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Abstract
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Master of Science
Department of Computing Science

Rijksuniversiteit Groningen
March 1999

Induction systems have been successfully applied in a wide range of learning applications. However, they do
not scale up to large scientific and business data sets. Applying a large training set (e.g., one million patterns)
to a learning algorithm will result in:

• An excessive amount of training time;

• The inability to address the training set.

This thesis presents a feasible solution to the problems generated by the limited amount of the resources time
(e.g., training time) and space (e.g., main memory). Both problems have a joint cause, a too largedata set (e.g.,
a training set) is applied to an algorithm (e.g., a machine learning algorithm).

One problem occurs as a shortage of time, the other as a shortage of space. Generalizing both problems will
yield a single problem, and a deterministic approach to this problem is necessary to provide a convenient
premise. In other words, the joint cause of both problems implies a joint solution which can be found by a
deterministic approach to the matter.

The essence of the solution is a histogram of each dimension of the data space (the data space is defined by
the data set). The histograms are equalized by using an operation closely related to histogram equalizing,
namely bin (bar) equalizing. By combining all histograms into a single data structure, a so—called mirror image
of the data set is acquired. The mirror image provides information on the data set, and its resolution or accura-
cy depends on the number of bins of the histograms of which it is composed.

An equalized histogram of a specific dimension can be interpreted as an intersection of the data space. This
intersection provides information on the dimension at issue, it does not provide information on otherdimen-
sions, i.e., a single intersection is one—dimensional. The mirror image combines the intersections, and, as a
result, it does provide information on all dimensions of the data space. The mirror image is a small sized struc-
ture which efficiently provides information on the data set.

Each record in the data set defines a data point in the data space at a specific location. By verifying the location
by means of the mirror image (one record a time), a record is either copied into a reduced data set (i.e., the
sample set) set or is rejected. In other words, a record is either suitable or not suitable (i.e., it can or it cannot
provide useful information to the sample set). This process is called:

• Deterministic sampling.

If a record has be to retrieved from a data set, the same process can be maintained. The only difference is the

source of the properties of a record. The properties are now supplied by, e.g., the learning algorithm and not
by the record itself. Addressing by means of the mirror image is virtually similar to deterministic sampling,

and it is therefore denominated:

• Deterministic addressing.

Except for their premise, deterministic sampling and deterministic addressing do not differ. After all, both
resource related problems have a joint cause, and a joint cause implies a jointsolution.
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Chapter 1 Introduction

1.1 Induction Systems
The method often used in the field of machine learning is to encode the knowledge of human specialists into
a computer program. A so—calledexpert system, which uses some specific data set for tuning and testing. This
method is costly and time consuming, because a programmer has to interpret the specific knowledge of the
specialist to encode it.

The part of encoding the knowledge can be considered as 'learning' from the examples provided by the spe-
cialist. The programmer is an intermediate between the expert and the actual computer program. Replacing
the programmer by a computer program which performs his task as an intermediate will result in an induc-
tion system (a system which generates general rules from specific facts) [3]. A popular family of induction
programs represent the classifier they produce in the form of a decision tree.

Additional programs exist which convert decision trees into production rules like an if—then—else state-
ment. The same knowledge is used, but the representation is different. For small data sets, decision trees and
rules are easy to produce and to understand by humans. However, they have a limited amount of freedom
to fit the model they represent to the data [3]. For specific tasks (particularly when large data sets are in-
volved), the generalization of the presented data is limited, as well as the discrimination power [6][11]. The
accuracy of the classifier is restricted and therefore not always the right choice to solve a specific problem.
There is an approach which is able to solve such problems, namely neural networks.

A neural network is another example of an induction system, and is mostly described by connectionism. Con-
nectionism is the study of a certain class of massively parallel architectures for artificial intelligence [3]. By
massively interconnecting very simple so—called neurons, artificial neural networks attempt to mimic the
computational power of the mammalian brain. The human brain consists of approximately 10" neurons and
each with an average of 10 — 10 connections. The immense computing power of the brain is said to be the
result of the parallel and distributed computing performed by these neurons [18]. The design of massively
interconnecting simple units has provided models which have proved to be successful in a number of applica-
tions and in various fields (e.g., text to speech conversion, protein structure analysis, autonomous navigation,
game playing, character recognition (including handwriting), image and signal processing, etc.) [14][18].

Neural networks tend to learn the target concept better than commonly used data mining methods [6]. They
also have been successfully in terms of their learning ability, high discrimination power and excellent general-
ization ability (26]. Nevertheless, they have their limitations which make them poorly suited to tasks which
make use of large data sets (particularly data mining and data warehousing tasks). Training times are often
excessive, and the training set does not fit into main memory [24J[2]. Whether the data set is small or large,
one would like to use the advantages of neural networks, run the models fast and generate useful results in
real time [26][17].

1.2 Brief Overview of Neural Networks
Neural networks (NNs) can be thought of as a nonlinear model which accepts inputs and produces outputs.
NNs consist of processing elements, the neurons, and weighted connections. The network is composed of sev-
eral layers, and each layer contains a number of neurons. Each neuron collects the values from all of its input
connections, and performs a predefined mathematical operation to produce a single output value.

The value of the weights is often determined by a learning procedure, although sometimes they are prede-
fined and hard wired into the network The adjustment of the connection weights enables the NN to store a
generalization of the applied training set.
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A neuron itself processes information by means of three basic elements [141:

• A set of connecting links, each of which is characterized by a weight;

• An adder to sum the input signals weighted by the respective links of the neuron;

• An activation function to limit the amplitude of the output of the neuron.

A model of a neuron is shown in Figure 1.1. Neurons are usually nonlinear due to a nonlinear activation func-
tion. In mathematical terms, a neuron k is described by

Uk = >w, (1.1)

and

y = fP(uk). (1.2)

where x1,x2," ,x, are the input signals, Wki, w162, , w, are the weights of neuron k, uk is the output of the
summing junction (linear combiner output), and y is the output signal of the neuron [141.

fr.pt
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-

Figure 1.1 Model of a neuron.

There are several important features which apply to all NNs (25]:

• Each neuron acts independently of all other neurons, and the output of a neuron relies only on its
constantly available inputs from abutting connections;

• Each neuron relies only on local information, it does not require the state of any of the other
neurons where it does not have an explicit connection with;

• The large number of connections provides redundancy, and facilitates a distributed representation.

Learning algorithms can be divided into two classes, supervised and unsupervised. The class of supervised
learning algorithms provides the NN with a training vector, sometimes referred to as a pattern, and the de-
sired or target response for that training vector. A collection of training vectors is a so—called training set.

The most widely used supervised learning algorithm is the back-propagation algorithm. This learning algo-
rithm makes use of two distinct phases, namely the forward phase and the backward phase. In the forward
phase, the signals propagate through the network layer by layer, eventually producing some response at the
output of the network (the weights of the network are all fixed). The actual response of the network is sub-
tracted from the target response to produce an error signal. This error signal is then propagated backward
through the network against the direction of the connections (error signals are propagated backwards in com-
parison with function signals). Hence the name back—propagation algorithm.

The weights are adjusted according to the error—cormction learning rule to make the actual response of the
network to move closer to the desired response. The purpose of the error-cornction learning rule is to mini-
mize a cost function based on the error signal in such a manner that the actual response of each output neuron
approaches the target response for that neuron in some statistical sense [14].

Figure 1.2 illustrates a NN which consists of 2 source nodes, 4 computation nodes in the hidden layer, and
2 computation nodes in the output layer (a so—called 2—4—2 network).
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Figure 1.2 A 2—4—2 neural network (for the sake of clarity the network does not show the dashed arrows).

An unsupervised learning algorithm omits the target response, and a task independent measure of the quality
of the representation of the network is required to learn. The weights of the network are optimized with re-
spect to that measure. The network develops the ability to form internal representations for encoding features
of the input data [141. Supervised learning is like learning how to drive a car with the assistance of an instruc-
tor, and unsupervised learning is like a baby learning how to crawl around.

A multilayer perceptron (ML!') is a commonly used class of NNs which consists of a set of source nodes which
constitute the input layer, one or more hidden layers of computation nodes, and an output layer of computa-
tion nodes. The network in Figure 1.2 is a MLP.

This thesis does not provide an introduction to NNs, but instead refers the interested reader to one of the good
textbooks or papers in the field (e.g., Neural Networks, A Comprehensive Foundation by Haykin [14] or the
Foundations of Neural Networks by Simpson [25]).

1.3 Resources

1.3.1 Introduction
NNs have been successfully applied by engineers and scientists in various fields. However, the field of NNs
is highly interdisciplinary, and each approach has viewpoints on topics concerning how NNs should be put
into practice. These viewpoints have a common characteristic, the training set which is used to train the NN
has to be small [6] [14] [26] [81. As a consequence, the domain of NN applications is limited. This is particularly
true if the relevance of an input feature depends on the value of other input features (a feature is derived from
one or more (raw) patterns and emphasizes a specific property) [24].

The meaning of the phrase "large training set" changes as fast as the hardware does. About a decade ago it
meant hundreds or thousands of patterns [3]. Nowadays (at least in this thesis) it means hundreds of thou-
sands or even millions of patterns, and in the nearby future probably billions. In fact, the size of the training
set reflects the available hardware, and it should be considered accordingly, namely relatively and compara-
tively.

An algorithm basically needs two resources, namely time (e.g., training time) and space (e.g., main memory).
If the demand for at least one of these resources exceeds a threshold, the algorithm cannot properly produce
its results. It may seem that the resource time is unlimited, but the results have to be produced within a reason-
able amount of time (i.e., the results still have to be useful).

1.3.2 Demand for Time

Learning time, sometimes referred to as learning speed, is an important practical consideration if it grows
beyond minutes to days or worse. Figure 1.3 shows a typical example of the nonlinear increase of the learning
time to create a decision tree [3J. The training sets originated from NASA its Space Shuttle to diagnose a sub-
system of it (the space radiators). Seven classes represent the possible states of the radiators, and the attributes
comprise nine measurements from three sensors. Extra information becomes available due to the increased
size of the training set, and the tree is allowed to grow to store this extra information [3].
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Figure 1.3 Nonlinear increase of the learning time of a decision tree.

The best way to indicate the training time or computational complexity of a NN is the number of connection
traversals [21]. Figure 1.4 demonstrates the increase of connections between neurons when the size of a NN
is growing. The figure is obtained by constantly adding two neurons to each hidden layer of a NN which ini-
tially is a 27—1—1—7 network.
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Figure 1.4 Nonlinear increase of the number of connection traversals of a NN.

Let L be the number of computation layers of a multilayer NN. The effect of a weight in the first layer on the
output of the network depends on its interactions with approximately F other weights, where F. is the so-
called fan-in, the average number of incoming links of neurons. When the size of the network increases, the
network becomes more computationally intensive, and the learning time will nonlinearly grow [14].

Decision trees and NNs have the same scaling behavior (both nonlinear), but there is an important difference.
With respect to the same training set, it usually takes extra time to train a NN than to build a decision tree.
This is due to the forward and backward phase of the supervised learning algorithm. Each neuron (node) of
a NN is visited at least two times for each pattern applied to the network. However, a decision tree can be
traversed by using comparisons, thereby skipping irrelevant parts of the tree (unless it has to be balanced
again). Besides the number of node visits, NNs learn the (classification) rules by multiple passes over the
training set, as contrasted to the single pass of decision trees [17].
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When the size of the training set increases linearly, a NN requires extra time with respect to the decision tree
in a nonlinear fashion. Training a NN with the training set of Figure 1.3 will result in an initial learning time
which is several times the magnitude of the initial learning time of a decision tree (e.g., four times). If the prem-
ise is learning time, a decision tree is a better choice than a NN.

If it is assumed that a NN (back-propagation learning algorithm, initial network is 27-10—7) is trained by
means of the same environment which was used to obtain Figure 1.3, then Figure 1.5 can be deduced.

t,'e (CPU seconds) -

(0000—

(000—

(0 —

0

D,nersors 27
Classes 7 (ciscrete)

I I I ' ( ' I ' I

0 12 0 500 000 4000 8000 16000 32000

Figure 1.5 The learning time of a NN is not proportional to the learning time of a decision tree.

1.3.3 Demand for Space

Difficulties also appear whilst addressing a large training set, because most learning algorithms require that
the entire training set or a portion of it permanently remain in main memory [24]. A large training set will
probably exceed the available amount of main memory. Standard techniques to address a large training set
are available (e.g., hashing, B-tires, B-ties, etc.) [9]. However, these techniques have a common drawback.
They require a specific structure which is independent of the remaining part of the (learning) algorithm. In
other words, when a large data set is being sampled by means of some specific structure, then the same struc-
ture should be (reversely) used to retrieve a specific record from this data set. It should be two—way traffic
instead of one—way traffic.

14 Rationale
Whilst training an induction system, the demand for the resource time should be minimized, and, regardless
of the resource space, addressing a training set should always be possible. These problems emanate directly
or indirectly from the insufficiency of the hardware (CPU and main memory), and the only way to overcome
them, within certain limits, is to use expensive hardware [10] [221. Nevertheless, at this moment, the every year
growth of available data exceeds the development of hardware in that same year. Therefore, the problem is
stated as follows:

The limited amount of the resources time and space will generate problems when a too large data file is
applied to an algorithm (e.g., a machine learning algorithm). Research techniques and methods to find a
meaningful solution to these problems.

NNs and the back-propagation learning algorithm are the premise, and throughout this thesis they will serve
as an example to elucidate the theory. However, the theory also applies to machine learning algorithms in gen-
eral, and any other algorithm which has to process (too) large data sets.

1.5 Precis of Thesis
The second chapter investigates the stated problem. It also provides, based on the investigation, a survey of
techniques relevant to the reduction of large data sets. Chapter three enunciates a feasible solution (algorithm)
to the problem. Then, in chapter four, the behavior of the algorithm is examined and explained. In the same
chapter, the results of a field —testare presented to determine whether or not the solution is an applicable one.
The next and final chapter concludes with a list of advantages and disadvantages of the solution.
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Chapter 2 Survey

2.1 Investigating the Problem

2.1.1 Introduction
The only way to reduce the demand for the resources time and space is by adjusting the size of the training
set. One could argue that by optimizing the learning algorithm in some specific way, the demand for the re-
sources is also red uced. This is a correct statement if a learning algorithm is not yet optimized, but it does not
hold in general. Throughout this thesis it is assumed that each aspect of the learning algorithm is already opti-
mized. This assumption is easily supported by the fact that even if a learning algorithm is maximally efficient,
it is still nonlinear with respect to the resource time and linear with respect to the resource space.

These lower bounds do not change, no matter how well the learning algorithm is optimized. However, this
does not imply that the learning algorithm (e.g., back-piopagation) cannot be improved [1O][28][30]. A third
order learning time is an improvement in comparison with a fourth order learning time, but it does not change
the nature of the problem. The time consuming training process also inhibits an exhaustive exploration of al-
ternative network design [29].

Large data sets tend to be redundant [3J[20][23]. Removing the redundancy results in a smaller data set, a so—
called sample set. An optimal sample set contains the same amount of information as the original data set
without any redundancy. This is a theoretical optimum, and it does not necessarily imply an attainable one.
If a data set comprises more than one dimension, it is not always possible to remove all redundancy or to pre-
serve all information. However, at least one sample set of a specific size always exists in such a manner that
it is optimized with respect to the data set [3]. Applying such a sample set to a learning algorithm will limit
the demand for the resources time and space, making no concessions to the accuracy of the resulting network
within certain limits of the reduction of the training set.

A clear distinction should be made between compression and reduction. Compression transforms the data
set into another form by encoding, but in such a manner that the sample set can be decoded into the exact
original. No information is lost in the process, but the intermediate form (the sample set) is more compact.
A reduction of a data set removes irrelevant information from the data set to produce a sample set, but in an
irreversible manner. Whether or not information is irrelevant depends on the processing of the information
by the receiver (e.g., a learning algorithm) [1].

The sample set referred to in this thesis cannot be entirely decoded into the original data set, i.e., not always.
By claiming that a sample set is a compressed data set, the data set can always be entirely recovered. Therefore,
a sample set is a reduced data set and not a compressed data set.

2.1.2 Generalizing lime and Space
Two difficulties related to time and space appear whilst sampling a data set. The demand for both resources
has to be linear with respect to the size of the data set. A nonlinear sampling algorithm may produce a suitable
sample set, but it shifts the problem from an excessive training time to an excessive sampling time. Therefore,
the selection algorithm must display linear time behavior with respect to the size of the data set. Another prob-
lem is the size of the data set, it probably does not fit into main memory. This problem is identical to the prob-
lem which occurs if a large data set is presented to a learning algorithm. The need to permanently store the
entire data set or a portion of it into main memory whilst sampling must be circumvented.

The limited amount of the resources time and space seem to generate different problems. Seem to, because
their only difference is their occurrence. One can interpret time as space, a 'box' of one dimension. An exces-
sive amount of training time does not 'fit' into the box. Space can be interpreted as time, i.e., three 'lines' that
represent time (or two or one, that depends on the number of dimensions), each of which ticking out their
(CPU) seconds. The available amount of main memorycan be regarded as a one—dimensionaispace in which,
e.g., the training set has to fit into.

The previous results in five lines (dimensions) of some specific 'length'. Each of these lines can be interpreted
as a specific amount of time. The underlying idea is to represent time and space by their components (the di-

10
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mensions) of which they are composed. The intention is to generalize time and space through which the re-
source related problems merge into a single problem.

If a large training set exhausts the resources time and / or space, the length of at least one dimension is exceed-
ed. Time and space seem different, but they are one and interchangeable. It is exactly like a space of two dimen-
sions which can be replaced by two spaces of one dimension. Therefore, if a large training set is applied to
a learning algorithm, the limited resources time and space will generate the same problem and not two differ-
ent problems. Figure 2.1 supports the previous.
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Figure 2.1 Interchanging time and space. S2 does not 'fit' into TI (the calculation based on S2 is too
lengthy), and the data set does not fit into main memory (the combined 'length' of Si, S2 and S3 exceeds

the length of Ml).

By solving the problem related to the resource time, the problem related to the resource space is also solved
in a indirect manner. The problem is focussed on the resource time, and referring to the resource time is indi-
rectly referring to the resource space. On that account, the premise is sampling a data set, and not addressing
a data set (the training time can be reduced by applying a smaller training set).

2.1.3 Subproblems

Sampling a data set implies two subproblems:

• How to maximize the information contents of a sample set?

• How to minimize the redundancy of a sample set?

The demand for training time is nonlinearly related to the size of the training set as opposed to the linear de-
mand for main memory. However, the demand for sampling time should linearly increase with respect to the
size of the data set. Otherwise the problem is shifted from the learning algorithm to the sampling algorithm.
As a consequence, the complexity of the sampling algorithm has to be linear.

The semantics of data set can be very diverse. If it is possible to comprehend the semantics, then there is no
reason to use a learning algorithm. A data set is considered to be a collection of bits and bytes, representing
values that define an unknown structure. Each record in the data set is a combination of values which defines
a data point. All data points can be compared with a single valued pixel of an image (i.e., the pixels denoted
by a record are, e.g., white and the remaining pixels black). It is not necessary to look at an image to understand
the structure of it in a mathematical way. A similar approach to the sampling algorithm ensures that the selec-
tion process does not depend on some interpretation of the data set. It also ensures independence of the type
of fields of the data set. The type of a field is either continuous (e.g., 1.23) or discrete (e.g., either male or fe-
male). In other words, the observation of the data set is generalized to maximize the flexibility of the sampling
algorithm.
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The demand for time and space is minimized if the common case is generalized and the uncommon case spe-
cialized. Common cases add redundancy to a data set, and uncommon cases add information. A small per-
centage of a data set can be uncommon when the entire data set is considered, but commonfor some specific
state (e.g., a query). An example will clarify this. A bank its database holds records which stores the monthly
income of clients. Let 99% of the clients have an average income of fi 5000,—or less per month, and the remain-
ing part of 1% more than fi 5000,- per month. In general, the 1% group is considered to be uncommon in rela-
tion to the 99% group. This difference is not as obvious as it may seem, it even is very subtle.

A member of the set of uncommon cases is considered common within this same set, e.g., if the bank wants
to mail all the clients who earn more than fi 5000,- per month, then a client in the 1% group is considered as
being common within this group. This results in two more subproblems:

• When is a data point common?

• When is a data point uncommon?

2.1.4 Multiple Field Relations
Each field (a record is composed of fields) in the sample set should come from the same distribution as the
corresponding field in the data set. Hypothesis tests are usually designed to minimize the probability of false-
ly claiming that the two distributions are different. A univariate hypothesis test provides no guarantee that
the bivariate hypothesis is correct. One could as well run bivariate tests, but then there is no guarantee that
the trivariate statistics will be correct [15][20]. Table 2.1 and Table 2.2 illustrate that all dimensions have to be
considered in relation to each other instead of one by one (i.e., a trivariate test). The type of the test is deter-
mined by the number of fields of a data set.

DATA SET

U V W

U 50 50 50 150

V 50 50 50 150

W 50 50 50 150

150 150 150

Table 2.1 Counts of a data set containing 50 copies of records <UU>, <UV>, <UW>, <VU>, <VV>, <VW>,
<WU>, <WV> and <WW>.

V w
0 75

75 0 75

75 75

75 75

Table 2.2 Counts of a sample set containing 75 copies of records <UU>, <VV> and <WW>. To univariate
sampling this is a suitable sample set, but not according to bivariate and trivariate sampling.

2.2 Static Sampling
The aim of static sampling is to determine whether a sample set is sufficiently similar to the entire data set.
The criteria are static in the sense that they are independently used of the following analysis to be performed
on the sample set. A statistically valid sample set implies that the sample set and the data set come from the
same distribution.

12
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Hypothesis tests are usually designed to minimize the probability of falsely claiming that two distributions
are different. In a so—called 95% level hypothesis test there is a 5% chance that the test will incorrectly reject
the hypothesis that the distributions are the same, assuming that the two samples do come from the same dis-
tribution. The probability of falsely claiming that they have the same distribution has to be minimized [15].

Static sampling runs the appropriate hypothesis on each of the fields. If it accepts all of the hypotheses, then
it claims that the sample set does indeed come from the same distribution as the data set, and it reports the
current sample as sufficient.

There are several shortcomings to the static sampling model. When running several hypothesis tests, the
probability that at least one hypothesis is wrongly accepted increases with the number of tests. Static sampling
is an attempt to answer the question "Is this sample good enough?", but first asking "What is the purpose of
the sample set?" seems to be more appropriate. Static sampling takes no notice of this question. In other
words, the tool which will be used after sampling (e.g., a learning algorithm) is ignored.

Static sampling is a sampling procedure which continues sampling the data set until a suitable sample set is
obtained, and it is often unclear how the setting of the levels of the hypothesis tests will affect the size and
the contents of a sample set [15][20]. These are the two main drawbacks of static sampling.

2.3 Dynamic Sampling
Sampling a database involves a decision about a tradeoff. The decision is how much to give up in accuracy
to obtain a decrease in running time of, e.g., a learning algorithm. Dynamic sampling, sometimes referred to
as active sampling, will address this decision directly, instead of indirectly looking at statistical properties of
sample sets independent of how they will be used [15].

As opposed to static sampling, dynamic sampling takes the tool that will process the sample set into account.
Determining whether the sample is good enough is based upon the purpose of the sample set (e.g., providing
a maximum amount of information to a learning algorithm). Dynamic sampling uses advance knowledge on
the behavior of the learning algorithm in order to choose a sample set. The test of whether or not a sample
set is suitably representative depends on how the sample will be used. A static sampling method does not
use this kind of information, and instead applies a fixed criterion to the sample to determine whether or not
it is a suitable representation of the data set [7][15J. However, obtaining the advance knowledge is quite diffi-
cult due to the nonlinear behavior of most tools.

A sample set which is obtained by dynamically sampling a data set needs to be evaluated, e.g., by using the
Probably Close Enough (PCE) criterion. If it is assumed that the performance of the learning algorithm on a
sample is probably close enough to what it would be when the entire data set was applied, then the sample
set is satisfactory. One would like to have the smallest sample set of size n such that

P(acc(N) — acc(n) > e) < 6, (2.1)

where acc(n) refers to the accuracy of the output of the tool after applying a sample of size n to it, acc(N) refers
to the accuracy after applying the entire data set, E is a parameter describing the phrase "close enough", and
6 is a parameter describing the phrase "probably" [15].

Quantifying c and 6 is difficult, and it implies a sampling procedure that continues sampling the data set until
a suitable sample set is obtained. it is often unclear how quantifying these parameters will affect the size and
the contents of a sample set. These same problems occurred in case of static sampling.

Both static and dynamic sampling commonly use some type of random sampling technique to select records
from the data set. Static and / or dynamic tests are performed after randomly selecting the records to deter-
mine whether or not the sample set is a suitable one.

2.4 Random Sampling
Random sampling is a fundamental operation having many applications in science and industiy In general,
the problem is to draw a random sample set of size n without replacement from a file containing N records.
The n records usually appear in the same order as they do in the data set. The sample set size az is generally
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small relative to the data set size N [3][15][20][271. In other words, simple random sampling involves, among
others, forming a random sample set of n records from {1,2, ...,N}.

Random sampling is typically used to support statistical analysis of a data set, either to estimate parameters
of interest or for hypothesis testing. In the field of machine learning, random sampling is often used to create
a subset of the original data set to extract specific data. It has proven to be a valuable tool, but random sam-
pling generally confirms that a relatively large sample set is necessary to maximize accuracy [3].

The various types of random sampling can be classified according to the manner in which the sample size is
determined [3][20]:

• Whether the sample is drawn with or without replacement;

• Whether the access pattern is random or sequential;

• Whether or not the size of the data set is known;

• Whether or not each record has a uniform inclusion pmbabilit

The most common types of random sampling are [20]:

• Simple random sample without replacement (SRSWOR):

Each record of the data set is equally likely to be included in the sample set. Duplicates are
not allowed.

• Simple random sample with replacement (SRSWR):

Equal to SRSWOR, but, due to the replacement, duplicates are allowed.

• Stratified random sample (SRS):

The sample is obtained by partitioning the population into so—called strata (e.g., bygender),
then taking a sample (usually SRSWOR) of specified size of each strata.

• Weighted random sample (WRS):

The inclusion probabilities for each record of the data set are not uniform.

• Probability proportional to size (PPS):

A weighted random sample without replacement in which the probability of inclusion of
each record of the data set is proportional to the size of the record (e.g., age).

• Monetary Unit Sample (MUS):

A weighted random sample generated by iteratively taking a sample of size 1 with inclusion
probabilities proportional to the sizes of the records (typically monetary values) of the data
set (the same as PPS, but duplicates are allowed now).

• Clustered sample (CS):

Generated by first sampling a cluster unit of records (e.g., a disk page), and then sampling
several records within the cluster unit.

• Systematic sample (SS):

Obtained by taking every k-thelement of a data set (the starting point is chosen at random).

A characteristic of random sampling is its dependence on a chance. After all, it is random.

Simple random sampling with replacement is part of the conducted field—test(see chapter four). This sam-
pling technique consists of simple random samples (i.e., unweighted) with replacement drawn from a data
set of known size stored on disk as fixed size records (i.e., fixed blocking). The sample set of size n can be
obtained by generating uniformly distributed random numbers between I and N, and reading (random ac-
cess) the corresponding records [20].
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2.5 Compaction
Identical records which appear several times in a data set are redundant in the sense that only one instance
is needed to store them into (or retrieve them from) the data set. There is no need to store identical records,
but it then is necessary to store an extra variable per record, namely the weight. The weight indicates how
often a specific record appears. Adding an extra weight to indicate how often a specific record appears is a
commonly used technique to reduce the demand for the resource space [3].

A record comprises one or more fields. Some fields store a continuous value, others a discrete one. If a field
of a record stores a continuous value, it hardly ever happens that two or more records are identical. Neverthe-
less, records which only store discrete values are often the same (particularly if the data set is large in compari-
son with the number of classes). Unfortunately, records often store both continuous and discrete values. This
diminishes the possibility to use compaction in a general sense.

Compaction can be improved by not compacting records, but by compacting the fields of the records. Instead
of thinking from left to right (compaction of records), one should think from top to bottom (compaction of
fields). This approach 'splits' the fields into either discrete or continuous, and it therefore makes compaction
independent of the different types of fields within a record.

2.6 Deterministic Sampling
A sampling algorithm selects records from the data set following some procedure. This procedure is either
a random, deterministic, or a combination of a random and deterministic process. The sample set has to repre-
sent the data set as closely as possible, and, consequently, the relation between the common and uncommon
data points must be preserved as accurately as possible.

Each data point is always part of at least one cluster, and the smallest possible cluster is a cluster of one data
point. One would like to maximize the chance to select the correct records in such a manner that the different
clusters are equally reduced.

An example will clarify the previous. A data set comprises two clusters of 5000 and 1000 data points respec-
tively and 2000 entirely random data points. If the reduction of the data set is equal to 10, the sampling algo-
rithm should select 500 data points from the first cluster, 100 from the second one, and 200 from the randomly
distributed data points. To maximize the chance to properly select a suitable sample set, the sampling algo-
rithm has to be deterministic. Sampling a data set randomly may produce a suitable data set, but the actual
information contents of a specific sample set will deviate as contrasted to deterministic sampling.

The deterministic part of the deterministic sampling algorithm implies that some information on the data set
is available or acquired. To decide whether or not a specific record is a suitable one is based on specific infor-
mation. It is this decision that makes a sampling algorithm a deterministic sampling algorithm.

Since no advance knowledge is available, the information has to be acquired by investigating the data set. The
investigation of the data set must provide information on the entire distribution. The process of acquiring in-
formation will increase the demand for time and space (the increase has to be linear for both resources, other-
wise the problem is shifted from the learning algorithm to the sampling algorithm). The deterministic
sampling algorithm should be able to perform the following tasks:

• Deciding whether or not a specific record is a suitable one (i.e., a useful addition to the sample set);

• Addressing specific records.

The first task is related to the resource time (reducing the training set in order to limit the training time), the
latter to the resource space (addressing records to overcome the limited amount of main memory). Address-
ing a record can be based on the same information as deciding whether or not a record is a suitable one. As
explained in the previous chapter, the resource related problems have a joint cause, and a joint cause implies
a joint solution. Therefore, the underlying structure to perform these two tasks is (practically) identical.
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Chapter 3 Deterministic Sampling

3.1 Introduction
The previous chapter introduced four subproblems:

• How to maximize the information contents of a sample set?

• How to minimize the redundancy of a sample set?

• When is a data point common?

• When is a data point uncommon?

These four subproblems imply that specific information on the data set is necessary to determine a suitable
sample set. Information is obtained by either investigating the data set set or by asking an expert. The latter
is not always possible, and the deterministic sampling algorithm should compensate the lack of advance
knowledge. Therefore, it is assumed that no information is available in advance. If anexpertprovides valuable
information, investigating the data set is not or only partially necessary, and it can therefore be entirely or par-
tially skipped. This introduces the first part of the algorithm (see also Figure 3.1):

• Investigating the data set.

The entire data set is probably too large to fit it into main memory and an accurate representation of it is neces-
sary to determine a suitable sample set. A representationof the data set can be interpreted as a 'reflection' of
the data set. Hence the name mirror image. Ideally, a mirror image contains a maximum amount of informa-
tion, a minimum amount of redundancy, discriminates between a common and an uncommon data point, and
uses a minimum amount of main memory. In fact, determining the mirror image is the most important part
of the algorithm, and it constitutes the second part of the algorithm:

• Determining a representation of the data set, a mirror image.

Once the mirror image is available, it can be used used to determine a sample set in acompletely deterministic
manner. The mirror image provides a structure to ensure that the sample set represents the data set as accu-
rately as possible. Therefore, the third and last part is:

• Determining a sample set.

The three parts of the algorithm should efficiently operate in linear time and space. Efficiently, because if it
takes 10 hours and 10 MB of main memory to process a data set of 5 MB, then the process maybe linear, but

it certainly is not efficient.

IlfiJi 1!! F S(ClB PI THIRD PT WIPUI
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Figure 3.1 General picture of the deterministic sampling process.

This chapter provides an explanation and an overview of the three parts of the deterministic sampling algo-
rithm. A running example will elucidate the theory

3.2 Investigating the Data Set

3.2.1 Generalizing the Data Set

A data set comprises at least one record of at least one field. It may contain an arbitrary number of records,
but each record must consist of the same number of fields. The data space defined by the data set is composed
of one or more dimensions. A specific dimension of the data space is defined by a specific field of the data
set. Referring to a dimension of the data space, is referring to a field of the data set. A field contains a specific
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value which can be of any type (i.e., an integer, float, character, or a string of two or more characters). By add-
ing the value of each character of a string, an integer based value is obtained (e.g., "male" produces 415).

The total number of records is denoted N and the total number of dimensions D. Let n be a specific record
and da specific dimension. A specific field is then addressed by (n,d), where 0 � n <Nand 0 � d <D.
Figure 3.2 shows an example of a small data set.

voJue ( 3): L9O.21

Figure 3.2 A data set which contains 6 records of 4 fields (dimensions) each.

In general, a disk is used for storing a data set. A disk contains concentric circles, the tracks. Each track stores
the same amount of information, and is divided into disk blocks or pages. The block size is fixed during for-
matting, and cannot be changed dynamically. Typical disk block sizes range from 512 to 32768 bytes. For a
read command, a block from disk is copied into a buffer, and for a write command the contents of the buffer
are copied into the disk block Sometimes several contiguous disk blocks, called a cluster, may be transferred
as a unit [9]. By reading a specific record, a disk block storing a collection of records, among which the re-
quested record, is copied into main memory. An exception occurs when the size of a record exceeds the size
of a disk bloclc then the disk blocks which simultaneously store the record are copied into the buffer.

3.2.2 Establishing the Extremes
The records are addressed one by one, and each field of each record is read in order (from left to right and
from top to bottom). The lowest and highest value of each dimension dare determined on the fly to produce
mnd and maxd. The range of each dimension d is denoted

R = maxd —
(3.1)

A specific number of bins, namely #bins is attributed to each dimension (the number of bins per dimension
do not have to be equal). A range R is divided into subranges or intervals, denoted range4, where

0 � range4 � Rd. The indication j, 0 S j < #binsd, specifies a subrange of dimension d. The resolution of
the subranges of dimension d is directly related to the number of bins attributed to this specific dimension
(the range Rd consists of #bins4 bins).
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3.2.3 Mapping of Data Points

D arrays, A0 through ADI, of length #binsd are introduced. The k-thbin of dimension d is denoted by bins
and k = 0, 1, , #bins — 1. A counter cnt is introduced and added to each bin. The value of k indicates
the k—th counter of dimension d.

By reading the data set for the second time, the field values of each dimension are linearly scaled (normalized)
to a range of 0 to #bins, and rounded off downwards to the nearest integer value, producing

—
va!,4 — lThfld #b I . — 0 1 — 1— I I — , iflSj

— mm4 J
where va!,4 is the value of the n —th record of the d-th dimension to be scaled, and i4 an array index of array
A0 (it indicates the i4-th bin of dimension d).

The array index is used to increase the i4—thcounter cnf&dofd d. Both the index of an array element

and the element itself provide information on a specific subrange or bin. Figure 3.3 illustrates an example of
a small data set after processing it according to the previous.
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Figure 3.3 The index of an element and its contents defines a specific subrange or bin.

The value of each counter CflI&d ofarray Ad provides information on the distribution and clustering of dimen-

sion d of the data set. It does not provide information on other dimensions.

3.2.4 Examining the Bin Contents

Data points are practically always clustered. Without clustering, the data points are equally spreaded over
the data space, providing no information other than the fact it is not clustered. By investigating the counters
of both arrays in Figure 3.4, the large cluster can be recognized (the horizontal axis in Figure 3.4 is identical
to the axis in Figure 3.3). The hatched area is the data space covered by the arrays A0 and A1. The values of
the counters of A0 indicate a cluster stretched from the second bin through the fourth bin. The counters of
A1 show that virtually all data points are positioned at the top of the data space. The values of the counters
also discriminate between common and uncommon data points. Data points located at the top of the data
space appear to be common, and the five data points at the bottom appear to be uncommon with respect to
the cluster.

Each array provides a unique view on the data set. They describe the same data points, but from another per-
spective. The value of a counter Cf1 is related to the size of a cluster possibly present in the interval range1
The value of the counter cn1121 of array A1 in Figure 3.4 is 25, but there are only 30 data points. Therefore, at

least one cluster is positioned somewhere in the interval of the last bin of A1. The values of cni1,, Cfllo2il and

cf!03 of array A0 also imply a cluster. More exactly, they imply the same cluster. The only difference is the

perception, because the cluster is observed from another dimension.
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3.3 Determining a Mirror Image
3.3.1 Histogram

A way to summarize a data distribution, one that has a long history in statistics, is to partition the range of
the data into several intervals of equal length, count the number of data points in each interval, and plot the
counts as bar lengths. The result is a histogram. The histogram is widely used, and familiar even to most non-
technical people and without extensive explanation [5]. This is convenient, because each cnt of array A
represents the id—thbar length in a histogram of dimension d. Therefore, a histogram is the underlying founda-
tion of the mirror image. The reflection or histogram of a dimension does not produce a mirror image, it is
a building block to create one.

3.3.2 Nonlinear Data Space

A highly dimensional data set indicates a practically empty data space. Linearly increasing the number of di-
mensions will nonlinearly enlarge the data space. The data space
C_D*D* tD" 0 1 b—I

defines an enclosed space in which data points occur, if any point exists. Adding a dimension does not affect
the number of data points. The chance that a value of a counter of a specific bin is unequal to 0 (i.e., one or
more data points are located in the interval of the bin) approaches 0% when the number of dimensions is in-
creasing. Figure 3.5 illustrates this behavior.
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Figure 3.4 Counters indicate, to some degree, clustering and common / uncommon data points.

Each dimension is considered separately, but it seems that at least some information on the combination of
dimensions is already present. By actually combining the arrays A0 and A1, the available amount of informa-
tion will grow (information on the 'depth' of the data space becomes available).

(3.3)
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Figure 3.5 Nonlinear growth of the data space, and nonlinear decline of non-emptybins.

Empty bins do not provide information other than there are no data points in the specific interval. They also
waste time and space. Utilizing empty bins may provide extra information on the data set (i.e., details). It is
preferred to use the bins more efficiently, and, in order to do so, a new problem is introduced, namely maxi-
mizing the efficiency of the bins.

3.3.3 Bin Equalizing
Low contrast is in the field of digital image processing a common problem. A narrow shaped histogram (only
a few bins are non—empty) indicates little dynamic range, and it corresponds to a low contrast image. A histo-
gram with significant spread corresponds to an image with high contrast. A common way of manipulating
histograms to increase the contrast of an image is histogram equalization (also known as histogram lineariza-
tion) [13]. An image consists of pixels, and a luminance value is attributed to each pixel which indicates the
intensity of the pixel at issue. If each luminance value occurs as frequently as any other luminance value (a
uniform distribution), the histogram of the image is equalized. Consequently, the entropy or uncertainty is
maximized, and a maximum amount of information is therefore presented to the observer [191.

Whilst equalizing the histogram of an image, the luminance values of the pixels are adjusted.The data points
of a data set do not have a luminance value, they only exist in some data space. One or more fields of a record
may indicate a value which corresponds with a luminance value (e.g., age). However, this would imply ad-
vance knowledge which is not available, but by looking at the matter from a different angle, it is possible to
circumvent this problem.

Digital image processing is about adjusting an image to display it to an observer, e.g., the combination of the
human eye and brain. The actual information contents of an image will not increase (a decrease is much more
likely). The ability of the observer to process visual information is limited, and digital image processing pro-
vides preprocessing techniques to obviate this limitation. However, the 'observer' in this thesis is the deter-
ministic sampling algorithm. This algorithm does not lack preprocessing techniques, it lacks information due
to the empty bins.

Plain histogram equalization is not possible, but one would like to make use of the advantages of histogram
equalization without taking the limited observer into account. The answer is not to equalize the histogram,
but to equalize the horizontal axis of the histogram. In other words, by properly adjusting the range of the
bins according to the distribution of the data points, each bin should contain the same number of data points.
This will indirectly result in an equalized histogram. The purpose remained the same (an equalized histo-
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gram), but the premise changed from adjusting the field values of a record (i.e., the luminance value of a pixel)

to adjusting the interval of the bins (i.e., adjusting the width of the bars of the histogram).

Bin equalizing is not identical to histogram equalizing, but is closely related to it. Bin equalizing actually adds
information to the representation of a dimension as opposed to histogramequalizing. After bin equalizing,
each bin is maximally utilized, resulting in more information on the distribution of the data points (more bins
become available to represent the distribution). Bin equalizing is a dynamic adjustment which solely depends
on the data set. However, bin equalizing does require more preparatory work than histogram equalizing.

The index i4 is used to indicate the subrange range(bind), but after bin equalizing it does not always provide

the correct index. it is necessary to introduce a new variable to compensate for the lost information. The extra

variable is a limit limit,,1 where 0 � limit � R.

3.3.4 Accumulating Overflow

Ideally, the values of the counters cnt of dimension d should be equal to

means = #i.; (3.4)

If the contents of bin deviates from mean . it must be equalized. The equalizing procedure starts by cal-

culating the overflow

overJ7ow44 = Cflt — meand; — mean,, � oveifiow,, N — mean,,, (3.5)

of each id—thbin of each dimension d. The overflow is positive, negative or 0. A positive value indicates a sur-
plus of data points in the interval of the specific bin, a negative value a shortage, and 0 indicates a number
of data points equal to meana.

The starting point of the equalizing procedure is not yet available. The starting point indicates the first bin
of a sequence of bins (one bin or more) which represents the largest cluster of data points. Three variables are

introduced, start,, temp and old Temp (oldTemp and start,,are initially 0). Each array A is traversed from the
first through the last bin (from bin,,, through bin,,_1). On the fly, the value of ove,fiow,,,,is added to temp.

If temp � old Temp. the value of temp is copied into the variable oldTemp, and the index of the starting point
is copied into stand. Otherwise this part of the procedure is skipped. The same process is repeated, but it now
starts at the second bin. The procedure terminates when the starting point of the traverse becomes the last
bin plus 1 (#bins4). The value of starts will then indicate the starting point of the equalizing procedure for di-
mension d. Figure 3.6 illustrates an example.
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Figure 3.6 Calculating the starting point of the equalizing procedure (stand becomes 1).

The surplus of a bin will be smeared in such a manner that one or more succeeding bins will dissipate the sur-
plus. The dissipation is denoted

dis4 = if (oveiflow4 <0) then overfiow4 else 0.

A sequence of overflowing and / or underflowing bins may accumulate a positive or a negative surplus (or
neither if the surplus is equal to 0). The accumulation of the positive surplus of preceding bins is denoted

acc,14 = + _1
As soon as acc becomes smaller than 0, its value is replaced by 0 in an on the fly manner. The calculation of
the accumulated overflow starts at bin start4, and it terminates after processing bin start4 — 1 (array A4 is cir-

cular). Figure 3.7 will clarify the previous.

(3.6)

(3.7)
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Figure 3.7 Calculating the accumulated overflow per bin (acc4 of bin start4 — 1 always becomes 0).
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3.3.5 Overflow Processing
For each bin of each array, an initially empty binary search tree is introduced. Due to its balancing capabilities,
a red -black tree is preferable. A node of the tree contains two variables, key and keyCnt. The first variable is
used to store the field value va!,.4, and the second variable is a counter denoting how often the value key occurs.
The variable keyCn: comes under compaction of field values as described in chapter two, and is initially 0.

The data set is read for the third time. Each value vat,4 is mapped on the corresponding bin bin&d. If acc.uj

is greater than 0, the value is stored into main memory by means of the binary tree, and the value of keyCnl
is increased by one. The value of acc,ad is decreased by one.

Quite often, the value of acc4ijj is 0. If so, va!,.4 is compared with the lowest value of key. If vat,.4 is greater than

the lowest value of key, va!,.4 is copied into the tree. if the value of keyCnl of the node which contains the lowest
value of key is greater than 1, then keyCnt is decreased by 1. Otherwise the node is removed from the tree. See
also Figure 3.8.
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Figure 3.8 Building trees to determine the limit !imit,d per bin.

The value limildid of each bin bin is either stored as a key value, or is equal to a value in the range of
0,1, , #bins,. if a bin does not dissipate a surplus of previous bins, the value of limit becomes the value

of the index indicating the bin which stores limi1d. Otherwise starting at sIart, the key values of the trees are
spreaded over the bins. A sequence of values of acc,jd is said to be continuous as long as acc&d is greater than
0. Each tree which occurs within a continuous sequence is connected to the tree positioned at the right (the
successor of the rightmost node of a tree is the root of the tree positioned at the right).

The value of keyCnt of a node is used to determine the order of the value of key, e.g., the node containing the
value 3.5 in Figure 3.8 is the 16—th, 17—th and the 18—th value of the overflow. If stan4 is unequal to 0, array
A4 is considered to be circular, and an offset is added to 1i,nit for each i, smaller than start,. Determining
the limit limit154 involves a lot of different (exception) states, and it needs to be carefully programmed to pre-
vent errors. Equalizing the bins of the running example results in Figure 3.9.
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55 6.0

5.25
I

orroy (A0)

fl-fiw CE,fjO* 0
I

Figure 3.9 Equalizing the bins of array A0 by means of the limits 1imit.

3.3.6 Selecting the Correct Bin

Each field value is represented by a specific bin, and the counter of that bin has to be increased to represent
that field value. To do so, a field value va!,1,, is addressed by (n,d), and is linearly scaled to a range from 0

through #bins — 1. The result is rounded off downwards to produce an integer based value i The value of
i, indicates a specific bin bin,,,,, of array A,, (i,, is an index to indicate array A,,). Bin bin&d stores the values

limit,,,, and cni1 the latter is initially 0. The value i is compared with lunit,,,,. If i, < limit1 the correct bin

has been found. Otherwise the test i, < limit,+1 is performed (bear in mind that array A, is circular). This

process continuous until the correct bin is selected. If the value d maps on a specific bin, the counter of that
bin is increased by one. The worst case scenario comprises #binsd tests.

The ultimate result of the running example, the mirror image, is shown in Figure 3.10. Only the combination
of array A0 through AD_I is a mirror image. Since the running example is one-dimensional, the mirror image
is provided by a single array, namely A0.
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Figure 3.10 Mirror image of the data set constituted by array A0.
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3.4 Determining a Sample Set
A sample set is always smaller than the data set (otherwise there is no use to sample a data set). The ratio
between the data set and the sample set is called the reduction

#records sample set
R = ; 1 <R < #records data set.

Determining a sample set is straight forward. The counter cntdof each bin bin&d is divided (reduced) by R.
The data set is read for the fourth time, and each field value val,.. is normalized to produce the index i The
correct bin bind of array Ad is selected by means of index i. Then the counter cntis examined (not increased

or decreased). If each counter of each bin selected by the d values of the n—th record is greater than 0, then
the n -threcord is suitable record, and is copied into the sample set. The counters cn:0 through cnt,,,.,1
are then decreased by one. If the record does not suffice, i.e., at least one of the counters examined is equal
toO, it is rejected and no further adjustments are made. This process is entirely deterministic, and it therefore

produces a deterministic sample set. The data set of the running example is reduced by 14 and the resulting

sample set is shown in Figure 3.11.
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Figure 3.11 The resulting sample set after applying the data set to the deterministic sampling algorithm.

3.5 Loss of Information
The mirror image reflects the data set, but not all information provided by the data set is always preserved.
The mirror image is based on a specific number of bins per dimension. Consequently, the resolution of the
mirror image is limited. This limitation can be minimized by increasing the number of bins.

Some information on the combination of the dimensions is sometimes lost, because the mirror image is a linear
representation of a nonlinear data space. The mirror image does not always represent the entire relation be-
tween the dimensions (reflecting the 'depth' of the data set is not always entirely possible). Figure 3.12 illus-
trates an example.
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Figure 3.12 Loss of information due to a linear representation of a nonlinear data space.

The selection of a specific deterministic sample set depends on the order of the records in the data set. There
are eighteen possible sample sets (not 22), two of which are less desirable (number 17 and 18). Adding extra
dimensions will decrease the number of less desirable sample sets, because an extra dimension provides an
extra view on the data set (i.e., it adds an extra layer to the mirror image). In other words, more information
on the relation between the dimensions becomes available. Whilst increasing the number of dimensions, the
chance to select a less desirable sample set will nonlinearly decline. The chance to select a less desirable sample

set is already quite small in case of two dimensions, e.g., * 100% = 11.1% in Figure 3.12. The worst case

scenario comprises two dimensions (not one, because one dimension is entirely flat) and a uniform distribu-
tion of the data points. The chance to select a less desirable sample set (number 17 and 18) is multiple times
smaller than the chance to select a proper sample set (number 1 through 16). The phrase "less desirable" is
used to emphasize that even a less desirable sample set is an important improvement in comparison with the
worst possible sample sets. The deterministic sampling algorithm will never select the worst possible sample
sets 19 through 22. Random sampling does not exclude these sample sets.

3.6 Addressing
3.6.1 Deterministic Sampling

A record defines a data point by providing a coordinate for each dimension of the data space. Each coordinate
is a property of that record, but the combination of coordinates does also yield a specific property e.g., in case
of 3 dimensions A, B and C, there are 7 specific properties (i.e., A, B, C, AB, AC, BC, and ABC). Combining
all dimensions into one property (e.g., ABC) will produce the most specific propertyc because it defines a point
in a data space which comprises each available dimension. For the sake of clarity ABC is not distinct from
ACB, BAC, BCA, CAB, and CBA.

The mirror image provides the properties of the records that have to be copied into the sample set. If the prop-
erties of a record correspond with the required properties as defined by the mirror image, it is a useful record,
and it can therefore be copied into the sample set. The process of selecting a record is based on three steps:

• Determine the properties of the record;

• Compare the properties with the desired properties provided by the mirror image;

• If the properties correspond, copy the record into the sample set.
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In other words, the properties of a record are available and verified. Then a decision is made based on this
verification. It is also possible also to address the records of a data set by reversing this process.

3.6.2 Deterministic Addressing

The mirror image can be used to address specific records in a data set. In other words, it is possible to read
specific records from the data set without using a standard data structure (e.g., B—tiees). An advantage of the

mirror image is the lack of space consuming pointers, as opposed to most standard addressing techniques.

The difference between deterministic sampling and deterministic addressing is subtle. Whilst sampling, the
record is available, and the required properties are provided by the record itself. However, whilst addressing,
the properties of a desired record are already available, but the (address of the) record is not. Producing an
address of a record can be interpreted as a decision, the record is or is not available. If it is available, the p roper-
ties are suitable. Otherwise they lack suitability, and, as a result, the record is not available. The process of
addressing a record is closely related to the process of selecting a record, namely:

• Determine the properties of the desired record;

• Compare the properties with the properties provided by the mirror image;

• If the properties correspond, read the record.

There is one important difference between deterministic sampling and deterministic addressing. In case of
sampling, the required properties are always valid, because they are supplied by a single record. However,
in case of addressing, it is possible to combine non—telated properties of several records, and still produce an
address (e.g., a combination of the field values of the first and last record). A 'link' between the bins of the
dimensions of the mirror image is missing (i.e., the record itself), and some extra information is required to
obviate this underlying relation between the bins.

An example will clarify the previous. Determining whether or not a record is suitable is like finding the en-
trance of a labyrinth by starting at the center of it. Going left or right depends on the properties supplied by
the record. However, determining the address of a record is like finding the center of a labyrinth by starting
at the entrance of it. Going left or right cannot be based on the properties, because they are not derived from
an actual record, i.e., they are the result of an unknown process. Such an unknown process is, e.g., a learning
algorithm.

A new variable bitPaltem&d is introduced, and added to each bin bin. The pattern is composed of bbits. The

number of bits is equal to the number of bins of the next dimension (#bins+ ). except for the last dimension.
The number of bits of the bit patterns of the last dimension D — 1 depends on, e.g., the number of diskblocks
or the number of records. The b-thbit provides information on the b-thbin of dimension d + 1. If the b-th

bit of bit pattern bitPallern&d in bin binthd of dimension d is equal to 1, then the b—thbin of dimension d + 1

is a valid successor of bin bins. Otherwise it is not a valid successor.

After adding a bit pattern to each bin, a bin will contain three variables, namely cntad of 32 bits, limii of 32

bits, and bilPauemdjdof #bins+1 bits. Using the mirror image to address a record is quite efficient. The data

set which was used to perform the field—testdescribed in the next chapter comprises 14742 records of 78 di-
mensions each. Suppose that each dimension is represented by 100 bins, and that the records have to be ad-

dressed in blocks of 10 records (i.e., [147121 produces a total number of 1475 blocks). The total demand for

main memory then becomes 77 100 (32 ÷ 32 + 100) ÷ 100 (32 + 32 + 1475) = 1416700 bits (approxi-
mately 0.18 MB). Increasing the number of bins per dimension will increase the resolution of the mirror image.
Nevertheless, tests have shown that even 25 bins per dimension will suffice (see chapter four).

Setting the bits of bilPallemthd can be done during the investigation of the data set. All bits are initially 0. Each

time when bin 1d. I dimension d + 1 is processed, the i—thbit of bisPatiem4 of dimension d is set to a value

of 1 (j is the preceding bin which was processed in the previous step). When the last dimension D — 1 is pro-
cessed, the n—thbit of bizPa1temDl_1 is set to a value of 1. The variable n denotes, e.g., the n—th record or

the disk block which stores the record at issue. If a bit was already equal to 1 (regardless of the dimension
processed), then its value does not have to be altered. Figure 3.13 shows an example of the previous.
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Figure 3.13 Addressing a record within a disk block by means of the mirror image. A dashed line indi-
cates a valid path from one bin to another.

The premise of the next chapter is deterministic sampling. However, the chapterdoes also apply to determin-
istic addressing, because deterministic sampling and deterministic addressing are entirely interchangeable.

3.7 Summary
A data set comprises at least one record of at least one field. The number of records and fields is arbitrary but
each record must contain the same number of fields. The fields can be of any type. The data set defines a data
space, an enclosed space in which data points occur, if anypoint exists. The data space is composed of dimen-
sions, and linearly increasing the number of dimensions will nonlinearly enlarge the data space. The result
is a virtually empty data space. The dimensions of the data space are defined by the fields of the data set.

Each dimension is represented by a specific number of bins. A bin partitions the range of a specific dimension
into intervals of equal length. The number of data points in the interval of the bin are counted and the outcome
is stored into the bin. The result is a histogram of each dimension. By utilizing the empty bins (or almost empty
bins) by means of bin equalizing, the efficiency of the bins is improved. Bin equalizing is closely related to
histogram equalizing, it provides the same advantages, but, unlike histogram equalizing, bin equalizing actu-
ally adds information to the histogram.

By combining the histograms into a single structure, a mirror image of the data set is obtained. The counter
of each bin of each dimension is divided by the desired reduction of the data set The records in the data set
are mapped on the mirror image in a one by one manner. Each field value of a record indicates a specific bin
of the dimension at issue. If the counters of the bins selected are unequal to 0, then this specific record is a
useful addition to the sample set, and the counters are decreased by one. Otherwise the record is not suitable,
and no adjustments are made.

In other words, the data space of the data set is divided into areas, and each area (approximately) contains
the same number of data points. The size of such an area depends on the numberof bins per dimension and
on the total number of data points available. By dividing the number of data points per area by the desired
reduction, a related reflection of a suitable sample set is found. Except for the number of data points, the reflec-
tion of the sample set is identical to the reflection of the data set. Mapping each record separately on the data
space, and examining the number of data points of the related areas, will reveal whether or not a specific re-
cord is a useful addition to the sample set.

By changing the premise from sampling to addressing, and by adding an extra variable to each bin of the mir-
ror image, the mirror image can be used to retrieve a specific record from the data set. The demand for space
is minimal due to the lack of actual pointers.

Deterministic sampling does not differ from deterministic addressing. It is the same operation observed from
a different perspective. After all, simplicity is the hallmark of truth.
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Chapter 4 Behavior and Field-Test
4.1 Introduction
Experiments are necessary, because the methods employed and the data used are generally toocomplex for
a complete formal treatment. Of course, there is a vast literature in statistics, computational (learning) theoryc
and the like, but the last word is always spoken by an empirical check, an experiment, as in any other science
which needs empirical evaluation of its theories [121.

4.1.1 Intuition
As explained, building an equalized histogram of each dimension is the underlying foundationof the mirror
image. Bin equalizing is closely related to histogram equalizing, but the behavior of the entire deterministic
sampling algorithm does not immediately agree with intuition. The mirror image itself is a linear structure,
but it represents a nonlinear data space. This appears to be a contradiction and an insurmountable problem,
but it mainly depends on the interpretation of linear and nonlinear. To substantiate this interpretation, the
behavior of the algorithm will be examined before setting out the actual field—test.

4.1.2 Standard Input Set
The number of possible data sets is infinite, and the behavior of the algorithm is directly related to the dis-
tribution of the data points, resulting in an infinite number of behavior patterns. Examining all behavior pat-
terns is therefore impossible. To get round this difficulty, a standard input set is defined. The standard input
set provides a worst case scenario to emphasize the specific behavior patterns which have to be examined.

The number of data points is arbitrarily set to a value of 2.5 * 106, but any value which is large in comparison
with the number of training patterns commonly applied to the learning algorithm at issue will suffice.

If a sample of the first occurring data points is drawn from a sorted data set (i.e., one ore more fields were

used to sort the records), then an in order sample set is acquired. If the same process is repeated in case of
random storage, the sample set will be random. An in order sample set will contain precise information on
the beginning of the data set, but a random sample set will probably contain some information on the entire
data set. If the records are stored in order, the dependence on the mirror image is maximized. The algorithm
has to delay the selection of a suitable record whilst traversing the data set. The delay is based on the resolution
of the mirror image (i.e., the number of bins). The sorting rate of the data set will influence the quality of the
sample set. If the number of bins is relatively small, an unsorted data set is preferred to a sorted data set.
Table 4.1 illustrates this.

Number of bins Contents of the sample set indicated by the indexes of the records

1 1...N/2 worstsample
2 1...N/4and2N/4...3N/4
3 1 ...Nf6and2N/6...3N/6and4N/6...5N16
4 1...N/8and2N/8...3N/8and4NI8...5N/8afld6NI8...7N/8

N/2 1,3,5,...,N best sample

Table 4.1 A sample set is drawn from a one—dimensional data set which stores N data points in order
N). The reduction R is equal to 2.

The total number of records divided by the reduction seems to yield an optimal number of bins, namely

#bins = . (4.1)

The standard input set is either one-dimensional or two-dimensional, and the data points form part of one
cluster or two clusters of equal size (both depend on the examined behavior.)
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The worst kind of distribution is a uniform one, because the maximum spread of the data points causes the
mirror image to reflect the entire data space. The opposite of the previous is a cluster of data points positioned
on top of each other. In this case the mirror image will reflect a data space as small as one data point (the mirror
image does not represent empty data space).

According to the previous, the following assumptions are made to obtain a standard input set:

• The number of data points is equal to 2.5 *

• The data set stores the data points in order;

• The number of dimensions is equal to one or two;

• The number of clusters is equal to one or two;

• In case of one cluster, the distribution of the data points is uniform (one large entirely spreaded
cluster);

• In case of two clusters, the distribution of the data points within the clusters is uniform (the
clusters are separated by an area of empty data space).

The examined behavior is based on the standard input set. It provides an indication of the behavior to support
the comprehension of the algorithm in general. However, the standard input set provides a worst case scenar-
io to emphasize specific properties of the algorithm, and the results of applying the standard input set to the
algorithm have to be considered accordingly.

4.2 Behavior
4.2.1 Accuracy

The accuracy is expressed as the ratio between the variance of the sample set and the variance of the data set
(or as the ratio between the mean of the sample set and the mean of the data set). The accuracy is related to
the reduction and the number of bins, as shown in Figure 4.1. The reduction is maximized for each specific
number of bins to obtain worst case behavior, e.g., 2.5 S 106 records and 25 bins yields a maximum reduction

of
2.5*106

= 100 * 10 (i.e., the counter of each bin of the mirror image of the sample set becomes 1).
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4.2.2 Maximum Reduction

A Deterministic Approach

The maximum reduction is related to the number of bins, because adding more bars (i.e., bins) to an equalized
histogram decreases the average height of the bars (i.e., the average value of the counters). If the (average)
maximum reduction

R N
maxj — #binsa'

(4.2)

equals meana' then its value is an optimized one. If the value of cntis smaller than Rmua (i.e., the histogram
is not entirely flat), then cnI, is the maximum reduction of that specific bin (e.g., if cnt is 25 and is 30,

then the maximum reduction of bin& will be 25 instead of 30). The maximum reduction is nonlinearly related
to the number of bins. This relation is plotted in Figure 4.2.
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Figure 4.3 Instantaneous decrease of the accuracy when the reduction exceeds the maximum reduction.

When the reduction exceeds the maximum value of the counter of a bin which represents an entire cluster,
the entire cluster will be excluded from the sample set. In case of multiple clusters, the result will be a stepwise
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Figure 4.2 The maximum possible reduction of a bin.

By turning Figure 4.1 upside down, the progress of the curve is almost identical to the curve in Figure 4.2.
Therefore, an accurate variance and / or mean implies more bins, but a large value of the reduction implies
less bins. This is a contradiction, because one would like to have a sample set which is accurate and small.

4.2.3 Accuracy and Reduction

If the actual reduction R exceeds the value of cnt1 then cn1 will become 0 after dividing it by R, and all
data points in the interval of bins are excluded. As a result, the accuracy will decrease instantaneously and
becomes 0. The upright line in Figure 4.3 illustrates this behavior.
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Figure 4.5 The mirror image MI of a cluster must be at least 1.0 (i.e., a single bin). In area A, two clusters
are entirely located in the interval of a single bin, two clusters are partially located in the interval of a

single bin in area B, and each cluster is reflected by at least one bin in area C.
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reduction of the accuracy (i.e., each step is the result of excluding a cluster). The decline of the accuracy in
Figure 4.3 is composed of just one step, because all data points were located in the interval of a single bin.

4.2.4 Cluster Ratio
The bins represent the data points, and at least one bin is necessary to represent a cluster. A bin may represent
more than one cluster, but then the mirror image cannot distinguish between the differentclusters. The mini-
mum number of bins which are required to properly sample the data setdepends on the number of data points
of the smallest cluster. In Figure 4.4, the cluster ratio

CR — #r?COrdS smallest cluster 43
— #records laigest cluster

divides the figure into two areas A and B.
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Figure 4.4 The minimum number of bins required to properly represent the smallest cluster. In area A,

both clusters are properly represented, but in area B, the two clusters are (partially) merged.

Recapitulating the previous, a specific number of bins implies a certain accuracy (Figure 4.1), a maximum re-
duction (Figure 4.2 and Figure 4.3), and a minimum size of the smallest cluster (Figure 4.4).

4.2.5 Cluster Representation
Representing two or more clusters by a single bin will affect the accuracy of the sample set. The reflection of
the smallest cluster, i.e., its mirror image

MI = #records smallest cluster * #bins 0 <MI � #bins, (4.4)

is a measure of the available bin space which actually reflects the cluster. Figure 4.5 illustrates the previous.
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4.2.6 Resource lime
The building block of the mirror image is a histogram of each dimension d. A histogram is an array of length
#binsE and the total number of arrays is equal to the number of dimensions, namely D. For each record in
the data set, D arrays are processed a fixed number of times. The complexity (i.e., the demand for time) of
the processes is related to the length of an array (the worst case scenario comprises one traverse of the array).
Therefore, the complexity is linearly related to the number of records, the number of dimensions, and the
number bins. The complexity is not related to the distribution or the reduction of the data set. The demand
for time is plotted in Figure 4.6.
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Figure 4.6 Linear demand for time.

4.2.7 Resource Space

The demand for the resource space depends on the number of records, the number of dimensions, the number
of bins, and the distribution. In case of a uniform distribution, a negligible amount of main memory is required
(i.e., the demand for space solely depends on array A0 through AD_ ). The same amount is needed when each
data point is positioned on top of another data point. Both cases are exactly the opposite of each other, but
they both have the same demand for space.

When multiple bins are used, and the data points are located in the interval of just one bin, but not on top of
each other, the demand for space is maximized. A maximum number of data points must be relocated to
empty bins. The magnitude of such a relocation depends on the number of bins in a linear fashion. An example
will clarify this. Two bins are used to represent a one—dimensionaldata set. A dense cluster of 100 different

data points is located in the interval of the first bin. Ideally, 50 data points should be located in the interval
of each bin. In order to relocate 50 data points from the first bin to the second bin, 50 data points have to be
stored into main memory (i.e., into trees). In case of three bins, 67 data points have to be stored into main
memory etc. As a result, the demand for space (mainly) depends on the number of bins. The demand for space
will linearly increase in case of an invariable distribution and a linear increase of the number of records or
dimensions. See also Figure 4.7.
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Figure 4.7 Linear demand for space.
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The funnel mentioned in Figure 4.7 is a simple but very effective improvement of the algorithm. By using a
funnel to store data points into the tree (i.e., each node has its own funnel), main memory usage can bed rasti-
cally decreased. A funnel of 10 will funnel 10 separate values into a single node. A funnel is actually a range,
and the value of the node is located somewhere in this range. An extra variable keyLimit, is added to each node
to indicate the range of a node. Whilst determining the mirror image, the range of a funnel is determined in
an on the fly manner.

A funnel dynamically divides bins into smaller bins, the sub-bins. The number of values that can be stored
into a node is restricted to a maximum (10 in Figure 4.7). This maximum ensures an equalized histogram of
the sub-bins, a sub-histogram. A sub-histogramis the histogram of one of the bars (i.e., bins) of the histogram

of the entire dimension.

A funnel has the advantage of combining all values which differ slightly into a single node (e.g., the difference
between 1.23456789 and 1.23456788 is negligible if the range R1 is substantially greater than this difference).
A funnel is a generalized interpretation of compaction.

When very dense clusters are represented by many bins, a funnel is necessary to limit the demand for space.
Funnelling 0.1% or less of the total number of values of a dimension into a node will hardly influence the accu-

racy of the resulting sample set. The funnel in Figure 4.7 funnels
2 5 *106

* 100% = 0.0004% of the total num-

ber of field values into a single node (0.1% equals 2500 field values).

4.2.8 Chance to Retrieve a Cluster

In case of simple random sampling with replacement, the chance

— #records snallesi cluster
P

— #recorcs
(4.5)

to retrieve a data point from the smallest cluster is relatively small. In caseof deterministic sampling, P is max-
imized, and it practically becomes 100% (not theoretically due to round of errors and the possibility of some
lost information as described in chapter three). The difference between random and deterministic sampling
is clearly shown in Figure 4.8.
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43 Field—Test

4.3.1 Introduction
A field—testis conducted by sampling a large realistic data set. The sample set is applied to a common class
of NNs, namely a classifying multilayer perceptron (MLP). The size of the sample set should become as small
as possible, but the classifying capabilities of the resulting networkshould not substantially differ from a net-
work trained with the entire data set. To provide a frame of reference, the deterministic sample algorithm is
compared with simple random sampling with replacement.

The field-testis categorized by the two parameters of the deterministic sampling algorithm:

• Reduction;

• Number of bins.

These two parameters are the starting point of each testcond ucted. Adjustments of these parameters will pro-
duce specific results to examine:

• Accuracy (i.e., the performance of the MLP after training);

• Demand for time (i.e., sampling and training time);

• Demand for space (i.e., main memory).

4.3.2 Data Set

The data set employed is generally used to train NNs to classify the characters and numbers of registration
plates of cars. It comprises specific features of the characters and numbers, and is extracted from the raw data.
The raw data is obtained by taking photos of passing cars.

The specific features are not important. Regardless of the data set, the deterministic sampling algorithm
should perform at least as well as random sampling. The task of the deterministic sampling algorithm is to
preserve the features and the underlying relations of the data set. Simulations have indicated that making use
of high ordered concentrated features to train a NN will yield very high accuracy rates of the categorization
[16]. In other words, the clustering of data points is increased. The previous has shown that clustering of data
points is advantageous when one wants to select a deterministic sample set.

The data set comprises 14742 records of 78 dimensions each. The number of inputs is 42, and the number of
outputs (or targets) is 36. There is no reason to make a distinction between the input and output, because they
represent dimensions which have to be generalized by the algorithm, i.e., each input combined with its output
defines a single data point. The type of each field is a double.

4.3.3 Multilayer Perceptron
The MLP initially is a 42-10-36 network The inputs and outputs of the network are determined by the num-
ber of inputs and outputs as defined by the data set. The number of neurons of the hidden layer is commonly
used to train NNs with the entire data set to properly classify the registration plates. Since the sample set is
small in comparison with the data set, the number of hidden neurons probably contains a surplus. Due to the
surplus, a network tends to store the sample set instead of storing a generalization of it. In other words, it
overfits due to an oversized neural network or a too small training set. To improve the generalization ability,
either the network has to be reduced, or additional records have to be added to the training set [4]. The latter
is not preferable, because the purpose is to minimize the training set. Therefore, the number of hidden neurons
is empirically reduced to 7 neurons. Sampling will reduce the size of the training set, and, as a result of a small
sized training set, the size of the network (i.e., the number of neurons of the hidden layer) can also be reduced.
The number of connections of the MLP is reduced from 780 to 546. Such a reduction will especially limit the
demand for time.

In order to obtain a straight comparison between the classifying capabilities of a network trained with the
sample set and a network trained with the entire data set, the remaining parameters (particularly the learning
rate and the momentum) are not adjusted. A well designed algorithm (or electronic circuit) requires a mini-
mum of adjustments, regardless of the environment.
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The performance of a network after applying a test set to it (i.e., the mean squared error of the test set) is ex-
amined after performing 100 epochs. The generalization capabilities of a network will improve after perform-
ing, e.g., 500 epochs, but tests have shown that the progress of the curve hardly changes after 100 epochs. Due
to the number of networks that had to be trained (approximately 250), the number of epochs was limited to
finalize the field—test in time. The test set consists of all available patterns, including the patterns of the train
set. The latter is not a problem, because the size of the sample set is negligible in comparison with the size of
the entire data set.

4.3.4 Field—Test

4.3.4.1 Introduction

The results of the field —testalways indicate an average. The same test is conducted at least five times, and the
classifying capabilities of the resulting networks are averaged after omitting the best and the worst network.
This approach is necessary to obtain plausible data, because training a network twice with the same training
set will roughly yield the same result in general. However, deviating extremes may occur. They are inherent
in the learning algorithm, not in the sampling algorithm. Simply omitting the extremes will increase the feasi-
bility of the field—test.

Randomly obtained sample sets provide a frame of reference to interpret the results of the deterministic sam-
pling algorithm. Simple random sampling with replacement or simple random sampling without replace-
ment are the two possibilities to choose from, because these random sampling techniques are commonly used
at the department to select the sample sets to train NNs. Besides that, virtually all remaining randomsampling
techniques directly or indirectly use advance knowledge (e.g., by attributing a weight to the records). Since
the deterministic sampling algorithm does not use advance knowledge, these techniques do not provide a
proper frame of reference.

Sampling with or without replacement will not yield substantially different results, because the sample set
is very small in comparison with the data set. In other words, the chance to select the same record twice is
negligible (e.g., if 250 records have to be selected to constitute the sample set, then the chance to select the same

record twice is
14742

*

14742
* 100% = 0.029%). Simple random sampling with replacement will suffice.

Each dimension is represented by the same number of bins to keep the field -test surveyable. An improvement
of the results can be obtained by separately adjusting the number of bins per dimension.

4.3.4.2 Learning Curves

Figure 4.9 shows the typical difference between the learning curve of a network trained with a deterministic
sample set, and the learning curve of a network trained with a random sample set. If the reduction is in-
creased, the deviation D between the learning curves will also increase and vice versa.
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Figure 4.9 Learning curves of the MLP (obtained after performing 200 instead of 100 epochs).

A deterministic sample set generally contains more information than a random sample set. Generally, because
the results are average results, and random sampling may incidentally produce a better sample set. The devi-
ation D between the learning curves is an average measure of the difference of information between the sam-
ple sets.
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The progress of both learning curves are roughly the same. This implies that when a certain reduction R is
used to produce a random sample set to obtain a certain recognition rate, the recognition rate can also be ob-
tained by applying a deterministic sample set of smaller size (i.e., R is increased). In other words, determinis-
tic sampling increases the chance to find a suitable sample set in comparison with random sampling. This does
not guarantee a low error of, e.g., 0.5%, it states that, for a given recognition rate and reduction, a deterministic
sample set is smaller than a random sample set. However, this does not hold when the sample set is relatively
large in comparison with the data set (e.g., the size of the sample set is half the size of the data set).

4.3.4.3 Deviation of the Mean Squared Error

The deviation D depends on the reduction R. Whilst increasing the reduction, the deviation between the two
curves in Figure 4.10 will grow.
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Figure 4.11 Mean squared error for various numbers of bins.

Each curve curves away at a specific point (the 50 bins curve at 80, the 25 bins curve at 120, and the 10 bins
curve at 160). Curving away is the result of excluding a cluster. This is due to a reduction R which exceeds
the value of a counter of some bin (i.e., the average value Cd is exceeded). The process will repeat itself until
each cluster is excluded (e.g., each curve starts curving away at 40). The same behavior is shown in Figure 4.3.
Comparing the random sampling curve in Figure 4.10 with the worst values of Figure 4.11 will reveal that
deterministic sampling performs at least as well as random sampling.
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Figure 4.10 Increase of the deviation of the mean squared error. The stepwise progress of the deterministic
sampling curve is typical for deterministic sampling (see also Figure 4.11).

4.3.4.4 Bin Dependency

Figure 4.11 illustrates the relation between the mean squared error and the reduction with respect to various
numbers of bins. The deterministic sampling curve in Figure 4.10 is the result of taking the best results plotted
in this figure.
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4.3.4.5 Resource Time: Sampling Time

The deterministic sampling algorithm will always require a constant amount of time to verify the suitability
of a record, because a number of counters equal to the number of dimensions is examined. In case ofrandom
sampling, the selection of a specific record by means of a randomlygenerated index takes a small and constant
amount of time. The demand for time to select a deterministic sample set depends on the number of records
in the data set, but in case of random sampling, it depends on the number of records in the sample set. There-
fore, random sampling is faster than deterministic sampling.

As opposed to random sampling, deterministic sampling requires a constant amount of extra time to deter-
mine the mirror image. Once it is determined, it can be stored into a file to, e.g., determine another sample
set of a different size. When the number of bins of a dimension is altered, the mirror image has to be deter-
mined again. The average time to determine a mirror image which reflects the entire data set of 14742 patterns
is approximately 5 minutes. When the distribution remains the same, the time to determinethe mirror image
is linearly related to the number of records, the number of dimensions, and the number of bins.

When the mirror image is available, the data set is traversed a single time to determine the sample set, regard-
less of the size of the sample set. This results in a constant sampling time which is indicated by the upright
line in Figure 4.12.

Figure 4.12 Sampling time (the mirror image is already available).

Random sampling is faster than deterministic sampling, particularly when selecting a small sample set. Im-
proving the deterministic sampling algorithm is possible by quitting the traverse of the data set as soon as
a complete sample set is collected. However, this does not change the worst case scenario.

With respect to the demand for training time, the demand for sampling time is negligible for both determinis-
tic and random sampling.

4.3.4.6 Resource Time: Training Time

The demand for training time depends on the size of the training set. Figure 4.13 illustrates the growth of the
demand for training time whilst increasing the size of the sample set. Comparing this figure with Figure 4.9,
Figure 4.10, and Figure 4.11 will support the following observation. it is possible, within certain limits of the
reduction, to make use of a smaller training set to train a NN without making concessions to the accuracyof

the resulting network.
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Figure 4.13 Training time of the MLP.

Training a MLP with the entire data set of 14742 patterns will approximately take 12 hours. A deterministic
sample set of 250 patterns will produce a suitable network. The recognition rate of the test set is then approxi-
mately 98.0%. To attain the same accuracy by applying a random sample set, the size of the sample set has
to be approximately 350 records. Figure 4.13 illustrates that the reduction of training time is about 5 minutes
per 100 epochs (i.e., the training time is reduced from 39 to 34 minutes). The reduction of training time in

comparison with random sampling is * 100% 13%, and in comparison with a training set which com-

prises the entire data set, the reduction is 12 26 34 * 100% 95%.

Given a mean squared error (i.e., a fixed recognition rate), the size of a deterministic and random sample set
will differ. Applying both sample sets to a MLP will result in different training times. The difference between
the training times is nonlinearly related to the mean squared error, as shown in Figure 4.14.
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Figure 4.14 Difference between the training times of a MLP trained with a deterministic and a random
sample set respectively.
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4.3.4.7 Resource Space

Whilst sampling, the demand for space particularly depends on the number of bins. Figure 4.15 shows the
relation between the demand for space and the number of bins.
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Figure 4.15 Occupied main memory.

A funnel drastically decreases the demand for space. A narrow funnel does not noticeably influence the selec-
tion of the sample set, but the algorithm runs faster (i.e., less tree nodes to visit), and makes use of less space
(i.e., less tree nodes to store into main memory). The funnel in Figure 4.15 funnels 10 values into a single node

12 * 100 = 0.068% of the available values of a dimension are stored into a node).

4.3.5 Data Set Acknowledgement
Suppose that a cluster of 5 data points exists in some data space, and that the total number of data points in
that data space is equal to 10. The chance to randomly select one of the 5 data point is 50%, but if the total
number of data points becomes 1000, the chance is decreased to 0.5%. When the chance to select a data point
within a specific cluster is small, deterministic sampling is the best candidate to select a sample set.The field —

testis based on a relatively small data set which comprises one large and dense cluster (the progress of both
curves in Figure 4.11 implies that the data set contains one large and dense cluster). Due to the lack of relative-
ly small clusters, this data set cannot maximally show the benefits of the deterministic sampling algorithm.
Nevertheless, the adverse effect of the data set cannot prevent that random sampling is still outperformed.

4.4 Summary

4.4.1 General Summary
The limited amount of the resources time and space will generate problems when a too large data file is ap-
plied to an algorithm (e.g., a machine learning algorithm). The joint cause of these problems (i.e., a too large
data set) implies a single solution.

A common approach to overcome resource related problems is to sample the original data set to produce a
smaller sample set. Sample sets are usually obtained by random sampling, but this technique has the inability
to guarantee that the proportion of the relations between the clusters is preserved. Ideally, expressing this
guarantee as a percentage should at least yield an approximation of 100%. This can only be attained by chang-
ing the nature of the algorithm, it should be deterministic instead of random.

Standard addressing techniques (e.g., B—ttees) require a specific structure which is independent of the remain-
ing part of the (learning) algorithm. This is not preferable, because it increases the demand for the resources
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time and space. As said, both problems have the same cause, and, consequently, a deterministic sampling al-
gorithm has to have the ability to retrieve records from disk or the like. In other words, the data structure
which is used to sample the data set should be (reversely) used to retrieve a specific record.

The deterministic sampling algorithm is based on a representation of the data set, a so-called mirror image.
On the principle that the mirror image is an efficient reflection of the data set, decisions are made to determine
whether or not a record meets the requirements of the sample set. This process is entirely deterministic.

The deterministic sampling algorithm makes uses of the mirror image to select a sample set by verifying the
suitability of a record. By changing the premise of the mirror image, it can be used to retrieve a specific record
from the data set. Deterministic sampling and deterministic addressing are similar processes. As a result, the
mirror image provides a feasible solution to both resource related problems.

4.4.2 Conclusions

• Deterministic sampling provides a feasible solution to the problem related to the resource time
(e.g., training time);

• Deterministic addressing provides a feasible solution to the problem related to the resource space
(e.g., main memory).
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Chapter 5 Conclusions
The limited amount of the resources time and space will generate problems when a too large data file is ap-
plied to an algorithm (e.g., a machine learning algorithm). A feasible solution to these problems is provided
by deterministic sampling (related to the resource time) and deterministic addressing (related to the resource
space).

Deterministic sampling and deterministic addressing both use the same representation of the data set, a so—
called mirror image. Except for their premise, deterministic sampling and deterministic addressing are identi-
cal, because both resource related problems have a joint cause (i.e., a too large data set), and a joint cause
implies a joint solution.

5.1 Advantages

• A deterministic sample set reduces the training time of a NN, making no concessions with respect
to the accuracy within certain limits of the reduction;

• The deterministic sampling and addressing algorithm both use linear time and space;

• A deterministic sample set contains a constant amount of information;

• Deterministic sampling performs at least as well as random sampling, but it generally outperforms
random sampling;

• The mirror image can be used for both sampling and addressing, both processes are the same;

• The training set or a portion of it does not have to be loaded into main memory, loading one record
(or disk block) a time will suffice;

• The mirror image requires a small amount of main memory particularly in comparison with
commonly used data structures;

• The mirror image can provide specific information on the data set (e.g., statistics);

• Increasing the number of records, the number of dimensions, and / or the reduction will increase
the efficiency of the mirror image.

5.2 Disadvantages

• The number of bins to represent a specific dimension is an important parameter which must be
carefully adjusted to prevent an inaccurate mirror image;

• The number of bins is inversely related to the reduction (i.e., a small sample set implies less bins,
and an accurate sample set implies more bins);

• Random sampling is faster than deterministic sampling, and it requires less main memory;

• Both deterministic and random sampling perform equally well when the sample set is relatively
large in comparison with the data set;

• The mirror image cannot preserve the entire information contents of the data set;

• The mirror image provides a linear representation of a nonlinear data space which does not
immediately agree with intuition.
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