
.1 -. ,_ø

dli

(I



On the Road again:

Moving a Neural Net in Hardware

by : Ter Haseborg, Henrickus M. G.

19—07—1999.

At The department of computing Science

Rijksuniversiteit Groningen,

Groningen, The Netherlands,

July, 1999.

Supervisors:

Prof. Dr. Zr. L. Spaanenburg

Dr. Zr. J. A. G. Nijhuis

A thesis submitted in fulfillment of the requirements for

the degree Master of Science

at the Rijksuniversiteit Groningen



Abstract

Artificial neural networks are a new and promising generation of information process-
ing systems. In the last couple of years they have shown to outperform classical algo-
rithms in such areas as pattern recognition, image processing and data clustering. For
several (notably embedded) applications the requirements for physical size, power
consumption and especially raw speed dictate the use of specific hardware realisa-
tions. However, the transformation of a neural network into a hardware platform intro-
duces a number of new problems, as studied in this thesis.

A structured design approach is based on three phases: architecture, implementation
and realisation. In this thesis we focus especially on the first two of these three phases.
The architecture creates a description (if not specification) of the neural network beha-
viour, while the implementation transforms this description into a buildable model,
that is optimal for the envisaged realisation technology. In this thesis the implementa-
tion will be given in the VHDL hardware description language. This VHDL descrip-
tion is a widely accepted basis for system simulation and synthesis, which facilitates
a comfortable parameterisation and test of a buildable model.

A number of transformations are required for the optimal technology mapping of a
neural system, of which the current literature does not give a clear evaluation. There-
fore this thesis presents a number of fundamental experiments to find the actual degree
of freedom in the design space. The performance of a neural network is dependent on
the envisaged application (such as function approximation or classification). It is gen-
erally anticipated that the representation of the discriminatory function (sigmoid) will
have a major impact. Our research has shown that the impact of the sigmoid represen-
tation is unmistakingly present; however, this impact is not dependent on the applica-
tion area. Rather will the "area of effectiveness" be dimensioned on basis of the
envisaged usage.

l'his thesis also pays attention to the impact of number representation techniques. We
have focussed especially on the finite wordlength effects that will be encountered in
ASIC technology. It is found that rounding is the best technique for mapping arbitrary
integers on finite—length computer words. Further, we have no empirical evidence that
restricting the representation of the input signals has a major effect on the system per-
form ance, not even by rounding. These and related results have been used in the design
and implementation of a neural network ASIC.



U

q



Samenvatting

Kunstmatige neurale netwerken zijn een nieuwe en veelbelovende generatie van infor-
matie—verwerkendesystemen. Ze hebben in de afgelopenjaren bewezen goed te pres-
teren op gebieden in patroonherkenning, beeldverwerking en data clustering, waar
conventionele algoritmes aan hun grenzen gekomen zijn. Voor een aantal embedded
toepassingen zijn specifieke hardware oplossingen gewenst. De afbeelding van een
neuraal netwerk op platforms met begrensde representatie leidt tot een aantal nieuwe
problemen, waaraan in dit afstudeerwerk aandacht gegeven is.

Het ontwerptrajekt bestaat uit een drietal fasen, te weten architectuur, implementatie
en realisatie. In dit rapport wordt alleen aandacht gegeven aan de eerste twee van de
genoemde fasen. Dc architectuur geeft eenbeschrijving van het gedrag van het neurale
systeem, terwiji de implementatie de werkelijke systeemopzet beschrijft zoals die
voor de beoogde realisatie techniek gewenst is. In dit rapport wordt voor de implemen-
tatie de hardware beschrijvingstaal VHDL gebruikt. Deze VHDL beschnjving is si-
muleerbaar en synthetiseerbaar zodat de feitelijke functionaliteit getest en
gedimensioneerd kan worden.

Om het systeem optimaal te dimensioneren is een aantal aanpassingen noodzakelijk,
waarvan in de literatuur de precieze uitwerking nog met bekend is. Daarom zijn di-
verse experimenten doorgevoerd om een beter inzicht te verschaffen in de ontwerp
vnjheid. Dc prestaties van het hardware systeem zijn afhankelijk van het toepassings-
gebied van het neurale netwerk (b.v. functie approximatie en classificatie). Daarbij
wordt een grote rol toegedacht aan de representatie van de beslisfunctie (sigmoId). Uit
het onderzoek blijkt echter dat de invloed van de sigmoId representatie weliswaar
groot is, maar onafhankelijk van het toepassingsgebied. Deze komt eerder tot uiting
in de keuze van het werkgebied, waarbinnen de sigmoId van toepassing is.

Verder is aandacht geschonken aan diverse technieken ter beperking van de getalsre-
presentatie. Bij de hardware afbeelding zullen getallen opgeslagen moeten worden in
woorden met een beperkte breedte. Het blijkt dat een implementatie op basis van
"rounding" de beste resultaten geeft. Verder lijken afrondingen van de ingangssigna-
len slechts zeer beperkt van invloed te zijn op de prestatie van het neurale netwerk.
Op basis van deze resultaten wordt tenslotte een implementatie van een neuraal net-
werk volledig uitgewerkt en middels simulatie geverifleerd.

Ut



iv



Abbreviations and Symbols

Abbreviations

ANN Artificial Neural Network

MLP Multi Layer Perceptron

10 Input — Output

ROM Read Only Memory

RAM Random Access Memory

DoD Department of Defence

ElTabs Absolute error

Errems the mean squared error

Err5 the root mean squared error

VHDL VHSIC (Very High speed Intergrated Circuits) Hardware Decription
Language

Important Symbols

x.(n) the i—th input value of the n—th input—pattern.

the output value of neuron i in layer 1 in response to the n—th pattern

v (n) the internal activation value of neuron i in layer 1 in response to the

n—th pattern.

w (n) the synaptic weig1t from neuron ito neuronj inlayer! at the moment

that the n—th pattern is presented.

q the activation function associated with neuron i in layer 1.

o (n) the local gradient of neuron i inlayer! in response to the n—th pattern.

d,(n) the desired output of neuron i belonging to the n—th pattern.

e.(n) the error of the output neuron i beloning tothe n—th pattern.

the learning rate parameter.

V



Vt



Table Of Contents

Abstract

Sainenvatting

Abbreviations and Symbols V

Introduction 1

1.1 Goals 1

1.2 Historical notes 2

1.3 Content and Organization 5

Chapter 2 : The functional behavior ofan artificial neural network 7

2.1 Fundamental Concepts of Artificial Neural Networks 7

2.1.1 ANeuronModel 8

2.1.2 The connections 9

2.1.3 Learning rule 10

Chapter3:Thebascconceptofhardware(k3i 15

3.1 Design concept 15

3.2 Architectural Level 16

3.2.1 The Functional Behavior 17

3.2.2 The Conceptual Structure 19

3.3 Implementation 22

3.3.1 A Neural System 23

3.3.2 Interface Module 23

3.3.2.1 Input Behavior 24

3.3.2.2 Output Behavior 25

3.3.3 Memory Module 25

3.3.4 Processing Unit
3.4 Description Verification 27

3.4.1 10 interface 27

3.4.2 Memory 29

3.4.3 Processing Unit 30

3.5 Realization 31

3.6 Summary 31

vu



Chapter4:ToousedbeforeSimulationoftheNeuralSysteni. . 33

4.1 Simulations 33

4.1.1 Extraction Network Characteristica 34

4.1.2 A Simulation Environment 35

4.2 Diagnostic Checking 36

4.2.1 Goodness of fit 36

4.2.2 Performance 39

Chapter 5: The discrüninatoty function with an area ofeffectiveness 41

5.1 Activation function implementation 42

5.2 An Effective Operating Area 43

5.2.1 Experiments 44
5.2.1.1 Sine Function 45

5.2.1.1.1 Results 45

5.2.1.1.2 Analysis of the Results 47

5.2.1.2 Exclusive—OR 49

5.2.1.2.1 Results 49
5.2.1.2.2 Analysis of the Results 50

5.2.1.3 A Valve 52
5.2.1.3.1 Analysis of the Results 52

5.2.1.4 The Iris Classifier 53

5.2.1.4.1 Analysis of the Results 53

5.2.1.5 Summary 54

5.2.2 The Discussion 54

5.3 Reduction of Accuracy 56

5.3.1 Experimental results 56
5.3.1.1 Results Sinewave function 56

5.3.1.2 Results Iris classifier 57
5.3.2 Discussion 60

5.4 Conclusions and recommendations 62

Chapter 6 : An evaluation of the effects of the error generation and propagation. ... 63

6.1 Sources of Quantization Errors 63
6.1.1 Rounding techniques 64
6.1.2 Jamming techniques 65
6.1.3 Truncation techniques 66

6.2 The Influence of Rounding Techniques 66
6.2.1 The Experiments 66

6.2.1.1 Experimental results of the sine function 67
6.2.1.2 Experimental results of the his classifier 70

6.2.2 Discussion 73
6.3 Addition of Noise 74

6.3.1 The Experiments 74
6.3.1.1 Results by Addition of Noise at point IV 75
6.3.1.2 Results by Addition of Noise at point Ill 77

6.3.2 Discussion 78
6.4 Conclusions and Recommendations 80

vu'



Chapter7:Conclusionsandreconvnendations . 81

Ack.novIedgernent 83

References 85

Appendix A: The arithmetic principles of Logarithms 87

A.1 The idea of the logarithm 87

Appendix B : The Hardware Neural System Description 89

B.1 Neural System description 89

B.1.1 Interface module 90

B.1.1.1 The Interface Controller 92

B.1.2 Memory module 94

B.1.3 Processing unit 96

B.1.3.1 Repeated Adder 100

B.1.3.2 Digilog Multiplier 103

B.1.3.3 Sequence Controller 108

B.1.3.4 Processing Units Controller 110

B.1.3.5 Bias Array 112

B.1.3.6 Synaptic Weight Array 114

B. 1.3.7 Discriminatory Function 116

B.1.4 Main Controller 116

Appendix C : The Generation Toots and Simulation Environments 119

C. 1 Characteristic Extraction Tool 119

C.1.1 An Example 129

C.2 An Example of a Simulation Environment 131

C.3 Generation Tool Discriminatory Function 135

C.3.1 A generated Discriminatory function 139

Appendix D: The experimental result of the Valve and Iris problem 141

D.1 The experimental Results of the Valve problem 141

D.2 Iris classifier results 143



For several millennia, humans have tried for several centuries to understand natural
phenomena. Starting from a single "natural science" and later in the off—spring disci-

plines known as biology, physics and chemistry, one succeeded to construct mathe-
matical models of some phenomena. This research makes it possible to understand
what's happening around us. One interesting thing is, that only a century ago a model

has been proposed to understand the brain, i.e. the biological neuron. This model
makes it possible to formulate and simulate a small network of neurons. These simu-

lated neurons are known as artificial neurons. Men has discovered that neurons are
getting more powerful when they are connected to each other. The network structure

of neurons (or topology), is able to encapsulate knowledge by use of a learning rule.

When such a network is trained, the learned knowledge can be recalled on short notice.

These networks of artificial neurons are called artificial neural networks (ANNs).

The artificial neural networks as we know nowadays are systems that are deliberately

constructed to make use of some organizational principles resemblingthose of the hu-

man brain. They represent a promising new generation of information processing sys-
tems. ANNs have proven over time that they are good at tasks such as pattern
matching, vector quantization, and data clustering, while traditional computers are in-

efficient at these tasks. However, the traditional computers as known nowadays are
faster in algorithmic computational tasks and precise arithmetic operations. The rea-

son for this phenomenon lies within the architecture of these systems. Thus, there
must be a way to combine the enormous computational power of a computer and the
advantages of ANNs in hardware.

1.1 Goals

Different researchers have influenced the development of artificialneural networks.

Still, a lot of research is needed to obtain the ideal representation of ANNs. This report

discusses the experiments performed and the solutions found in developing such a re-

presentation. The primary goal has been to investigate the possibility to represent a

feedforward neural network in a given hardware architecture.

I

Introduction



This hardware device holding an ANN can be used in real—world applications.
These real—world applications demand several properties of a hardware imple-
mentation, such as: high speed, high accuracy, small area, real—time response,
embeddable within other systems, on—chip learnable, etc. Lots of research must be
done to create such a hardware device.

In the past, a first impulse has been given to construct a hardware architecture named
GREMLIN [1]. This architecture is a DSP—like (Digital Signal Processor) architec-
ture that aims at the integration of data pre —processing and network emulation. Back
propagation learning can be an option for adaptivity. This architecture can be used to
emulate feedforward multilayer Perceptron networks. My goal is to develop a VHDL
(Very high speed integrated circuit Hardware Description Language) description for
this architecture. Another part of my research is to take a look at the calculation accura-
cy and bit representations of the synaptic weights and channels with in the GREMUN
architecture.

First, some historical notes will be given. The reason of this is that Sir Winston Chur-
chill once said: "To know the history, is to know the future", this saying confirms that
it is necessary to describe some issues from the past. Alter that, some fundamental
concepts of ANNs are explained, to understand the conversion from theoretical to
practical use. The last section gives an overview of what to expect in the next chapters
of this report.

1.2 Historical notes

Many researchers have been inspired by the fact that humans, and animals have the
ability to adapt their knowledge. The source of this phenomenon lies within a complex
system, called the brain. The brain is an immensely complex network of neurons, syn-
apses, axons, dendrites, and so forth. To explain the working, and the secrets behind
it biologists, psychologists, and other researchers have tried to model the brain in a
mathematical way. This section gives a historical survey of the developments around
neural networks.

One of the first pioneers is the American psychologist William James who published
a theory on neural networks in 1890. In this period of time, researchers thought that
the brain has to be an unstructured randomly connected web of fibers that propagated
electrical currents in all directions. William James theories about the functionality of
neurons and learning itself, are described in his book "Principles of Psychology". He
assumes, that learning consisted of changing the current paths and of forming new
paths by using the following rule:

"When two elementary brain—piocesses have been active together or in immediate
succession, one of them, on reoccurring tends to propagate its excitement into the

other." (James 1890, p. 566)

From a biological view, the nerve action (consisting of a burst of action potentials trav-
eling only in one direction down a single celled neuron) was established between 1890
and 1910. This quickly led to the standard neuron model in which the dendrites of a
neuron sum all the facilitatory inputs from the synapses of other connecting neurons,
see figure 1-1. This sum of the neuron inputs is compared with a threshold located at
the beginning of the axon, then an action potential is produced. The larger some senso-

2



Figure 1-1;

The basic structure of
a biological neuron.

ry stimulus intensity the larger is the frequency of the action potentials at the end of
the axon.

Later, in 1943, when Warren McCulloch, a psychiatrist and neuroanatomist by train-
ing, and Walter Pitts, a young mathematician, realize that the natural consequence of
the standard neuron model's threshold in combination with binary action potentials
produces another type of logic (known as threshold logic). This work is usually con-
sidered as the beginning of neurocomputing. After a couple of years, in 1949, Donald
Hebb proposes a specific learning rule for the synapses of the neuron. He assumes that
the connectivity of the brain is continually changing as an organism learns other func-
tional tasks. His book "The Organization of Behavior" has been immensely read by
psychologists, but had little or no impact on the engineering comunity.

"Let us assume that the persistence of a reverberatory activity (or trace) tends to
indict lasting cellular changes that add to its stability. The assumption can be pre-
cisely stated as follows: When an axon of cell A is near enough to excite cell B and
repeatedly or persistently takes part in firing it, some growth process or metabolic

change takes place on one or both cells so that A's efficiency as one of the cells
firing B is increased" (Hebb 1949, p62)

This book has inspired even more researchers(Utteley, Caianiello,Ashby, and others)
to take a look at computational model for learning and adaptive systems. Till 1954,
the improvements of the theory on neural networks has rapidly increased. In this year
Marvin Minsky writes a "neural networks" Doctorate Thesis at Princeton University,
entitled "Theory of Neural—Analog Reinforcement Systems and Its Application to the
Brain—Model Problem.". Also in 1954, the first such Hebbian inspired network is
simulated by Farley and Clark on an early digital computer at M.I.T. Their network
consists of nodes representing neurons randomly connected with each other by unidi-
rectional lines having multiplication factors called weights. To make this simulation
work they have to modify Hebb's learning rule. With this rule the network is able to

3



successfully discriminate between two widely differing patterns as long as they are
presented alternately.

Many researchers get stuck on the idea that the neural connections in the brain are
mostly random. This means that the random neural networks are not having much suc-
cess yet. The next step forward is taken byFrankRosenblatt, a neuro—biologist at Cor-
nell University, in 1958. He is intrigued with the operation eye of a fly. Much of the
processing which tells a fly to flee is done in its eye. The original Perceptron, which
results from this research, attempts to answer the last two of three fundamental ques-
tions about the brain:

1. How is information about the physical world sense4, or detecte4 by the
biological system?

2. In what form is information store4 or remembered?

3. How does information contained in storage, or in memory, influence recog-
nition and behavior?

The simplicity and random connectivity of the original Perceptron and the later Per-
ceptrons make them a fascinating subject for mathematical analysis using probability.
The Perceptron in a single—layer architecture is found to be useful in classifying a con-
tinuous—valued set of inputs into two or more classes. This concept has not only been
established theoretically, but is also built in hardware and is still in use today. The
hardware implementation of the network was realized by using electric motors and
potentiometer. It has a 400 pixel image sensor and 512 programmable weights and was
successfully used for character recognition.

In the early sixties, Bernard Widrow and Marcian Hoff of Standford develope models
they called ADAUNE (ADAptive UNear Elements) and MADALINE(Multiple
ADAptive LINear Elements). The purpose of these models is the recognition of binary
patterns in order to predict the next bit from a stream of bits. The Madaline model has
been the first neural network to be applied to a real—world problem: an adaptive filter
which eliminates echoes on phone lines still in commercial use.

A turning point in the development of theory as well as in the practical use of neural
networks came in the year 1969. The work done by Marvin Minsky and Seymour Pa-
pert reports on the computational limits of Perceptrons with one layer of modifiable
connections. They use elegant mathematics to demonstrate that there are fundamental
limits on what one—layer Perceptrons can compute. But these limitations do not occur
in networks of Perceptrons that consist of multiple layers. They also speculate that the
study of mutilayered perceptrons will be "sterile" in the absence of an algorithm to
usefully adjust the connection of such architectures. Since the Perceptron has been the
most sophisticated neural network idea at that time, the book written by Minsky and
Paper: ailmost killed neural network research in the United States.

In the following years only a few scientists work(with a minimum of financial sup-
port) on neural networks, but they achieve remarkable results. A new stage in neural
network research begins in 1972 with the publication of two papers. One is by James
Anderson who was inspired by the William James —DonaldHebb model. The second
is written by Teuveo Kohonen from Helsinki in Finland. He was inspired by the idea
that memories may be holographic in nature. The result of Kohonen's research is a net-
work identical that proposed by Anderson, and v4 Malmsburg in Germany: an
associative memory based on neural nets with competitive neurons.

4



In 1982, Hopfield revives interest in neural networks in the United States, and intro-
duces a new kind of network topology. This network topology differs from the earlier
versions by using bi—directional lines between summation nodes instead of unidirec-
tion lines and emphasized individual cells instead of cell assemblies. Before these de-
velopments, Grossberg establishes the basis of a new class of neural networks known
as adaptive resonance theory (ART). In 1986 three independent groups ofresearchers
corn in focus, (1) Y Le Cun, (2) D. Parker, and (3) D. Rumelhart, G. Hinton, and R.
Williams.

These groups come up with essentially the same idea to be called the back propagation
network because of the way it distributes pattern recognition errors throughout the net-
work. The basic repeatable unit used in the back—propagation network (as described
by Rumelhart, Hilton, Williams) is recently known as the Multi Layer Perceptron
(MLP) topology. The book they have written "Parallel Distributed Processing: Explo-
rations in the Microstructures of Cognition" has been of major influence on the use
of back—propagation learning, which has emerged as the most popular learning algo-
rithm for the training of multilayer Perceptrons. From the eighties on, many research-
ers have been interested in the behavior of neural networks. The development are not
only towards a theoretical basis but also representations of neural networks within a
hardware environments get their attention. Today many network topologies and learn-
ing rules are available, each having it's own application area. The main interest of to-
days research in neural networks lies within (a) improvement of experimental
techniques, (b) searching for application areas, and (c) developing hardware for practi-
cal use. With this in mind the research on the area of neural networks is not done yet.

Nom this section uses the literature sourc [2), [il. [4), and [5).

1.3 Content and Organization

This last section of this chapter shows the organization and the contents of the follow-
ing chapters. Until now, the long and interesting history and the main objectives are
shown, but the real functional behavior of an artificial neural network has not been
shown yet. For the understanding of the artificial neural networks, and especially the
network known as feedforward multi layered Perceptron networks, will be outlined
in chapter 2. After showing the functionality of such neural networks, a basic concept
of a neural hardware system will be shown in the following chapter. The functionality
of the neural hardware system must behave in the same way as described earlier, there-
fore the functionality will the verified to assure that the theoretical behavior of an arti-
ficial neural network and the practical implementation are the same. But the hardware
description in the language VHDL must adapted the characteristics of a trained neural
network, which is performed by the software package InterAct. For the extraction of
the network parameters software tools are developed, so that the characteristics of a
trained neural network can be offered to the hardware system. These tools for extrac-
tion of the characteristics and the generation of parameters as, a discriminatory func-
tion, translation of the input vectors are mentioned in chapter 4. Another
phenomenons which is outlined in that chapter, is the way of comparing the systems
performances. From now on the hardware neural system can be exposed to experimen-
tal use. The first experiments will perform changes to the discriminatory function, so
that the systems behavior can be analyzed in order to select a proper setting for the
discriminatory function. These experiments are outlined in chapter 5. For an inves-
tigation of rounding effects exposed to the network characteristics will be mentioned

5



the the following chapter 6. This chapter also describes an experiment which is used
by real—time systems, the addition of random (or white noise) numbers to results can
speed—upthe performance of the neural hardware system. Finally, ourconclusions and
directions for further research on hardware implementations of artificial neural net-
works are presented in chapter 7.

6



Chapter 2
The functional behavior of an artificial neural network

The artificial neurons we use to build our neural networks are truly primitive in com-
parison to those found in the brain. It is also true, that those networks as we are present-
ly able to design are just as primitive, compared to the local circuits and the
interregional circuits in the brain. Nevertheless those networks we can design have the
ability to learn and therefore generalize; generalization refers to the neural network
producing reasonable output for inputs not encountered during training (learning).
This information—processingcapability makes it possible for neural networks to solve
complex (large—scale) problems that are currently intractable. In practice, however,
neural networks cannot provide the solution in isolation. Rather, they need to be inte-
grated into a consistent system engineering approach.

The primary interest in this chapter is confined to artificial neural networks from an
engineering perspective, in other words, the functional behavior of such networks, to
which we refer simple as neural networks.

2.1 Fundamental Concepts of Artificial Neural Networks

The source of inspiration for ANNs is biology. By adopting parts of the functional and
structural properties of the brain, it is hoped that ANNs will inherit some of their ex-
traordinary computational properties.

The power behind ANNs is the amount of highly interconnected processing elements
(nodes or units) that usually operate in parallel and are configured in regular architec-
tures. The collective behavior of an ANN demonstrates the ability to learn, recall and

generalize from training patterns or data.

Models of ANNs are specified by three basic entries: models of the neurons them-
selves, models of synaptic interconnections and structures, and the training or learning
rules for updating the connecting weights. These basics will be introduced in the fol-
lowing sub—sections.

7



2.1.1 A Neuron Model

The processing elements in an ANN are called artificial neurons, or simply neurons.
Figure 2-1 shows the model for a neuron. We may identify two basic elements of the
neuron model, as described here:

Synapses : The connections (or junctions) between neurons are made by
synapses. These connections with their weight values are responsible for
the information storage. The weighting coefficient of the synapse from the
j—th neuron to the i—th neuron is given by wq. The functionality of a
synapses is to multiply the weight of the connection and its input signal.

• Neurons : These are viewed as the processing elements of the network. As a
matter of fact it contains two functions, an adder and a discriminatory
function. The adder will sum all the input signals of the neuron, and
subsequently adds the neurons bias O. Finally this result will pass through
the discriminatory function.

Figure 2-1;
SYNAPSES

Yj irr NEURON

The mathematical
model of the I-th attifi- Yk —

_________

cial neuron.

Yp P4

The discriminatory function, denoted by q)O, defines the output of a neuron in terms
of the activity level at its input. This non—linear output function will limit the output
amplitude of a neuron. Typically, the amplitude range of the output signal is written
as the closed interval [0,1] or [—1,1]. There are several types of discriminatory func-
tions, see figure 2-2 for some examples. Also more complicated functions can be used.

In mathematical terms, we describe a neuron i by writing the following pair of equa-
tions:

y = p(v, + 0,) (2-1)

and (whereby Inj a set is of all the neurons that deliver inputs to the i—th neuron)

vi= (2-2)
vie'.,

where wq are the synaptic weights, q) is the discriminatory function, and 0 is the
bias. As mentioned, ANNs consist of many neurons. The way to connect these ele-
ments, several architectures have been developed, and these will be discussed in the
next section.

8



Figure 2-2; Hard limiter Threshold Sigmold

Sample discnminato-
ry(transfer) functions,
a Hard limiter, a
threshold, and a sig-
moid function.

2.1.2 The connections

At the moment there exist many different ANN models and their variations, and their
number is still rising. In this section we shall describe some network topologies, but
first how to connect those processing elements.

The neurons and synapses pass information to each other following a fixed commu-
nication scheme called the neural network topology. As said, an ANN consists of a
set of highly interconnected processing elements such that each neuron output is con-
nected, through (weighted) synapses, to other neurons or to it self; both delayed and
lag—free connections are allowed, see figure 2-3.

The first architectures have been the single layer feed—forward networks, where each
input connects to all processing units but no feedback connections are allowed. The
next step is taken by Rumeihart and others, to combine single feed—forward networks
into one large feedforward network, like the multi—layer Perceptron (MLP) topology.
This network topology has some nice properties, notably the range of the input values
and the discriminatory function of the neuron. The input values can be either binary
or multi—valued (continuous or discrete). The discriminatory function can vary from
the simplest heaviside one to very complex mathematical operations with time depen-
dencies.

These properties make the MLP network to one of the most popular and successful
neural network architectures. It is suited to a wide range of applications such as pattern
discrimination and classification, pattern recognition, interpolation, prediction and
forecasting, and process modelling. It is not only the geometry that makes the MLP
popular but also its learning algorithm. The next section will tell us how the MLP ar-
chitecture adapts its knowledge.

9

p(a)?

a —

.1
p

—1

a-'

F I If.�O
ifa<O

a

—1

a if>a>y
{

1

—1 ifft 2 —I(a)
—

Wher.by y is w slops parsme(&



Five basis network
connection geome-
tries, (a) Single—layer
feedforward network,
(b) Multilayer feedfor-
ward network. (C)
Single node with
feedback to is self. (d)
Single-layer recurrent
network. (e) Multilayer
recurrent network.

(c)

2.1.3 LearnIng rule

The final part in our description of an ANN is the learning rule. In this section the main
question is "what is the mechanism behind adapting knowledge by an ANN?". Before
the answer is given something else must be told. There are two ways of learning by
ANNs: first parameter learning which is concerned with updating the connection
weights in an ANN, and second structure learning which focuses on the change in the

network structure [6], [7], and [81. Over the years many of those learning rules have
been developed and they can be classified into three categories: (1) supervised learn-
ing, (2) reinforcement learning, and (3) unsupervised learning. The category that will
be discussed here is parameter learning rules in the category supervised learning.

In supervised learning, the corresponding desired response d of the system is given
at each instant of time when input is applied to an ANN. The network is thus told pre-
cisely what it should be emitted as output. More clearly, in the supervised learning
mode, an ANN is supplied with a sequence, (x(1), d(1)), (x(2), d(2)), ... ,(XQ'),d(")), f
desired input—output vector pairs.

When each input () is presented to the ANN, the corresponding desired output d()
is also supplied. As shown in figure 2-4, the difference between the actual output o(')
and the desired output d(") is measured in the error signal generator which then pro-
duces error signals for the ANN to correct its weights in such a way that the actual
output will move closer to the desired output.

Figure 2-4;

The supe,vised learn-
ing schema.

10

x (input)

I

ANN

______ _________

o (actual Output)

_______I

Error Signal I d (desired Output)
error signals Generator

Figure 2-3;

LI

(a)

'I

'I,

(d)

Inps Hid& O,lii IqCn Iayet

•
-

.

(b) (e)



The way to correct the synaptic weights is done by a learning rule. The most popular
one is the back—propagation learning algorithm. Backpropagation is a systematic
method for training artificial multi—layerfeed—forwardneural networks (Figure 2-3b).
In this method the discriminatory function of the neuron must be fully differentiable,
a hard limiter is no option here. The training process consists of four stages:

1. Initialize all synaptic weights, and biases to small random numbers.

2. Select at random a pair out of the trainings set.

3. Evaluate the neural network.

4. Determine the error, and pass it back to previous layers.

This process is repeated (only steps 2 to 4) until for each training pair the error is ac-
ceptably low. Before of some stages in the learning process can be explained the math-
ematical notation we use must be clear; therefore they are mentioned in a special list
in the beginning of this thesis.

The initialization of the biases O and the synaptic weights wy will be performed by
walking through the network structure. The second stage is to pick at random a input
pattern xj(n), to evaluate the network.

In this part the biases of the network are represented by the weights w which are

connected to a fixed input equal to 1. In the third step the network is evaluated from
the input layer to the output layer (the forward pass). This means that for each hidden
and output neuron the internal activation v and the output value Yj is calculated
according toO.

= >w(n) . y(l — 1)()
(2-3)

with p the number of neurons in the previous layer (i—i) and

y (n) = q (v (n)) with I input layer (2-4)

for a neuron in the input layer.

(0)
y1 (n) = xXn) with I = input layer (2-5)

For the discriminatory function q(.) of the hidden and output neurons we choose the
sigmoid function. A mathematical function is as follows:

q, (v (n)) = 1 (2-6)

1+exp(—v1 (n))

11



This siginoidal nonlinearity is commonly used in multi—layer feedforward neural net-
works. As said an discriminatory functions should be differentiable at all times, the
derivative of the sigmoid function of formula (2-6) looks like this:

(I) (I)

(1) Q)
dQ1 exp(— v (n))

q' (v (n))
= (1) = (1)

(2-7)
dv (n) [1 + exp(— v (n))]2

The output of neuron j is found as: By substituting (2-6) into (2-4),

(1)
exp(—v1 (n))

1 —y1 (n)
= (0

(2-8)
l+exp(—v (n))

Formula (2-8) can be simplify the derivative of the discriminatory function to:

q,1(O (v0 (a)) = y (n)[ 1 — y (n)J (2-9)

This discriminatory function and its derivative are used in the summary of the error
backpropagation algorithm in sidebar 2-2.

Summary Recall phase

Sulebar 2-1, for! — first layer to last layer do

forj = first neuron In layer Ito last neuron in layer! do

The algorithm of the If! == input layer then

forward pass in a (I)
neural network, 19]. yj (n) = x1(n)

else /*Iis not Input layer*/

(a) = 0

for! = first neuron feeding j to last neuron feedIngJ do

OC

yj(n)= (
1 +exp(—vj (n))

fi

od
od Note: that first neuron feedingf represents the basofliLrónI

12



For input neurons the identity function will serve as discriminatory function (as can

be seen in equation (2-5)). Hence these neurons are nothing more than the interface
between the network and the outside world.

In the fourth step the error of the neurons are computed starting the the output layer
and then propagating these errors back through the network (the backward pass). The

errors of the output neurons are calculated by subtracting the calculated output from

the desired output:

eXn) = d1(n) — y (n) with I = output layer (2-10)

The interval error signals ã for the output layer are calculated by multiplying eAn)

with the derivative of the discriminatory function:

(n) = (p' (v (n)) e,0 (n) with I = output layer (2-11)

These interval errors will be propagated back through the network. The error signals

of the neurons in other layers are calculated by:

(1) (1) (1) (1 + 1) (1 + 1)
6 (n) = q,'1 (v1 (n)) > (n) w, (n) with I output layer

(2-12)

With these error signals the adjustments to the synaptic weights can be computed ac-

cording to the following equation (the generalized delta rule):

w7(n + 1) = w(n) + a[w7(n) — w(n — 1)J + z8(n) —

(2-13)

The parametenl is the rate of learning. The smaller we make the learning rate parame-

ter, the smaller will the changes to the synaptic weights in the network be from one
iteration to the next and the smoother will be the trajectory in weight space. If, on the

other hand, we make the learning—rate i too large so as to speed up the rate of learning,

the resulting large changes in the synaptic weights assume such a form that the net-

work may become unstable. Therefore Rumeihart et al. have introduced a momentum

term a, in the back—propagation algorithm represents a minor modification to the

weight update, and yet it can have highly beneficial effects on learning behavior of
the algorithm. The momentum term may also have thebenefit of preventing the learn-

ing processs from terminating in a shallow local minimum on the error surface.

13



Sidebar 2-2,

A summary of the er-
ror back propagation
algorithm in pseudo
code, [9].

summary oacwara pass

for! — first layerto second !ast layer do

• forl = first neuron In layer Ito last neuron In layer! do

od •.._, .. .

od • :
l=output layer

tori =first neuron in layerl to last neuron Inlayer! do

- bp (n) = d,(n) — y (n)

o'•• •••• -
for I = output layer to second layer do

tori = first neuron inlayer! to last neuron inlayer! do

Ô(fl) _y,(O(fl)
[1 —y(n)J tce(n)

forj = first neuron feeding Ito last neuron feeding! do

(1—1) (f—i) (I) (I)
bpej (n) = bpej (n) + o, (n) wq (n)

(1) (I) (0 (0
Wj (n+1)=w,1 (n)+a.[wJ (n)_wU (n—1ll+

od

od

od

(I) (I—i)1(n)•yj (fl);

The main idea of the error back propagation algorithm is that for each neuron (if pos-
sible) the error of their feeding neurons are (partially) updated. Furthermore the syn-
apses between this neuron and its feeding neurons are updates too. So

'4

• (I)
• for each neuron z its contnbution to the error signals 5 of all feeding

neurons j is calculated,

• for each neuron i the weights WIJ on the feeding synapses are updated



The basic concept of hardware design

The design of a digital circuit or software application is strongly subject to develop-
ments over years. In the early days often unstructured design methods have been used
to fit the problem. These design methods lead frequently to an enlargement of the com-
plexity and a badly arranged result, that can lead to mistakes. Another phenomenon
of minor importance is the rapid and continuous offer of new techniques and technolo-
gies which make the complexity more and more worse to handle. From this point of
view, designers have developed several methodologies to conquer complexity. These
methodologies or design trajectories constrain the designer to follow a strict path from
the begin tile the end of the project, without coming to a death end in slumbering de-
tails. One of the first articles that use such a design style, is on the development of the
IBM—360 architecture. After this, many have followed the principle of leveled or
stepped design, for large and small projects.

But in the last decades of the century, software—engineers face the same problem, the
applications are growing and growing and the complexity strikes again. This problem
must be solved by the introduction of software architecture [10], and [11].

This chapter reports on design steps, that will lead to a workable representation of arti-
ficial feedforward neural networks. Also the constraints and decisions will be men-
tioned.

3.1 Design concept

It is a challenge to achieve a solution of a project without having to much trouble,
therefore a design strategy had to be chosen. To inform which kind of method will be
used, this section will tell its origin.

At first, in a classic 1964 paperAmdahl, Blaauw, and Brooks propose dividing the de-
sign description of a system into three levels: architecture, implementation, and real-
ization [12]. Such a development, to separate the whole designing space into three
stages was a step forward to handle the complexity increase. Each stage gets besides
a name also a description. Architecture refers to the attributes of the system, that is,

15

Chapter 3



the conceptual structure and functional behavior. Implementation is defined as the ac-
tual hardware organization, including data paths, logic units, and control units. While
the realization level is the actual physical structure, including logic technologies,
board layouts, interconnections, and power supplies.

Architecture

Figure 3-1, Pre—engineerlng

Formal description
A flow chart of the de-
sign concept. Where

______________________

the relations is shown ImrIementatlon
between the three 7
stages of design; Ar- Engineering
chitecture, Imple

_____________________

mentation, and Real.
zation Functional test

Realization

Figure 3-1 shows us the idea of the design concept. On architecture consisting of a
functional behavior and a conceptual structure will be transformed in the pre—enginee-
ing phase to a formal model description. This model can be tested, so that the specifi-
cation can be verified. From this stage on, the model can go from implementation to
realization through an engineering phase. That holds the actual design of the chip, in
a certain technology and platform. This design will be tested in it own environment
to show that it meets the required specifications.

In the following sections of this chapter the design stages as architecture, implementa-
tion and realization are described. The simulation of the result of the implementation
phase shall be tested and some experiments will follow in later chapters. These experi-
ments shall dimension the neural system, so that it satisfies the required performance.

3.2 Architectural Level

The architectural level of a design consists of two parts, namely the conceptual struc-
ture and the functional behavior. How to manage the structure of a feedforward neural
network into a hardware environment is the main part that will be outlined in the con-
ceptual structure. It also describes how the system is divided into several subsystems,
these systems or building blocks have their own functionality and conceptual struc-
ture. On the other hand the functional behavior describes the functionality of several
building blocks, and the behavior of the system including the algorithms of specific
blocks. These twop must be clearly described before a next step of development
is started, to avoid errors in the specification, to couse failures within the designed sys-
tem.

Another reason to divide the architectural level of design into two parts is that it gives
us an advantage in describing it in a hardware description language, as VHDL. These

16



languages for describing hardware make a difference between the functional behavior
and it conceptual structure. The representation of the conceptual structure is easy to
convert into a description in a hardware language. The same story applies to the behav-
ior of the system. Now the advantages are know, lets describe the functional behavior
and the conceptual structure of the neural system.

3.2.1 The Functional Behavior

This section will explain the functionality and its architecture, but before that some
things must be mentioned. As seen in chapter three, the functionality of a neural net-
work depends on a variety of attributes, such as the type of activation function used
by a neuron, the way of connecting neurons, and their types (lag—free or not), etc. The
spectrum of usable neural network is so wide, that it is impossible to create a hardware
design generic enough to support all those types. Therefore our architecture has a
number of constraints.

The supported network topology in the design is a feedforward structure of neurons.
These feedforward neural network is an assembly of neurons, that are connected
through synapses in such a way that only a single direction of the dataflow is sup-
ported, i.e. all signals stream from the inputs to the outputs. A second restriction is
based on the structuring of the network into so—called levels: all signals pass all levels
in consecutive order, or, in other words, all synapses that emanate from level i connect
to level i+1. A consequence is that by moving from the input level through the inter-
mediate (hidden) levels to the output levels all calculations are guaranteed to be based
on fresh synapse values. Another restriction is, that the synaptic weights and the biases
of the neurons are no longer variable once a representation of a neural network on hard-
ware is accomplished. This means, the training of the network is finished and it meets
conform the requirements, in a simulation environment, such as InterAct.

The computational meaning of respectively synapse and neuron is illustrated in figure
3-2 of a layered network. The network shown has a succession of layers, secondly a
single layer is detailed to be a computational matrix. Each synapse takes a value from
the output of a designated neuron in the previous layer and multiplies this value with
the dedicated synapse weight. The result is passed onto the input of a designated neu-
ron in the present layer. There it will be summed with the multiplication results from
all other synapses that feed this specific neuron. Now, each neuron will add the
summed result of the feeding synapses to the internal bias and pass the result to anon—
linear decision function to compute the neurons output value. The most salieble non-
linear decision function within a feedforward neural network is the siginoid function.
To enlarge the applicability of the design other functions can be chosen. The algorithm
for an artificial feedforward neural network in the forward pass can be found in sidebar
2-1.

The following analysis gives an overview on the boundaries of the signals within a
multi—layer feedforward neural network. The understanding of the signals flowing
through the network will be an indication of the accuracy, but gives also a better view
on the network it self. For a proper working of a neural network the input and target
patterns have to be scaled. The reason for this lies within the used transfer function
as the proper work area of a sigmoid function lies around zero, its maximum deriva-
tion.

17



A leveled network

synapsel synapse

I
Neuron

I I
Neuron

tokyeri+1

with N the number of neurons in the input layer. From equation (2-5), we learn the
transfer function of an input neuron. Combining it with the known boundaries of the
input vectors, follows,

E [0,11; Vi E [0,N] (3-2)

For the determination of the range of the internal activation, equation (2-3) will be
used. Assuming that the synaptic weigbts of a network are between —W and W,,.,
the following can be concluded,

v0(n)E[—MW,,,MW,,];ViE[O,M];l>0 (3-3)

with M the number of inputs of the i—th neuron. The internal activation level can take
extreme values. To bear up against this phenomenon the determination of the bounda-
ries of the activation function could give an answer. This can be done by taking the
limit of the activation function (used function the well know sigmoid).

Figure 3-2,

On the left, a MLP
network is shown with
four inputs, and two
outputs. The nght
side shows a detailed
layer.

outputs from layer i—I

Lets assume that all the input—vectors in the pattern database are scaled, such that

x,(n) E [0,1];Vi E [0,NJ (3-1)

1bin
(a)vJ-• 1+exp(—v(n))

=1 (3-4)

18



Ii = (35)
1 + exp(— (n))

We see that the activation function with a range of (— , oo) will map on the range
[0, 1]. This means that the system output as well as the inputs are bounded in the same
range.

Asystem option which could be handy to enlarge the applicability of a hardware repre-
sentation will be outlined. The system must be developed in such a manner that an
indefinite number of identical systems can be connected in a sequential or parallel or-
der. This gives the design such an advantage, that even larger neural networks can be
constructed by using a number of processing units. Another possibility that can lead
to a speed improvement is a parallel composition and decomposition of the network
structure. The decomposition of the network structure in different compontents makes
it possible to create gated expert systems, where each expert is individually processed
by a separate system. But also classifiers where each output determined by another
chip.

3.2.2 The Conceptual Structure

The application area of neural networks in a hardware setting is often embedded as
a controlling system. The architecture of such embedded systems resemble each other.
These controllers can be classified into two groups; (1) machines that use an instruc-
tion set for programming (instructionset machines), (2) and application specific ma-
chine. Application specific machines consist of state—machines where the
calculations and actions are defined before producing the system; often only one task
can be performed. Instruction set machines are larger in size, and are not as easy to
develop as application specific machines. The calculation performance of predefined
machines with respect to the instruction set machine is larger, if the design is of good
quality.

Global Hardware Structure

Figure 3-3;

The
A global system struc- World
ture of the neural Outside
hardware processor.

The conceptual structure ofmany controllers looks similar from high abstraction lev-
el. These controllers contains mostly three major parts, see figure 3-3. The first one

19



is the interface which supports the system with data, or produces information to its
surrounding environment. Second is a memory that will store/release data of other
parts of the system. The third element is the heart of the controller strictly speaking
the processing unit, which transforms the data into another representation which is
useful to the world around the system. The system modules do not act on their own,
but the interaction between the different parts will be organized by the main controller.
This controller is mainly responsible for all the actions taken by the other components.
The system that will be developed carries also the same structure as mentioned. Mov-
ing from this high level of abstraction to a lower one enables use to see the structure
of each component.

The interface module takes care of the communication between the environment and
the internal organization of the system, often known as Input/Output module (see fig-
ure 3-4). The control module is divided into two separate processes, (1) the input pro-
cess and (2) the output process. The input process reads the offered inputs from the
surrounding actuators and stores them in memory on predefined positions. In contrast
during to the output process a memory location will be read and its constent be set on
the output pins, such that the environment of the system can act properly. The logic
between the I/O port and the data bus of the internal system acts as a galvanical separa-
tion of the input and output data. The access from or to the environment can only hap-
pen by use of this interface, so a strict communication protocol is at hand. This
protocol (a sort of hand—shaking) is necessary to communicate with the internal con-
troller that handles the input or output behavior of the interface module.

The Interface Module

Figure 3-4; U Data Bus

Surrounding
Switching L.ogic

A detailed scheme of Systems
the interface module
is presented. The
module is responsible
for the I/O behavior.

______$ ______

Input output

______

Address Bus I

Prcccss 1o Control Linei

I/O controller

Memory modules have the advantage of storing data, that they can release in another
phase of the process. Two different types of memory are known: the non—volatile and
volatile memories. The non—volatile memories keep their state (no memory loses),
even after a power—down situation, in contrast to the volatile memories. The weights
and biases of a neural network are constant during the recall process. Therefore they
can be memorized in a non—volatilememory without updating them, the memory used
is a ROM or Read Only Memory. On the other hand the data that changes over time,
such as inputs or the outcomes of calculations, are variable. A perfect place to store
this type of data is within a RAM or Random Access Memory. Figure 3-5 shows the

20



Figure 3-5,

The figure shows the
internal structure if the
memory module. It
contains a ROM, a
RAM, and a controller
unit to preform it task.

internal structure of the memory module. The two types of memory and the controller
must take care to store data, and to release the asked data on the data bus. The input
signals of the module are a data bus, an address bus, and control lines.

The access toward the memories must be controlled in such a way that no writing or
reading can happen at the same time. That means that each action which contains an
access to a memory must be an atomic one. The memory controller is informed by the
main system, by use of controlling lines, what action must be taken. If it is a read action

the address on the address bus will tell the controller which memory to activate. By

a data write signal the only memory to access is RAM, and the location of the memory
cell that will store the data is encapsulated in the address on thebus. The data that must

be stored or is released will always be present on the data bus.

Memory Module

ROM RAM

Y:A__
Controlling unit

AL____

The processing unit of the system is where the calculation of the neural network will
take place. The formulas for the behavior of a neural network, can be concluded from
the following. The behavior formula of a synapse corresponds with a multiplication
of the synaptic weight and its input. The neuron itself consists of a summation of the

neurons inputs, and a activation function which will be used to determine the output
of a neuron. The activation function of each neuron in a multi—layer Perceptron net-

work is the same, and therefore constant. Thus the processing unit of the neural system

has three components (1) a multiplier, (2) an adder, and (3) a controller, see figure 3-6.

The result of this component is used by the discriminatory function which is repre-
sented in the ROM module. Now it can be seen that the structure of a neuron is fully

described in the architectural phase.

The multiplying component that will be constructed is a Digil..og multiplier. This type

of multiplier uses the theory of logarithmic calculation, as developed by John Napier

in the early years of the seventeenth century, see appendix A. His theory is the base

concept of the digital logarithmic multiplier that will beused here within the process-

ing unit of the system. The principles of the DigiLog multiplier can be found in [13],

[14] and for detailed design [15].

The description above gives enough information to start the next stage of the design

trajectory, the implementation phase.

21

Address Bus /

Controlling lines

Iv
Data Bus



Processing Unit

Figure 3-6;

The processing unit of
the neural system
consists of three mod-
ules, an adder, a mul-
tiplier and a controller.

3.3 ImplementatIon

The neural system will get its shape and functionality in this implementation phase.
For the creation of the system a hardware description language will be used. This de-
scription language called VHDL supports not only the mechanism to construct the
system but has also the ability to simulate its behavior, see [16] and [17]. The origin
of VHDL is a description language for digital systems, used by the DoD of the USA,
but has grown to a world—wide accepted simulation language for digital systems.

A VHDL description consists of two different parts, (1) an entity declaration, and (2)
an architecture body. The entity declaration describes the input and outputs of a design
entity. It can also describe parameterized values, by naming them in the generic list.
The I/O list could be the I/O of an entity in a larger, hierarchical design, or the entity
is a device—level description of the chip it self. The second part of a VHDL description
is the architectural body. Every architectural body is associated with an entity declara-
tion. An architecture describes the contents of an entity; that is, it describes an entity's
function. VHDL allows us to write our designs using various styles of architectures.
The styles are behavioral, dataflow, and structural, or any combination. These styles
allow us to describe a design at different levels of abstraction, from algorithms to gate—
level primitives.

An example of a VHDL description from a NOR—gate can be found in sidebar 3-1.
The entity of the NOR—gate has three ports namely, two inputs (named IN1 and 1N2),
and one output (named ouri). In the example the static information tells us that the
component has a gate delay of iOns. The architecture tells us that the description that
follows is the behavior of the NOR—gate. The "process" description contains sequen-
tial statements just like an imperatively program language, as C, Pascal, and Cobol.
This description shows that the output—signal ouri is the logical NOR operation be-
tween IN! and 1N2. After a change of the output—value oui the system will wait iOns

22



before putting it on the output—channel. The VHDL—code for a NOR—gate can be
tested by using a VHDL—simulator like Warp, V—system, or VeriLog. These simula-
tors show timing diagrams, and after mapping on the chip the propagation delay can
be viewed and examined. The testing phase of the VHDL—code is very important, be-
cause if each chip doesn't perform its objectives, lots of money is wasted.

Example of VHDL-code

Sidebar 3-1;

A VHDL example of a
NOR—gate. The two
parts in the descrip-
tion of the NOR—gate
can be easily recog-
nized

3.3.1 A Neural System

The implementation of the neural system is divided into several part, to describe each
function of its architecture. Combining all these modules together gives the neural
system its functionality. Our goal is to design a neural system that can be used in exper-
iments. These experiments require that the binary word length is scalable in size. This
means that all the control lines, data—busses, and address—busses are variable in size.
In a language as VHDL this can be solved using the generic type, that supports a static
variable during compilation of the system. As known from the conceptural structure
the system exists of modules, each with its own functionality and responsiblities. In
the following sections each module gets their attention. For the connoisseurs among
us, the appendix B holds the total VHDL—code of the neural system.

3.3.2 Interface Module

The interface module is cut in two pieces for its I/O behavior. The first one is con-
cerned with how to get the data from an input port to memory. The second reads data
from memory and puts it on the output port. Those two processes do not use one and
the same output port, because this is handy in simulating the total system. For a pos-
sible realization of the system the use of one I/O port is advisable so that a minimum
of output pins are necessary. But in some cases a separation of input and output ports
is granted if the embedded neural system has two separate data—busses available.

The interface module has on the environment side a variety of signal pins. The I/O port
receives data from the setting of the system. A pin called start can activate the input
process, so that the data available on the data I/O port will be accepted by the system

23

nor_gate

in1—out1
entity nor_gate Is

generic (delay : dine :— iOns);
port (ml, 1n2 : in bit;

outi :outbit)
end nor_gate;

architecture behavior of nor_gate is
begin

nor_gate: process
begin

outi c= ml nor in2 after delay
wait on in!, in2;

end process;
end bchavior



and will be memorized. For the communication between the system and its environ-
ment, signal pins are added to feed the environment information that is needed to
know what is happening inside the neural system.

3.3.2.1 Input Behavior

For a well—defined cooperation between the neural system and its setting, timing is
the most important thing to manage. The development of a system, that takes input
signals from the environment is very important. The setting of the neural system must
be aware of what is happening in the system itself. For this reason signals are added
to the system to tell its environment what is happening. These signals will tell whetter
data is accepted or not.

In the following figure 3-7 a timing diagram is shown, wherein the neural system gets
two inputs that will be accepted. The signal INPur_RDYis a signal that shows that the
input process is still active (only when high '1'). The i'..4rf WRITE signal tells us that
at the moment that they are high ('1') the data from the data bus will be copied into
memory. The location where the data will be written is shown by the address bus.
Those memory locations are predefined by the system so the environment of the sys-
tem does not know the exact memory location of the data.

liming—diagram of the input process

Figure 3-7;
ak _, , , , , , , .. .. ,
Start

Input Rdy

Read/Write

_____________

The timing of the input
process, if two inputs
are needed by the
system. These inputs
will be stored in
memory for further
processing. The sig-
nals who are colored
are not seen by the
systems environment.

Fiti I Input2 I

I Address 1 Address 2 1

For the creation of the timing specification as given above, a state machine is devel-
oped. This state machine has three things to do: (1) wait for the input data, (2) deter-
mine the exact memory location for the input data, and (3) pass the input data to the
data bus so the input data can reach the memory. The machine will get the command
to load input data from the overall controller by means of a signal wxio. But also
the setting of the system talks to the I/O controller. The controller can not start without
a S1ART signal turning high from the environment. The first state of the machine is wait-
ing for the permission to start from the internal main machine and from the environ-
ment. In the second phase, the controller will set the memory location on the address
bus. The next step is to pass the input data through from the I/O port to the data bus.

24

Data Bus

Address Bus



The final state of the machine is to wait for the next time the system and its setting
will pass/ask for data. This entire story is shown in a finite state machine in figure3-8.

Reset (a—synchronous)

F State Input Rdy Read/Wnte Readyigure
Idle

\counter:=O

WrAddress 1 0 0 V)
A diagram of the WrData 1 1 0 start A loadGO / 't.. -. Start

state-machine of the LdRdy 0 0 1
data input process. It
contains four states in unter 1=

a sequential order

________

(Idle— WrAddress —
WrAddress LdRdy

WrData — LdRdy). (
counter + I

3.3.2.2 Output Behavior

The machine of the output—process is almost the same as the input—process. That

means also that the timing of this process ifnearly the same. The difference is that the
output process reads data from the memory and puts it on the I/O port. This process
will start, when the all calculations are perfromed, only then the start signwill be given

by the main controller. The memory location that will be accessed is the highest filled

one. For example, if the system contains a (2, 4, 2) neural network, that means two
input, four hidden neurons and two output neurons. The memory locations of the out-

put neurons are six and seven, this can be calculated on forehand, by summing the
number of input neurons to the number of hidden neurons. This will give us the begin-

ning of the locations of the output neurons of the network. A closer look on the
memory structure, and the way data is organized, can be found in the next section.

3.3.3 Memory Module

This module is responsible for data. If data is stored, the same data can be recalled
without lose of information. Memory is no more than a pile of information (for exam-

ple a pile of bills). On a time dependent moment information must be recalled, in our
example some bills are paid and removed from the pile of bills. It is possible that the

wrong bill has been removed from the pile, and there is loss of information. This can
happen in the electronic memories that we will use. The stored information must be
carefully handled, so that there is no loss of information. There are two ways to access
a memory: (1) data can be stored, and (2) the stored data can be recalled. The first
memory that will be discussed here is the RAM (Random Access Memory), after that,
the storage of constants in a ROM (Read Only Memory) will be outlined.

25



The memory (RAM) is used to store variable information, that is produced during the
calculation of the network. The design of the system holds a trained multi layered Per-
ceptron neural network, thus much information does not change over time. The only
variable data that will be stored are the determined results of each neuron. The data
is stored in such an order, that the calculation process can find the output or input data
in a second. The memory map of the memory module of a (2, 4, 2) MLP network, is
shown in figure 3-9. The input process delivers the input data from the I/O port directly
into the first available memory cells, so the calculation process knows where to find
the data. The memory developed is fully scalable in number of cells, or the width of
the data, that must be stored.

Memory map of a (2,4,2) MLP network

Figure 3-9; $FFFF

The memory map of Output #2

the system is shown Output #1

of a (2, 4, 2) multi lay- Hidden #4
er perceptron neural Hidden #3
network. The memory Hidden #2
locations starts with Hidden #1
address 0 to maxi- A (2, 4, 2) MLP network Input #2
mum number of loca- Input #1 $0000
bons.

Memory

Another type of memory stores the data that has a constant character, namely the syn-
aptic weights, the neuron biases, and the used activation function. This data is avail-
able in some sort of ROM. All these constants are memorized in a weight in a bias or
in a discriminortoy function table. A reason for doing this in such a way, are the nice
properties of such look—up tables. Those tables can be compressed and/or optimized
by use of an synthesis tool. The amount of space required by a memory is much larger
than for a look—up table of the same size. l'his results from the structure of memories
that use lots of flip—flops, while a look—up table can be expressed in Boolean logic.
Another advantage of look—up tables is that the speed for accessing data is much high-
er than for a memory call. Two look—up tables have been equipped with a part of logic
so that with one signal the next value can be accessed. So it holds a calculation se-
quence within the look—up table.

3.3.4 Processing Unit

The unit schematics shown in figure 3-6 consists of three parts; (1) a controller, (2)
a multiplier, and (3) an adder. These parts together are able to fill the functionality of
a neural network. The analysis of the boundaries of the values that cross the parts that
perform the calculations, shows that only the multiplier and the neuron calculation re-
sults can be negative. The DigiLog multiplier which performs the product of the syn-
aptic weights and the output of a previous neuron, can result in a negative number.

26



Only the weights can be negative, so the representation of that number will be in
signed magnitude. These types of number only can be multiplied. The result of the
multiplier is an signed magnitude number. The summation that will follow, can only
perform its actions on two's complement numbers, therefore a translation must be
realized. The output sum of the adder gives us the internal activation of a neuron.This
internal activation level is used to find the external activation level by use of the sig-
moid decision function. This discriminatory function has an input with a higher reso-
lution than the output (or external activation). The implementation of the siginoid
function is a little tricky. As we know the sigmoid function is symmetric around zero.
So a look—up table for only one halve of the function will do. The external activation
of the neuron will be stored in the RAM memory on its own location (this number is

positive).

For the multiplication of two binary numbers the product will be twice as large, so that

the inputs of the adder has a word width which is also as large as the product from the
multiplier. From the summation of all the numbers it is practically possible that the

sum of several products are even larger than twice the word width. For this reason the
adder contains a register that has a wordwidth large enough to hold the sum. Later ex-
periments will show if this is really necessary for a good end result of the network.

Another problem to overcome is the calculation sequence, therefore a state—machine

is developed which determines this sequence. This machine is a 1—to—i mapping of

the sidebar 2-1 given in chapter 2. It determines whichweight from the look—up table

must be multiplied with which synaptic input for the RAM memory. The result of this
machine will tell the environment on which location the input is stored in the RAM

memory. For a proper working of the processing unit a second controller is developed.
l'his machine takes care of all the interaction between the memory, multiplier, adder,
and the calculation sequence machine. Now the total system is implemented, the

source VHDL—code is as shown, in appendix B.

3.4 Description Verification

A time—consuming but crucial part of the design process is design verification; the

ability to simulate a VHDL model can greatly increase the efficiency. This allows the
functional verification of a design before synthesis and place & route. In our case, the

functionality is an artificial feed—forward neural network, as in chapter 2. The descrip-

tion produced in VHDL must have the same functionality so that we can speak of an

neural hardware model.

l'his section verifies the functionality of the main parts of the neural system. These
three main parts are (1) the 10—interface, (2) the RAM module, and (3) the processing
unit. The verification of each part is performed by a VHDL simulator, called V—Sys-

tem. This simulator can handle a description without running synthesis, place & route

tools. This means: there is no technology mapping necessery before the description
can be simulated. The verification of the three parts will be performed in the order:
10—interface, RAM module, processing unit.

3.4.1 10 interface

The functionality of the 10—interface, which comprises the communication between

the internals of and the environment around the neural system, will be simulated to

27



Figure 3-10;

The input behavior of
the 10 interface mod-
ule. Two seperate in-
put signals are pres-
ent and processed.

see of it corresponds to the specification earlier in this chapter. The simulation of the
10—interface is split in two separate parts, because it describes two kinds of function.
These two functions are an input and an output function.

The input behavior of the 10—interface is verified by simulation. Two inputs are of-
fered to the interface. The signal from the environment as well as the signals from the
main controller are set by hand. This is done to eliminate a wrong behavior caused by
other parts of the neural hardware system. Figure 3-10 shows behavior of the interface
by using a time table, which illustrates the events and the reactions of the interface
module. The signals set by the environment of the system are: DATA_PORTIN, NOTRE-

sET, cuç and sTzr. The clock signal (cLK) is the signal on which the system synchro-
nizes with its environment. The state machine of the 10—interface module is reset by
the signal NOT_RESET, so that the machine can start from its idle state. The reset of the
system is independent of the clock signal (cLK), thus an asynchronous reset. The envi-
ronment of the system tells that there is data available which can be processed by the
system; this is made clear to the system by setting the sTAirr signal. The data, which
will be presented to the system, is available on the DATA_PORTIN port after setting the
sTARr signal.

The signal from the main controller is also simulated. That signal tells the interface
that the controller is ready to accept data from its environment, is called INPUTGO. The
I0—interf ace tells the main controller that the input is processed when the iiosig-
nal becomes high. Before that happens the interface must write the input data available
on its input port to memory. The inputs are presented to the memory in the same order
as the environment is presenting them. The memory locations of the input data are cal-
culated by the interface module and presented on the ADDRESS_BUS of the system. With
the signals READ and wi.rrE the memory knows exactly what to do, in this case the data
must be stored. The data that must be stored in memory is presented by the DATA_BUSO.
Some signals are presented also to the environment so that a handshake can be per-
formed, those signals are VAUD_DArA, READ and wium.

The second behavior of the interface is the output behavior. Now the interface must
ask the memory module to present data on certain memory locations. The following

28

The 10—Interface in Input Mode
Two input data patterns are presented and processed

U/start -
/inputgo — I

0 Inst_reset — I
D Icl.k —
Fl /data pertth



Figure 3-11;

The output behavior
of the interface mod-
ule, three memory
locations are ac-
cessed. The contents
of them is presented
to the environment.

fingure shows the time table of the output behavior. Lets consider that the outputs are
available on the memory locations OAh, OBh, OCh (h=hex notation), and that the con-
tents of those locations is FOb, OFh and 12h. After a start of the interface by the main
controller (ouTPuTG0) the handshake will start. The data corresponding to the memory
location, which is presented on the ADDRESS_BUS, will be presented on the DATA_BUS!.
For the environment the data is presented on the DAFA_PORTOUT. The signals CE (chip
enable) and RELEASEOUT are signals that are set by the environment to influence the
handshake with the system. If the output process is ended the main controller gets a
signal for the interface to say its ready (READYIO).

The verification of this module seems to correspond with the demands that are made
to design the interface module. The following step is to look at the behavior of the
memory module.

The behavior of the 10 interface, by output

3.4.2 Memory

The memory module of the system that has the purpose to store data after or before
a calculation, and the release of it. The verification of this module can easily be done
by storing some information and retrieving it. For a correct functionality the stored
and retrieved data must be the same.

The following operations are done to ensure a proper working. First three write opera-

tions are performed, and the data FOFOh, OFOFh and FCFCh are written to the respec-

tively the addresses OOlh, 002h, and 003h. After the write actions, the content of
memory location 003h is recalled, the value presented (FCFCh) on the D_BUS0UTcor-

responds to the value which was stored. Now a write action follows on the same ad-

dress and will overwrite the data stored on position 003h; the value stored is ABCDII.

The following step is to read memory location 002h, its content is OFOFh and is cor-

rect. The last action on the memory module is a readoperation on the memory location

003h, which must hold the value ABCDh. From the output databus the retrieved data

is ABCDh. The memory module seems to work properly and the verification is com-

plete.

29



Figure 3-12;

A timing diagram of
the vertfication it the
memory module. It
shows the response
of the module by ap-
plying several test
vectors.

Figure 3-13,

A timing diagram of
the adder and multipli-
er together. The sig-
nal of the multiplier
starts with /u2/uO/ul,
while the adder signal
starts with /u2/uOIuO.
A sum of four prod-
ucts and a sum of one
product term can be
seen.

The verification of the memory module

The processing unit consists of a DigiLog multiplier and a recursive adder. Together
these two components produce the required sum of products. The verification of these

two components will be outlined in this section. The synaptic weights, biases or the
discriminatory function which are constants or terms in the process have no influence

on the verification; so these component are left out of consideration. The verification
of both components will be performed as if it is one component. One of the verifica-

tions performed is shown in figure 3-13. The verification holds the following opera-
tions, first a sum of four products is calculated where each product is 1 times 2. The

result of the sum must be: 1 * 2 = 8; This result can be seen when the READY signal

of the adder become high.

I

The second calculation is that the adder sums the result of the product 0 * 2 with 0;
the answer is presented on the D_OUTPU1 when the READY signal of the adder becomes
high for the second time. The signals rr and NEW_DrA give the repeated adder the

30

3.4.3 ProcessIng Unit



information which is needed to perform multiple additions in sequence. Each time
new data is available for the adder the NEW_DArA signal becomes high, while the signal
sTr is high multiple additions are performed.

During the verification performed on the DigiLog multiplier and the recursive adder
it can be concluded that both components are performing in the way as described in
the specification. All components are working properly. Another step which can be
made are the simulations of the entire neural hardware system. The content of the fol-
lowing chapter describes the translation of the characteristics of a trained neural net-
work, such that the components with their functionality described in this chapter,
combined with the correct characteristics of a trained neural network, would perform
its task like the neural software in InterAct.

3.5 Realization

Manufacturers have seen the advantages of using a hardware description language to
catch system behavior. Designers, who use this method for developing systems, have
got the idea to use the VHDL language to transform the description of a system into

a hardware realization. This transformation, called synthesis of VHDL—code, is chip,
technology and manufacturer dependent. A shortcoming of synthesis tools is that not
each description in the language gives a workable mapping on the used technology.
Designers who use VHDL create a simulatable version of a system very fast, but the
main problem is to compile it with a synthesis tool.

The system as described above is a simulatable system that performs well in simula-
tions. But it is far from an optimized neural system solution. An optimized system can
be produced only when a platform is chosen. The platform that will be chosen poses
its own restrictions on the VHDL—code. These restrictions can mean, that an opti-
mized system can not be synthesized at all. Therefore the system that is developed is
only there for simulation purposes.

3.6 Summary

This chapter introduced the design trajectory used to translate the behavior of an artifi-
cial neural network into an hardware description. The design trajectory shows the
three stages of design: architecture, implementation, and realization. The architectural
phase of design describes the functional and a conceptual structure of the hardware
system. This description of the functionality and the conceptual structure is used to
create the VHDL description. The descriptions of these components are verified,
which shows us, that the VHDL description conform to what was mentioned in the
architectural phase. What follows is that the functionality of an artificial neural net-
work and the description in a hardware description language, as VHDL, are acting in
the same manner. So that we can speak of a hardware description of a neural network.
Further the realization phase tells us that this system which performs to the same func-
tionality as a neural network, is only developed for simulation purposes. A further de-
velopment of the system after a platform is chosen, is time—consuming.

31



32

0



Chapter 4
Tools used before Simulation of the Neural System.

Until now the description of the neural hardware can only perform the functionality
of a neural network. The neural network characteristics, which holds the synaptic
weights and the biases, must be obtained from a trained neural network. Only by using
those characteristics of an artificial neural network, gets the neural hardware descrip-
lion the property of an application—specific neural network. These network character-
istics are translated from a trained neural network. The trained network is obtained
from the software package InterAct, where it is tested and trained. This section de-
scribes in which way the network characteristics are translated to our hardware de-
scription. This in order to get an useful hardware description which holds the property
of the translated application.

For the simulation of the whole system, the used pattern data base to train and test the
network in InterAct must also be translated in away such that it is useful for our sys-
tem. To handle each input pattern of the network for the simulation is a times taking
business. Therefore a simulation environment is created in order to handle all patterns
automatically. This simulation environment can be seen as the testing environment
of the hardware system. In this chapter it will be told in what way this is achieved.

After simulation, the results which are obtained from the testing environment are ana-
lyzed to see the performance of the system. That problem: how do we measure the
goodness of the fit performed by the hardware system with regard to the one trained
by InterA Ct, or to the real train and test data set. This chapter will end with a discussion
of these problems.

4.1 Simulations

Before simulations can be performed by the hardware description of a neural network,
the characteristics and data to test with should be extracted from the InterAct environ-
ment. For this purpose a software tool is developed to achieve look—up tables with the
characteristics of the artificial neural network, and tables with the test patterns. The
tables with the test patterns are used by the simulation environment which supplies

33



the network of input. But also it must retrieve the output data from the hardware neural
system, and store them in a file such that the behavior of the system can be analyzed.
This section outlines the path to go, from a trained network in InterAct to a hardware
model of a neural network such that it fits the InterAct model.

4.1.1 Extraction Network Characteristics

Before a start is made, with extracting the characteristics of a neural network, it is im-
portant to know which properties satisfy a good translation: (1) the network topology
must be a feed—forward neural network, (2) the network must be trained with input
in the range [0, 1], and (3) there must be an InterAct data file for a good translation.

The first constraint is on the network topology: only a topology of a feedforward struc-
ture of neurons is supported. This means that the neurons must be connected is such
a way that only a single direction data—flow is permitted. A second restriction on the
topology is that all connections are lag free, and that all signals pass all levels in con-
secutive order. Figure 4-1 shows two types of feed—forward multi—layer Perceptron
networks. The topology of figure 4-la is not supported by the hardware neural system,
because the signals from the input to the output do not pass the hidden level. While
the right figure shows the topology which is supported.

Figure 4-1;
The restriction to network topologies

The left network topol-
ogy is not supported

Not supported Supported

by the hardware neu- Ut 1
ral system because p

Out t
Input I

of the way of conned- PU

ing the neurons to- inpUt 2
Output

gether. The right fig- Input 2

ure is supported by
the system.

(a)

The second constraint mentioned above is that the inputs must be in the range of
[0, 1], because the hardware system can only react on positive input numbers. This
means also that the network which will be trained by the software package InterAct,
must be trained with inputs in the range [0, 1]. The neural network obtain after the train
and test phase in InterAct must be saved in the proper format of the software package.
The saved network (net file) and the test data (pdbf files) must both be named in the
same way, such that our software application can extract the network characteristics
and respectively the test and train data of the network.

The software which extracts the characteristics of the network and the pattern data-
base, is outlined in appendix C. This tool is an InterAct application, which needs only
the name of the network which will be translated, because the network and pattern da-
tabase file are named with that name. The developed software application generates
tables in the VHDL package file. Two VHDL files are constructed, the first one de-
scribes the characteristics of the network, while the second is a translation of the pat-
tern database file.

34

(b)



The characteristics of the artificial neural network holds the information of the topolo-
gy, and secondly the parameters of the network. The software tool makes the transla-
tion by searching the absolute largest parameter (bias or synaptic weight). If that
parameter is found, the software application walks through the network and translates
all the weights and biases to a finite set of numbers. The largest absolute parameter
limits the range of all the parameters in the network, let say that the parameter is Wmax
than the range is [Wmax, Wmax]. All the network characteristics are uniformly quan-
tized in 2N_1 steps, where N is the number of bits that will be used by the hardware
neural system. An exception is made to N if the value which will be converted to a
discrete number is a bias, than N will be twice as large. All these values are then stored
in the tables for the weights and one for the biases. The neural hardware system can
use these tables in order to produce a proper output. Another characteristic must be
entered to the neural system. The system must know in what order the network will
be calculated. Therefore a part must be entered to that file by hand, as this is not gener-
ated. This part is the topology of the artificial neural network. The following four lines
must be appended to that file;

constant Nr layers: integer := 3;
type topology is array (0 to Nr_layers—1) of integer;
constant network: topology := (4, 5, 1);
constant Nr_Neurons: integer := 10;

These four lines tell that the hardware neural system holds an artificial neural network
with three layers (an input layer, one hidden layer and an output layer). The constant
network shows the topology of the network, it says that the input layer consists of 4
input neurons, the hidden layer takes five neurons, and that the network has one output
neuron. The last line of VI-IDL code tell that there are 10 neurons are involved in the
network topology.

The second file generated contains the test and train patterns. Because the range is
known (namely between 0 and 1), the uniform quantizer translates the input as well
as the target patterns. For each input a separated table is constructed, that is also true
of the targets. An example of these files is shown in appendix C, together with the C—
code of the InterAct application.

4.1.2 A Simulation Environment

The neural hardware system can be simulated by using the software package V—Sys-
tem. By simulation the system must act on input patterns to achieve a response of the
system. Each input pattern consists of N—dimensional input vectors, where N is the
number of inputs to the neural network. Each input vector should be offered to the
hardware system. Because the system can consume only one pattern at the time, the
pattern should be offered sequentially. This is also true for the output of the system.
In case of a multiple output network the outputs vector are offered to the systems envi-
ronment one by one. For the simulations that will be performed, the pattern database
does not consist of only one input pattern. For the way of offering input vectors and
retrieving output vectors, the issue of good timing for sending and receiving data is
important. For this reason a simulation environment is written to achieve that each

35



pattern is correctly send to or received from the system. Another reason is that the large
amount of data generated from the system can also be written to a file, without a de-
scription change of the system itself.

The simulation environment is also written in the VHDL language, and uses the table
produced by the converting software describe above. The contents of the table are the
patterns which are offered to the system, where each pattern exists of the input vectors
and the corresponding output vectors of the network. The only task of the simulation
environment is to offer the input data to the system in a proper way and to retrieve the
output and store the data on a file. A disadvantage of the simulation environment is
the dependence of the network topology. The simulation environment description
changes when more or less inputs or outputs are described by the neural network topol-
ogy. When the simulation environment is started by a signal, the whole pattern data-
base will be offered to the digital neural system, and each output pattern of the system
will be stored on file. After all the input patterns have passed, the simulation environ-
ment gives the end signal ready. This file with the response of the functional behavior
of the neural hardware system can so be analyzed and verified. For the description of
the simulation environment, see appendix C.

All the simulations are performed by the VHDL simulator V—System This VHDL—in-
terpreter can simulated VHDL—code after compiling it, without synthesing the system
nor placing & routing the components on a chosen device. This advantage creates a
designing environment which is suitable for researching the functionality of a de-
scribed system behavior. This software package developed by Model Technology Inc.
is therefore very suitable for hardware design engineers with some knowledge of
VHDL.

4.2 Diagnostic Checking

The diagnostic check of models can be performed in several ways, by using auto cor-
relation functions, using periodograms, the determination of signal—to—noise ratio's
and in several other ways, see [18], [19], and [20]. The way of fit or performance be-
tween two or more systems, by comparing them to one another, residuals or errors can
be obtained. The behavior of the error between the fitted system and the neural behav-
ior of a network in InterAct, and the errors obtained by looking to the real train and
test data gives us enough information for a good check. How to examine the plots
which we obtain for the system errors will be based on some examples. The examples
are shown in two categories, namely a good fit and a better performance.

4.2.1 Goodness of fit

'L'pically the goodness of fit of a neural model to a set of data is judged by comparing
the observed values with the corresponding values obtained from the fitted model. If
the fitted model is appropriate, then the residuals should behave in a manner which
is consistent with the model. This definition of the goodness of fit give an exact de-
scription. In our case the InterAct model of an artificial neural network is fitted into
a hardware environment. ThelnterAct model of the network uses a infinite set of num-
bers to represent the variables of the network, while the network in a digital environ-
ment can only use a finite set of numbers.

36



Lets consider in figure 4-2, the errors between the two systems, where the errors are
the mean square error, the mean square root error and the maximal absolute error. In
figure 4-2a, the best fit is reached by a value of 10, and in figure 4-2b by 9 because
the error values are the minimum. Thus the error functions between the InterAct sys-
tem and the hardware neural system is the best when the error functions are minimal.

The Goodness of Fit

Figure 4-2;

Two example of good-
ness of fit. The shown
error are the MSE,
RMS, and the abso-
lute error, on a loga-
rithmic scale.

red — MSE,

The maximal absolute error shows the largest error made between both systems. The
digital system uses a binary representation for the numbers, thus (by usingN) the num-
bers of bit and the range of those numbers are known. The maximum absolute error
tells us how many quantization steps we are wrong in the worst case. The MSE shows
us the dispersal of the errors, or variance (02) of the error, and a reliability interval can
be shown of the networks answers. The RMS error is showing the root of the MSE
and is equal to a. For the goodness of fit these plots are showing enough information
to say on which point the best fit is reached.

Another way to analyze the results is to look at the errors, namely the errors between
the fitted system and the system which is fitted. Figure 4-3 is showing three different
results, displayed by using scatter—plots and the actual response of the system. The
goodness of fit is a measure for the structure of these errors. Unstructured errors (white
noise) mean that the errors are identical independent distributed (i.i.d.). This holds that
the goodness of fit can be related to the structure of the errors. By structured errors a
worse fit is achieved than by not or less structured errors.

37

(a) (b)

— RMS error , and blue — the maximal absolute error



Goodness of Fit by analyzing generated errors

Figure 4-3,

Three examples of er-
rors between the ac-
tual system and the
system which is a fit
of the first together
whit its response. The
scatter=plots are
showing the error of
each pattern in rela-
tion to the amplitude.

Response of a coding the discriminatory function by 6 bits

0.1

0.I
07
06
0.5
0.4

0.3

0.2

0.1

01

-
—

One of the responses of a 7 bits synaptic weight, by addition of 1 random bit.

NOTE: in the right figures the blue line represents the fitted system, while the red line shown the

response of the systems which is fitted.

The upper figures are showing the response of using a discriminatory function coded
with 6 bits. The scatter—plot of the errors between both systems looks like a sinusoid,
especially the errors belonging to the patterns in the range [10, 17J. Another observa-
tion can be made by looking at the dispersal of the errors: a larger dispersal indicates
a worse fit while a small one is acceptable. The middle figure shows an error distribu-
tion with an upward trend (a line), which indicates a worse fit because it has no random
behavior. For the last figure (bottom) the error is randomly distributed (unstructured)
and has a small dispersal of the errors so a good fit can be concluded. The gradation
of the fit is shown for the upper figures till the bottom. The response of the fitted sys-
tem with regard to the system which is fitted is shown on the right side of the scatter
plots in order to see what response belongs to the errors in the scatter plots.

38

(a)

Responseby 6bits, where the synaptic weights are rounded and the inputs arejammed

QOl

.004

004

.004

4'

(b)

(c)

0 0



Figure 4.4,.

The performance of
the two systems in re-
gard to the real world.
The upper error is the
max. abs. error,
middle RMS, lower er-
ror the MSE.

4.2.2 Performance

Neural networks are estimators of a real—world application, thus there is an error be-
tween the real world and both systems (the InterAct and our digital neural system).
From figure 4-2 can the performance to the real—world not be shown. The goodness
of fit, even when it is perfect, does not mean the best performance. To see which sys-
tem performs the best, the errors must be calculated between the real world data and
both systems. Lets show two examples, where parameters in the InterAct network are
all constant while the parameters in the digital neural system uses several values for

parameters.

Performance of both systems

From the figure 4-4a, we see that the MSE and the RMS error are dropping under the

constant line of the InterAct system, and mean a better performance. While the maxi-

mum absolute error stays above the InterAct network thus there is no improvement
of the performance in terms of the maximum error. In figure 4-4b, al the errors are
showing improvement to the performance, while the maximum absolute error is rising

but the RMS and the MSE are dropping.

Thus judging the best fit does not gives information about the performance, or other-
wise. For the best results a compromise between both constraints is much more likely

to choose for the parameters of the digital neural system.

39



40



The discriminatory function with an area of effectiveness

Non—linear threshold or discriminatory functions give an artificial neural network the
property that there behavior is non—lineai Over time several functions have been de-
veloped and tested to get neural behavior as well, see figure 2—2. Some of them have

no potential to realize practical solutions to a variety of problem, and have been devel-
oped out of academical research. The most useful and used ones are: piecewise linear
functions, the tangent hyperbolical function, and the well—known sigmoid function.

The sigmoid is the most commonly used function within the software world ofpracti-
cal neural networks. But in hardware, other types of discriminatory function appear.
A reason for this phenomenon is the practical implementation of such kind of func-
tions. In the early years of neural hardware, the hard—limiter was a commonly seen
function. These functions have been adopted, because they offer a good compromise
between simplicity, with associated small area, and complexity [21]. Nowadays in our
technical and technological inspired world, where digital memories and silicon wafers
are cheap, the way of implementing is most used discriminatory function is based on
the use of look—up tables. An connected phenomenon is that the technology of Bool-

ean logic also has improved so that a hardware description language can be logical by
optimized. Thus the logic requirements on silicon space are reduced. That is the ad-
vantage to move all the static data, that is necessary for a neural hardware system to

play its role, in a table that can be optimized.

This chapter shows us how to implement an activation function like the sigmoid. But
also the way of handling of such kind of implementation. And a little foretaste of accu-
racy and the influence will be given.

4'

Chapter 5



5.1 ActIvation function implementation

The siginoid activation function is by far the most common one in the construction
of artificial neural networks. It is defined as a strictly increasing function that exhibits
smoothness and asymptotic properties. An example of the sigmoid is the logistic func-
tion, defined by

q(x)
= 1 +1e_uz (5-1)

where a is the slope parameter of the sigmoid function, see figure 5-1 with a=1.
Whereas a threshold function assumes the value of 0 or 1, a sigmoid function assumes
a continuous range of values from 0 to 1.

A continuous Sigmoid decision function
Figure 5-1,

This figure represents
a continuous sigmoid
signal. That can be
obtained by using:
f(x) = 1/(1+exp(—ax))

f(Internal Activation level ) = external activation level

In chapter 3 an analysis of the value range within a network is given. The internal ac-
tivation level of a neuron is not limited in value, and lies within the range [ —oo, ooj.
Hovever the external activation is limited, what can be seen in the figure but also in
the following equations.

lim = 1 (5-2)
1 + exp(— v (n))

lim 1 =0(_ (1)
1+exp(—v1 (n))

The infinity of the internal activation range complicates the discretization of the func-
tion. To overcome this problem the internal activation range had to be limited. Lets
assume that a and b are respectively the lower and the upper range of the internal ac-
tivation. If we choose b = —a and b = 10.4, then figure 5-2a gives a graph of a discrete-
sized sigmoid function, where the range [a, b] is divided into 2'° — 1 quantization
steps(i.e. 10 bits precision). Each quantization step is at size b+a divided by the num-

42

NO 0• rjo• — ' '. ' U., I7C9O



ber of steps. The external activation is in this example divided into 255 quantization

steps (8 bits precision) as large as 1/255. From this graph the discretisation can not
be seen; therefore figure b shows the same function but for less precision to effect that

the steps of the digital function can be seen.

Discrete Sigmoid Activation Function

Figure 5-2; fQnternal actlvatlon)= external activation

where b = 10.4
frornlOto8bit frorn6to6bit

Both figures are dis-
crete sigmoid func-
tions. The left fig-
ure(a), is a digital sig-
nal but its resolution is
too high to see the
steps of the function.
Figure (b) shows a re-
gion for a lower reso-
lution, the discretiza-
tion steps are visible.

The VHDL description of the activation function is generated as a look—up table by

a piece of software that is mentioned in appendix C. This look—up table for the sigmoid

is not complete one. For the implementation the presence of symmetry is used: the

table is filled with only the values right from the zero (in the range [0, b]). If a internal
activation is negative, the external activation is looked up for the positive correspond-

ing value of the internal activation. The output of the sigmoid function will be one

minus the look—up value.

For this implementation of the activation function the choice of a and b are now no
longer two independent values. The reason is that if a and b are not each others oppo-

site, the sigmoid function is not a symmetrical function anymore and can not be gener-

ated by the software tool. Thus a and b are the same variables, the choice of this
variable is a little bit tricky. The value that is chosen for this parameter sets an operat-
ing area of the sigmoid discriminatory function. The following section will discuss
the proper setting of that operating area and will explain why there is one: strange
things can happen to the effectiveness of the network if the values to a and b is not set

properly set.

5.2 An Effective Operating Area

The discriminatory function of the neural system is generated from set of parameters

by a software program. This set describes the whole sigmoid activation function. The
set of parameters consists of: the slope of the function, the lower and upper limit of
the internal activation level, and the number of bits that will be used to code the values

of the internal and external activation levels. The setting of these parameters have lots

of influence on the systems overall behavior. For example if the range of the internal
activation is not set properly, the result of the network is not corresponding with what

43

(a) (b)



we think that will happen. Therefore this section will investigate the influence on the
behavior of the neural system, by using several implementations of the internalactiva-
tion. In other words, different values for a and b. The values in that range are called
to be the effective operating region of the sigmoid activation function. The effective
operating area will be selected from the performance of the neural hardware system
with regard to a neural network with an infmite calculation precision. These experi-
ments with different ranges for the internal activation will be followed by more de-

tailed analysis.

5.2.1 Experiments

Before we start with the experiments, a short summary of the in's and out's is present-
ed. As we know a neuron contains a (non—)li near transfer or activation function, in our
design the sigmoid function is taken to fuilfil that task. The sigmoid function trans-
forms an internal activation of a neuron into an external activation (or neuron output).
This continuous function must be translated into a discrete valued function to fit the
digital behavior of the neural system. The translation is rather difficult because the in-
ternal activation lies with in a infinite range. To overcome that a effective range must
be taken before the discretization can follow. This range must be symmetric owing to
the implementation of the sigmoid function. By choosing a set of parameters the be-
havior of the activation function is generated by a piece of software. This set of param-
eters describes the whole sigmoid function in order to create a VHDL—file.

In figure 5-3, a sigmoid is drawn to show the parameters which will be used in the
generation of the discrete sigmoid activation function. The implementation of the ac-
tivation function is symmetric, thus we can suffice with the points —band b. The slope
of the sigmoid is taken 1.0 for all the cases, except when stated otherwise.

Figure 5-3,

A sigmoid function
with its equations to
make it a discrete val-
ued function.

Sigmoid function

— 2N_1
q(x)

— 1 + e'-
Where A,

2M_1 —

M is #biis coding of the internal activation

N is #bits coding of the external activation

s is the slope of the sigmoid function

External activation p(x)f

:

Internal activation

Our goal is to set an effective operating area bounded in the range [—b, b]. Therefore
experiments are done by using different values of b, such that the performance of the
digital system can be compared with an artificial neural network simulated in InterAct.
The simulation with InterAct can be seen as a hardware implementation that uses a
much higher amount of bits, so that we can say that those simulations are in fact using
a infinite range of numbers.

The following subsections describe the experiments and their results. Each experi-
ment will show the performance of a simulation with infinite precision and the limited

44



Figure 5-4;

The sinewave func-
tion, where the input
is scaled in the inter-
val 10,11 and output in
[0.1,0.91. The same
story for the response
of the trained sine-
wave network.

one. After the results of the experiments are given, a short analysis of the experiment
will show what is done.

5.2.1.1 SIne Function

This experiment shows what happens if the internal activation is discretized for differ-
ent values of b. The starting point is a trained artificial neural network, for the sine-
wave function. The training of the sinewave function is done after scaling the inputs
of the network between [0,1] and the outputs in the range [0.1, 0.9]. The structure of
the network contains one input, six hidden and one output neuron. The obtained result
is shown in figure 5-4, where the real sinewave function is plotted in the blue color,
and the network response in red. From the trained network the synaptic weights and
the neuron biases are obtained, in order to translated them to digital values which can
be used by the neural hardware system. This translation is also performed on the input
and target of the train data.

From the figure 5-3 can be seen that the trained network with infinite data precision
matches not exactly the real sinewave function. The InterAct network has an error with
respect to the real sine function. These errors are approximately: max.errorabs =
0.0591, errorm = 0.0013, and error5 = 0.0363. These errors are a measure of the
approximation quality of the hardware system, and a goodness of fit can be concluded
from these errors.

5.2.1.1.1 Results

The neural hardware system is simulated by use of the VHDL—simulator V—System
These experiments, sixteen in number, differ in the selection of the sigmoid activation
range (or the value of b). The other parameters of the network are constants. The fol-
lowing Sidebar 5-1 shows these constant factors.

45

Sinewave Function

0
_Realsinewave
— kterAct result

b
c. c c '

Input



Sidebar 5-1;

General information

on the sinewave ex-
periments. It contains
the network parame-
ters and the network
topology.

Two responses of the
sinewave function by
an 8 bits input is
shown. Where the
range of sigmoid's ef-
fectiveness are differ-
ent, shown is the be-
havior by the ranges
(—5, 5J(left) and
[—15,151 (right), with
regard to the InterAct
response.

By changing the range of effectiveness of the sigmoid (other values for b), the output
behavior changes, see figure 5-5. The figure shows the response of the InterAct (infi-
nite precision) vs. the response of the digital network with an 8 bit precision. The dif-
ference is only the range of the internal activation of the neuron.

The output behavior by two different ranges of the sigmoid's effectiveness

Another result is the error, that can be calculated for the available data. The interesting
errors types, are the maximum absolute error, the mean square error, and the root mean
square error. These kinds of errors can be viewed with respect to the real data, the Inter-
Act response and the data obtained by hardware simulations. Figure 5-6 shows the er-
rors between the output response of a system with infinite calculation precision
(InterAct) and the digital neural system.

46

—

General Information

Network Parameters

#bits used

Input/output 8

External activation 8

Internal activation 10 x
Adder Width 16

______________

Numbea

Network Topology (1:6:1)

sin(4

#patterns
Sigmoid Slope

50
1.0

Figure 5-5,'
Range (—5.0,5.0)

-
Range = [—15.0, 15.0)

——

(a)

°s;;000000000deo ea

(b)



The errors between a the networks with finite and infinite precision.

Figure 5-6
For several ranges of the sigmoid's effectiveness

fO f12 E' Et4 FZ

The left draft(the
bath—tub—curve), I.'

shows the three er-
rors over all the ex-
periments done, for a
variety of values for b. op -
On the rightasmall .." ., .
part is shown on a
logarithmic scale. "

(a)

red — the mean square error blue — the maximum absolute error — the Root Mean Square error

In this figure one typical number is missing, this is given as an asterisk. This spot in
the table carries the value of b that can be formulated as follows,

•=Maxw0 (5-3)

with,

VIE [1,L]; ViE [1,N]; Vj E [O,M]

and where L the number of layers of the network, N as the number of neurons in the
preceding layer, and M the number of neurons in the layer L This equation gives the
maximum of the absolute weights and biases in the network. In the sinewave network
the value for the asterisk is 10.32.

The results between the infinite (InterAct) and finite calculation precision (digital neu-
ral system) is nice to know, but what are the consequences with regard to the real data?
In figure 5-7, these results are shown. In the upper left (a) the maximum absolute error
is shown, in blue for the finite calculation system to the real world data, and in red for
the infinite (InterAct) response. The same story can be told for the upper right figure
(b), but the error that is presented here is the mean square error, and the graph at the
bottom shows the root mean square error. The following section outlines an analysis
of the shown sinewave problem results.

5.2.1.1.2 Analysis of the Results

This section will tell us what can be observed for the graph shown in the previous sec-
tion. The explanation why the neural hardware systems behavior changes by using
other effective ranges of the sigmoid function, will been deferred until all experiments
are done.

47

(b)



The performance of
both system in regard
to the real world sine—
data by using several
values of b is shown
here. Figure a shows
the max.abs.error of
both systems, (b) and
(C) respectively the
mean square error
and the RMS error.

The performance of both systems with regard to the real data.
For several ranges of the sigmoid's effectiveness.

Figure 5-7; Maximalabs. Error Mean Square Error

0.0045

0.004

0.0035

0.003

0,0025

0.002

0.0015

0,001

-

, ,
,. .'. 43

'C 'C 'C ]
0,07

0.005

0,06

0.055

0.05

0,045

0,04

0.035

0.03

.' , ,,4r
'C 'C 'C 'C

(a) (b)

Root Mean Square Error

In blue — the error between

a finite precision network

and the real world data.

In red — the error between an

in—finite precision network

and the real world data. .' ,.
'(' %c' %'

(c)

From the graph shown in figure 5-5, it can be observed that if the value for b is small
the response of the hardware system does not match the response of the InterAct sys-
tem. This is also true for large values of b. These responses to a change of b suggest
that we force the sigmoid function in saturation by large values for b. For small values
the sigmoid function behavior is almost linear in stead of a non—line ar (these phenom-

enons are also known in transistors circuits). This observation tell us that for a good
fit of both systems the usable value for b lies between 5.0 and 15.0. If we take for b

a value around the absolute maximum over all the synaptic weights, including the
baises, the best fit is given. This conclusion can be made from the bath—tub curve in

figure 5-6.

By the maximum absolute value over all the weights and biases as a setting for b, the
error between the simulation with an infinite and finite precision matches almost with
0.5% root mean square error. The mean square error is then on it lowest point, and
means that the variance of the errors decreases if the values for b are around point
The largest error (the absolute) describes also some curve like that of the RMS —error,
but stays the largest one (0.006). This value for the absolute error is large as the input
and output have a resolution of 8 bit. That means that the maximum error made is as
large as two quantization level.

To know which of both networks matches best on the sinewave function, we must take
a look at the performance of both networks with regard to the real sinewave data (fig-

48



ure 5-7). The straight line in the performance of the network reflects the use of infinite
numbers. The explanation why these error are constant is that that system has not
changed at all. The curved line shows the performance of the hardware system. When
both systems have the same performance with regard to real sinewave data, they are
joint. If the line of the neural hardware system goes below the performance of the Inter-
Act network, then the system with finite precision matches the real—world sinewave
function better than the infinite one. The neural hardware system performs the task
of the sinewave function better than the InterAct version when b is equal to the maxi-
mum absolute values over all the weights and biases.

5.2.1.2 ExclusIve-OR

The exclusive—ORproblem (XOR) is a special example of classifying points in an unit
hypercube, where only the four corners of this hypercube are considered. There are
only two classes, class 0 and class 1, and each point on the hypercube belongs to one
of these classes. There are four different input patterns, namely (0,0), (0,1), (1,0), and
(1,1). Each of these input patterns belongs either to class 0 or to class 1.

Sidebar 5-2;

This Sidebar shows
the behavior of the
XOR, and the problem

surface map. Also a
truth table is included.

The exclusive—OR problem is not a linearly separable. This shows from Sidebar 5-2.
If a problem is linearly separable the two classes can be divided by a straight line. In
the case of an XOR this is not possible.

5.2.1.2.1 Results

l'his classifying experiment uses the same constant parameters as the sinewave func-
tion experiment so that they can be compared. This experiment uses all the informa-
tion as given by the Sidebar 5-3. The network topology is different as the XOR
network has 2 input neuron, 3 hidden, and 1 output neuron. Another thing that is differ-
ent is the amount of data patterns that are offered to the network.

49



Sidebar 5-3; General Information

General information
on the XOR experi-
ments. It contains the
network parameters
and the network to-
pology.

After a couple of simulations the the results are obtained as appear in figure 5-8 for
the error of the neural hardware system with regard to the simulations with InterAct.

Figure 5-8;

The errors between
the systems with finite
and infinite precision
by using different val-
ues for b. The graph
show the MSE, RMS,
and the maximum ab-
solute error on a loga-
rithmic scale.

The errors between infinite and finite precision
For several ranges of the sigmoid's effectiveness.

red — the mean square error

blue — the maximum
absolute error

— the Root Mean

Square error

In the graphs (figure 5-9) of the errors of a finite and infinite precision with regard to
the real—world data, the red lines are the error signals of the XOR problem produced
by InterAct (infinite data and calculation precision). The blue error signals are re-
trieved from calculations of the real—world data with regard to finite data.

5.2.1.2.2 Analysis of the Results

The experimental results of the XOR experiment which are shown in the previous sec-
tion will be analyzed next from a comparison between the sinewave results and the
XOR results. First we will start with the observations that can be made from the results
outlined in the previous section.

50

Network Parameters Network Topology (2:3:1)

#bits used

Input/output 8

External activation 8

Internal activation 10

Adder Width 16

______________

Numbers

#patterns
Sigmoid Slope

input 1

input 2

output

100

1.0

,pt',, .:' .$ .



Figure 5-9;

The performance of
both system in regard
to real XOR data, by
several values for b,
is shown here. Figure
(a) shows the
max.abs.error of both
systems, (b) and (C)
respectively the mean
square error and the
RMS error.

The performance of both systems in regard to the real XOR data
For several ranges of the sigmoid's effectiveness.

Maximal abs. Error

a finite precision network

and the real world data.

In red —the error between an

in—finite precision network

and the real world data.

(C)

Figure 5-8 shows the errors of the digital system when compared to the InterAct net-
work. These error—curves show that the range of internal activation of a neuron has

influence on the performance of the network which uses finite precision. The error
gives a kind of quality mark of the mapping between the systems with finite and infi-
nite calculation precision. When the errors in both systems are on the lowest level, the
best mapping of a neural network with infinite precision into a network with finite pre-
cision is achieved. That means: if b = 10.8, the best mapping of both system is
achieved. But if we look at the graphs that show the mapping of the performance of
both systems compared with real data, another conclusion can be made. These per-
formances appear in figure 5-9. When the blue line is lower than the constant red line
of the InterAct simulation, the performance of the digital network is better compared
to the real data. The performance with regard to real data is improving, when larger
values are chosen for b. The real XOR data is matched by b = 15.0. l'his explains why
the error curves in figure 5-8, are rising again. The mapping becomes bad for large
values for b, while the hardware systems performance compare to the real data is bet-
ter.

From the results of the XOR experiment compared to those of the sinewave experi-
ment, it can be observed that the mappings have almost the same shape. But with re-
gard to the real data, the performance is rising in the XOR but dropping in the sinewave
experiment for larger values for b.

5'

Mean Square Error

(a)

In blue —the errorbeiween

(b)

Root Mean Square Error

.'
,y ,. •

•< '( •(



To ensure that our discussion is correct, two other experiments have to be done. One
of these experiments is a classifier and the other one approximates a function. Maybe
these two classes of applications have different properties, when a translation is made
to match their behavior onto hardware. The following sections will introduce those
experiments, while the results are mentioned in appendix D.

5.2.1.3 A Valve

This experiment considers the flow of fluid that passes a valve. The amount of fluid
is controlled by the valve's position. When the amount of fluid that passes the valve
increases, this means that the position of the valve has changed. The change of the
amount of fluid that passes is called the tJ7ow or the difference in amount before and
after the moment of change. Another parameter of this valve is the pressure of the fluid
onto the valve, and this is measured. When a neural controller must be designed the
point of interest is the relation between these parameter (Aflow and pressure) and the
position of the valve. The real valve data consists of 1000 input patterns and target
patterns. With these patterns a neural network is trained and recalled by two systems
the first system performs calculations on an infinite range of numbers and the second
uses only a sub—set of numbers (finite). The following section shows the analysis for
those experiments; The results are outlined in appendix D.

5.2.1.3.1 Analysis of the Results

This section gives a short analysis of the results obtained in the valve experiment. The
nine experiments are done for several effective ranges for the sigmoid function. These
results are outlined in appendix D.

The valve experiment indicates alot of similarities compared to the sinewave experi-
ment. The experimental results of the valve shows almost the same bath—tube curve
as in the sinewave experiment. An explanation could be that both experiment are
approximating a function. But the error graph shows that the minimum error is ob-
tained if the effectiveness range of the sigmoid function is around [—8.75,8.75]. When
this is compared to the sinewave experiment, where the effective range was around
the maximal absolute values of the synaptic weight and biases, a slide difference can
be seen. This range gives in comparison to the infinite system the best mapping of the
valve application. Lets see what the systems performance is when it is compared to
the real valve data.

In figure D-2, where both systems are shown with regard to the real valve data, it can
be seen that only the maximal absolute error is on the lowest level for a particular value
of b (by 9.0), even below the line of the system that uses the infinite set of numbers.
But the other errors (MSE and RMS error) do not cross the line of the infinite system:
they are rising again if b passes the value . It can be observed that for all possible
values of b (by a reasonable error in comparison to the real valve data or to the infinite
system), the effective range for the sigmoid is much larger compared with the sine-
wave experiment. Another observation can be done with regard to the errors: the errors
in the valve experiment are also larger than the one produced by the sinewave network.
The discussion why these behavior changes happen if only the range of effectiveness
of the sigmoid function is changed, will be outlined after the analysis of the next exper-
iment, the Iris classifier.

52



5.2.1.4 The Iris Classifier

This is perhaps the best known database in the pattern recognition literature. Fisher's
paper [22] is a classic in the field and is referenced frequently to this day, see [23].
The data set contains 3 classes of 50 instances each, where each class refers to a type
of Iris plant. Four instances are presented as input vectors; the sepal length, sepal
width, petal length, and the petal width. The problem consists of one class that is lin-
early separable from the other 2; the latter are not linearly separable from each other.
Predicted attribute: class of Iris plant. The experimental results of the Iris classifier
are shown in the appendix D. The following section contains the analysis of those re-
sults.

5.2.1.4.1 Analysis of the Results

The results obtained from the simulated Iris classifier will be analyzed in this section.
Here the figures are analyzed so that conclusions can be made. These figures are not
found in this chapter but are depicted in appendix D.

A measure for the goodness of fit can be seen from the errors between the finite and
the infinite system. Figure D—3 shows the error for several areas of effectiveness of
the sigmoid function. Those errors are continuously decreasing when the interval of
initially [—8.0, 8.0] gets larger and larger until a certain moment, the error is rising
again (after [—15.0,15.0]). The best fit can be found where these errors are minimal,
at a certain area of effectiveness.

On the other hand, the performance of the system in relation to the real data, shows
us if the mappingonto the hardware improves by different area's of effectiveness. Fig-
ure D—4 is showing this relationship. If the neural hardware system performs better
than the system with infinite precision, then error levels must be lower then the
constant line (red) of the system with infinite precision. The results of the Iris class
Setosa stays above the red line and the system is not perfonning better than the infinite
system. But as the area of effectiveness is chosen in the range of [_*,*] the errors, with
regard to the real data, are dropping rapidly. But if the range becomes larger, the errors
are rising again. Until at a certain point the errors drop again and are staying there, but
the system performance is not improved. For the other two Iris classes an otherstory
is told, these error are dropping smoothly while the area of effectiveness becomes larg-
er. Until the range of the sigmoid is limited between —10.0 and 10.0, at this turning
point the errors are smaller than the ones obtain for the system with in—finite number
representation. The change in performance is also clear in table D—1, the number of
patterns which are correctly classified increases after a area of effectiveness of [—10.0,
10.0]. This means that the area of effectiveness enlarges the distance between the win-
ner and the runner—up. This phenomenon is also seen in the XOR experiment, the larg-
er the effective range of the sigmoid function the better the system with the finite set
of number will perform.

5.2.1.5 Summary

From all the analyzed figures, the first thing to mention is that the class of application
has influence on the area of effectiveness. In function approximation, such as the sine-
wave and the valve experiments, the errors compared to the real data follow a bath—
tube curve. At the minimal value of that curve (errors minimal) the system performs

53



best. Those two experiments show no particular improvement of the performance with
regard to the system that uses infinite representation. On the other hand, the two classi-
fication applications are showing a performance increase, when the effective range of
the sigmoid is large enough. At that moment that the neural hardware system improves
the performance compared to the real data system, but the mapping of the infinite sys-
tem becomes worse.

Another phenomenon is that the area of effectiveness for a good performance is differ-
ent for all the experiments, done in this chapter. For the performed experiments the
minimal area of effectiveness is [—8.0,8.0] and the largest [—20.0,20.0]. But the larg-
est interval of this area is not researched.

5.2.2 The Discussion

The phenomenon is that the neural hardware system's behavior is changing by modi-
fying the area of effectiveness. For the change in behavior of the system a statement
is outlined in this section. The problem is the internal activation of a neuron: it is not
limited to a range of values. Therefore it is difficult to translate to a world where only
limited values can be presented, thus the internal activation of the sigmoid function
must be limited by specifying a certain range, lets say [—b, b] for a value b. Now the
translation to a limited set of values is much easier. The problem is how to choose a
proper value for b.

What is happening to the discriminatory function for a certain value forb? The non—li-
near sigmoid, which is used by neural networks as an advantage above other control-
lers, is now the bottle neck. Assume a small value of b, then only the range of [—b, b]
is translated. If b is for example 5.0, then the range of translation is [—5.05.0] of the
sigmoid function. In figure 5-1, a siginoid is shown in the range of [—10.4, 10.4], if
only the part in the range of [—5.0, 5.0] is translated the function result looks like a
linear function. Vice versa, for large values for b, the siginoid is than translated over
its full range the sigmoid's result is practically 1 or 0. This can be realized if the value
for b is chosen in such a way that the error which is made can be neglected. But then
another problem arises.

Lets assume that the translation that must be made uses only 255 values. That means
that by translation the whole range of [—b, b] must be divided into 255 values. If other
values for b are chosen the number of useable values stays the same, and means that
the distance between them is changing. Lets assume that b is small, then the distance
between two values isA. If another value for b is chosen, which is larger than the one
mentioned before, the distance between two values becomes larger than A. Which
means that how larger the interval, how the larger the steps of the translation are. The
consequence of this phenomenon is that the steps may become so large that the effect
of the non—li near behavior is totally eliminated. The result is a linear or in worst case
a hard limiter. This is shown in figure 5-10. The left figure show a translation where
the number of values is limited to 255, and the value for b is small. The right part
shows for the same number of limited values a translation, with a large value of b. The
right part of the figure 5-10 shows almost a hard limiter, while left appears to be linear.
Another observation is that the slope of the sigmoid is changing for other values of
b.

54



The effect of modifying the effective area of the sigmoid function

Figure 5-10; Range is [—5.0,5.0] Range is [—20.0,20.0]

The left figure is a
translation of a sig-
moid function with a
area of effectiveness
of [—5.0, 5.0], and the
right one with [—20.0,
20.0].

(b)

Another statement that is made is why each application has its own area of effective-
ness. From the results obtained in the experiments it is clear that the change in behav-
ior of the systems by modifying the area of effectiveness can be divided in two classes.
These two classes are the known application area's of the networks. The first class con-
tains networks for function approximation, and the second one holds classification
networks. The first class response on a slight difference in the area of effectiveness,
is followed by an decrease in performance. The second class of problems (classifiers),
the story is a little bit different. If the area of effectiveness is large, or the sigmoid func-
tion is replaced by almost a hard limiter, the performance increases.

Lets consider a problem of the first class, as know the characteristics of a neural net-
work correspond to the synaptic weights and the neuron biases. The values of these
characteristic parameter of the network are also translated to a binary code. The full
range of synaptic weights must also be divided into a limited amount of values. Lets
assume that those characteristic parameter lies in the range [Wm, Wm]. And the
input vector to the neural hardware system are in the interval [0, 1]. The parameters
are translated to integer values, the number of values are for example 2N

— where
N is a member of the interval [4, 12]. These numbers divide the whole range of the
parameters of the network. The input vectors are also coded, but the number of values
is smaller, 2' — 1 for the same value for N. The distance between the coding of the
parameters and of the input vectors is not the same. This sources errors during process-
ing, which can be illuminated by use of the discriminatory function, by setting a good
area of effectiveness. Because each neural network has different weights and biases,
this explains the different areas of effectiveness for each problem of that class.

A problem of the second class performs only better by an area of effectiveness which
is large. That means that the discriminatory function changes from a sigmoid to a lin-
ear or even a hard—limitet An explanation can be that classifying systems must decide
to which class the input vector belong. To this purpose the sigmoid function may be
too smooth and another discriminatory function works better.

55

(a)

1 71



5.3 Reduction of Accuracy

The area of effectiveness researched in the previous section, is related to a certain num-
ber of bits. This section shows experiments wherein the area of effectiveness is coded
in several amount of bits to investigate changes in behavior of the neural hardware
system. For this research the following two experiments are performed: the sinewave
problem, and the Iris classifier.

5.3.1 Experimental results

For the experiments a certain area of effectiveness must be chosen. For the sinewave
experiment and for the Iris classifier is the maximum chosen of the absolute weight
and biases. This is for the sinewave problem the area of [—10.31, 10.31] and for the
Ins classifier [—8.63,8.63]. This range is translated to integer values: the number of
values are 2N — 1 whereNis a member of the interval [4, 13]. Those 2" — 1 numbers
are dividing the whole area of effectiveness into equal parts. For each part the function
result of the sigmoid is calculated and stored in the look—up table of the hardware neu-
ral system. The two experiments are repeated for several values ofN. The way of pass-
ing the sum of products to the discriminatory function is implemented in such a way
that from the 16 bits result only the N highest order bits will be passed. The lowest
order bits are disposed by the rounding technique truncation.

5.3.1.1 Results Sinewave function

The parameters which are used to obtain the following results are mentioned in Side-
bar 5-4. For the values of N the interval [6, 13] is chosen. The following graphs will
show, (a) the response of the finite system with regard to the in finite system, and (b)
the finite and infinite system compared to the real data. For both graphs hold that it
is done with respect to several values for N.

Sidebar 5-4,.

General information

on the sinewave ex-
periments. It contains
the network parame-
ters and the network
topology.

Figure 5-11 shows the relationship between the finite and infinite system, where the
curves describes the change of the errors between both system for various values of
N. From this graph a measure for the goodness of fit can be obtained. The best fit is
given by the smallest values of the errors.

56



Figure 5-11;

This figure show the
relationship between
the finite and infinite
system, with respect
to the number of bits
use that codes the
area of effectiveness.

The errors between infinite and finite precision
For several numbers of bits to code the sigmoids effectiveness.

red — the mean square error

blue —the maximum
absolute error

- the Root Mean

Square error

Figure 5-12 shows both system (finite and infinite) compared with the real sinewave
data, for several values for N. This plot gives us information about the improvement
that is occurred between both systems. If the line of the finite system crosses the line
of the infinite system, an improvement of performance is a fact. That means only that
the errors of the finite system are smaller than the errors of the infinite system.

Figure 5-12;

The graphs shown
represent the error
made between both
systems compared to
the real data set. This
all under the circum-
stances that various
value for N are taken.

The performance of both systems with regard to the real Sinewave data
For several number of bits used for coding the sigmoid 's effectiveness.

Maximal abs. Error

In blue — the error between

a finite precision network

and the real world data.

In red — the error between an

in—finite precision network

and the real world data.

57

7 9taa 1Ots 11s l2bb l3b

Mean Square Error

(a) (b)

Root Mean Square Error

(c)



Sidebar 5-5,

General information

on the Ins experi-
ments. It contains the
network parameters
and the network to-

pology.

Table 5-1;

This table presents
the performance of
the Iris classifier for
the finite as well as
the infinite system.
The rejection criteria

is that the difference
between the winner
and runner—up must

be at least 0.5.

5.3.1.2 Results Iris classifier

This experiment discusses the results obtained from simulations performed by Inter-
Act using the infinite set of numbers, while V—system uses the finite set of numbers
on the neural hardware system, as describe in chapter 4. The conversion of the infinite
network characteristics to a finite representation is performed as described in chapter
5. The general information about this experiment can be found in the Sidebar 5-5.
These experiments are performed for several values of N to get information about the
change in behavior as well as the performances of the finite system compared to the
real data and in comparison with the infinite system.

Table 5-1 shows the performance of both classifying system with respect to the chosen
value for N. The rejection criteria is that the difference between the winner and the
runner—up must be at least 0.5. The infinite system is misclassifying one input pattern
out of a total of 118. The number of classified patterns and the rejected ones is constant
for the infinite system, it classifies 107 correctly and it rejects 11. The number of clas-
sified and rejected patterns for the finite system, changes with the values of N.

numIer of
bits (N)

The in—finite system The finite system

classified rejected misclassified classified rejected misclassified

4 107 11 1 11 99 8

5 107 11 1 45 70 3

6 107 11 1 73 43 2

7 107 11 1 82 34 2

8 107 11 1 87 30 1

9 107 11 1 89 28 1

10 107 11 1 90 27 1

11 107 11 1 90 27 1

12 107 11 1 91 26 1

13 107 11 1 91 26 1

58

General Information

Network Parameters

#bits used

Input/output 8

External activation 8

Internal activation N

- Adder Width 16

Network Topology (4:8:3)

_______________

Numbers

sepal length

sepal width

petal length

petal width
#pattcrns
Sigmoid Slope
Area of Effectiveness

118

1.0

Iris Setosa

Iris Versicolour

Iris Virginica

[—8.63,8.631



Figure 5-13 shows the performance of the digital network in relation with the one
trained and tested by InterAct, for each Iris class. This graph shows also the goodness
of fit between both systems, for various values for N. For this experiment the used
integer values for N are in the interval [4, 13].

The performance of the finite system in comparison to the infrnite system
For several number of bits used for coding the sigmoid's effectiveness.

Figure 5-13;
The Ins Class Setosa The Ins Class Versicolour

For each class of Iris
the performance is
shown in relation with
the the use number of
bits to code the area
of effectiveness. As
reference is taken the
infinite system.

The Iris Class Virginica

red — the mean square error

blue —the maximum
absolute error

— the Root Mean

Square error

The last result which is obtained is the response of both systems compared with the
Iris database. Figure 5-14, shows for each class of Irises the errors of the finite system
in blue and the infinite system in red. These errors are calculated by several value of
N.

5.3.2 Discussion

The experiments whereby the accuracy of the internal activation changes (by JV) are
showing that the behavior of the finite system also changes. This section contains a
discussion of the results obtained from both experiments. The first experiment that
will be mentioned is the sinewave problem, after that a discussion follows about the
results of the Iris classifier. The last discussion of this section is about the similarities
between both experiments. But first we start with the results of the sinewave problem.

The approximation of the sinewave function shows that by coding the internal activa-
tion through small values for N gives relatively the larger error values. The errors be-
tween the finite and in—finite system, are descending exponentially until the number
number of bits reaches 10. By enlarging the number of bit further the mapping of the
infinite system becomes worse, but is limited by a certain error. The graphs that are

59

4bh 5b • 7 • I ION. uN. 12N. 150k 4k. 00*. *00* 70*. IN. *00* ION. Ilk. 12k. 13k.

(a) (b)



showing the finite and infinite results in comparison with the real sinewave function,
show a similar behavior. For small values for N, the error compared with the real data
is large, but for approximately 8 or 9 bits the mean square error and the root mean
square error are stable close to the performance of the infinite system. The absolute
maximal error shows that kind of behavior only after using 9 bits. For N = 10 bits on
only a very little improvement can be observed of the RMS error, (smaller than 0.1
%).

The performance of both systems compared to the real Iris data base
For several number of bits used for coding the sigmoid 's effectiveness.

Figure 5-14;

The Iris class Setosa The Iris class Versicolour

This view shows the
performance of both
system in regard to
the real data. Each
graph shows the error
which can be calcu-
lated, as the real data
is used as referencing
point. It shows of
each class the max.
absolute error, MSE,
Arid the RMS error.

The Iris class Virginica

In blue — the error between

a finite precision network

and the real world data.

In red —the error between an

in—finite precision network

and the real world data.

Nom The upper lines are the maximal absolute erroi, the middle is the RMS error, and the lowest lines

represents the MSE.

The Iris classifier shows approximately the same results. The errors between the finite
and infinite system is also descending exponentially, but the error settles on a certain
value at aboutN=8. This is true for all three Iris classes. The performance of both sys-
tems related to the real Iris database shows that the performance of the infinite system
is the asymptotic minimum of the errors for the finite system. Except for the Iris Setosa
class, the errors to the real data are at two points the lowest, namely by an accuracy
of 5 and of 10 bits (N). For all further number of N the performance is showing no
improvement.

60

4 5 6 7 8 9 l1

(a) (b)



These two experiments are showing a lot of similarity by changing the accuracy for
coding the area of effectiveness of the discrimination function. It can be seen that for
a small amount of bits the performance is becoming worse. But also that after a certain
number of bits the performance settles at an error level, it has than no use to enlarge
the number of bits for coding the area of effectiveness. Overall the performance be-
tween the finite system and real data does not improve, for any number of N. For small
numbers of N the loss of information is so high that the performance is bad, but at the
same time a large number is carrying no useful information to the system and holds
an enlarging of the needed space in a real implementation.

What is changing about the discriminatory function that has such power to change the

systems behavior. Figure 5-15 shows two sigmoid functions.The left part of the figure
shows a sigmoid function forN=5, and the right one forN=1O. From thispoint of view
the sigmoid function shows no shape loss, but only a loss of accuracy in comparison
to the sigmoid functions of N=1O, andN=5.

Two discriminatory function, by other values of N

Figure 5-15; SigmoidbyN=5 SigmoidbyN= 10

Two sigmoid functions
are shown each with
another value for N,
but for the same
range that must be
coded. Left is the val-
ue for N=5, and right
N=10.

(a)

5.4 Conclusions and recommendations

The conclusions which can be made after the interesting experiments of this chapter
will be mentioned in this section. After the conclusions some recommendations will

follow to stimulate the research in the area of hardware neural systems. First the con-

clusion which can be made of the area of effectiveness of the discriminatory function
will begiven, followed by those for the research of using more or less accuracy for cod-
ing the internal activation. And last but not least the recommendations are given at the

end of this chapter.

The area of effectiveness of the discriminatory function is different for two type of ap-

plications, if the performance on the real data set is the main objective. For function
approximation the area of effectiveness is bounded to obtain the best performance.
Another conclusion can be made if the application is a classifier. The performance of
the classifier shows by a large area of effectiveness a higher performance than the one
which is obtained by the system that uses the infinite set of numbers. The area of effec-
tiveness has direct influence on the slope of the discriminatory function, and by the
classifying system even on the distance between winner and runner—up (large area of

61

0
1357

(b)



effectiveness —> distance also larger). If the criterium is the best mapping of the infi-

nite system, then for both types of applications there can be a solution.

The accuracy needed to code the area of effectiveness has an optimal value for the
number of bits. By a small number of bits the performance with regard to the real data

as well as to the mapping of the infinite system becomes worse. But for a large number

of bits the effect of performing better is canceled out. The performance by changing
the number of bits does not lead to a better performance than for the infinite system

or for real data. The response of the system, by any number of bits to code the internal

activation of the discriminatory function, has the same effect on classification or func-

tion approximating systems.

An overall conclusion is that the performance to real data will be improved for classifi-

cation systems by a wide area of effectiveness, such that the slope of the discriminato-

ry function changes. It can not be improved by using more or less bits to code a chosen

area of effectiveness, because the slope of the discriminatory function stays the same.

Further research is required on, the dependency or independency of the area of effec-

tiveness in relation to the number of bits to code that area. Another point is that the
performance of the experiments was the best by 10 bits of coding. But the sum of prod-

ucts is 16 bits, that means a difference of 4 bit. That means that the lowest order bit

are calculated but are truncated after the adder. The question is: can the adder be made

smaller in size, and can we stop the DigiLogmultiplier earlier when the residuals of
the multiplication have the highest order on the p's position, for whichp is the perfor-

mance good.

62



An evaluation of the effects of the error generation and propagation.

The problem of evaluating the effects caused by finite precision on a computational
flow plays an important role in designing and configuring the architecture related to

an algorithm before its implementation on a physical device. In general this aspect is
tackled empirically by configuring first the architecture and the precision to represent
values and then testing the loss in accuracy at the device output with respect to the
ideal algorithm. A different approach, based on sensitivity analysis as done in [24],

[25] and [26], may be considered, which models finite precision errorsand their propa-
gation along the computational chain up to device output. In this chapter an evaluation

of the effects of the error generation and propagation along feedforward network sheds
light on how the methodology can be used to choose the proper rounding techniques

for the inputs, weights, hence dimensioning the final architecture. Another technique
which is used in real—time environments is evaluated. Here the inputs are added with

an i.i.d. (identical independent distributed) values, hence to use a smaller representa-
tion for the input vectors, or even the synaptic weights of a neural system, in order to

achieve a good fit and performance.

6.1 Sources of Quantization Errors

In a digital signal processing system, the most common signals that are processed are
signals with a discrete time scale and the corresponding values are discrete. But in the

real world of engineering, these signals are seldom present in this form. Therefore a
conversion must take place before the signal can be processed. After processing, the

result must be converted back into its real world environment, such that it can react.

Quantization is the conversion of a djscrete_timecontinuous—valuedsigflal into a dis-
crete—time, discrete—valued signal. The value of each signal is represented by a value

selected from a finite set of possible values. The difference between the unquantized
input and the quantized output is called the quantization error (or noise) and it is desir-
able to minimize the perceived magnitude of this error. In order to achieve this objec-
tive, several quantization techniques can be used, e.g. uniform quantization,
logarithmic quantization, non—uniform quantization and vector quantization. All

63

Chapter 6



these quantization schemes can be made to adapt to the input waveform's statistics so
that the quantizer will always be locally optimum and provide the highest possible
quality with the lowest possible bit rate. Unfortunately, in practice, as the efficiency
of the quantizer increases so does its complexity and, therefore, its cost.

In this work, the method used is a linear or uniform quantization. This means that the
distances between all the reconstruction levels are the same. They make no assump-
tions about the nature of the signal being quantized. For this reason they normally do
not give the best perceived performance. If a number does not map exactly to one of
the quantization levels, it must be truncated, jammed or rounded to the closest level.
These three common methods used for finite precision computation are analyzed by
[26] and [27].

The error generated by truncating, jamming, or rounding techniques maybe consid-
ered to be a discrete random variable distributed over a range determined by the specif-
ic technique being employed. The following assumptions are made:

• Errors are random variables with uniform distributions except as noted.

• Errors are independent of each other and of all input and outputs.

For a statistical view of the error, it is desirable to know the mean and variance of the
error generated by each of these three techniques.

6.1.1 Rounding techniques

Here, we consider a number quantizised to a reasonable large number of bits(N,,
wherebyN,, is much larger than the representation of the number inN bits. Then the
rounding operator chops off the q lowest order bits of a number which will have its
new lowest bit in the 2_thp1ace. If the qbit value chopped off is greater than or equal
to 21, the resulting value is incremented by "1"; otherwise, it remains unchanged,
(N =N,, —q). The error e generated by the rounding operator which is uniformly dis-
tributed in the range of:

61
2 ' 2 (-)

whereby, 4,, is the quantization level of the least significant bit, by the representa-
tion of N,, bits. The mean error can be calculated by

+
E1

2

2
2 0 (6-2)

and the variance is

22
2 — 2 63

12 — 12 -

64



6.1.2 Jamming techniques

The conditional jamming operator') chops off the q lowest order bits of a number and
forces the new lowest order bit, in the 2q—th place, to be a "1" if any of the q removed
bits were a "1"; otherwise, the new lowest order bit retains its value. This operation
is equivalent to replacing the 2q—th bit with the logical OR of the 2q_th bit and the q
bits which are chopped off. The error e generated by thejamming operator is not exact-
ly uniformly distributed as the probability of the error being zero is twice the probabil-
ity of the error holding any of its other possible values.

—o
(64)

e

For the statistical view of the error e, the mean is given by,

= (6-5)

The mean of the error distribution is then,

(6-6)

For determination of the variance, equation (6-7) will be used as follows,

02 = E((x — E)2] = — E)2 (6-7)

Substituting the mean and its probability, values in expression (6-7), gives

(6-8)

(6-9)

1) Patent Pending, Adaptive Solutions, Inc., 1990.

65



6.1.3 Truncation techniques

The truncation operator simply chops the q lowest bits off of a number and leaves the
new lowest order bit, in the 2q—th place, unchanged. The error e generated by trunca-
tion is a uniformly distributed in the range of

[0, 2] (6-10)

with each of the 2 possible error values being of equal probability. Therefore, the
mean and variance of the error e are as follows,

E. =
2q

(6-11)

612
12 12 (

6.2 The Influence of Rounding Techniques

In order to see the consequences of the three different rounding techniques, two differ-
ent type of networks will pass this experiment. For these experiments the network
characteristics and test data must be quantized by a large number of bit, to be precise
12 bits for the network characteristics and a 14 bits representations for the input pat-
terns. Now the above mentioned rounding techniques can be use to round, or to trun-
cate, or to jam the values to reduce the number of bits. The input vectors will be
reduced to a 8 bit representation. The reduction of the network characteristics holds
for both the synaptic weights and the neuron biases. The only reduction is made to the
synaptic weights in order to get no word width difference in producing the product.
The neuron biases are in all the cases truncated to 2 times the word width of the synap-
tic weights. The influence of the biases is canceled by the input of the discriminatory
function. Because the word resolution of the adders result is 16 bits, while the input
of the discriminatory function will be 10 bits which means that four bit will be lost.
This means that the influence of any way of rounding performed on the biases are can-
celed out after the discriminatory function. Hence the results of the entire system only
reacts on the way of rounding the inputs and synaptic weights.

6.2.1 The Experiments

These experiments are performing all possible combinations of the three roundingop-
erators on the input as well as the synaptic weights of the network. The neural applica-
tions used are the sine function and the Iris classifier. The following section will show
the experimental results obtained from both experiments. Each result is accompanied
with an observation and a short analysis.

66



6.2.1.1 Experimental results of the sine function

The experiment performs all nine combinations (of the three rounding techniques in
combination with the input and the synaptic weights) on the sine function. Sidebar 6-1
is showing the general information about the setting of the internals of the hardware
system. Besides the network parameters the network topology is shown.

Sidebar 6-1,

The general informa-
tion about the systems

parameters, and its

network topology.

The rounding techniques are creating small differences in the input and synaptic
weights, such that the output of the network shows a slide difference in behavior.The
changes in behavior are so small, that a graphical representation as used before is im-
practical. Therefore another way of presenting the results is chosen. The results are
presented as scatter plots of the errors between the finite and infinite system. These
plots are accompanied by the mean square error and the root means square error. The

goodness of fit can be measured by the dispersal of the errors. But another observation
can be made. If the errors are showing a random and independent structure, the errors

are noise. A good fit is characterized by a random and independent error (noise). If
some sort of structure can be found (as a sinusoid, parabolic, or linear relationship ex-
ists between the error values), the fit not optimal.

Figure 6-1 shows three scatter plots where the jamming method is used for the input

vectors, while the synaptic weights for each experiment uses another rounding meth-
od. The dispersal of the error signal in the left upper plot and the plot at the bottom
are larger than in the upper right plot, where the synaptic weights are rounded and the
input is jammed. For the lower plot, which generally holds negative errors, no struc-
ture in the data can be found. That means: the errors are randomly distributed, but is
negative biased and confirms that it is no perfect match to the fitted system. The upper
left figure shows some sort of sinusiod structure in the error signal; the goodness of
fit is therefore smaller than by the other plots. The best fit is given in the right upper
figure, while the distribution of the errors is small and is randomly structured. That
means that the best fit is given by the following combination of rounding techniques:
the input is jammed and the synaptic weights are rounded to the closed quantization

level.

67



The three figures
shows the influence
on the mapping. By
applying for the input
a truncating method
and for the weights all
three rounding tech-
niques.

Errors plots by applying Truncation to the Input Vector

Errors plots by applying Jamming to the Input Vector

In the scatter plot at the bottom it can be seen that mostly all the errors are negative.
What means that the results of the digital system are larger than the system which must
be fitted, a worse fit. For a comparision between the upper left (a) and right (b) figures

Figure 6-1; Truncating applied to the synapticweights Rounding applied to the synaptic weights

(a) Jamming applied to the synaptic weights
(b)

(c)

Figure 6-2 shows the following series of experiments. Here the rounding techniques
is used: for all the experiments truncatation is used for the input vectors, and a different
rounding method is chosen for the synaptic weights in each experiment.

Figure 6-2;

The three figures
shows the influence
on the mapping. By
applying for the input
a jamming method
and for the weights all
three rounding tech-
niques.

TruncatingappliedtothesynaptiCWeightS Rounding applied to the synaptic weights

S.,
S.."

I.,
S...

.4..
.IJt

4.,.
4.,

— I

(a) (b)
Jamming applied to the synaptic weights

(c)

68



a decision about the goodness of fit can be made on the principle that the distribution
of the right figure is smaller than the left one. Thus, by using rounding for theweights
combined with a truncating technique for the input vectors gives the best fit.

By a comparison between the best fit in this series and the best of the results mentioned
above, the following can be concluded. The maximum error is smaller in this serie of
experiments and so is the distribution of the error. That means that the best fit is ob-
tained by the combination rounding and truncating, where truncating is used for the

input vectors and rounding for the synaptic weights.

Errors plots by applying Rounding to the Input Vector

Figure 6-3;

The three figures
shows the influence
on the mapping. By
applying for the input
a rounding method
and for the weights all
three rounding tech-
niques.

Figure 6-3 shows three scatter plots, where each experiment uses the rounding tech-
nique for the systems input, while the rounding technique for the synaptic weights are
different. An observation which can be directly made is that the variance of the error
signals is smaller in the right (b) figure. The error signals in figure 6-3c, are mostly
negative, which means that the hardware system produces larger responses than the

system which is fitted. This behavior of the error signals is not recommendable for a
good fit. The upper left (a) figure shows some sort of structure in the error signal,
namely a sinusoid. The error signal in figure 6-3b and c are showing no structure at

all, an indication of a good fit. The conclusion is that the right figure (b) gives the best

fit, by using rounding for the synaptic weights and the input vectors.

By comparing all the results obtained by these experiments the following gradation
of rounding techniques for the sine function can be made, see table 6-1. From the table

it can be concluded that for the sinewave function the fit is worseby using the jamming
technique for the synaptic weights. The best fit can be obtained by combinations of
rounding and the truncating techniques.

69

Rounding applied to the synaptic weights

(a) (b)

Jamming applied to the synaptic weights

(C)



About the influence of rounding techniques on the performance to the real—world, can
be short. The performance lies for all the use combination by RMS — 3.4 % ± .2 %.
Which means that the influence of rounding techniques have a larger dependency on
the fit than on the performance of the system to the real—world.

Table 6-1;

The change in the
goodness of fit, for var-

ious rounding tech-

niques, for the sine
function.

Sidebar 6-2;

The general informa-
tion about the experi-
ments preformed by
using various round-
ing techniques. The
rounding techniques
are performed on the
synaptic weights and

the input.

&st fit technique for the
synaptic weights

technique for the
input vectors

MSE
RMS error
(in %)

1 rounding rounding 1.387 E-05 .37

2 rounding truncating 1.695 E—05 .41

3 truncating truncating 2.140 E—05 .43

4 rounding jamming 2.286 E—05 .47

5 truncating rounding 2.707 E—05 .49

6 jamming rounding 3.985 E—05 .62

7 truncating jamming 4.511 E—05 .65

8 jamming jamming 4.573 E—05 .67

9 jamming truncating 5.456 E—05 .74

NotE : The exact gradation is based on the calculated MSE and the RMS-error.

6.2.1.2 ExperImental results of the Iris classifier

The experimental results for the Iris classifier, for each combination of the rounding
techniques, are included in this section. In sidebar 6-2, the general information about
the performed experiments is mentioned. The Iris classifier contains four input and
three output neurons. Each output reacts differently on the way the inputs as well as
the synaptic weights are rounded. Therefore each output gets its own attention in the
examination of the fit. For the overall performance of the fitted system with regard
to the real—world data it is viewed by using a rejection criterion.

The order of showing the results obtained for the Iris simulations, are: (1) the fit of
the Iris Setosa class, (2) the fit of the Iris Versicolour, (3) the fit of the Iris Virginica

70



class, and (4) the performance of the discrete and continue values systems with regard

to real—world data.

The change in fit when various rounding techniques are applied to the synaptic
weights and the input vectors, is presented in table 6-2 for the Iris class Setosa. The
errors are obtained between the fitted systemand the system which is fitted. The varia-

nce of the error signals are calculated and used to create a gradation for the fit. The
RMS error shows for all combinations of the applied rounding techniques the approxi-
mately same fit (1% between the best fit and the worse fit). The best fit is obtained

by using the rounding technique for the synaptic weights and ajamming technique for
the input vectors. An observation which can be made is that within the four best fits
only the different techniques are applied to the synaptic weights, namely rounding and
truncating. While the techniques applied for the inputs get the best results by jamming

and truncating. The worse fits are obtained by using rounding for the input vector and

by using any of the three rounding techniques to the synaptic weights.

Table 6-2;

The change in the
goodness of fit, for

vaiious rounding
techniques, for the

Setosa Iris class.

Table 6-3;

The change in the
goodness of fit, for
various rounding
techniques, for the
Versicolour class.

Best fit
technique for the
synaptic weights

technique for the
input vectors

MSE (in %)

1 rounding jamming 6.107 E—03

6.114E—03 7.822 rounding truncating

E—03 7.863 jamming truncating

6.194 E—03 7.874 jamming jamming

E—03 8.185 truncating jamming

E—03 8.196 truncating truncating

E—03 8.667 rounding rounding

8.678 jamming rounding 7.507

8.010 E—03 8.959 truncating rounding

Table 6-3 shows the statistical results of the Iris class Versicolour. Also in this case

the goodness of fit between both systems is calculated. An observation which can be

directly made is that the RMS and MSE values by applying rounding to the input is

so large that almost 6 % is lost between both systems. This is not recommendable.

Best fit
technique for the
synaptic weights

technique for the
input vectors

MSE (in %)

8.18
1 rounding jamming 6.703

6.715 E—03 8.192 rounding truncating

6.891 E—03 8.303 jamming truncating

6.892 E—03 8.304 jamming jamming

7.092 E—03 8.425 truncating jamming

7.127 E—02 8.446 truncating truncating

21.279 E—03 14.597 rounding rounding

21.635 E—03 14.718 truncating rounding

21.694 E—03 14.729 jamming rounding

71



By comparing this table (table 6-3) with table 6-2 it can be seen that the order in good-
ness of fit is practically the same. The best fit by Iris Versicolour is therefore also by
applying rounding for the synaptic weights and by applying jamming for the inputs.

The results of the last class, the Iris Virginica, are summed up in table 6-4. The RMS
error and the MSE are in this case the largest. Which means that the fit will be not as
good as the Iris classes Setosa and Versicolour. The largest difference in the calculated
errors is approximately 5%. In this case the worse fit is also obtained by applying
rounding for the input vectors. While for jamming and truncating techniques, the best
fit is obtained by applying them to the synaptic weights and to the input vectors. The
order in which the best fit is obtain, is different by comparing these results to the re-
sults above table 6-2 and 6-3.

Table 6-4;

The change in the
goodness of fit, for
various rounding
techniques, for the
Versicolour class.

&st fit technique for the
synaptic weights

technique for the
input vectors

MSE RMS error
(in %)

1 jamming truncating 2.152 E—02 14.67

2 jamming jamming 2.162 E—02 14.70

3 truncating truncating 2.263 E—02 15.04

4 truncating jamming 2.275 E—02 15.08

5 rounding truncating 2.289 E—02 15.13

6 rounding jamming 2.299 E-02 15.16

7 jamming rounding 3.685 E—02 19.20

8 truncating rounding 3.791 E—02 19.47

9 rounding rounding 3.811 E—02 19.52

Before the performance results are showed of both systems, a summary of the results
mentioned above about the goodness of fit, will be presented. By comparing the re-
sults of the Iris Setosa class with the Ins Versicolour class it can be concluded that ap-
plying combinations of rounding and jamming for the synaptic weights and for the
inputs results in one of the best fits. But the gradation of the Iris Virginica class
compared with the other Iris classes shows a best fit for other applied rounding tech-
niques. The gradation of the best fitted class is: (1) Iris Setosa, (2) Iris Versicolour, and
the worse fit for the (3) Iris class Virginica. For all three classes holds that the worst
fit is obtained by applying for the input vector the rounding operator, together with
any rounding technique for the synaptic weights. Then it can be concluded that a worst
fit is independent of the applied rounding technique for the synaptic weights.

The following table 6-5 shows the classifying performance of both systems, whereby
a rejection criteria is used to reject unreliable classifications. The used technique is
that the distance between the winner and its runner—up must be at least 0.5. Table 6-5
show a orange bar, which holds the best performance made, which is achieved with
applying rounding for the synaptic weights and truncating for the input vectors. The
difference between the best (94) classification and the worst (87) is 7 patterns, it is a
percentual difference of 5,9 %. The best fit classifies 94 good( and 1 wrongly classi-
fied pattern) which means a classified percentage of 78%. It is not strange that the
worst fit is performed by using truncation for the synaptic weights while the input is
rounded, because the results above shows that this couple is in most cases the worst.

72



Table 6-5;

The performances by
using a rejection crite-
rion by various com-
bination of applied
rounding techniques.
The difference be-
tween winner and
runner—up must be at
leased .5 for a classi-
fied pattern.

The overall perfonnance of the classifier shows that for applyingthe rounding opera-
tor to the synaptic weights the best performance, is achieved independent of the ap-
plied technique for the input vectors.

6.2.2 Discussion
The experiments performed to observe the influence of rounding effects show some

relations. The influence of each rounding technique (rounding, truncating and jam-
ming applied on the synaptic weights or input vectors, or even a binary value) is maxi-

mal one quantization level. For the input vectors with a range of [0, 1], the influence

is at maximum 1/28 by using an 8 bits representation. The range of the synaptic
weights is larger than the ones used by the input vectors, which means that by using

the same 8 bits of representation the quantization levels are larger. This results in a
more vulnerable solution for the coding of the synaptic weights. This vulnerability to
the different rounding techniques is observed in the experiments above. Thus the in-

fluence on the neural system by applying rounding techniques is mainly depending

on the rounding technique applied to the synaptic weights. The influence on the tech-
nique used for the input vectors does not carry a large influence on the performance.
The best performing rounding technique for these experiments is by applying round-

ing to the synaptic weights. The choice of a rounding technique for the input vectors

is not so important, while the influence is very small. The influence on the input gets
important when the number of bits used for a representation is decreasing. But the
most important and largest influence on the fit, and on the performance, will always

be the weights.

From another point of view, recalling the sine experiment, the influences on the good-

ness of fit are so small that they can be eliminated. But for the Iris classifier the number
of correctly classified patterns are increasing or decreasing by a good or wrong choice

of rounding techniques. A practical recommendation is, that it is useful to check the

influences of rounding techniques, especially for the synaptic weights. For a realiza-

tion of a network in hardware, it holds that in some cases the mapping and the perfor-

mance will increase by a proper choice of rounding techniques.

73

NoTE : the Orange bar presents the best performance by applying rounding techniques



6.3 Addition of Noise

For further optimalization of the neural hardware system a closer look at the compo-

nents is recommended. This section investigates the influence of adding noise/distur-
bances to the signals of the system. Figure 6-4 shows at which points in the system
an addition of the noise disturbances can be placed.

The Points where Noise can be Added

In figure 6-4 five points are shown, where noise can be added to the signal. But not
each adding point is recommended for an addition of noise. Lets consider noise point

I, the noise will be added to a synaptic input signal which holds for a input neuron that
another input vector is obtained. This means when an input is offered to the neural sys-

tem; instead of the real—world signal another one is being calculated. This addition
point (I) of a noise signal is not recommended, because the environment is responsible

for the correctness of the input signals. Another addition point which is equal to addi-

tion point us point V, because for a hidden layer the output of a neuron leads to the
input of the following layer. At addition point lithe addition of noise to the synaptic
weights (or the bias of a neuron, which is not drawn) will bring us back to the moment

before a network is trained when the synaptic weights are randomly installed (some
sort of disposing the adapted knowledge). A small amount of noise addition at point

II can be seen as a randomly selected rounding technique, which could offer a positive
result (see section 6.2). The points of interest which remain to add a noise signal are

points III and IV. The following experiments will.offer a pseudo random signal to the
noise points III and IV to investigate the influences. In order to suggest a smaller repre-
sentations of components, or the capability to react in real—time.

6.3.1 The Experiments

The experiment which is used for this research is the sinewave function. For the gener-

ation of pseudo random noise a VHDL—decriptionis obtainedfrom [16], which gener-

ates an 8 bit number where only the lowest—order bit are used. l'his sequence of
numbers is repeated after a certain time period. But the random property is preserved,
while the multiplication time depends on the amount of one's in a term (which is inde-

pendent of the noise being generated). The addition of the noise signal is performed
by chopping the N lowest—order bits of the signal, where the N lowest order bits are
conducted for the N lowest—order bit of the generated pseudo random number. The

Synaptic
Figure 6-4;

A neuron is shown
with one synaptic in-
put, and the point
where noise can be
added. Each line
shows the connection
between a compo-
nent and its prede-
cessor. Where each
line shows its digital
word width by a num-
ber.

8 Noise (II)
N

Synaptic
8

Input

Adder

Discriminatory

Function

N -r
Noise (I) Noise (111)

Neuron Output

N

Noise (IV) Noise (V)

74



first experiments will show noise addition to point IV; after that it will be repeated for
point III. For both experiments the general information is shown in sidebar 6-3.

6.3.1.1 Results by Addition of Noise at point IV

This experiment performs the addition of white noise to the result of the adder (point
IV). The used word width on this point is 16 bits while the internal activation level
is discriminated by 10 bit, the lower—order bits are truncated. The addition of noise
is performed on the 10 remaining bits. By entering noise to a signal means that for each

pattern another answer is possible, thus each pattern must be offered several times to

the system to see the influence of the random bits.

Input and Output behavior by Noise Addition

Sidebar 6-3;

The general informa-

tion about the sys-

tems parameters. and

its network topology.

General Information
Network Parameters

Network Topology (1:6:1)

Input/output 8

External activation 8

Internal activation 10

Adder Width 16

______________

Numbeis

#pattems
Sigmoid Slope
Area of Effectiveness

x

50
1.0

[—10.31,10.31]

sin(x)

Figure 6-5; 1 bit noise,9databits

The input output be-
havior of the sine-
wave function by sev-
eral amounts of noise
added.

2 bit noise, 8 data bits

k

(a)

3 bit noise, 7 data bits 4 bit noise, 6 data bits

(b)

Blue — original sinewave
Red - !nerAct response

(c) (d)

Light Blue -Neural hardware mean response,

with its variance for each pattern

75



Figure 6-5 shows the input/output behavior of the neural hardware system where noise
is applied to point IV. An observation which can be made directly is the change of the
amplitude of the network response with regard to the response of the neural system
without noise. The variance of each pattern becomes larger when the amount of noise
becomes larger. Another observation of the variance is that it is the largest where the
sinewave crosses the line at .5. Even when the 4 bit noise is added the sinewave is rec-
ognizable, while the original signal (10 bit) is reduced 1o6 data bit with 4 noise bits.

Performances of the Hardware System by Noise Addition

Figure 6-6;

The influence of noise
in relation to the per-
fromance. Figure (a)
and (b) are showing
the perfromance of
the hardware system
inrelation to the Inter-
Act response. While
figure (C) and (d)
shows it with regard
to the real—world sine-
wave.

Performance in relation to the InterAct response
Root Mean Square error Max. Absolute error

Performance with regard to the real—world sinewave

Root Mean Square error Max. Absolute error

Light Blue —Mean

Figure 6-6 shows the performances of the hardware system by applying noise to point
IV. These performances are presented with regard to the InterAct response and the
real—world sinewave. The performance when noise is added to the signal at point IV,
the performance of the neural hardware is decreasing dramatically, the performance
at least doubles the performance with no noise addition. In all cases the performance
decreases (exponentially) when 3 and 4 bits noise ae added to the signal. Another ob-
servation is that the variance of the RMS and Max.Abs errors is becoming larger. The
following section presents the results when noise is added to the signals on point III.
Alter that presentation a discusion follows about the results.

76

(a) (b)

(c)

Red - minimal Blue - maximal

(d)



Table 6-6;

6.3.1.2 Results by Addition of Noise at point lii

The addition of noise at this point can be performed in two different ways. The first
is to replace the N lowest order bits by a random value of the 16 bits multiplier result.
The second way is to remove the 6 lowest—order bits, and to replace the signal bit from
that point by random bits. One experiment with the first way of applying noise, is per-
formed; the results are shown in table 6-6. These results are worse in relation to the
performance obtained in the second way. The experiment results, by adding 4 random
bits to the lowest—order bits of the 16 bits multiplier result, is almost equal to the per-
formance of 8 data bits with 2 bits of noise (total 10 bits). Thus, the second way of
noise addition uses less bits to perform beter.

Performance by add-
ing 4 bits noise to a
16 bits number at

point Ill.

Figure 6-7;

The input output be-
havior of the sine-
wave function by sev-
eral amounts of noise
added.

Hardware In
relation to

MSE RMS error Max .Abs error

Mm. Mean Max. Mm. Mean Max. Mm. Mean Max.

InterAct 4.3 E—3 4.4 E—3 4.6 E—3 65.5 E—3 66.6 E—3 67.7 E—3 0.108 0.115 0.119

Real—woriddata 6.3E—3 6.4E—3 6.6E—3 79.3E—3 80.1 E—3 81.1 E—3 0.135 0.138 0.142

Figure 6-7 shows the results by applying noise to point III, in such a way that the influ-
ence of the lowest—order bits are eliminated. The remaining 10 bits represent the infor-
mation for the adder. These 10 bits of information will be used to apply the noise
signal, for respectively 1, 2 and 3 bits of noise.

Input — Output Behavior by applying Noise

10 bits with 1 bit Noise

Blue — original sinewave
Red — InterAct response
Light Blue — Neural hardware

mean response, with its variance

for each pattern

10 bits with 2 bits Noise

77

Qe

Q7

Q4

as

Q2

QI

0

(a) (b)

10 bits with 3 bits Noise

(c)



Also figure 6-7 shows the same results as when the noise is applied on point IV: loss
in amplitude, variance increase by increasing the noise. The following figure 6-8
shows the performance in relation to the response of the InterAct simulation and of
the real—world sinewave. From this figure the conclusion follows that applying 1 or
2 bits of noise has no influence on the mean performance of the hardware system,
while the variance is increasing. By applying more than 3 bits of noise, the neural hard-
ware systems performance is showing a dramatical decrease of the performance and
its variance is out of proportions. The fit and the performance of the sinewave function
are in some cases (especially by applying 2 bit noise) better than when applying no
noise signal (figure 6-7a and c).

Performances of the Hardware System by Noise Addition

The influence of noise
in relation to the per-
fromance. Figure (a)
and (b) are showing
the perfromance of
the hardware system
inrelation to the Inter-
Act response. White
figure (c) and (d)
shows it with regard
to the real—world sine-
wave.

Red - minimal Light Blue —Mean

6.3.2 Discussion

By applying noise to point IV the overal result is that the performance as well as the
fit of a neural network becomes worse; this is concluded from the variance of the errors
of the input — output behavior. The 6 bits that are truncated from the 16—bits adder re-
sult, is an optinal choice to minimise the use of silicon area. Another point of concern
is that the amplitude of the output signal is smaller when noise is applied to the signals;
this holds that beside the neural hardware an amplifier, or even a low—pass filter must
be applied to get an usefull signal again.

78

Figure 6-8;
Root Mean Square error

Performance in relation to the InterAct response

Max. Absolute error

(a) (b)

Performance with regard to the real—world sinewave

Root Mean Square error

0i-
Qu
o
O?5w.

Max. Absolute error

(c) (d)

Blue - maximal



The relation between
applying noise at
point IV and the re-
duction of the discnm-
Ination function. The
two vertical line
shows the perfro-
mance a discriminato-
ry function repre-
sented by 6 bit
(green) and 7 bits
(red).

By applying noise to point III, the choice of removing the six lowest—order bits has
improved the performance by a smaller number of signal bits. This makes it possible
to stop the DigiLog multiplier earlier which means for a realization that the multiplier
as well as the recursive adder can be smaller in wordwidth. Another important thing
is that the speed of the multiplier will be increased. By applying two bits of random
generated numbers to the result of the multiplier it can be seen that it is possible to get
a better performance than by applying none random signal. But that performance is
no better than applying no random but also no reduction of the 6 bits. In other words,
the RMS error is closer to zero by using the 16 bits result than by passing through a
10 bits signal.

The overall conclusion is that it is not recommended to add a noise signal to point IV,
abetter solution to reduce area is by lowering the number of bits used to represent the
discriminatory function. Applying noise after the multiplier module is in some cases
interesting, namely if a real—time response is needed. This holds also that the multipli-
er must be stopped earlier. But only then is it the question what is required, while ap-
plying noise is than not recommanded because it holds various solutions for one
pattern. For each error made in a neuron, the topology of the network is amplifying
it each layer again, and the system holds error on error. This is happening by applying
noise to both points (IV and III); only in some cases a better result is obtained but it
is not under control.

79

In chapter 5, experiments are performed on the number of bits used to represent the
discriminatory function. By combining them with the results obtained by applying
noise, figure 6-9 can be obtained. Applying only 1 random bit to a 10 bits word per-
forms a little better than a discriminatory function on 6 bits. From this it can be con-
cluded that by applying noise to point IV is not recommanded, while better
performances and fits can be obtained by using smaller amounts of bits to represent
a discriminatory function (so that a smaller area can be used).

Figure 6-9;

Relation between applying Noise and reducing of the Discriminatory function

Neural Hardware with regard to InterAct
Neural System with regard to the

sinewave data

Light Red — minimal Blue — maximal

(a) (b)

Light Blue —Mean



6.4 Conclusions and Recommendations

The applied reduction technique for the input vectors and the synaptic weigths are per-
forming the best, when rounding is applied to the synaptic weights. The rounding
technique applied to the inputs vectors is not of concern, because the influence is
small. A practical recommendation is, that it could be useful to check the influences
of rounding techniques, especially for the synaptic weights. For realization of a net-
work in hardware, in some cases the mapping and the performance will increase by
a proper choice of rounding techniques.

The addition of noise is not recommanded after the adder, because a better solution
can be obtained when another representation is chosen for the discriminatory function.
Another point of noise addition is recommanded when the systems requires a real-
time response. But the performance after adding noise is not the best for a neural net-
work. The influence of the number of bits after the multiplier has got a lot of influence
on the performance of the entire system. Therefore when adding noise to a smaller
number of bit than the used 16, the response of the hardware system can perform beter
than for the same representation without noise. It is recommanded for further research
to see when the multiplier can be stopped, as well as to inspect the influence of the
number of bits used the represent the products. On the other hand, applying noise to
a classifying system is not researched yet, but it is recommanded, as these applications
are more robust than function approximating systems. Other research can also give
an answer on a minimally required word width of a neuron, without changing the neu-
rons result, as the topology of the neural network amplifies errors made in a neuron,
in order for this not to happen.

80



Conclusions and recommendations

Artificial neural networks are a promising new generation of information processing
systems. They have proven to be good at tasks such as pattern matching, vector quanti-
zation, and data clustering, while traditional computers are inefficient at these tasks.
Therefore, a dedicated neural hardware system must be developed. This work concen-

trates to investigate the possibility to represent an artificial neural network in a hard-

ware architecture.

The design of the neural hardware system (chapter 3) described within a hardware de-
scription language (VHDL) is verified. From this verification it is known that the
functionality of the hardware description compared to an artificial neural network is
essentially the same. Another point is that the behavior of an artificial neuralnetwork

is given by its characteristics. The translation and generation of those network charac-
teristics gives the hardware system its final purpose, the behavior of aneural network.
How to extract and generate the proper characteristics is researched in several experi-

ments, hence to get a proper neural behavior and dimensioning the final architecture.

The research done to create a proper discriminatory function for the neural hardware
system (chapter 5) shows us that a representation of the discriminatory function is de-
pendent on the application of a neural network. For function approximation there is

a optimum for the performance and the goodness of fit by a certain area of effective-
ness. For classifying applications, the performance is increasing for large areas of ef-
fectiveness, but the goodness of fit becomes worse. Another conclusion canbe made
for classifying systems. By increasing the area of effectiveness the distance between
the winner and the runner—up will also increase, so that the outputs of a network are

better separable.

Another experiment shows, that the number of bits used to present the discriminatory
function is directly related to the performance as well as the fit of a neural network.
By increasing the number of bits the performance and the goodness offit will increase.

But the performance and the goodness of fit are asymptotically limited. From the com-
bination of both experiments it can be concluded that the performance to the real world
data will be improved by classifying systems by a wide area of effectiveness. But it

81

Chapter 7



can not be improved by using more or less bits to represent the discriminatory func-
tion. For the function approximation the performance is bounded to an optimum for
the area of effectiveness, but also the number of bits used to represent the discriminato-
ry function is bounded by an optimum.

From the investigation of the influence of rounding techniques applied to the input
as well as to the synaptic weights of the network the following can be concluded (chap-
ter 6). The best performance is achieved by applying the rounding method for the syn-
aptic weights. While the applied rounding technique for the input vector is mostly
independent of the performance. By applying jamming to the synaptic weights by any
technique for the input vectors, the performance becomes worse. The technique used
to round the synaptic weights creates the largest influence on the performance and the
goodness of fit.

The addition of random noise to the system after the adder in order to reduce the word
width use by the system is not recommendable it is better to reduce the number of bits
to represent a discriminatory function. Only then a better performances are obtained.
The influence of adding noise after the multiplier, shows that in some cases a better
performance is obtained, than by the same number of bits without noise. But the prob-
ability that is result is better is rather large. By an optimized hardware system, addition
of noise is certainly not recommended.

The conclusion to the main objective is that representations of artificial neural net-
works, especially feedforward multi layered Perceptron networks in recall mode, is
a fact. This is concluded from all performed experiments which show that the descrip-
tion is very flexible and very stable within simulations.

Further research on this topic may concentrate on extending this neural hardware de-
scription to a hardware device. The neural hardware system's realization can be opti-
mized for several properties which will be demanded by real—world applications, such
as: high speed, high accuracy, small area, real—time response, embeddable within oth-
ers and, on—chip learnable, ect.

Other research in the area is the representation of the discriminatory function and the
relations between the number of bits used to represent the function, and the area of
effectiveness. Furthermore, research on the DigiLog multiplier shows that stopping
the multiplication earlier can increase speed. Another issue is to stop early and add
random noise to the product in order to save time, and maybe produce a more accurate
answer.

A more practical recommendation for doing simulation within the simulation envi-
ronment V—System, is that heavy computer equipment is recommended. Simulating
a network of 10 neurons and 118 input vectors takes (on a 133 MHz machine, Pentium)
approximately 20 mm. and is increasing exponential (Valve experiment —>21 neu-
rons, 1000 pattern approx. 2.5h). For the simulations of large system such as the sys-
tem described in this work (for large look—up tables, <214), another version (5.1) is
needed else it will simply crash.

82



This thesis was not yet finished without the support of many special people. Therefore

I would like to thank everyone who has contributed to this work in one way or another.

Specially I would like the thank my supervisors Prof. Dr. Jr. L. Spaanenburg and Dr.

Jr. J. A. G. Nijhuis, for their comments, suggestions and support. Further, I would like

to thank E. D. Gillissen for her help on mathematical statistics, and to all my friends
and fellow students for our conversations which has inspired and motivated me to fin-

ish this work. And last but certainly not least I would like thank my parents for all there

support.

83

Acknowledgement



[1] M. Diepenhorst, W. J. Jansen, J. A. G. Nijhuis, L. Spaanenburg, and A. Ypma,
"Using GREMLIN for Digital FIR Networks" Proceedings MircoNeuro'96, pp.
341—346, 1996.

[2] S. Kaykin, "Neural Networks — A Comprehensive Foundation", Macmillan Col-
lege Pub. Comp. Inc., 1995.

[3] D. B. Fogel, "Evolutionary Computation — Toward a New Philosophy of Machine
Intelligence", IEEE press, 1995.

[4] J. M. Zurada, "Introduction to Artificial Neural Systems", West Publishing Com-

pany, 1992.

[5] D. D. Olmsted, "History and Principle of Neural Networks", at http:llneurocompu-
ting.orgfhistory.html.

[6] M. Hoehfeld, S. E. Fahiman, "Leanng with Umited Numenacl Precision Using
the Cascade—Correlation Algorithm", tech. Report CMU—CS—91—130,Siemens
AG, Munich, 1991.

[7] S. I. Gallant, "Perceptron—based Learning algorithms", IEEE Trans. Neural Net-
works, No. 1, Vol. 2, pp. 179 — 191, 1990.

[8] D. Chen, C. L. Giles, Z. Sun, et al. ,"Constructive Learning of recurrent Neural
Networks", Proc. IEEE Int. Conf Neural Networks, Vol. 3, pp. 1196—1201, San
Francisco, 1993.

[9] 0. F. Meijering, "Parallelism versus Accuracy in Error Back—Propagation Learn-
ing", Thesis M. Sc, 1996.

[10] B. Spaanenburg, "Softwarearchitecten zijn onmisbaar", Automatisering Gids, No
40., pp 21, oct—2—1998.

85

References



[11] D. Garlan, and M. Shaw, "An Introduction to Software Architecture", Advances in
Software Engineering and Knowledge Engineering, Vol 1, World Scientific Pub.
Comp., 1993.

[12] F. J. Hill, and 0. R. Peterson, "Digital Systems — Hardware Organization and De-
sign", John Wiley & Sons, third edition, 1987.

[13] R. vanDrunen, L. Spaanenburg, P. Lucassen, J.A.G. Nijhuis, and J.T. Udding,
"Arithmetic for Relative Accuracy", proc.IEEE symp. on computer Arithetic.
Bath(UK), july 1995, PP. 239—250.

[14] M. Diepenhorst, J.A.G. Nijhuis, and L. Spaanenburg, "A lime—multiplexed Multi-
plying Adder for Neural Signal Processing", proceedings of the IEEE Benelux Sig-
nal Processing Symposium SPS 98, pp. 83—86.

[15] H. M. G. Ter Haseborg, "Een vermenigvuldiger", Scriptie voor technologie map-
ping en VLSI ontwerpen, 1998.

[16] B. Molenkamp, "VHDL, VHDL '87/'93 en voorbeelden", universiteit Twente —
informatica, Enschede ,1995.

[17] K. Skahill, "VHDL for Programmable Logic", Add ison—l4èsley Pub. Comp. Inc.,
1996.

[18] B. W. Lindgren, "Statistical Theory", Chapman & Hall Inc., 4th ed., New York,
1993.

[19] M. B. Priestley, "Spectral Analysis and lime Series —Probability and mathemati-
cal statistics", Academic Press Limited, London, 1981.

[20] P. J. Brockwell, R. A. Davis, "lime Series: Theory and Methods", Springer Series
in Statistic, 1991.

[21] A. F. Murray, "Silicon Implementations of neural networks", fEE Proceedings—F;
Vol 138, No. 1,Feb., 1991, pp. 3 — 12.

[22] R. A. Fisher, "The Use of multiple measurements in taxonomic problems", Annual
Eugenics, Vol. 7, Part II, pp. 179—188, 1936; also in "Contributions to Mathemati-
cal Statistics" (John Wiley, NY, 1950).

[23] R. 0. Duda, and P. E. Hart, "Pattern Classification and Scene Analysis", John
Wiley & Sons, ISBN 0 —471—2236l—l.pp. 218, 1973.

[24] S. W. Piché, "The Selection of WeightAccuracies for Madalines", IEEE Transac-
tions on Neural Networks, Vol. 6, No. 2, 1995.

[25] G. Dündar, and K. Rose, "The Effects of Quantization on Multilayer Neural Net-
works", IEEE Transactions on Neural Networks, Vol. 6, No. 6, 1995.

[26] J. L. Holt, and J—N. Hwang, "Finite Precision Error Analysis of Neural Network
Hardware Implementations", IEEE Transactions on Computers, Vol. 42, No. 3,
1993.

[27] K. E. Atkinson, :"An Introduction to Numeriacl Analysis", John Wiley & Sons,
Second Edition, 1989.

86



Appendix A
The arithmetic principles of Logarithms

John Napier (1550 — 1617)

The idea of the logarithm could have had its source in the use of certain trigonometric
formulas that transform multiplication into addition or subtraction. Recall that if one
needs to solve a triangle using the law of sinus, a multiplication and a division are re-
quired. Astronomers realized that it would be simpler and reduce the number of errors
if the multiplications and divisions can be replaced by additions and subtractions.

A second, more obvious, source of the idea of a logarithm can be probably found in
the work of algebraists such as Stifel and Chuquet, who both displayed tables relating
the powers of 2 to exponents and show that multiplication in one table corresponded
to addition in the other. These tables have increasingly large gaps; they can not be used
for necessary calculations. Around the turn of the seventeenth century, however, two
men working independently, the Scot John Napier(1550—1617) and the Swiss Jobst
Burgi(1552—1632) come up with the idea of producing an extensive table that does
allow one to multiply any number together(not just powers of 2)by performing addi-
tions.

A.1 The idea of the logarithm

For the definition of the logarithm, Napier conceives two number lines. On one line
an increasing arithmetic sequence, 0, b, 2b, 3b,... is represented, and on the other a
sequence whose distances from the right endpoint from a decreasing geometric se-
quence, ar, a2r, a3r , where r is the length of the second line, see figure A-i. The
points on this line can be marked o, r—ai r—a2r, r—a3r For Napier, these points
generally represent sines of certain angles.



I I I I I

0 b 2b 3b 4b

Q '
i i • r

0 r—ar r—a2r r—a3r r—a4r

Napier now considers points P and 0 moving to the right on each line as follows: P
moves on the upper line "in an arithmetical sequence" (that is, with constant velocity).
Thus P covers equal interval [0, b], [b, 2b], [2b, 3b],... in the same time. 0 moves on
the lower line, the geometrical sequence. Its velocity changes so that it too covers each
(decreasing) interval [0, r—arj, [r—ac r—a2r], [r—a2r, r—a3r], ... in the same time. The
distances traveled in each interval form a decreasing geometric sequence r(1—ar),
ar(1—a), a2r(1—a), ... each member of the sequence being the same multiple of the dis-
tance of the left endpoint of the interval to the right end of the line. Because distances
covered in equal times have the same ratios as velocities, it follows that the point's
velocity over each interval is proportional to the distance of the beginning of that inter-
val from the right end of the line. It appears that Napier initially thought of the velocity
of the lower point as changing abruptly when it passed each marked point, remaining
constant in each of the given intervals. In his definition of logarithm, however, Napier
smoothed out these changes by considering the second point's velocity as changing
continuously. Thus a point moves geometrically if its velocity is always proportional
to its distance from the right end of the line. In other words, if the upper point P begins
moving from 0 with a constant velocity equal to that with which the lower point 0 also
begins moving (geometrically) from 0, and if P has reached y when 0 has reached a
point whose distance from the right endpoint (radius) is x, then y is said to be the loga-
rithm of x.

P '
Figure A-i,

Napiers moving
points.

Sidebar A-i;
Napler's, idea In a modem calculus notation

Napiers idea is reflected in the following differential equations

dx dy-=—x x(0)=r -=r y(O)=O

The solution to the first equation Is:

mx = — I + lnr or I = 14

Combining this with the solution y = rt of the second shows that Napier's logarithm y, may be
expressed in terms of the modm natual logarithm as:

y = Nlogx = r14

88



Figure B-i;

The structure of de-
pendency of the mod-
ules decribed in the
VHDL language.

The Hardware Neural System Description

B.1 Neural System description

The decription of the neural hardware system is devided over several modules. The
relations between the modules are shown in figure B-i. Now the whole system is
viewed in this figure, the four main parts of the neural description, namely: main con-
troller, the 10 interface, the processing unit, and last the memory module, and there
dependent module. The packages and the sim_environment, there VHDL decriptions
can be found in appendix C. The following sections will show the description for each
module.

Structure of the modules dependency

20

Appendix B



B.1.1 Interface module

The Interface module description coded by using the VHDL laguage, takes care of the
communication between the neural hardware systems environment and the internal
organization of the system it self. The following code describes the sturucture of the
interface module.

-- VERSION:1.0.1

-- DATE :11-04-1999
-- BY : H.M.G. TerHaseborg

-- DESCRIPTION: The structure of the interface module

library ieee;

use ieee.std_Iogic_1 1 64.all;

entity 10_interface Is

generic (d_buswldth integer := 8;

a_buswidth : integer := 8);

port

start :ln bit;

inputGo In bit;

outputGo : In bit;

not_reset : In bit; —- asynchrone reset

cik : In bit; ——clock signal

ce :In bit; ——chipenable

ReleaseOut : In bit; --release output data

data_portin : In Std_Logic_vector(d_buswidth—1 downto 0);

data_portout : out Std_Loglc_vector(d_buswidth-1 downto 0);

data_busi : In bit_vector(d_buswidth—1 downto 0);

data_busO : out bft_vector(d_buswidth-1 downto 0);

strobe : out bit;

ReadylO out bit; —-interface ready signal

Read : out bit;

Write out bit; —- read/write controle line

address_bus : out bit_vector(a_buswidth-1 downto 0)

end iOJnterface;

use work.general.alI;

use work.constants.alI;

architecture Struct of 10_Interface Is

90



Declaration of signals

signal valid_data: bit;

Definition of components

component 10_controller

generic (a_buswidth: integer 8);

port

start : In bit;

inputGo : In bit; —— start input sequence

outputGo : In bit; -- start output sequence

not_reset: In bit; —- a—synchrone reset

cik In bit;

ReleaseOut : In bit; —-release output data

strobe : out bit; —- timing signal chip

ReadylO : out bit; —- timing signal chip

Read : out bit; -- read for memory

Write : out bit; -- write in memory

address_bus : out bit_vector(a_buswidth—1 downto 0)

end component;

begin

uO: 10_controller

generic map (a_busWidth => a_busWldth)

port map (start => start, InputGo => inputGo, outputGo => outputGo,

not_reset => not_reset, dk => clk, strobe => valid_data,

ReadylO => Readylo, Read => read, Write => Write,

address_bus => address_bus, reieaseout=> reiease0ut);

Combinational Logic

data_busO <= to_bitvector(data_portln) when valid_data = '1'

else (other. => '0');

strobe <= valid_data,

three—state control of the output

three_state: process (Ce, data_busi)

begin

91



If ce = 'V then
datajxwtOut <= to_StdLogicVector(data_buSl);

else
data_portOut <= (others =>

end It;

end process;

end Struct;

B. 1.1.1 The Interface Controller

The controller of the interface module, is separated of the descriptionof the interface
module. The following description shows the logical behavior of the interface mod-
ule, using a state—machine as controller mechanism.

-- VERSION: 1.0.1

-- DATE :11-04-1999

-- BY : H.M.G. TerHaseborg

—- DESCRIPTION: The logical behavior of the interface controller.

library ieee;

use ieee.std_logic_11 64.aIl;

entity 10_controller Is

generic (a_buswidth : integar := 8);

port
:In bit;

inputGo : in bit; -- start input sequence

outputGo : In bit; -- start output sequence

not eset : In bit; —- a—synchrone reset

cik :In bit;

ReleaseOut In bit; —- release output data

strobe : out bit;

ReadylO out bit;

Read out bit;

Write : out bIt;

address_bus : out bit_vector(a..buswidth-1 downto 0)

end l0_controller

use work.general.aIl;

use work.constants.aII;

92



architecture behaviour of 10_controller is

—- Declaration of signals --

signal Address : bit_vector(a_buswidth—1 downto 0);

state machine for data input/output

signal StatelO blt_vector(2 downto 0);

constant idle_lO : bit_vector(2 downto 0):. 00O;

constant Address_l0 : bit_vector(2 downto 0) := 001

constant data_IC : bit_vector(2 downto 0) := 01 I

constant ready_IC : bit_vector(2 downto 0) := 100;

alias rdyi0 : bit Is Stateio(2);

alias ReadWrite : bit Is Statelo(l);

alias Addressl0 : bit Is Stateio(0);

begin

-- Combinational Logic —-

strobe <= Addressl0;

address_bus <= Address;

readylO <= rdylo;

Write <= '1' when inputGo = '1' and ReadWrite = '1' else '0';

read <= 1' when outputGO = .1' and ReadWrite = '1' else '0';

-- Load data state machine behavior

datai0 : process (not_reset, clk, start, inputG0, outputGo)

variable counter: integer;

begin

If not_reset = .0' then

Stateio <= Idle_IC;

elsif dk — 1' and clk'event then

case StatelO Is

when Idle_IC =>

If start = '1' and inputGC = '1' then

counter =0;

StatelO <= Address JO;

elslf outputGo = '1' and inputG0 = '0' and ReleaseOut = 1' then

counter := (network(0) + network(1));

93



StatelO <= Address_lO;

end it;

when Address_lO =>

StatelO <= data_lO;

when data JO =>

counter := counter + 1;

if inputGo = .1. then

If counter /= network(O) then

StatelO <= Address_tO;

else

StatelO <= ready_lO;

end If;

elsif outputGo = '1' then

If counter 1= (network(O) + network(1) + network(2)) then

StatetO <= Address_lO;

else
StatelO <= ready_tO;

end if;

end If;

when ready_tO

If start = .0. then

StatelO <= idle_lO;

end if;

end case;

end If;

Address <= i2bvd(counter,abusWldth);

end process;

end behaviour;

B.1.2 Memory module

The systems memory, which stores and retrieves the results of earlier calculations of

the network, is a RAM (Random Access Memory). The behavior of this module can

be described as follows;

-- VERSION: 1.0.1

-- DATE :11-04-1999

-- BY : H.M.G. Ter Haseborg

-- DESCRIPTION: The behavior of a RAM-memory module

library IEEE;

use IEEE.stdJoglc_1164.alI;

94



entity memory is

generic

tpd :time:=lns;
d_busWidth : integer := 16;

a_busWidth : Integer := 10;

mom_locations : integer := 1024

port
d_busout : out std_Logic_vector(d_busWidth-1 downto 0);

d_busin : in std_Logic_vector(d_busWldth—1 downto 0);

a_bus In std_Logic_vector(a_busWidth—1 downto 0);

write :in bit;

read : in bit;

ready : out bit

end memory;

use work.utllfties.ali;

architecture behaviour of memory is

begin

process

constant low_address: natural := 0;

constant high_address: natural := mem_locations;

type memory_array is array (natural range low_address to high_address) of integer;

variable mom: memory_array : (others => 0);

variable address : natural;

variable data_out : std_Logic_vector(d_buSWidth-1 downto 0);

constant unknown : std_Logic_vector(d_busWldth—1 downto 0) := (others =>

begin

ready <= ,0' after tpd;

-- wait for a command

wait until (read = 1') or (write = '1');

address := bitv2nat(a_bus);

assert (address >= low_address) and (address <= high_address)

report Out of memory range severity warning;

if write = 'V then

mem(address) := bltv2lnt(d_busln);

ready <= .1' after tpd;

walt until write = 0'; -- wait until end of write cycle

else —-read='l'
int2bltv(mem(address).data_out);

d_busout <= data_out;

ready <= '1' after tpd;

wait until read — '0';

d_busout <= unknown;

95



end if;

end process;

end behaviour;

B.1.3 Processing unit

The processing unit of the system hold a variety of modules, the structure of all those

module together is the processing unit. This module describes the construction of all

the modules use and the way in which they are connected.

-- VERSION: 1.0.1

-- DATE :11-04-1999

-- BY :H.M.G. TerHaseborg

—- DESCRIPTION: The structure of the processing unit

library ieee;

use ieee.std_loglc_1 1 64.aIl;

entity Processing_unit Is

generic

d_busWdth integer := 8;

d_busNorm integer := 3; —— 2Iog(d_busWidth)

a_busWidth : Integer := 8;

act integer := 8; -- width input activation function

intemalWidth integer := 16

port(
d_busin : In blt_vector(d_bUSWidth—1 downto 0);

d_busout : out bit_vector(d_buSWidth—1 downto 0);

a_bus : out bit_vector(a_busWidth—1 downto 0);

LdMerri out bit; --load data from memory

rdyAdder : out bit; --adder ready

not_reset : in bit; —— a—synchrone reset

clk :In bit;

start : In bit; -- start determining neuron

ready : out bit -- determination ready

end Processing_unit;

use work.generaLali;

96



use work.utllltles.aIl;

architecture Struct of Processing_unit is

-- Definition of components --

component R_adder

generic

busWidth

internalWidth

port(

d_lnput : In

not_reset : in

cik In

new_data: In

start : in

ready : out

bias out

d_output : out

end component;

Integer := 8;

integer := 16

bit_vector(busWudth—1 downto 0);

bit; —- a—synchrone reset

bit;

bit; —-valid input data

bit; —- start adder repeat

bit; --adder ready

bit; —- next bias call

bit_vector(internaiWidth—1 downto 0)

component DigiLog

generic

d_busWidth

d_busNorm

port(
data_Input

sign

clk

not_reset

stait

data_output

ready

end component;

In

In

in

In

In

out

out

Integer := 8;

integer —3

component Seq_Controller

generlc(a_busWidth :lnteger:8);

port(

not_reset: in

start :ln
cik :ln
a_bus : out

LdMem :out

bit; —- a-synchrorie reset

bit; --start PU_controller

bit; —- clock signal for timing

bit_vector(a_busWidth—1 downto 0);

bit; -- load from memory

97

bit_vector(d_busWidth—1 downto 0);

bit; —-sign data term

bit; —- clock signal

bit; —- an a—synchrone reset

bit; —-start signal

bit_vector((2*d_busWldth)_1 downto 0);

bit —- digilog ready

);



stAdd out bit -- start the adder

);

end component

component PU_Controller

port(

not_reset: In

start In

RdyDIglL : in

BuzyAdd : in

RdyAdd : in

dk in

StartSeq : out

NextW : out

StartDigl : out

Ready out

);

end component;

bit;

bit;

bit;

bit;

bit;

bit;

bit;

bit;

bit

component biasArray

generic (d_busWidth : Integer := 16);

port

follower : in bit; —- next weight

data_bus : out bit_vector(d_busWidth—1 downto 0)

—- next synaptic weight

end component;

component weightArr

generic (d_busWidth : integer := 8);

port
follower : in bit;

sign : out bit;

data_bus : out bit_vector(d_busWidth—1 downto 0)

);

end component;

component dlscnminatoryFunction

port

Input : In bit_vector(9 downto 0);

output : out bit_vector(7 downto 0)

);

end component;

—- Declaration of signals - -

98

signal rdyAdd

signal rdyMulti

blt —-adder ready

bit; —- multiplier ready

—- a—synchrone reset

—-start P controller

—- DigiLog multiplier ready

—-Adder St ill expect data

—-adder is ready

—— clock signal for timing

-— start sequence machine

--call next synaptic weight

--start digiLog multiplier

-- calculation done



signal startAdd : bit; —— start adder

signal startMultl : bit; —— start multiplier

signal startSeq bit; —- stat? sequence machine

signal nextB : bit; —- next bias

signal nextW : bit; —- next weight

signal sign : bit; —-sign of the synaptic weight

signal inputAdd : t_vetor(2*d_busWidth_1 downto 0);

signal muitiout : bit_vector(2*d_busWldth_1 downto 0);

signal outAdd blt_vector(intemalWldth—1 downto 0);

signal inAct : blt_vector(act—1 downto 0);

signal outmulti : bit_vector(d_busWidth-1 downto 0);

signal biasOut bit_vector(2*d_busWidth_1 downto 0);

signal WeightOut bit_vector(d_busWidth-1 downto 0);

signal data_bus : bft_vector(d_busWidth—1 downto 0);

signal cpuOut : bit_vector(d_busWidth—1 downto 0);

begin

uO: R_adder

generic map (busWidth => 2d busWidth , intemalWidth => IntemaiWidth)

port map (d_input => inputAdd, not_reset => not_reset, clk => dk,

new_data => rdyMultl, start => startAdd, ready => rdyAdd,

bias => nextB, d_output => outAdd);

Ui: DigiLog

generic map (d_buswidth => d_busWidth, d_busNorm => d_busNorm)

port map (data_input => data_bus, sign => sign , cik => clk,

not_reset => not_reset, start => startMulti,

data_output => multiout, ready => rdyMulti);

u2: Seq_Controller

generic map (a_busWidth => a_busWidth)

port map (not_reset => not reset, start => startSeq, clk => clk,

a_bus => a_bus, LdMem => LdMem, stAdd => startAdd);

u4: PU_Controller

port map( not_reset => not_reset, start => start, RdyDiglL => rdyMulti,

BuzyAdd => stat?Add, RdyAdd => rdyAdd, cik => cik,

StartSeq => startSeq,

NextW => nextW, StartDigi => startMufti, Ready => Ready);

u5: biaskray
generic map (d_busWidth => 2d_bus Width)

port map (follower => nextB, data_bus => biasOut);

u6: weightArr

generic map (d_busWidth => d_busWidth)

port map (follower => nextW, sign => sign, data_bus —> weightOut);

99



u7: DiscnminatoryFunction

port map (input => inAct, output => cpuOut); -- outADD too large

Combinational Logic

data_bus <= weightOut when nextW = '1' else d_busin;

inputadd <= biasOut when nextB = '1' else multiout;

d_busout <= cpuout;

InAct <= OutAdd(OutAdd'left downto OutAdd'rlght+6);

rdyAdder <= rdyMd;

end Struct;

8.1.3.1 Repeated Adder

The adder use in our design of a neural hardware system is a repeated adder. This adder
has to calculated sums of products, where the products are determined by a DigiLog
multiplier. The number of terms which will be added together, dependents on the sig-
nal of the controller within the processing unit.

-- VERSION: 1.0.1

-- DATE :11-04-1999

-- BY : H.M.G. TerHaseborg

-- DESCRIPTION: A Isv's complement adder, repeated adder

library ieee;

use ieee.std_logic_1 1 64.all;

entity R_adder is

generic

busWidth : integer := 8;

intemalWidth : Integer := 16

port(

d_input : In bit_vector(busWldth—1 downto 0);

not_reset: In bit; —- a—synchrone reset

clk :In bit;

new_data: In bit; —- valid input data

start : In bit; —- start adder repeat

ready : out bit; —-adder ready

bias : out bit; -- next bias call

d_output : out blt_vectorQntemalWldth-1 downto 0)

100



end R_adder;

use work.general.all;

use work.utilities.ali;

architecture behaviour of R_adder is

the functionality of a full ad4er

function full_add (a, b : bit_vector; carry_in: bit) return bit_vector is

variable resutt, carry_array: bit_vector(a'left+l downto 0);

begin

result(O):=a(0) xor b(0) xor carry_in;

carry_alTay(0):=((a(0) xor b(O)) and carryJn) or (a(0) and b(0));

for i In 1 to a'ieft loop

resuttQ):=aQ) xor b(i) xor carry_arrayQ-1);

carry_array(i):=((aQ) xor bQ)) and carry_arrayQ—1)) or (a(l) and bQ));

end loop;

result(a'Ieft+l ):= cany_array(a'left);

return resuit;

end full_add;

—- converts a signed represenat ion into a two's comp!. --

function mag2twos (q : bit_vector; width : integer) return bit_vector is

variable twos_q: bit_vector (width downto 0);

begin

twos_q := fuIl_add( (not a), i2bvd(0, width), 'l); —— (not q) + 1

return '1' & twos_q(twos_q'left—2 downto 0);

end mag2twos;

—- Declaration of signals ——

signal Input : bit_vector (intemalWidth—1 downto 0);

signal add_reg : bit_vector (intemalWidth—1 downto 0);

signal add_res : bit_vector (intemalWidth downto 0);

alias result : blt_vector(add_res'left—l downto add_res'nght)

is add_res(add_res'ieft—l downto add_res'rlght);

signal def. state machine

signal State : bit_vector(2 downto 0);

constant Idle : bit_vector(2 downto 0) := 011";

101



102

constant NextTerm: bit_vector(2 downto 0) :=

constant AddEnd : bit_vector(2 downto 0) := "000;

constant AdderRdy: bit_vector(2 downto 0) := 110;

alias CailBias : bit is State(1);

alias addrdy : bit Is State(2);

begin

Combinational Logic

ready <= addrdy;

bias <= CailBias;

d_output <= result when resuft(resuit'lefi) = 'O else mag2twos(resultintemalWidth);

State machine definition

stateMachine: process (not_reset, cik)

variable number: integer;

variable New_input: bit_vector (internalWidth—1 downto 0);

begin

if not_reset = .0' then

State <= Idle;

elsif dk = '1' and clk'event then

case State is

when Idle =>

add_reg <= input;

If start = '1' then

State <= NextTerm;

end if;

when NextTerm =>

if new_data = 1 then

add_res <= full_add(input, add_reg,'O');

State <= AddEnd;

end if;

when AddEnd =>

add_reg <= result;

If start = '0' and new_data = '1' then

State <= MderRdy;

else

State <= NextTerm;

end If;

when AdderRdy =>

State <= Idle;

end case;

end If;

number :— bitv2int(d_input);

lnt2bltv(number, New_Input);



input <= new_input;

end process;

end behaviour;

B. 1.3.2 Digilog Multiplier

A multiplier is one of the main components of a neural hardware implementation. The
multiplier use in this design is a digital logarithmic multiplier. The product terms a
offered one by one to the system, another property is that both terms are positive and
are in signedd magintude representation. The answer of the multiplier is only in two's
complement representation. This to get a better and easier way to connect the multipli-
er to the repeated adder. The following description shows the bahavior of the DigiLog

multiplier.

-- VERSION: 1.0.1

-- DATE :11-04-1999

-- BY :HM.G. TerHaseborg

-- DESCRIPTION: DigiLog multiplier for signed data

library ieee;

as result twos complement

use leee.std_logic_1164.all;

entity DigiLog Is

generic

d_busWidth : Integer : 8;

d_busNorm : integer := 3

port(

not_reset : in

start In

data_output : out

ready : out

blt_vector(d_busWidth-1 downto 0);

—-sign data term

—— clack signal

bit; —- an e-synchrone reset

bit; —- start signal

bft_vector((2*d_buSWldth)_1 downto 0);

bit —-digilog ready

use work.general.aIi;

architecture Struct of DigiLog Is

103

data input

sign

cik

In

In

In

bit;

bit;

end DigiLog;



104

-- the functionality of a full adder --

function lull_add (a,b:bit_vector carry_in: bit) return bit_vector is

variable result, catty_array: bit_vector(a'left+i downto 0);

begin

resutt(O):=a(0) xor b(O) xor carry_in;

carry_array(0):=((a(0) xor b(0)) and carry_in) or (a(O) and b(0));

for I In ito aleft loop
result(i):=afi) xor b(l) xor carry_array(I—1);

carry_arrayçi):=((a(l) xor b(l)) and carry_arrayQ—i)) or (a(l) and bQ));

end loop;

result(aleft+1):= carry_array(a'left);

return result;

end fulL add;

- - A barrel shifter

function barrel_Shifter (vector: bit_vector; shift: bit_vector) return bit_vector Is

variable shift_mt : integer := 0;

variable shift_counter: integer range 0 to 2(shift'high+i) := 1;

begin

shift_mt := bit2int(vector);

If orvec(shift) = 1, then

for J In shift'low to shift'high loop

if (shift(j) 1= 0') then

for i In 1 to shift_counter loop

shift_mt := shift_mt * 2;

end loop;

end If;

shift_counter := shift_counter * 2;

end loop;

end If;

return i2bvd(shift_int, 2*d_busWldth);

end barrel_Shifter;

-- the function stripbit' removes the

—- high'est order bit of a data vector

function stripbit (vector: bit_vector) return bit_vector Is

variable bitfound : bit := '0';

variable norm_vector: blt_vector(d_busWidth—1 downto 0);

begin

for i in vector'high downto voctor'low loop

If vector(i) = 1' and bittound = '0' then

norm_vectorQ) :— '0';



bitfound := '1';

else

norm_vectorfi) : vectorQ);

end If;

end loop;

return norm_vector;

end stripbit;

This function checks of a data vector is zero

function not_Zero(vector bit vector) return bit is

variable bitFound: bit :=

begin

for i In vector'high downto vector'low loop

If vector(1) = 'l' then

bitFound := '1';

end if;

end loop;

return bitFound;

end not_Zero;

- - normalize determines the index of the MSB in a vector - -

function normalize (vector:bit_vector)return bit_vector is

variable bitFound : bit :=

variable norm_vector: bit_vector(d_busNorm—1 downto 0);

begin

for I In vector'high downto vector'low loop

If vector(i) = I • and bitFound = 'O then

norm_vector := i2bvdQ—vectoiiow, d_busNorm);

bitFound := I';

end If;

end loop;

return norm_vector;

end normalize;

-- converts a signed represenation info a two's comp!. --

function mag2twos (q:blt_vector; width : integer) return bit_vector Is

variable twos_q: bit_vector (width downto 0);

begin

twos_q := full_add( (not ci), i2bvd(0,width), '1'); ——(not q) + 1

return '1' & twos_q(twos_q'ieft—2 downto 0);

end mag2twos;

105



Declaration of signals

signal norm_r

signal N

signal br

signal data

data_a rbr

signal data_erbr

signal o_reg

signal shifter_O

signal norm_data

signal adder_O

signal ioadRa

alias catty

alias r

bit_vector(d_bUSWidth-1 downto 0); —-data path of ar and br

blt_vector(2*d_bUSWIdth_1 downto 0); -— output register

blt_vector(2*d_bUSWidth_1 downto 0); -— shifter output

bit_vector(d_bUSNOIm—1 downto 0); -— the norm of the data

bit_vector(2*d_bUSWidth downto 0); --adder output

bit;

bit is adder_O(adder_Oieft);

bit_vector(adder_O'left—l downto adder_O'rlght)

is adder_O(adder_Oieft—1 downto adder_O'right);

data_output

shifter_O

data

data_arbr

adder_O

ready

norm_data

ioadra

norm_r

<= o_reg when o_reg(o_reg'left) =oelsemag2twos(o_re9,2*d_bUSwidth)

<= barrel_shlfter(data, norm_r);

<= data_input when switch_data = '1' else data_wbr;

<= ar when switch_arbr='l' else br;

<= fuIl_add(shifter_O o_reg, 'O;

c= rdy

<= normaiize(data);

<= switch_arbr

<= norm_data when cik='l and clk'event else norm_r;

blt_vector(d_bUSNOrm-1 downto 0);

blt_vector(d_busWidth—1 downto 0);

bit_vector(d_bUSWIdth—1 downto 0);

blt_vector(d_buSWIdth—1 downto 0);

-— normalize register

—- data register a

—-data register b

-— data path of data_input or

-- signal def. state machine

signal State : blt_vector(4 downto 0);

constant End_Start: bit_vector(4 downtO 0) := '01000';

constant InitA : bit_vector(4 downto 0) := '00011';

constant lnitB : bit_vector(4 downto 0) := '00101';

constant ProcesA : blt_vector(4 downto 0) := '00110";

constant ProcesB : blt_vector(4 downto 0) := '00100';

atlas switch_data : bit is State(0);

alias switch_arbr : bit is State(1);

alias rdy : bit is State(3);

begin

—- Combinational Logic --

106



-- Process state machine multiplier

state_tr:proc.ss(not_reset,clk)

begin

if not_reset = '0' then

State <= End_Start;

elsif cik —'1' and clk'event then

case State is

when End_Start =>

if start = .1' then

State <= initA;

end if;

when InitA =>

o_reg c= (others => '0');

if not_Zero(data) = .1' then

at <= stnpbit(data);

State <= lnitB;

else

State <= End_start;

end if;

when lnitB =>

if not_Zero(data) = '1 • then

br <= stripbit(data);

o_reg <= r
State <= ProcesA;

else

State c= End_Start;

end if;

when ProcesA =>

o_reg <= r

at <= stnpbit(data);

if not_Zero(data) = '1' then

State <= ProcesB;

else

o_reg(o_reghigh) <= sign;

State <= End_Start;

end if;

when ProcesB =>

o_reg <= r

br <= stripbit(data);

if not_Zero(data) = '1' then

State <= ProcesA

else

o_reg(o_reg'high) <= sign;

State <- End_Start;

end if;

end case;

107



end if;

end process state_tr;

end Struct;

B. 1.3.3 Sequence Controller

This controller description, takes care of the determine sequence, given a network to-
pology. The only output is the address of a memory location where the data is stored
which must be use by the next calculations.

-- VERSION: 1.0.1

—— DATE : 11—04—1999

-- BY : H.M.G. TerHaseborg

—— DESCRIPTION: The determination sequence machine

—- it det. the addres of the following memory

—— location to recall

library ieee;

use ieee.std_logic_1164.all;

entity Seq_Controller Is

generic ( a_busWldth : integer := 8);

port(
not_reset : in

start : In

cik :in
a_bus : out

LdMem out

stAdd : out

bit; —- a—synchrone reset

bit; —- start PU_controller

bit; —-clock signal for timing

bit_vector(a_busWidth—1 downto 0);

bit; —- load from memory.

bit -- start the adder

108

end Seq_Controller;

use work.generai.all;

use work.constants.all;

architecture behaviour of Seq_Controller Is

signal address: bit_vector (a_busWidth-1 downto 0);

signal def. state machine



signal State : bit vector(1 downto 0);

constant Idle : bit_vector(1 downto 0) := "10;

constant waiting : blt_vector(1 downto 0) := .01 ;

alias Read : bit is State(0);

begin

Combinational Logic

a_bus <= address;

LdMem <= Read;

The calucaltion sequence machine's behavior

sequence: process (not_reset, cik, start)

variable counter, layer, neuron, next_site : Integer

begin

If not_reset = '0' then

layer := 1; neuron := 0; next_site := 0; counter := 0;

State Idle;

elsif dk = '1' and cik'event then

case State Is

when Idle =>

If start = '1' then

address <= i2bvd((counter + next_site),a_busWidth);

next_site := next_site + 1; —— next input site

State <= waiting;

end if;

when waiting =>

If next_site >= network(layer—1) then

next_site := 0;

neuron := neuron + 1; ——next neuron
If neuron > networkQayer)—1 then

neuron =0;

counter := counter + network(iayer—1);

layer := layer + 1;

If layer> (Nr_layers—1) then

counter =0; layer := 1;

end If;

end If;

end If;

State <= Idle;

end case;

end If;

if next_site> 0 then

stAdd <= '1'; —- Start adder
else

stAdd <= '0';

109



end if;

end process;

end behaviour

8.1.3.4 ProcessIng Units Controller

This description is the main controller of the processing unit. It controls all the ins and
outs of the processing unit. All the modules controlling line are coming together in
this controller to make sure that every action is controlled and synchronized. The state
machine which performs all the actions is described in the following VHDL—code.

-- VERSION: 1.0.1

-- DATE
-- BY

—— DESCRIPTION: Calculation machine that is cabable of

—— controlling the synaptic and neuron calculations

library ieee;

use ieee.std_logic_11 64 all;

entity PU_Controller is

port(
not_reset: in bit;

start : in bit;

RdyDigiL : in bit;

BuzyAdd : in bit;

RdyAdd : in bit;

cik :ln bit;

StwtSeq : out bit;

NextW : out bit;

StartDigi : out bit;

Ready :out bit

- - a—synchrone reset

—- start PU_controller

DigiLog multiplier ready

—-Adder still expect data

—- adder is ready

-- clock signal for timing

-- start sequence machine

—- call next synaptic weight

--start digiLog multiplier

—- calculation done

110

end PU_Controller

use work general.ali;

use work.uthities.ali;

architecture behaviour of PU_Controller is

signal def. state machine

11-04-1999

H.M.G. Ter Haseborg



signal State : bit_vector(6 downto 0);

constant Idle : blt_vector(6 downto 0) := 10OOOOO;

constant LdinpandB : bit_vector(6 downto 0) := 0000011;

constant StDigi : bit_vector(6 downto 0) := 000010*;

constant LdW : bit_vector(6 downto 0) 0001100;

constant Waiting : bit_vector(6 downto 0) := 0000000;

constant WriteOut : blt_vector(8 downto 0) := *0100000;

constant Rdy : bit_vector(6 downto 0) := 001 0000;

alias NextGo : bit is State(0); —- determine next addres to call

alias StartM : bit Is State(1); —- start multiplier

alias nextWelght : bit Is State(2); —- call next synapic weight

alias caiRdy : bit is State(4); -- calculation done

begin

-- Combinational Logic - -

stwtSeq <= NextGo;

NextW <= NextWaight;

Ready c= caiRdy;

StartDlgi <= StartM;

State machine definition

calculation: process (not_reset, dk, start)

begin

if not_reset = .0' then

State <= idle;

elsif cik = '1' and cik'event then

case State is

when Idle =>

if start = '1' then

State <= LdinpandB;

end if;

when LdinpandB =>

State <= StDigi;

when StDigi =>

State <= LdW;

when LdW =>

State <= Waiting;

when Waiting =>

if RdyoigiL = '1' and BuzyAdd = '0' then

State <= WriteOut;

elslf RdyDigiL = '1' and BuzyAdd = 'V then

State <= LdinpandB;

end If;

when WrileOut =>

if RdyAdd = '1' then

111



State <= Rdy;

end if;

when Rdy =>

State <= idle;

end case;

end if;

end process;

end behavlour

B.1..3.5 Bias Array

The biases of the neural network are stored in a look—up table in such an order that
they can be accessed one by one. The output of this module represents the values of
the table in two's complement, and with a word width twice as large a the use data bus.
The output is directly connected to the repeated adder. The behavioral description of
the working of this module is given by the following code.

-- VERSION: 1.0.1

-- DATE :11-04-1999

-- BY : H.M.G. TerHaseborg

-- DESCRIPTION: The behavior of the bias-ROM memory

library ieee;

use ieee.std_iogic_1164.all;

entity biasArray is

generic (d_busWidth: integer := 16);

port

follower : in bit; -- next weight

data_bus : out blt_vector(d_busWidth—1 downto 0)

end biasArray;

use work.general.all;

use work.constants.all;

architecture behavior of biasArray Is

112



the functionality of a full adder

function fulL add (a,b:bit_vector carry_in: bit) return bit_vector is

variable result, carry_array: blt_vector(a'left+l downto 0);

begin

resuft(O):=a(O) xor b(O) xor carry_in;

carry_array(O):=((a(O) xor b(O)) and carry_in) or (a(O) and b(O));

for i in ito aleft loop
resuit(u):=a(i) xor bQ) xor carry_arrayQ—1);

carry_array):=((aQ) xor b(i)) and carry_array(i—1)) or (a(1) and bQ));

end loop;

result(a'left+l ):= carry_array(a'left);

return result;

end full_add;

from signed to two's complement representation

function mag2twos (q:bit_vector) return bit_vector is

variable twos : bit_vector(d_busWidth downto 0);

begin

twos := full_add((not q), i2bvd(0, d_busWidth),'i '); —- (not q) + 1

return 'V & twos(twos'left—2 downto 0);

end mag2twos;

Declaration of signals

signal value : blt_vector(23 downto 0);

signal vaiTbi : blt_vector(d_busWidth-1 downto 0);

signal pre_out: bit_vector(d_busWidth—1 downto 0);

signal count : integer :=maxBlas;

alias valueThl: bit_vector(d_busWidth-i downto 0) Is

value(value'Ieft downto value'right+(23-d_busWidth));

begin

—- This process represents the table values one bye one

-- in only one sequence. Namely from index 0 to max index. --

counter: process (follower)

begin

if follower = '1' and followerevent then

if count < maxBias then

count <= count + i;

else

count <=0;

113



end It;

end 1f

end process;

Combinational Logic

—— translates the integer values of the weight table into

—-a binairy representation and if nessecery puts it in two's

—- complement.

value <= l2bvd(BiasTbI(count), 24); —— coding bias in 24 bit

vaiTbl <= vaiuelbl;

pie_out <= vaiTbl when BiasTbl(count) >= 0 else mag2twos(valThl);

data_bus <= pie_out;

end behavior;

8.1.3.6 Synaptic Weight Array

This module describes the interaction between the generated look—up table for the
synaptic weights, and the processing unit it self. The weights are stored in a table in
such an order that they can be recall one by one. These synaptic weights are repre-
sented in signed magnitude representation, to preserve the DigiLog multipliers prop-
erties. Two functions are described, to make use of rounding techniques, as mentioned
in chapter 6. Those functions are round—off for the rounding the result up and down,
and the jamming operator for some sort of ceiling operation. The following descrip-
tion shows how the tables are accessed and the way of converting the values to signed
magnitude representation.

-- VERSION: 1.0.1

-- DATE :11-04-1999

-- BY : H.M.G. Ter Haseborg

-- DESCRIPTION: The behavio, of the weight rom module

use work.general.alI;

use work.constants.alI;

library ieee;

use ieee.std_logic_1 1 64.alI;

entity weightArr Is

generic (d_busWidth: Integer := 8);

114



port

follower : in blt -- next weight

sign out bit;

data_bus : out blt_vector(d_busWidth—1 downto 0));

end welghtArr;

architecture behavior of weightArr Is

Function Definition

function roundoff(Nmax: bit_vector; N : integer) return bit_vector Is

variable p : bit vector(N—1 downto 0);

variable q,klad: integer;

begin

for j In 0 to N—i loop

p(N—i —j):= Nmax(1 1—j);

end loop;

q := bit2int(Nmax(Nmax'high—N downto 0));

if q >= (2(i 2—N—i)) then

klad := bit2int(p)+1;

p := i2bvd(klad.N);

end if;

return p;

end roundoff;

function jamming(Nmax: bit_vector; N Integer) return bit_vector is

variable p: bit_vector(N—1 downto 0);

variable q,klad: integer;

begin

for j in 0 to N—i loop

p(N—1 —D:= Nmax(i 1 -.j);

end loop;

q:=bit2int(Nmax(Nmax'high-N downto 0));

ifq/=Othen
p(piow):=i';

end If;

return p;

end jamming;

- - Declaration of signals - -

signal value : bft_vector(1i downto 0);

signal vaiThI : blt_vector(d_busWidth—1 downto 0);

signal count : Integer :=maxweight;

alias vaiueTbl bit_vector(d_busWldth—1 downto 0) is

value(value'ieft downto value'nght+(l 1 —d_busWidth));

115



begin

This process represents the table values one bye one

in only one sequence. Namely from index 0 to max index.

counter process (follower)

begin

if follower = '1' and follower'event then

If count < maxweight then

count <= count + 1;

else

count <= 0;

end if;

end if;

end process;

translates the integer values of the weight table into

a binairy representation and if nessecery in

a signed representation

value <= i2bvd(weightsTbl(count),1 2); ——max coding 12 bits

vaiTbi <= vaiueTbl;

—- valThl <= roundoff (value, d_bus Width); -- for the round —off operator

—- valTbl <=jamming(value, d_bus Width); --for the jamming operator

sign <= '0' when weightsml(count) >= 0 else '1';

data_bus <= vaiThi;

end behavior;

B. 1.3.7 DiscrimInatory Function

The discriminatory function use is the sigmoid function. The function results are
stored in alook—up table. The VHDL description of this module is generated by using
a tool, therefore it can be found in the following appendix C.

B.1 .4 Main Controller

The module main controller takes care of a good communication between all compo-
nents in the neural hardware system. Those main three components are; (1) the inter-
face module, (2) the RAM module, and (3) the Processing unit. The behavior of the
main controller is described in the following VHDL—code.

116



-- VERSION: 1.0.1

-- DATE :11-04-1999

-- BY : H.M.G. TerHaseborg

-- DESCRIPTION: The Main controller

library ieee;

use ieee.std_logic_1164.all;

entity Main_Controller Is

generic (a_busWidth Integer := 8);

port(

not_reset In

dk In

RdylO : In

RdyCal : In

StLd :out
StCal : out

StOut out

a_bus : out

bit; -- a-synchrone reset

bit;

bit; —— 10 ready

bit; —- calculations done

bit; —— Start Load process

bit; —— Start calculations

bit; —- Start output process

bit_vector(a_busWidth-1 downto 0)

end Main_Controller;

use work.general.all;

use work.utilities.all;

use work.constants.all;

archItecture behaviour of Main_Controller Is

—- signal def. state machine

signal State

constant Load

constant Cai

constant Output

alias LoadGo

alias CalGo

alias OutGo

begin

StLd

StCal

StOut

bit_vector(2 downto 0);

bit_vector(2 downto 0) :=

bit_vector(2 downto 0): 01 0;
bit_vector(2 downto 0) := 100;

bit is State(0);

bit Is State(1);

bit is State(2);

<= LoadGo;

<= CalGo;

<= OutGo;

Combinational Logic

117



118

State machine main behavior

MainProcess: process (not_reset, dk)

variable StoreAddress: Integer

variable number : integer := 0;

begin

If not_reset = '0' then

StoreAddress := network(0);

State <= Load;

elsif cik = '1' and clk'event then

case State Is

when Load =>

StoreAddress := network(0);

If rdylO = '1' then

State <= Cal;

end If;

when Cal =>

If RdyCai = '1' and StoreAddress >= Nr_Neurons—1 then

If number> network(2)—1 then

State <= Output;

end If;

elslf RdyCal = '1' and StoreMdress < Nr_Neurons—1 then

StoreAddress := StoreAddress + 1;

end 1f

number := number + 1;

when Output =>

if rdylO = '1' then

State <= Load;

end If;

end case;

end If;

a_bus <= i2bvd(StoreAddress,a_busWidth);

end process;

end Behaviour



The Generation Tools and Simulation Environments

C.1 Characteristic Extraction Tool

The extraction of the network characteristics is performed by using a InterAct applica-
tion. This application is also capable of translating the pattern database file, which is
use to train and test the network in InterAct. Not all the characteristics are converted
to the resulting VHDL—file, in chapter 4 those missing statements are reported there.
The code missing is the translation of the networks topology, and is in the hardware
neural system very important(for the calculation sequence). The InterAct application
is written in the program language C. Using this program can only be satisfying as the
properties known and used, as mentioned in chapter 4. The two VHDL—filesgenerated
by this tool are, the file named constant and the file name suitable. The first
flle(constant.vhd) shows the extracted parameters of the network which are men-
tioned in two different look—up tables, namely the weight table and the bias table. The
second file(Simtbl.vhd) is showing a translation of the input and target vectors from
the pattern database file. The following C—code shows the source code of this InterAct
application.

#include <stdio.h>

#ir,clude <math.h>

#inc!ude <stnng.h>

#include <stdlib.h>

#ir,clude nteracth

#define TRUE (1==1)

#de fine FALSE (1 ==O)

#de fine DATAPWD 7ruglO3/home2/users/csg/csg89O/datat

#de fine MAX BITS 14

typed.f struct {

mt NrBits;

119

Appendix C



mt createSim;

mt createTbi;

mt manual;

float UpperRange, LowerRange;

} Options;

void CheckStatus (status_St status)

p
P ACTION: Checks the status fields after processing a InterAct call *1

P *1

p INPUT : status_St status -> a record with status fields *1

p *1

P OUTPUT: FUNCTION -> by a successful InterAct call the program resumes

P else the application will stop
*1p

{
if(status.aII 1= status_Sok)

{
error_Sn_print(status);

interact_SterminateQnit_mode_Sstop, &status);

exit(1); }

*1

*1

*1

*1

*1

void setoefault(Options *optlon)

p
p ACTION: Set the default options is the data structure option

p
P INPUT : Options *Option —> a struct with data field for the options

P

P OUTPUT: FUNCTION -> The option field filled with default values

1*

{
option—>NrBits = 12;

option->createSim = TRUE;

optlon->createTbl = TRUE;

option->manuai = FALSE;

option—>UpperRange = 10.0;

option->LowerRange = —10.0;

}

void getOptions(int argc, char argv[), Options *option)

p *1

p ACTION: Checks which options are given as parameters to the application

p *1

p INPUT: mt argo -> a counter and gives the number of given arguments *1

p char argv(j -> an array with the arguments of the application

P Options *Option -> the Options received from the environment *1

p
p OUTPUT: FUNCTION -> in the struct option, the arguments from the input *1

p

120



{ inti;
for (1=2; k=argc; i++) {

switch(argv[i]) {

case 's' : case 'S':
optlon->createSim = TRUE;

break;

case 't' : case T:
optlon->createTbl = TRUE;

break;

case'm' :case'M:
optlon->manual = TRUE;

break;

case u' : case 'U':
option->UpperRange = atof(*argvp+1J);

break;

case 'I' : case 'L':
option->LowerRange = atof(*argv+1j);

break;

default:

break;

}

}

}

void MyScalePattems (pattem_Slist_id_t list_id,

float input_mm, float input_max, float target_mm, float target_max)

P *1

P ACTION: Scales the pattern database *1

P *1

P INPUT : float input_mm -> lowerbound of the input range to scale

P float input_max -> upperbound of the input range to scale

p float target mm —> lowerbound of the target range to scale

p float target max -> upperbound of the target range to scale *1

p *1

P OUTPUT: FUNCTION -> a fully scaled database between the given bounds *1

P *1

{
status_St status;

pattem_SlistJnfo_t info;

pattern_Slist_column_statlsticsJ statistics;

long

pattem_Slist_get_info (list_id, &info, &status);

P Scale the input—patterns /

for (1 = 1; I <= mnfo.nr_mnputs; i++)

{
pattem_Slist_get_statistics (list_id, selectlon_Sinput_column, I, &statlstics, &status);

pattem_Slist_scale (list_id, selection_Sthput_column, i, statistics.min, statistics.max,

input_mm, input_max, &status);

)

121



122

p Scale the target—patterns *1

for (I = 1; I <= info.nr_targets; 1+4)

{
pattem_Slist_get_statlstics (!istjd, selectlon_Starget_column, I, &statistics, &status);

pattem_Sllst_scale(lIstJd, selectlon_Starget_column, I, statistics.min, statistics.max,

target_mm, target_max, &status);

}

}

void ExamineConstantsQnt nrBias, bit *nrWelghts, float *max)

P
P ACTION : searching the largest absolute weight or bias *1

p *1

p INPUT: mt nrBias —> the total number of biases in the network

p ant nrWeights—> the total number of synaptic weights in the system *1

P *1

P OUTPUT: FUNCTION —> the maximal absolute value of the weights as biases *1

p
{

get_Sneuron_info_t neuron_info;

get_SinputJnfo_t *info;

status_St status;

long nr_lnputs;

mt

float largest=O.O,smallest=O.O;

bias_St bias;

get_Sid_neuron(get_Soptlon_flrst,OLhlddefl_SliSt,NULL &neuron_into.id,&status);

CheckStatus(status);

while(status.all==status_Sok)

get_Sneuron_bias(neuron_into.id &bias, &status);CheckStatus(status);

if (largest < bias) largest = bias;

If (smallest > bias) smallest = bias;

nrBias += 1;

get_Sinfo_neuron(&neuronJnfo.&status); CheckStatus(status);

p Allocate room to store the results */

info = (get_Sinput_lnfo_t lmalloc(neuron_mnfo.nr_mnputS * sizeof(get_Sinput_info_t));

get_Sneuron_inputs(neuron_info.Idjnfo,&nr_inputs.&StatuS);

forQ=O;i<=(neuron_info.nr_inputs—1 );i++)

it (largest < lnfo[IJ.welght) largest=info(i].weight;

If (smallest> mnto[iJ.weight) smallest=info[i].weight;

*n1eights += 1;

}
get_Sid_neuron(get_SoptlonJarger, neuron_lnfo.id, neuron_Slist. NULL,

&neuron_lnfo.ld,&status);

}

If (fabs(largest) <fabs(smallest))



}

else

= fabs(smailest);

= fabs(largest);

float scaleTo(float value, float FromLow, float FrornHigh, float ToLow, float ToHigh)

p

p
fi INPUT: float

p float

p float

p float

p float

p

*1

*1

*1

*1

*1

*1

*1

*1

*1

*1

*1

*1

*1

*1

*1

*1

*1

•1

*1

*1

p

INPUT: float
FILE

mt

mt

get_Sld_neuron(get_Soption_flrst, OL, hidden_Slist, NULL, &neuron_Info.Id, &status);

CheckStatus(status);

whlle(status.ail==status_Sok)

{
get_Sneuron_blas(neuron_into.id. &bias, &status); CheckStatus(status);

If (i < nrbias)

fprintf(ptr,%d, ,Qnt)scaIeTo(bias, —range, range, _pow(2.0,(NrBits*2.0)_1 .0)

,pow(2.0,(NrBits'2.0)—1 .0)));

123

p ACTION : scales a value of an range to another range

value —> the value that must be scaled

Formlow -> The lowest interval of the value given

Formhigh -> The highest interval of the value given

Tolow -> The lowest interval of the new value given

To high -> The highest interval of the new value given

p OUTPUT: FUNCTION -> a new value in another range

p
{

float IntervaiFrom, IntervalTo;

intervaiFrom = FromHigh — FromLow;

intervalTo = ToHigh - ToLow

return ((value_FromLow)*intervalTo) I IntervaiFrom + ToLow;

}

voId createBiasTbl(float range, FILE *ptr, Int NrBits, mt nrbias)

p ACTION: writes to file the translated bias values in N bits

p
p
p
P
1*

P

range -> the bias interval

pit -> a filepomnter to a file

nrbits —> the number of bits to represent the biases

nrbias -> the total number of biases in the network

P OUTPUT: FUNCTION -> a file holding the translated biases of the network

p
{

get_Sneuron_info_t neuron_Info;

status_St status;

bias_St bias;

mt i=1;



else
fprintf(ptr,%d\n\t",Qnt)scaleTo(blas, —range, range, _pow(2.0.(NrBlts*2.0)_1 .0)

,pow(2.0,(NrBits*2.0)_1 .0)));

If (I%10 == 0) fpnntf(ptr,\n\fl;
get_Sid_neuron(get_Soption_larger, neuron_info.id, neuron_Slist, NULL,

&neuron_info.ld,&status);

l+=1;

}

}

void createWeightTbl(fioat range, FILE *ptr, mt NrBits, mt nrweights)

p
/* ACTION: writes to file the translated weights in N bits *1

p *1

I" INPUT: float range -> the weights inte,val *1

p FILE prt —> a filepointer to a file *1

p mt nrbits —> the number of bits to represent the weights

p kit nrbias -> the total number of weights in the network

1*

p
P

OUTPUT: FUNCTION -> a file holding the translated weights of the network *1

*1

get_Sneuron_info_t

get_Sinput_info_t

status_St

long

mt

neuron_info;

Info;
status;

nrnputs;
I, J=1;

get_Sid_neuron(get_Soptiofl_first, OL, hidden_Slist, NULL &neuron_info.id, &status);

CheckStatus(status);

whlle(status.alI==status_Sok)

get_Sinfo_neuron(&neuronjnfo,&status); CheckStatus(status);

p Allocate room to store the results */

info = (get_Slnput_info_t lmalloc(neuron_info.nr_inputs *slzeof (get sinput info I));

get_Sneuron_Inputs(neuron_lnfo.ld, Info, &nr_Inputs, &status);

forQ=0; k=(neuron_info.nr_inputs—1); i++)

{
If 0< nrwelghts)

fprintf(ptr,%d,

Toçinfo].wetght,—range,range,—pow.0,(NrBIts)—1 .0)

•pow(2.0,(NrBits)—1 .0)));

else

fpdnff(pti%d\n,(lnt)sca1e-

Tonfo[i).weeght,range,range,—pow.0,(NrBftS)—1 .0)

,pow(2.0,(NrBits)—1 .0)));

}

IfU%10==0)
fprintf(ptr\n\fl;

,Qnt)scaIe-

{

{

124



get_Sid_neuron(get_SopticnJarger, neuron_Infoid, neuron_Slist, NULL,

&neuroninfo.id,&status);

}

}

void createFile(float range, mt nrBias, mt nrWeights,int nrblts, char *fiiename)

p
P ACTION: Creates the body of the VHDL file

p *1

p INPUT: float range -> the range of all the characteristics *1

mt nrBias -> The number of biases in the network *1

p mt nrWeights -> The number of weights in the network *1

p mt nrbits -> The number of bits used for representation *1

p char filename —> the name of the VHDL file

1*

P OUTPUT: FUNCTION -> a file with a body *1

*1

{
FILE ffiiePtr,

If ((filePtr = fopençconstant.vhd', mw")) == NULL)

{
printfçFATAL ERROR -> VHDL File could NOT be GENERATED !!I\jfl;

return;

fprintf(filePtr,"

fprintf(filePtr,'-- VERSION: 1.0 --\n");

fprintf(filePtr.—— FILE : constant.vhd ——\n');

fprintf(filePtr,—— DATE : may 3rd, 1999

fprintf(filePtr.-- GENERATED by : Generate --\n');
fprtntf(filePtr,—— DESCRIPTION : The biases and weight tables of ——\n");

fprintf(filePtr,'-- a MLP-network.

fprintf(filePtr,'—— %s ——\n, filename);

fprintf(fiiePtr,—— ——\n");

fprlntf(filePtr," — — —

fprintt(filePtr,\nhibrary ieee;\nuse ieee.std_Iogic_1 1 64.aiI;\nD;

fprintf(filePtr,package constants is \n\n");

fprintf(fiiePtr,type tableBias Is array (0 to %d) of integer;\n",nrBias—1);

fprintf(filePtr,constant BiasTbl: tableBias := (\n\fl;

P Fill bias Table */

createBiasTbl(range, filePtr, nrbits, nr8las);

fprintt(filePtr,'\t\t);\n\nconstant maxBias: integer := %d;\n',n",nrBlas—1);

fpnntf(filePtr,type tableWeights is array (0 to %d) of integer;ji,nrWeights—1);

fprintf(filePtr,constant weightsTbl: tableWeights := (n\r);

P Fill weights Table *1

createWelghtThl(range, flIePtr, nrbits, nrWeights);

fprintf(filePtr,\t\t);\n\nconstant maxWeight: integer := %d;\nW',nrWeights—l);

125



fprintf(filePtr,"end constants;\n');

fclose(fiiePtr);

}

void createTables(Opticns *opbon char ifilenarne)

P
P ACTION: decide which file to create and how *1

P
P INPUT: Options option —> the argument record *1

' char Filename -> The name of the file *1

P *1

p OUTPUT: FUNCTION -> a decision how to create the file *1

P *1

{
mt nrBias=O, nrWeights=O;

float max=O.O;

If(option—>manual)

createFiie(option_>UppefRange_OptiOfl—>LOWerRange, nrBias, nrWelghts, op-

filename);

p determine abs. lower or upper range *1

ExamineConstants(&nrBias, &nrWeights, &max);

createFiie(max, nrBlas, nrWeights, option—>NrBits, filename);

void createSimFile(pattern_Slist_id_t list id, char *fiiename)

, ACTION: Creates the simulation files (input and target patterns)

P
p INPUT: A Pattern list -> a pattern database

P char Filename -> The name of the file

I.
P OUTPUT: FUNCTION —>8 file containing several input and target patterns

status_St

out St

out_St

long
pattem_SlistJnfoJ

FILE

mt

status;

inputs[INTERACT_MAX_PATrERNJNPUTSI

taI9etsVNTERACT_MAX_PATTERNJNPUTSJ

nr_Inputs, nr_targets, nr_patterns, pattern_id;

info;

*filePtr;

i,j=1;

*1

*7

*7

*1

*7

*1

*1

*1

pattern_Slist_get_info (list_id, &inf 0, &status);

nr_patterns = Info.nr_pattems;

if ((filePtr = fopenrSimTbl.vhd", 'w)) == NULL) {

tion—>NrBits,

else

{

}

}

P

P

{

126



prIntfCFATAL ERROR -> VHDL File could NOT be GENERATED !!!\n;

return;

}
fprintf(filePtr, -

fpnntf(filePtr,—— VERSION:1.0 ——\n');

fprlntt(filePtr,-- FILE : SimThI.vhd --\n;
fprlntf(filePtr,"—— DATE : may 3rd, 1999 ——\n;

fprIntt(fiIePtr,—- GENERATED by : Generate ——\n');

fprintf(filePtr,-- DESCRIPTION : The Input and Target slgnai of --\n;
fprintf(filePtr,—— %s ——\n, filename);

fprintf(filePtr,—- in a Max—bit represenation %d ——\n',MAX_BITS);

fprintf(filePtr,"-- -—\n');

fprlntf(filePtr," — — ——-\n\nW);

fpnntf(fiIePtr,\nlibrary ieee;\nuse ieee.std_logic_1 1 64.aIl;\n");

fprintf(filePtr,package simtbl is \n\n);

fprintt(filePtr,type tablesim is array (0 to %Id) of integer\,n".nr.patterns—l);

fprintf(fIIePtr,'Vlconstant maxpatterns: integer := %ld;",nr_pattems—l);

pattern_Slist_get_pattern (list_Id, pattern_Id, Inputs, &nr_lnputs, targets, &nr_targets, &status);

for (1=1; k=nr_Inputs; l++) {
fprintf(filePtr,'\n\nconstant inputTbl%d: tablesim := (n\r,l);

for (pattern id = 1; pattern_Id <= nr_patterns; pattern id++)

{
pattem_Slist_get_pattern (list_id, pattern_Id, inputs, &nr_inputs,

targets, &nr_targets, &status);

If 0< nr_pattems)
fprintf(filePtr,"%d, ,Qnt)scaleTofinputs—1J,0.0,1 .0,00,pow(2.0,MAX_BITS)—1 .0));

else
fprintf(filePtr."%dn",Qnt)SC&eTofIflPUtS(i—1I.0.0.1 .0,0.0,pow(2.O,MAX_BITS)—1 .0));

If U%8 == 0)

fprintf(filePtr,'\n\t;

}
j=l;
fprintf(fiIePtr,\t\t);\n');

}
for 0=1; k= nr_targets; i++)

{
fprintf(filePtr,Vi\nconstant targetTbl%d: tablesim := (j\t,I);

for (pattern_Id =1; pattern_Id <= nr_pattems; pattern_ld++)

{
pattem_Slist_get_pattern 01st_id, pattern_id, Inputs, &nr_lnputs,

targets, &nr_targets, &status);

If 0< nr_patterns)

fptintf(filePtr,%d, ,Qnt)scaleTo(targets[i-1],0.0,1 .0,0.0,pow(2.0,MAX_BITS)));

ole.
fprlntf(filePtr,"%d\n,(Int)scaIoTO(tatgets[I—lI,O.O,l .0,0.0,pow(2.O,MAX_BITS)));

If U%8 == 0)

fprlntf(filePtr,'\n\r);

127



128

}
j=1;

fprlntf(filePtr.\t\t);\n);

}
fclose(filePtr);

}

void main (mt argc, char *wgvlJ)

p *1

P ACTION: The main program

p
P INPUT: mt argc -> number of arguments *1

p char argv(J -> An array of give arguments */

P *1

P OUTPUT: FUNCTION —> Two vhdl files, one with test and train data, *1

the other with the network characteristics *1

1* *1

status_St status;

Options option;

char *filename;

pattem_Slist_id_t patterns;

net_Sid_t netwok_id;

setDefault(&option);

if (argc >= 1)

{
getOptlons(ar9c, &argv, &option);

lilename= (charl malloc(sizeof(char)*QNTERACT_MAX_CHARS_FILE_NAME+1)

sprintt(fllename. '%s%s,DATA_PWD. argv1));

p create a workspace for an INTERACT application *1

interact SinitQnit_mode_Sno_network,", &status);

If (option.createSim)

p load a pattern database file */

pnntfçPattemUst Loading !I!\n;

pattem_SlistJoad (filename, &pattems, &status); CheckStatus(status);

createSimFile(patterns,filename);

}
if (option.createThl)

{
p load a feed forward neural network *1

pnntfçNetwork structure loading !U\n');

store_Sload_net(filename, store_Scontinue, &network_id, &status);

CheckStatus(status);

createTables(&option, filename);

}
}
interact_Sterrninate(mnft_mode_Sstop, &status);

}



C.1.1 An Example

The following VHDL packages are generated by the InterAct application shown
above. The extraction of the network characteristics do by this application can be
found in the VHDL file constants.vhd. This file shows the biases and weights of the
network. The example given in this section shows both files, first the characteristics
of the network, and secondly the simulation tables. The following describtion shows
the tables of the network parameters, where the synaptic weights are coded by 12 bits
and the biases by 24 bits. The neural system can use rounding techniques to create
shorter word width. The file genrreated which holds these number is shown below.

VERSION.• 1.0

-- FILE : constant.vhd

--DATE :may3rd, 1999

-- GENERATED by Generate

—- DESCRIPTION The biases and weight tables of

—- a MLP—net work.

—- /rug103ftome2/users/csg/csg89O/dafa/sinustest

library ieee;

use ieee.std_Iogic_1 1 64.aIl;

package constants Is

type tableBias Is array (0 to 6) of integer;

constant BiasThI: tableBias :=

539889, —622154, —137814,3306048,4176247. —1233781,2231473

constant maxBias : integer := 6;

type tableWeights Is array (0 to 11) of integer

constant weightsTbl: tableWeights :=

—557, —326, —926, —880, —2048, —109, -741, -322. —1005, —1180, 1709, —48 );

constant maxWeight : integer := 11;

—- These fines are put here by hand, as told in chapter 4.

constant Nr_iayers : Integer := 3;

type topology Is array (0 to Nr layers—i) of Integer;

constant network: topology := (1,6,1);

constant Nr_Neurons : Integer := 8;

end constants;

The following VHDL decription shows the simulation tables in this case the translated
network has only one input and an output. The application which belongs to these files
is the sine function. The simualtion values for the input as well as the target of the sys-
tem are translated into 14 bit representation, the use of rounding techniques the num-

129



ber of bit can be made smaller. The following describtion show us the SimThl.vhd for
the sine function application.

-- VERSION:1.O --
--FILE : SimThI.vhd --
-- DATE : may 3rd. 1999 --
-- GENERATED by: Generate -
-- DESCRIPTION : The Input and Target signal of --
—- /ruglO3fliome2/users/csg/csg89O/data/siflustest --
—— in a Max—bit represenation 14 —-

library Ieee

use Ieee.std_logic_11 Mail;

package slmthl Is

type tablesim Is array (0 to 50) of integer;

constant maxpattems : Integer := 50;

constant lnputTbi: tablesim :=

0,334, 668. 1003, 1337, 1671, 2006,2340,

2674.3009,3343,3678,4012,4346,4681,5015,

5349, 5684, 6018, 6352, 6687, 7021, 7356, 7690,

8024,8359,8693,9027, 9362, 9696, 10031, 10365,

10699. 11034. 11368. 11702, 12037, 12371, 12705, 13040,

13374, 13709, 14043, 14377, 14712, 15046, 15380, 15715,

16049, 16383, 16383

constant targetTbll: tablesim :
8192,9030,9855, 10652, 11409, 12113, 12753, 13318,

13799, 14187, 14477, 14664, 14745, 14718, 14584, 14345,

14005, 13569, 13045, 12442, 11769, 11036, 10258, 9445,

8612,7771,6938,6125, 5347, 4614, 3941,3338,

2814,2378,2038, 1799, 1665, 1638, 1719, 1906,

2196,2584,3065,3630,4270,4974, 5731,6528, 7353,8191,8191

end Simtbl;

130



C.2 An Example of a Simulation Environment

The simulations can be done by hand but for automatically performance of the neural
hardware system, a simulation environment is developed. This carries out the commu-
nication between the internal system by using the 10—ports of the system and the input
which are offered to the system(or the systems environment). The input vectors of the
file SimThl.vhd are offer one by me to the system, and the systems response is written
to a file. The following simulation environment is an example of the sine function.
This decription change by using other types of networks, especially as the number of
inputs and/or outputs are changing.

-- VERSION; 1.0.1

-- DATE :11-04-1999

-- BY : H.M.G. TerHaseborg

—- DESCRIPTION: The total system in the description chip

library ieee;

use ieee.stdjogic_1 1 64 all;

library std;

use std.textio.all;

entity sim_environment is

generic

d_busWidth : integer := 8;

a_busWidth : integer := 8;

tpd time := 0 ns; -- lime propargation delay

mem locations : integer := 1024;

d_busNorm : integer := 3; —- 2Iog(d_bus Width)

act : integer := 14; —-width input activation function

intemalWldth : integer 16 --Adder width

port(

startS : In bit; —- start the simulation environment

not_reset in bit; -- an asynchrone reset

readyS : out bit

end sim_environment;

use wck.generaI.all;

use work.utilities.all;

use work.simtbl.all; —- Table with the input and target patterns

131



132

use work.io_utils.aii; —-File 10 sub—routines

architecture struct of slm_environmeflt Is

-- Function Definition

function roundoff(Nmax: bit_vector; N: inte9er) return bit_vector is

variable p : bit_vector(N-l downto 0);

variable q,klad: Integer;

begin

for j in 0 to N-i loop

p(N—i —D:= Nmax(i1 —j);

end loop;

q := bit2int(Nm(Nmax'hi9h—N downto 0));

If q >= (2(12—N—1)) then

kiad := bit2int(p)+1;

p := i2bvd(klad,N);

end If;

return p;

end roundoff

function jamming(Nmax: bit_vector; N : integer) return bit_vector Is

variable p: bit_vector(N-1 downto 0);

variable q,klad: integer;

begin

for j In 0 to N—i loop

p(N—1—j):= Nmax(11—fl;

end loop;
q:=bit2int(Nmax(NmaX'high—N downto 0));

if q/=Othen
p(p'Iow):='l ;

end if;

return p;

end jamming;

—- Definition of components --

component neuralSystem

generic (
d_busWidth : Integer := 8;

a_busWidth : integer := 8;

tpd : time =0 ns;

memJocatlons : integer := 1024;

d_busNorm : Integer := 3; —- 2log(d_busW'dth)

act : integer :— 10; —- width input activation function

internaiWidth : integer := 18);



port(

d_in : In Std_logic_vector(d_busWidth—1 downto 0);

d_out : out StdJogic_vector(d_busWidth-1 downto 0);

not_reset : in bit; —- a-synchrone reset

ce in bit; --chip enable

start : in bit; -- start determining neuron

dk :in bit;

releaseout : In bit;

R_W : out bit;

inputRdy : out bit;

ready : out bit —-determination ready

end component;

Declaration of signals

signal dk : bit;

signal input integer :=O;

signal address : integer :=O;

signal datainput : std_logic_Vector(13 downto 0);

signal d_ln : stdJogic_Vecto(d_busWidth—1 downto 0);

alias datain : std_logic_Vector(d_busWidth—1 downto 0) is

datalnput(datalnput'left downto datalnput'nght+(l 3—d_busWidth));

signal data : stdJogic_Vector(d_busWidth—1 downto 0);

signal datatarget: std_logic_Vector(13 downto 0);

signal d_out : stdJogic_Vector(d_busWidth—1 downto 0);

alias dataout : std_logic_Vector(d_busWldth—1 downto 0) is

datatarget(datatargetieft downto datatarget'right+(l 3—d_busWidth));

signal StartNetwork : bit;

signal inpRdy : bit;

signal R_W : bit;

signal ce : bit;

signal rdy : bit;

signal memRdy : bit;

signal release : bit;

begin

u2: neuralSystem

generic map (d_busWidth => d_busWidth, a_busWidth => a_busWidth,

tpd => tpd, memJocations => mem Jocatlons,

d_busNorm => d_busNonn, act => act, internalWidth => intemalWidth)

port map (d_in => d_in, d_out => data, not_reset => not_reset,

Ce => release, start —> StartNetwork, reieaseout => release,

R_W => R_W, inputRdy => inpRdy , ready => rdy, cik => dk);

133



134

—- Combinational Logic --

datalnput <= to_stdLogicVectorfi2bvdfinputmi(Input),1 4));

datatargetc= to_stdLogicVector(i2bvd(targetmll (lnput),1 4));

d_out <= dataout;

simuaftion: process -- process for only one system input.

constant header: string := output file sinus.out

constant tirstUne : string input targed output

file output_file : text Is out sinus.our;

variable strlngVec: line;

begin

write(stringVec, header); writeline(output_file, stringVec);

write(stilngVec, tirstUne); writeline(output_fiie, stringVec);

wait until StartS —

for I in 0 to Maxpatterns loop

—- for the roundoff operator

—— djn <= to_StdLogicVector(roundoff(to_bitVector(dataln), d_bus Width));

—— for the jamming operator

—— d_in <= to_StdLogicVector(jamming(to_bitVector(dataln), d_bus Width));

d_in <= datain; —-set input data

startNetwork <= '1. after 1 ns; —- start neural hardware

write_string(stringVec,

write(stringVec, bft2int(tobftVector(d_ln)));

write_string(stnngVec," );

write(stnngVec, bit2int(to_bitVector(d_out)));

wait until inpRdy = '1'; ——wait for ack of the system

startNetwork <= '0';

wait until rdy = '1'; -- wait for calculation rdy;

release <= '1';

walt until inpRdy = '1'; --wait for ack of the system

wait until r_w = '1';

walt until inpRdy = '0'; —- wait for ack of the system

write_stzing(stringVec, D;

write(stringVec, bit2int(to_bitVector(data)));

release <= '0';

input <= input +1; —-next input vector

If Input> Maxpattems+1 then

input <= 0;

end If;

wait until rdy = '0';

wrlteline(output_file,strlngVec);

end loop;

readyS <= '1';

end process;



Clock signal generator

clock : process (cik)

begin

cik <= not(clk) after 5 ns;

end process;

end struct;

C.3 Generation Tool Discriminatory Function

For the generation of the discriminatory function, a software tool is designed to ac-
complish that task. This programm is written in the C language, and has several prop-
erties to influence the result. This tool is cable of producing the discriminatory
function in the VHDL language, and a file which holds the same properties as the
VHDL—file but is comaptible for the MatLab programm. All options of the sigmoid
function can be changed, so that it makes a good tool for experimental usage. Those
options are: the slope of the sigmoid function, the range of effectiveness, and the num-
ber of bit coding for the internal activation and external activation. All these parameter
can be changed from there defauld value by using the command line options parame-
ters. The following C code shows the generation tool for the discriminatory function.

#include<stdio.h>

#include<math.h>

#define TRUE (1 ==1)

#define FALSE (1==0)

#define INTERNAL_ACTIVATION 10

#define EXTERNAL_ACTIVATION 8

#define SLOPE 1.0

#define LOWER_RANGE -10.31

#define UPPER_RANGE 10.31

#define VHDL_FILE sigmoid.vhd

#define MATLAB_FILE "sigmoid.m

typedef etruct {

long mt_act, ext_act;

float slope, lw_range, up_range;

mt create_matlab;

} Options;

void set_default(Options *cption)

{
optlon->Int act = INTERNAL_ACTIVATION;

option->ext_act = EXTERNAL_ACTIVATION;

option->slope = SLOPE;

option->Iw_range= LOWER_RANGE;

option->up_range= UPPER_RANGE;

135



136

option->create_matlab = FALSE;

}

void create_matlab_file(Options *optjr)

{
FILE ffiieptr;

intl;
mt sigmoid;

float step,tmp;

if ((fileptr = fopen(MATLAB_FILE, w)) == NULL)

{
pnntfCFATAL ERROR -> VHDL file could not be generated!!\n);

return;

}
fprlntf(fiieptr,%%

tprinffQlleptr.%%-- VER. 1.0 --W);

fprintf(fileptr,%%—— ——Vfl;

fprintf(fileptr,%%-- THIS FILE IS GENERATED BY: sigmoid.exe —-.n');

fprinff(filepti%%-- WITH THE OPTIONS,

fprintf(fiIepti%%-— --\n');
fprintf(tlleptr,%%-— NR OF BITS INTERNAL ACTIVATION : %d -—\n'option->int_act);

fprintf(fileptr,%%-- EXTERNAL ACTIVATION : %d --Vr,option->ext_act);

fpñntf(fiIeptt%%-- --\n');
fpnntf(fileptr,%%-- THE LOWER RANGE : --\n,

option->Iw_range);

fprintf(fileptr,%%-- UPPER RANGE : --\n,
option—>up_range);

fprinff(fileptr,%%-- SLOPE : --\n, option->sIOpe);

fpnnff(fiieptr%% IP

step = (opticn—>up_range — option—>Iw_range) I (pow(2.0,option—>int_act));

for(i =0; I <= pow(2.0,option—>lnt_act); i++) {

Imp = (option—>lw_range + (I * step) ) * option—>slope;

sigmoid = (int) (((pow( 2.0, option—>ext_act) ) 1(1.0 + exp(—tmp)) ));

fprintf(fileptr,y(%d)=%d; , I + 1, sigmosd);

fprintf(fileptr,x%d)=%d;\n, I + 1 ,Qnt) (option—>Iw_range + (i * step)));

}
fprintf(fileptr,bar(y);\n");

fpnntf(flIeptr,y=y./%d\n,Qnt)( pow(2.0, option—>ext_act) — 1.0));

fprintt(flleptr,ligure;\n plot(x,y);'.n');

fpiintf(lliepnrealx=(%f:%f:%t);\n,option—>IW_raflge. step, option—>up_range);

fprintf(fileptr,reaty=1 .1(1 +exp(—realx'%f));",option—>sIope);

fprintf(fileptr,'\ngrid; hold;n plot(realx,realy,r');\n');

fpnntt(fileptr,hold;\n);

fclose(fileptr);

}

void get_settings(lnt wgc, char &gv[), Options option)

{
Inti;



forQ=2; k=ergc; i++)

{
swltch(*argv[!]){

case '—I': case '—C:

option—>Iw_range=atof(argvlj+1fl;

break;

case '—u': case '—U':

optlon—>up_renge=atof(argvlj+1J);

break;

case '—I': case '—I':

option—>int_act=atoi(argv(+1J);

break;

case '—e': case '—E':

option—>ext_act=atoi(argv[i+1));

break;

case '-s: case '—S':

option->sIope=atof(argv(+1]);

break;

case '—m': case -M:

option->create_matlab=TRUE;

break;

default:

break;

}

}

}

void create_vhdl(Options *option)

{
FILE fflleptr;

long I;

mt sigmoid;

float step, tmp;

If ((fileptr = fopen(VHDL_FILE, sw")) == NULL)

prinlfç'FATAL ERROR -> VHDL file could not be generated!!\n;

return;

}
fpnntf(fiIeptr,

fprintf(fiIeptr,—— VER. 1.0

fprintf(flleptr,——

fpiintf(fileptr,-- THIS FILE IS GENERATED BY: sigmoid.exe --Vfl;
tpnntf(fileptr,-- WITH THE OPTIONS, --\jfl;
fpnntf(fileptr,"—— ——n");

fprintf(fileptr,'-- NR OF BITS INTERNAL ACTIVATION : %d --\n", option->int_act);

fprintf(flleptr,-- EXTERNAL ACTIVATION : %d --v, oplion->ext_act);

fpnntf(fileptr,——

fprintf(fiieptr,-- THE LOWER RANGE : %f --\n, option—>lw range);

137



138

fprinff(fileptr-- UPPER RANGE: --\n, option->up_range);

fprintt(fileptr,—— SLOPE : %f ——\n, option—>stope);

fnnnfflfilRntr -çn

ntf(fileptr,"\n\nuse work.general.&I;W);

fprintfQileptr,"entity DiscriminatoryFunction is\n;

fprintf(fileptr,tport (input: in bit_vector(%d downto 0);\n,optlon—>lnt_act—1);

fprintf(fiIeptr.\t output: out bit_vector(%d downto 0));\n,option—>ext_act—1);

fprintt(fiIeptr,end DiscrIminatoryFunction;\n\.n;

fprintf(fileptr,Architecture Sigm old of ActivationFunction is\n);

fprIntf(flIeptr,ype vector is array (0 to %Id) of integer;\n

(Iong)pow(2.0.(option—>int_act—1 .0)));

fprlntf(fileptr,constant SigmoidTbl: vector :=

step=(option—>up_range — option—>lw_range) / (pow(2.0,optlon—>int_act));

for(i=0; I <= (Iong)pow(2.0,(optlon—>int_act—1 .0)); I++)

{
tmp=i*step*optlofl_>sIOPe;

sigmoid=(Int)ceil((pow(2.0, option—>ext_act)—1 .0) /(1.0 + exp(—tmp)));

If(i pow(2.0,(option—>int_act—1 .0)))

fprintt(fileptr%d, .sigmoid);

else

fprintfflIeptr%d ,sigmold);

lf( 1>9 && l%1O == 0)

fpnntf(fiIeptr,n\t);

}

fprintt(fileptr,);\n);

fprinff(fiIeptr,signa1 klad:integer.= 0;\n;

fpnntf(flleptr,signal pre_out:bit_vector(%d downto 0);\n,option->ext_act—1);

fpñntf(fileptrn\nbegin'f);
fprintf(fiIeptr,'tklad <= bit2int(input(%d downto 0));W,option—>int_act—2);

fprintt(fileptr,\tpre_out <= i2bvd(SigmoidTbI(kIad),%d);\noption—>ext_act);

fprintf(flleptr'\toutput<=pre_outwheninput(%d)='O'elsenotpre_out;\n\n",optiOn—>int_act—l);

fprintf(llleptr,"end Sigmoid;;

fclose(fileptr);

}

void main (mt argc, char *argv[])

{
Options option;

set_default(&optlon);

if (argc >=2)

get_settings(argc, &argv, &option);

create_vhdl(&option);

If (option.create_matlab)

create_matlab_file(&option);

}



C.3.1 A generated Discriminatory function

This section shows a result of the discriminatory function generation tool. Here the
code is viewed of a sigmoid discriminatory function, with the options; a Slope of 1.0,
upper range 10.31, lower range —10.31, and the coding happens all in 8 bits.

VER. 1.0

-- This FILE IS GENERATED BY: sigmoid.exe

-- WITh ThE OPTIONS,

-- NUMBER OF BITS INTERNAL ACTIVATION: 8

-- EXTERNAL ACTIVATION :8

-- THELOWER RANGE: -10.310000

-- UPPERRANGE: 10.310000

-- SLOPE:1.000000

use work.generaLail;

entity DiscnminatoryFunction is

port (input : In bit_vector(7 downto 0);

output : out bit_vector(7 downto 0));

end DiscnminatoryFunction;

Architecture Sigmoid of DisctlminatoryFunction Is

type vector Is array (0 to 128) of Integer;

constant SigmoidTbl: vector :=

128, 133, 138, 143, 148, 153, 158, 163, 168, 172, 177,

181, 185, 189, 193, 197, 200,204,207,210,213,

216,218,221,223,225,228,229,231,233.235,
236, 237, 239, 240, 241 • 242, 243, 244, 245, 246,

246, 247, 248. 248, 249. 249, 250, 250, 251, 251,

251. 252. 252, 252, 252, 253, 253, 253, 253, 253,

254, 254, 254, 254, 254, 254, 254. 254, 255,255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255. 255, 255, 255, 255, 255, 255, 255. 255,

255,255,255,255,255,255.255,255);

signal klad:integer.= 0;

signal pre_out:blt_vector(7 downto 0);

begIn

klad < blt2int(input(6 downto 0));

pre_out <= i2bvd(SigmoidTbl(kiad),8);

output <= pre_out when input(7) = '0' else not pre_out;

end Sigmoid;

139



140



The experimental result of the Valve and Iris problem

D.1 The experimental Results of the Valve problem

The following experiment uses the results obtained from simulations performed by
InterAct using the infinite set of numbers, while V—System uses a representation of
the same network only with a finite set of numbers. The V—System simulator is using
the neural hardware as described in chapter 4. This experiment uses a trained multi—
layer Perceptron network which contains 2 inputs, 20 hidden neurons and an output
neuron. Sidebar D-1, shows under which conditions the results are obtained.

Sidebar D-1;

General information

on the Valve experi-
ments. It contains the
network parameters
and the network to-
pology.

Input/output
External activation
Internal activation
Adder Width

#patterns
Sigmoid Slope

8

8

10

16

Numbers

1000

1.0

In the following figures the results are presented of the Valve problem. Figure D-1
shows the relationship between the two system one with a finite and the one with a
infinite number representation, whereby several area's of effectiveness are chosen for
the system that uses the finite set of numbers. For the presentation of the performance,
errors are calculated so that both systems can be compared. The referencing network
is the system which uses the infinite set of numbers.

141

Appendix D

Network Parameters

General Information

#bits used

Network Topology (2:20:1)

Flow

Pressure

position



Figure D-1;

This graph shows the
relationship between
the system which
uses finite and infinite
number representa-
tions. Whereby the fi-
nite system, uses
several effective inter-
vals for the sigmoid
function.

The errors between infinite and finite system
For several ranges of the sigmoid's effectiveness.

180. 185. 6.75. (-9.0. 1-9.25. (-9.5.
8.0) 8.5) 8.75) (-S. J 9.0) 9.251 9.51

0.1

1r

0.01

a::: -:

red — the mean square error

blue —the maximum
absolute error

- the Root Mean

Square error

Another view of the performance is shown in figure D-2. Here the performance of both
systems is compared with the real Valve data: the infinite system (red) which is
constant, while the other system (blue) uses different areas of effectiveness from the
sigmoid function. The presentation of these performances shows three types of error;
the maximal absolute error, the mean square error (MSE), and the root mean square
error (RMS). The real valve data will be used as the reference, such that these errors
can be calculated.

Figure D-2;

The performance of
both system in regard
to the real valve data
is shown here, under
the constrained val-
ues for b. Figure a
shows the
max.abs.error of both
systems, (b) and (C)
respectively the mean
square error and the
RMS error.

The performance of both system in regard to the real valve data
For several ranges of the sigmoid's effectiveness.

Maximal abs.Error

(a)

Mean Square Error

(b)

Inbiuc —the errorbetween

a finite precision network

and the real world data.

In red —the error between an

in-finite precision network

and the real world data.

142

Root Mean Square Error

85 ai I-'., i-en f-O.Z. 1-taaq aa ten a7 Ei EaQ -a i-enaqaa7 aq9.&

Q07

Q5
QtM

ten ai (-'.1 fQQ t-9 FQ
sq sai

(c)



D.2 Iris classifier results

l'his classifier uses four input neurons to support our neural network with the data, so
that the following Iris plants can be classified: Iris Setosa, Iris Versicolour, and Iris
Virginica. That mean that the network has for each Iris class an output. Eight hidden
neurons are configured in such a way that the network response in InterAct has a per-
formance of:

Table D-1;

The table shows the
performance of a
trained neural net-
work with inilnite pre-
cision, done by Inter-

Act.

Sidebar D-2;

General information

on the Ins experi-
ments. It contains the
network parameters
and the network to-
pology.

Iris Setosa Iris Versicolour Iris Virginica

Max. Abs Error 775.43 E—3 824.26 E—3 495.75 E—3

MSE 5.42 E—3 14.21 E—3 15.236 E—3

RMS error 73.62 E—3 119.20 E—3 123.43 E—3

The following results are obtain from the simulation performed by using the digital
neural hardware system. The properties of the system are shown in Sidebar D-2.

Figure D-3 shows the performance of the digital network in relation to the one trained
and tested by InterAct. Secondly it provides us with the information to see what the
influence is in regard to our main goal, the influence of a limited range of the sigmoid
function.

Table D-2 shows the classification performance of both system, with respect to several
areas of effectiveness. The rejection criteria is that the difference between the winner
and the runner—up must be at least 0.5. The infinite systems misclassify only one of
the 118 input patterns, while large areas of effectiveness (> [—10.0, 10.0]) the finite
system misclassify 2 patterns. The number of classified patterns and the rejected ones
is constant for the infinite system, it classifies 107 and rejects 11. The number of clas-
sified and rejected patterns by the finite system changes when other areas of effective-
ness are chosen.

143

Network Parameters

#bits used

Input/output 8

External activation 8

Internal activation 10

Adder Width 16

______________I

Numbers

General Information

• Network Topology (4:8:3)

sepal length 'I• Setosa
sepal width

• Iris Versicolour
petal

is Virginica

#pattems
Sigmoid Slope

118

1.0



Figure D-3;

For each class of Iris
the performance is
show in relation with
other intervals for the
sigmoid representa-
tion. As referencing
system is taken the
infinite system.

The performance of the finite system in comparison to infinite system
For several ranges of the sigmoid's effectiveness.

The iris class Setosa The iris class Versicolour

Table D-2,

The classifying petfor-
mance of the finite

and infinite system.

The total numbers of
patterns are 118. The

used rejection criteria
is that the difference
between the winner

• and the runner—up

must be at least 0.5.

Infinite System Finite System

classified rejected misclassified classified rejected misclassified

[—8.0,8.0] 107 11 1 73 44 1

[—8.25,8.25] 107 11 1 80 37 1

(—8.5, 8.5) 107 11 1 89 28 1

[_S S) 107 11 1 90 27 1

[—8.75,8.75] 107 11 1 93 24 1

[—9.0, 9.0] 107 11 1 98 19 1

[—9.5,9.5] 107 11 1 102 15 1

1—10.0, 10.0] 107 11 1 104 13 1

[—15.0,15.01 107 11 1 112 4 2

[—20.0,20.0) 107 11 1 113 3 2

The last result is the response of both systems compared with the Iris database. Figure
D-4 shows for each class the errors of the infinite system in red and of the finite system
in blue. These errors are calculated by different intervals for the area of effectiveness.

144

faa ia Faa It Faa I4 Izi
sq .. sq i'.i S.J iI SI

isa 15* 157 15* 1404 I-* I4
SI U V.1 IJ 14! U

(a)

red — the mean square error

blue — the maximum absolute error
— the Root Mean Square error

(b)

The iris class Virginica

I,

aa 14* 15* fa7 1*5 f0. 1404 IZS
sq i 51 V.1 U! IS! 51

(c)



Figure D-4,

This view shows the
performance of both
systems (infinite and
finite) with regard to
the real Iris data.
Each graph shows
the error which can
be calculated, as the
real data is used as
referencing point. It
shows the maximal
absolute error, the
MSE, and the RMS
error.

The performance of both systems compared to the real world
For several ranges of the sigmoid's effectiveness.

The ins class Setosa

of the system with in—finite

precision.

The blue — curves are the

errois of the system with

finite precision.

The iris class Versicolour

NOTE: The upper lines are the maximal absolute errois, the middle is the RMS error, and the lowest lines repre

sents the MSE.

'45

p

1SA IS* 14* 14* 14* 14* 14* 14*sq s sq ii . 41 SI E I4 14* 14* 14* 14* 14*
1*54 5* 11111 I.1 5* *4 *54 5* 4 5*

The red —curves are the errois

The iris class Virginica

(c)


	Infor_Ma_1999_HMGterHaseborg_dl1.CV
	Infor_Ma_1999_HMGterHaseborg_dl2.CV

