
September 1998
''rsitet Grcnirigen

'Infonnafl I R.ksnc.ntruinI 'ven5
F-stbus 800
9700 AV Groning

RuG

WORDI
\IFJ UITGELEEND

Triangulation of implicit surfaces
by E.R. Kronemijer

under supervision of Dr G. Vegter

lI
/

r
—

RijksUniversiteit Groningen



Foreword
To whom this may concern

When 1 started studying Computer Sciences in 1991 my main goal was
becoming an even better programmer then I thought I already was. During the first
year I discovered that most of the subjects covered were of a mathematical or
theoretical nature and not about programming. Now I am never in need of a pocket
calculator and consider myself a fairly good programmer.

During the seven years at the RuG I have studied the wonders of computer
science and what it can do for you. I also studied the wonders of beer and what it
makes you think you can do! And now I think it is time to face the "real world".
Actually I started working some months ago, so the "real world" has started for me
already.

I would like to thank my coach Gert Vegter for his time and support in helping
me write this paper. I would also like to thank my parents for both their moral and
financial support, as well as for being who they are. Last but not least I would like
to thank you, Arijaan, for putting up with me the last year, which has not always
been easy.

Groningen, September 1998

Evert Kronemeijer



1. Introduction
Computer Aided Geometric Design deals with those mathematical properties of

curves and surfaces that are useful in applications like CAD-systems, fluid
mechanics (jet wing design), interpolation and approximation of measured data,
etc. An important issue is the triangulation of smooth surfaces.

Triangulations of surfaces are frequently used in mesh generation for finite
element analysis. Moreover, many graphics (rendering) systems use triangles or
polygons as primitives.

1.1 Problem description
This paper deals with approximating smooth implicit curves and surfaces.

Implicit curves are defined by a function f(xy). The curve consists of all points
(x,y) for which j(xy) = 0. Implicit curves will be approximated by straight line
segments, of which the endpoints lie on the curve.

An implicit surface is similarly defined by a function f(x,y,z). The surface
consists of all points (x,y,z) satisfying j(xy,z) = 0. Implicit surfaces will be
approximated by constructing a triangulation, of which the vertices lie on the
surface (for finite element analysis it is important that vertices should be on the
surface, or as close to it as possible).

In the sequel we assume that f is C', i.e. differentiable with continuous
derivatives. According to the "implicit function theorem" [6], an implicit curve or
surface is smooth, when Vfi,p) 0 for all p satisfying J(p) = 0. Here Vflp) is the
gradient off at p.

1.2 Outline of this paper
A number of techniques for polygonizing or triangulating curved surfaces (not

necessarily implicit) is known in the literature. Two of these, originating from
Chew [I] and Bloomenthal [2], are treated in some detail in chapter 2.

The problem of approximating implicit curves in the 2-dimensional plane is
considered in chapter 3. I devised, implemented and tested a total of 4 methods.
The results are presented in chapter 3.

A new, simple and fast method for triangulating smooth implicit surfaces in 3-
space is introduced in chapter 4. It uses a fixed mesh size, and it produces good-
quality triangulations.

Finally, chapter 5 presents the conclusions.
Appendix A covers the rootfinding methods mentioned in this paper.



I .

Fc:.-; c:o
9700AV Groningen

2. Two existing methods
In this chapter I discuss two methods for constructing triangulations of curved

surfaces: a method by Chew [1], based on the constrained Delaunay triangulation
(CDT, [3]); and an octree-based method by Bloomenthal [2].

2.1 Chew: guaranteed-quality mesh generation for curved surfaces
Chew's method starts off with an initial, crude, triangulation from which the

CDT is computed. A CDT is essentially a Delaunay triangulation in which some
edges are fixed ahead of time.

Next, all triangles are graded. A triangle passes the grading test if it is both
well-shaped and well-sized. A triangle is well-shaped if its smallest angle is greater
than 30 degrees. A user supplied grading function decides whether triangles are
well-sized. Any grading function is allowed, as long as making triangles smaller
will eventually make them pass. Typical size criteria would be based on error
estimates and/or surface curvature.

Triangles that do not pass the test are refined by adding a vertex at their
circumcenter, and updating the CDT to include this new vertex. This is repeated
until all triangles are graded.

To make this work on a curved surface, the notions of circumcenter and
circumcircle have to be defined for curved surfaces. Chew defines these as follows:
all spheres trough the three corners of a triangle have centres lying on one line (this
is the line orthogonal to the triangle plane and intersecting it in its regular, 2D-
circumcenter). The circumcenter is defined as the intersection of this line with the
curved surface; the circumcircle is defined as the region of the surface lying inside
the corresponding sphere.

However, the line may not intersect the surface at all, or more than once. Chew
argues that these difficulties cannot occur if the initial triangulation is 'reasonable'
in the following sense: in the region formed by the union of circumcircles of two
adjacent triangles, the surface normals should not vary by more than it/2. This
condition also guarantees that two adjacent triangles have consistent circumcircles:
given edge bc with adjacent triangles abc and bed, d is within the circumcircle of
abc iff a is in the circumcircle of bcd.

Strong points of this algorithiii are:
• The algorithm produces well-shaped triangles.
• Boundaries are respected; though these have to be present in the initial

triangulation.
• Intersecting a line with the surface is in all practical cases a feasible

operation, although it may be expensive.
• To determine if a point is inside a circumcircle —an elementary operation for

building Delaunay triangulations— calculation of 3-space distance suffices.

The main disadvantage of this algorithm is that an initial, 'crude', triangulation
has to be constructed first, satisfying the condition on the bounded variation of
normals. Thus, a triangulation cannot be built up 'from scratch'. Also, (crude)
boundaries have to be present in the initial triangulation.

2



2.2 Bloomenthal : Polygonization of implicit surfaces
Bloomenthal surrounds the surface with an octree of cubes, at whose corners the

implicit function is sampled. The surface is defined by the zero set of a continuous
function f or, more generally, the set of points that separate positive f from
negativef A cube intersects the surface if it contains a corner for whichf evaluates
positively and a corner for whichf evaluates negatively.

The octree can be constructed converging to the surface, or tracking it. When
converging to the surface, the octree is constructed from an initial root cube. The
root cube should be large enough to contain the complete surface to be
triangulated. It then converges to the surface by recursively subdividing those
cubes that intersect the surface. The subdivision process halts when a pre-set
recursion depth is reached.

When tracking the surface, an initial 'seed cell' is established that intersects the
surface, and is small compared to surface detail. New cells propagate along
existing cell edges that intersect the surface.

Eventually, for each cell a polygonal representation of the surface is

constructed, with polygon vertices lying on cell-edges, and polygon edges lying in
the cell faces. Surface vertices are computed for each cell-edge having opposite-
signed corners, by bisection along the edge. These surface vertices are connected
along the faces to form polygons. The polygons may be subdivided into triangles to
form a triangulation.

Unfortunately, the 'positive' corners (at which f evaluates positively) and the
'negative' corners of a cube cannot always be separated by a single plane. When
this problem arises, Bloomenthal proposes to partition the cube into 12

tetrahedrons (introducing one new vertex at the centre of the cube), and to
construct polygonal representations of the surface from these tetrahedrons. Since
for a tetrahedron, positive and negative corners can always be separated by a single
plane, this always yields a consistent representation of the surface. However, a
different choice of partitioning will result in a different representation of the
surface.

Advantages of this algorithm are:
• It works for very general functions.
• The quality of the approximation can be controlled by the recursion depth.
• The algorithm can be made adaptive, by making the recursion depth

dependent on surface curvature.

Problems connected to this algorithm are:
• There is no control over triangle shapes. They may get very small or skinny.
• Even iff evaluates to the same sign in all cube corners, the surface may still

penetrate the cube. Since such cubes are not processed further, this will
result in a gap in the surface representation.

• The tracked version needs a 'seed cell'.
• Boundaries must always coincide with cube faces.

3



3. Approximating implicit curves in the plane

3.1 Problem
An implicit curve in the xy-pIane is formed by those points (xy) satisfying the

equationf(x,y) = 0, for some C functionf Whenf is a differentiable function and
Vfix(yC) 0 for all (x0,y0) satisfyingflx0,y0) = 0, the implicit curve will be smooth.

The problem we intend to solve is, given such a function, approximate the
corresponding curve by connected straight-line segments.

3.2 Four methods
As a starting point I have taken a 2-dimensional version of the octree-method as

described by Bloomenthal [2]. As mentioned in chapter 2, the converging octree
method will cause 'holes' in the approximated surface when a cube intersects the
surface whilefevaluates to the same sign in all its corners. The two-dimensional
version, using squares instead of cubes, suffers from the same problem; this is
illustrated in figure 3.1.

P-
:

'-•

7•'
Figure 3.1 Part of a sine-curve. The shaded square was not subdivided because its

corners all evaluate to the same sign.

Increasing precision, that is increasing recursion depth, does not solve this
problem, because the problem can occur at any depth. It is possible to check
whether pieces of the curve are missing: each segment should have two
neighbours, unless it is a boundary segment; but this can only be checked in a
sequential pass after the recursive subdivision has been done. Since an

approximation of any reasonable implicit curve will essentially be a (connected)
sequence of segments, I decided to investigate only algorithms that track the curve.
So as a starting point I took a two-dimensional version of Bloomenthal's tracking
algorithm, and called it method 1.

4



3.2.1 Method 1

Method 1 requires an input square that intersects the curve and is small relative
to the curve detail. New squares are 'grown sharing edges that intersect the curve.
Zero-points of the function are calculated on the edges of the squares and are
connected to form segments. The zero-points are calculated using the bisection
method. An example is shown in figure 3.2.

___I

Figure3.2 Part of a sine-curve, approximated by method I.

This method is easy to implement and always produces a connected sequence of
segments. It may however produce arbitrarily short segments, because of the rigid
placing of the squares in a grid.

3.2.2 Method 2

To prevent the production of arbitrarily short segments. I decided to place the
squares adaptively, as follows: suppose the most recently calculated segment is
AB. Then place the square as in figure 3.3.

F
+

delta
A B

Figure 3.3 Adaptive placement of a square.

Check which of the edges CD, DE or EF intersects the curve; calculate a zero-
point off on this edge and connect it to B to form a new segment. This is method 2,
illustrated in figure 3.4.

Method 2 (as well as 3 and 4) requires an initial segment instead of an initial
square. The zero-points are again calculated by the bisection method.

Table 3.2 (page 9) lists minimum and maximum segment lengths for the four
methods described here. As can be seen in this table, method 2 produces no longer
the very short segments of method 1.

5



1

/

3.2.3 Method 3
In both method I and 2, the fixed size of the squares implies an upper bound on

the length of the segments. So it seems natural now to vary not only the orientation,
but also the size of the squares, thus changing them into rectangles of fixed height
delta and variable length. The rectangle can be stretched as long as the curve lies
completely within it, see figure 3.5.

Let 1(t) be the line through A and B, such that 1(0) = A and 1(1) =B. Then let
l,(t) be 1(t) shifted orthogonally over a distance of +delta, and 12(t) be 1(1) shifted
over —delta. Now the rectangle, delimited by i and l2, can be stretched to the point
where the curve intersects i or 12, whichever is closest to the vertical line through
B. As before, we will approximate the part of the curve lying inside the rectangle
with a straight line BC. This is method 3.

'I- C

Figure 3.5 Method 3

But how to find the intersection point C? Let's consider only 1, for the moment.
We need to find the smallest zero-point z1 of f1(t):=f(l1(t)), with t>1. The
bisection method does not apply here, since we don't have two points with opposite
signs. I have chosen here to use Newton's method [appendix A]. Newton's method
requires an initial 'guess' t, for which I have chosen t = 2. In general, it converges
to a zero z, off. In the same way we find a zero z2 on l2.

IfI<z1 <z2or z2 <l<z1,thenlet C=l1(z1).IfI<z2 <z1or z1 <l<z2,then
let C=12(z2). If both z1 <1 and z2 <1 then we panic.

Here we encounter a major disadvantage of this method: there is no control over
the point to which Newton's method converges. It may for instance converge to C
instead of C. But in practice, using small enough delta, this hardly ever happens.

6

Figure 3.4 A sine-curve approximated by method 2.



Another problem is the slow convergence, as can be seen in table 3.3. This is
because the functions f and f. will be very flat, since l and l lie nearly parallel to
the actual curve.

The importance of method 3 is that it produces longer segments in regions of
low curvature and vice versa. An example is shown below.

Figure 3.6 A sine-curve appmximated by method 3; delta = 0.2. The real curve is
printed in gre.

3.2.4 Method 4

Newton's method would converge much faster if we restrict f to a line
orthogonal to the curve, sincef would be less flat there. This consideration led me
to method 4 (see figure 3.7). If the signs of f in D and E differ, move DE to the
right and stretch the rectangle. If they don't differ, move DE to the left. shrinking
the rectangle. Repeat this until a) stretching would result in equal signs in DE, or b)
shrinking results in opposite signs. Next. Newton's method is applied to the line
DE, which is expected to be more or less orthogonal to the curve. The zero-point
found is connected to B to form the new segment.

Figure 3.7 Method 4. Because signs in D and E d:ffer DE can be moved to the
right.

As an initial guess, the length of the rectangle CD is taken to be equal to the
length of the previous segment AB. Mostly, especially for smaller delta, this will
be a good guess. For the shrinking and the stretching I chose dividing into halves
respectively doubling the length of the rectangle. Other choices are possible here.
like increasing or decreasing with a fixed step; or multiplying with a factor other
than 2. An example is shown in figure 3.8.

7

1

0.5

-0.5
—1

8

11 —

1, —

F El-i1- ¶-—

delta

delta

-a--

C D(*)



0.5

—0.5

Figure 3.8 Approximation of a sine-curve using method 4; delta = 0.2.

Method 4 has the following advantages over method 3:
• rapid convergence of Newton's method (table 3.3);
• when Newton's method fails (it should always find a zero-point between D and

E). the bisection method can still be used. In practice, this was never necessary;
• it is more robust.

On the other hand, method 4 produces more/shorter segments than method 3.
But since we use a factor 2 to shrink or enlarge the rectangle. the segment produced
by method 4 cannot be shorter than half the length of the segment that would have
been produced by method 3. Thus method 4 will produce no more than twice as
many segments (table 3.1).

Figure 3.9 gives another example of a curve approximated using method 4.

8

2

-1

8

0.4

Figure 3.9 An approximation, using method 4, of a 'flower'-fiinction
(q ,2+sin(Sço)) in polar co-ordinates; delta = 0.2. The encircled area seems to

contain a flaw; but actually the deviation here is just below 0.2.



3.3 Results
The tables below give data for the approximation of y—sin(x) (f(x,y) = y—sin(x))

on the interval [0,2it]. The precision used in calculating the zero-points is E = 10.8
(see appendix A). This relatively high precision (compared to delta) is used to
ensure that the segment endpoints will be very close to the actual curve.

In method I and 2, delta is the size of the squares. In method 3 and 4, delta is
the height of the rectangles.

delta method 1 2 3 4

0.1 100 76 15 18

0.01 1026 764 45 57
0.001 10281 7640 141 191

Table 3.1 Number of segments

Delta method 1 miii Max method 2 mm max
0.1 2.36e-4 1.41e-1 1.OOe-1 1.Ole-1
0.01 2.29e-7 1.41e-2 1.OOe-2 1.OOe-2

0.001 1.08e-8 1.41e-3 1.OOe-3 1.OOe-3

Delta method 3 mm max method 4 mm max
0.1 3.18e-1 1.13e0 1.80e-1 1.57e0

0.01 1.OOe-1 6.87e-1 5.74e-2 9.98e-1
0.001 3.16e-2 3.40e-1 2.27e-2 3.73e-1

Delta

Table 3.2 Minimum and maximum segment lengths

method 3 total avg method 4 total avg Newton
0.1 236 15.7 187 10.4 5.6
0.01 690 15.3 549 9.6 5.0
0.001 2008 14.2 1729 9.1 4.8

Table 3.3 Total number of function evaluations and average number of evaluations
per segment. Since in method 4 not all! evaluations can be attributed to Newton 's
method, the Newton column gives the average number of evaluations made when

applying Newton's method

9

I



4. Triangulation of smooth implicit surfaces

4.1 Considerations
Methods 3 and 4 in the previous chapter depend crucially upon the fact that the

curve is smooth. Because of this smoothness:
• previously calculated roots can be used to find new starting points that are

guaranteed to be close to the actual curve;
• Newton's method converges rapidly because it can be applied on a line

nearly orthogonal to the curve.
In the following algorithm, these benefits will be exploited.

4.2 Outline of the algorithm
Suppose we have already triangulated a region of the surface. then we can use

the vertices on the boundary of this region, which are zeros of f. to compute new
starting points for Newton's method, with which we can in turn expand the
triangulated region. So the algorithm will have to:

• keep track of the boundaries of triangulated regions. which we shall call
fronts';

• somehow expand these fronts, thereby calculating new triangles:
• take care of colliding fronts (they may collide with themselves, or with each

other).

4.2.1 Fronts
A front is a cyclic list of edges, ordered in clockwise direction with respect to

the surface normals in its vertices. Its inner region is supposed to be fully
triangulated, i.e. each triangle edge is either a front edge or it is shared between
two adjacent triangles. See also figure 4.1.

Figure 4.1 Example of a front. Solid edges are front edges; the arrows signif\
normal vector directions. Front edges are ordered clockwise.

4.2.2 Expanding fmnts
A front delimits a region of the surface that is already triangulated. The most

important step of the algorithm is to expand the triangulated region. producing
additional triangles, and to update the front accordingly. This is called expanding
the front. Note that expanding the front will not necessarily increase front length.

10



For instance, when triangulating a sphere, the front length will increase at first,
reach a maximum length (roughly the diameter of the sphere) and then decrease
again until the surface is closed (see figure 4.6, page 15).

A front is expanded by repeatedly expanding one of its vertices, see figure 4.2.
Expanding consists of the following steps:

• calculate the surface normal N in point p; let V be the tangent plane of the
surface inp;

• let v1 be the previous vertex in the front list, and v2 be the next. Project the two
edges pv1 and pv2 onto plane V yielding e1 and e2;

• calculate the outer angle 9 between e1 and e2;
• let n = round(9/60°);
• if n � 1, simply remove p from the front list, and report the resulting triangle

pv1v2;

• if not, let a = B'n, calculate n-i new points q in V (1 = 1,..,n-1), at a fixed
distance delta of p, such that the angle between e, and pq1 in plane V is ia;

• apply Newton's method to the lines l, through q1 parallel to N, resulting in new
surface pointsp1;

• report the n+l new triangles ppp1+ (i = O..n), wherep0 = v1 and p,,1. = v2;

• update the front to include pa.

Although any vertex from any front may be chosen to be expanded, the present
implementation chooses the one with the smallest external angle 0. This choice
causes the front to expand evenly and minimises the number of collisions (see next
section).

4.2.3 Colliding fronts
When a vertex v that is to be expanded is too close to another front, the above

scheme will produce overlapping triangles. In this case a 'bridge' edge is
introduced, connecting v to the nearest vertex v' of the opposing front, and both
fronts are rearranged as in figure 4.3.

11

Figure 4.2 Expanding the front.



Figure 4.3 Meeting fmnts. Left: before intmduction of bridge edge. Right: after
introduction of bridge edge i'-v'. The arrows indicate the clockwise direction of the

fronts.

A front may very well collide with itself. In that case, it is effectively split in
two. Conversely, if two different fronts meet. they will be merged into one. Both
cases can be observed in figure 4.7. page 16.

4.2.4 Getting started
The algorithm will need at least one initial front to start with. Given a point p on

the surface. an initial 'honeycomb' front may be created as in figure 4.4.
Alternatively, one may want to triangulate only part of the surface. In those

cases. one or more pre-calculated fronts may serve as input to the algorithm.
Intersecting the surface with a plane yields a 2-dimensional curve. Using the
methods described in chapter 3, this curve can be approximated to form an input
front. The truncated sphere in figure 4.5 was created this way.

Figure 4.4 Initial front around p.

12



When a front has eventually reached the shape of a triangle, this triangle is
reported and the front is deleted. When no fronts remain, the surface is closed and
the algorithm terminates.

4.3 Results
The figures below illustrate the triangulation process for two surfaces:

• theunitsphere, f(x,r,z)=x2 ÷.2 +z2 —l.and
• a torus with outer radius R=O.7 and inner radius r=O.3,

f(x,v.z)=(x2 ÷v2 -i-z2 +R2 —r2)2 —4R2(x2 +s.2)

Figure 4.6 shows how the front proceeds 'evenly', keeping roughly a circular
shape. This is because the front vertex to be expanded next is always chosen to be
the one with the least external angle.

Figure 4.7 illustrates the front collision process. Expanding from a single source
vertex, the front quickly folds around the torus (a). When it collides with itself. a
bridge edge is introduced, and the front splits in two separate fronts (b). One front
proceeds clockwise around the torus, the other counter-clockwise (c). Finally they
meet again, merging back into one and closing the surface (d).

13

Figure 4.5 The unit sphere truncated b the plane z=O.



14

(a) (b)

(c) (d)

Figure 4.6 Four stages in the triangulation of the unit sphere.



figure 4.7 Four stages in the triangulation of a torus.

Table 4.1 gives numerical data for different runs of the algorithm.

Triangles 768 3034 11830 628 2650 10448
Edges 1152 4551 17745 942 3975 15672

Vertkes 385 1518 5916 314 1325 5224
maximum number 41 81 158 29 67 113

of front edges
fevaluations 1540 4554 17748 1197 4355 15533

fevaluations per vertex 4.0 3.0 3.0 3.8 3.3 3.0

Vfevaluations 1926 6073 23665 1515 5688 20763

Vfevaluations per vertex 5.0 4.0 4.0 4.8 4.3 4.0

max Iftverrex)l 2.37e- 16 2.57e- 16 2.8 le- 16 2.04e- 15 2.46e 15 2.47- 15

minimal triangle angle 29.1 23.8 31.7 31.6
maximal triangle angIe 101.0 122.0 51.5 99.4
average minimal angIe 51.2 51.4 93.9 50.7
average maximal angle 70.6 70.6 70.1 70.0

16.5 30.7
139.9 105.9
50.7 50.6
70.2 70.1

totalarea 12.461 12.54() 12.559 11.630 11.796 11.831

average triangle area 0.0162 0.0041 0.0011 0.0185 0.0045 0.0011
minimal triangle area 0.0084 0.0025 0.0006 0.0110 0.0019 0.0006
maximal triangle area 0.0338 0.0097 0.0020 0.0438 0.0099 0.0022

Table 4.1

15

(a) (b)

(c) (d)

Suriace
Delta

sphere Sphere sphere torus torus torus
0.2() 0.10 0.05 0.20 0.10 0.05



4.4 Implementation details

4.4.1 Data structures
It is not necessary to store calculated triangles; it suffices to keep track of the

fronts. In the present implementation, triangles are identified by their three corners
and are written to an output to file.

Fronts are stored as cyclic lists of vertices. All front vertices are also stored in
one linear list: the overall front vertex list. For each front vertex, the following
information is stored:

• its location (x.v.z):
• the normal vector in (x.v,z):
• pointers to the previous and next vertex in the front:
• pointers to the previous and next vertex in the overall front vertex list

(when this list is empty, the algorithm terminates);
• its exterior angle 6.
Each time a front vertex is expanded. the exterior angles of its two neighbors

change and must be recalculated.

4.4.2 Collision detection and bridge construction
When vertex v is to be expanded, the overall front vertex list is searched to

determine if there exists a front vertex w, not being a direct neighbor of v, having a
distance v-w that is smaller than v's distance to any of its neighbors. If it exists. a
collision is detected. A bridge edge is then introduced between v and the nearest
'intruding' front vertex w.

16



5. Conclusions
The algorithms, as presented in chapter 3 and 4, make it possible to triangulate a

great range of implicit surfaces. By varying the 'step size' delta, the faithfulness of
the approximation can be controlled. Parts of surfaces can be triangulated by
specifying boundary fronts.

The triangulation algorithm is fast and uses little working memory because
only the actual fronts need to be stored in memory. Surface vertices are calculated
fast and accurately by using Newton's method.

The data structure for fronts is simple, which makes the algorithm
straightforward to implement.

The algorithm produces good-quality triangles, in terms of triangle area and
mm/max triangle angles: no small or skinny triangles.

Further research could investigate the possibility of making the algorithm
adaptive to surface curvature, producing larger triangles in areas of low curvature
and vice versa.

Note. Recently, a paper by Erich Hartmann [5] appeared, describing a
"marching method for the triangulation of surfaces", which is indeed very similar
to the algorithm presented in this paper. As much as I am pleased by the fact that
our common method is worthy of publication, I am disappointed by the fact that he
"beat me to it".

17



6. References
[1] L.P. Chew. Guaranteed-quality mesh generation for curved surfaces. In Proc.

91h Annu. ACM Svmpos. Comput. Geom., pages 274-280, 1993.
[2] J. Bloomenthal. Polygonization of implicit surfaces. In CAGD 5 (1988), pages

34 1-355.
[3] L.P. Chew. Constrained Delaunay triangulations. In Algorithmica 4 (1989),

pages 97-108.
[4] K.E. Atkinson. An introduction to numerical analysis. Wiley, 1989
[5] E. Hartmann. A marching method for the triangulation of surfaces. In The

Visual Computer (1998)14, pages 95-108
[6] T.M. Apostol. Calculus, volume II, second edition. Wiles; 1967

18



Appendix A. Rootfinding methods
Two rootfinding methods are mentioned in this paper. They will be

described here shortly. A more elaborate description can be found in [4].
Both methods are used for finding the zero-point of a single-valued

continuous function f In this paper they are used to find zeros of 2-valued
and 3-valued functions F. In that case they are applied on a line 1(t), such

that f(t) := F(l(t)) is again a single-valued function. When f(t) is needed, it
can be computed from VF.

A.! The bisection method
If f(x) is continuous on an interval [a,b] and it also satisfies

f(a)f(b)<O, then! must have at least one root in [a,b]. Let c=(a+b)/2.
If f(b)f(c) � 0 then a : c otherwise b . c. Now the interval [a,b] is

divided in halves, and still f(a)f(b) <0. Repeating this process, [a,b]
converges arbitrarily close to a root of f The iteration is terminated when

Ia - <6.
The bisection method is a very simple and robust method. It is said to

converge linearly with a rate of /2, which means that the average error in each
iteration step decreases with a factor Vz. Compared to the following method,
this is a rather slow convergence.

x

figure A. 1 Newton 's method

A.2 Newton's method
Assume that an initial estimate x0 is known for the desired solution a of

f(x) = 0. Since x0 is supposed to be close to a, we can approximate! by the
tangent line in (x0,f(x0)) to the graph off We then take the intersection of
this tangent line and the x-axis as a new (and hopefully better) approximation
of a.

Al

y fix)

a £2 Xt £0



This leads to the following iteration formula (see also figure A.1):

— f(x,,)
xfl+1 — xfl —

_______

I
The iteration stops when k — x,1 <e•

Newton's method converges quadratically, i.e. a — x,,1 � cia — x,,2 for

some c >0 . Nevertheless, it may not converge at all. 1ff has more than one
root, it may also converge to the 'wrong' root. In the examples in this paper,
this happens very rarely, because the initial 'guess' is always sufficiently
close to a.

I

A2


