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Summary

One of the main issues in the research on time series is its prediction. Artificial neural
networks are suitable tools for this purpose. Most traditional models are global models,
assuming stationary. This ignores the fact that most real—world time series are
non—stationary. An important subclass of non—stationary is piecewise stationary, where the
series switches between different stationary regimes. Using an artificial neural network for
the prediction in each regime, solves the problem of non—stationarity. To predict the
transitions between the regimes, an additional artificial neural network can be used,
assuming that these transitions are unknown. The gated experts network combines these
properties. Key elements are: non—linearity, predicting regime transitions and local
predictors for each regime.

The Expectation—Maximization learning algorithm is used to update the free parameters of
the network. Our goal is to gain insight in the application of the gated experts network to
real—world time series prediction. This is achieved by studying the gated experts network,
implementing it in InterAct© and conducting several experiments.

The gated experts network is a reasonable good choice for real—world time series prediction.
It uses the experts as local predictors and the gate plausibly allocates the experts to local
regions of the input space. The gate splits the input space, but not always as one might expect.
This input space splitting depends on the initialization of the weights of the gate and experts.
The choice of the free parameters depends on the kind of experiment conducted. This
network is a useful tool for analyzing the underlying dynamics of a time series.

The gated experts network can be modified by adding different density functions to
individual experts, applying dynamic growth or pruning of the number of experts and hidden
units of the experts. The implementation of this network can be extended to include separate
tapped delay lines for the experts and the gate, to capture the periodicities in the time series.
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Chapter 1

Introduction

One of the main issues in the research on time series is its prediction. In the design of a proper
predictor, a careful characterization of the time series has to be developed. Artificial neural
networks are suitable tools for this purpose, because of their ability to identify non—linearity
in time series. Most traditional models are global models, assuming stationary. This ignores
the fact that most real—world time series are non—stationary. An important subclass of
non—stationary is piecewise stationary, where the series switches between different
stationary regimes. Using an artificial neural network for the prediction in each regime,
solves the problem of non—stationarity To predict the transitions between the regimes, an
additional artificial neural network can be used, assuming that these transitions are unknown
(hidden). A special form of artificial neural networks, called the gated experts network,
combines these properties needed for time series prediction problems. It has the following
key elements:

• non—linearity

• predicting regime switching (gate)

• local predictors for each regime (experts)

We want to find the answers to the following questions:

• How well is the gated experts network suited for time series prediction?

• In what way does the gate split the input space and discoveres regimes in a time
series?

• How can the free parameters of the gated experts network be determined?

• How can the gated experts network be used for analyzing time series dynamics?

Thus, our goal is to gain insight in the application of the gated experts network to real—world
time series prediction. This will be achieved by studying, implementing and testing this
network.
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First, the basic concepts of time series, artificial neural networks and time series prediction
are introduced (Chapter 2). Next, we discuss modular neural networks, found in literature,
applied to (real—world) time series prediction (Chapter 3). Then the gated experts network
is presented, where the architecture and learning, based on the Expectation Maximization
(EM) algorithm, are described in detail (Chapter 4). We continue with the implementation
of the gated experts network in the general InterAct© simulation environment (Chapter 5).
Next, an overview of the experiments performed with the implementation of the gated
experts network is presented (Chapter 6). Finally, our conclusions and directions for further
research on time series prediction with gated experts networks are presented (Chapter 7).
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Chapter 2

Basic concepts
In this chapter we present the necessary theoretical background of time
series analysis, artificial neural networks and lime series prediction. For
a more extensive study, we refer for time series analysis to Chatfield [1]
and for neural networks to Haykin [4]. At the end of this chapter, an
illustration of real—world lime series prediction using artificial neural
networks is presented.

2.1 Time Series

A time series (X,n = 1,2,...) is a collection of observations made sequentially in time. The
observations are the outcomes of a process which changes in time under the influence of an
unknown stochastical mechanism. Here, discrete time series are considered, where the
observations are taken at equally sized intervals. Although most real—world time series are
continuous, they can be made discrete by a process called sampling. An example of a discrete
time series is given in Figure 2.1.

5

Figure 2.1: Example of a discrete time series



Most real—world time series are stochastic, in that the future is only partly determined by past
values. Exact predictions of these stochastical time series are impossible. To handle
stochastical time series we assume the future values to have a probability distribution which
is conditioned on knowledge of the past.

A time series is said to be stationary if there is no systematic change in mean (there is no
trend), if there is no systematic change in variance, and if strictly periodic variations have
been removed. Again, real—world time series are mostly non—stationary An important
subclass of non—stationary processes are piecewise stationary processes, where the series
switches between different stationary regimes. An example of a real—world piecewise
stationary time series is presented in section 2.3.

An important issue in time series analysis is the prediction (also called forecasting) of the
series, given its past values and possibly additional features. By using more past values or
additional features, knowledge of the time series increases. Therefore, a predictor can take
into account more knowledge for predicting future values of the series. Univariate methods
for prediction only depend on past values, whereas multivariate methods depend on values
of one or more additional series or additional features.

To gain some insight in the linear dependence between the values of the two time series
{x(1),x(2),..,x(N)} and {y(1),y(2),..,y(N)} at different instances of time, the
cross—corielation function can be computed (2—1).

Pxy(T) =

____________________________

(21)

- )2>(i - v) - y)2

The shifting term r can be varied to extract information on how the time series
{x(1),x(2),..,x(N)} depends linearly on past values (if r > 0) of the time series
{y(l),y(2),..,y(N)}. The number of values in the series is denoted by N. By calculating PAr)
the autocorrelation function is obtained. This function gives information on the linear
dependence of a time series on its own past values.

By examining a time series in the frequency domain rather then in the time domain,
periodicities can be found. These periodicities are important as they indicate the period for
which it obtains more or less the same values. By the discrete Fourier transform, the
frequencies of these periods and their amplitudes can be obtained (with & as the sampling
time).

F[J4f]
=

xinje'41, withzlf = (2—2)

The frequencies f4f for which a,g(FEfzIJ]) is relatively large, are suitable candidates for the
existing periods in the series.

For the prediction of a time series, a model is created from the real underlying process.
Practicaly, this model always remains an approximation of this process. The question here
is, how well the model is suited for the specific prediction problem. Many mathematical
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models have been developed. However, these models often assume a priori that the time
series was generated by a linear process, that is the present value of the series depends linearly
on its predecessors. In a real—world time series, it often is an impossible task to extract the
underlying mathematical model. Another approach is to build a model from observed data
by a process of learning from examples. Such an approach can be realized by an artificial
neural network (ANN), described in section 2.2.

2.2 Artificial neural networks

An artificial neural network (ANN) can be viewed as a machine that is designed to model
the way in which the human brain performs a particular task. An important class of ANNs
perform useful computations through a learning process. To achieve good performance,
ANNs employ a massive interconnection of simple processing units referred to as neurons.
Neurons are the building blocks of ANNs and the way in which they are connected
determines the architecture. To store knowledge into the ANN, a learning process is used.

2.2.1 The Artificial Neuron

A neuron can be viewed as a simple information—processing unit. It calculates the sum of its
weighted input signals and transforms this sum to the output by means of a activation
function. Figure 2.2 shows the model of a neuron. The model contains three basic elements:

• A set of connections, which are characterized by their weights. This weight is
multiplied by the input signal. These connections are considered as uni—directional
connections, or feedforward connections.

• A summing unit for summing the weighted input signals.

• An activation function q,(.) for transforming the sum into the output of the neuron.
In most cases, the output range of a neuron equals [0,1] or [—1,1].

XO =-J

Xj

X2 Output
Yk

xp

The model of a neuron shown in Figure 2.2 also includes a bias term indicated by an input
signalx0 and weight w. In mathematical terms, a neuron k may be described by the following
two equations

Uk = (2—3)
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and

y = 9(uk) (2—4)

where x1 , x2, ... , x are the input signals and WkI , Wk2 , ..., w, are the connection weights of
neuron k. Two functions which can be used as activation functions, are:

• The sigmoid activation function, which is the most common form of activation
function used in ANNs

p(u) = 1 + exp( — au)
(2—5)

where a is the slope parameter. This activation function has a range of [0,1].

• The hyperbolic tangent activation function with a range of [—1,1]

q(u) = tanh() (2—6)

These two activation functions, (2—5) and (2—6), are non—linear By using a non—linear
activation function we introduce non—linearity in the ANN.

2.2.2 Architecture

As noted, the manner in which the neurons of a neural network are connected, determines
the architecture. In this subsection the multilayer feedforward networks will be viewed, as
illustrated in Figure 2.3.

Hidden Output
layer layer layer

Figure 2.3: Example of a multilayerfeedforward network

The first layer of neurons is the input layer, where the network receives information from
the outside world or environment. The second layer is called a hidden layer. A multilayer
feedforward network contains one or more hidden layers. The last layer is the output layer.
The number of neurons in each layer can differ. Information flows from the input layer,
through the hidden layer(s) to the output layer; hence the term feedforward. Basically, a
neural network performs a functional input—output mapping. By presenting the neural
network a large set of input—output examples, it learns this mapping by adjusting the weights
of the connections. The next section descibes this learning process in more detail.

2.2.3 The learning process

8
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The learning process changes the free parameters of the network. In the model of the artificial
neuron (section 2.2.1), these free parameters are the connection weights (including the bias).
These changes should eventually increase the perfonnance of the ANN. The learning
algorithm steps through the following sequence of events.

The ANN:

• is stimulated by the environment, by applying a pattern to the input layer

• undergoes changes as a result of this stimulation

• responds in a new way to the environment, because of the changes that have occurred
in its internal structure

More specifically, an input vector x is presented to the network, together with a desired
response vector d. The network responds with an output vector y which, typically, is different
from the desired response. After calculating the error (d—x) the ANN updates the connection
weights to reduce the error. This procedure is repeated for all layers. After the weights are
updated the ANN is presented with the next pair of vectors. This type of learning is a form
of supervised learning, because a teacher oversees the learning process by presenting the
ANN with a desired response. The most popular learning process used in the neural network
community is the error back—jwpagation learning algorithm. An ANN which uses this
learning algorithm to adapt its parameters, is called a Multilayer Perceptron (MLP). Another
type of learning is called unsupervised learning, where no teacher is present. In this case, the
ANN itself develops a representation of the input data.

2.2.4 Performance measurements

In order to evaluate the performance of an ANN and to compare the performance of different
ANNs, this subsection presents the commonly used performance measurements. These
measurements must be calculated during the test—cycle (after training) on a test set of
input—target patterns. The target is denoted by d(n) and the response (output) of the ANN by
y(n). The number of patterns in the test set is denoted by N. The mean relative error and the
mean squared error are commonly used in neural network applications, the normalized mean
squared error and the ratio of squared errors are specifically used for prediction tasks.

Mean Relative Error (MRE)

The MRE calculates the relative error of the output of the ANN, by

MRE = > rd(n) x 100% (2-7)

Mean Squared Error (MSE)

The MSE calculates the average squared error of the output of the ANN, by

MSE = 14(d(n) — y(n))2 (2—8)

Normalized Mean Squared Error (NMSE)
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The NMSE is the ratio of mean squared errors of the prediction method represented by an
ANN and the method which predicts the mean at every time step, as

>(d(n) — y(n))2

NMSE = (2—9)

>(d(n) —

Ratio of Squared Errors (RSE)

The RSE is the ratio of mean squared errors of the prediction method by an ANN and the
method which uses the last value as the prediction of the next value.

>(d(n) — y(n))2

RSE = N
(2—10)

>(d(n) — d(n — 1))2

2.3 Waste—water purification

In the field of waste—water purification, one wants to know the ammonia concentration
which is measured every quarter of an hour. The measurements of the ammonia
concentration are very expensive, therefore a good alternative would be to predict the
ammonia concentration from other (cheaper) measurements. These other values are also
measured every quarter of an hour and are related to the ammonia concentration. One week
of the ammonia concentration is depicted in Figure 2.4.

We see the ammonia concentration as a piecewise stationary time series. It is periodic on a
daily and a weekly scale. The series is said to switch between different regimes.

After an extensive analysis of the data, an ANN is build as the prediction model. Specifically,
a multilayer perceptron is used as the architecture with error back—propagation learning. The
goal was that 95% of the predictions had a relative error of 10% or less. After training the
ANN with different input configurations, a maximum of 25% of the predictions with a
relative error of 10% or less was reached [14].

10
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One of the main reasons why the ANN predicts the ammonia concentration poorly, is that
it builds a global model, whereas the time series is piecewise stationary. A better approach
would be to build several local predictors for the different regimes. Separate ANNs for the
prediction of the ammonia concentration on the weekly, daily and hourly scale will have the
easier task of modelling less complicated time series. Combining these separate predictions
yields the overall prediction of the complete series.

2.4 Discussion

In this chapter we have introduced basic concepts of predicting a time series. In particular,
we introduced time series, neural networks and time series prediction. The main point
discussed here, is the usage of ANNs for prediction problems. However, the performance of
a standard ANN applied to piecewise stationary time series is not adequate. Therefore, the
need for applying several predictors to the piecewise stationary series arises.
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Chapter 3

Overview modular neural networks
This chapter gives a literature overview of modular neural networks
applied to (real—world)time series prediction. Instead of using one global
ANN, separate ANNs can be put on different regimes of the time series.
Here, several methods used to exploit this principle are described.

3.1 Modular neural networks

Conventional time series models are global models which are appropriate for stationary
dynamics. Real—world time series lack the assumption of stationarity. A class of
non—stationary time series are the stationarity by parts or multi—stationary time series, that
switches between regimes. It is often difficult for a single global model (e.g. the MLP) to
learn the switching of regimes. Thus, we motivated the need for a switch predictor.

3.1.1 Combining several multilayer perceptrons

Instead of using one MLP, this paragraph describes the principle of combining several MLPs
for a prediction problem in an electric utility application. A key component of the daily
operation and planning activities of an electric utility is short—term load forecasting, e.g. the
prediction of hourly loads (demand) for the next hour. The electric load has complex and
non—linear relationships with several factors such as climatic conditions, past usage patterns,
the day of the week and the time of the day. The nature of the load forecasting problem lends
itself well to the neural network technology since they can model these complex relationships
in the data trough a process of learning. The accuracy of such forecasts has significant
economic impact for the utility.

A load forecasting system is described in 1997 by Khotanzad eta!. [12] known as ANNSTLF
(artificial neural network short term load forecaster) which has received wide acceptance by
the electric utility industry and presently is being used by 32 utilities across the USA and
Canada. The ANNSTLF takes into account the effect of the temperature and the relative
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humidity on the load. Besides its load forecasting engine, the ANNSTLF contains forecast
modules which can generate the hourly temperature and the relative humidity forecasts. The
ANNSTLF is based on a multiple neural network strategy that captures various trends in the
data. 'l\vo generations of ANNSTLF's where developed.

The first generation of the ANNSTLF consists of 38 different MLP networks grouped into
three modules. These three modules are designed to model weekly, daily and hourly trends
of the load. Each module generates a load forecast independent of the other two modules.
These three forecasts are adaptively combined to obtain the final forecast. This first
generation engine was implemented at more than 20 electric utilities with a satisfactory
performance, but the large size of MLP networks and the redundancy of input data used by
the various modules gave room for improvement.

The second generation engine of the ANNSTLF consists of 24 small size MLP networks
(one MLP per hour). Another strategy is now employed; the distinction between forecast
indicators for various hours of the day are divided into three categories: past loads, past
weather and the forecast weather for the coming day. Some of these indicator variables have
a significant impact on the future load of some hours and little effect on other hours. Based
on these observations, the hours of the day are divided into four categories: early morning
(hours ito 9), mid—morning or early afternoon and early night (hours 10 to 14 and 19 to 22),
afternoon peak (hours 15 to 18) and late night hours (hours 23 and 24). Holidays are treated
like a Saturday or a Sunday by flagging a holiday during on—line operation. This strategy is
used because 'holiday' data is relatively sparse in real world historical data.

The electric utility industry considers a forecast accuracy below a mean relative error of 3.0%
as quite good. The performance of the second generation engine equals 2.i9% for a one day
ahead forecast and 3.67% for a seven days ahead forecast. In all cases, the second generation
engine outperforms the first generation engine. The application of multiple neural networks
to predict a real world time series as done with the ANNSTLF model is a clear motivation
for the use of modular neural networks.

3.1.2 Predictive modular neural networks

Kehagias and Petridis [11] introduced in 1994 the Predictive Modular Neural Networks
(PREMONN) architecture for time series classification. The PREMONN has a hierarchical
structure. The bottom level consists of a bank of linear or non—linear predictor modules. The
top level is a decision module that employs (Bayesian) posterior probabilistic or
non—probabilistic decision rules. Source switching has to be done in the posterior update rule.
Furthermore, off—line training of the predictor modules can be applied, because in some
problems the time series sources are known. For problems with unknown sources, an initial
module can be trained and the next incoming data can be used for computing the module's
posterior probability. If this is high it is used to update the module parameter estimates,
otherwise this data is placed in a separate data—pool. Later on, this data—pool is used to train
a second module. The incoming data are tested against both modules and if they do not fit
either one they are set aside to train a third module etc.

PREMONNs can be applied just as well to classification of stochastic or deterministic time
series. Furthermore, PREMONNs can be applied to prediction or classification problems.
PREMONNs can also operate online. Convergence to correct classification was proven for
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various choices of prediction and decision modules. The learning time scales linearly with
the number of sources to be learned. Furthermore, the PREMONN is robust to noise.

3.1.3 Mixture of experts

Jordan and Jacobs [7] described in 1996 the modular and hierarchical learning systems with
the emphasis on the probabilistic framework. Modular systems allow complex learning
problems to be solved by the divide and conquer principle. The focus is on supervised
learning, where modular architectures arise when the assumption is made that the data can
be described by a collection of functions each of which is defmed over a relatively local
region of the input space. A modular architecture can model data by allocating different
models to different regions of the input space. Modular systems present an interesting credit
assigmnent problem where the learner has no prior knowledge of how to partition the input
space. Prior knowledge would implicate certain data 'labels' specifying how to allocate
modules to data points.

The EM—algorithm

The EM—algorithm (Dempster eta!. [2]) solves the credit assignment problem by computing
the posterior probabilities that can be thought as estimates of the missing data 'labels'. Jordan
and Xu [10] presented in 1995 a theoretical analysis of the EM algorithm for mixtures of
experts and hierarchical mixtures of experts, i.e. an iterative approach to maximum
likelihood parameter estimation (see section 4.5). The linear convergence of the algorithm
can be calculated by an explicit expression for the convergence rate. They also described an
acceleration technique that yields a significant speedup in simulation experiments.

3.1.4 Gated experts network

A class of models was presented in 1995 by Weigend et a!. [16], which are called gated
experts networks (GEN). GENs refer to non—linearly gated non—linear experts, first
introduced into the neural community in 1991 by Jacobs et al. [8] as mixture of experts. The
gate can split input space non—linear and the sub—processes can be non—linear through the
hidden units of the expert networks. The basic idea behind gated experts is that rather than
using a single global model, several local models (the experts) are learned from the data. At
the same time, the input space is learned to be split (by the gate). In advance, the splitting
of the input space is unknown, because the only information available is the next value of
the time series. A blending of supervised and unsupervised learning addresses this issue. The
supervised component (expert) learns to predict the next observed value. The unsupervised
component (gate) covers the discovery of hidden regimes.

Key elements of the GEN are: non—linear gate and experts, soft—partitioning the input space
and adaptive noise levels (variances) of the experts. The noise level parameter of each
individual expert is allowed to adapt separately to the data. The expert—speciflcvariances are
important for two reasons. The first reason is to facilitate the segmentation, the second to
prevent over fitting. The experiments gave positive results in contrast with single networks
in three areas, namely (better) prediction, analysis (discovery of hidden regimes) and (less)
overfitting. Furthermore, three remarks on improving the performance of the GEN are given:
improving generalization through priors on the variances, gating outputs and the weights,
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improving segmentation through annealing and improving learning through second—order
methods.

3.2 Hierarchical modular neural networks

It is noted that it is also possible to build hierarchy into the architecture of a modular network.
By extending the divide and conquer principle to the separate modules themselves, hierarchy
enters the model. Hierarchical models arise when the assumption is made that the data is well
described by a multi—resolution model, a model in which regions are divided recursively into
sub—regions.

3.2.1 Hierarchical mixture of experts

Jordan and Jacobs [6] presented in 1994 a tree—structured architecture for supervised
learning based on the divide and conquer principle called the hierarchical mixture of experts
(HME). The HME architecture is a tree with the linear gating networks at the nonterminals
of the tree and the generalized linear expert networks at the leaves of the tree. The outputs
of the experts proceed up the tree, being adjusted by the gating network outputs. The
statistical model used here, is thus a hierarchical mixture model in which both the mixture
coefficients and the mixture components are generalized linear models. Divide and conquer
algorithms (splitting a problem into simpler problems and combining the solutions to yield
a solution to the complex problem) have convergence times orders of magnitude faster than
gradient based neural network algorithms. However, they are also generally variance
increasing, therefore a second variance decreasing—device is used: 'soft'—splitting of the
input space in stead of.'hard' splits. Learning is accomplished by using the EM—algorithm
applied to the HME as a powerful and efficient tool for estimating the network parameters.
They also describe an on —linelearning algorithm for incremental parameter updating. This
on—line algorithm is a stochastic approximation to a Newton—Raphson method rather than
a gradient method.

3.2.2 Adaptive hierarchical mixture of experts

Fritsch et a!. [3] proposed in 1996 an approach to automatically growing and pruning of the
HME. A constructive algorithm enables large hierarchies (consisting of several hundreds of
experts) to be trained effectively. An evaluation criterion is used to score the experts
performance on the training data by splitting the worst expert into a new subtree and copying
the weights provided by additional small random permutations (this can be compared to
genetic algorithms, authors) to overcome the errors made by this expert. HMEs trained by
the automatic growing procedure yield better results than traditional statistic and balanced
hierarchies. Pruning bad performing subtrees helps prevent instabilities and singularities in
the parameter updates. Specifically, the algorithm allows the HME to use the resources
(experts) more efficiently than a standard pre—determined HME architecture. The tree
growing algorithm leads to better classification performance (the splitting of input space or
continuous density estimators, authors) compared to standard HMES with an equal number
of parameters.
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3,3 Discussion

In this chapter we introduced modularity and hierarchy as two important principles in the
design of neural networks applied to time series prediction. The reason we selected the GEN,
are the nice properties of non—linear gate and experts, soft—partitioning the input space and
adaptive noise levels (variances) of the experts. Further research could concentrate on
extending this structure to some kind of hierarchy, where the complexity of a process is
captured by the divide and conquer principle.
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Chapter 4

Theory of the gated experts network
This chapter describes the architecture and the learning algorithm used to
update the parameters of the gated experts network and it is based on the
article written in 1995 by Weigend et al. [16].

4.1 Introduction

As noted before, many real—world time series are piecewise stationary, where the series
switches between different regimes. The basic idea behind the gated experts network (GEN)
is to learn several local models (experts) from the data instead of. a single global model.
Simultaneously, the gate learns to split the input space. This requires blending supervised and
unsupervised learning: the supervised component (expert) learns to predict the next value of
the series, and the unsupervised component (gate) discovers the regimes. Summarizing, the
key elements of the GEN are:

• non—linear gate and experts

• soft—partitioning the input space

• adaptive noise levels (variances) of the experts

4.2 Architecture

The architecture of the GEN contains K expert networks and one gating network, as depicted
in Figure 4.1. The expert networks and the gating network are standard MLPs (section 2.2.3)
and are non—linear through the non—linear activation functions of the hidden neurons. The
input vector x denotes the train vector of dimension p and vector y1 is the output vector of
expert i with dimension q (the same dimension as the target vector d). Finally, the outputs
of the gating network are denoted by gj.
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x.

The total output of the GEN is calculated as

4.3 Probability model

y =

y

(4—1)

The GEN has to model the underlying probability distribution P(dlx) of the observed data.
The data consists of a set of train patterns {x, d}. This set is used to adapt the free parameters
(weights and variances) of the GEN. It is explicitly assumed that one and only one expert is
responsible for each train pattern. The K experts can then be viewed as K ways of observing
the target vector d, given the input vector x. Then, using Bayes' rule, we obtain

exp(u1)

K

exp(u,)

Gating
NetworkII

Figure 4.1: Architecture of the Gated Experts Network

P(dlx) = >P(d,jlx) = >P(jIx)P(dlx,)) (4—2)

The gating network has to learn the probability that a certain train vector x was generated
by one of the experts. This probability P x) is denoted by g1. Since the outputs of the gating
network have a probabilistic nature, they must satisfy the constraints

0 � g � 1 and = 1 (4—3)

To meet these constraints (4—3) the activation function of the gating network is defined as

(4—4)

with u as the activation of output neuron of the gating network. This function is called the
sofimax activation function . The probability that the target vector d was generated by expert
j given vector x, denoted by P(dlx,j), is modelled by a multivariate Gaussian density function
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1
f_IId_y(x)112\

P(dlx,j) = ()q/2g exp
2& )

(4—5)

with the output Yj of expertj as the conditional mean and & as its variance. This probability
model is used to derive a cost function, which we use to adapt the free parameters of the GEN.

4.4 Cost function

In order to train the GEN we derive a cost function using the maximum likelihood method.
The maximum likelihood method is a classical parameter estimation procedure that views
the parameters as quantities, whose values are fixed but unknown. The best estimate is
defined to be the one that maximizes the probability of obtaining the samples actually
observed.

Using (4—4) and (4—5) and assuming the statistical independence of measurements of each
pattern, the product over the likelihoods of the individual patterns indicated by index n are
taken to obtain the likelihood function

N K
1 1 — d(n) — y(x(n), w) 112 \

L = fl >2 g/x(n), w) ()/2o exp 2 )
(4—6)

where the parameters of the GEN are denoted by wg (weight of the gate), wj (weight of expert
j) and o3 (variance of expertf).The cost function C is the logarithm of the likelihood function

N K
1

f—lId(n) _y(x(n),w.)112\
C = In L = >2 In >2 g1(x(n), wg) ()/2(J exp "

)
(4—7)

This cost function can be maximized using gradient ascent, but it turns out to be quite hard
to learn both the maps of the experts and the splits of the input space through the gating
network [6]. Therefore, a different approach will be used; the EM algorithm, as described
below.

4.5 The EM-algorithm

This section describes the Expectation—Maximization algorithm (EM—algorithm) and its
application to the gated experts architecture.

The EM—algorithm is an iterative technique for maximum likelihood estimation. Each
iteration of an EM—algorithm is composed of two steps: an Estimation step (E step) and a
Maximization step (M step). The M step involves the maximization of a likelihood function
that is redefined in each iteration by the E step. An application of the EM—algorithm begins
with the observation that the optimization of the likelihood function l(O;X) would be
simplified if a set of additional variables, called "missing" or "hidden" variables, were
known. In this context, we refer to the observed data set X as "incomplete" and posit a
"complete" data set Y that includes the missing set of variables Z. Let l(O;Y) denote the log
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likelihood of the complete—data set Y and the original likelihood l(0;X) as the likelihood of
the incomplete likelihood of data set X. The EM—algorithm first finds the expected value of
the complete—data likelihood, given the observed data X and the current model (denoted by
0). This constitutes the E step

Q(8, 0(P)) = E [l(8; Y)X] (4—8)

where p denotes the iteration number of the algorithm. The M step maximizes this function
o with respect to 0 to find the new parameter estimates 9(P1)

+ ' = arg max0 Q(0, 0(P)) (4....9)

The E step is then repeated to yield an improved estimate of the complete likelihood and the
process iterates. Dempster et a!. [2] proved that an increase in Q implies an increase in the
complete likelihood

l(0');X) � l(0(P);X) (4—10)

The likelihood 1 increases monotonically along the sequence of parameter estimates
generated by an EM—algorithm. In practice this implies convergence to a local maximum.

4.5.1 Applying EM to the gated experts architecture

The EM—algorithm is based on the assumption that some variables are 'missing'. The
missing variables in our model are the probabilities that a given pattern n is generated by
expert j. So we introduce an 'indicator variable' , with the following properties:

• 1, (n) = 1, if pattern n is generated by expert j

• J(n) = 0, otherwise

The set of random indicator variables Z = (11(n); j=1,..,K; n=1,..,N) constitute the missing
data.

4.5.2 The E step

The likelihood of the 'complete data'can now be written as

N K 1(n)

L(D,ZV, 6') = fl fl{gj(x(n), wg) P(dQi)Ix(n), wj] ' (4—11)

n1j1
where X and D denote the input and target trainings data, Z the unobserved or missing data
and Q the ensemble of parameters Wg, w1, w2,.., WK, o, a2, .., 0K• The indicator variables J(n)
are unknown, hence they need to be estimated. Therefore, we replace the indicator variables
by their expected values

E[I/n)IX,D,&] = j . = JIX,D,e) + 0 = OIX,D,9) = P(jlx(n),d(n)) (4—12)

Thus, the expectation of Jj(n) is the a posterior probability that the expert j generated the
current training pattern n if the input, output and target vectors are known. This posterior
probability is denoted by hj(n) (see Appendix A)
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________

I — d(n) Jj(x(n),wg)II2
g.(x(n), wg) (7)q/2c/l exp

E(11.(n)IX,D, 0) = h(n) = K (4—13)

.t1 w) (2r)4/2o
- d(n) _x(a)w:)u2)

and will be used in the M step.

4.5.3 The M step

Taking the expectation of the logarithm of L (D,ZIX, 8), and replacing each 1 by its expected
value h yields the cost function that includes the assumption of the missing values (see
Appendix A)

CM E[lnL(D,4Y,0)] (4-14)

= hj{n)ln[gj(x(n),wg)] —

n=lj=1

h.(n)( — II d(n) — yj(x(n), w) 112

+ ln(22raj))
n=lj=1 J

By maximizing the cost function CM, the update rules for the variances for the experts as well
as the weights of the experts and the gate can be derived.

4.6 Adapting the gate and experts

In this section we derive the update rules for the GEN. The adaptation of the weights of both
the experts and the gate is performed with error back—propagation update rules. To simplify
the mathematics used in this section the parameters wj and Wg are omitted.

4.6.1 The updates for the expert variances

The update for the variances can be computed by setting the partial derivative tozero
(aCM /32=o). The variance of expert k that maximizes the cost function is given by (see
Appendix A)

hk(n) II
d(n) — y(n) 112

=
N (4—15)

q> hk(n)

Thus, the variance of expert k is the weighted average of the squared errors.
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4.6.2 The updates for the expert weights

The weights of the expert networks are updated using the error back—propagation algorithm.
In the error back—propagation algorithm, the cost function CM has to be maximized. The
structure of the expert network k is depicted in Figure 4.2.

input Ijidden QUtpUt
layer layer layer
1=0 (1—1) l=L
0

a

Some notations:

• 1: layer index

• Lk : total number of layers (the output layer is layer Lk and the input layer is layer 0)

• q : the number of elements of the target vector d

• #(l) : the number of neurons in layer 1

• v(')(n) : the total input of neuron i in layer I for pattern n

• y(')(n) : the output of neuron i in layer 1 for pattern n

• q : the activation function for neuron i

• w(1)1 : the weight from neuron jto neuron i

• ni: learn speed of the experts

All neurons in the hidden layers and the output layer receive input from a bias (as described
in section 2.2.1). Each neuron i has a corresponding weight w. The bias always has the
index zero.

The total input of neuron i in layer I is the weighted sum of all the outputs from the previous
layer (1—1)

#(I-1)

v)(n) = > w.(n)y')(n) (4—16)

1=0

The output of neuron i in layer 1 is calculated by

y(n) = q,(v(n)) (4—17)

To derive the update rule for the weight w(')t.J, the error signal for output neuron i in layer
l=L will be derived first, where d(n) denotes the i—th element of the target vector d.
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e(n) = d(n) — yfl)(n) (4—18)

The weight change is calculated by

= 17 w(n) (4—19)

Using the chain rule, the partial derivation in equation (4—19) is expressed as

aC,4(n) — aCM(n) ayO(n) äv)(n)
4 20

aw.(n) — äy(n) äv?(n) 8w?.(n) —

The first term yields (see Appendix A)

_____

= — y(n)] = ---ekXn) (4—21)

and the second term

t3y(')(n)

_____

= q(v(n)) (4—22)
t3Vk. (ii)

and the third term

avQ)(n)

3w(O(n) = 'k ')(n) (4—23)

kzj

Combining the equations (4—21), (4—22) and (4—23) yields

= 1i aw(n) = hk(nk,(n v(n))y 1)(n) (4—24)

The learning rule (4—2 1) adjusts the weights of expert k such that the output Yk moves towards
the desired output d. Three factors modulate the weight change:

• hk(n), which modulates the weight change proportional to the importance of expert
k for pattern n

• 1/ci2j, which modulates the learning according to the general noise level in the regime
of expert k. If the average squared error in the regime is large, the influence of the
error on the weight update is scaled down. If the regime has little noise, small
differences in the error are exaggerated by dividing by a small variance

• ekj(n) , which is the usual difference between the desired value and the output value
of neuron i of expert k

The weight update rules for the output and hidden neurons are different, so these rules are
defined separately. To illustrate the form of the update rules, a choice is made for the
activation functions of the hidden and output neurons.

Output layer l=Lk:

The sigmoid activation function is used for the output neurons , which is defined by
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y(n) = Pk,(Q)) = 1 + exp( — v?(n))
(45)

with its derivative

q(v(?(n)) = y(n)[l — y(n)] (4—26)

69(n) = -Jh,(n)ekXn)y?(n)[l — y(n)} (4—27)

4w.(n) = ,1io)(n)yr')(n) (4—)

Hidden layer O<1<Lk:

For the neurons in the hidden layers the hyperbolic tangent activation function will be used,
which is defined by

y(n) = p(v?(n)) = tanh(vJ(n)) (4—29)

with its derivative

#(l+ 1)

6(n) = (1 — y(n)2) ã(')(n)w'7')(n) (4—31)

4.6.3 The updates for the gate weights.

The weights of the gating network are updated using error back—propagation. With the error
back—propagation algorithm, the cost function CM will be maximized. The structure of the
gating network is depicted in the Figure 4.3.

1

The local gradient for neuron i in the output layer is calculated by

and the weight update rule

= (1 — y(n)2) (4—30)

The local gradient for neuron i in a hidden layer is calculated by

and the weight update rule

1=0

A w.(n) = iô?(n) y 1)(n) (4—32)

bidden QUtpUt
layer layer
(1—1) l=Lk

input
layer
1=0
0

a

g1

Figure 4.3: The structure of the gate
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Some notations:

• 1: layer index

• Lg : total number of layers (output layer as layer Lg and the input layer as layer 0)

• K: number of outputs of the gate (equals the number of experts)

• #(l) : the number of neurons in layer I

• u('),(n) : the total input of neuron i in layer 1 for pattern n

• y(')1(n) : the output of neuron i in layer 1 for pattern n

• gj (n): the output of neuron i in the output layer for pattern n (the a priori probability)

• w(') : the weight from neuronj to neuron i

• 12: learn speed of the gating network

The softmax function is used as the activation function of the output neurons (for layer l=Lg)

exp(u(')(n))
g,.(n) = K

(4—33)

>

The total input of neuron i in layer 1 is the weighted sum of all the outputs from the previous
layer (i—i)

#(I—1)

ur(n) = wJkn)y(' ')(n) (4—34)
j=O

The weight change is calculated by

4wc° = (435)2W(J)fl
I)

For neuron i in the output layer (l=Lg) and using the chain rule, the partial derivative in
equation (4—35) can be calculated by

äC,4(n) = .3CM(n) au')(n) = äCJ(n)(I_
')(n) (4—36)

äwQ)(n) auc')(n) awc')(n) auc')(n) I

Observing that the a posterior probability h(n) in the cost function CM is calculated in the
E—step, and the net input u((n) only depends on the first term of this cost function (through
g,(n)) the partial derivative is (see Appendix A)

_____

= h(n) — g1(n) (4—37)

The weight update rules for the output neurons and the hidden neurons are to be calculated
separately. Again, a choice is made for the activation function of the hidden neurons.

Output layer l=Lg:

The local gradient for neuron i in the output layer equals
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ô0(n) = h,(n) — gj(n) (4—38)

and the weight update rule

= oc(n)y'- 1)() (4—39)

Hidden layer O<l<Lg:

For the neurons in the hidden layers the hyperbolic tangent activation function will be used,
see (4—29) and (4—30). The local gradient for neuron i in a hidden layer equals

#(1+ 1)

6)(n) = (1 — y')(n)2) ')(n)w ')(n) (4—40)

j=o

and the weight update rule

= 7/26')(n)y l)(n) (4—41)

4.7 Summary of the Algorithm

The algorithm for updating the weights of the experts and the gate and the variances of the
experts is summarized below.

Initialization : Assign initial small values (uniformly distributed) to the weights of the
different experts and the gate.

The E—step: For each data pair (x(n),d(n)) compute

fr(1_1) 1
y)(n) = w0(n)yT ')(n) (for all layers 1) (4—42)

li=° J

Yk() = [y(n) y(n), ... , y(n)
T

(443)

= (4')
#(I—1)

u)(n) = w(n)y(' 1)(n) (4—45)

j=o

exp(u"(n))
g(n) = K

(4—46)

> exp(u(n))

______

f—ifd(n) — yj(n)12
g/n) ()q/2 exp 2

h/n) = K
(4''?)

() ()qf2o exp(
—
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The M—step

For each data pair (x(n),d(n)) and posterior probability h(n), update the parameters of each
expert and the gate.

Adaption of the variances. For each expert k adapt the variance by

h(n) d(n) — Yk() 112

0k
=

N (4—48)

q>h,(n)

Adaption of the weights of the experts. For each expert k through all patterns, adapt the
weights by

Output layer 1= Lk:

ejn) = d/n) — yki(k)(1) (4....49)

6)(n) = -hk(n)eJn)y(n)[1
— ?()1 (4—50)

Aw)(n) = ' 6?(n) 1)(n) (4—51)

Hidden layer O<l'zLk:

#(I+ I)

6(n) = (1 — y)(n)2) or')(n)w')(n) (4—52)
1=0

= 1c5(n)y')(n) (4—53)

Adaption of the weights of the gate. For each pattern n adapt the weights by

Output layer l=Lg.

or(n) = h1(n) — g,(n) (4—54)

Aw)(n) = ?')(n)y ')(n) (4—55)

Hidden layer O<l<Lg:

#(1-4- 1)

ô(0(n) = (1 — yt)(n)2) > Ô' )(n)w ')(n) (4—56)
j=O

LtwJkn) = ä')(n)y 1)(n) (4—57)

4.8 Discussion

In this chapter we introduced the architecture of the GEN and the EM—algorithm as its
learning process. The assumption that the data has a Gaussian distribution could be replaced
by other distributions. The mathematical theory serves as the basis of the implementation.
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Chapter 5

Implementation of the gated experts network
This chapter describes the implementation of the gated experts network in
the program InterAct©. Further, we discuss some implementation
problems and solutions.

5.1 The implementation environment lnterAct©

InterAct©, developed at the Rijksuniversiteit Groningen, is a general simulation
environment for creating, training and testing artificial neural networks. One can use this
environment by writing an application program that interacts with InterAct©. The simulation
environment combines an user—interface with a library. With the user—interface the
computations made by the application program can be controlled and observed. The library
contains routines or calls for input/output processing, creating data structures, learning rules
and observations. A user can develop an application program in the language .C by using these
calls. Additional functionality can also be implemented by dropping in user specific routines.

5.2 General design of the gated experts network

Attempts have been made to implement the GEN as one complete structure in InterAct©.
This turned out to be very problematic due to the nature of the EM—algorithm. Namely, all
the posterior probabilities for all experts and patterns must be computed before learning can
begin. The output neurons of the experts must have access to these posterior probabilities in
order to calculate the local gradient. By trying to store all the GEN parameters in the structure
itself, the clarity of the structure will decrease due to the resulting complicated structures.
Too many tricks should be performed to comply to this philosophy. Therefore another
direction was followed. The gate and the experts are implemented as separate structures
(section 5.2.1). The EM—algorithm is implemented by using a mixture of standard InterAct©
calls and solutions to application specific needs, e.g. the implementation of the softmax
activation function (section 5.3.1).
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5.2.1 Creating the network structure

To simplify the overall structure of the GEN, the different experts and the gate are
implemented as separate networks. An implication of this strategy is that InterAct has to
switch between these networks, because only one network can be active at the same time.
Unfortunately, this makes the overall performance slower. To create the separate networks
for each expert and the gate, two routines are written. The experts are created by applying
the following code fragment.

The gate is created by the following call

void gate_Screate_net (
long nr_inputs,
long nr_hiddens,
long nr_outputs,
net_Sid_t *id,
status_St *status)

1* number of input neurons of the gate*/
/* number of hidden neurons of the gate */
1* number of outputs of the gate *1
1* network identification of the gate *1
1* check if the call was successful *1

The next call creates the complete GEN and the posterior array.

void gen_Screate_net
pattern_Slist_id_t
long
long
long
status_St

list_id,
nr_experts,
nr_experts_hiddens,
nr_gate_hiddens,
*status

/* pattern list for GEN *1
/* number of experts *1
/* number of expert hiddens *1
1* number of gate hiddens *1
/* check call succes *1

5.2.2 Coding the EM-algorithm

The EM—algorithm consists of two steps which are implemented as separate calls. The first
call executes a complete expectation calculation and fills the posterior array, based on the
pattern list referenced by list_id.
void calcSExpectation_step(

pattern_Slist_id_t list_id,
long nr_experts,
status_St *status

The second call performs the maximization step by first calculating the new variances, then

updating the weights of the experts and finally updating the weights of the gate.

void caic_SMaximization_step
pattern_Slist_id_t list_id,
long nr_experts,
status_St *status

void expert_Screate_nets
long nrexperts, /* number of experts to create *1
long nr_inputs, 1* number of input neurons of each expert *1
long nr_hiddens, 1* number of hidden neurons of each expert *1
long nr_outputs, 1* number of output neurons of each expert */
net_Sid_t *ids, 1* network identification array of the expert *1
status_St *status) 1* check if the call was successful */

1* pattern list for testset */
/* number of experts *1
1* check call succes *1

1* pattern list for testset */
1* number of experts */
1* check call succes */
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5.3 Coding problems and solutions

This section describes several problems and their solutions encountered while implementing
the GEN in InterAct©.

5.3.1 Absence of the softmax activation function

In InterAct© the softmax activation function is not yet available. It is required to set the
activation function type at the creation of a neuron. For this, the siginoid activation function
is used. In order to use the softmax with these limitations, this function is implemented as
an application specific function:

void softmax(
long nr_outputs, /* number of gate outputs *1
out_St *gate out

)
/ array containing the gate output values *1

This function is used after the evaluation of the output neurons of the gate network, instead
of the standard InterAct© call get_Soutput_group. This function sets the value of the
output neurons externally to the corresponding softmax value and returns these values in the
array * gate_out.

5.3.2 Using sigmoids as output activation functions for the gate

Because we use sigmoids as the activation functions for the output neurons in the gate and
we want to use the standard error back—propagation learning rule for these output neurons,
we have a problem. After setting the output values with the softmax function, the error
back—propagation learning rule multiplies the error with the derivative of the sigmoid. To
overcome this faulty multiplication, the target for the gate is recalculated:

gate_targets [iJ= (posterior[pattern_id—1] [iJ—gate_outputs[i)) /
(gate_outputs(i)*( 1. O—gate_outputs[iJ)) + gate_outputs[i];

This will compensate for the derivative. Using a linear activation function would make this
recalculation unnecessary, but this is not implemented yet.
A consequence of the recalculation of the target is, that it introduces a potential division by
zero. To tackle this, a lower bound on the difference between h1(n) and g1 is introduced:

if( fabs((posterior[pattern_id—1][i]—gate_OUtpUts[i]))>O.0001
gate_targets [i] (posterior(patternjd—1] (i]—gate_outputs[i]) /
(gate_outputs(i] * (1. O—gate_outputs[iJ)) + gate_outputs(i];

else
gate_targets(i]posterior[patterfl_idl )[iJ;

5.3.3 Limiting the weighted sum of the gate outputs

In the softmax activation function the weighted sum is exponentiated. To avoid numerical
instability, i.e. maximum overflow, the maximum of this weighted sum is limited to [—80,
80]. Using these values for the limit, encountered maximum overflow errors were resolved.
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get_Sstatus_neuron( neuroni, &ns, &s );
if( ns.suxn <—80.0) ns.suxn=—80;
if( ns.sum >80.0) ns.sum=80;
gate_out(i] = ns.sum;
sum+=exp(gate_out[i]);

5.3.4 Learning of the experts

As described in chapter 4, the local gradients of the output neurons of the experts include the
posterior probability. Since the standard error—back propagation learning rule is used, the
next code fragment is used to include these terms:

set_Sinput( inputs, nr_inputs, &s );
calc_Sstart_evalu( OL, hidden_Slist, &s);
calc_Sstart_evalu( OL, output_Slist, &s );
set_Starget( targets, nr_targets, &s );
change_s learn ( , learn_rate*
posterior(pattern_id—1](expert_nr], momentum, 0.0, 0.0, 0.0, &s );
calc_Sstart_learn( OL, output_Slist, &s );
change_Slearn( error_back_St,learn_rate, momentum, 0.0, 0.0, 0.0, &s );

calc_Sstart_learn( OL, hidden_Slist, &s );

5.3.5 The influence of scaling on the variance

The target values of the experts are scalled to a range of [0.1, 0.9] to confme the target values
to the linear area of the sigmoid function. The variances of the expert are not correct due to
this scaling. To overcome this problem, linear activation functions were used for the output
neurons, but the performance of the GEN decreased. Therefore this option was omitted.
Instead, the variance can be scaled back to its correct value.

5.4 Discussion

In this chapter we described the implementation of the GEN in InterAct©. For a detailed
description of the complete source code of the GEN, the reader is referred to Appendix B.
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Chapter 6

Experiments
This chapter presents an overview of the experiments performed with the
implementation of the GEN. In the gated experts architecture, the values
of several parameters are chosen before conducting the experiments. The
parameters are: the number of expert networks, the number of hiddens for
the expert networks and the gate, the learning rate and learn momentum
of the expert networks and the gate. Examples are presented and the
outcomes of the experiments are studied and evaluated.

6.1 Introduction

The experiments are conducted by using the implementation of the GEN. The GEN consists
of a gate and a certain number of experts (depending on the experiment). The gate and experts
consist of an input and an output layer. The use of a hidden layer and the number of hidden
neurons depend on the experiments. In general a time series data—file contains N patterns and
is split in an equally sized train and test set. The train set is used to train the GEN and the
generalization performance of the trained GEN is tested on the test set (test cycle). Both the
sets are not permuted (the original time sequence is not disturbed), because when using the
trained GEN in practice, past values of a time series are presented by means of a delay line.
A delay line consists of several unit—delay operators z1 whose purpose is to delay a signal
by one time unit (x..j =z'). This delay—line can be seen as placeholders for past values of
a time series. Another reason is that the learning behavior is influenced by the sequence of
train patterns presented to the GEN. The following experiments are conducted.

• Testing the gate: 'Splitting two Gaussian distributions' (Section 6.2)

• Repeating Weigend's experiment: 'Mixture of two non—linearprocesses'(Section 6.3)

• Analyzing the gate: 'Santa Fe Laser Data'(Section 6.4)

• Performance on real world data: 'Waste Water Purification'(Section 6.5)

The next sections present the conducted experiments.
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6.2 Splitting two Gaussian distributions

The objective of the experiment of the splitting of two Gaussian distributions is to see
whether the gate is able to split the input space and correctly assign the input patterns to the
experts. This experiment can be seen as a test case for the implementation of the GEN. For
this experiment a series of values is selected at random from two Gaussian distributions,
which serve as the input values. The GEN has to classify these input values into two classes:
one for each Gaussian distribution. The distributions are characterized as follows:

• xi(n) N(—1.0, 0.1) negative class Cl

• x2(n) — N( 1.0, 0.1) positive class C2

In Figure 6.1 the sequence of values used to test the GEN is depicted.

Because this experiment is trivial, two experts are used, each with one input, one sigmoidal
output neuron and no hidden neurons. The gate has one input neuron and two output neurons.
In Table 6.1 the GEN parameters for this experiment are shown.

Gate Experts

Number of networks 1 2

Input neurons 1 1

Output neurons 2 1

Hidden neurons 0 0

Learning rate 0.1 0.2

Learn momentum 0.1 0.1

Table 6.1: The GEN parameters

6.2.1 Results

Several trials of this experiment where conducted. In some of the trials the gate converged
to one output being one (one expert was active for the entire test set). One reason for this
behavior is that the classification task is trivial, in that only one expert can handle this
classification by itself. In the other trials the gate correctly splits the input space into two
classes as depicted in Figure 6.2 and Figure 6.3.

We have observed that the initialization of the weights of the gate and the expert networks
are responsible for the convergence to one expert for both classes or one expert for each class.
This initialization determines how the gate splits the input space before training begins. If
the weights of the gate are randomly set to such values that for most of the train patterns one
gate output is frequently higher then the other gate output, the corresponding expert receives
more training information then the other expert. Hence, the performance of that expert
increases faster and the gate converges to one output being active. The initialization of the
weights of the experts can also result in this behaviour, i.e. one expert is frequently better than
the other and thus the gate converges to this expert.
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Figure 6.3: Gate output 2

It can be concluded from this experiment that the gate can split the input space correctly, but
this split depends on the initialization of the weights of the gate and expert networks.

6.3 Mixture of two non-linear processes

The following experiment is the same as the computer—generated experiment used in
Weigend et al.[16J. It is a time series prediction problem where the series switches (at
random) between regimes. There are two processes, mathematically described as:
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Figure 6.1: The sequence of values in the test set
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Figure 6.2: Gate output 1
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• x+i=2(1—x2)—1,

• Xt÷1 = tanh(—1.2x1 + et+1), et— N(0, 0.1)

if switch = 1

if switch = 0

The first process is a deterministic chaotic process: it is the quadratic map on the interval [—1,
1]. The second process is a noisy non—chaotic process: it is the composition of an
autoregressive process of order one, with Gaussian noise of variance 0.1, squashed through
a hyperbolic tangent to confine it to the same interval as the first process.
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Figure 6.4: Segment of the process with the left half the noisy tanh process and the right half the
quadratic map

In Figure 6.4 it is shown that the two processes give the same appearance in time domain,
but they are actually very different, as evidenced by the two return plots (scatter plot) in
Figure 6.5 and Figure 6.6.
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Figure 6.5: Two—dimensionaireturn plot ofx(t+1) and x(t)

35

I

—1

x(t)



+
x

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

—1

x(t-1)

0.5

Figure 6.6: Two—dimensionaireturn plot ofx(t+1) and x(t—1)

The switching between the two processes occurs at random; the exact switching times are
unknown. The probability of switching between the two process equals 0.02. For the
experiment 1000 patterns are used for the train set and 1000 patterns for the test set. The
architecture contains three experts and one gate. The goal is to predict the next point
Both the gate and the experts have access to the two past values of the series {Xt, xt_1}. Each
expert contains 12 hidden neurons, and the gate contains 15 hidden neurons. The output
neurons of the experts are sigmoids.

Gate Experts

Number of networks 1 3

Input neurons 2 2

Output neurons 3 1

Hidden neurons 15 12

Learn speed 0.1 0.4

Learn momentum 0.1 0.1

6.3.1 Results

Table 6.2: The GEN parameters

Again, several experiments where conducted. Not one of the experiments converged to two
surviving experts, as one might expect from the fact that the times series contains two
processes. The gate did not split the input space as described in Weigend et a!. [16]. Instead,
Figures 6.8, 6.9 and 6.10 show a typical split made by the gate for the test set ( Figure 6.7).
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Figure 6.7: Test set

Figure 6.8: Gate output 1

Figure 6.9: Gate output 2
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Figure 6.10: Gate output 3

Figure 6.8 shows that output 1 of the gate (and so expert 1) is largely responsible for the noisy
tanh process. The quadratic map areas of the time series are shared between experts 2 and
3. To evidence this observation the outputs of the experts, multiplied by their corresponding
gate outputs, are plotted (y1 g1). This allowes us to see the contribution of the experts to the
complete output signal (i.e. the output of the complete GEN).
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Figure 6.11: Expert 1: yj *gj
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Figure 6.12: Expert 2: y*g
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Figure 6.13: Expert 3: y3*g

Figures 6.11, 6.12 and 6.13 show that expert 1 is indeed responsible for the noisy tanh
process, expert 2 concentrates (partly) on the negative part of the quadratic map and expert
3 is partly responsible for the complete quadratic map process. To investigate why expert 2
concentrates partly on the negative part of the quadratic map, the return piots of the expert
output (multiplied with the gate output) and the input signal x(t) can reveal the functional
input—output mapping expert 2 is responsible for.
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Figure 6.14: Return plot of the output of expert 2 and inputx(t)

We see that expert 2 becomes active when the quadratic map moves from a positive high
value to negative values.

To visualize the complete GEN performance, a return plot of the total GEN output y and input
signal x, is depicted (Figure 6.15).
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Figure 6.15: Return plot of the total output y and x(t)

Comparing Figure 6.15 with Figure 6.5, we see that the network predicts the quadratic map
reasonably good except for a small positive area (x(t)=[O.4,O.6]) where the prediction of the
noisy tanh process influences the prediction of the quadratic map. Further, the variance of
the noisy tanh prediction is smaller than the original variance.

6.4 Santa Fe laser data

The objective of the experiment of the Santa Fe laser data is to examine the specialization
of the gate. The Santa Fe laser data is a frequently used benchmark. It consists of chaotic laser
data, where the areas of steadily growing envelopes are interrupted by collapses. These
collapses are part of the internal dynamics of the laser. The prediction of these collapses is
our main goal. In Table 6.1 the GEN parameters for this experiment are shown.

Gate Experts

Number of networks 1 6

Input neurons 5 5

Output neurons 6 1

Hidden neurons 10 5

Learning rate 0.1 0.4

Learn momentum 0.1 0.1

Table 6.3: The GEN parameters

The GEN has to predict the next point x1+. of the data. Both the experts and the gate have
access to the five past values of the data { x...i, x..2, X1....3, X.4 }. In the test set, presented in
Figure 6.16., the collapses of the laser are clearly visable. The main goal is to see if one of
the experts specializes in predicting these collapses.
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6.4.1 Results

After training the GEN, we can observe the following. Two experts are responsible for
predicting the collapse (Figures 6.17 and 6.19), and three experts are predicting the steadily
growing envelopes (Figures 6.20, 6.21 and 6.22). Gate output 2 is very inactive (Figure
6.18). This may indicate that five instead of six experts would suffice. Weigend e:.al. [16]
performed the same experiment and also concluded that five or six experts would suffice.

0.2

t

Figure 6.16: Test set Santa Fe Laser data

Figure 6.18: Gate output 2
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Figure 6.19: Gate output 3

Figure 6.20: Gate output 4

Figure 6.21: Gate output 5



Comparing the output y(t) of the GEN with the desired value x(t) , we see in Figure 6.23 that
the prediction relates almost linearly with the desired value (crosscorrelation of 0.9724),
except for values of x(t) higher than 0.6 where the prediction is smaller then the desired value.
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Figure 6.23: Return plot of GEN output and the desired value

6.5 Waste—water purification

In this experiment we study the performance of the GEN on the prediction of a multivariate
real—world time series. This series arises from an industrial application of waste—water
purification (described in section 2.3). The ammonia concentration has to be predicted by
using temperature and three other concentrations in the water (namely oxygen and the
so—called auc and influent measurements), which are related to the ammonia concentration.
After an extensive analysis of the data [14], a clear daily period was found. In order to make
this information available to the GEN, a sine representing the daily rhythm and the type of
day (differentiating between weekends and working days) is included in the train set. This
results in an input vector of 12 values for every time step (one quarter of an hour). Table 6.4
presents the network parameters used for this experiment.
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Gate Experts

Number of networks 1 4

Input neurons 12 12

Output neurons 4 1

Hidden neurons 20 15

Learning rate 0.7 0.7

Learn momentum 0.1 0.1

6.5.1 Results

Table 6.4: The GEN parameters

The experiment is repeated many times and every run resulted in a MSE of about 0.04. The
test set is depicted in Figure 6.24.
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Figure 6.24: The ammonia concentration in the first half of the test set

Although the GEN performed poorly in predicting the ammonia concentration, it discovered
the periodic behavior (Figure 6.25).
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Figure 6.25: The total output of GEN

Analyzing output 2 of the gate, we see in Figure 6.26 that this output is responsible for the
prediction of the peaks in the series.

N 0.8

0.6

0.4

0.2

0

To present an indication of the performance of the GEN, the resulting error of the prediction
on the test set is depicted in Figure 6.27 and is very simular to the test set (Figure 6.24). A
possible reason of the very low performance is that to few past values of the related data is
used for the prediction. By applying more past values (more information) to the GEN a
higher performance can be expected.
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6.6 Discussion

In this chapter we have used the GEN for several prediction problems. The choice of
parameters depends on the kind of experiment conducted and are experimentally
determined. For instance, if the number of regimes were known, we used the same number
of experts. We have observed that the gate can split the input space correctly, but this split
depends on the initialization of the weights of the gate and expert networks. Future research
has to be performed on this initialization phenomenon to gain more insight in this matter.
Examining the relation between the gate outputs and the inputs, the way in which the gate
splits the input space can be analyzed. This way, hidden regimes in a times series can be
uncovered. Thus, besides using the GEN for time series prediction, it also is an useful tool
for analyzing the underlying dynamics of a time series.
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Chapter 7

Conclusions and further research
This chapter presents conclusions and directions for further research on
prediction of time series with gated experts networks.

We selected the gated experts network, for its nice properties of non—linear gate and experts,
soft—partitioning the input space and adaptive noise levels (variances) of the experts. These
properties are found useful for times series prediction. From the conducted experiments we
have empirically observed that the gated experts network is a reasonable good choice for
real—world time series prediction. It uses the experts as local predictors and the gate plausible
allocates the experts to local regions of the input space. Our main conclusions are:

• The gate splits the input space, but not always as one might expect. The splitting of
input space depends on the initialization of the weights of the gate and experts.

• The choice of the free parameters depends on the kind of experiment conducted and
are experimentally determined by repeating the same experiment with varying
parameters.

• The learn rate of the gate should be small compared to the learn rate of the experts
to yield a better segmentation of the input space.

• By examining the relation between the gate outputs and the inputs of the gated experts
network, the way in which the gate splits the input space can be analyzed. This way,
hidden regimes in a time series can be uncovered. Thus, the gated experts network
is a useful tool for analyzing the underlying dynamics of a time series.

Further research could concentrate on extending this structure to some kind of hierarchy,
where the complexity of a process is captured by the divide and conquer principle. The gated
experts network can be modified by adding different density functions to individual experts,
applying dynamic growth of the number of experts and hidden units of the experts. The
implementation of the gated experts network can be extended to include separate tapped
delay lines, with different values for the delay step size and the length of the delay line, for
the experts and the gate to capture the periodicities in the time series.
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Appendix A

The derivation of the posterior probability
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The derivation of the local gradient of the gate
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The derivation of the variance update
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Appendix B

/ ******************************************************************* /
/ ********

#include 'interact .h

#include constants_iat .h

#include <math.h>

#include <stdlib. h>

#include <string.

#define max(x,y) (((x)>(y))?(x):(y))

#define MAX_LAYERS 4L

#define LAYER_DIST 40L

#define NEURON_X_DIST 20L

#define NEURON_Y_DIST 20L

#define MAX_EXPERTS (INTERACT_MAX_NETWORKS—i)

1*

These global variables are needed for the gated experts network

net_Sid_t expert_id(MAX_EXPERTSJ;

net_Sid_t gate_id;

double expert_Variance(MAX_EXPERTS);

double * *posterior;
learn_Spar_t learn_rate0.7, momentum=O .0;

observation_Sargs_net_status_t oa;

observation_Sargs_net_structure_toas;

1*

This function creates the posterior matrix.

Parameters:

nr_patterns : the total number of patterns

nr_experts z the number of expert networks

*1

void create_posterior( long nr_patterns,

long nr_experts)

{

long i.j;

posterior — (double **)llcg(Bizeof(doub1e*)* nr_patterns);

if( posterior—NULL ) exit(—2 );

for( i—0; i<nr_patterns; j++) {

posterior(i1(double *)ma1lc( sizeof(double
)

* nr_experts );

if( posterior(i)——NTJLL ) exit(—2 );

for( j—0; j<nr_experts; j++)

posterior(iJ(j).0.0;
}
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}

/*

This function loads the pattern database file

Parameters:

name : name of the pdbf file

Result:

list_id : identifier of the pattern list

pattern_Slist_id_t MyLoadPatterns (char name(J)

{

status_St status;

pattern_S 1 ist_id_t list_id;

pattern_Slist_load (name, &list_id, &status);

printf (Loading database file: %s\n, name); return (list_id);

}

/*

This function splits a pattern list into a train and test set

Parameters:

list_id : identifier of the pattern list that needs to be split

tm_set : pointer to the train set

tst_set pointer to the test set

Remark:

first, the pattern list is permuted

*1

void MySplitPatternS (
pattern_Slist_id_t list_id,

pattern_Slist_id_t *trn set,

pattern_S list_id_t *tgt set)
{

status_St status;

long selector[ INTERACT_MAX_PATTERN_PATTERNS 1;

long in nr_trn, nr_tst;

pattern_Slist_info_t info;

pattemn_Slist_get_info (list_id, &info, &Btatus);

nr_trn = info.nr_patterns/2;
nr_tst — info.nr_patterns — nr_trn; 1* Select patterns with ids 1. .nr_trn */

for (md — 0; md < nr_tmn; ind++)

selector(ind) md + 1;
pattern_Slist_select_rows (list_id, selector, nr_trn, tm_set, &status);

1* Select patterns with ids nr_tmn+1. .info.nr_patterns */

for (md — 0; md < nr_tst; ind++)

selector[indj nr_trn + md +1;

pattern_Slist_select_rows (list_id, selector, nr_tst, tst_set, &status);

void initialize_Sexpert (nat_Sid_t net_id)

{

status_St status;

net_Sset_working_net( net_id , &status); set_Sbias_random (OL,neu—

ron_Slist,—l .0, l.0,O.O,0.6,rand_Suniform,&status);

set_Sweight_random (OL, DL, neuron_Slut, neuron_Slist, 1, —1.0, 1.0, 0.0,

0.6, rand_Suniform,&status);

}

void initialize_Sgate (net_Sid_t net_id)
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{
status_St status;

net_Sset_working_net( net_id ,&status ); set_Sbias_random (OL,neu-

ron_Slist,—1.0,l .0,0.0,0.6,rand_Suniform,&statua);

set_Sweight_random (OL, OL, neuron_Slist, neuron_Slist, 1, —1.0, 1.0, 0.0,

0.6, rand_Suniform,&status);

}

void expert_Screate_nets( long nr_experts,

long nr_inputs,

long nr_hiddens,

long nr_outputs,

net_Sid_t *ids,

status_St *status)
{

status_St 8;

long height;

long x_off, y_off;

long

neuron_Sid_t neuron_id;

learn_Spar_t learn_rate=0 .9, momentum—0.1;

net_Sid_t net_id;

char str(20); status—>all — status_Sok;

height max( max( nr_inputs, nr_hiddens), nr_outputs );

for ( k=0 ; k<nr_experts ; k++) {

expert_Variance 1k) 1 .0;

strcpy(str, Expert ");

net_Sadd(str,&net_id, &s );

default_Sthres( sigdet_sum_c2_St, 0.0, 0.0, 0.0, 0.0, 0.0, 8s );

default_Slearn( error_back_St, learn_rate, momentum, 0.0, 0.0, 0.0, as );

net_Sset_working_net( net_id ,&s);

ids 1k) =net_id;

printf(\nNet id: %i, net_id); 1* add input layer *1

default_Skind( kind_Sinput_neuron, as );

x_off — 0;
y_off — ((height — nr_inputs) * NEURON_Y_DIST )

/ 2;
default_Scoord_incr( OL, NEURON_Y_DIST, OL, &s );

neuron_Sadd( neuron_Sauto_t, OL, x_off, y_off, OL, nr_inputs, &neuron_id, as );

x_off += LAYER_DIST;
1* add hidden layer *1

default_Skind( kind_Shidden_neuron, as );

y_off ((height — nr_hiddens) * NEURON_Y_DIST ) /2;

default_Scoord_incr( OL, NEURON_Y_DIST, OL, &s );

neuron_Sadd( neuron_Sauto_t, OL, x_off, y_off, OL, nr_hiddens, aneuron_id, as );

x_off +LAYER_DIST; /* add output layer */

default_Sthres( sigdet_sum_c2_St, 0.0, 0.0, 0.0, 0.0, 0.0, as );

default_Skind( kind_Soutput_neuron, &s );

y_off — ((height — nr_outputs) * NEURON_Y_DIST
)

/ 2;

neuron_Sadd( neuron_Sauto_t, OL, x_off, y_off, OL, nr_outputs, aneuron_id, &s );

1* add connections*/

connection_Sadd(OL, OL, input_Slist, hidden_Slist, 1, 0.0, connection_Ssingle, &s );

connection_Sadd(OL, OL, hidden_Slist, output_Slist, 1, 0.0, connection_Ssingle, &s );

calc_Sset_mode( calc_Ssyn, 1L, 1L, &s );
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initialize_Sexpert (net_id);

}

}

void gate_Screate_net( long nv_inputs,

long nr_hiddens,

long nr_outputs,

net_Sid_t *id

status_St *statua)

{

status_St
long height;

long x_off, y_off;

neuron_Sid_t neuron_id;

learn_Spar_t learn_rate—O.9, momentum=O .1;

net_Sid_t net_id;

status—>all = status_Sok;
height — max( max( nr_inputs, nr_hiddens), nr_outputs );

net_Sadd(Gate,&net_id, &s );

default_Sthres( sigdet_swn_c2_St, 0.0, 0.0, 0.0, 0.0, 0.0, &s );

default_Slearn( error_back_St, learn_rate, momentum, 0.0, 0.0, 0.0, &s );

net_Sset_working_net( net_id ,&a);

*id_netid; 1* add input layer *1

default_Skind( kind_Sinput_neuron, &s );

x_off 0;

y_off ((height — nr_inputs) * NEURON_Y_DIST
) / 2;

default_Scoord_incr( OL, NEURON_Y_DIST, OL, &s );

neuron_Sadd( neuron_Sauto_t, OL, x_off, y_off, OL, nr_inputi, &neuron_id, &B );
x_off += LAYER_DIST;

1* add hidden layer *1

default_Skind( kind_Shidden_neuron, &s );

y_off = ((height — nr_hiddens) * NEURON_Y_DIST
) /2;

default_Scoord_incr( OL, NEURON_Y_DIST, OL, 55

neuron_Sadd( neuron_Sauto_t, OL, x_of 1, y_off, OL, nr_hiddens, &neuron_id, &s );

x_off +LAYERDXST;

1* add output layer *1

default_Sthres( sigdet_sum_c2_St, 0.0, 0.0, 0.0, 0.0, 0.0, &s );

default_Skind( kind_Soutput_neuron, 5$

y_off — ((height — nr_output.) * NEURON_Y_DIST
) / 2;

neuron_Sadd( neuron_Sauto_t, OL, x_ouf, y_off, OL, nr_outputs, &neuron_id, &s );
/* add connections*/

connection_Sadd(OL, OL, input_Slist, hidden_Slist, 1, 0.0, connection_Ssingle, 55

connection_Sadd(OL, OL, hidden_Slist, output_Slist, 1, 0.0, connection_Ssingle, &s );

calc_Sset_mode( calc_Ssyn, 1L, 1L, 55 );

initialize_Sgate (net_id);

)

void gen_Screate_net( pattern_Slist_id_t list_id,

long nr_experts,

long nr_experts_hiddens,

long nr_gate_hiddens,

status_St *statue
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pattern_Slist_info_t info;

long nr_inputs,

nr_outputs,

nr_patterns;

pattern_Slist_get_info (list_id, &info, status);

nr_inputs = info.nr_inputs;
nr_outputs — info.nr_targets;
nr_patterns = info.nr_patterns;
expert_Screate_nets ( nr_experts, nr_inputs, nr_experts_hiddens, nr_outputs,

expert_id, status);

gate_Screate_net( nr_inputs, nr_gate_hiddens, nr_experts,&gate_id, status );

create_posterior ( nr_patterns, nr_experts);

}

void MySetObsevations (
net_Sid_t net_id , char namell)

{

status_St status;

observation_Sid_t obs;

observation_Sargs_net_status_t * sdata;
observation_Sdata_t data;

static long x_off=0, y_off—0;

net_Sset_working_net( net_id ,&status); sdata — &data.net_status_args;

sdata—>group_id = neuron_Slist;
sdata—>min_value — —1.0;
sdata—>max_value = 1.0;
sdata—>eval_incre 1;

sdata—>status observation_Sstatus_out_level;

sdata—>figure observation_Sf igure_circie;

sdata—>size — 10;
sdata—>show_id — bool_Sfalse;
sdata—>show_nazne — bool_Sfalse;
sdata—>show_legend — bool_Strue;
sdata—>auto_scaling bool_Strue;

sdata—>visual — observation_Scolor_table_jet;

observation_Sset( 5+x_off, 5+y_off, 300, 200, name,

observation_Skind_net_status,

&data, &obs, &status);

x_off+—30; y_off+30;

}

void ObsTargetOutput (pattern_Slist_id_t listid)

{

status_St status;

neuron_Sid_t id;

get_Sid_neuron (get_Soption_first, OL, output_Slist, , &id, &status);

ObservationUseKind (observation_Skind_target_output);

ObsSetArg (ObsTimeType, 0);

ObsSetkrg (ObsTimeStep, 10);

ObsSetArg (ObsNeuron, id);

ObsSetArg (ObsPatternListld, list_id);

ObsSetArg (ObsColumn, 1);
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obsSetArg (ObsShowDifference, 1);

ObsSetArg (ObsShowErrors, 1);

ObservationStart

void softmax( long nr_outputs, out_St *gate_out

status_St

out_St sum;

get_Sneuron_status_t ns;

neuron_Sid_t neuron 1;

long i;

sum=0.0;

get_Sid_neuron( get_Soption_first, (neuron_Sid_t)0, output_Slist,NULL,

&neuronl,&s);

get_Sstatus_neuron( neuroni, &ns, &s );

if( ns.swn <—80.0) ns.sum—80;

if( ns.sum >80.0) ns.suin80;

gate_out(0J — ns.sum;
sum+exp( gate_out( 01);

for (i—i; i<nr_outputs; i++) {

get_Sid_neuron (
get_Soption_larger,neuronl, output_Slist ,NULL,

&neuronl,&s);

get_Sstatus_neuron( neuroni, &ns, 58

if( ns.sum <—80.0) ns.sum—80;

if( ns.sum >80.0) ns.sum=80;

gate_out(iJ — ns.sum;
sum+=exp(gate_out(iJ);

get_Sid_neuron( get_Soption_first, (neuron_Sid_t)0,output_Slist ,NULL,

&neuronl,&s);

gate_out(0J— (exp(gate_out[0J)/sum);

set_Sout_random( neuroni, OL, out_Smix, out_Smax, gate_out[0) ,1.0, (random_St)2, &s);

for(i—l; i<nr_outputs; i++) (

get_Sid_neuron( get_Soption_larger, neuroni, output_Slist,NULL,

&neuronl,&s);

gate_out( iJ =exp( gate_out( iJ ) /sum;
set_Sout_random( neuroni, OL, out_Smix, out_Smax, gate_out[ij,1.0, (random_St)2, 55);

}

}

void calc_SExpectation_step( pattern_Slist_id_t list_id,

long nE_experts,

status_St *status)

{

status_St
pattern_Slist_info_t info;

out_St inputs ( INTERACT_MAX_PATTERN_INPUTSJ;

out_St targets INTERACTJIAX_PATTERN_TARGETS 1;

out_St outputs [MAX_EXPERTS It INTERACT_MAX_PATTERN_TARGETS);

out_St gate_outputs[MAX_EXPERTSI;
long nr_inputs,nr_outputs, nr_targets, nr_patterns;

long pattern_id,expert_nr,i,j;

double resi, res2, res3;
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pattern_Slist_get_info( list_id, &info, &s );

nr_patterns = info.nr_patterns;
for( pattern_id=1;pattern_id<nr_patterns; pattern_id++){

pattern_Slist_get_pattern ( list_id, pattern_id, inputs, &nr_inputs,

targets, &nr_targets, &s);

/* calculate the response of the gate network *1

net_Sset_working_net( gate_id ,

set_Sinput( inputs, nr_inputs, &s);

calc_Sstart_evalu( OL, hidden_Slist, as);

calc_Sstart_evalu( OL, output_Slist, as );

softmax( nr_experts, gate_outputs);

1* calculate the responses of the expert networks *1

for( expert_nrO; expert_nr < nr_experts;expert_nr++){
net_Sset_working_net( expert_id(expert_nr) ,&s);

set_Sinput( inputs, nr_inputs, as);
calc_Sstart_evalu( OL, hidden_Slist, as);

calc_Sstart_evalu( OL, output_Slist, &s );

get_Soutput_group( output_Slist, outputs[expert_nrj ,&nr_outputs, as);

}

/* calculate the posterior probabilities h *1

for ( expert_nr=O; expert_nr<nr_experts ; expert_nr++) {
reslO.O;
for( j—O; j<nr_targets; j++)

resl+=(targets[j)—outputs[expert_nrl [jJ ) *(targetg[ j]—outputs(expert_nrfljj);

resl=exp(—(resl)/(2 .O*expert_Variance[expert_flrl ));

resl*=l.O/(pow( sqrt(2.O*M_PI),nr_targets) *

pow( sqrt(expert_Variance[expert_nr) ) ,nr_targets) );

resl*=gate_outputs [ expert_nr);
res3O.O;

for ( i=O; i<nr_experts; i++) {
res2O.O;
for( jO; j<nr_targets; j++)

res2+=(targets[j)_oUtpUtSfiJ(jJ)*(targets(j]_oUtputs(iI(jJ)
res2=exp(_(res2)/(2.O*expert_Variancetiffl;

res2*= l.O/(pow( sqrt(2.O*M_PI),nr_targets) *

pow( sqrt(expert_Variance(i) ) ,nr_targets) );

res2 *fabs (gate_outputs [iJ);

res3+=res2;

}

res3=resl/res3;
posterior(pattern_id—1I [expert_nr]=res3;

} 1* posterior calculated */

}

}

void calc_SMaximization_Step( pattern_Slist_id_t list_id,

long nr_experts,

status_St * status)

{

status_St
pattern_Slist_info_t info;
out_St inputs I INTERACT_MAX_PATTERN_INPUTS);

out_St targets ( INTERACT_MAX_PATTERN_TARGETS);

out_St outputs [MAX_EXPERTS) (INTERAcT_MAX_pATTERN_TARGETS);

out_St gate_outputs [MAX_EXPERTS),
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gate_targets [ INTERACT_MAX_PATTERN_TARGETS 1;

long nr_inputs,nr_outputs, nr_targets, nr_patterns;

long pattern_id,expert_nr, j,i;

double sumnom, sumdenom,resl;

pattern_Slist_get_info( list_id, ainfo, £5 );
nr_patterns — info.nr_patterns;

1* update the experts variances */

for( expert_nrO; expert_nr < nr_experts;expert_nr++){
sumnom—0 .0; sumdenom—0 .0;

for( pattern_id—l;pattern_id<—nr_patterns; pattern_id++){

pattern_Slist_get_pattern( list_id, pattern_id, inputs, £nr_inputs,

targets, &nr_targets, &s);

/* calculate the response of the gate network *1

net_Sset_working_net( gate_id ,

set_Sinput( inputs, nr_inputs, as);

calc_Sstart_evalu( OL, hidden_Slist, £5);

calc_Sstart_evalu( OL, output_Slist, £5

softmax( nr_experts, gate_outputs);

1* calculate the responses of the expert network *1

net_Sset_working_net( expert_id[expert_nrj ,s);

set_Sinput( inputs, nr_inputs, as);

calc_Sstart_evalu( OL, hidden_Slist, £s);

calc_Sstart_evalu( OL, output_Slist, &s );

get_Soutput_group( output_Slist, outputs Iexpert_nrj , £nr_outputs, £s);

resl—0.0;

for(j=0; j<nr_targets; j++)

resl+_(targets(jJ_outputsexpert_nr(jJ)*(targetsjJ_outputs(expert_nrJ(jJ);
resl*_posterior [pattern_id—lJ (expert_nr);

sumnom+=resl;

sumdenom+=posterior L pattern_id—i J (expert_nr J;

}
sumdenom* =nr_targets;

expert_Variance expert_nr J —sumnoin/suindenoin;

if( expert_Variance(expert_nrj <0.0001 ) expert_Variancetexpert_nrJ.0 .0001;

} / end calculation of the new variances *1

1* update weights of the experts */

for( expert_nr—0; expert_nr < nr_experts;expert_nr++){
net_Sset_working_net( expert_idtexpert_nr) , as);
for( pattern_id—1;pattern_id<—nr_patterne; pattern_id++) {

pattern_Slist_get_pattern( list_id, pattern_id, inputs, £nr_inputs,

targets, &nr_targets, £5);

set_Sinput( inputs, nr_inputs, as );

calc_Sstart_evalu( OL, hidden_Slist, as);

calc_Sstart_evalu( OL, output_Slut, &s );

set_Starget( targets, nr_targets, as );

change_Slearn( error_back_St, learn_rate*

posterior(pattern_id—1 J [expert_nt),
momentum, 0.0, 0.0, 0.0, £8 );

calc_Sstart_learn( OL, output_Slist, as );

change_Slearn( error_back_St, learn_rate, momentum, 0.0, 0.0, 0.0, as );

calc_Sstart_learn( OL, hidden_Slist, as );
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} /' update weights of the gate */

net_Sset_working_net( gate_id,as);

change_Slearn( error_back_St, learn_rate*0.5,momentum*0.5, 0.0, 0.0, 0.0, as );

for( pattern_id=l;pattern_id<nr_patterns; pattern_id++) {

pattern_Slist_get_pattern( list_id, pattern_id, inputs, anr_inputs,

targets, anr_targets, as);

set_Sinput( inputs, nr_inputs, as );

calc_Sstart_evalu( OL, hidden_Slist, as);

calc_Sstart_evalu( OL, output_Slist, as );

softmax( nr_experts, gate_outputs);

for ( i=0; i<nr_experts; i++) {

if( fabs((posteriorpattern_id—1)[iJ—gate_outputs(ifl)>0.000l )

gate_targets(i)— (posterior(pattern_id—iJ[i)—gate_outputs(i)) /

(gate_outputsiJ*(l .0—gate_outputs(iJ)) +

gate_outputs(i);
else

gate_targets (iJ posterior( pattern_id—il (iJ;

}

set_Starget( gate_targets, nr_experts, as );

if( s.all 1= status_Sok )
printf("\nTarget for Gate not set II");

calc_Sstart_learn( OL, output_Slist, as );

calc_Sstart_learn( OL, hidden_Slist, as ); } for(j=0;j<nr_experts;j++){

printf(\nNew Variance: %2 .6f",expert_Variance[j));

void gen_Stest_epoch( pattern_Slist_id_t list_id,

long nr_experts,

mt n, float *error,

status_St * status)

status_St s;

pattern_Slist_info_t info;

out_St inputs (INTERACT_MAX_PATTERN_INPUTS];

out_St targets INTERACT_MAX_PATTERN_TARGETS);

out_St outputs (MAX_EXPERTS) [INTERACT_MAX_PATTERN_TARGETS];

double gen_outputs ( INTERACT_MAX_PATTERN_TARGETS J;
out_St gate_outputs (MAX_EXPERTS 1;

long nr_inputs,nr_outputs, nr_targets, nr_patterns;

long pattern_id, expert_nr, i, j;

FILE *fp;

pattern_Slist_get_info( list_id, ainfo, as );

nr_patterns — info.nr_patterns;
*error_0 .0;

fp=fopen ("output .txt", w+);

if( fp!—NULL){

fprintf(fp,"Epoch: %d\n",n);

for ( pattern_idi ; pattern_id<—nr_patterns; pattern_id++) {

pattern_Slist_getpattern ( list_id, pattern_id, inputs, anr_inputs,

targets, anr_targets, as);

/* calculate the response of the gate network *1

net_Sset_working_net( gate_id , as);
set_Sinput( inputs, nr_inputs, as);
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calc_Sstart_evalu( OL, hidden_Slist, &s);

calc_Sstart_evalu( OL, output_Suet, &s );

softmax( nr_experts, gate_outputs );

1* calculate the responses of the expert networks */

for( expert_nr—0; expert_nr < nr_experts;expert_nr++){
net_Sset_working_net( expert_id[expert_nrj ,&s);

set_Sinput( inputs, nr_inputs, Sc);

calc_Sstart_evalu( OL, hidden_Suet, &s);

calc_Sstart_evalu( OL, output_Slist, &s );

get_Soutput_group( output_Suet, outputs(expert_nrj ,&nr_outputs, &s);

}

for ( j—0; j<nr_targets; j++)

gen_outputst j J0 .0;

for(j.0; j<nr_targets;j++)

for(i.0;i<nr_experts;i++)
gen_outputsj)+=(double) (outputs(iJj)*gate_outputs(ifl;

for(j—0;j<nr_targets;j++){

(*error)+_(targets(j)_genoutputs(jJ )*(targets(j)_gen_outputs(jJ);

fprintf(fp,'%f %f ,targets(jJ,genoutputs[jJ );

}

for( i—0; i<nr_experts; i++) {
for( j—0; j<nr_targets; j++)

fprintf(fp,"%f ',outputs(iJ(jfl;

}

for( j—0; j<nr_experts; j++)

fprintf(fp,"%f ',(float)gate_outputs(jJ);

fprintf(fp,'\n');

}

*error*error/flr_patterfls;
fprintf(fp, '\n');

fclose(fp);

}else{

*errorl .0;

}

void main( mt argc, char *argv[)

{

status_St status;

pattern_Slist_id_t patterns, tm_patterns, tst_patterns;

long nm_experts, nr_exphiddens , nr_gatehiddens;
float error—0.0;

mt i,n;
char str(30);

FILE *fp Log;

interact Sinit( init_mode_Sno_network, , &status );

if( argc==5 ){

patterns — MyLoadpatterns( argv[1J );

MySplitPatterns( patterns, &tmn_patterns, &tst_patterns );

nr_experts — atoi( argv(2J );

nr_exphiddens — atoi( argv(33 );

nr_gatehiddens— atoi( argv(4J );

printf("\n#expert: %i',nr_experts);

printf(\nCreating Gated Experts Network, Please Wait. ..');
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gen_Screate_net( patterns, nrexperts, nr_exphiddens,nr_gatehiddens, &status);

net_Sset_working_net( gateid , &status);
observation_Sdisable( all_Sobservations,&status);

for(i0;i<nr_expertS;i++){

sprintf(str,Expert %2i',(i+l) );

}

getchar;
fp_logfopenlog.txt",W+");

fclose(fp_log);

n0;
printf(\nLearnspeed: %1.2f Learnmomentum: Si .2f,learn_rate, momentum);

for(; ;){

printf('\n#%i E—step,n);

calc_SExpeCtatiOfl_step(trfl_Patterfls, nr_experts, &status );

printf( —> M—step);
calc_SMaximization_Step( tm_patterns, nr_experts, status );

if( n % 2 == 0 && nI—O ) {
gen_Stest_epoch( tst_patterns, nr_experts, n,&error, &status );

printf('\nError: Sf ,error);

learn_rate——0 .02;

momentum+0 .02;

if ( learn_rate<0 .1) learn_rate=0 .1;

if( momentum>=0.3 )
momentum0.3;

printf\nLearnspeed: %l.2f Learnmomentum: Si .2f,learn rate, momentum);
fp_log=fopen (

log. txt, a);

fprintf( fp_log,'#%d Learnspeed: Sf Momentum: Sf Error: 5f,n,

learn_rate ,momentwn, error);

for ( i0; i<nr_experts; i++)
fprintf(fp_log, Sf ,expert_Variance(iJ );

fprintf ( f p_log, \n');
fcloae ( fp_log);

}

fl++;

}
fclose( f p_log);

printf('\nReady. . .

}else{
printf( \nusage: expert <pdbf—file> <nr—of—experts> <expert—hiddens>

<gate—hiddens>\n);

getchar();
interact_Sterminate( init_mode_Sstop, &status );

}
/* end main */
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