
Facultelt der Wiskunde en Natuurwetenschappen WTiskunde en
Informatica

A QoS Provisioning Service for
CORBA

afstudeerverslag

Marcel Harkema

december 1999

begeleider: Rein Smedinga

Authors: Marcel Harkema Date: December 1999

A Q0S Provisioning
Service for CORBA

For internal use only at KPN RA-99-31 966

A

,$or!G3 I RSkGt
iJ

As -'rIfl

Documenthistory

Version Editor Date Explanation Status

1 Marcel 20 January 2000 Final draft

2 Marcel 28 January 2000 Final I

o KonlnklIJke PU Nederland NV, KPN Research 1998.
Aile recflten voorbehouden.
Niets lit deze gave mag worden verveeieouclgd. opgeslagen Ni een
geautomatiseerd gegevensbestand of opeltaar gemaakl. Ni e,Ige vol m of op
erge wze, hetz elektrordsth. mechanlsth door fotOkOple8n. ognamen 01
wage andere manier. zonder voorafgaande sctiIfteIke toestemming van de
rectithethende. His vorenstaande is eveneens van toepassmg op gehele 01
gedeellee bewedli
De rectithethende Is met ultolulting van leder wider gerechtlgd de door derden
verschuidigde vergoedingen voor kopleren ats bedoetd Ni ait*it 17. tweede Id.
A&*etzswet 1912 en het KB. van 2Ojwi 1974 (Stb.351) zoets gewzigd buj het
KB. van 23 augustus 1985 (Sth.471) cx aroket 16b Auteurswet 1912. te men
enlot daartoe Ni en buiten rethte op to treden.
Voor het overnemen van delen van doze ulgave cx Mikel 16 Auteuswet 1912
dient men rich tot tie rechthethende le wenden.

C Royal PU Nederland NV, KPN Research 1998.
Al rights reserved.
No part 01 this book may be rep1odued ii any form, by pit photoxNt
microfilm or any other means without the prior Mitten permission from the

KPN Research

Informationsheet issued with Report RA-99-3 1966

Title: A Q0S Provisioning Service for CORBA

Abstract: Quality of Service (QoS) aspects like performance, security,
and reliability are important to middleware systems. Still, there
is no support for QoS in current middleware systems. CORBA
is an increasingly used middleware component. The QoS
Provisioning Service (QPS) adds QoS support to CORBA
middleware systems. QPS only uses available mechanisms to
add functionality to CORBA and doesnt change the CORBA
implementation itself. This allows QPS to be used with all
CORBA implementations that support such extension
mechanisms. This thesis describes the design of QPS and
discusses a prototype implementation.

Author(s): Marcel Harkema
Reviewers: Aart van Halteren (KPN Research), Rein Smedinga

(Rijksuniversiteit Groningen)
Department: Communications Architectures and open Systems (CAS)
Project: Q0SMOS
Project manager: ir A.T. van Halteren
Project number: 13967
Programme: FOBO
Program manager: ir G. Kuiken
Commissioned by: ir J.M.G.A. Ouderling
Date: December 1999

For internal use only at KPN

Person responsible at KPN Research: ir J.M.G.A. Ouderling

Key Words: CORBA Middleware, QoS Provisioning

Mailing List:

KPN Telecom prof ir B.L. de Goede (Staf T&l), P. Morley M.Sc. (CTO)
KPN Research Aig dr KPN Research, dr R&D, hid STR, hid RPM. MT CAS, ir.

G. Kuiken, ir. F.W. de Vries, ir. A. van Halteren, drs. J. vd Leur,
prof. dr.J. Bruijning, ir. J.P. vd BIJI, ir. M.R. Vonder, drs. K.A.
Helmholt, dr. R.J. Meijer, drs. M. M. Visser, dr. G. Fabian, prof.
dr. W. Jonker, dr. ir. M. Vos, ir. T.G. Eujkman, ir. E.M. Peeters,
drs. M.M. Visser, drs. J. Gerlofs, drs. H. Fluks, drs. Ing. R.L.J.
Beekhuis, J.D. Bakker, drs. K. J. Koster, drs. J. vd Leur, ir.
J.E.P. Wijnands, dr. ir. R. van Buuren

A QoS Provisioning Service for CORBA
December 1999

Contents

Introduction 9

1.1 Problem statement 10

1.2 Research questions 10

1.3 Report objective 10

1.4 Report Structure 10

2 Architectural concepts 12

2.1 0MG CORBA middleware 12
2.1.1 Object Management Architecture 12
2.1.2 Common Object Request Broker Architecture 14

2.2 QualityofService 18
2.2.1 WhatisQoS2 18
2.2.2 Static and dynamic Q0S 18
2.2.3 Q0S Framework 19

2.3 Quality of Service specification 22
2.3.1 Q0S design and specification 22
2.3.2 Developments in CORBA Q0S by the 0MG 23

2.4 Quality of Service at the network-level 24
2.4.1 Signaling Q0S with lnt-Serv RSVP 24
2.4.2 Network packet queuing with WFQ 24

3 Engineering concepts 26

3.1 Portable Interceptors 26

3.2 Pluggable Protocols 27
3.2.1 Interoperability between ORBs 27
3.2.2 Protocol limitations of Conventional ORBs 30
3.2.3 Open Communications Interface 30

3.3 QML 32

4 The Q0S Provisioning Service 35

4.1 A demonstration scenario 35

4.2 Approach 36

For internal use only at KPN 5/63

4.3 Requirements .36

4.4 Design 37

4.4.1 Prediction phase 38

4.4.2 Establishment phase 39

4.4.3 Operational phase 42

4.5 Résumé 45

5 Implementation of the QoS Provisioning Service 47

5.1 ORBacus

5.2 The QoS model 47

5.2.1 Specification of QoS 47

5.2.2 How Q0S is stored in the desired Q0S model 48

5.2.3 Querying the QoS model 50

5.2.4 Storing QoS measurements 50

5.3 Method invocation filtering 50

5.3.1 Interceptors 50

5.3.2 Sensors 51

5.3.3 An in-depth look at the request level interceptor 52

5.3.4 An in-depth look at the request-level sensor 53

5.4 The QIOP OCI Transport 54

5.4.1 Plug-ins 54

5.4.2 Shortcomings of OCI 55

5.5 Résumé 56

6 Conclusions & Future work 57

7 References 61

A QoS Provisioning Service for CORBA
December 1999

Management Summary

This is a report on a graduate assignment conducted in the context of a PhD. Research
on Quality of Service (QoS) mechanisms for Open Distributed Environments (ODE). An
ODE is a conglomerate of hard- and software systems often obtained from several
vendors, which are interconnected through a variety of (tele-) communication networks.
An ODE is clear manifestation of the integration of Telecommunication and Information
Technology into an integrated set of technologies, often referred to as Information and
Communication Technology (ICT). The aim of the PhD. Research is gain a better
understanding of managing the QoS in large-scale ICT systems. Knowledge on
architectures, protocols and QoS management mechanisms of large-scale ICT systems
contributes to KPN's goal to provide ICT services.

The QoS provided by an ODE is a very important aspect, since Q0S has a direct effect on
the perception of the end-user of the quality of the overall services provided by an ODE.
A good service provider is capable to manage and control the QoS of ODEs.

The Common Object Request Broker Architecture (CORBA) by the Object Management
Group (0MG) is a crucial element of a growing number of ODEs. Unfortunately, the
current version of CORBA does not support management and control of QoS. However,
there is a lot of research activity aiming to extend CORBA with mechanisms and policies
for Q0S provisioning.

This document presents a Q0S Provisioning Service for CORBA, supporting
management and control of QoS. The QoS Provisioning Service doesn't change the
implementation of CORBA, and is therefore usable with a wide range of CORBA
implementations.

This document is of interest to those who are looking for ways to add Q0S provisioning to
CORBA in a portable manner, so that it can be used with ORBs from different vendors.

For internal use only at KPN 7/63

List of Abbreviations

API Application Program Interface
CBQ Class Based Queuing
CD Common Data Representation
CIOP Common Inter-ORB Protocol
CORBA Common Object Request Broker Architecture
COSS Common Object Services Specification
DCE OSFs Distributed Computing Environment
DPE Distributed Processing Environment
DRP Distributed Resource Platform
DII Dynamic Invocation Interface
DSI Dynamic Skeleton Interface
ESIOP Environment Specific Inter-ORB Protocol
GIOP General Inter-ORB Protocol
IDL Interface Description Language
IETF Internet Engineering Task Force
IIOP Internet Inter-ORB Protocol
lOP Inter-ORB Protocol
IOR Interoperable Object Reference
ISO International Standards Organization
OCI Open Communications Interface
OMA Object Management Architecture
0MG Object Management Group
ORB Object Request Broker
OSF Open Software Foundation
Q0S Quality of Service
QPS Q0S Provisioning Service
RFC Request for Comments
REP Request for Proposals
RSVP Resource ReSerVation Protocol
TCP/IP Transmission Control Protocol/Internet Protocol
WFQ Weighted Fair Queuing

L.

1 Introduction

A Q0S Provisioning Service for CORBA
December 1999

Most large organizations use a lot of different computer systems. They differ in their type
(from small workstations to mainframes), in the vendor they come from, in the operating
systems they run, in the protocols they use to inter-network. etc.

Traditionally most systems in an organization are standalone (personal workstations).
These standalone systems may need to share resources (e.g. printers) and data (e.g.
databases), so they're often inter-connected via a network.

Distributed Computing allows computer systems to work together in a network. It
improves collaboration through internetworking and connectivity, application performance
through parallel processing, reliability and availability through replication, scalability and
portability through modularity, extensibility through dynamic invocation and cost
effectiveness through resource sharing.

Large computer networks and corporate Intranets are heterogeneous. They are made up
of mainframes, UNIX workstations and servers, PC systems running different operating
systems, different communication hardware, different network protocols, etc. This
heterogeneity makes developing distributed software difficult. Besides heterogeneity
other issues make developing distributed software difficult, like detecting and recovering
from network and host failures.

The lack of standard off-the-shelf frameworks (e.g. for printing, database interaction, and
communication) for distributed systems caused developers to build their own software
components for distributed systems. This in-house development process is costly and
time consuming. It often results in large and hard to maintain distributed software. This
problem is known as the distributed software crisis (1].

Distributed object computing middleware simplifies development of distributed software
by providing a uniform view of heterogeneous networks and operating systems.

Middleware is a layer of software that resides between the application and the underlying
heterogeneous layers of operating systems, communication protocols and hardware. It

For internal use only at KPN 9/63

Figure 1: The Open Distributed Environment (DPE)

A Q0S Provisioning Service for CORBA
December 1999

provides separation of concern: the middleware isolates hardware, operating systems,
and communication protocols from the rest of the system; the applications on top of the
middleware. A commonly accepted middleware standard is 0MG CORBA.

Figure 1 depicts the described layering. The Distributed Processing Environment (DPE)
consists of computer hosts and network elements (such as routers) and the middleware
layer on top of them. The collection of computer hosts and network elements alone is
known as the Distributed Resource Platform (DRP). The whole environment, i.e. the DPE
and the applications, is called the Open Distributed Environment (ODE).

1.1 Problem statement

In addition to functional requirements of distributed software, users also have non-
functional requirements. for example performance. security, and reliability. These non-
functional requirements are termed Quality of Service requirements. The management
and control of Q0S is called Q0S provisioning.

The 0MG CORBA middleware standard doesn't include specifications on how Q0S can
be specified, controlled and managed. There is a lot of research related to how Q0S
provisioning can be added to CORBA. However, most research focuses on particular
kinds of Q0S, like reliability or bandwidth reservation for multimedia applications. They
often modify the internals of the ORB and thus create solutions that are not portable
between different ORB implementations and generic enough to support a wide range of
Q0S.

1.2 Research questions

We have identified that CORBA does not support Quality of Service provisioning. We
have decided to tackle this problem by designing a so-called QoS Provisioning Service
for CORBA.

During the initial phases of the design various questions arose.

1. How are Q0S requirements specified by the application?

2. How do we manage and control Q0S in the ODE?

3. How does end-to-end Q0S propagate through the ODE? The various parts of the
ODE (applications middleware, hosts, network elements, etc.) have different views on
Q0S. For instance, the application would like to have a high level view on Q0S,
without having to worry about QoS configuration parameters of Q0S mechanisms that
the network provides.

4. We don't want to change the internals of a CORBA implementation. Can we add
Q0S provisioning support to CORBA in a portable manner, without changing CORBA
itself? What mechanisms can we use in order to do so?

5. What QoS mechanisms does the network provide and how does the middleware
benefit from these QoS mechanisms?

1.3 Report objective

The aim of this document is to describe an architecture and implementation that solves
the lack of QoS provisioning in CORBA.

1.4 Report Structure

The structure of this document is as follows. For the reader who is not familiar with
middleware or Quality of Service terminology chapter 2, architectural concepts, provides

10163 For internal use only at KPN

A Q0S Provisioning Service for CORBA
December1999

the necessary background information. Chapter 3, engineering concepts, describes
mechanisms that can be used to extend the ORB: Pluggable Protocols and Portable
Interceptors. Chapter 3 also gives an overview of QML, a specification language for QoS
requirements in distributed systems. Chapter 4 discusses the Q0S Provisioning Service
(QPS) for CORBA that we've designed. The implementation of QPS is described in
chapter 5. Chapter 6 presents the conclusions and discusses future work.

For internal use only at KPN 11/63

A QoS Provisioning Service for CORBA
December 1999

2 Architectural concepts

The goal of this thesis is to design a service that adds QoS provisioning to CORBA. This
chapter gives an overview of the architectural concepts that we use in this thesis. In the
previous chapter the Open Distributed Environment (ODE) was introduced. The ODE is
divided in a layer with applications, a middleware layer, and the Distributed Resource
Platform (DRP). The DRP and the middleware layer form the Distributed Processing
Environment (DPE).

The architectural concepts that we discuss are:

• Middleware, in section 2.1. We discuss CORBA, a commonly used middleware
implementation.

• Quality of Service, in section 2.2. Quality of Service is a general term that covers
system performance. as opposed to system operation.

• Specification of Quality of Service in CORBA, in section 2.3.

• Quality of Service mechanisms at the network-level, in section 2.4. The network
is part of the DRP.

2.1 0MG CORBA middleware

The Object Management Group (0MG) was founded in 1989 by eleven companies,
including 3Com, Philips and Sun. It currently has over 800 members. The 0MG
develops, adopts and promotes standards for distributed application development in

heterogeneous environments. The 0MG is structured in three bodies, the Platform
Technical Committee (PlC), the Domain Technology Committee (DTC) and the
Architecture Board. The architecture board manages the consistency and technical
integrity of work produced by the Technical Committees.

0MG members contribute technology and ideas in response to 'Request for Proposals
(RFPs). 0MG Technology Committees issue these Requests for Proposals. 0MG
specifications are based on responses to the REPs. Each vendor can then build
implementations based on those standards. This approach ensures interoperability,
since all vendors use the same APIs and specifications.

The 0MG developed the Object Management Architecture (OMA), an architectural
framework for distributed interoperable objects.

This section gives an overview of the Object Management Structure (OMA) and the
Common Object Request Broker Architecture (CORBA), an important part of the OMA.

2.1.1 Object Management Architecture

The Object Management Architecture (OMA) is a high-level view of a distributed
environment. The OMA is divided in two parts: an Object Model and a Reference Model
[21.

12/63 For internal use only at KPN

A QoS Provisioning Service for CORBA
December 1999

The OMA Object Model defines common object semantics for specifying the externally
visible characteristics of objects in a standard and implementation-independent way. The
common semantics characterize objects that exist in an OMG-conformant system.

The object model has a small number of concepts:

objects

• operations

• types

• subtyping

An object can model entities such as persons, boats or documents. Operations can be
invoked on objects, an example operation is a query for a person's date of birth. Objects
are instances of types, for example an instance of type boat can be a red boat, 4 meters
long, with a seating capacity of 6. A type characterizes the behavior of an object by
describing the operations that can be applied to it. There can be relationships between
types, for instance a speedboat could be a subtype of the more generic boat.

A client can issue requests to objects to perform services. These services can only be
accessed through well-defined interfaces, the implementation and location of objects are
hidden from the requesting client.

The OMA Reference Model partitions the 0MG problem space into high-level
architectural components that can be addressed by member-contributed technology. The
Reference Model is a conceptual roadmap for assembling these technologies while
allowing different design solutions. The Reference Model identifies and characterizes
components, interfaces, and protocols that compose the OMA but doesn't define them in
detail.

The components identified by the Reference Model are:

• Object Request Broker

• Object Services

• Common Facilities

• Domain Interfaces

• Application Interfaces

For internal use only at KPN 13/63

Figure 2: 0MG Reference Model

A Q0S Provisioning Service for CORBA
December 1999

The Object Request Broker (ORB) component, commercially known as CORBA, is
responsible for handling interaction between clients and objects.

The Object Services are domain-independent interfaces. Provided are interfaces that
standardize life-cycle management of objects, interfaces for security, etc.

Services that provide for the discovery of available services are examples of domain
independent services, since they are needed in almost every domain. Two examples of
this are:

• The Naming Service, this service allows clients to find objects based on
names.

• The Trading Service, this service allows clients to find objects based on their
properties.

The Common Facilities provide a set of generic application functions that can be
configured to the specific requirements of a particular configuration. These interfaces are
closer to the user than the Object Services. These facilities are useful for almost every
market and are divided into four basic categories: user interface, information
management, systems management. and task management. Examples of Common
Facilities are interfaces for printing, document management, databases, calendar
management, and electronic mail. Common Facilities are commercially known as
horizontal CORBAfacilities.

The Domain Interfaces, also known as vertical CORBAfacilities are divided into market
segments, e.g. healthcare, financial services, and telecommunications. These industry-
specific specifications are often introduced by organizations outside the 0MG that want
standards in these areas. Currently, the 0MG has standardized facUlties for:
management of AudioNideo streams, distributed simulation, accounting, oil and gas
industry explorations and production, etc.

Application Interfaces are developed specifically for an application. These interfaces
are not standardized by the 0MG, since they are application-specific. This category of
interfaces can be seen as a rest category, where in-house developed interfaces can be
positioned. These in-house developments can potentially lead to new RFPs and 0MG
adopted standards.

2.1.2 Common Object Request Broker Architecture

The Common Object Request Broker Architecture (CORBA) specifies the interfaces and
characteristics of the ORB component of the OMA. Using the ORB a client can
transparently issue a request to a server object. The ORB hides the location of the server
object and what programming language it is implemented in. The next figure depicts this
process.

(client object) client object invoices a method of

A server object. client and server
objects maybe colocated, or

request i located on different hosts

I

CORBA Middleware

A

reply

@erver obj)

Figure 3: Method invocation with CORBA middleware

14/63 For internal use only at KPN

Figure 4: CORBA components

A QoS Provisioning Service for CORBA
December 1999

The components of CORBA [3] are:

. ORB Core

• 0MG Interface Definition Language

• Interface Repository

• Language Mappings

• Stubs and Skeletons

• Dynamic Invocation and Dispatch

Object Adapters

. Inter-ORB Protocols

2.1.2.1 The ORB Core

The ORB Core takes care of client/object interactions and provides transparency, i.e. it
hides the following properties of an object from the client:

• Object location: the client does not know where a server object is located. The
server object may even be located on another machine in another network.

• Object implementation: the client does not know how the server object is
implemented. Programming language, operating system, and hardware issues
are hidden.

• Object execution state: the client doesn't know whether a server object is
activated (i.e. in an executing process). If needed the ORB can transparently start
the server object before delivering the request of the client.

• Object communication mechanisms: communication mechanisms such as
TCP/IP and shared memory are hidden for the client.

To make a request, the client needs a way to reference the server object. It can do so by
using the object reference of the server object. An object reference is unique (it always

For internal use only at KPN 15/63

IrmIcE IDL
R.1OSITORY COMPILER

EMPLDN1A11 ON
R1?OSITORY

TAJ4DRD INTERFACE \ () STA14DAW LANCUAC.E StAFFING

ORB-spEcwIc INTERFAC)I ': i STANJ)APX PROTOCOL

A QoS Provisioning Service for CORBA
December 1999

refers to the same object), and also immutable and opaque (i.e. clients cannot 'reach' into
object references and modify it).

Object references can be obtained

• By creating a new object, i.e. sending a request to a factory 141 object.

• By using a directory service, e.g. the Naming Service or the Trading Service.

• By converting object references into strings and back, e.g. converting an object
reference to a string and storing it into a database or into a tile. The string can be
converted back to an object reference in a later stage, and it can then be used
again to make requests if the service still exists.

2.1.2.2 0MG Interface Definition Language

Object interfaces are defined in the 0MG Interface Definition Language (0MG IDL). It
hides the programming language used to implement object, and thus ensures language
independence.

0MG IDL is a declarative language, not a programming language. IDL doesn't provide
control structures and such. It does provide basic types (such as boolean and long),
constructed types (structs and unions, similar to C and C++), template types (such as
strings and sequences), object reference types and interface inheritance.

2.1.2.3 Language Mappings

The language constructs of 0MG IDL need to be mapped on the programming language
that is used to implement objects. 0MG IDL is also not directly used to implement
distributed applications. Some things a language mapping contains are:

• Mapping of an IDL interfaces, in the C++ language mapping this is done by using
C++ classes.

• Mapping of IDL basic and structured types, e.g. a C mapping for the IDL string
type is char

• Mapping of Object References. An operation on an object can be performed by
using the -> operator in C++. This is implemented by overloading the ->
operator.

• Mapping of the ORB interface and other pseudo-objects, i.e. objects not derived
from CORBA::Object. The Object class in the CORBA module is the base
interface type for all CORBA objects.

• Mapping of CORBA objects, e.g. CORBA objects can be implemented as
abstract data types (a struct and a group of functions) in C, in C++ the IDL
interfaces are mapped to classes and operations are mapped to member
functions of those classes.

0MG has standardized mappings for various programming languages, including C, C++,
Java, Ada and Smalltalk.

2.1.2.4 Interface Repository

Every CORBA object is introspective. An InterfaceDef object, describing the interface
of the object, can be obtained by invoking the get_interface method. The Interface
Repository (IR) stores the data needed to support introspection. The IR provides support
for dynamically accessing and adding 0MG IDL interface definitions, it's used when
issuing client-server requests via Dynamic Invocation (described later in this document).
An interface definition contains a description of the operations it supports, including

16/63 For internal use only at KPN

A 005 Provisioning Service for CORBA
December 1999

para meter types and exceptions it may raise. The interface repository also stores
constant values and typecodes. Typecodes are values that describe a type in structural
terms. Predefined typecodes include IC_char, TC_boolean, TC_string, ... Typecodes
are used to indicate the types of actual parameters of invocations.

2.1.2.5 Stubs and Skeletons

A stub is a mechanism that creates and issues server requests on behalf of the client,
stubs are included in the client implementation. A skeleton is a mechanism that delivers
requests to the CORBA object implementation, skeletons are included in the server
implementation. Dispatching requests by using stubs and skeletons is called static
invocation. Stubs and skeletons have a priori knowledge of the 0MG I DL interfaces used.

The stub marshals the request from native programming language format to a format
suitable for transmission to the server object. The skeleton does the reverse, it de-
marshals the request to the form required by the programming language in which the
server object is implemented.

2.1.2.6 Dynamic Invocation and Dispatch

CORBA provides the Dynamic Invocation Interface (DII) and the Dynamic Skeleton
Interface (DSI). They can be viewed as a generic stub and skeleton respectively.

2.1.2.6.1 Dynamic Invocation Interface

DII allows a client to make requests without having compile-time knowledge of the server
object. Three types of invocations are supported:

• Synchronous invocation: the client invokes the requests and blocks until it
receives a response.

• Deferred synchronous invocation: the client invokes the requests and continues
processing. The response is collected in a later stage.

• One-way invocation: the client invokes a request and continues processing.
There is no response.

DII is more costly than using static invocation, for example creating a DII request may
cause the ORB to transparently access the Interface Repository to obtain type
information. The Interface Repository is an object, so a single DII request may require
several remote invocations.

2.1.2.6.2 Dynamic Skeleton Interface

DSI provides dynamic dispatch to objects. It allows servers to be written without having
static skeletons compiled in. Like DII it provides flexibility in exchange for performance.

2.1.2.7 Object Adapters

The Object Adapter can be seen as glue between object implementations and the ORB.
Object Adapters handle object registration (allow programming languages to register
implementations for CORBA objects), object reference generation and interpretation,
object implementation activation and deactivation, mapping object references to an
implementation, security of interactions, and method invocation. CORBA allows for more
than one object adapter, so that different implementation styles for objects may be
supported, e.g. different Object Adapters for different programming languages.

For internal use only at KPN 17/63

A Q0S Provisioning Service for CORBA
December 1999

2.1.2.8 Inter-ORB Protocols

CORBA ORBs based on pre 2.0 specifications lacked interoperability. Each ORB had
their own data formats and protocols for remote ORB communications, so ORBs from
different vendors couldn't work together. CORBA 2.0 introduced an ORB interoperability
architecture, which provides for interoperability between different ORB implementations.
This interoperability architecture consists of:

• Object Request Semantics: CORBA IDL

• Transfer and Message Syntax: the General Inter-ORB Protocol (GIOP) and
(optionally) Environment Specific Inter-ORB Protocols (ESIOP5)

• Transports: the Internet Inter-ORB Protocol (hOP) and (optionally) transports for
ESIOP5

The General Inter-ORB Protocol (GIOP) specifies message formats and common data
representations for inter-orb communication. The Internet Inter-ORB Protocol (HOP)
specifies how GIOP messages are exchanged over a TCP/IP network. Environment
Specific Inter-ORB Protocols (ESIOPs) allow interoperability over specific networks.

2.2 Quality of Service

Applications, such as multimedia (e.g. teleconferencing), avionics mission computing
(e.g. operational flight programs for fighter aircraft), telecom call processing and E-
Commerce are an increasingly important class of distributed applications and require
Quality of Service (Q0S) guarantees for latency, bandwidth, and reliability 151.

The CORBA specification 131 doesn't define policies and mechanisms for providing end-
to-end Q0S. Conventional CORBA ORB implementations provide best-effort QoS, i.e. no
Q0S provisioning. The Internet today is an example of a best-effort Quality of Service.
TCP/IP will make an earnest attempt to deliver packets, but may drop packets
indiscriminately when resources are exhausted (e.g. congestion) or underlying networks
fail 16].

2.2.1 What is QoS?

Quality of Service is a general term that covers system performance, as opposed to
system operation [7]. Q0S features can be considered non-functional features of a
system. The users of a system have both requirements for the functions that are to be
performed and for the Q0S with which they are performed.

QoS is a pervasive requirement. Meeting QoS involves actions in end-systems,
networks, and any other components that end-to-end interactions may pass through.

We can distinguish user perceived Q0S and machine measured Q0S. For example,
we can measure higher availability in a server that goes down once a year than in a
server that goes down once a month. An end-user may perceive better quality in the
latter service if that service is faster.

2.2.2 Static and dynamic Q0S

A common approach for dealing with QoS is determining QoS requirements during the
design process and making design choices (such as scheduling rules and assigning
priorities to tasks) and physical configuration choices (such as memory and bandwidth) to
make sure Q0S is met. This is the static approach.

Another extreme are systems which do all Q0S handling, within range, during run-time,
i.e. dynamically negotiate and adapt to degradations (e.g. switch to lower video
resolutions in video streams). This is the dynamic approach.

18/63 For internal use only at KPN

A Q0S Provisioning Service for CORBA
December1999

Most systems Q0S handling lies between the two extremes.

2.2.3 Q0S Framework

In this section an overview of the ISO/lEG Q0S Framework (ISOIIEC DIS 13236) [8] is
given. This framework provides a collection of concepts and terminology that will enable
those designing and specifying distributed systems, and those defining communication
services and protocols to interact effectively. It describes how QoS can be characterized,
how Q0S requirements can be specified, and how Q0S can be managed. The next figure
(source: [9]) provides an overview of Q0S management in the OSI QoS model.

QoS In(hr,natinn niai,,ei ,,

KeUir:mentS(a)

)

QoS Requirements

n'rn ii' Jr.ven !''
as QoS Parameters

S4ri(Pnwider

ck,ermine
QoS CharacterLi*ics(Dp MIInI ((FuniJijt)

(d
(capkIiy. lime.ilclay. co,'j is.u.ury. ...) (to, oneius of)

f
d,.ccrthe I'unc:kmai & Integral am

Model
oSCategory(c)

QuS Mechanisms (el

ij'pIird by \J(.tfi'rrn('J b

\ Operational
.ipphrdu \ fudei

QoS Act iv ii kS (A i S lnterums

pariiiiined ,nt,iiizicI

QoS Stages/Phases Ig)

Entities

User,Pro Ider3rdPariy

Figure 5: Management of Q0S

Quantities such as throughput and reliability are termed Q0S characteristics. For a
certain application a set of QoS characteristics may be important, for those characteristics
various Q0S requirements will be defined. Information about these requirements need
to be exchanged between parts of the system, this information is termed Q0S
parameters. Q0S management is the term for any set of activities performed by a
system to support QoS monitoring, control and administration.

For internal use only at KPN 19/63

A Q0S Provisioning Service for CORBA
December 1999

There are two basic roles for entities in a distributed system: Service Provider and
Service User. The Service Provider has a number of Q0S characteristics, such as
response time or availability of a service. The Service User has requirements, which
may be related to the QoS expected from the Service Provider. Not all user requirements
have to be expressed in terms of the Q0S characteristics provided by the Service
Provider. User requirements are often subjective, whereas the Service Provider needs
objective requirements in order to handle them.

2.2.3.1 QoS characteristics

A Q0S characteristic is an aspect of Q0S of a system, service, or resource that can be
identified and quantified. Q0S characteristics are defined independently of the means by
which QoS is represented or controlled.

The Q0S Framework defines a number of Q0S characteristics and categorizes them.
Examples of characteristics are response time and availability. Example categories are
categories for databases and for video streams. These two applications have very
different Q0S requirements.

The framework also defines two ways in which a characteristic may be defined in terms of

others:

• Specializing an abstract definition. We can specialize the characteristic of transit
delay of something by specifying the points between which the delay is defined or
by specifying the data units to which it applies.

• Applying statistical functions, like mean and variance. For example specifying
that the mean delay should be less than 15 msec.

System designers are free to add and define other characteristics if the existing ones do
not meet their needs.

2.2.3.2 QoS parameters

A Q0S parameter is any value conveyed between entities of the same or different
systems. There are many kinds of parameter types, including:

• Values:

• a desired level of characteristic, e.g. a target of some kind

• a minimum or maximum level of characteristic, e.g. a limit

• a measured value, used to convey historical information

• a threshold level

• Activities:

• a warning or signal to take corrective action

• a request for operations on managed objects relating to Q0S. or the results of
such operations

2.2.3.3 Q0S management functions and mechanisms

A Q0S management function is a function designed with the objective to meet one or
more Q0S requirements. These Q0S management functions (QMF5) generally have a
number of components. called Q0S mechanisms.

A Q0S mechanism, performed by one or more entities, may use Q0S information (e.g.
parameters. context, and requirements). in order to support things like:

20/63 For internal use only at KPN

A Q0S Provisioning Service for CORBA
December 1999

• establishment of the conditions to meet the Q0S requirement for a set of Q0S
characteristics

• monitoring of the observed values of Q0S

• maintenance of the actual Q0S as close as possible to the target QoS

• control of QoS targets

• enquiry upon some Q0S information or action

• alerts as result of some event relating to Q0S management

The next figure (source: 191) outlines the QMF relationships in the OSI QoS model.

2.2.3.4 QoS management

Figure 6: QMF relationships

The framework defines several stages when QoS management is used:

• a priori - Q0S requirements may be built into the systems, by design, sizing,
procurement of suitable services, or by dedicating resources

• before initiation (prediction phase) - QoS requirements can be conveyed to some
or all of the participating entities before an activity is initiated, for example,
reserving resources before a connection that would use them is established

• at initiation of an activity (establishment phase) - negotiating Q0S requirements at
(connection) establishment time

• during the activity (operational phase) - handling changing Q0S requirements,
due to changing user requirements, detected performance loss, explicit
indications from the service provider, or explicit indications from one or more third
parties

For internal use only at KPN 21/63

OoS Inrurmatan

1Qn ri4k I

A QoS Provisioning Service br CORBA
December 1999

after the activity (historical phase) - after the activity took place, for example,
performance monitoring

The next figure (source: [9J) displays the stages when QoS management is used.

2.2.3.5 QoS agreements

During the establishment phase the entities involved try to reach agreement on the Q0S
that is to be delivered. It involves determining for each Q0S characteristic concerned:

• The type of agreement, e.g. one or more targets, limits, thresholds, etc.

• The level of the agreement. meaning the strength of the agreement, whether it
should be monitored, and if so, what action (e.g. re-negotiation, aborting the
activity, aborting another competing activity of lower precedence, ...) to perform
when a requirement can no longer be met (temporarily or permanently). For
examples, best-effort Q0S (as soon as possible), compulsory Q0S (the Q0S is
monitored, an action is taken when it degrades below a certain level, resources
are not reserved but shared), guaranteed Q0S (except for rare events such as
equipment failure, resources are reserved).

2.3 Quality of Service specification

In conventional CORBA ORBs there are no APIS for specifying end-to-end QoS
requirements. This chapter describes developments in Q0S design and specification for
distributed systems. Q0S in 0MG CORBA, and Q0S on the network.

2.3.1 QoS design and specification

Deciding which Q0S properties should be provided is an important part of the design
process. This decision should be made as early as possible, since late consideration of
Q0S aspects often lead to increased development and maintenance costs and systems
that do not meet user requirements.

22/63 For internal use only at KPN

I. , prinriat servk',rseizini

rvi Pu
urriurni

2u. lwf(,rv srricv cilahlachmcnl

Qu predivliuns & design"

2h. t crr icr thli,chmrnt

"QuS igremcnt2i" J

3. durine *rier iseratkffl

"QoS agrt'cmenb"

"QoS idifutiuiv"

Figure 7: Q0S phases, stages of service of evolution

A Q0S Provisioning Service for CORBA
December 1999

To capture component-level QoS properties, 1101 introduces a language called QML, QoS
Modeling Language. They also extend the Uniform Modeling Language (UML), the de
facto standard specification language [11] [12], to support the definition of QoS
properties. QML can be used to specify QoS requirements in the design of class models
and interfaces of distributed object systems.

The Quality of Service for CORBA Objects (QuO) framework (131 is another research
project that aims to provide Q0S abstractions to CORBA objects. It extends 0MG IDL
with a Q0S Description Language (QDL). QDL specifies an application's expected usage
patterns and Q0S requirements for a connection to an object. A connection is an QoS-
aware communication channel. The expected and measured QoS behaviors of a
connection are characterized through a number of Q0S regions. During connection
establishment the client and server negotiate about a certain region. This region captures
the expected QoS behavior of the connection. After the connection is established the
actual Q0S level is continuously monitored. The client is notified if the expected Q0S
level is no longer within the negotiated region. The client and server can then negotiate a
new region or perform some other action.

2.3.2 Developments in CORBA Q0S by the 0MG

The 0MG recognizes the need for Q0S-enhanced systems and wrote the 0MG QoS
Green Paper [7]. The objective of the 0MG Green Paper is to define and specify the set
of necessary extensions to the OMA, the CORBA standards and the QoS standards that
will support QoS management in CORBA-based systems. The paper hasn't been
finished, and the QoS workgroup of the 0MG has been dissolved.

Other 0MG initiatives taking Q0S into consideration are CORBA Messaging [14] and
Real-time CORBA 1151.

The CORBA Messaging specification defines a standard QoS framework that allows
setting and querying of Q0S at multiple client-side levels. These levels are:

• ORB level: QoS policies at this level control all requests made using this ORB

• Thread level: Q0S policies at this level control all requests issued from a given
thread. These policies override the ORB level policies.

• Object reference level: QoS policies at this level control requests made using that
object reference. Policy settings at this level override both thread level policies
and ORB level policies.

The specific QoS features addressed in the CORBA Messaging specification include
delivery quality, queue management and message priority. All qualities are defined as
interfaces derived from CORBA: : Policy (Notation: Policy is an IDL interface defined in
the CORBA module), policies are part of CORBA specification. Interfaces derived from
CORBA: : Policy can be used to give access to methods that affect the operation of a
CORBA service. CORBA Messaging introduces new policy interfaces for QoS. These
policies can be used to request specific Q0S, for example by setting QoS parameters for
certain QoS characteristics.

With CORBA Messaging applications can specify their QoS requirements to the ORB in a
portable, protocol independent, and convenient way.

CORBA Messaging also features new invocation models, Asynchronous Method
Invocation (AMI) and Time-Independent Invocation (TIl). These new invocation models
fix the shortcomings of the standard CORBA invocation models (e.g. lack of a truly
asynchronous method invocation model).

Real-time CORBA is an optional set of extensions tailored to equip ORBs to be used as
a component of a Real-time system [15]. It is based on the CORBA 2.2 and CORBA
Messaging (it uses the policy framework of the CORBA Messaging) specifications. One

For internal use only at KPN 23/63

A Q0S Provisioning Service for CORBA
December 1999

of the goals of the specification is to provide a standard for CORBA implementations that
supports end-to-end predictability.

2.4 Quality of Service at the network-level

Q0S is a pervasive requirement [71. Meeting Q0S involves actions in end-systems.
networks, and any other components that end-to-end interactions may pass through.
This section contains a brief overview of Q0S in networks.

There are three basic service levels of end-to-end QoS across heterogeneous networks:

• Best-Effort Service (also known as lack of Q0S)

• Differentiated Service (also known as soft Q0S)

• Guaranteed Service (also known as hard QoS)

Best-Effort Q0S is basic connectivity without performance guarantees. The Internet of
today is an example of a best-effort service; TCPIIP doesnt guarantee performance.
Best-effort is suitable for many applications, such as e-mail or file-transfers.

Differentiated Q0S means that some traffic is treated better than the rest. It is a statistical
preference, not a hard and fast guarantee. Examples of better treatment are faster
handling for some traffic, more bandwidth on average, or lower loss rate on average. The
Differentiated Services (Diff-Serv) working group 1161 in the IETF is developing standards
and definitions for differentiated services 1171 [18111911201.

Guaranteed QoS is an absolute reservation of network resources, typically bandwidth, for
specific traffic. There are various technologies that provide guaranteed service, one of
them is RSVP-signaling 1211 [221 in combination with IP-WFQ, both are described later in
this chapter. The Integrated Services (lnt-Serv) working group 1231 in the IETF is
developing standards and definitions for guaranteed services.

2.4.1 Signaling QoS with Int-Serv RSVP

QoS signaling is a form of network communication, it provides a way to signal requests to
a neighboring network node (host, router, ..). An IP network can use part of the lP packet
header to request special handling of priority traffic, for example. End-to-end Q0S
requires that every single element in the network path (switch, router, firewall, host, client,
etc.) delivers its part of the Q0S. Signaling is used to coordinate this. For differentiated
service IP Precedence [241 is used; 3 precedence bits in the lPv4 headers T0S (Type of
Service) field are reserved for specifying the importance of IP packets. For guaranteed
service RSVP (Resource ReSerVation Protocol, RFC-2205) [221 can be used.

RSVP can be used to dynamically reserve network bandwidth. It enables applications to
request a specific bandwidth for a data flow. Hosts and routers use RSVP to deliver QoS
requests to the routers on the paths of the data stream and to maintain router and host
state to provide the requested service.

2.4.2 Network packet queuing with WFQ

To handle possible overflow of network packets, a network element can sort the traffic. IP
routers use queuing mechanisms such as CBQ and WFQ to classify packets according to
the specified Q0S.

The Weighted Fair Queuing algorithm (WFQ) [25] is a queuing technique that:

1. Schedules certain traffic to the front of the queue, e.g. interactive traffic to
reduce response time.

2. Fairly shares the remaining bandwidth.

24/63 For internal use only at KPN

A Q0S Provisioning Service for CORBA
December1999

The "weight" is determined by:

1. Requested QoS. For example, RSVP can be implemented using WFQ to
allocate buffer space and to schedule packets.

2. Flow throughput (weighted-fair), by default WFQ favors lower-volume traffic
flows over higher-volume ones, i.e. it favors an e-mail message over a large
FTP download.

There are other packet scheduling algorithms that can be used in combination with
RSVP, for example Class Based Queuing (CBQ) [261.

For internal use only at KPN 25/63

3 Engineering concepts

A Q0S Provisioning Service for CORBA
December 1999

In the previous chapter we discussed some architectural concepts. This chapter is
concerned with engineering concepts that are used in this thesis. One of the constraints
listed in the research questions in chapter 1 is that we aren't allowed to change the inner
working of CORBA for our Q0S Provisioning Service. We do however need to add
functionality in the ORB. We need to filter CORBA method invocations to see if there are
Q0S requirements for them. If there are Q0S requirements for a filtered method
invocation we need to use a QoS mechanism at the network-level to implement these
requirements. In short we need to add the following functionality:

Support to filter method invocations.

Support to use Q0S mechanisms available at the network-level.

Method invocations can be filtered using a so-called interceptor. This chapter discusses
Portable Interceptors. If we could make an alternative for IIOP to transport GIOP
messages we could use that to implement Q0S at the network-level. Pluggable Protocols
support addition of protocol plug-ins to the ORB in a portable manner.

Another research question is how Quality of Service requirements are specified by the
application. Section 3.3 introduces QML, also briefly mentioned in the previous chapter.

3.1 Portable Interceptors

Interceptors provide a manner to extend the functional path of a method invocation with
additional functionality (located outside the ORB). The CORBA 2.2 specification defines
two kinds of interceptors as an optional extension to the ORB. The two interceptor kinds
are request-level interceptors and message-level interceptors.

26/63 For internal use only at KPN

Object Level Interceptor—

Request Level Interceptor

Message Level Interceptor

Figure 8: Interception points

A Q0S Provisioning Service for CORBA
December 1999

Request-level interceptors perform transformations on a structured request. Request-
level interceptors are executed whether the client and target are collocated and remote.
Typical uses for request-level interceptors include transaction management, access
control, and replication. The request-level interceptor is able to find the target object,
operation name, context, parameters, and (when complete) also the result of the
invocation. The request-level interceptor may decide not to forward the request for
further processing, this can be used to implement access control. Request-level
interceptors allow interception at four points related to request processing:

• after a client ORB receives a request from a client and before transmitting it to a
target

• after a target ORB receives a request and before dispatching it to a method

• after a target ORB regains control after a method invocation and before
transmitting the reply to the client

• after a client ORB receives a reply and before returning it to the client

Message-level interceptors are only executed when a remote invocation is required.
Message-level interceptors perform transformations on an unstructured buffer, this buffer
contains the request transformed to a message suitable for network transfer. A typical
use for message-level is encryption.

Interceptors in CORBA 2.2 are under-specified. This lack in specification makes it hard to
write portable interceptors, since different vendors may provide different interceptor
support. The 0MG issued a Request For Proposal (REP) for Portable Interceptors [271
aiming for a more portability for interceptors between ORBs and also more functionality
and interception points. Two new interceptor types are proposed, object-level (or IOR
management) interceptors and network-level interceptors. Object-level interceptors can
be used to monitor life-cycle events, like object reference creation and first-time usage of
an object reference. Network-level interceptors can be used for connection management,
examples include interception of connection establishment and closure.

3.2 Pluggable Protocols

This section describes ORB interoperability with the GIOP and IIOP protocols and
introduces the concept of pluggable protocols.

GIOP/IIOP is sufficient for applications that require best-effort Q0S, but not sufficient if the
application has more stringent Q0S requirements (which require other protocols to be
used). Pluggable protocol frameworks such as ORBacus' OCI and TAO's Pluggable
Transports [2811291 make it easy to plug-in new protocols.

3.2.1 Interoperability between ORBs

Interoperability allows different ORB implementations to communicate. CORBA 1.0
lacked specification for inter-ORB communication. Due to the lack of such interoperability
specification, ORB implementations from different vendors couldn't work together.

The CORBA 2.x specification [31 supports protocol-level ORB interoperability via the
General Inter-ORB Protocol (GIOP). It also specifies the Internet Inter-ORB Protocol
(IIOP), which is a mapping (specialization) of GIOP to TCP/IP [301.

Here we give an overview of the CORBA Protocol Interoperability Architecture.

3.2.1.1 Interoperable Object References

An important interoperability issue in CORBA is how to locate (address) objects. The
Interoperable Object Reference (IOR) stores information needed to locate and
communicate with an object over one or more protocols. An object reference identifies a

For internal use only at KPN 27/63

A Q0S Provisioning Service for CORBA
December 1999

single object and associates one or more paths through which that object can be
accessed. The IOR is a sequence of profiles, each profile describes a protocol specific
way to access the object. For example, the IlOP profile includes the lP address and a
TCP port number. The Object Adapter component of CORBA generates and interprets
object references.

3.2.1.2 General Inter-ORB Protocol (GIOP)

The GIOP specification consists of the following:

• A Common Data Representation (CDR). CDR is a transfer syntax that maps IDL
data types from their native host format into portable representation.

• Message formats. GIOP messages are exchanged between ORBs to facilitate
object requests, locate object implementations, and manage communication
channels.

• Transport assumptions. Several assumptions are described concerning any
network transport layer that may be used to transfer GIOP messages.
Connection management and constraints on message ordering are also
specified.

3.2.1.2.1 Common Data Representation

Common Data Representation (CDR) is a transfer syntax that maps IDL data types from
their native host format into a portable representation. It has the following features:

• Variable byte ordering, two frequently used byte ordering formats, little-
endian and big-endian, are supported.

• Aligned primitive types, which allow for efficient handling of data by
architectures that enforce data alignment in memory.

• A complete IDL mapping of all IDL basic data types. IDL data types are
marshaled into an encapsulation. The encapsulation is a stream of octets.
In CORBA an octet is defined as a sequence of 8-bits. An octet itself doesn't
undergo conversion when transmitted over the network by CORBA.

GIOP defines two kinds of octet-streams:

• Messages described in Message formats (3.2.1.2.2).

• Encapsulations described in the above text.

3.2.1.2.2 Message formats

The GIOP 1 .0 specification defines 7 message types. They're summarized in the table
below.

Message Originator Value
Type

Request Client 0

Reply Server 1

CancelRequest Client 2

LocateRequest Client 3

LocateReply Server 4

CloseConnection Server 5

28/63 For internal use only at KPN

A Q0S Provisioning Service for CORBA
December 1999

MessageError Both 6

It lists the message type, the originator of the message and the value used to identify the
message type in a message header. There are messages for sending requests and
receiving replies (Request, Reply), locating objects (LocateRequest, LocateReply),
connection management (CloseConnection), letting the server know that the client no
longer expects a reply to a pending Request or LocateRequest message and error
handling (MessageError). A MessageError is sent in response to a request when the
version number or request value in the message header are unknown and to messages
that are not properly formed (e.g. messages that do not have the proper magic value in
their header).

3.2.1.2.3 Transport assumptions

Because GIOP is designed to be implementable on a wide range of different transports.
several assumptions regarding the behavior of these transports have been made. The
GIOP expects that:

• The transport is connection-oriented.

• The transport is reliable. Bytes are to be delivered in the order they're sent,
at most once, and positive acknowledgement of delivery should be available.

• The transport is a byte-stream. No size limitations, fragmentation, or
alignments are enforced.

• The transport provides reasonable notification of disorderly connection loss.
If the peer process aborts, or the peer host becomes unreachable (due to a
crash or network connectivity loss), a connection owner should receive some
notification of this condition.

The server doesn't actively initiate connections. It should be prepared to accept client
connect requests. A client can send a connect request to a server. The server may
accept the request and set up a new, unique connection with the client, or it may reject
the request, e.g. due to lack of resources. Each side, server or client, may close an open
connection.

A transport (e.g. UDP 1311) might not directly support the model, in this case an extra
layer has to be made on top of that transport which implements the missing features 1321.

3.2.1.3 Internet Inter-ORB Protocol (IIOP)

The mapping of GIOP to TCP/IP 1301 is called Internet Inter-ORB Protocol (IIOP). ORBs
must support lIOP in order to be CORBA 2.0 interoperability compliant. IlOP guarantees
out-of-the box interoperability between CORBA ORBs.

3.2.1.4 Environment Specific Inter-ORB Protocols (ESIOP5)

CORBA 2.x allows vendors to define Environment Specific Inter-ORB Protocols (ESIOPs)
in addition to GIOPIIIOP. ESIOPs are optimized for particular environments, e.g.
telecommunications or avionics. ESIOPs can define unique data representation formats,
ORB messaging and transport protocols, and object addressing formats. CORBA 2.x
defines one EISOP protocol: DCE-CIOP [3].

For internal use only at KPN 29/63

A Q0S Provisioning Service br CORBA
December 1999

ifa,uIarory1,, (X)RIL4

Figure 9: Inter-ORB protocol relationships

3.2.2 Protocol limitations of Conventional ORBs

GIOP/IIOP works well for conventional request/response applications that only require
best-effort QoS. High-performance, real-time, and/or embedded applications require
optimized protocol implementations, because they can't tolerate the overhead, jitter,
latency, and/or message footprint size of GIOP/IIOP [331.

Domains that require optimized transport and/or messaging protocols include
teleconferencing and real-time applications.

Conventional CORBA implementations have the following limitations for performance
sensitive applications:

• Static protocol configurations: most ORBs only support a limited number of
statically configured transport or messaging protocols, only GIOP/IIOP in
most cases.

• Lack of protocol control interfaces: most ORBs don't allow applications to
define protocol policies and attributes.

• Single protocol support: most ORBs don't support simultaneous use of
multiple inter-ORB protocols.

• Lack of real-time protocol support: most ORBs have no support for specifying
and enforcing real-time protocol requirements.

With CORBA 2.2 it is difficult to add new protocols. The ORB internal structures are not
always accessible to protocol implementers. Even when the internal structures are
visible, via interfaces, those interfaces are proprietary. A newly developed protocol can
then only be used for a particular ORB.

A solution is to define common interfaces. The Open Communications Interface 1341 1351
defines those interfaces.

3.2.3 Open Communications Interface

The Open Communications Interface (OCI) defines common interfaces for pluggable
protocols.

It consists of two parts:

• The Message Transfer Interface (MTI)

• The Remote Operation Interface (ROI)

The Message Transfer Interface can be used for connection-oriented, reliable protocols,
such as a TCP/IP plug-in. If the ORB uses the GIOP messaging protocol then such a

30/63 For internal use only at KPN

OWf# UItfl'
nwppingc...

A Q0S Provisioning Service for CORBA
December1999

plug-in implements hOP. If a plug-in for a non-reliable or non-connection-oriented
protocol is to be built, the plug-in should take care of it.

Figure 10: OCI interfaces

The Remote Operation Interface can be used to support protocols that directly implement
remote procedure calls. GIOP falls in this category, since it basically implements remote
procedure calls. Other protocols can be DCE-RPC and TCAP (Transaction Capabilities
Application Part, part of SS7) 1351.

Of course two plug-ins (one for the MTI and one for the ROl) can be combined. For
example, a GIOP (ROl) plug-in together with a TCP/IP (MTI) plug-in implements IlOP.

3.2.3.1 Message Transfer Interface Summary

The Message Transfer Interface is based on the Acceptor and Connector design patterns
[361. This section describes the OCI classes, the next figure shows the class diagram.
The Buffer and Info classes are not shown in the figure.

Buffer

Figure 11: OCI class diagram

A buffer is an object holding an array of octets and a position counter. The
position counter determines how many octets have been received or sent.

Transport

For internal use only at KPN 31/63

I I — Remote Operations Interface°"" 1! CERC I'' — MessgeTransfeflnterface

NekAPI
—--I---

A Q0S Provisioning Service for CORBA
December 1999

The Transport interface allows sending and reception of octet streams in the form
of Buffer objects. Both blocking and non-blocking send and receive operations
are available, as well as operations that handle time-outs and detection of
connection loss.

Acceptor and Connector

Acceptors and Connectors are factories for Transport objects. A Connector is
used to connect clients to servers. An Acceptor is used by a server to accept
client connection requests. Acceptors and Connectors also provide operations to
manage protocol-specific lOR profiles. This includes operations for comparing
profdes, adding profiles to lORs, or extracting object keys from profiles.

Connector Factory

A Connector factory is used by clients to create Connectors. No special Acceptor
factory is necessary, since an Acceptor is created just once on server start-up
and then accepts incoming connection requests until it is destroyed on server
shutdown. Connectors, however, need to be created by clients whenever a new
connection to a server has to be established.

Acceptor and Connector Registries

The ORB provides a Connector Factory Registry and the Object Adapter provides
an Acceptor Registry. These registries allow the plugging-in of new protocols.
Transport. Connector, Connector Factory and Acceptor must be written by the
plug-in implementers. The Connector Factory must then be registered with the
ORB's Connector Factory Registry and the Acceptor must be registered with the
Object Adapters Acceptor Registry.

Info

Info objects provide information on Transports. Acceptors and Connectors. A
Transportlnfo provides information on Transport, an Acceptorlnfo provides
information on an Acceptor and a Connectorlnfo provides information on a
Connector. For example, the Acceptorlnfo object can be used to find out on
what hostname and port number the server is listening, the Transportlnfo object
can be used to query the network address of the client, and the Connectorlnfo
object can be used to query the network address of the server.

3.2.3.2 Remote Operations Interface Summary

The definition of this interface is not yet finished according to OCI specification in 1351 and
this feature will be dropped in future OCI specifications (see next section). For my
graduate assignment the Remote Operations Interface is not needed.

3.2.3.3 Future OCI specifications?

Humboldt University in Berlin, Deutsche Telekom and OOC (makers of ORBacus) plan to
initiate a new Request For Proposals (RFP) for pluggable protocols. The Remote
Operations Interface feature will be dropped from the specification, since there was no
real need for it; the new RFP will focus on plug-ins for the message-transfer level. The
term 'Pluggable Protocols' will most likely be changed to 'Pluggable Transports'.

3.3 QML

The Quality of Service Modeling Language (QML) is a general-purpose Quality of Service
specification language, it is not tied to any particular domain, such as real-time or multi-
media systems, or to any particular QoS category, such as reliability or performance 1371
[38] 1101. QML also extends the Uniform Modeling Language (UML), the de facto
standard specification language 1111 1121, to support the definition of QoS properties.

32/63 For internal use only at KPN

A Q0S Provisioning Service for CORBA
December 1999

QML can be used for Q0S specification in the design of class models and interfaces of
distributed object systems.

For the Q0S Provisioning Service we've adopted QML's terminology and we also use
QML to specify the QoS, so we need to provide an overview of the terminology here. It's
not a complete overview, because that would be outside the scope of this document.

QML uses three abstraction mechanisms to specify QoS: contract types, contracts, and
profiles. Contract types represent specific Q0S categories, like reliability and
performance. In a contract type the dimensions are defined that characterize a
particular Q0S category. Dimensions have domain values that may be ordered. QML
has 3 kinds of domains: set, enumerated, and numeric. A contract is an instance of a
contract type. Profiles associate contracts with interfaces (IDL interfaces in our case)
and their operations.

These definitions are best clarified by an example. In the following figure two contract
types, Performance and Reliability, are specified. Performance has 2 dimensions: delay
and throughput. Reliability has 3 dimensions: numberOfFailures, hR. and availability.

Type Performance = contract
{

Delay: decreasing numeric msec;
Throughput: increasing numeric mb/sec

Type Reliability = contract
{

numberOfFailures: decreasing numeric no/year;
TTR: decreasing numeric sec;
availability: increasing numeric

Figure 12: QML contract type examples

All dimensions in this example have numeric domain values. If a numeric domain is
defined as 'increasing' then the Q0S is better with larger values. An example of this is the
availability dimension; larger values are better. Numeric domains defined as decreasing'
have better Q0S with smaller values.

Next we define a contract SystemReliability of type Reliability.

SystemReliability = Reliability contract

numberOfFailures < 10;
TrR

{
percentile 100 < 2000;
mean < 500;
variance < 0.3

availability > 0.8

Figure 13: QML contract example

All dimensions now have various constraints attached to them. The number of failures
should not be 10 times a year or more. The time to repair (TTR) should be less than
2000 seconds for each service failure, the mean TTR should be less than 500 seconds,
and the variance of the TTR should be less than 0.3. Finally, eighty percent availability is

For internal use only at KPN 33/63

A QoS Provisionmg Service for CORBA
December 1999

required. QML discerns simple and aspect constraints. Simple constraints use
comparisons using the <, >, '<=. >=, ==' operators. Aspect constraints allow more
complex constraints. Aspects are defined in QML as statistical characterizations. QML
includes four aspects: percentile, mean, variance, and frequency.

In the following figure the profile rateServerPro file is specified. This profile is attached to
the RaterServerl interface. For all operations of RateServerl the SystemReliability
contract is required. In addition, refinements (additional Q0S requirements) for the
operations latest and analysis are defined.

rateServerProfile for RateServerl = profile
{

require SystemReliabil ity:
from latest require Performance contract

{

delay

percentile 80 < 20;
percentile 100 < 40:
mean < 15

from analysis require Performance contract

delay < 4000

Figure 14: QML profile example

34/63 For internal use only at KPN

4 The Q0S Provisioning Service

A QoS Provisioning Service for CORBA
December 1999

4.1

Chapter 2 and 3 described the architectural and engineering concepts that we use for the
design and implementation of the Q0S Provisioning Service. This chapter presents the
design of the Q0S Provisioning Service. We begin by describing a demonstration
scenario.

A demonstration scenario

The purpose of the demo scenario presented in this section is to make our problem
statement more tangible and to express the need for Q0S provisioning in CORBA. The
following figure shows a local network setup of 4 hosts and a PC based router.

Figure 15: The local network the scenario describes

The router is called mflr, which stands for 'my first Linux router'. It is a PC based router
that runs the Linux 2.2 operating system [391. The other machines are saturn. pluto,
mars and Jupiter. There's heavy traffic between mars and Jupiter, for instance a
multimedia stream, that highly saturates the network. This traffic causes congestion on
the local network, because the router is unable to route the large amount of packets it
receives. This can be caused because the router isn't fast enough to process all the
packets it receives, or if the network isn't fast enough to transfer the combined traffic
generated by the hosts. Both saturn and pluto run an ORB. The CORBA client
application running on saturn performs method invocations on a server object that is
located on pluto. The congestion on the local network causes packets containing these
method invocations to be dropped occasionally. If we're not happy with best-effort Q0S
network communication between pluto and saturn then we have a problem, it is not
possible to use another Q0S for our method invocations; unless we extend our CORBA
environment with support for QoS provisioning. If we have such support for Q0S
provisioning then it should be possible to put requirements on the round-trip delay of
method invocations for instance. These requirements are then monitored and mapped to
network Q0S mechanisms. The QoS Provisioning Service can decide to send the
method invocations over the network using Diff-Serv Expedited Forwarding for example, if
it detects degradation in the Q0S.

For internal use only at KPN 35/63

saturn pluto

mflr

mars jupiter

A 005 Provisioning Service for CORBA
December 1999

In other words, we would like to specify, monitor, and control Quality of Service in
CORBA middleware; we would like to have Q0S provisioning for objects and their
operations (i.e. method invocations). CORBA doesn't support this. We have decided to
tackle this problem by designing a Q0S Provisioning Service for CORBA.

4.2 Approach

Specify, monitor, and control' hints at using a feedback-control model as the basis of our
design. The following figure shows a high-level view of such a feedback-control model:

The system to be controlled is the ORB and the underlying network capabilities. The
Q0S requirements of the system are represented by the Desired Q0S component. The
actual measured Q0S, the delivered Q0S, is represented by the Current Q0S
component. The Q0S measurement component updates the data in Current Q0S
component. The Q0S measurement component measures the delivered Q0S in the
system. The Delta component generates a vector, the Q0S error vector, containing the
Q0S requirements that are not met by the system. This vector is used by the Q0S
Controller (encapsulated by the management and control part of the figure) to adapt the
system, so that it does meet the Q0S requirements.

We have designed a service based on such a feedback-control model to monitor and
control Q0S requirements for CORBA method invocations. We've named it QPS, which
stands for QoS Provisioning Service.

The remainder of this chapter is as follows: section 4.3 lists the requirements we have for
QPS, section 4.4 describes the design of QPS, and section 4.5 presents a résumé of the
design and explains how the requirements are met.

4.3 Requirements

The Q0S Provisioning Service should implement QoS provisioning for CORBA method
invocations. It should be possible for the client application to specify QoS requirements
run-time. The QPS should select suitable mechanisms to implement the Q0S
requirements, to measure and monitor the QoS, and to adapt when the provided Q0S
degrades.

The QPS should be extensible. There are many Quality of Service dimensions, QPS
cannot implement them all. Therefore it should be possible to add support for a Q0S
dimension without having to change QPS itself. So, QPS should support QoS dimension
plug-ins. Also, there are many mechanisms that implement QoS at the network-level and

36/63 For internal use only at KPN

Figure 16: Feedback-control model supporting Q0S provisioning

A Q0S Provisioning Service for CORBA
December 1999

in the future new mechanisms may become available. The QPS can't implement all of
them, so it should also allow for loading transport plug-ins, preferably at run-time.

The QPS is going to be used to increase the performance of the application, so its
mechanisms to monitor the Quality of Service, to select QoS mechanisms, and to make
other run-time decisions should not hog the system as a whole. This means that the
overhead of QPS should be kept as low as possible.

Finally, QPS should be portable, i.e. ideally it should be possible to use QPS with another
CORBA implementation without having to change any of the source code of the ORB and
QPS. The QPS should not use ORB specific mechanisms. In addition, the interface
provided by QPS to application objects should conform to the generic portability
requirements on an ORB.

In short the requirements we have for the Q0S Provisioning Service are:

1. Implement QoS provisioning for CORBA method invocations.

2. Support a wide range of Q0S dimensions.

3. Be extensible, i.e. it should allow for run-time loading of classes that handle a certain
Q0S dimension and classes that allow for using Q0S mechanisms of the network.

4. Be portable. i.e. it should not be specific to a certain ORB implementation and
provide a portable interface to application objects.

5. Be minimal. Keep the overhead of QPS on top of the ORB as low as possible, i.e.
measurement and control of Q0S by QPS should not hog the system as a whole.

4.4 Design

The design is based on the phases identified by the ISO/IEC Quality of Service
Framework [8]. This framework identifies three phases when Q0S management is used:
the prediction phase, the establishment phase, and the operational phase.

The following activities in the QoS Provisioning Service can be identified, based on the
phases of the ISO framework:

During the prediction phase

• Load plug-ins that provide various QoS mechanisms into the system.

• Definition of QML contract types and contracts.

During the establishment phase

• Specification of Q0S for operations in IDL Interfaces, more specific attaching
QML profiles to IDL interfaces.

• Configuration, i.e. see if the Q0S requirements can be met using the current
available resources.

During the operational phase

• Enforcing Q0S.

• Measuring the current Q0S.

• Detect degradation in Q0S.

• Adapt the system when the QoS degrades.

Each of these activities is described in detail in the sections to come.

For internal use only at KPN 37/63

A QoS Provisioning Service for CORBA
December 1999

4.4.1 Prediction phase

The QoS requirements that the application expects from the ORB are specified in the
QoS Modeling Language (QML) (371. One of the design goals of QML is to be generic,
i.e. the specification language should riot be specific to one or more QoS dimensions.
This goal fits with our goal of allowing a wide range of Q0S dimensions.

During the prediction phase the QML contract types and contracts are specified. To store
QML contract types and contracts there is a Q0S Specification Repository. This
repository is also used to store QML profiles, which are typically specified during the
establishment phase described in the next section. To extend this repository a Q0S
specification IDL interface 'Repository' is provided, in the CORBA module QPS. This
interface has operations to add and interpret QML specifications of contract types,
contracts, and profiles. It also has an operation to attach a profile to CORBA objects,
which is explained in the next section. The following figure shows the relevant
components and the IDL interface.

——.———.......—

___________________ ___________

—

Desired Q0S

module QPF {
interface Repository {

CORBA: : boolean add_contract_type (CORBA: string qml_s):
CORBA: : boolean add_contract (CORBA: string qml_s);

CORBA::boolean add_profile (CORBA::string qml_s):

CORBA: :boolean attach_profile (CORBA: :Object obJ.
CORBA: :string qml_..profile).

Figure 17: Q0S specification with QPS

The add_* operations return a TRUE value when the QML specification given as a
parameter has no syntax errors. Existing contract types, contracts and profiles will be
replaced if new ones are added that have the same name. There are no checks whether
or not contract types and contracts are semantically correct during the prediction phase.
This is done in the establishment phase.

Another activity is to load required functionality (Q0S mechanisms for particular sets of
Q0S dimensions) into the system. The QPS has QoS Dimension plug-ins and Q0S
mechanism plug-ins.

Q0S dimension plug-ins

The QPS doesn't know about specific dimensions. It is designed to be generic, allowing
a wide range of Q0S dimensions to be supported. For instance, QPS doesn't know about
the QML QoS dimension 'delay'. Support for a Q0S dimension can be added run-time by
loading it as a plug-in. The QoS dimension plug-ins are described in more detail later in
this text.

Q0S mechanism plug-ins

Q0S mechanism plug-ins expose network level Q0S mechanisms to the middleware
layer. This is needed because QPS needs to have control of the configuration of those
Q0S mechanisms to deliver QoS. This plug-in type is also discussed later in this text.

38/63 For internal use only at KPN

I.

A Q0S Provisioning Service for CORBA
December 1999

4.4.2 Establishment phase

During the establishment phase applications Q0S requirements of the application are
negotiated. The establishment phase is divided in two steps: specification and
configuration. In the specification step the Q0S requirements of the client application are
translated to a QPS native format. This is done by a QML to QPS translator. The second
step is configuring the ORB and the network level transports according to the specified
Q0S requirements. Here we implement Q0S using the various Q0S mechanisms at our
disposal.

4.4.2.1 Attaching Profiles to CORBA Objects

To attach a QML profile to a CORBA object the operation attach_profile is provided.
The Desired Q0S model contains the Q0S requirements for CORBA objects that have a
QML profile attached to them. Attaching a QML profile to a CORBA object changes the
Desired Q0S model. The QPS splits the QML profile into profile parts. Each profile part
contains the relevant data from the QML profile for one or more operations of the CORBA
object. For example, given the following QML profile QPS distinguishes three profile
parts:

rateServerProfile for RateServerl = profile
{

require SystemRel lability;
from latest require Performance contract
{

delay
{

percentile 80 20;

percentile 100 < 40:
mean < 15

from analysis require Performance contract
{

delay < 4000

Figure 18: Example QML profile

The profile parts QPS derives from the above QML profile are listed in the following three
figures. The first profile part consists of the constraints listed in the SystemReliability
QML contact, discussed in the introductory section about QML (section 3.3). The other
two profile parts are refinements for the operations latest and analysis.

numberOfFailures < 10:
UR { percentile 100 < 2000; mean < 500: variance < 0.3: }
availability > 0.8:

Figure 19: Profile part relevant for all operations of RateServerl except latest and
analysis

For internal use only at KPN 39/63

A Q0S Provisioning Service for CORBA
December1999

numberOfFailures < 10:
T1'R { percentile 100 < 2000: mean < 500; variance < 0.3; }

availability > 0.8;

delay { percentile 80 < 20; percentile 100 < 40: mean < 15; }

Figure 20: Profile part relevant for the operation latest

In this example we see that for the operation latest of the RateServerl IDL interface the
Performance contract has been refined. So we have different Q0S requirements for
latest than we have for other operations of RateServerl. Therefore latest has its own
profile part in QPS. The Performance contract has also been refined for the analysis
operation of RateSeiverl, so analysis also has its own profile part.

number0fFailures < 10;
UR { percentile 100 < 2000; mean < 500; variance < 0.3: }

availability > 0.8;

delay < 4000;

Figure 21: Profile part relevant for the operation analysis

The QPS uses profile parts to conveniently group all QoS requirements for an operation
or a group of operations. Each profile part has a unique identification number, the
profile_part_id.

The Desired QoS Model

The Desired QoS model contains Q0S requirements for CORBA objects with QML
profiles attached to them. The Q0S requirements are grouped per profile_partJd. The
QPS uses its own format for representing Q0S requirements, the format is influenced by
QML's concepts. The QoS Specification Interface component translates QML source to
this representation. The following figure shows the layout of the data-structure of the
Desired Q0S Model:

[(profile_part_id, (QoS dimension, (contraint).
C...).
(constraint)).

(QoS dimension, ...)).

(profile_part_id. #inherit
(QoS dimension)) I

Figure 22: The Desired Q0S Model

The #inherit construct indicates QML profile refinement, for example #inherit 1 indicates
refinement of profile_pa rtJd 1.

40163 For internal use only at KPN

A Q0S Provisioning Service for CORBA
December 1999

An example Desired Q0S model containing the three profile parts looks as follows:

4.4.2.2 Configuring Quality of Service

The QPS intercepts all method invocations sent by the client application. If a method has
Q0S requirements, i.e. if QPS can find a profile part to go with the method invocation,
QoS negotiation is triggered. There are 2 possibilities: (1) Q0S was already negotiated
for this profile part, and (2) Q0S is negotiated for the profile part for the first time. In the
first case QPS uses the already negotiated Q0S configuration to send the method
invocation to the server object. In the second case QPS needs to select a network level
transport that is able to implement the Q0S requirements set for that method invocation.

The QPS Inter-ORB Protocol (QIOP)

QIOP is a high-level protocol that implements a transport plug-in (pluggable protocol) for
the higher-level GIOP messages. QIOP itself is an umbrella for various transport
channels and doesn't know how to send data over the network. It relies on (sub) plug-ins
for that, not to be confused with pluggable protocols. These plug-ins allow QPS to use
Quality of Service mechanisms available at the network-level. Plug-ins for QIIOP are
loaded into the system during the prediction phase. One plug-in could provide best-effort
QoS using TCP/IP, another plug-in could provide group communications to enhance
reliability, yet another plug-in could provide support for expedited forwarding of IP
packets.

Figure 24: Transport plug-ins

A communication channel opened by a QIOP plug-in is called a QIOP Q0S channel. A
QoS configuration for a profile part is a mapping from a profile part id to a QIOP Q0S
channel.

QIOP Q0S channel plug-ins have various responsibilities. They have to implement
receive and send functions to transfer octet-streams over the network, connectors and
acceptors, functions to shutdown a connection, etc. They also have to implement
functions that are called by QPS to check whether or not QoS requirements can be met.
QPS uses these functions to configure Q0S based on the requirements specified by the
user of QPS.

For internal use only at KPN 41/63

[(1. (numberOfFailures.
(TrR.

(availability.
(2. #inherit 1.

(delay.

(<. 10. no/year)).
(percentile. 100. <. 2000).
(mean. <. 500).
(variance, <. 0.3)).
(>. 0.8))),

(3, #inherit 1.
(delay.

(percentile. 80. <. 20 msec).
(percentile. 100. <. 40 msec),
(mean. <. 15 msec))).

(<. 4000 msec)))J
Figure 23: Example Desired Q0S model

A Q0S Provisioning Service for CORBA
December 1999

Configuring a QIOP Q0S channel that implements the QoS specified in a profile
part

First QIOP tries to match one of the existing Q0S channels with the specified Q0S in the
profile part. It asks each Q0S channel whether they conform to the Q0S as specified in
the profile part or not. Each QoS channel should implement the boolean
conforms_to (profile_part_id) method for this. If that method returns true then
QIOP routes all method invocations related to the profile part through this Q0S channel.
If none of the current Q0S channels conform to the Q0S as specified in the profile part.
then QIOP asks each of the Q0S channel plug-ins whether they can create a Q0S
channel that conforms to the specified QoS. The Q0S channel factory of a QIOP plug-in
should implement the method connect_using (profile_part_id) for this. The
method should return a null pointer if it's unable to create such a Q0S channel. It should
return a reference to the newly created Q0S channel when it is able to (and has created)
a Q0S channel that conforms to the given Q0S specification. In case none of the QIOP
plug-ins is able to create a Q0S channel matching the Q0S in the profile part, then QIOP
throws an exception.

A QIOP Q0S channel plug-in has to know certain things the about QoS dimensions (one
or more) that it provides Q0S network-level mechanisms for. For example, a QoS
channel plug-in that is able to prioritize traffic may support the QoS dimension delay'.
The QoS channel plug-in and the Q0S dimension plug-in have to agree on the definition
of delay' and how it is measured. The following figure depicts the relationship between
both plug-in types.

Figure 25: Relationship between Q0S channel plug-ins and Q0S dimension plug-ins

4.4.3 Operational phase

During the operating phase the Q0S is enforced, i.e. QPS uses Q0S mechanisms
available to implement the Q0S requirements that the application has specified. The
provided Q0S is monitored. When degradation in the QoS is detected the system should
be adapted so that the required Q0S can be provided again.

The operational phase is divided into four steps. Enforcing QoS (1) involves routing
CORBA method invocations through a QIOP QoS channel that implements the Q0S
requirements for that method invocation. Measuring QoS (2) involves measuring the Q0S
performance of the system, so that degradation in Q0S (3) can be detected. Finally, the
system should adapt its Q0S configuration (4) when the QoS performance degrades.
Each step is described in a separate section.

4.4.3.1 Enforcing Quality of Service

As mentioned in the previous section, QPS intercepts all method invocations generated
by the client application. Portable Interceptors are used to implement this. An interceptor
at request-level inspects each method invocation and tries to map it to a profile part id.
The ORB's interceptor implementation provides the interceptor with a pointer to a data-
structure that contains the request. If the request-level interceptor is able to map the
method invocation to a profile part, then the service context list of the request is extended
with a new service context containing information regarding the profile part id. The
following figure depicts this procedure.

42/63 For internal use only at KPN

A Q0S Provisioning Service for CORBA
December 1999

Figure 26: Matching method invocations with profile parts

The QIOP protocol filters the service context list of each GIOP message that it has to
send over the network. If QIOP finds a service context containing a profile part id hint,
then it routes the message through the Q0S channel that is configured for that profile
part.

Figure 27: QIOP filters service contexts looking for profile part ids

In this example (see figure) Q0S channel 3 should be used to transfer method-
invocations over the network related to profile part id 2. QIOP maintains a mapping from
profile part id to a QoS channel reference. This mapping is configured when Q0S is
negotiated.

4.4.3.2 Measuring Quality of Service

To monitor the Q0S we need to measure it. The QPS has sensor components for this
task. The interceptors inform sensor components of method-invocation. The interceptors
only filter method-invocations, they delegate measuring of Q0S to the sensor
components. There can be different kinds of sensors in the system, located at the
interception points of the interceptors that are in use. The sensor receives the method
name, target object name, and whether or not the method invocation is one-way. The
sensor is then able to lookup the matching profile part Id, if any. This profile part id is also
returned to the interceptor, so that the interceptor can build a new service context that
includes the profile part Id.

A Q0S dimension plug-in can subscribe to sensor notifications, by registering a
notification handler for it. Sensors support a pre-defined set of notifications, for instance
request-level sensors offer start-method-invocation and end-method-invocation
notifications. Subscribing to sensor notifications is done by the method
configure_sensors_for (profile_part_id) that all Q0S dimension plug-ins should
implement. This method is called when a profile that has QoS requirements for the QoS

For internal use only at KPN 43/63

'b object

I
is_oneway:

target idi:
operation;
servicecoritext:

E method invocation
data structure

false
IDL:RateServerl:1.0
latest"

E]

LI
false
IDL:RateServerl: 1.0"

- latest"
[ppi:2]

. [I

A QoS Provisioning Service lot CORBA
December1999

dimension is attached to an object. The Q0S dimension plug-in should also implement
notification handlers to process the notification it will receive from the sensors.

As an example. a plug-in for the Q0S dimension 'delay is typically interested in receiving
notifications of method invocation startup and end, so it can calculate the delay. The

plug-in registers notification handlers for start-method-invocation and end-method-
invocation notifications.

Figure 28: Notification handling and updating the current Q0S model

The Current QoS Model

Notification handlers can process these notifications, and thus measure QoS. They send
these measurements to the QoS model component, along with the profile part id and the
name of the Q0S dimension. The QoS model component then updates the current Q0S
model.

The Current Q0S model contains the measured Q0S for each profile part. The meaning
of the values depend on the Q0S dimension and constraint type, depending on the QML
specification. The QPS initializes the values in the current Q0S model with a special N/A
(not available) value, denoting that there is no measured QoS yet.

4.4.3.3 Detecting degradation in QoS

After processing the notifications, the sensor invokes a function delta of the Q0S model
to generate an error vector. This error vector contains information about profile parts for
which Q0S has degraded. i.e. for which Q0S is not met. The error vector looks like this:

((profile_part_id,
((QoS dimension.

((measured value, constraint)

),
(QoS dimension, ...)

).
(profile_part_id. ...)))

Figure 29: Format of the error-vector

44/63 For internal use only at KPN

request-level
interceptor

notification
handler current Q0S

model

A Q0S Provisioning Service for CORBA
December 1999

If, for instance, the delay requirements of profile part id 2 are not met, then the error
vector looks something like this:

(
(2. ((delay. ((96. (percentile. 100. <. 40 msec)))))

)

Figure 30: Sample error-vector

96 percent of the invocations related to profile part id 2, in this case the operation latest of
RateServerl, has a measured delay value that is less than 40 msec. However, 100
percent is desired.

The error vector generated by delta is inspected by a QoS controller component, which
then tries to adapt the systems Q0S configuration so that desired QoS is met in future
method invocations.

4.4.3.4 Adapting the system after Q0S degradation

The controller will try to reconfigure the Q0S settings for each profile part id listed in the
error vector. It uses an algorithm similar to the one used for Q0S negotiation. The Q0S
controller remembers what configurations failed to deliver the requested Q0S. The
algorithm that is used to adapt the system after Q0S degradation has been detected
consists of the following steps:

1. Ask the factory of the plug-in that is currently used to deliver Q0S for the profile part
id if it can configure a new channel that does meet the Q0S requirements for the
profile part Id. A reference to the Q0S channel currently in use is provided so the
factory knows the current settings. Factories that fail to configure a Q0S channel for
profile part id are remembered by the QoS controller, so that they wont be asked
again to create a QoS channel for the profile part Id.

2. If the factory of the Q0S channel currently in use is unable to configure a Q0S
channel for the profile part id, then the Q0S controller will ask other open Q0S
channels whether they can provide the Q0S for the profile part id or not.

3. If not, then the Q0S controller will traverse the list of QoS channel factories asking
them if they can create a Q0S channel that implements the QoS requirements of
profile part id. Channels that are remembered not to be able to deliver the QoS are
skipped.

4. II no Q0S channel matching the Q0S requirements of the profile part id could be
assigned, then the Q0S controller throws an exception to inform the client application.

4.5 Résumé

We defined the following requirements for the Q0S Provisioning Service. In retrospect.
are these requirements met?

Implement Q0S provisioning for CORBA method invocations

The QPS does provide Q0S provisioning for method invocations. The approach is to use
a feedback-control loop as the basis of a service that allows QoS to be specified by the
application. The feedback-control loop measures and controls the Q0S of the system.

Support a wide range of QoS dimensions

The QPS supports mn-time loading of Q0S dimension plug-ins, so it is able to support a
wide range of Q0S dimensions. Support for new QoS dimensions can be added easily to
QPS. All that needs to be done is implement a new class (a subclass of an abstract

For internal use only at KPN 45/63

A Q0S Provisioning Service for CORBA
December 1999

dimension class in QPS) and implement the interface that QPS expects from a QoS
dimension plug-in. In addition the implementing the QoS dimension plug-in an existing
Q0S channel plug-in should be adapted to support this dimension or a new Q0S channel
plug-in should be implemented that support the new dimension. The QPS also defines
interfaces that such Q0S channel plug-ins should implement.

Be extensible

The QPS should be extensible, i.e. it should allow for run-time loading of classes that
handle a certain QoS dimension and classes that allow for using QoS mechanisms of the
network. The QPS is also able to load transport plug-ins for the QIOP protocol at run-
time. This support for loading plug-ins at mn-time requires that the language that QPS is
implemented in and the operating system support dynamic loading of libraries/classes.
Most combinations of operating system and programming languages are able to support
dynamic loading, for instance Java, C++ on Win32 systems. and C++ and modern
Unices. We believe the system is quite extensible.

Be portable

The QPS should be portable, i.e. it should not be specific to a certain ORB
implementation. The QPS uses portable interceptors and pluggable transports to extend
the ORB, each ORB supporting these extensions mechanisms can be used in

combination with QPS, so QPS itself is quite portable. Also, the applications interface
with QPS using IDL. so applications access QPS in a portable manner.

Keep overhead as low as possible

The QPS should be fast i.e. measurement and control of Q0S by QPS should not hog the
system as a whole. The QPS however is additional functionality, and thus requires CPU

time. It's important that the performance of QPS is predictable, i.e. the performance
penalty should be constant for each method-invocation.

The performance of the system depends on the performance of the interceptor
mechanism of the CORBA implementation. We think that the performance penalty of
using interceptors is minimal. The implementation of the interceptors in QPS uses hash-
tables to lookup Q0S requirements for method invocations. Depending on the hash-table
implementation this could also be a minimal and constant performance hit.

The QIOP protocol has to inspect the data it transports to filter service contexts
(described in the section about Enforcing Q0S). This is also a reasonably constant
performance penalty, depending on the size of the service context list (each service
context in the list is inspected by QIOP).

In conclusion, QPS does invoke performance penalties. We believe that the loss of
performance is minimal given the CPU power of computer systems today. Adding more
CPU power can compensate the loss of performance caused by the overhead of QPS. A
CORBA system with QPS is less optimal for method-invocations that have no Q0S
requirements. since these method-invocations are filtered by the interceptor mechanism
anyway.

46/63 For internal use only at KPN

A QoS Provisioning Service for CORBA
December 1999

5 Implementation of the Q0S Provisioning Service

This chapter describes our prototype implementation of the Q0S Provisioning Service.
We start with an overview of the CORBA implementation that weve used. We describe
the key parts of the implementation in sections 5.2, 5.3, 5.4 and 5.5. This chapter
concludes with a section about the status of the implementation.

5.1 ORBacus

Our prototype is implemented on top of ORBacus 3.1.3 [34]. ORBacus is an open-source
[40] implementation of the CORBA 2.0 standard. ORBacus has C++ and Java language
mappings. For this prototype we use the C++ mapping. All source of the prototype is
written in C++. ORBacus supports the Open Communications Interface (OCI). Our QIOP
protocol is plugged into the ORB using OCI.

5.2 The Q0S model

The first part of the prototype that we've built is the group of classes that implement the
Q0S model. Our Q0S model, implemented by the class QoSModel, can be extended
with Q0S requirements specified in QML. The internal classes that the QoSModel class
uses are based on parts of the QML. For instance, QML includes constraints on
dimensions and has two kinds of those constraints: simple constraints and aspect
constraints. The QoSModel class' internal classes include SimpleConstraint and
AspectConstraint.

5.2.1 Specification of Q0S

We chose not to implement a full QML parser and compiler. Therefore the Q0S
repository is also not implemented. Instead, we use a newly defined intermediate
language to specify QoS requirements. The internal class Interpreter of the QoSModel
class implements an interpreter for this intermediate language and takes care of
constructing a desired Q0S model. The syntax of the intermediate language is divided
into two parts: specification of profile parts and attaching profile parts to IDL interfaces
and their operations.

The following figure is depicts how profile part specification is done. The syntax is the
same as we used in our description of the desired Q0S model in the previous chapter.
Profile part 2 is a refinement of profile part 1, as indicated by using the #inherit construct.

[(1. (Delay. (percentIle. 80. <. 20 msec).
(percentile. 100. <. 40 msec).
(mean. <, 15 msec))).

(2. #inherIt 1.
(Delay. (.<. 4000 insec)))]

Figure 31: Profile part specification example

The syntax of attaching profile parts to IDL interfaces and their operations is
demonstrated in the next figure. Profile part 1 is attached to the IDL interface Hello, and

For internal use only at KPN 47/63

A Q0S Provisioning Service for CORBA
December 1999

is default for all operations in that interface. Profile part 2 is attached to the operation
hello in the IDL interface hello. So, all operations in the IDL interface Hello have Q0S
requirements listed in profile part 1, except the operation hello that has additional
requirements (refinement) listed in profile part 2.

@ IDL:Hello:1.O * > I

@ IDL:Hello:1.O hello -> 2

Figure 3 2: Attaching profile parts to IDL

Applications add QoS specifications written in the intermediate language described above
to the desired Q0S model using the add operation of the QoSModet class. The next
figure depicts this.

Applici tion

&ld (1ename)

QoSModel

+add(fiisname) Interpreter
+add_to_qosrodsi(tiienas:)

add_to_qosiodei(fiinats)

Figure 33: Specifying Q0S

5.2.2 How QoS is stored in the desired QoS model

The QoSModel class maintains a hash table of instances of the ProfilePart class. The
hash table key is of type profile_part_id_t. A ProfilePart class holds a list of instances of
the DimensionConstraints class. A DimensionConstraints instance holds QML
constraints related to the same QML dimension. The Constraint abstract class
represents a QML constraint. QML distinguishes two constraint types, simple constraints
and aspect constraints. These are represented by the SimpleConstraint and
AspectConstraint classes respectively. The following figure depicts an UML class
diagram of the above.

48/63 For internal use only at KPN

A QoS Provisioning Service for CORBA
December 1999

The Interpreter class is responsible for extending the Q0S model with new profile parts.
These profile parts are specified in a QPS intermediate language, described in the
previous section. The following figure is the sequence diagram for Q0S specification.
The application can add Q0S specifications to the QoS model using the add (filename)
operation of QoSModel. The QoSModel add (filename) operation asks the Interpreter
class to interpret the specifications in the filename by calling the interpreter (filename)
method. This method parses all the profile part specifications in the given filename, and
creates a ProfilePart instance for each of them. Each profile part may contain
constraints related to one or more QML dimensions. QML constraints for a QML
dimension are grouped in an instance of DimensionConstraints. After parsing and
creating a ProfulePart, Interpreter adds the profile part to the QoSModel using add
(ProfilePart ').

Figure 35: Sequence diagram for Q0S specification

For internal use only at KPN 49/63

Figure 34: Q0S model structure

Appliat Ion
I I

lntepreter ProtilePait
I

DmenslonConraJnts
I

I I

I I I

A QoS Provisioning Service for CORBA
December 1999

5.2.3 Querying the Q0S model

The QPS prototype uses the Visitor pattern 141 to allow QIOP plug-ins to do conformance
checking. The QIOP plug-in should sub-class the ConstraintVisitor class and
implement the two virtual accept 0 methods:

class ConstraintVisl.tor
virtual bool accept (SimpleConstraint S);
virtual bool accept (AspectConstraint).

The QoSModel class implements a method that can be called to visit all the constraints
related to a given profile part id:

class QoSModel

bool visit (ConstraintVisitor . proflle_part_id_t);

The visit method visits all the constraints that are related to the given profile part id and
for each constraint it calls the proper accept method in the given constraint visitor
(depending on the type of the constraint: simple or aspect). Visitor allows us to hide the
representation of the internal data-structures of the QoSModel class, yet allowing QIOP
plug-ins to inspect constraints.

The method described above is currently the only supported method of traversing the
constraints in the Q0S model. The QoSModel class itself doesn't use the visitor pattern,
since it is able to traverse its data structures directly.

5.2.4 Storing Q0S measurements

The QoSModel class also implements the current Q0S model. The measured Q0S
values are stored with the desired Q0S in the SimpleConstraint or AspectConstraint
classes. The QoSModel class has the following operations that can be used to
manipulate the current Q0S model.

class QoSModel

enurn measure_op_t
MOP_ASSIGN. MOP_UNION, MOP_DIFFERENCE, MOP_INTERSECTION

void process_measurement (enum mea1ur_op_t. profile_part_id_t.
Dimension , int);

void process_measurement (enum measure_op_t. profile_part_id_t.
Dimension *, float):

void process_measurement (enum rneasure_op_t. profile_part_id_t.
Dimension *, string

QoS measurements are updated by notification handlers, called by sensors. Sensors
and notification handlers will be discussed in a later section.

5.3 Method invocation filtering

First we discuss the class diagrams of Interceptors and Sensors and discuss the relation
between Interceptors and Sensors. After that we look at the interceptor and sensor at the
request-level in detail.

5.3.1 Interceptors

We extended ORBacus with a prototype implementation of Portable Interceptors, based
on an initial submission [411 to the Portable Interceptors RFP [271. The prototype of the
portable interceptor submission was implemented for an EURESCOM project [421 [431.

50/63 For internal use only at KPN

A Q0S Provisioning Service for CORBA
December 1999

This implementation is not mature yet, various modifications had to be made in order to
make it usable for our QPS prototype. These modifications included both fixes for bugs
and implementation of missing features.

For this prototype we've implemented an interceptor at request-level. Its super-class is
the Requestlnterceptor class that the Portable Interceptors implementation provides.
The interceptor implements three methods: pre_invoke and post_invoke. The
pre_invoke method is called when a method is invoked, the post_invoke method is
called when the method invocation finishes (if it's not a one-way method invocation). In
the previous chapter we showed that interceptors do two things in QPS:

• Initiate the enforcement of Q0S

• Initiate the measurement of Q0S

Initiation of the Q0S enforcement consists of adding a new service context to the request
data-structure that includes the profile part id of the QoS if a method invocation has Q0S
requirements. Measurement of Q0S is initiated by informing a sensor component at the
same interception level of method invocation. The post_invoke method of the
interceptor is only involved in measurement of QoS. The pre_invoke method is involved
in both enforcement and measurement of Q0S. Support for changing the service context
list of a request data-structure had to be added to the Portable Interceptors
implementation. The interfaces were already in place, but the method bodies were
empty.

The following figure depicts the class diagram of the Portable Interceptor class at request-
level. POl_Requestlnterceptor is provided by the Portable Interceptors implementation,
and Requestlnterceptor is the request-level interceptor of QPS.

+pre_invoke (:PO1_Request_ptr, :POl_Cookie)
.tpost_invoke (:POI_Re quest_pt r, :PO1_Cookie)
-systerri_except ion (:PO1_Request...impl, :POZ_Cookie)

r1
Requestinterceptor

+regiaterl (:CORBA_ORB_var)

POlRequestlnterceptor

Figure 36: Request-level Portable Interceptor class diagram

The system_exception method is not used by QPS. The registerl method registers the
interceptor at the ORB.

5.3.2 Sensors

The prototype includes a sensor component at request-level. The interceptor at request-
level informs this sensor component of method invocation start and end.

For internal use only at KPN 51/63

A Q0S Provisioning Service for CORBA
December 1999

The configure_for method of the abstract class Sensor is used to add notification
handlers to the sensor. Notification handlers are registered per profile part id. The first
parameter is the profile part id we want to monitor notifications for, the second parameter
is a reference to the notification handler object, and the third parameter is a bit-vector
containing the notifications that should be monitored. The filter method is used to filter a
method invocation, it's never called directly by an interceptor; it's a helper method that
can be used by filter methods in subclasses of Sensor. The RequestLevelSensor class
for instance implements two filter methods that wrap the filter method of the Sensor
class.

5.3.3 An in-depth look at the request level interceptor

The following source fragment is the pre_invoke method of Requestlnterceptor. Some
obscure details have been omitted. We see that RequestLevelSensor (in the
namespace QPS) is asked to filter the method invocation. When a profile part is found.
the service context list is extended with a new service context containing the profile part
id.

POl_InterceptionResult
Requestlnterceptor: : pre_invoke (P0I_Request_ptr the_request.

P01_Cookie &the_cookie)

II Filter the method invocation.
QPS: :profile_part_id_t ppi

QPS: :RequestLevelSensor: instance 0 -> filter_pre_invoke
the_request -> get_target C) -> target_obJect C) -> _OB_typeld 0.
the_request -> get_operation 0.
the_request -> response_expected () ? true : false);

// If there is a profilepart for the method invocation then
II update the service context.
if (ppi > 0)

/* Put profile-part-id into context data. /
IOP_ServiceContextList *< = the_request -> get_contexts ()•

IOP_ServlceContext *c — new IOP_ServiceContext;

ctx -> context_id 1975; II Randomly chosen context id.
char strI72l. snprintf (str. sizeof str - 1. ppi %1u. ppi);

mt count — strien (str) + 1;
ctx -> context_data. length (count);
CORBA_Octet* oct = ctx -> context_data data 0.
strcpy ((char *)oct. str);
ctxs -> append (ctx);
try

the_request -> set_contexts (*ctxs)

catch (.
exit (EXIT_FAILURE);

return P01_PROCEED_REGULAR;

52/63 For internal use only at KPN

Sensor

4-coat ignrQ_for(:profilQ_part_id_t. :NotificationHand.ler '.:notification_t)
4-filtQr(targQt,mQthodI,flOtifiCatiOfl) • profilo_part_id._t

RequestLevelSensor

+tart_invocation() notitication_t
4-Qnd._invocatiofl, motif ication_t
#onaway_invocation t motif ication_t
4-filter....prQ_inVOkQ Itargiti mathods. rQpon_oxpectQds) profilQ_part_ici._t

4-f ii tQrpoot_invokQ (tart ,m.thod.)

Figure 37: Sensor class diagram

A Q0S Provisioning Service for CORBA
December 1999

The post_invoke method doesn't have to extend the service context list, and thus only
informs the RequestLevelSensor that the method invocation has ended.

void
Requestl nterceptor : post_invoke (P0I_Request_ptr the_reply.

P01_Cookie the_cookie)

QPS. .RequestLevelSensor::instance C) -> filter_post_invoke
the_reply -> get_target 0 -> target_object 0 -> _OB_typeld0.
the_reply -> get_operation 0);

CORBA_string_free ((char *) the_cookie);

5.3.4 An in-depth look at the request-level sensor

The following code fragment configures the sensor to call a notification handler when a
notification is generated for a certain profile_part_id. Notifications are implemented
as bit-vectors.

void
Sensor configure_for (profile_part_d_t profile_part_id.

NotificationHandler *handler.

notification_t notifications)

ProfilePartData *p
if ((p spd Iprofile_part_idi) == 0)

p = spd [profile_part_id] = new ProfilePartData;

ProfilePartData: :HandlerData *hd = new ProfilePartData. HandlerData;
hd -> notifications_ = notifications;
hd -> handler_ = handler;
p -> notification_handler_ipush_back (hd).

Sensor is an abstract class. Subclasses of Sensor, e.g. RequestLevelSensor, define
notifications and use the functionality implemented in Sensor to distribute these
notifications. Distributing notifications is done by the filter method of the Sensor
class. First the filter method looks up the profile_part_id that is attached to the given
method invocation. If there is a profile_part_id attached to the given method invocation,
then the given set of notifications are distributed to the notification handlers that are
configured to handle them. After handling the notifications the Q0S model is asked to
perform a delta operation. The delta operation compares the current QoS model with the
desired Q0S model, and reconfigures the system when Q0S degradation is detected.
The profile_part_id is returned to the caller.

profile_part_id_t
Sensor: filter (const string target. const string method.

notification_t notifications)

profile_part_id_t p;
bool dodelta false;

if ((p = QoSModel:.inscance 0
-> mapto_profile_part_id (target + - + method)) —— 0

&& (p QoSModel: ; instance 0
-> mapto_profile_part_id (target + + ")) —— 0)

return 0.

for (list<Sensor: :ProfilePartData: :HandlerData *>: : iterator
it spd(p] -> notification_handler_l.begin 0;it != spd[p] -> notification_handler_lend C);

++it)
Sensor: :ProfilePartData: :HandlerData *hd = Sit;
if ((hd -> notifications_ & notifications) .any 0)

hd -> handler_ -> notify (p. notifications);
dodelta = true;

For internal use only at KPN 53/63

A Q0S Provisioning Service for CORBA
December 1999

if (dodelta)

QoSModel::instance C) -> delta 0.

return p.

The RequestLevelSensor class defines two wrapper method around Sensor: : filter,
filter_pre_invoke and filter_post_invoke. These methods are called by the
request-level interceptor of QPS.

profi le_part_id_t
RequestLevelSensor: :filter_pre_invoke (const string target.

const string method.
const bad response_expected)

profile_part_id_t ppi
if (response_expected)

ppi = this -> filter (target. method, start_lnvocation_);
else
ppi = this -> filter (target. method. oneway_invocation_);

return ppi,

void
RequestLevelSensor: filter_post_invoke (const string target.

const string method)

this -> filter (target. method. end_invocation_);

5.4 The QIOP OCI Transport

The QIOP OCI transport is a copy of the lIOP OCI transport that already was available in
ORBacus. For the prototype we were interested in providing priority scheduling of
packets sent by the ORB. We have chosen DiffServ to implement this at the network-
level. QIOP plug-ins may mark packets sent by QIOP with a DiffServ marker.

5.4.1 Plug-ins

The central component of the QIOP protocol is the plug-in manager. The manager has
various responsibilities:

• Provide mechanism and interface for factory plug-in loading, i.e. loading
QIOP Q0S channel plug-ins.

• Act as a registry for these plug-ins.

• Provide filtering mechanisms for octet streams. These are used by QIOP's
implementation of the OCI_Transport_impl class.

• Provide mechanisms to configure and reconfigure QIOP Q0S channels for
profile parts. ConfigureO is used by send_filter() reconfigure is used by
delta() of QoSModel.

The plug-ins have various responsibilities:

• Identification, via the method name

• Configuration of Q0S for a profile part, via the methods configure and
reconfigure

• Reporting its configuration, via the get_configuration method

54163 For internal use only at KPN

A Q0S Provisioning Service for CORBA
December 1999

Providing hooks for the pre and post send filters of the plug-in manager, via
the method send_pre_filter and Send_post_filter

The following is a class definition for a plug-in that implements DiffServ expedited-
forwarding [201:

class QIOP_EF: public QPS_ORB: :OCI_QIOP_TP_QoS_Mechanism
public:
virtual string
virtual bool
virtual bool
virtual string
virtual void
virtual void

The send_pre_filter is of particular interest; it marks the packets with the DiffServ
expedited-forwarding marker (Ox2e):

mt fd = oci_transport -> handle 0
mt v = Ox2e;
assert (setsockopt (fd. SOL_IP. IP_TOS. &v. sizeof (v)) 0),

The send_post_filter turns off the marking of packets. The send filter hooks
provided by the plug-ins are used by the plug-in manager. The plug-in manager filters all
outgoing traffic of the QIOP protocol. If a QPS service context is detected, then the send
pre and post filters of the configured plug-in are called.

5.4.2 Shortcomings of OCI

QIOP currently doesn't support plug-ins that need their own file-descriptor. To
accommodate this more flexible handling of 110 events is needed. Currently the GIOP
layer of ORBacus directly uses the file-descriptor owned by the OCl transport for event
handling. It's not possible for an OCl pluggable protocol to have more than one file-
descriptor. Pluggable protocols that may require more than one file-descriptor can not be
implemented without resorting to ad-hoc solutions, unless parts of the ORBacus source
are modified. The following figure depicts the event-handling problem.

For internal use only at KPN 55/63

name
configure
reconfigure
get_configuration
send_pre_filter
send_post_filter

(void);
(QPS: :profile_part_id_t);
(QPS: :profile_part_ld_t);
(QPS: :profile_part_id_t):
(OCI_Transport *)

(OCI_Transport)

client_object
A

request i

Q This tile descriptor is monitored by ORBacus SelectNonBlocking event
handler. lls obtained by caning the OCLTranspoIt:handle() method.

yer obJI)

This tile decsnptor isn't monitored by ORBaais. We have to wnplement
_./ event handling for this tile descriptor ourse4ves.

Figure 38: Event handling problems

A Q0S Provisioning Service for CORBA
December 1999

Furthermore, OCI only allows protocols to be plugged into the ORB at compile-time.
Also, parts of the ORB source have to be changed to register the OCI plug-in:

• The QIOP acceptor and connector had to be registered in the llOPlnit.cpp source
of ORBacus.

• A method get_qnet_obj ect had to be added in ORB.cpp of the ORBacus
source, to allow CORBA applications to create an IOR for the QIOP protocol so
that they can connect to a QIOP server ORB and request a reference to an
object.

• Support to convert a string to an IOR had to be added to ORB.cpp as well.

5.5 Résumé

Our prototype has shown that Q0S can be provided for CORBA without changing the
implementation of the ORB itself. To accomplish this the ORB needs to provide two
extension mechanisms: portable interceptors and pluggabte protocols. The most difficult
part of the prototype implementation was the propagation of QoS configuration settings
through the ORB. A portable interceptor filters method-invocations and extends the
service context if Q0S requirements are specified for it. The service contexts should be
filtered by the QIOP pluggable protocol so that Q0S can be provided for the method-
invocation.

The Portable Interceptors are sufficient for filtering method-invocations. However, the
OCI pluggable protocol mechanism has some shortcomings, mostly related to handling of
I/O events in the QoS mechanisms that can be plugged into the QIOP protocol. The
current implementation of QIOP doesn't support Q0S mechanisms that have their own
file-handle. Therefore, only marking of packets is supported by QIOP. sufficient for
implementing QIOP plug-ins that support DiffServ.

56/63 FOr internal use only at KPN

A Q0S Provisioning Service for CORBA
December 1999

6 Conclusions & Future work

Conclusions:
Middleware is a layer of software that resides between the application and the underlying
heterogeneous layers of operating systems, communication protocols and hardware. It
provides separation of concern: the middleware isolates hardware, operating systems,
and communication protocols from the rest of the system; the applications on top of the
middleware.

Quality of Service (QoS) aspects like performance, security, and reliability are important
to middleware systems. Still, there is no support for Q0S in current middleware systems.

A commonly accepted middleware standard is 0MG CORBA. This document describes
the design and implementation a Q0S provisioning service for CORBA middleware.

In this chapter we present our conclusions and suggestions for future work. We come
back to the research questions stated in the introductory chapter.

How are Q0S requirements specified by the application?

Q0S requirements are specified by the application in the Q0S Modeling Language (QML).
The QML is a general-purpose Quality of Service specification language, it is not tied to
any particular domain, such as real-time or multi-media systems, or to any particular QoS
category, such as reliability or performance. We chose to use QML since it doesn't
require changes to IDL, which meets one of our constraints that we aren't allowed to
change CORBA. Another reason for using QML is that it is a generic Q0S specification
language, which coincides with our goal of supporting a wide range of Q0S dimensions.

The QPS has a QoS repository that can be used to store QML specifications.

How do we manage and control Q0S in the DPE?

We've designed a Q0S provisioning service based on a feedback-control model. QoS
can be specified by the application. The QPS configures the system according to these
specifications and the control-loop of QPS. based on the feedback-control model
described in chapter 4, measures and controls the Q0S during system operation.

How does end-to-end Q0S propagate through the DPE?

The application can specify its QoS requirements using QML. These specifications (QML
contract types, contracts, and profiles) are stored in the Q0S repository. The application
can attach a QML profile to IDL interface. It is possible to specify Q0S per operation in an
IDL interface. When a QML profile is attached to an IDL interface the desired Q0S model
of QPS is updated with the new QoS requirements. The QPS monitors all method
invocations of the CORBA middleware. For method invocations that have Q0S
requirements in the desired Q0S model it tries to find a QoS mechanism at the network-
level. This Q0S mechanism is then used to transfer the method invocation over the
network.

The following figure contains the two QoS interface points in the ODE. The upper
interface is used by the application to specify its Q0S requirements. This is an IOL
interface to the QPS. The lower interface is used by QPS to implement the QoS
requirements specified by the application. This interface consists of a collection of APIs
that are available at the network-level.

For internal use only at KPN 57/63

A QoS Provisioning Service for CORBA
December 1999

Application —
QoSspecification

Middleware
QoSAPlsofthe

DRP

Figure 39: QPS Q0S interfaces in the ODE

Can we add Q0S support to CORBA in a portable manner?

We have built a prototype of the Q0S Provisioning Service. The prototype is

implemented in C++. We have chosen ORBacus, an open-source CORBA
implementation, as our middleware component. The QPS is designed to be source
portable between different CORBA implementations. It should be possible to use QPS
with another CORBA implementation without having to change the source of QPS or the
source of the CORBA implementation. In order to make this possible QPS relies on two
extension mechanisms that should be available in the CORBA implementation. These
mechanisms are Portable Interceptors and Pluggable Protocols. Both mechanisms are
currently not included as mandatory parts of the CORBA specification, but are on the way
to become 0MG standards.

Portable Interceptors are being standardized at the time of writing 1411. Not all
interception points described in chapter 3 of this thesis are included in upcoming Portable
Interceptors specification. However, interceptors at request-level are part of the
specification. This interception point is critical to QPS, since this point is used to enforce
QoS for method invocations.

There is reluctance in the 0MG to standardize Pluggable Protocols. Standardization of
Pluggable Protocols is important to services like QPS. in order to be ORB independent.
Some ORB vendors do not want to give access to the mechanisms to transfer GIOP
messages over the network, allowing third-party software to be ORB independent is not in
their best interest. At least two open-source CORBA implementations (ORBacus and
TAO) do support Pluggable Protocols however. Sadly, these two implementations do not
use the same interfaces.

Given this lack of standardization of Portable Interceptors and foremost Pluggable
Protocols, the parts of QPS that depend on this features are isolated from the rest of QPS
in order to ease porting to another ORB implementation.

What QoS mechanisms does the network provide and how does the middleware
benefit from these mechanisms?

The QPS uses QoS mechanisms available at the network-level to implement the Q0S
requirements specified by the application in QML. The network may provide various QoS
mechanisms, for instance Diff-Serv, lnt-Serv, and IP multicast. The network does not
provide a generic API to access these mechanisms. Most mechanisms themselves don't
even have a good API. The lack of a generic QoS API at the network-level makes it
impossible to write a pluggable protocol for CORBA that leverages network QoS
mechanisms to the ORB. We decided to implement a generic pluggable protocol that
doesn't implement a transport type (like TCP/IP or UDP) and that also doesn't
communicate directly with Q0S APIs that may be available at the network-level. Instead,
QPS supports loading of plug-ins at run-time (this is not the same as a pluggable
protocol). This is depicted in the following figure.

58/63 For internal use onty at KPN

A Q0S Provisioning Service for CORBA
December 1999

Figure 40: A high-level view of the QIOP protocol

Each plug-in is tailored towards one or more Q0S mechanisms available at the network-
level. This way QoS mechanisms available on the network can be used by QPS without
having to integrate support for it in QIOP and even without having to restart the
application that QPS provides Q0S for. Instead, a plug-in that implements a simple
interface expected by QIOP has to be constructed.

The Open Communications Interface (ORBacus' pluggable protocol support) doesn't
have all the necessary features to support this. In chapter 5 we presented these
shortcomings of OCI and proposed extensions. For the prototype we implemented an
ad-hoc solution for these problems.

Future work:
The QPS is an initial implementation of a Q0S control framework for CORBA, but it is far
from finished. This section makes suggestions for further research, proposes work to
enhance and extend the design of QPS, and lists shortcomings of the current prototype.

An important issue for further research is the performance of QPS. Performance should
be measured and based on these measurements, suggestions for improvements in the
design and implementation could be made. Critical points in the performance of QPS
include the Portable Interceptors mechanisms, the Interceptors that QPS uses, and the
overhead generated by the QIOP protocol.

Another issue that hasn't been explored is the suitability of QPS in a real-time
environment. Is the behavior of QPS itself predictable? Can QPS be used to enforce
hard real-time Q0S requirements? QPS focuses on network level QoS, the current
version isn't able to use other Q0S mechanisms, like scheduling algorithms available in
real-time ORB implementations.

Currently, it is not possible to use QIOP plug-ins as components of other QIOP plug-ins.
This can be useful for building QIOP plug-ins that support group communication
(multicast). Such a group communication plug-in could use other QIOP plug-ins to
handle the actual communication. Management of these helper plug-ins could then be
done by the group communication plug-in itself. Another example of when stackable
QIOP plug-ins could be useful is supporting encryption. A separate QIOP plug-in could
handle the actual encryption, and other QIOP plug-in could handle the communication
over the network.

The QPS currently only measures Q0S at the client-side of a method invocation and it
isn't able to measure QoS at the remote-side. QIOP could be extended to allow for
exchanging QoS measurements between client-side and server-side ORBs. For
instance, QPS is currently not able to measure the delay of a method invocation, i.e. how
long it takes to transfer the method invocation from the client ORB to the remote ORB.
Only the round-trip delay can be measured, since measurement is done at the client side
in this case.

The QPS doesn't provide configuration options to select the actions that should be taken
if QoS degrades. It currently tries to adapt the QoS configuration, and throws an

For internal use only at KPN 59/63

A QoS Provisioning Service for CORBA
December 1999

exception to the application when all available Q0S resources that are supported by the
QIOP plug-ins have been tried. An alternative behavior that the application could desire
is to receive an exception after each failed configuration. for example to allow for re-
negotiation of QoS.

The changes to the Open Communications Interface (OCI) that we proposed could be
designed and implemented. Pluggable protocols cannot be loaded into ORBacus at run-
time, theyre pluggable at compile-time. This requires that parts of QPS that are used by
QIOP are linked with the ORB itself. Run-time pluggable protocols would allow more
flexibility and cleaner implementation. Another shortcoming of OCI is that doesnt specify
anything regarding the handling of I/O events. In ORBacus the event-handling of OCI
pluggable protocols is done by the ORB. Implementing custom event-handling is not
possible without changing the ORB.

Finally, the prototype doesn't implement the Q0S repository. A QML Q0S repository
could be implemented based on the design in chapter 4, including a QML parser and
compiler.

60/63 For internal use only at KPN

A Q0S Provisioning Service for CORBA
December 1999

7 References

[1] D.C.Schmidt, The ADAPTIVE Communication Environment, 1994.

[21 Object Management Group, Description of New OMA Reference Model, Draft 1,
1996. 0MG Document ab196-05-02.

[31 Object Management Group, The Common Object Request Broker: Architecture and
Specification 2.2.1998.

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, 1995. Addison-Wesley. ISBN 0-
201-63361-2.

[51 D.C.Schmidt, A.Gokhale, T.H.Harrison, and G.Parulkar, A High-performance
Endsystem Architecture for Real-time CORBA, 1997.

[61 Douglas E.Comer, Internetworking with TCP/IP Volume 1: Principles, Protocols and
Architecture, 1995. Prentice-Hall International (UK) Limited, London. ISBN 0-13-
216987-8.

[71 Object Management Group, Quality of Service Green Paper, 1997. 0MG
Document 97-12-06 version 0.4a, June 1997.

[81 ISO/IEC, Information Technology - Quality of Service - Framework, 1997. ISO/IEC
Document JCT1/5C21 N13236.

[9] Jan de Meer and Abdeihakim Hafid, The Enterprise of Q0S, 1998.

[10] S.Frolund and J.Koistinen, Quality of Service specification in Distributed Object
Systems 5, 1998.

[11] Object Management Group, UML Semantics version 1.1, 1997. 0MG Document
ad/97-08-04.

[121 Object Management Group, UML Notation Guide version 1.1, 1997. 0MG
Document ad/97-08-05.

[13] John A.Zinky, David E.Bakken, and Richard Schantz, Architectural Support for
Quality of Service for CORBA Objects 3, 1997.

[141 Object Management Group, CORBA Messaging Joint Revised Submission, 1998.
0MG Document orbosl98-05-05.

[151 Object Management Group, Realtime CORBA 1.0 Joint Submission, 1998. 0MG
Document orbos/98-1 2-05.

[161 I ETF DiffServ working group, Differentiated Services (diffserv) charter
http://www.ietf.org/html.charters/diffserv-charter.html

For internal use only at KPN 61/63

A Q0S Provisioning Service for CORBA
December 1999

1171 K.Nichols, S.Blake, F.Black, and D.Black, RFC 2474: Definition of the Differentiated
Services Field (DS field) in the IPv4 and IPv6 Headers, 1998.

[18] D.Black, S.Blake, M.Carlson, E.Davies, Z.Wang, and W.Weiss, RFC 2475: An
Architecture for Differentiated Services

[19] K.Nichols, V.Jacobson, Cisco, L.Zhang, and UCLA, A Two-bit Differentiated
Services Architecture for the Internet (draft), 1999.

[20] V.Jacobson, K.Nichols, Cisco, K.Poduri, and Bay Networks, RFC 2598: An
Expedited Forwarding PHB. 1999.

121] R.Braden, ISI, D.Clark, MIT, S.Schenker, and Xerox PARC, RFC 1633: Integrated
Services in the Internet Architecture: an Overview, 1994.

[22] R.Braden, L.Zhang, S.Berson, S.Herzog, and S.Jamin, RFC 2205: Resource
ReSerVation Protocol (RSVP), 1997. Information Sciences Institute.
http://info.internet.isi.edulin-notes/rfc/fiIeS/rfC2205.tXt

[23] IETF IntServ working group, Integrated Services (intserv) charter
http://www.ietf.org/html .charters/intserv-charter.html

[24] Andrew S.Tanenbaum, Computer Networks 3rd edition 1996. Prentice Hall
Professional Technical Reference. ISBN 0-13-349945-6.

[25] J.C.R.Bennett and H.Zhang, Hierarchical Packet Fair Queueing Algorithms 5,
1997.

[26] Sally Floyd, Notes on CBQ and Guaranteed Service (Draft), 1995.
http://www.aciri.org/floyd/cbq.html

[27] Object Management Group, Portable Interceptor REP, 1998. 0MG Document
orbos/98-09-1 1.

[28] Washington University, TAO - The ACE ORB.
http://www.cs.wustl.edu/-schmidt/TAO.html

[29] F.Kuhns, C.O'Ryan, D.C.Schmidt, and J.Parsons, The Design and Performance of
a Pluggable Protocols Framework for Object Request Broker Middleware, 1999.
http://www.cs.wustl .edu/—schmidtlPDF/pluggable_protocols.pdf.gz

[30] J.Postel, Transmission Control Protocol - DARPA Internet Program Protocol RFC
793 1981. Information Sciences Institute. http:I/www.ietf.org/rfclrfc0793.txt

[31] J.Postel, User Datagram Protocol RFC 968 1980. Information Sciences Institute.
http:I/www. ietf.org/rfclrfco968.txt

[32] A.T.van Halteren, A.Noutash, L.J.M.Nieuwenhuis, and M.Wegdam, Extending
CORBA with specialised protocols for QoS provisioning, 1999.

[33] C.O'Ryan, F.Kuhns, D.C.Schmidt, and J.Parsons, Applying Patterns to Design a
High-performance, Real-time Pluggable Protocols Framework for 00
Communication Middleware, 1999.
http:/fwww.cs.wustl .edu/—schmidtlpluggable_protocols.ps.gz

[34] Object Oriented Concepts, ORBacus. http://www.ooc.comlob/

[351 Object Management Group, Revised version of the AT&TITeITec/GMD Fokus
IN/CORBA submission, 1998. 0MG Document telecom/98-06-03.

62/63 For internal use only at KPN

A Q0S Provisioning Service for CORBA
December 1999

1361 D.C.Schmidt, Acceptor and Connector: Design Patterns for Initializing
Communication Services, 1997. Addison-Wesley. Reading, MA.

137] S. Frolund and J.Koistinen, QML: A Language for Quality of Service Specification,
1998. http://www.hpl.hp.com/techreports/98IH PL-98-1 0.html

1381 S.Frolund and J.Koistinen, Quality of Service Aware Distributed Object Systems,
1999. http:/Iwww. hpl .hp.com/techreports/98IHPL-98-1 42. pdf

[39] Linus Torvalds, Alan Cox, David S. Miller, Donald Becker, Stephen Tweedie, Remy
Card et al, The Linux operating system. http://www.linux.com/

[40] Open Source Initiative, Open Source website, 1999. http://www.opensource.org/.

[411 Expersoft, GMD Fokus, Objective Interface Systems. Object Oriented Concepts,
Adrion, Humboldt University Berlin, KPN Research, and Deutsche Telekom AG,
Initial Submission Against The Portable Interceptors RFP, 1999. 0MG document
orbosl99-04-1 0.

[42] EURESCOM Project P910, Project Internal Report 3.3: Interceptors Architecture
and Specification for P910, 1999.

[43] EURESCOM Project P910, Project Internal Report 3.5: Interceptors
Implementation, 1999.

For internal use only at KPN 63/63

