using a so-called
Reactor). In our approach it is transparent how the connection is handled and our
Acceptor is just a black-box delivering connections that appear on a certain port, to
a connection manager. The Acceptor is a more independent component with a clear
task.

• In our approach it is open if for every connection a connection handler is created or not.
In ACE as it is presented, a handler is created for every connection. This is not always
necessary. If we look, for instance, at our multi-cast abstraction, we see that this is one
handler that handles multiple connections.

We claim that our approach is more simple and clear, and less restrictive. Therefore it
is a better basis for building black-box coordination components: Our abstractions are more
independent and therefore easier to reuse in different applications. It is also easier to plug
in different solutions for establishing and managing connections, and these solutions decide,
either themselves or by parameterization, how to act.

5.2 Remote Method Invocation
Remote Method Invocation (RMI) is a RPC-like mechanism in an object-oriented environ-
ment. The main idea is to extend the Java object model to a distributed object model in as
seamless a way as possible. The general structure is shown in figure 5.7. A remote object
is represented by a stub object at the client side. The java. mu layer takes care of all the
communication needs to do method calls on these remote objects.

stub

_______________

interface

__________________

java.rmi /
I
MyRemoteOi j. -

I UnicastRemoteObji ' MyRemoteObject

Application jMyRemoteObject1mpF

Figure 5.7: RMI

On the client side the use of RMI is fairly transparent. A method invocation on a remote
object has the same syntax as a method invocation on a local object. The use of RMI is not
completely transparent. There are two differences: first of all, before doing a method call on
a remote object, there has to be a connection to this object. RMI uses a simple bootstrap
name server to obtain remote objects on a given host. We wrote a simple abstraction that
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uses this server (thus making the use of this server transparent) and returns a remote object
reference when given a host and the name of the object. The second difference is the fact that
a remote method call can throw a (specialization of) a java.rmi. .RemoteException. Every
time a remote method is called this exception has to be caught or explicitly passed on to
the next level of control (as every exception in Java). The possible failure of connections is
a characteristic of distributed systems, so recovery should be taken care of. But the explicit
exception mechanism of Java violates transparency of remoteness and the use of RMI as the
communication mechanism.

On the server side, the use of RMI is far less transparent. A remote interface has to be
made for every object that is intended for remote use. The implementation of this interface,
i.e. the remote object itself, has to throw the earlier mentioned RemoteException. This
violates transparency of local and remote use completely: even local calls on this object will
have to catch this RMI-exception. The stubs for the remote objects have to be made using
a special stub compiler and a Registry program has to be started at the server side. This is
a kind of general remote object server, where the remote objects have to register themselves,
before being remotely accessible.

If we look at the differences between RMI and sockets and streams, the main difference is
that RMI is synchronous and socket/streams are asynchronous. This implies that they are not
transparently interchangeable. We can think of a higher level mechanism that uses our socket
stream abstractions to implement a higher level synchronous communication mechanism, for
instance with send/receive pairs3. Most of the time this kind of connections is used, because
when an (asynchronous) message is sent, we mostly need a notification of arrival, a notification
that a request is carried out or a return value. We can also think of interchangeability with a
CORBA connection. All these connection abstractions could probably have the same interface
and would then be transparently interchangeable. Components that use these connections
could then also be transparently used in different communication settings.

5.2.1 Conclusion

We looked at RMI as a communication mechanism in a component-oriented environment. We
saw that in some ways RMI is a nice extension to normal method calls, and in some ways it
isn't simple and transparent at all.

From the client point of view, RMI is a nice feature: it is almost transparent that remote
objects are called, except that, before accessing a remote object, a connection has to be
established. For the establishing of connections we wrote our own abstraction, that returns
a reference to the remote object, when given the address and name of the remote object.
Another point is that network failure exceptions have to be handled explicitly. This may be
a good mechanism for building robust distributed applications, but it violates transparency
principles.

From the server point of view, RMI is not transparent at all. The obligatory interface
and exceptions, and the separate stub compilation make the use of RMI circumstantial and
non-transparent. RMI could be more transparent, if every local object could be used remotely
by defining a remote interface or by registering somewhere that an object is allowed to be
remotely accessible.

3RMI itself is of course also a higher level synchronous communication mechanism based on socket
connections
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Chapter 6

Synchronization

Synchronization is, in addition to communication, a basic mechanism for building coordination
abstractions. There are low level mechanisms like semaphores, mutexes and locks, but we can
also think of complete coordination solutions for prerequisite or simultaneity dependencies.

In the following sections we will first discuss the basic synchronization mechanisms that
Java provides (section 6.1). After that we will present some simple synchronization abstrac-
tions we built in Java (section 6.2). And in section 6.3 we present a distributed synchronization
solution for locking objects over a network.

6.1 Synchronization in Java

Java provides a set of classes and constructs for concurrent programming. Concurrency is
supported via so-called threads. Activities can be started in different threads of control,
which causes the activities to run quasi-asynchronously. Execution of multiple threads can be
controlled using synchronized constructs. These constructs ensure that only one thread at a
time will enter a synchronized section in an object. Java takes care of this synchronization
with an underlying mechanism based on the monitor and condition variable scheme devel-
oped by C.A.R. Hoare[13]. There are also a set of methods defined in java.lang.Object
for managing threads. The most important ones are waitO, notify() and notifyAllO,
respectively to put a thread in a wait state and to notify one or all waiting threads. The
synchronization constructs provided by Java are very basic and sometimes somewhat crude.
The thread scheduler of the Java Virtual Machine, for instance, is not fair: one is never 100%
sure if a waiting thread will get a chance to run again. When a developer wants to be to-
tally sure about a certain scheduling policy, he will have to explicitly take care of it himself.
More information on Java concurrency mechanisms can be found in Doug Lea's book about
concurrent programming[20}.

We use the basic Java constructs to build more elaborated forms of synchronization. In
the next section we show some basic synchronization abstractions. In section 6.3 we use these
abstractions to build a distributed locking mechanism.
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6.2 Simple coordination abstractions

In this section we give examples of simple coordination abstractions that encapsulate synchro-
nization solutions. We start with a standard problem: the basic producer/consumer problem.
This problem is, in coordination terms, a prerequisite problem: a consumer can not consume
if there is not already something produced, and a producer can not produce something if the
consumer didn't consume the earlier produced item. We need therefore to synchronize the
production and consumption of the items.

A standard solution to this problem is the use of a one-slot buffer (see figure 6.1). The
buffer provides a put 0 and a get C) and takes care of the synchronization between these
methods internally. This synchronization is fully transparent to the producer and the con-
sumer: a call on the buffer which cannot be carried out due to synchronization constraints is
blocked by the buffer until the synchronization constraint is satisfied (e.g. a consumer blocks
until there's a new item available in the buffer). We don't have to limit ourselves to one-slot
buffers. If we need some kind of buffering, for instance, to keep the producer from waiting if
the consumer didn't yet consume an already produced item, we can take a many-slot buffer.
And if there are more producers and consumers of the same kind of items, they can make use
of the same buffer.

Buffer

put(i tern)
mt CaPaCItY

(Item )get()
- Object get()

_________

put (Object o)

_________

Producer Consumer

Figure 6.1: Buffer as synchronization solution between producer and consumer

This is a beautiful example of a synchronization component: the buffer encapsulates the
synchronization between the producer and the consumer. If it can handle all kinds of items,
it is reusable every time this kind of synchronization is needed. And it makes the architecture
of an application more explicit by showing that there is an object taking care of the flow
between producer(s) and consumer(s).

A slightly adapted version of the one-slot buffer is a future[3] (see figure 6.2). This is an
abstraction that takes care of return values in an asynchronous environment. A method that
will produce a result that is needed by the caller or somebody else, will return an object that
will eventually hold the result value. Calls on this object for the result will be blocked until
the result is available. The enforced synchronization is a write once/read many solution.

Future
setResuft()
getResulto

r.tutfl r.nlti

Figure 6.2: Future
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The last abstraction we discuss is a lock1. Although Java offers its own locking mechanism
via the synchronized construct, we may need more flexible and explicitly apparent locks.
With the native Java mechanism it is, for instance, not possible to time out waiting for a
lock. And we may need to explicitly reference a set of locks in order to implement a deadlock
detection algorithm.

A Lock object will normally consist of an interface with methods for acquiring and releas-
ing locks. Flexibility is increased when we add a separate method for checking the lock before
entering a protected section. This makes it possible to have different activities sharing a key,
so enabling group access to protected code. Flexibility is also increased by adding parameters
to toggle the use of wait loops with or without time-outs, in order to be able to block requests
in different ways until a lock is available.

Lock
boolean waitAtLocking
boolean waitAtEnter
nt timeoutAtLocking

mt timeoutAtEnter

boolean acquire(Object key)
boolean enter(Object key)
boolean release(Object key)

Figure 6.3: Lock component with methods to lock, unlock and check the lock and parameters
to adjust its behaviour

By constructing a lock in this way we create a generic lock component with parameterizable
properties. We make locks apparent in a design, supporting explicitness of architecture. And
we are able to use this lock component in different settings depending on how it is configured.
The lock component is shown in figure 6.3.

6.3 A distributed locking solution

We saw in section 6.2 a generic lock component. In this section we show how this lock is used
to build a distributed locking solution. The problem we solved is a problem in the area of
Computer Supported Cooperative Work: when multiple users have a common target on which
they work concurrently, this target must be (partially) lockable by a user to avoid interference
of different users. An example is an editor for editing a document by multiple users at the
same time in a distributed setting. Lockable targets in this case could be documents or
paragraphs of documents.

We will see in this section that the lock itself is just a small part of the total solution. A
major part of the solution solves the problem of having consistent lock information available
for every client. In figure 6.4 we show the structure of the solution. In the upper layer we used
the socket communication described in section 5.1. In the middle layer we have the lock layer
and the lower layer is the application dependent layer. In our editor example the application
dependent layer should consist of editing and displaying routines.

'For this part we extensively used the section about locks from the Concurrent Programming book of Doug
Lea[20].
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According to the structure in figure 6.4 we first built an application that only uses a set of
central locks and a user interface to lock the locks and to view the status of these locks. The
solution at the client-side is shown in figure 6.5. The "lock layer", the relevant layer in this
section, consists of a LockDispatcher and a ClientLockNanager. The LockDispatcher is a
kind of filter: messages for the ClientLockManager are filtered out and sent to this manager;
every other message is sent to the Client. The ClientLockMa.nager manages the local lock
information and takes care of the information exchange (using the communication layer)
with the lock server. It provides a clear interface to the application: registerO, lock()
and unlock() and some methods to get status information about a lock. Objects that are
associated with a lock are registered at the ClientLockNanager, and then the application
can lock and unlock2 the object and ask information about the status of a lock.

On the server side we see the following structure (figure 6.6). The LockManager manages
the locks, which are represented as Lock objects. Requests from clients for locking and
releasing locks are dispatched by the manager, and status updates are multi-cast to the
clients.

my sample application the lock and unlock operations are asynchronously sent to the lock-server. A
request can fail, because the status information at the client wasn't up to date, for instance because a status
update was on it's way to the client when the lock request was sent away. The status at the server is always
the "right" state, and actions of clients that originate from inconsistent client states are ignored.
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We reused the application independent part of this solution to build a simple drawing
program, where multiple users can scribble in the same area, but only if they have locked
it. This worked smoothly. The provided solution is limited in the fact that the number of
locks is fixed during run-time. For a distributed editor where paragraphs are locked we can
imagine that we need the number of locks to be flexible at run-time, because when editing a
text it is very common that new paragraphs are created and existing ones are deleted.

On both the client and server side we have configuration routines that describe clearly
how the components are parameterized and plugged together. A typical routine (which, in
this case, sets up a client for the drawing program) looks as follows:

II setup connection
conn = new SocketConnection(host,port);

II setup lock manager

un = new ClientLockNanagerO;

lm.conn = COnn;

lm.initQ;

II setup first client

ci = new ScribbleClientO;

cl.conn = conn;
c1.lm = im;
cl.xO = 20;
cl.yO = 60;
ci. init()

II setup clientlockdispatcher
id = new ClientLockDispatcher(lm,cl);

II setup line reader

ir = new LineReader(conn,ld);

lr.sleeptime = 10;
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In this routine the different components (see also figure 6.5) are instantiated and, if needed,
some parameters are set. Behaviour of the application can be adapted by changing these
parameters or by using another component with the same interface. An example of such a
routine in a different setting is described in section 7.3.

Reusability and flexibility

The solution presented in this chapter provides an application dependent distributed locking
solution. It has a clear interface to the rest of the application. Objects that should be
associated with a lock3 can register themselves and after that they can be locked or unlocked.

Distribution is transparent to the client. The proposed solution can be easily interchanged
with a local locking solution with the same interface.

We also saw that the structure of the application is explicit as shown in a configuration
routine.

3These objects mostly will be local representatives for objects that can be locked over a network
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Chapter 7

Design of a reusable and pluggable
Policy pattern

In this chapter we introduce a design for a reusable and pluggable policy pattern for the access
of a shared resource in a concurrent environment. This pattern combines the Command and
Strategy' pattern described by Gamma et al.[9J. It adds support for dispatching concurrent
requests and flexibility is provided by making the policy context-free and, therefore, trans-
parently changeable and usable in different applications. The Active Object pattern[19] has
the same structure, but focuses more on how the policy should do its job and less on the
transparency of these policies.

We start with an example to introduce the problem we want to solve with our design.
Next, we state the requirements which our design has to cover and then we introduce our
solution.

7.1 An example

We start with an example: the Automated Teller Machine. The basic structure of this example
is described in figure 7.1.

Account Database

Figure 7.1: Automated teller machine system
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The example describes a system to support a network of ATMs shared by a consortium of
banks. Every bank has its own account database. Teller machines are connected to a server.
This server redirects the ATM requests to the bank the request is supposed to go. The Bank
serves the information requests from the ATMs.

For the purpose of this chapter we focus on the control of the requests from the bank to
the account database. So actually this is an example of shared resource (database) access
(see figure 7.2). The database offers a couple of (unsynchronized) actions, which the bank
wants to access, possibly concurrently, to serve the ATM requests. Teller machines need to
get information from the account database in order to check a client's account. They also
need to update account information if they have transferred money to or from client accounts.
To keep the database consistent we need an access policy to control the multiple requests.

Bank Policy DB OP.r.tlonsl
getBelance(

__________________________getBnceO

I

DB.gelBalance updateBeiance()
getPINO
tdatePIN()

Mco,t Database

Figure 7.2: Database access in ATM system

7.2 Requirements

The main goal of our design is to implement the access policy to the database in a reusable
and reconfigurable way. In terms of our component oriented approach, this means that we
want to have a structure where we can plug in different policies, without having to change
other parts of our solution. Together with the fact that we are designing for open systems,
this leads to the following basic properties we want our solution to fulfill:

1. the whole solution should be able to dispatch concurrent requests.
2. the policy should be outside of Bank or DB Operations.
3. the policy should not only be outside but also as independent as possible from either

Bank or DB Operations.

The third property is the most difficult to meet, because there are policies which need
application dependent information (e.g. a readers/writers policy needs to know that get—
Balance 0 is a reader operation and updateBalance 0 a writer operation). We can distin-
guish three kinds of policies:

• policies that need no other information about the requests
• policies that need type information about the requests
• policies that need external information about the requests

We now go into more detail for each kind of policy.
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Policies that need no information about the commands

This is the easiest kind of policy. They can do their job without any knowledge about the
commands they have to dispatch. A typical example is a FIFO policy: no matter what
commands come in, the policy just dispatches them in the order they come in.

Policies that need type information from the commands

This kind of policy depends on the "nature" of the command: every commandtype has one
or more properties which are needed by the policy. A typical example for this case is the
readers/writer policy. The policy has to know if a command is a reader or a writer command.
So this information must be made available in our solution.

Policies that need instance information from the commands

This kind of policy depends on information which can be different for each instance of a
command. We can think of a priority policy, where, depending on the sender of the request,
a command has a certain priority. Again, somehow, this information must be available to the
policy.

7.3 Solution

The basic structure of our solution is shown in figure 7.3. We have an Interface of the
solution to the rest of the application. Clients have to call this Interf ace to access the
access solution. Of course, we have the resource itself. In between, we have a part which
represents the control policy. To give the policy the ability to buffer the commands, change
their order or execute them in parallel, we need an explicit representation of these commands.
We do this according to the Command pattern of Gamma et al.[9J.

Figure 7.3: Policy overview

We first take a closer look at the Command design. Following, we look at the Policy part,
before we give an overview of the total solution.

We set up the command part according to the Command pattern of Gamma et al.[9].
For the first kind of policy, the basic Command pattern suffices. For the second and third
however, we need some additions (see figure 7.4).
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For the second kind of policy we need to make type information available at run-time
in order to be able to use this information at run-time, for instance to link this information
to certain policy-dependent properties. We make this information available by providing a
CommandType class to every subclass of the abstract Command class2.

For the third kind of policy we need to make information available which can differ for
every instance of a command. We do this by connecting a Property class to every Command
class and the addition of a SetProperty and a GetProperty method to the Command class.
What the exact information is, that subclasses of this class represent, is totally dependent on
the application in which it is used. It could be that the name of the sender of the request is
made available. Note, that the information, that is made available, shouldn't be information
especially linked to a policy. As an example we take again the priority policy. In the Property
object, we should make the sender of a request available. The linking of this sender with a
priority is done later at the policy. We do this to keep the Command as independent of the
policy as possible: the information is really a property of the Command and this information
can be used by different policies.

r Command Properly
execute()

_____________ ____________

setProperly(Property p)
Property getPropertyO

_________

Concrete Property

I

aProperty

rConcrete Comm
I

executed . -i
ComrnandTYPe

Concrete CommadType
R.iourc..r.qu.ut()i

Figure 7.4: Command

The decision to take a Property class to hold information about commands has some
advantages and disadvantages. The advantage is that the Command doesn't have to be aware
of information that is made available about itself. It is also explicit in the architecture which
information is made available and it is adaptable without having to change the Command class.
The disadvantage is the overhead: the Interface may create Property classes and initialize
information that may never be used.

In figure 7.4 we haven't taken into account that the Command classes may need a mechanism
to return results. A common solution is the use of a "future" object, which takes care of the
synchronization to a variable which will hold the result value in the future (see section 6.2
about synchronization abstractions). In figure 7.5 we show a situation where we used this
abstraction. Commands that have return values are subclasses of ReturnCommand. This
ReturnCommand uses the Future to provide a write-once-read-many mechanism3.

2We don't have to do this in Java, because in this language type information is available at run-time
31n this case the ReturnComand doesn't actually return a Future object to the caller (as described in section

6.2), but it encapsulates the Future. The Future, however, implements the write-once-read-many policy and
this synchronization is transparent even for the ReturnCoainand.
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Figure 7.5: Future used for return values of explicit Command class

We set up the policy part using the Strategy pattern[9}. According to this pattern we
define a common interface for every policy we might need (see figure 7.6).

policy cmponent

PrConfiguraton

Figure 7.6: Policy

The hard part is again the fact that we have to deal with the application dependent
information. The solution we propose is to represent this information explicitly in so-called
"configuration" objects. These configuration objects contain at run-time the information
that is needed by the policies. So we may have, for example, a configuration object that
contains of a link between command types and a property isReader. Another example is
an object that links the names of possible request senders to a certain priority. We see here
the difference between information that is made available in a Property object and that in
a Configuration object. The former is general information, the latter contains the policy
dependent information (see figure 7.7).

In figure 7.8 we see the total design for our shared resource access policy solution.
The class Interface is the interface to the resource for the rest of the system. For every
command which is invoked by an incoming request (1), a Command object is created (2). These
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configuration object with items that couple properties to command types
(e.g. a GetBalanceComrnand has the property isReader)

uratio1,JIitIIII1
configuration object with items that couple command properties to policy properties
(e.g. nameOfSenderto priority)

Figure 7.7: Configuration objects with different couplings

commands are then given (3) to the policy which is connected (through parameterization) to
the interface. This policy handles the commands, i.e. determines when and in which order
the request can access the resource. If the command is allowed, it is executed (4).

We implemented this design in a toy teller machine application and a prototype library
database application. We have used the same policies in both applications to show reusability.
We also used different policies in the same application to show flexibility. The applications
consist of the three shown policies, namely FIFO, readers/writer and priority. We managed
to make these policies pluggable in the sense, that we can start the system with a parameter,
which can be switched to get the wanted policy. According to the value of this parameter,
the right policy is instantiated and, if necessary, the right configuration object. In the code
below we see how the configuration of a system may look.

II initialization of policy according to chosen policy
if (chosenPolicy == FIFO) {

p01 = new FIFOPolicyO;

}

else if (chosenPolicy == ReadersWriter) {

// instantiate configuration object and add information

con.f = new RWConfObject;

conf .add("GetBalanceCommand" ,isReader);

conf .add("UpdateBalanceCommand" ,isWriter);

II instantiate policy with configuration object as parameter

p01 = new ReaderswriterPolicy(conf);

}

else if (chosenPolicy == Priority) {

II instantiate configuration object and add information

conf = new PrConfObject;

conf . add (userl ,10);

conf . add (user2 ,15);

// instantiate policy with configuration object as parameter

p01 = new PriorityPolicy(conf);

}

II start application with policy

new Application(pol);
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For the FIFO policy we need no application dependent information, for the readers/writers
policy we need the type information as described above and for the priority policy (which
handles a Command with a certain priority according to the id of the sender of the request),
we need to make the user id of the sender available via a Property object of a Command.
Note, again, that this information is policy-independent: it can be used by other policies and
doesn't effect the behaviour of policies that don't need this information (except maybe for
some wasted memory).

7.4 Conclusions

We have presented an access solution for shared resources using a pluggable policy component.
Depending on the policy we need in an application, we can transparently choose or change
one of the available policies (flexibility). Or use a new one, if it conforms to the generic policy
interface. It is also possible to use the same policies in different applications (reusability). We
showed these features by implementing this design in different sample applications.

The policies are black boxes, which are transparently pluggable, if we have the right
configuration objects available. These configuration objects contain the application dependent
information which the policy needs in order to function. By using these configuration objects
we can keep the policy black box, we have the application dependent information explicit in
the design and therefore a clear configuration of the policy.

The information we covered in this way is related to the requests that come in: "Is a
request a reader request?", "Which priority has the sender of a request?". Up till now, we
didn't take other application dependent information into account, like dynamic properties of
the resource (for instance a check if a database is full before a write operation).

A drawback of this solution is the complicated pattern4: it will take some time to under-
stand and to be able to use the pattern. Another disadvantage is the overhead. Objects are
created for incoming requests. Information is made available in the Property object (while
(parts of) this information may be never used by a policy at all). And every time a request
comes in, the policy has to check its configuration objects. When performance is a critical
issue this may be too much overhead. Optimal performance wasn't, however, a main goal in
our design.

An open problem is the ability to switch policies at run-time. This is something we
want, because some applications are long-lived of even permanent. Adjustments to these
applications need to be done while they are running. Run-time adaptability seems to be a
straightforward extension to the presented design. We will have to add the ability to hold
requests until a policy is switched, and there will have to be a mechanism to check if a policy
is still busy (and if so, postpone the run-time switching).

4This is, however, a direct consequence of the rather complex set of requirements
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Chapter 8

Request redistribution

In this chapter we look at a coordination problem in the area of transfer of information. We
saw in chapter 5 some basic communication mechanisms. There we solved a basic problem
of transfer dependencies: bringing a piece of data somewhere else. In this chapter we discuss
a more complex problem: depending on some constraints, data can have different target
locations. Our coordination solution will have to take care of the redirection of the data. As
an example we take again a look at the ATM-example (see also section 7.1).

ATM S

AIW

Figure 8.1: Automated teller machine system

In this example we have a request distribution problem at the ATM Server level: depending
on the account involved in a transaction, a request has to be redirected to the bank that holds
this account. In this case the redirection is triggered by the account number. This number
determines to which bank (and thus to which location) the request has to be redirected.

The first observation we make is that the redirection problem consists of an application
dependent part and an application independent part. The independent part consists of a
generic name server that, depending on some identification, returns a connection, for instance
a stub to a remote object. The application dependent part is the match of the account number
to the generic identification. This basic structure is shown in figure 8.2.

The interesting part of this solution is the generic part, the name server (see figure 8.3).
Inside this name server we have again a generic layer and a specialization for, in this case, the
RMI communication mechanism (see section 5.2). The generic layer consists of the abstract
AddressConnector, an AddressList and an abstract Address that forces concrete addresses
to have an id. The RMI part consists of an RMlAddressConnector, which takes care of the
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Figure 8.2: General request redistribution solution structure

RMI-specific implementation details for connecting to a remote object , and a RNlAddress
that holds the information needed as address for a remote object. The solution as a whole is
black box with a clear interface.

coordinalionjedistribution

Addre S.

lid

Reusability and flexibility

l.ddr .li.t.,.tJdSr...lidli
1 r.tr .C.OtiO( l

Figure 8.3: Generic part of the name server

It appeared hard to make a general solution to this problem. The reason for this is that a
substantial part of the solution is application dependent. It consists of the process of choosing
the right target location for a request. In the case of our banking system the target location
is determined by mapping an account number to a bank identification. The nameserver, the
generic part, is not much more than a set of tuples, consisting of two elements: an address
and an identification. The nameserver returns a connection to an Address that is denoted by
an id.

We see, only a part of the solution is generic. This part, however, is usable for different
communication mechanisms. A solution that uses sockets (see figure 8.4), has the same
interface, but returns a SocketConnection instead of a remote object.
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Figure 8.4: Name server based on sockets
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Chapter 9

Conclusions

In the research described in this thesis we have investigated software development for open
distributed systems in order to make this development easier. Easier in the sense that software
parts will be better reusable, more flexible and better maintainable. In particular we have
investigated the coordination aspects of open distributed systems. To reach the goal of easier
software development we have applied a component-oriented approach: generic coordination
solutions are provided as generic architectures with black-box components.

We first developed a theoretical background about coordination abstractions in open dis-
tributed systems. The definition of coordination we used defines coordination as manag-
ing dependencies between activities. In open distributed systems, therefore, coordination is
needed whenever dependencies exist between active entities. These dependencies are used
to identify coordination problems in a set of sample applications that are representative for
open distributed systems. We have implemented component solutions for a subset of these
problems, thus building a prototype component framework.

The framework and sample applications have been programmed using the concurrent
object-oriented programming language Java. This language is particularly well-suited to
modeling software agents and components in a distributed setting. It provides low-level
communication and synchronization abstractions that we have extensively used to build more
elaborate forms of coordination1.

We have to emphasize the fact that our work is a first attempt in building higher-level
coordination abstractions. The presented results are, therefore, preliminary: many concepts
need further investigation.

We first present a summary of the results of the different parts of our prototype frame-
work. Our solutions range from basic communication abstractions (which are needed to build
distributed systems in the first place) to more complex solutions like an access solution for
shared resources and a distributed locking system. After that we will describe our general
observations concerning the results of our approach.

'For a more extensive description of Java and its properties in the field of open distributed systems and
coordination, see appendix B.
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9.1 Results for framework parts

Communication

We provided communication solutions based on two mechanisms provided by the Java pro-
gramming language. The first mechanism, based on sockets and streams, appeared to be a
good mechanism to build generic communication abstractions. We built a set of communica-
tion components that were easily reusable and adaptable to a range of basic communication
problems. We reused most our abstractions in four of our six sample applications2. The other
mechanism, Remote Method Invocation (RMI), is a higher level mechanism that is used to do
method calls on remote objects (i.e. objects that run on other Java Virtual Machines3). The
fact that it is a higher level mechanism implies that we didn't have to care about how con-
nections are set up, about providing synchronous communication over a network and about
conversion from network communication to ordinary method calls. We found RMI a nice
mechanism from the client point of view. For a client it is easy to use and fairly transparent:
once the connection to a remote object is established it is accessible just like a normal ob-
ject. From the server point of view RMI it is not easy to provide methods that are remotely
accessible. Remoteness of an object is not transparent, which violates separation of concerns
and reusability of the same components in both distributed and non-distributed settings.

Synchronization

We showed that it is possible to build some simple synchronization abstractions (a buffer,
a future and a lock). We also built a distributed synchronization solution (the distributed
locking solution). The biggest problem to solve in this distributed problem appeared to be
to keep the integrity of the locks throughout the network, i.e. not more than one process
can hold a lock and can do actions on an item that is protected by this lock. We man-
aged to solve this integrity problem, but still there can exist some (inevitable) temporary
information inconsistencies between clients and the server. Non-admissible actions, however,
are prevented. The provided solution is black-box: we can view it as a set of higher-level
coordination components with a clear interface to the application that uses the distributed
locks.

Access policy solution for shared resources

For access to shared resources (in our sample applications: a shared database) we built
an access policy solution. Different policy components can be transparently interchanged
and be used in different applications. The interesting point in this design is how we cope
with the application dependent information that is needed by the policy. We encapsulate
this information in configuration objects. By using these objects we make the application
dependent information explicit in the design and we keep the policies black-box and generic.
A disadvantage is the complexity of the pattern.

2s appendix A.
3see also appendix B.
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Request redistribution

It appeared hard to develop a generic solution for the request redistribution problem. The
main reason is that a substantial part of the solution (i.e. the determination of the tar-
get location) is application dependent. This reduces the generic part of the solution to an
abstraction that returns a connection depending on some identification.

9.2 General Conclusions

The solutions in the different areas show that it is possible to use a component-oriented
approach to coordination problems in open distributed systems. Out of our experiences
with the solutions in the different areas we can make some interesting, but preliminary,
observations. Using a component-oriented approach we show that in many cases we gain

• reusability: our framework provides generic solutions for a set of coordination problems.
Most of these solutions we use in more than one sample application (see appendix
A). The possibility of reuse appears to be dependent on the application dependent
information the generic abstraction needs to function. We will deal with this problem
in more detail below.

• flexibility: most of the architectures, provided by our framework, can be easily adapted
to provide other functionality by interchanging components with the same interface or
by changing parameters to components. Evolution is addressed, because some of the
flexibility is provided with future requirement changes in mind. An example is the
policy pattern: when, in the future, a new policy is needed due to changed demands on
the system, it can be transparently interchanged with the old one, as long as it has the
same interface.

• explicitness of architecture: the designs provide a clear picture of what happens where in
an application. In our applications this is shown in the configuration routines. In these
routines all the components of a structure are instantiated and, if needed, parameterized,
thus providing a clear description of the current configuration of a system.

The main problem we encountered in building generic components , is the application de-
pendent information that a generic solution may need to be able to function. We found two
different forms of information need in our experiments:

• We showed abstractions that need no or little information. The information that is
needed, is directly parameterized in the solution. An example is a connection abstraction
that is parameterized by a host name and a port number. These abstractions appeared
to be easily reusable in different applications.

• In the policy pattern there is a more dynamic information need: behaviour of the
application is dependent on the properties of incoming requests that can be different for
every new request. We make the required application dependent information available
via so-called configuration objects. By using these objects we make the application
dependent information explicit in the design and we keep the policies black-box and
generic.
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Another observation we make is that it can be hard to develop generic coordination
solutions, because (parts of) problems not only require application dependent information,
but may as well require substantial application dependent computational parts. An example
is the mapping from account number to bank id in the request redistribution solution.

Java

We found that Java, the implementation language of our prototype, has both advantages
and disadvantages. A major advantage of the language is the built-in support for network
communication and multi-threading. It appeared easy to use and useful for building coordi-
nation components. The Java thread scheduler, however, is not fair (see, for instance, [20]):
one is never completely sure if a waiting thread will get a chance to run again. A major
disadvantage of the language is the lack of genericity: the language doesn't provide a type
parameterization mechanism like templates in C++. A more extensive discussion of advan-
tages and disadvantages of Java can be found in [15]. Finally, we address the problems we
had with the Java Remote Method Invocation mechanism. Based on this experience we can
make the general observation that if (high-level) mechanisms violate component requirements
(like encapsulation, etc), it can make them unsuitable for building components.

Further research
First of all, this project has been, as far as we know, a first attempt in developing a coor-
dination component framework using a common object-oriented programming language. As
a consequence our results are preliminary and further work needs to be done to generalize
the concepts. Another consequence is that a part of the work has been the development of
basic coordination abstractions, like communication. These communication solutions provide
us with the means to build distributed systems in the first place and distributed coordination
solutions in the second. We also built some solutions to more complex coordination problems,
but a lot of work still can be done in providing solutions to other coordination problems.

We want to particularly mention the following areas where further research is required:

Application dependent information: it may be interesting to further investigate the infor-
mation need of generic solutions to refine the categorization that we have presented above.

Distributed coordination solutions: Our lock server was a first attempt in building dis-
tributed coordination solutions, but more solutions are needed to come to more general ob-
servations.

Non-centralized coordination solutions: The communication and lock solutions we pro-
vided are all coordinated centrally. For reasons of fault tolerance this is not always desirable.

Run-time adaptability of systems: We provided some flexible solutions, but these are
only adaptable at design-time. Systems, however, cannot always be stopped to change them.
Therefore this extra level of flexibility is needed. One can think, for instance, in the direction of
persistent configuration descriptions that can be adapted at run-time and newly interpreted
to change the configuration. Most likely mechanisms like dynamic class-loading4 may be
useful.

4A feature of Java to load new or changed classes into an already running system, see appendix B.
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Appendices
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Appendix A

Coordination abstractions in the
sample applications

In table A.1 we show where the abstractions of our framework are used in the sample appli-
cations. Vertically the abstractions are shown and horizontally the sample applications. A

means that the indicated abstraction is used to build the indicated sample application.
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Table A.1: Overview of abstractions in sample applications
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Appendix B

Java

We used the programming language Java[12] to build our sample applications and the proto-
type coordination framework. Java is a concurrent object-oriented language developed by Sun
Microsystems. It was first developed as a programming language for embedded systems. The
imposed requirements - small, reliable and architecture neutral - made the language particu-
larly fit to do network programming. It became especially popular in parallel with the World
Wide Web and the Internet in general, because it is easy to use Java to build (inter)active
contents for WWW pages.

Java has some special properties in the area of open distributed systems and coordination.
We discuss these properties after mentioning some general properties of the language'.

B.1 Java in general

Java is a C++-like language, but it lacks several features that C++ has. The most important
one is probably the lack of pointers, which is normally an error-prone aspect of programming
languages. Object referencing and dereferencing is handled by the language itself. Another
point is that Java offers automatic garbage collection: the memory that is used by objects
that are not referenced anymore, is automatically freed by the run-time environment. This
makes the language easy to use.

Java is an interpreted language. The code is compiled into an intermediate form, called
"byte-code". This byte-code can be transferred over a network and executed on every platform
that implements a Java interpreter and Java run-time system (together called the Java Virtual
Machine). This Virtual Machine runs in the same way on every platform, thus making Java
platform independent.

Java is a secure language. It is not possible to directly access memory on a system. The
Virtual Machine takes care of all the memory decisions. There are also other security checks
made by the Virtual Machine, like run-time type checking of newly created classes.

B.2 Java and Components
Java offers the normal object-oriented mechanisms to construct and compose components.
Classes, objects (at run-time), methods and packages (the Java module concept) as compo-

'For this chapter we extensively used the book "Java in a Nutshell" by David Flanagan[8].

63



nents; inheritance and instance connections as class and object composition mechanisms.

Java doesn't have multiple inheritance. Instead it has so-called interfaces. A class in
Java can extend one superclass and implement multiple interfaces. An interface is a kind of
abstract class with only abstract (i.e. non-implemented) methods. An object can be accessed
via every interface it implements. This mechanism enables an object to provide different
views to different clients.

A disadvantage for component development is the fact that Java doesn't provide genericity
(i.e. type parameterization) and parameterizing by functions.

B.3 Java and Open Distributed Systems
Java is designed to develop network programs (and thus distributed systems). It provides a
networking package (java. net) that includes abstractions for network connectivity, like a URL
class to access remote objects over the Internet and classes to set up reliable stream network
connections using sockets.

Another mechanism provided by the Java language is Remote Method Invocation (RMI).
With this mechanism it is possible to do method calls on objects that reside on other Virtual
Machines2.

Openness is supported by the architectural neutrality of the language and the portability
of the byte-code. Code can be transported over networks and run on every platform that
implements the Java Virtual Machine. The language also supports run-time adaptability of
applications. Due to the interpreted nature of Java, it is possible to dynamically load new or
adapted classes into a running system.

B.4 Java and Coordination
Coordination is about managing the interaction of multiple, possibly parallel, activities. In
Java multiple parallel activities are supported by the multiple thread support and the synchro-
nization primitives to control these threads. The java. lang package provides a Thread class
that supports methods to start and stop a thread, and to check on the status of a thread.
Activities can be started in different threads of control, which causes the activities to run
quasi-asynchronously. Execution of multiple threads can be controlled using synchronized
constructs. These constructs ensure that only one thread at a time will enter a synchronized
section in an object. Java takes care of this synchronization with an underlying mechanism
based on the monitor and condition variable scheme developed by C.A.R. Hoare[13]. The
synchronization constructs provided by Java are very basic and sometimes somewhat crude.
The thread scheduler of the Java Virtual Machine, for instance, is not fair: one is never 100%
sure if a waiting thread will get a chance to run again. When a developer wants to be totally
sure about a certain scheduling policy, he will have to explicitly take care of it himself. To-
gether with the networking support the synchronization primitives can be used to coordinate
distributed activities. More information on Java concurrency mechanisms can be found in
Doug Lea's book about concurrent programming[20].

2For a discussion of RMI, see section 5.2
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Appendix C

The Unified Modeling Language
(UML)

We used the Unified Modeling Language (UML)[33] to draw the 00 designs presented in this
thesis. The UML is a language for specifring, constructing, visualizing, and documenting the
artifacts of a software-intensive systems. It is built upon similar semantics and notation from
Booch, OMT, OOSE, and other leading methods. Version 1.0 of the language is submitted
to the Object Management Group (0MG) to be considered for adoption as a standard. In
this appendix we only present a small subset of the UML. We only show the symbols we have
used in this thesis. More information can be found in [33] which is online available on the
World Wide Web at http://wvw.rational.com/ot/uml/.

In figure C.1 we show the different symbols we used in this thesis.

A class is drawn as a solid-outline rectangle with 3 compartments separated by horizontal
lines. The top name compartment holds the class name; the middle list compartment holds a
list of attributes; the bottom list compartment holds a list of operations (example: Class 1).
Either or both of the attribute and operation compartments may be suppressed. A separator
line is not drawn for a missing compartment. If a compartment is suppressed, no inference
can be drawn about the presence or absence of elements in it (examples: Class2, Class3 and
Class4). Strings for the names of abstract classes or the signatures of abstract operations
are displayed in italics (example: AbstractClassl).

Interfaces are shown as classes (i.e. using full rectangles). There is, however, a shorthand
notation: a small circle with the name of the interface (example: Interface 1 which is imple-
mented by Class2). The circle may be attached to classes (or higher-level containers, such
as packages that contain the classes) that support it by a solid line. This indicates that the
class provides all of the operations in the interface type (and possibly more). The operations
provided are not shown on the circle notation; to show the list of operations the full rectangle
symbol is used. A class that requires the operations in the interface may be attached to the
circle by a dashed arrow.

A binary association is drawn as a solid path connecting two class symbols (example: the
line between Classi and Class3). A hollow diamond is attached to the end of the path to
indicate aggregation. The diamond may not be attached to both ends of a line, but it need
not be present at all. The diamond is attached to the class that is the aggregate (example:
the line between Classi and Class4).
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Figure C.1: Class structures according to the UML

Generalization is shown as a solid-line path from the more specific element (such as a
subclass) to the more general element (such as a superclass), with a large hollow triangle at
the end of the path where it meets the more general element (example: the arrow between
AbstractClassl and Classi).

The object notation is derived from the class notation by underlining instance-level ele-
ments (see figure C.2).

anObjecti

Figure C.2: An object according to the UML
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