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1 Introduction
In this paper we will present two interpolation schemes. The first interpola-
tion scheme is a 2-D interpolation scheme. This scheme was proposed by C.
Farm in [1, §8.2]. The 2-D scheme will interpolate points on a cubic curve
which is defined by two data points and tangential data in these points. The
second scheme is a 3-D interpolation scheme.
This scheme, which was proposed by Bruce R. Piper in [3], interpolates points
on a surface, which is defined by three data points forming a triangle 7, tan-
gential data in these points and, if present, information of adjacent triangles.
The information of adjacent triangles (triangles that share a common edge
with triangle 7) is used to produce a surface over these triangles that is
C'-continuous.
Both interpolation schemes will use the de Caste/jan algorithm to interpolate
points. This algorithm was developed by P. de Casteljau who worked for
Citroën and by P. Bézier who worked for Renault. Although de Casteljau
developed this method earlier than Bézier did, the whole theory of polynomial
curve and surface interpolation bears Béziers name, because the work of de
C'asteljau was never published. First only rectangular patches were used
for interpolation, but soon people realized the need for triangular patches.
Au advantage of triangular patches was that it allowed scientists to describe

complex surfaces, like those used in the interior of cars. The method is also
used for fitting scattered data on surfaces, and for interactive design of curves
and surfaces. Some examples of surface interpolation are depicted below.
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Figure 1: A control net of a simple ship from [I•



Figure 2: A control net of a vase and its interpolated surface from [8J.

Figure 3: A mathematical surface and its control net from [6].

However, the described interpolation algorithms take as input the data points
with the associated tangential data, and, in addition to these, a collection of
control points. The freedom in the choice of these control points is exploited in
order to ensure C'-continuity of adjacent curve or surface patches. Together
with the data points, the control points will uniquely define the curve or
surface.
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2 2-D interpolation
In this section the following problem is solved.
Suppose we have data points Po,• . . , p in the plane and tangent vectors in
these points vo,.. . , v,. These tangent vectors are of unit length, i.e. they
have length one. The data points are ordered in such a way that p, and Pi+i
are adjacent points on a C' piecewise cubic polynomial.
We now wish to find a curve that passes through the given data points and
is tangent to the given tangential data in these points.
In this article we assume that the given tangent vectors are all of length 1.
We will now give a definition of interpolation as we will use it.

Given n + 1 distinct points x0.,. . .,x, with x1 E It2 ;i = O,...,n, find a
polynomial p(i) E R2 with t E JR so that po(to) = xo,. . . ,p(i) = x.
This polynomial p(t) is unique among the set of all polynomials of
degree at most n.

To solve this problem two methods are used which are described by G. Farm
in [1, pages 113—116, §8.2J and [1, pages 29—30, §3.2]. In §8.2 a method is
described for finding Bézier points between each pair of data points. These
points are used for calculating a single point on the curve, using the de Caste1-
jau Algorithm as described in §3.2
In order to apply these methods on the data points, the following constraints
apply to the data points:

1. Two consecutive data points are not allowed to coincide.

2. The tangent vector must be a non-zero vector.

Between each pair of successive data points (pi, Pi+i) two Be'zier points are
calculated. The following formula is used to calculate these points:

t1 = Pi+Vi (1)

= Pi+i —

where v and v11 are the tangent vectors in respectively p2 and Pi+i.
Since v1, v2,, p, and Pi+i are given, we need to find values for a and ,@ to
get the two Be'zier points. Farm describes several different ways for finding
o and j3. \Ve will use the following:
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= ellPill
/3 = lkpll with p2 = — p1

In this formula 0 equals the angle between p1 and v2. Ji equals the angle
between zp1 and v1. We can interpret the curve as the graph of a function
oft (see Figure 4), where the parameter t varies along the straight line through
p1 and Pi+i. The s-axis is the line through p1 and P1+1 and the y-axis is the
line perpendicular to p and P1+1.
If we look at figure 4 we see that we want the projections of the points t1 and
t2 on the line through p and P1+1 to divide the line through p and Pi+i in
three equal segments. This means that the cosine of 0 is equal to

Ilpi+1 — Pill
cos 'z, =

lit1 — pill

Since we want to determine t1, we will rewrite the above formula. This gives
us

— llPi+1 — Pillt1—p1 — (2)
3 cos 0

pi

Figure 4: A 2-D example for calculating 0 and ku

However, if one of the angles 0 and II is 900, this formula cannot be used,
because expression (2) is undefined. Farm makes a case distinction for angles
smaller than 600 and angles larger than 600.

5



( 3coseIkPuII iflel�6o°
a

= IJLp1II otherwise

I
if 'I' I� 600

I. Ikp2II otherwise

\Ve can rewrite this formulas for a and 3 by using the cosine rule:

Lpt .vcos® =
II..IiII IIviII

vi+1cosW =
II II ii

Substituting the cosine rule in the expressions we have for a and /3 we get
(remember that the tangent vectors are of unit length):

if f ® I 60
(3)

otherwise

3v.Ap I
P � 60°

13= (4)

IlLp1II otherwise

Now we have found the two Bézier points, t1 and t2 we can apply the de
Casteijan algorithm. This algorithm is used to interpolate points on a mth

degree curve. The de Casteljau algorithm in [1, §3.2] is described as follows:
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Given: b0,b1, bm E It2 and t E It
Find: point b, which is a point on a rnth degree curve between points b0
and bm, by using the following algorithm:

( r = 1,... ,m
b•r(t) = (1 — t)b'(t) + tbi1 (t) ir = 0,. . . ,nz — r (5)t e [0,1]

and b?(t) = br•
An example of the cubic case (in = 3) of this algorithm, where b is the
interpolated point on the cubic curve, is:

b0
b1 b
b2 b b
h Li L2 L.3
U3 1J2 Li 1)0

If we look at the rightmost column of the above array we see the point we
wish to interpolate. The leftmost column are the Bézier points. The points
in the two center columns are the intermediate points of the de Casteljau
algorithm.
A picture of this example could be:

pi+I

ti t,

b

b

p1

Figure 5: A 2-D example of the de Casteljau algorithm, with t =

If we use the the data points and the Bézier points t and t2 the array will
look as follows:



pi
t1 b
4 i.J L2
b2 '.' '-'o

i1 i-.2 L3Pi+i '-'2 U1 U0

The point b is a point on a cubic curve between data points p and Pi+i.
The curve that is drawn through the data is also calculated with the method
mentioned above, this is done by letting the parameter t vary over the interval
[0,1].
We now have a method to define a C' curve between a pair of data points. If
we want to add extra points to our data set, by interpolating a single points
between each pair of data points, we want the new set of data points to define
the same curve as the original set of data points did.

p1/pj
p1 pI

Figure 6: Au example of what was proven by Schwartz.

This means that the two sub-curves must join in a C' way at point p (see
Figure 6). A prove of the C'-continuity in point Pc is given by Schwartz in
[1. §6]. He repararneterizes the original curve x(t) via t = a + btt:

y(u) = x(a + bu)

From this we conclude:

{y(u) 0 u 1) = {.x(t) Ia t a+b}
This reparameterization means that y(u) is a segment of the curve x(t) that
starts at x(a) and ends at x(a + b). Since we wish to divide the original curve
in two sub-curves (see figure 6), we will reparameterize the original curve two
times. Once via t = bu, this gives us the curve between points p1 and Pe
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in figure 6, and once via t = b + u(1 — b), which gives us the curve between
points Pe and p--i.
Since the sub-curves coincide with the original curve x(t) and together form
the original curve, the connection between the two sub-curves (see Figure 6)
will join in a C' way.
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Application.
The method of finding and calculating points on a curve is also implemented
in a program. For this purpose we embedded the described methods in an
existing drawing program. This program was written by Douglas A. Young
see [5, chapter 13].

Figure 7: The application of 2-D interpolation.

P1i

To be able to interpolate a curve we first need to select the right drawing
function. \Ve can do so by pressing the button "DrawingCommands". We
then select "Curve" from the pop-up menu. Now we can insert the data
points by pressing the left mouse button. The last data point of the curve
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is selected by pressing the right button. The mouse cursor will now jump
back to the first data point. By moving the mouse we can specify the tangent
vector in that data point. If the right tangent vector is specified, we can set
it by pressing the right mouse button. The mouse cursor will now jump to
the next data point. After determining all tangent vectors, we can interpolate
either a curve or a point between two data points. This is done by pressing
the button marked "Interpolate". We can now choose for interpolating a
curve or interpolating a point between each pair of data points, by pressing
either the button marked "Add Points" or by pressing the button marked
"Draw Curve". Interpolating the points is done by setting the parameter t in
equation (5) equal to . This gives us a point that lies on the center of the
curve between each pair of consecutive data points. The curve is drawn by
calculating a number of points on the curve. For a part of the curve between
two data points, we let the parameter t in equation (5) vary from 0 to 1,
by steps of S. Since we only use integer coordinates in our application we
can set S equal to By using integer coordinates we are sure that

IIp+i — pill > 1. If this length equals 1, we do not have to interpolate a curve
since the two points are two adjacent pixels on the screen.
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3 3-D interpolation

3.1 Introduction
In this section we present an interpolation scheme proposed by Bruce R.
Piper in [3, §5].
The interpolation scheme assumes we have the following data: a set of edges
and vertices in R3 which form a triangulation. A triangulation is a set of
triangles. Each edge of this triangulation occurs in at most two triangles.
Each vertex of the triangulation can be part of several edges, but is part
of at most two edges which only occur in one triangle in the triangulation.
Tangential data is given for each vertex in the triangulation.
The interpolation scheme solves the following problem:
interpolate for each triangle points on a C' continuous surface over all tri-
angles within the triangulation, which are determined by the vertices of the
triangle and the tangential data in these vertices.

We vi1l first give a global description of the interpolation scheme, and later
on it will be given in detail.
As interpolation method we wish to use the de Gasteljau algorithm. The
parameters of this algorithm are the barycentric coordinates, with respect
to a given triangle, of the point we wish to interpolate. In order to be able
to use the de Casteljau algorithm we need to define a set of control points
called the control net (see figure 9). The scheme proposed by Bruce R. Piper
produces a control net. A control net is a set of control points that defines a
surface of a certain degree. Points on this surface can be calculated by using
the dc Ca.1cljau algorithm. The control points are, as we already saw in the
previous section, derived from the input data. Instead of n + 1 control points
for a curve of degree n, we now need (m + 1)(m + 2) control points for a
surface of degree m (see [1, §8.2]). The control net is produced in five steps,
to be described in detail in section 3.8:

Step 1. Create for each triangle in the input data an initial net which
describes a surface of degree 3.

Step 2. Subdivide the net into three sub-nets each describing a surface of
degree three. Together they describe same surface as the initial net.

Step 3. Adjust the center control point of each of the sub-nets.
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Step 4. Elevate the degree of the surfaces described by the sub-nets, by
adjusting the sub-nets, so that the sub-net now describe a surface of
degree 4 (for details on degree elevation: see section 3.6).

Step 5. Adjust the control points of the sub-nets.

The control points calculated in Step 1 are called candidate control points
because in order to get a C' surface we need to adjust these points. In steps
2, 3 and 5 we will adjust these points in order to get a C' surface. We start by
defining a control net of degree 3 because these control points can be created
relatively easy. A cubic control net consists of ten control points. Three of
these control points are given input data. The seven other points are derived
from these points and the tangential data in these points. Of these seven
points, six points lie on the edge of the control net. One point is in the center
of the control net, this point is called the center control point.
In Step 2 we will subdivide the triangle into three sub-triangles. The reason
for the subdivision is that, although the surface defined on each triangle looks
smooth, two adjacent triangles fit together, without subdivision and further
adjustments that are described in Step 3 and 5, at sharp angles.
In Step 3 we adjust the center control point of the sub-triangle. This is also
done to prevent sharp angles between adjacent triangles. The points are
adjusted so that the center control point of two adjacent sub-triangles (sub-
triangles of two triangles that share a common edge) and two control points
on the common edge are coplanar.
In Step 4 we raise the degree of the surface described by the control net.
These control points are still candidate control points. To ensure tangent
plane continuity between two adjacent triangles we still need to adjust some
of the control points. We need to raise the degree of the surface to 4 because
in general it is impossible to determine the center control points of a control
net that defines a surface of degree 3. so that they sat isfv a necessary condition
for tangent plane continuity (see Brnce R. Piper in [3, §3])
In Step 5 we adjust some of the control points. This is done to ensure the
tangent plane continuity between two triangles that share a common edge.
This finally gives us the control net we need to interpolate a smooth surface
defined by the given data.
\Ve will now first explain some methods and concepts mentioned above in
more detail. Finally, a detailed description of the interpolation scheme is

1Adjacent triangles are triangles that have one edge in common.
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given.

3.2 Barycentric coordinates
Since we wish to use the de Casteljau algorithm for our interpolation scheme
we will explain the concept of barycentric coordinates because they are used
as parameters by the de Casteljau algorithm. In this algorithm the barycentric
coordinates determine the point we wish to interpolate with this algorithm.
Any point in the plane can be expressed in terms of barycentric coordinates
with respect to any non-degenerate triangle in that plane. A triangle is non-
degenerate if the vertices of the triangle are not on one straight line. Suppose
a triangle T has vertices T1,T2 and T3.
The triple of numbers (ri. r2. r3), called barycentric coordinates of P with
respect to T1.T2 and T3, is uniquely determined by

3 3

P = and>rj=1
i= 1

Figure 8: An example of Barycentric coordinates

Equation (6) forms a 3 x 3 linear system which has the unique solution which
is obtained by applying Cramer's rule:

ar a( T1, 'r2, P)
area(Ti, T2, T3)

(6)

The harycenter of a triangle is the center of gravity of this triangle. An
interpretation of the barycentric coordinates is that if we hang weights r, on
the vertices T the center of gravity of triangle T is P.

TT t3 t3

area(P.T2.T:3) —

(tJ'e(L(Ti. T2, T3)

(1 1'( (I ( ]I' P, 'I'2) =
1 1•t (1 '•l , 'I'2, 'I'3)
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In order for the above formula to be well defined, we require
(!l((t(T1,T2.T3) 0, which means that T1,T2 and T3 must not lie on a
straight line. But since T1, T2 and T3 form a nondegenerate triangle, this
situation will never occur.
Because Cramer's rule makes use of determinants, the area used in the above
equation can be defined as:

1
T1.x T2.x T3.x

area(Ti,T2,T3) = T1.y T2.y T3.y
1 1 1

In this equation T,.x stands for the x-coordinate of point T and T.y stands
for the y-coordinate of T (i = 1,2, 3).
An important property of barycentric coordinates is that they are invariant
under affine transformations. This means that the barycentric coordinates of
a point do not change if the point and the triangle are transformed by an
affine map (see [2. §1.1]).
Barycentric coordinates can also be used for linear interpolation. For any
point with = 1 and r � 0 we find a point inside the triangle, but for
other values of r we find points in the face spanned by the triangle.
Later on we will use functions that are defined over triangles. We can write
these functions as f(T) with T = (r1,T2,T3). This notation presents us a
problem: how to handle differentiation. The term does not have a geo-
metric interpretation since barycentric coordinates with respect to a triangle
'T define a plane and not a space. To solve this problem we have to use
directional (it rue tirts. Suppose v is a vector expressed in barycentric vector
coordinates so that v defines a direction with respect to which a directional
derivative can be taken:

D,,f(T) = lim -(f(r + hiS') — f(T))

Since T is a triple of numbers, the functions f is a function with domain R3.
The domain of f is restricted to A = {(T1,T2,r3) >T& = 1}. A property
of barycentric vector-coordinates is that they sum to zero. This property
also ensure that T + ii E A for all E A. This implies that the expression
(f(r + hv) — f(T)), as well as Df(T), is well defined.
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3.3 Bernstein Polynomials
In this section we will briefly discuss Bernstein polynomials because we will
use them for computing (cross-boundary) derivatives. In this section we will
first give a definition of the Bernstein polynomial and we also show that
Berstein polynomials can be used for describing a surface over a triangle.

Definition Bernstein polynomials of degree n over a triangle are defined
by

B(r) = . r'rr (7)
Z1.12.13.

with B1 = 0 if one of the components of i is negative or greater than
n, i = (i1, i2,i3) is a multi-index with I i n and r = (r1, r2, r3) is the
barycentric coordinate of a point in the triangle.

Two properties of Bernstein polynomials are that they have only one max-
imum over the triangle, namely B' assumes its maximum at T = (see [2,
§1.3]) and that Il— B171(r) 1 (also in [2, §1.3]), and Br(r) � 0 when
r, � 0(1 = 1,2,3).
We can also use the Bernstein polynomials to describe a surface over a tri-
angle. This surface is called the Bernstein-B e'zier surface and it is described
by making use of a control net. This control net consists of several control
points. These control points form a triangular structure (see figure 9). The
control points b1 are defined by a multi-index i = (i1, i2 i3). We will use
the notation ii = 1 + 2 + 3. The multi-index of the control points of a
control net that defines a surface of degree n (see Figure 9) all sum to n
( i = ii). Two points of the control net b and b are connected by an edge if

— = 2. \Ve have now explained the notation that is used in the definition
of a Bersteiri-Bézier surface so that we can now give the definition of it.

Definition The Berrzstein-Be'zicr surface b' with control points b, Ii 1= n
is defined by

b'1(r) = Bf(r)bj
U1n
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The number of control points needed for the interpolation depends on the
degree of the surface. If we want to interpolate a point on a surface of degree
ii we need (n + 1)(n + 2) control points. The numbers (n + 1)(n + 2) are
called the triangle numbers (see [1, § 18.2]). The triangle numbers are equal
to the dimension of the space of polynomials of degree n in three variables.
Since the surface is determined by three polynomials of this type, it is also
the minimum number of control points .The representation of b is unique,
this means that {Bf I Ii 1= n and i1, i2,i3 are all non-negative } form a basis
for all polynomials of degree n that are defined over a triangle T.

3.4 The de Casteljau Algorithm
The de Casteljau algorithm is used for interpolating a point on a surface
defined by a set of control points, called a control net (see also Figure 9).
The points of the control net are given.
If we want to interpolate a point b8 on a surface of degree n we will use
the barycentric coordinate r of this point as a parameter for the de Cast eljau
algorithm. The sub-index 0 ( = (0,0,0)) is used as a starting value for the
algorithm. The super index n denotes the degree of the surface we wish to
illterI)olate the point upon.

h1, /
h

(>21

Figure 9: An example of a cubic control net.

In the algorithm we will use the following notation: In = We will also
use the multi-indices e1 e2 and e3, where e1 = (1,0,0), e2 = (0,1,0) and
e3 = (0,0,1).
The de Casteljau algorithm is defined as follows
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Given: a control net of degree n, with control points b1 E R3, interpolate
a point with barycentric coordinates r = (r1, r2, r3).

Set:

b(r) = r1b1(r) + r2b2(r) + r3bi3(r) (8)

with r= 1,...,n and IiI=n—r.

Where b(r), this is a point of the control net, or b(r) = bm.

The point interpolated by this algorithm is b.
We will now present a proof that we can express the values computed by the
de Casteljau algorithm in term of Bernstein polynomials.

br(r) = b1+jBj(r); Ii!= n — r (9)
U1r

\Ve can prove, by the principle of mathematical induction, that the surface
described by equation (9) is equal to the surface described by the de Casteljau
algorithm (equation (8)). First we define the predicate 2(n), for integer
n > 0:

2(n) : V multi — indices i with Ii I� n : b(r) = bj+jBr(r)
tiI=r

fiiice Bf(r) = 1 for Ii 1= n = 0 and b?(r) = b1 we see that 2(0) holds.
Assume 2(n), now prove P(n + 1):

b' (r)

= {de Casteljau}

Tib+e(T) + T2b+e (T) + T3b'+e(T)

= { Induction hypothesis 2(n)}
T1 bi+ei+jBj(T) + T2 bi+e2+jBf (r) + T3 bi+es+jBf(T)

LiI=n LiI=n LiI=n

= Tj bk+iB_ei(T)+T2 bk+iB_e2(T)+T3 bk+iB_e3(T)
IkI=n+1 IkI=n+1 IkIn+1

= {k (ki,2.k3),riB_ei(T)
k1

1B(T),T2B_e2(T)= 1B(r),

18



T3B_es(T)
=

B(r) and r1 + r2 + T3 = 1}

IkI=n+l
1bk+jB(T) + +2 1bk+1(T) + 1bB(r))

= bI+kB'(T)
IkI=n+1

\Ve now have proven that equation (9) represents the de Casteljau algorithm.

We can arrange the cubic Bernstein polynomials in a triangular scheme (fol-
lowing the triangular structure of a cubic control net (see Figure 9)):

3r1r 3TT3
2

JT1 T2 UT1 T2 T3 iT2 T3

r 3rr3 3T1T r

It now is easy to see that interpolating a point with barycentric coordinates
T on the edge of the triangle (that is a point with one of the r1 = 0) that only
the control points on the same edge are used to interpolate the point.
We can use this triangular scheme for calculating b(r) by multiplying the
control points b1 with B, we get an explicit formula for this point on the
surface which is found by using the cubic de Casteljau algorithm:

b(r) = rbo3o+
3r1Tb120 + 3Tr3b021 +
3rr2b210 + 6r1r2r3b111 + 3r2rb012 +
rb300 + 3Tr3b201 + 3r1rb102 + Tb003

Note that if we want to interpolate a point with one of the Tj = 0, which we
will do in our implementation, the algorithm will only use the points of the
edge of the sub-net that has index i3 0. Suppose we want to interpolate
a point P with barycentric coordinates (0, T2, r3). If we look at equation (8)
we see that every time the index is raised with e1, it is multiplied by zero,

19



so that this point has no effect on the interpolation of P. This means that P
is a combination of the control points boo. When all of the 'rj are not equal
to zero, all of the control points of the control net are used to interpolate a
point.

3.5 Derivatives
The derivatives will be used in our interpolation scheme to achieve tangent
plane continuity. If we want to calculate the r-th derivative, r > 1, of an
arbitrary function f, defined on A (see section 3.2), with respect to the direc-
tion d = (d1,d2,d3) which satisfies d1 +d2+d3 = 0, we can use the following
definition:

DrDf(r) = —(f(r + td)) It=o

\Ve can rewrite this to (see [1, §18.4J):

Db(T) =
br(T)Bj(d) (10)

(n 7).
LiI=r

\Ve can find the first order derivative by substituting r = 1 in equation (10).
We can reduce this to

Ddb(T) n(djb'(T) + d2b1(r) + d3b'(r))

where d = (d1,d2,d3).
since this holds for all directions d with d1 + d2 + d3 = 0, it follows that

b'(r),b;1(r) and b'(r) define the slope of tangent plane at b(r) in the
direction d.
Suppose we want to calculate the directional derivative along one of the edges
with a direction not parallel to the edge, we need a crosR-bonrzdary-derivative,
which is a special case of the directional derivative. Without loss of generality
we can choose the cross-boundary-derivative over edge r1 = 0. The cross-
boundary-derivative which is derived from a dual of equation (10), see [1,
§18.4], is as follows:

Db'(r°)
=

bo(d)B'(r°) (11)
(n — r).

i°J=n—r

20



where r0 = (0, r2, r3), 0 (0, i2, i3) and d is a direction not parallel to this
edge.
A condition for C3 continuity, 0 � s n between two adjacent triangles T,
with control points b1, and T, with control points b is (see [1, §18.6, equation
18.20]):

b(r,i2,i3 = b(d); r = 0,. . . , s. (12)

where d = (d1,d2,d3) is a direction not parallel to the common edge, and
10 = (0, i2, i3). In our interpolation scheme we want C' continuity between
two adjacent triangles. If we use s = 1 in equation (12) and (8) we get:

b(i,2,I3) = dlb(l,I2,3) + d2b(o,2+j,i3) + d3b(o,12,13+l).

Since d, + d2 + d3 = 0, the four points b1,2,13, b,,,2,13, bo,2+1,13 and bo,12,13+,
are affinely dependent, and hence coplanar.

Corollary When two triangles 'T, with control points b, and T, with con-
trol points b, join is C' continuous, then the control points bio+ei,
bjo+ej, bio+e2 and bjo+e3 along the common edge, with multi-index
i° = (0,i2,i3), are coplanar.

\Ve will use the above corollary in our interpolation scheme to ensure tangent
plane continuity between two adjacent triangles.

3.6 Degree Elevation
As the name already suggests degree elevation is a method used to raise the
degree of a the Berstein-Bézier basis. In the interpolation scheme we will use
this method.
This method is applied to the control net (or points in case of a curve) of a
surface with a Berstein-Bézier basis of degree n, and provides us with a new
control net that describes the surface with a Bernstein-Bézier basis of degree
n + 1. The method of degree elevation presented here is described by Farm
in [2, §1.4].
If we want to write a surface b"(r) as a Bernstein-Bézier basis of degree n + 1
we get:

bjB.(r) = b'B'(r)
IiI=n+1
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o cubic

_____

• quartic

Figure 10: Raising a cubic control net to a quartic control net

So we get a new control net that describes the same surface as the original
control net did.
From the previous expression one derives:

b1
=

1(ibj_e1 + j2bi_e2 + j3bi_e3)

where i = (i1, 2, i3).
If we repeat the degree elevation often enough, the control net will approach
the surface defined by the control net. A proof of this can be found Farm [2.

§1.4. Theorem 1.3].
\Ve will now show an example of a control net that defines a part of a sphere.

The left control net is a control net that defines a part of a sphere by a
surface of degree 3. It is constructed by the method we will explain later on
in section 3.8. The center control net defines a surface of degree 7. This net
is constructed by elevating the degree of the surface described by the left-
most net. The right-most net describes a surface of degree 11. This net is
also constructed by elevating the degree of the leftmost surface. The degree
raising algorithm is applied eight times to the control net of degree 3, which
gives us degree 11, with (11 + 1)(12 + 1) = 78 control points.
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3.7 Subdivision
Subdivision will later on be used in our interpolation scheme to ensure the
tangent plane continuity between two adjacent triangles by preventing sharp
edges between two adjacent patches. The subdivision algorithm will divide a
triangle into three sub-triangles which together describe the same surface as
the original triangle did.
Subdividing a triangle is derived from domain transformation. Suppose we
have two triangles Y and Y (see Figure 11) with common edge T2T3, and we
want to transform the domain of Y to that of Y. With domain transformation
we can describe the polynomial surface b(r) with barycentric coordinates
of T as a polynomial surface over T (see Figure 11).

T
T1

Figure 11: An example of domain transformation

Let I have barycentric coordinates r and let I have barycentric coordinates, the common edge T2T3 vi11 correspond to the barycentric coordinates
= (O,r,r3) and to f° = (O,72,73). Let T1 have barycentric coordinates a

with respect to I.
The surface (described by these two triangles) can then be written in two
ways:

b1B(r) = lB.() (13)
II=n

\Ve now want to find the Bézier points of the surface that are defined over
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'T. Since the two triangles share a common edge, we immediately find (from
equation (13)) b0 = b0 with i = n, i = (i1, i2, i3) and i° = (0, i2, i3). We
can determine the other Bézier points by using the directional derivative of
a direction d that is not parallel to the common edge T2T3. d is the same
direction expressed in barycentric vector coordinates of T. If we substitute
this in equation (11) we get:

bo(d)B_r(ro) =
I
i° =n—r I° I=fl—"

If we now can show that the above equation holds for r = n, we can conclude
that the surfaces described by T and T coincide.
Since r0 = (substituting this in the previous equation) we find:

b0(d)= b'o(d);
Ii°I=n—r

Because the edge is a common edge we have b10 = b10. This also means that

bj0(d) = bo(d);

because the points b0 and b0 completely depend on the control points on
the common edge.
Hence the two polynomials b and b agree in all derivatives in all directions
d lip to order n:

Db1o'(r) = Dbior(fl

and so the must he equal:

bo(r) = bo(fl; (14)

\Ve now have Theorem 2.8 from [2] which states:

Theorem Let b (with control points b1) be defined over T ={T1,T2,T3}
and let b' (with control points b1) be defined over = {T1, T2, T3}.
The two polynomials b and b are identical if and only if

jr = bo(a); 0 <r < n, (15)

where jr = (r, i2, i3); jr n, and o are the barycentric coordinates of
T1 with respect to Y.
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Using (15) we can find the Bézier points b1 from the given b1 (see [2, §2.3]).
however, equation (15) doesn't provide a stable method for points that are
outside the triangle, because it then is a formula that uses repeated ext rapol-
ation and has the same numerical problems as other extrapolation schemes.
The difference between domain transformation and subdivision is that T1 is
inside T (see Figure 12), so we don't extrapolate but interpolate. We can
use equation (15) (see 12, §3.21) for subdivision without worrying about the
method not being stable. With T1 inside of 7' the subdivision formula gives us
three sub-control nets. The intermediate points of the de Casteljau algorithm
b[(r),

I
i 1= n — r, are the points of the control net of the surfaces defined

over the triangles {T1,T3,T1}, {T1,T1,T2} and {T1,T2,T3}, this gives us:

Corollary The intermediate points b with I i ii — r of the deCasteljau
algorithm, are the control points of the three sub-triangles {T1, T3, T1},
{T1,T1,T2} and {T1,T2,T3}.

T3 T,

Figure 12: An example of a subdivision

\Ve will now present an example of a subdivision. Suppose we want to sub-
divide a triangle at its centroid (i.e. the point with barycentric coordinates
a = (, , k)). \Ve now wish to redefine the control net that used to describe
the surface over the whole triangle to one that describes the surface over a
part of the triangle. \Ve will call our original control netb and our sub-
triangle is b3. Suppose we want to know the position of b210. If we apply
equation (13) we get:
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b210 = b10(ei) = b0j0.B(a)
Ijl=2

= b21oB(cr) + b12oB10(a) + biiiB01(a) +
bo21B11(u) + b030B20(o) + boi2B2(a)

— i .rj\2L
— "210 1 1)120 -r Uflj

2()2b021 + ()2b030 + (')2b

\Ve now have a closed expression for b210, expressed in the control points of
the original surface. If we want to get three sub-triangles out of one triangle
we have to apply this method to each of the edges of the original triangle.
This provides us with three sub-nets that describe the same surface as the
original control net.

3.8 Interpolation scheme
\V will now present the interpolation scheme, as was proposed by Bruce R.
Piper in [3. §5]. \Ve will use this scheme instead of the scheme presented
by Farm in [2, §1.2] because Farm uses control nets that describe a surface
of degree 3. while Piper presents a proof that there are cases of piecewise
polynomial surfaces of degree 3 where a control net that describes an overall
( surface connot he found. The scheme proposed by Piper can be used for
interpolating surfaces, given some points on the surface and the tangent plane
in these points. The problem is described as follows:
We have given a triangulation in It3. On this triangulation the following
constraints must hold: each edge of this triangulation occurs in at most 2 tri-
angles. Each vertex occurs in at least 2 triangles. Each triangle is connected
with at least one other triangle. For each vertex tangential data is given by
the normal vector of the tangent plane in this vertex.
\Ve now wish to interpolate for each triangle a point on a C' continuous
surface which is determined by the vertices of the triangle and the tangential
data in these vertices.

As we explained in Section 3.1, this interpolation scheme consists of five steps
to create a control net.
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In step 1 we create an candidate control net. This net will be adjusted for
reasons of tangent plane continuity in steps 2, 3 and 5. In step 2 we will
subdivide the candidate control net, that was created in step 1, into three
sub-nets. These sub-nets will be further adjusted in steps 3 and 5. In step
3 we will adjust the center control points of the sub-nets that were created
in step 2. They are adjusted in such a way that each control point becomes
coplanar with the common edge and the center point of an adjacent sub-
control net of an adjacent triangle. In step 4 we will adjust the degree of
surface that each sub-control net, created in step 3, describes. The reason for
this is explained in detail in the following description of step 4. In step 5 we
will adjust some control points of the sub-control nets created in step 4, to
achieve the tangent plane continuity between adjacent triangles. We also will
present a proof that we need at least a control net that described a surface
of degree 4 to be able to get tangent plane continuity between two adjacent
triangles.
\Ve will now present a detailed description of each step.

Step 1. Create an initial control net.

In this step we will create a candidate set of control points. These points
will be used to create the final control net. The candidate set is deduced
from the input data. For each triangle in the triangulation we will calculate
a candidate control net. This candidate control net will be adjusted later on
to avoid sharp angles between two adjacent triangles.

/
30

b '
120w'

• —

102

Figure 13: An example of a candidate control net.

From each triangle we need the vertices and the normal vector of the tangent
plane of these vertices. The control points b300, b030 and b003 are equal
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to one of the vertices of the input triangle. The other boundary control
points (control points except b300, b030, b003 and b111 (see also figure 13))
are constructed by projecting one vertex on the tangent plane of both other
vertices of the triangle (see figure 14). This gives us two new candidate control
points and it is done for all three vertices so that we get six new candidate
control points.

b030

However, only projecting a vertex of the triangle on the tangent plane of an
other vertex, is not always sufficient. It is possible that the control points get
crosscd (see figure 15), this means e.g. the control points along the edge
(b030, b300) are b030, b120, b210 and b030 instead of b300, b210, b120 and b030.
This crossing" results in cusps in the surface. A solution to this problem
is scaling. By scaling we mean multiplying the vector from a vertex to the
projected point on the tangent plane of this vertex by a certain factor. Piper
suggests (in [3, §5]) a factor that depends on the distance between the two
vertices (e.g. b300, b030), namely one-third plus one-nineth the distance from
the vertex to the projected point q so that

b210 = b300 + ( + II — b3oo)(q — b300)

All the other control points on the edge of the triangle are calculated similarly.
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However this scaling factor depends completely on the given data and must
therefore be determined by trying several values until a result is found that
looks fine.
\Ve now have all the control points on the edges, but we still need one point in
the center of the triangle (b111 in Figure 9). The exact position of this point
is not important since it will be repositioned later-on when we consider the
surface continuity. \Ve will use the method that Farm suggests in [2, §4.11.
He suggests to use a C° interpolant which depends on the control points on
the edges of the triangle:

b111 = (b201 + b102 + b012 + b021 + b120 + b210) — + b030 + b003)

now have an candidate position of point b111. We need this position to
be able to subdivide the triangle. The exact position of is determined later
011 in step 3 and 5. This candidate control net now describes a Bézier surface
that goes through the points b300,b030 and b003 and is tangent to the given
tangent plane in these points.
\Ve now have the complete candidate control net, so we can continue with
step 2.

Step 2. Subdividing the surface.

In this step we subdivide the triangle into three sub-triangles. The reason
for the subdivision is that, although the surface, defined by the candidate
control net, that was produced in step 1, over each triangle looks smooth,
two adjacent triangles often fit together at sharp angles. The result of the
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subdivision does not provide us with adjacent triangles that join in a smooth
way, because our choice of the points b111 is arbitrary, but it is a necessary
step to eventually get a smooth join between the adjacent triangles. The
adjustments to make a smooth join between two adjacent triangles are made
in step 3 and 5.
We will apply the subdivision algorithm, as described in section 3.7, on the
control net we have so far. We divide the triangle at the centroid (see also
Figure 12). The centroid of a triangle has barycentric coordinates (, , ).
We will use formula (15) where the parameter is the barycentric coordinates
of the centroid.
This formula gives us one of the three sub-control nets, namely the control
net over b030, b003 and the centroid of the triangle. Note that for point b300,
the right hand side of equation (15) is determined by de Gasteljau algorithm
for interpolating a point with barycentric coordinates (, , ). The other
points calculated by the subdivision method are the intermediate point of the
de Casteljau algorithm.
In order to get another sub-control net we have to change the indices of the
formula. For the sub-control net over b300, b030 and the point corresponding
to the centroid, the index 1r becomes (ii,r,i3) and i° = (ii,O,i3). The last
sub-control net is found by setting i' = (i1, i2, r) and 0 = (i1, i2, 0).
We now have three sub-control nets that describe a surface of degree 3. To-
gether they describe the same surface as the original control net.

Step 3. Adjusting the center points.

In this step we adjust the center points of the sub-triangles. The result of this
step provides us with a set of triangles that join smoothly but the interior of
the triangles is no longer smooth. Making the interior of the triangles smooth
again is done in step 5. but this may require increasing the number of degrees
of freedom by raising the degree of the surface described by the control net,
which is done in step 4. See [3, §3] for an example showing the necessity of
degree at least 4. In this step the points are adjusted so that the center points
(like b111, see Figure 13) of two adjacent sub-triangles (sub-triangles of two
triangles that share a common edge) and two control points on the common
edge are coplanar.
If the points are not already coplanar the center points will be adjusted in
the following way:
first we project the center point b111 on the plane through the common edge e



T1

T

T1

Figure 16: Adjusting the center control points of two adjacent patches

and the center point d111, the center point of the adjacent triangle (see figure
17). The projected points are not coplanar, we still need to scale one of the
line segments (the segment from a center point to the projected point) with
a factor f and the other one with a factor 1 — f (0 < f < 1).

dç1,

b111

d
Figure 17: A projectioi of two adjacent triangles with common edge e

The factor f is a weighted average of the heights of the triangle with base
being the common edge e of the two adjacent triangle. The factor f is chosen
in such a way that it favors the triangle with the smallest height. This triangle
is favored because otherwise this would result in relatively big changes to the
sub-control net of small triangles. The effect of the same change to a bigger
triangle is relatively small. Suppose we have two triangles with heights h1
and h2, and h1 is larger than h2. We set the scaling factor f equal to ht+h2•
\Vc will then multiply the vector, from the center point to the projection of
this center point, of the triangle with the largest height with f. The vector
of the triangle with the smallest height will be multiplied with 1 — f.
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Step 4. Raising the degree.

In this step we raise the degree of the surface described by the control net.
These control points are still candidate control points because the adjustment
we made to the control points in step 3 disturbed the C' continuity of the
surface of a triangle. To ensure tangent plane continuity over the triangle
and between two adjacent triangles we still need to adjust some of the control
points. This last adjustment is done in step 5. We need to raise the degree
of the surface to 4 because it is, in some cases, impossible to determine the
center control points of a control net that defines a surface of degree 3, so
that they satisfy a necessary condition for tangent plane continuity, see Bruce
R. Piperin [3, 3J.

In this section Piper proves that a control net that describes a surface of
degree 3 does not always give us a solution for a smooth surface over and
between triangles. We will now present this proof. The proof is given by
presenting a counter example of a cubic interpolation problem. Before we
present this counter example we will first explain some of the notation used
in that example.
Suppose we have two triangles, P and Q, which share a common edge with
barvcentric coordinates (r,, r2, 0). A necessary requirement for tangent plane
continuity is that the triangles P, with surface p" and control points p, and
Q, with surface qfl and control points qj, join continuously over the common
edge. The construction of the control net, as was explained in step 1, ensure
that the triangles P and Q join continuously over the common edge. \Ve will
now present a formula with which we can find the tangent vector at any point
on the surface described by the control net of P, corresponding to the vector
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d (see equation (10) with r = 1):

Ddp'(r) = Ti B1(dipi+ei + d2pi+e2 + d3pi+e8) (16)
IiI=n—1

The tangent plane of the surface of P of a point on the common edge of P and
Q, is spanned by two different directions. We can choose these directions,
without loss of generality, as d1 = (—1,1,0) , a direction parallel to the
common edge, and d2 = (—1,0,1), a direction not parallel to the common
edge. Since we have continuity over the common edge, the tangent vectors
Dd1 b' and Dd1 q" are identical. To achieve tangent plane continuity between
P and Q the tangent vectors of D1pfl, Dd2p" and DdIqlz must all lie in the
same plane (see section 3.7). Using formula (16) we get

Dd1p'(T1,r2,O) = Dd1q'1(rl,r2,0)=n(J—I)

Dd2p"(r1.r2,O) = n(K—I)and Dd2q"rj,r2,O)=fl(L_I)

In the following notation n = 3, u + v = 1, p1 are the control points of the
control net of triangle 7', and qj are the control points of an adjacent triangle
C)

L?—1 ( fl\I — I)(1,3,0)Tl, T2, u,P+i,j,o
i+j=n—1

-I : Dfl1 I
.1 L(10)ITl. r2. 'i)Pi,i+1O

i+j=n—1

K = B'0)(Tl,T2.0)p1,J,l

T B'' "Li = (10)(Tl, T2, u)qi,j,t
+j = n—i

Note that I. see figure 19, is a point in the triangle spanned by P300, P210 and
P12o• To be more precise, I is a point on a quadratic bézier curve (see section
2). The same observation can be made about the points J, K and L.
A necessary condition for the tangent plane continuity between P and Q is

that:

33



Figure 19: The points I, J, K and L together with a part of the control-nets
ofP and Q.

cIet[ ]= (17)

\Ve will now show a CUbiC case, for which it is impossible to find the points
b111 and q111 satisfying equation (17). The input data for this case are the
following control points:

P300 = q300 = (0,0,0) P210 = q210 = (1,0,0)
P120 = q120 = (2,0,1) P030 = q030 = (4,0,1)
P201 = (1.1,0) q201 = (1,—1,0)

P021 (3,1,1) q021 = (3,—1,0)

\Ve now need to determine the center control points b111 and q111 in such
a way that equation (17) still holds. Let b111 = (xv, yp, z) and q111 =
(.rq. iq zq). If we now calculate the determinant of equation (17) with the
tin known u, v, b111 and q1 ii, we get the expression:

2uv(dou4 + 4d1u3v + 6d2u2v2 + 4d3uv3 + d4v4) (18)

P1

p300

p021

p030
q201 q021

where

d0 (z + zq) — 2,

d1 = ((zqyp — zpyq) — (yp — yq) — (x + xq) + (z + zq) + 2)/2
(/2 = (4(yqxp — ypxq) + 4(zqyp — zpyq) + 4(y — yq) + 3(z + zq) — 4)/6
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d3 = (2(zqypzpyq)(ypyq) (xp+xq)+(zp+zq)+2)/2
d4 = 2(zp+zq)2

Since uv is not equal to zero and the one-dimensional Bernstein polynomials
are independent, equation (18) is equal to zero if and only if all the d are
equal to zero. However, it is impossible to choose z, and Zq so that d0 and d4
are both equal to zero. This means that it is impossible to choose the points
put and q111 in such a way that equation (17) holds.
We can now conclude that, since a cubic surface satisfying equation (17) is
not always realizable, it is necessary to use surfaces of degree at least 4. In
the next step we will show that degree 4 always provides us with an overall
smooth surface.

Step 5. Adjusting the control points

In this last step we will adjust some of the control points of the sub-control
nets which each describe a surface of degree 4. This is done to ensure the
tangent plane continuity between two triangles that share a common edge.
l'his finally gives us the control net we need to interpolate a smooth surface
defined by the given data.
\Ve will present a proof, as was given by Piper in [3, §4], that we can al-
ways find a control net that realizes tangent plane continuity between two
adjacent triangles. These control points may still not establish tangent plane
continuity over the triangle itself. and therefore we will adjust them.

\Ve will use the same formula for the points I. J, K and L as in step 4:
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T '' B'' " '
— L_4 (Q)!U V, v,'Pi+l,j,o

i+j=n—1
>: fl—

= j,3,O)t V, U)Pi,j+1,O
j+j=n—1

K = B')(u,v,0)pI,j,l
i+j=n—I

L = B')(u,v,0)qI,,l
i+j=n—1

In this proof we vill use an equivalent condition of equation (17). This is
done because an expansion of this formula with die new points I, J. K and L
will be quit difficult to read. The condition we will use here is that for each
u,v (u + v = 1) there exists scalars E(u, v), F(u, v), G(u, v) and H(u, i'), not
all zero, such that:

E(u, L')I —I— F(u. v)J + G(u, v)K + II(u, v)L = 0 (19)

The scalars are chosen to be linear functions of n and v:

E(zz, t') = eu + e2v. F(u, v) = f1u + f2v,
(i(U. v) = g1u + g2v, H(u, v) = h1u + h2v.

Here . fi, gi, h1, e2, f2, g2 and h2 are real constants, to be determined
in such a vav that the patches corresponding to triangles P and Q are C'
continuous along the edge shared by P and Q. i.e. such that the expansion
(19) of (17) is satisfied.
\Ve will use the following notation to make the proof more readable:

R1 = T2 = q3_j,j,i i = 0,1.2,3
Sj = P4—i,i,O = q4—,i,O i = 0, 1, 2, 3,4

The points S in this notation are the Bézier points on a common edge between
two adjacent triangles P and Q, R are the control points of the control net of
P which are parallel to this edge and T are the control points of the control
net Q which are also parallel to this common edge (see Figure 21).
If we expand equation (19) we get:
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C0 = tiSo+fiSi+giRo+hiTo
C1 = [:( 1S1 + f1S2 + g1R1 + h1T1) + (2S0 + f2S1 + g2Ro + h2T0)]/4

C2 = [2S1 + f2S2 + g2Ri + h2T1 + (1S2 + f1S3 + g1R2 + h1T2]/2

C:3 [:( 2S2 + /2S + g2R2 + h2T2) + (iS: + f1S4 + g1R3 + h1T3)J/4

C4 = S: + /S4 + jR + h2T3

Since u and v are both not equal to zero, the only solution to equation (20) is
that all the C, are equal to zero. Since the points in the expression Co are all
coplanar, because they are all on, or projected on the tangent plane through
S0. we can choose e1, Ii. gi and h1 such that C0 will be equal to zero, while
not all of e, Ii, gi and h1 are zero, but so that e1 + f + gi + hi = 0. Since
R0 and T0 are coplanar with 5o and S1, and are on opposite sides of the line
through S0 and S we can choose g1 and /i so that gi +h1 = 1. Since the four
points in C0 are coplanar we can't solve C0 = 0 by making a linear system
by using all three coordinates of the points in C0. So we leave out one of the
coordinates and use the equations c1 + fi + g1 + h1 = 0 and gi + h1 = 1 to
get a solvable four-by-four system. We can solve the scalars e2, 12, 92 and h2

in the same way, by setting m + h2 = 1, e2 + 12 + g + h2 = 0 and by using
C4.
In order to solve unknown control points R1, R2, T1, T2 and S2. We can
simplify this by setting IC1 = 0, 6C2 = 0 and 4C3 = 0. We can rewrite this
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Figure 21: Bézier control points that are important for the surface continuity

u4C0 + iu3rC1 + 6u2'2C2 + lit i'C + t'C1 = 0 (20)

where



as a system: .4.i = b with

3gj 3h1 0 0 3f
A = 392 3h2 3g 3h1 3(12 + e1)

o 0 392 3h2 3e2

e2S0 -f f2S1 + g2Ro + h2T0 + 3e1S1
5=— 3(e2Si+fiS3)

e1S3 + f1S4 + g1R3 + h1T3 + 3f2S3

R1
T1

i= R2
T2
S2

This system can be solved when the rows of the matrix A are independent,
if the rows are dependent we need an other method to solve this problem.
\Ve will now show how to find the points in 5 when the rows are dependent.
These rows are dependent only if i = e2, fi = 12, 91 = 92 and h1 = h2. If
the rows are dependent, matrix A becomes:

3gi 3h1 0 0 31i
A' = 3gi 3h1 3g 3h1 3(f + e1)

o 0 3m 3hi 3e1

We can now see that if we add row 1 and 3 of matrix A' we get row 2 of
matrix A'. If we now want to find a solution for .i we get:

— 3gi 3/ia 0 0 3f
— 0 0 3g 3/ia 3(i

{ e1So+fiSi+giRo+hiTo+3eiSi
—

[eiS3+fiS4+gjR3+hiT3+3fiS3

which is a solvable two-by--five system. Hence, we can always find the points
R1, R2. T1, T2 and S2 so that they satisfy tangent plane continuity between
two adjacent triangles.
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\Ve now have enough information to adjust the control points for making a
visually smooth join between two adjacent patches. After determining the
matrix A, by solving C0 and C4 as described above, and b, we adjust the
points marked N in Figure 20. This can be done by solving the following
equation:

4= b— Ay

where are the control points we have so far. è is the correction for the
control points so that our new control points will be: + 7.
The adjustment of these points causes the join between two triangles to be
smooth, but this adjustment and the adjustment of the center points in Step
3 can cause the join between two adjacent subtriangles of one triangle to
loose its C' continuity. \Ve will have to adjust some points inside the triangle
to restore this smoothness. This is achieved by adjusting the points labeled
t1, \ and 0 in Figure 20. These points will become the centroid of the

three points surrounding them. By making this point the centroid of the
surrounding control points, we ensure C1 continuity between the subtriangles,
because this adjustment makes the adjusted point and the three surrounding
points coplanar. We will have to start with the points marked M since these
points are used to modify the points marked N, which are used to modify
the point marked 0.
According to Piper, the described method gives us a smooth surface with the
given control points.

\Ve will now show that local changes do only have a local effect. This is
importailt, because when you are designing an object and wish to change a
part of the surface, you do not always want this change to affect the entire
surface. Suppose we change a point p or the tangent plane in point p (see
figure 22) where p is one of the data points.
It is clear that all the triangles that have p as a vertex, will change, and
so will the associated surface patches. \Ve will now show that this change
in data will only have an effect on the triangles containing p as a vertex or
sharing a common edge with the triangles that have p as a vertex. If we
change point p in triangle Apqr (see figure 22), the candidate sub-control
nets and the centroid of this triangle will change. The candidate sub-control
nets of the adjacent triangle L\qrs do not change, since the control nets of a
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Figure 22: Local changes have only a local effect.

triangle depend only on the vertices and the tangent planes in these vertices.
Of the triangle Aqrs the final control net of sub-triangle qwr will change
most. The points that are determined for the tangent plane continuity (the
points marked X in figure 20) will change. The control points on the edges
qw and wr will also change because they are set to be be the centroid of
the surrounding points. The other control points in the triangles Aqws and
Lwrs do not change. Since the other triangles adjacent to triangle Lqrs,
i.e. triangles that do not contain data point p. do not use the control points
of triangle Lqrs, they will not be affected in any way by the changes made
to data point p. So we can conclude that local changes will only have a local
effect.

q

p S

r
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3.9 Application
\Ve implemented the described method in an application. The application's
interface looks as follows:

This application can be used to view data and to interpolate new data points
as was described in section 3.8. The application takes input from a file. This
input is then displayed. \Ve can now interpolate new data points. This inter-
polation can be done in one step. One can also choose to do the interpolation

41

Figure 23: The interface of the application of 3-D interpolation.



step by step. These steps correspond with step 1 through 5, which were ex-
plained in section 3.8. Every time one step is executed, the result of this step
will be displayed. It is also possible to write the result to a file. If we want
to use the output again as an input file, only the data points will be stored in
this file. If one chooses to use the output as an input for Mathematica , one

gets the same data as the one that is displayed by the application. We have
chosen to save the entire control net because one can use Mathematica ' to
create postscript files of the displayed object.
The view point of the object displayed by the program can be modified by
using the mouse. By pressing the left mouse button down and moving the
mouse, the figure will rotate. The center mouse button is used for zooming
in or out. Pressing this button and moving the mouse down will result in
zooming out on the figure, move the mouse up and it will result in zooming in.
The right mouse button can be used for moving the figure around. Pressing
the button and moving the mouse will also move the figure.
\\e will now explain the buttons in the top part of the window.

The "File" button
This button is used for selecting files. Pressing this button will present a
tear-off menu. This means that by clicking on the dotted line the menu will
become a window which can he placed at a desired position. This menu
consists of three buttons, a button labeled "Input File", a button labeled
Math File" and a button labeled "Output File". The button "Input File"
will select a file which can be used as an input file of this application. The
line of the file is equal to a face in the figure. A line can look as follows:

(((17,2,3), (3.2, 1)), ((13,3.4), (4,3. 2)), ((43,4,5). (5,4,3)))

The first three-tuple is, as are the third and fifth, a vertex of the face this
line describes. The second three-tuple, as are the fourth and sixth, is the
normal vector of the tangent plane in this vertex. The number of braces are
of importance.
The button labeled "Math File" is used for selecting a file, to which output in
Mathematica ® style can be written. This file can be used in \Iathematica ®

for examining the figure closer or making a postscript file of this figure.
The button labeled "Output File" is used for selecting a file wherein the data
points, which are shown in the figure, can be written. This file can be used
as an input file for this application.
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The "Options" Button

This button is used for the interpolation. Pressing this button will present a
menu with the following options.

Initial Net. Pressing this button will make an initial control net for each
triangle, as was described in the previous section in Step 1.

Subdivide. Pressing this button will subdivide the initial control net into
three sub control nets. If the initial control net was not made yet, it will
be made first. This operation is equal to Step 2, as was described in the
previous section. Instead of adjusting the indices for each sub-triangle,
we rotate the control net so that the indices for the subdivision method
stay the same (see equation (15)).

Adjust Center Points. Pressing this button will result in the adjustments
of the center points of the control nets. If the previous two steps were
not executed first, they will be executed first. This operation is equal
to the one described in Step 3 in the previous section.

Elevate Degree. Pressing this button will raise the degree of the surfaces
described by the sub-nets by adjusting the sub-nets. The operation is
equal to the operation described in Step in the previous section. If the
previous operations were not executed first, the application will execute
them first.

Adjust Control Points. Pressing this button will adjust the control points.
This operation is equal to the one described in Step 5 in the previous
section. If the previous steps were not executed first, the application
will execute them first.

Interpolate. Pressing this button will cause the application to interpolate
points on the surface. The above five steps will be executed first.

By rotation in the "Subdivide" option we mean the following:
If we represent a control net as a 2-dimensional array .4, with b030 at position
[0,0], b300 at position 13,01 and b03 at position [3,3], we can rotate this array
by using the following formula:

A.[i,j]= .4.[3—(i—j),3—i]

43



The Interpo1ation" button will interpolate three points by using the de
Casteljau algorithm. These points are in the center of each edge of the tri-
angle. The result of this action is that each triangle is split in four triangles
(see figure 24).

Figure 24: An example of splitting up a triangle.

The tangential data in these points are calculated by using (cross-boundary-)
derivatives. If we take the derivative in two directions, we get two tangent
vectors. \Ve can calculate the normal vector of the tangent plane in these
points by taking the cross product of the two tangent vectors.

The "Reset" Button
This button can be used for resetting the figure. Pressing it will give you a
menu with two options. The first option, "Reset", will reset the figure to its
initial state. This means that all zooming, rotating and moving is undone.
The second option, "Reload" will even go one step further. This option will
read the input file, and build the figure according to the data in this file.

The "Write" Button
Pressing this button will present you a tear of menu. This menu has two op-
tions, namely Iath File" and "As Input File". Pressing on of these options
will cause the application to write the current figure to a file. Pressing the
button labeled "Math File" will write the current figure to the Mathematica ®
file that was selected in the "File" menu. Selecting the "As Input File", will
cause the application to write to the file that was selected in the "File" menu
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as 'Output FiIe. This file can later on be used as an input file for this
application.

The "Close" Button
This button is pressed when one wishes to leave the application.
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Data Structure

In our application we used the following data structure. We stored each data,
data point and tangent vector of the tangent plane in this point, only once.
This implies that we need lists of pointers to get a data structure we can use
to interpolate surfaces. The data structure consists of three pointer lists. For
each list we also administrate the length of this list.
First we have a list of points. This list contains pointers to the data. This
data consists of a point and the tangent vector of the surface in this point.
There are also pointers to the list of edges.

I'I'H\i—l

Figure 2i: An example of a list of points.

These references are made so that we can find all the edges which contain
this point. One point can have references to several edges.
The list of edges contains references to the list of points,

list of points/ //
// /\ list of edges

-f \/ , /' list of faces

Figure 26: An example of a list of edges.

so that we know of which vertices the edge consists. The edge list has also
references to the faces, or triangles, it is part of. An edge can occur in at
most two faces.
The face list has references to the edges it consists of but it

46



F '-.. I, I \ 1— I

list of edges

P I I SII list of faces

I I I
list of control nets

Figure 27: An example of a list of faces.

also contains references to the control net of this face. Each face has a list
of three control nets. We need three control nets for each face because the
subdivision algorithm we will use in our interpolation scheme, gives us three
sub-nets for each triangle.
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