
L - 6 DXI. 2000

f'•it,lt Gronnge,

'Inf I RS1C*IIt
"4:.oven S

800
9700 AV

Technische Informatica

Scheduling in Multi-X
a performance evaluation

Dinand Roeland

Scheduling in Multi-X

Afstudeerverslag

a performance evaluation

Dinand Roeland

Rijksuniversiteit Groningen
Technische Informatica
Postbus 800
9700 AV Groningen 27juIi 2000

Scheduling in Multi-X — a performance evaluation

Abstract

This master's thesis project is carried out at Ericsson Utvecklings AB, the research and development centre for
Ericsson's Network Core Products. One of the major products of Ericsson Utvecklings AB is the AXE telephone
switching system. The need for capacity in AXE switches is increasing at an unexpected rate due to new services
like ISDN, GSM and the Internet. To keep up with competition, AXE's central processor's capacity needs to be
doubled every third year. A number of projects have been started in order to cope with this problem. One of
them is the Gemini project, which will propose an architecture based on commercially available components.
One of the main prerequisites for Gemini's new architecture is backward compatibility with existing AXE
software. On the long term, the capacity of Gemini's architecture will not be sufficient. The Multi-X project
investigates methods of utilising execution on parallel processors, with Gemini's architecture as a premise.

The focus of Multi-X is a new technique called task-level speculative execution. This technique is a form of
implicit parallelism; parallelism is extracted from conventional imperative and unmodified code. With
speculative execution, assumptions are made on the data and control flow in a program. By looking ahead in the
instruction stream, instructions can be run in parallel. Instructions have to be rolled back, i.e. undone, on
incorrect assumptions. Instruction-level parallelism is a commonly known technique used in most of today's
modern processors. By the beginning of the 1990s, several studies proved the limitations of performance-
increase using instruction-level parallelism. These limitations are mainly caused by imperfect predictions of
future data and control flow. Since mid 1990s a trend can be observed to not only exploit parallelism at a fine-
grained instruction level, but simultaneously also at a coarse-grained task level.

The Multi-X project has developed a prototype to prove the concept of task-level speculative execution on a
multiprocessor system based on Gemini's architecture. This prototype is still being improved, tested and
modified. No results on performance increase are available yet. As a final phase in Multi-X, the prototype can be
optimised in a number of ways. One optimisation is task scheduling, where scheduling is defined as 'the process
of deciding what task to execute where and when'. This thesis will focus on the consequences in performance of
different task distribution principles.

In this thesis project, the Multi-X prototype is modelled and an optimal scheduling algorithm is defined in order
to calculate an upper bound on performance. Furthermore, three practical scheduling algorithms are proposed
and a simulator is developed to investigate their performance. Live-recorded telephone switch traffic is used as
input data to calculations and simulations. The three proposed practical ways of scheduling are first-come-first-
serve scheduling, function-based scheduling and source-based scheduling. With first-come-first-serve scheduling
the next task is simply sent to an arbitrary idle processor. This algorithm is currently used in the Multi-X
prototype. Function-based scheduling is an attempt to avoid unnecessary rollbacks by examining what functions
a task will execute. Source-based scheduling is an attempt to map individual subscribers to individual processors
in order to exploit cache-affinity and diminish inter-task dependencies.

The simulations performed in this thesis project are the first on the Multi-X concept where all relevant
parameters are taken into account. The concept is proved to hold theoretically, whereas a critical note is made
concerning the feasibility of a real implementation. Scheduling should really be seen as an optimisation. Only a
moderate performance increase can be accomplished with scheduling. First-come-first-serve scheduling
performs very well, even compared to optimal scheduling. Ideas from function-based scheduling can be used
additionally to improve performance even more. Source-based scheduling results in poor performance, mainly
caused by load imbalance.

A lot of issues remain to be tested, simulated and analysed. This thesis is only one step forward towards a better
understanding of a multiprocessor architecture running telephone switch traffic.

Abstract ii

Scheduling in Multi-X — a performance evaluation

Acknowledgements

I would like to thank my colleagues at Ericsson Utveckling AB, especially: Lennart Petterson for giving me the
opportunity to work on this exciting project; Yusuf Sulaiman for offering a great deal of background knowledge
on traffic data; Lars-Ake Johansson for helping me to verify traffic data; and Ruben Rizzi for the interesting and
often hilarious conversations during numerous coffee breaks. Also thanks to Marcus Dahlstrom for providing
detailed information on Multi-X and to Nikhil Tikekar for reflections on ideas and concepts.

I would like to thank Professor Ben Spaanenburg at the department of Mathematics and Computing Science,
Rijksuniversiteit Groningen, for support and guidance during this project. Special thanks to Nico Kruithof for
reviewing this report and for the fruitful co-operation during our studies.

Finally, I am very grateful for the support of my beloved wife Marika and my dear parents. Thank you for
helping me to start master studies.

'The fear of the Lord is the beginning of wisdom, and knowledge of the Holy One is understanding.'
(Proverbs 9:10)

Dinand Roeland
Stockholm, June 2000

Acknowledgements iii

Scheduling in Multi-X — a performance evaluation

Table of contents

Abstract ii

Acknowledgements iii

Table of contents iv

List of figures v

List of tables vii

1 Introduction 8

2 Background 10
2.1 Problem context 10
2.2 Multi-X as a proposed solution 10

2.3 Overview of the Multi-X prototype 10
2.4 Related work 12

2.5 Thesis project specification 13

3 Exploring scheduling 15
3.1 Definition of scheduling 15
3.2 Learning from other projects 16

3.2.1 Similar projects at Ericsson 16
3.2.2 Instruction-level parallelism 16
3.2.3 Task-level parallelism 17
3.2.4 Online transaction processing 17

3.3 Position of scheduling in the Multi-X prototype 18
3.4 Different ways of scheduling for Multi-X 20

4 Measuring scheduling performance 22
4.1 How to measure performance parameters 22
4.2 Finding the right traffic data 23

4.2.1 What traffic data is needed 23
4.2.2 Where to find traffic data 24
4.2.3 Verifying traffic data 24
4.2.4 Statistics on used traffic data 25

4.3 Modelling the prototype 27
4.4 Calculating optimal scheduling 29

5 Simulation results 34)

5.1 Optimal scheduling 30
5.2 First-come-first-serve scheduling 31
5.3 Function-based scheduling 34
5.4 Source-based scheduling 42

6 Conclusions 47
6.1 Evaluation of design decisions 47
6.2 Results from measurements 47
6.3 General conclusions, discussion and future topics 48

References

Appendix A Collision detection algorithms

Appendix B Algorithms and proof for optimal scheduling

Appendix C Data on simulation results ..

Table of contents iv

Scheduling in Multi-X — a performance evaluation

List of figures

Figure 1 Relationship between transactions, tasks, functions and messages I 1

Figure 2 Architecture of the Multi-X prototype 11

Figure 3 Casavant's taxonomy of task scheduling in distributed computing systems 15

Figure 4 Classes of data dependencies 16

Figure 5 Two transactions running in parallel 18

Figure 6 Relation of scheduling to other parameters in the Multi-X prototype 19

Figure 7 Data flow in the pre-processing of simulator input data 24

Figure 8 Distribution transaction size (in number of tasks) 26

Figure 9 Distribution of task size (in number of instructions) 27

Figure 10 Distribution followers per task (in number of tasks) 27

Figure 11 Waiting time in optimal scheduling 29

Figure 12 Speedup for optimal scheduling with Tikekars algorithm 30

Figure 13 Comparison first-come-first-serve scheduling for both data collision detection algorithms 31

Figure 14 Distribution of time for Hjalmarson's algorithm (left) and Tikekar's algorithm (right) 32

Figure 15 Rollback frequency (left) and wasted time (right) for both data collision detection algorithms 32

Figure 16 Speedup as a function of speculation depth 33

Figure 17 Idle time as a function of speculation depth 34

Figure 18 Distribution of number of functions per task 35

Figure 19 Distribution of number of unique functions per task 35

Figure 20 Comparison of scheduling for Tikekar's algorithm with a speculation depth of 12 tasks 36

Figure 21 Comparison idle time Tikekar's algorithm with a speculation depth of 12 tasks 36

Figure 22 Collision frequency for functions in recording 37

Figure 23 Speedup as a function of allowed collision frequency 38

Figure 24 Rollback frequency (left) and idle time (right) as a function of allowed collision frequency 39

Figure 25 Distribution of the 25 mostly used functions 39

Figure 26 Relative collision frequency for functions in recording 40

Figure 27 Speedup as a function of allowed relative collision frequency 40

Figure 28 Rollback frequency (left) and idle time (right) as a function of relative collision frequency 41

Figure 29 Function-based scheduling with limited prediction 41

Figure 30 Speedup as a function of allowed relative collision frequency with no prediction 42

Figure 31 Distribution of external signals from remote processors 43

Figure 32 Speedup for source-based scheduling 44

Figure 33 Load balancing for source-based scheduling compared to first-come-first-serve for 4 processors 44

Figure 34 Idle time for source-based scheduling compared to first-come-first-serve scheduling 45

Figure 35 Wasted time for source-based scheduling compared to first-come-first-serve scheduling 46

Figure 36 Marker field for Hjalmarson's algorithm 54

Figure 37 Marker field for Tikekar's algorithm 55

List of figures v

Scheduling in Multi-X — a performance evaluation

Figure 38 Tikekar's data collision detection algorithm 55

Figure 39 Hjalmarson's data collision detection algorithm 56

Figure 40 Speedup in time for optimal scheduling with Hjalmarson's algorithm 62

Figure 41 Speedup in time for optimal scheduling with Tikekar's algorithm, speculation depth 12 62

Figure 42 Speedup in time for first-come-first-serve scheduling, Hjalmarson's algorithm, 4 processors 63

Figure 43 Speedup in time for first-come-first-serve scheduling, Tikekar's algorithm, speculation depth
12, 4 processors 63

Figure 44 Task, ordered at position in input data, in number of cycles 64

List of figures vi

Scheduling in Multi-X — a performance evaluation

List of tables

Table I Features of architectures using speculative execution 13

Table 2 Some statistics on the pre-processed data 26

Table 3 Some statistics on data collisions 37

Table 4 Some statistics on operating system transactions 43

Table 5 Data collision detection algorithm at writing 54

Table 6 Data collision detection algorithm at reading 54

Table 7 Action table for writing 55

Table 8 Action table for reading 55

Table 9 Results first-come-first-serve scheduling with Hjalmarsons algorithm 64

Table 10 Results first-come-first-serve scheduling with Tikekar's algorithm at a speculation depth of 12 64

Table 11 Results first-come-first-serve scheduling with Tikekar's algorithm at a speculation depth of 28 64

Table 12 Results first-come-first-serve scheduling with Tikekar's algorithm at a speculation depth of 44 65

Table 13 Results first-come-first-serve scheduling with Tikekar's algorithm at a speculation depth of 60 65

Table 14 Results first-come-first-serve scheduling with Tikekar's algorithm at a speculation depth of 76 65

Table 15 Results function-based scheduling with Tikekar's algorithm, speculation depth 12, perfect
prediction 65

Table 16 Results function-based scheduling with collision frequency, Tikekar's algorithm, speculation
depth 12, perfect prediction 66

Table 17 Results function-based scheduling with relative collision frequency, Tikekar's algorithm,
speculation depth 12, perfect prediction 66

Table 18 Results function-based scheduling with Tikekar's algorithm, speculation depth 12, perfect
prediction, 3 ahead 66

Table 19 Results function-based scheduling with Tikekar's algorithm, speculation depth 12, perfect
prediction, 2 ahead 67

Table 20 Results function-based scheduling with Tikekar's algorithm, speculation depth 12, perfect
prediction, I ahead 67

Table 21 Results function-based scheduling with relative collision frequency, Tikekar's algorithm,
speculation depth 12, perfect prediction 1 function ahead 67

Table 22 Results source-based scheduling with Tikekar's algorithm, speculation depth 12 67

Table 23 Results source-based scheduling with Tikekar's algorithm, speculation depth 12, improved load
balancing 68

Table 24 Results source-based scheduling with Tikekar's algorithm, speculation depth 28 68

List of tables vii

Scheduling in Multi-X — a performance evaluation

1 Introduction

This thesis is on speeding up sequential programs by parallelising them. Probably ever since the introduction of
the Von Neumann architecture, people have been trying to overcome the strictly sequential execution imposed
by this architecture. In 1967, Amdahl [2] argued not to have too high expectations on parallelising sequential
programs by introducing a very straightforward paradigm. If N is the number of processors, s is the amount of
time spent (by a serial processor) on serial parts of a program and p is the amount of time spent (by a serial
processor) on parts of the program that can be done in parallel, then the potential speedup is given by Equation 1.

s+p I
Speedup = =

s+-- s+--.
N N

Equation 1 Amdahl's law

Even when using an infinite amount of processors, the maximal speedup is bound to s'. Although criticised later
[21], Amdahl's law does point out that truly big gains in parallel programming can only be achieved by reducing
serial bottlenecks.

The question remains how to exploit parallelism from a sequential program. The easiest way, from a
computational point of view, is to push the burden on the programmer and force him to (re-)state the problem in
a parallel program. This is called explicit parallelism. Another way is to use paradigms such as functional or
logic programming where a compiler can readily generate parallel code [40]. This thesis considers inherent
parallelism or implicit parallelism, that is, parallelism from conventional imperative programs, which have not
been explicitly modified to extract parallelism. The drive for inherent parallelism comes from a number of
directions. Firstly, the great majority of the world's code is written in imperative languages and it seems almost
inconceivable that it could all be rewritten to explicitly take advantage of parallelism. Secondly, it is now
difficult to take advantage of and keep busy the number of transistors available on modern CPU chips without
making some use of parallelism. Thirdly, at some point in the next decade or two Moore's law will fail and the
steady exponential increase in performance of silicon based computers will cease. Parallelism will then be
needed to maintain performance increases [8].

Extracting inherent parallelism can be done at compiler-time, at run-time or both. Run-time techniques include
out-of-order execution, register renaming, alias renaming, branch prediction and multiple-path execution. The
processor can look ahead during execution and execute instruction out-of-order and in parallel, provided no
logical inconsistencies arise as a result of doing so. With register renaming, the processor removes storage
conflicts by providing additional registers to re-establish the correspondence between registers and values. The
additional registers are allocated dynamically by hardware, and the registers are associated with the values
needed by the program. Alias analysis is like register renaming, but for memory locations. Branches impede the
ability of the processor to fetch instructions because they make instruction-fetching dependent on the result of
instruction execution. When the outcome of a branch is not known, the instruction fetcher is stalled, reducing the
chances that the processor can find instructions to execute in parallel. To overcome this problem, the outcome of
a branch can be predicted. Branch prediction [58] can be done dynamically by hardware or statically by
annotating the program with prediction information during compile-time. Until the true outcome of the branch is
known, instructions on the predicted path can be executed speculatively. When using speculative execution,
these instructions have to be undone (by performing a rollback) if the assumption was incorrect. Another way to
avoid the impediments of branches is to have the processor pursue both paths at a branch. This technique is
called multiple-path execution; the processor can simply discard the results of the incorrect path. Since branches
happen quite often in normal code, we may encounter another branch before we have resolved the previous one.
In order not to use up all machine resources, multiple-path execution and branch prediction can co-operate to
achieve good results. Extracting inherent parallelism at compiler-time is based on a static analysis of the code to
execute. Using this analysis, the instructions can be (re-) scheduled. Here, scheduling can be defined as the
process of arranging the order of instructions in object code so that they are executed by hardware in an optimum
order. A common scheduling technique is loop unrolling. When a loop is unrolled, the instructions for two or
more loop iterations are written explicitly. This gives the processor a larger scope to look ahead and execute
instructions in parallel. Techniques to extract inherent parallelism at a fine-grained instruction-level are also
known under the common name of instruction-level parallelism [31, 70, 71]. Most of the techniques mentioned
here were discussed in the classic article "Look-Ahead Processors" by Keller in 1975 [34].

Introduction 8

Scheduling in Multi-X — a performance evaluation

In the beginning of the 1990s, several studies [37, 70] proved the limitations of instruction-level parallelism.
Using only fine-grained techniques, the speedup tends to be limited to a factor of approximately ten. The reason
for this is that instruction-level parallelism relies heavily on good branch prediction algorithms. Even if
prediction algorithms have a 90% accuracy [31, 491, this will only leave 60% after five speculative branches. In
typical programs one in seven instructions is a branch [25], which does not leave much scope for extracting
parallelism. Because of this limitation and the ever-growing amount of transistors on processor chips, a trend can
now be observed to not only exploit parallelism at a fine-grained level, but also at a coarse-grained level [10,61,
63]. This is called task-level parallelism or thread-level parallelism.

Several architectures for extracting task-level parallelism have been proposed, including MultiscalarProcessors
of the University of Wisconsin-Madison [59], the Superthreaded Processor Architecture [67], the WarpEngine
of the University of Waikato [9], Stanford's Hydra [48], MIT's M-Machine [20] and the Simultaneous
Muliithreading architecture [69]. It is here where Ericsson's Muhi-X prototype comes in. This thesis is a part of
the Multi-X project. The next chapter describes the background of the Multi-X project and specifies the focus of
this thesis project.

Introduction 9

Scheduling in Multi-X — a performance evaluation

2 Background

Ericsson Utvecklings AB is the research and development centre for Ericsson's Network Core Products. One of
the products of Ericsson Utvecklings is the AXE telephone switching system. AXE is the world's most deployed
communication architecture with 130 million lines in service in some 125 countries. This thesis project has been
done at the System Processors department, that is responsible for the research and development of AXE's central
processor system called APZ CP. The latest version available on the market is the APZ 212 30 [28].

This chapter describes the context of this thesis project. The first section outlines the capacity problem Ericsson
faces today. The next section introduces Multi-X as one of the solutions to this problem. Section three gives a
general overview of the Multi-X prototype and the succeeding section describes related prototypes. The last
section of this chapter specifies the goal for this thesis project.

2.1 Problem context

Due to new services like GSM, ISDN and Internet, the need for capacity in the APZ CP is increasing at a
previously unexpected rate. To keep up with competition, APZ's capacity needs to doubled every three years. In
order to cope with this problem, a number of projects have been started. One of these is the Gemini project. Until
now, Ericsson itself designs all hardware (ASICs). The Gemini project proposes an architecture based on
commercially available components. This way, a number of design problems can be pushed onto external
suppliers like Compaq, SUN or Intel. It will also give Ericsson designers more flexibility when designing new
versions of the APZ CP. An enormous amount of software has been written for earlier versions of the APZ CP.
Therefore, Gemini's new architecture is backward compatible. No modifications in existing code are allowed. A
virtual machine is used to fit existing code into the new architecture. Both the latest version of the APZ CP and
the proposed architecture by Gemini are single processor architectures executing code sequentially, but
exploiting instruction-level parallelism internally.

2.2 Multi-X as a proposed solution

It has been proved that there is a significant amount of task-level parallelism to be exploited in APZ CP code,
which might lead to an increase in performance (conform Amdahl's law) [62, 72]. The proposed method to
exploit this parallelism is task-level speculative execution. Within the Multi-X (Multiple Executor) project,
methods of utilising execution on parallel processors are investigated. More specifically, Multi-X has been
started in order to evaluate and demonstrate techniques based on task-level speculative execution and resource
locking [51, 52]. Multi-X will be based on the (expected) results of Gemini. This way, the performance of
unmodified APZ CP code will increase while using commercially available hardware components. Like
speculative execution on an instruction level, speculative execution on a task-level will be limited by the intrinsic
features of the existing code that has been written with a single sequential processor in mind [72]. Therefore, the
Multi-X project has to be seen as a first step in the architectural evolution from a single processor and sequential
programs towards multiple processors and explicitly parallelised programs [65]. The Multi-X project is carried
out in co-operation with Chalmers University of Gothenburg [6].

Two projects within Ericsson that have involved parallel processing are CMC and Tor. The former resulted in an
architecture for which existing software had to be modified. The costs for implementation would have been too
high. Trying to overcome these problems, a number of projects have been started. One of them is Multi-X. The
latter has even investigated speculative execution but was cancelled because of a strategic change to build a
future architecture on commercially available components.

2.3 Overview of the Multi-X prototype

The APZ CP can be seen as an online transaction processing system. The structure of an APZ CP transaction is
visualised in Figure 1. Transactions can be divided into one or more uninterrupted sequences of program
functions. Such a sequence will be called transaction task or simply task. A function is an uninterrupted
sequence of instructions, as in imperative programming languages. Transactions are started by an external
message. These messages originate from one of the remote processors (RP), which handle events (e.g. the
starting of a phone call). A task is initiated by a message and the executions of a task might give rise to one or
more internal messages. We define the tasks started by these messages to be the followers of the initiating task.
A message includes the address of the first function to be executed and data parameters [16, 17].

Background 10

transaction

Scheduling in Multi-X — a performance evaluation

external internal
messagenI messageBCDEBJ

functions asks

time

Figure 1 Relationship between transactions, tasks, functions and messages

Figure 2 gives an overview of the Multi-X architecture. A traffic generator simulates external events. The
signalling processor unit (SPU) administers all messages, both external and internal, in afirs:-in-first-out (FIFO)
message queue. Tasks are executed by assigning a message to an instruction processor unit (IPU). IPUs exploit
instruction-level parallelism. Main memory is shared, while every IPU has its own cache. Except for the number
of IPUs, the Multi-X prototype resembles the architecture of the existing APZ CP. This way, the restriction not
to change existing code can be met more easily. The prototype is implemented on a Sun Enterprise Fileserver
with four processors; three of these are used as an IPU.

TCP/IP

Figure 2 Architecture of the Multi-X prototype

In the proposed Gemini architecture (and therefore also in the Multi-X architecture), functions are written in the
PLEX-C language, which is specifically designed for telecommunication exchanges. PLEX-C code is compiled
into ASA assembly code for the APZ CP. ASA code is interpreted' by a virtual machine (AXE VM) in order to
run existing code on a new architecture based on commercially available components [18, 28, 51].

In the initial phase of the Multi-X prototype, resource locking without speculative execution was investigated.
This proved not to increase performance [72, 73], and speculative execution was included in the Multi-X
prototype. The next task is simply assigned to an idle IPU, assuming no data collisions will occur. This is called
data speculation and implies the execution of an instruction before the execution of a preceding instruction on
which it may be or is data dependent. Control speculation, e.g. branch prediction, implies the execution of an
instruction before the execution of a preceding instruction on which it is control dependent [41]. To date, the
Multi-X prototype only supports data speculation. Speculation is done blindly; no predictions are made whether

'For optimisation reasons, most code will eventually be (JIT-) compiled. However, conceptually, ASA code is still
interpreted.

Background 11

— 'PU

'PU

Sun Einerpcise Server

Scheduling in Multi-X — a performance evaluation

speculations will be successful or not. When inserted in the FIFO, every task receives a task number2. All
common data areas have a marker field, containing the numbers of the tasks that have lastly read or written the
data area. Common variables are global only within one function, conform static variables in C. To access
variables in another function, internal messages have to be used (conform methods in C++). In ASA code, there
are basically three types of common variables: I) single variables, e.g. an integer; 2) single arrays, a collection of
elements of one single variable; 3) arrayed structure, where a structure is a set of single variables and single
arrays. In the Multi-X prototype, every element of an arrayed structure has one marker field and every single
variable and single array have one marker field. By comparing the marker field with the number of the executing
task on every read or write, data collisions can be detected. On collision, one or more tasks are rolled back.
When completed, a task is ready to be commined, i.e. all modifications made by this task to common variables
are made permanent. By allowing only the oldest task to be committed, the original sequential execution order is
preserved (in-order commit). Messages originating from a task are not inserted in the FIFO until the task has
been committed. At any time, every processor executes at most one task and no other task is started on a
processor until the executing task is ready for commit or is rolled back [26, 561.

Performing commits and rollbacks might be implemented in different ways [27]. One way is to carry Out data
modifications directly in the actual memory location after having copied the original contents to a temporary
area. Another way is to copy data from the actual memory into a separate memory to read from and write to. The
first way is called the original method and will result in relatively fast commits but slow rollbacks. The second
way is called the temporary method and will result in slow commits but fast rollbacks. At this moment, Multi-X
uses the original method.

Two collision detection algorithms have been proposed. The first was proposed by Hjalmarson [26] and allows
only one speculatively executed read or write per common data area at any time. If more are requested, the
youngest task waits. If data collision is detected, a rollback on the colliding task(s) and all younger tasks is
performed. The marker fields contain one field for the number of the task that has lastly written the data area and
one field for the number of the task that has lastly read the data area. These fields are reset at initialisation and at
rollback or commit of the task assigned to that field. The total number of uncommitted tasks is virtually
unlimited. Tikekar designed the second algorithm at a later stage. This algorithm is more aggressive (i.e. avoids
waiting) by allowing more than one speculatively executed read or write per common data area at any time. The
speculation depth defines the maximum number of speculatively executed data accesses. At any time, the
number of uncommitted tasks does not exceed the speculation depth. This way, the size of the marker fields is
linear with the speculation depth. Moreover, the algorithm prevents unnecessary rollbacks. Both algorithm are
often referred to throughout this report and have been included in "Appendix A Collision detection algorithms".

2.4 Related work

As mentioned in the previous chapter, several other projects attempt to exploit both instruction-level parallelism
and task-level parallelism. All architectures mentioned here are, like the Multi-X prototype, multiprocessor
systems with a shared memory. The M-Machine [20, 33] and the Simultaneous Multi:hreading architecture [69]
exploit instruction-level parallelism by statically scheduling independent instructions to be executed
simultaneously on independent functional units of a processor. Task-level parallelism is exploited by
dynamically interleaving the instruction streams of several processors in order to utilise unused functional units.
These architectures rely heavily on hardware synchronisation mechanisms and compile-time program
transformations. Neither architecture uses some form of speculative execution.

In the Multiscalar Processors approach [29,41, 59], a sequential program is statically represented as a control
flow graph. The nodes are basic blocks (tasks) and arcs from one node to another represent the flow of control. A
sequencer speculates which task will be executed next and assigns this task to the next free processing unit. On
mis-speculation, a rollback will be performed on that task and all its successors. To facilitate sequential
semantics, tasks commit in the same order as they are assigned to processing units. Within a task, data values
might be speculated and a unidirectional ring between the processing units is used to forward computed data
values from the oldest to the youngest task. The Superthreaded Processor Architecture [67] is similar to the
Multiscalar architecture, but does not include data speculation. As a result, less memory resources are needed for
administration. The WarpEngine [8, 9] organises up to 16 instructions into one task. Speculative execution on

2 In the current implementation of the Multi-X prototype, a task is not assigned a number until its message is extracted from
the FIFO. Since only the oldest message is extracted at any time, this is conceptually the same as assigning a number when
inserting a message.

Background i 2

Scheduling in Multi-X — a performance evaluation

control or data selects complete tasks for execution. Each task is dynamically allocated a time stamp when it is
scheduled for execution. This time stamp is used for all read and write requests issued from within the task. The
time stamps impose a single linear temporal order relating all the reads and writes. The way this is done is to
associate with each block an interval of time and to allow it to schedule a number of child tasks. The intervals of
the children are disjoint and contained within the parent interval. All the time intervals form a tree and a
sequential execution of a program will consist of a pre-order traversal of this tree. Rollback of instructions is
initiated when the memory returns a revised value from a read. Only instructions (and children) dependent on the
revised value have to be rolled back and re-executed. Hydra [24, 47, 48] is targeted for multiple threads,
originated from multiple programs or a single compiler-annotated program. Hydra is influenced by the
Multiscalar approach, but focuses on the parallelisation of loop iterations. Speculation is mainly on data, using
data forwarding techniques like Multiscalar. Control speculation is minimised by placing a larger demand on the
compiler to divide programs in tasks and by introducing some run-time software control. Table 1 summarises a
number of features of the architectures mentioned.

1pUm pxn LlfffrflTnt UtIII!N. L' rn mi
Muluscalar single sequential

program
control and
data

compile-dine
transformations,
run-time hardware

n-order task and all its
successors

next task to next
free processing
unit

Superthreaded single sequential
program

control compile-time
transformations,
run-time hardware

in-order task and all its
successors

next task to next
free processing
unit

WarpEngine single sequential
program

control and
data

run-time hardware,
compile-time
transformations
suggested as
optimisation

in-order, out-
of-order
suggested as
optimisation

partial rollback
only irismictions
directly affected

heuristics using
time stamp

Hydra multiple threads data compile-time
transformations,
run-time hardware,
run-time software

in-order per task round-robin in
loop iteration

Mulli-X online
transactions

data mn-time software in-order task and all
newer tasks

next task to next
free processing
unit

Table I Features of architectures using speculative execution

Compared to architectures using speculation, Multi-X is unique in a number of ways. Firstly, the Multi-X
prototype is targeted specifically for online transaction processing, not for sequential or multi-threaded
programs. The dynamic behaviour of online transactions makes static analysis difficult. Secondly, the Multi-X
prototype as proposed so far is a run-time software-only approach. The restriction on using only commercially
available component implies no hardware support for speculative execution. The restriction on unmodified code
implies no compile-time support.

The Hydra approach resembles the Multi-X prototype best. This architecture is able to speedup online
transaction processing by a factor three compared to a single processor [23]. Unfortunately, Hydra research
focuses on loop constructs, which are rare in APZ CP code. However, the techniques used are also applicable to
exploit method-level parallelism. In method speculation, sequential method invocations in object-oriented
programs are mapped onto speculative tasks that are executed in parallel with the in-order thread. This does
resemble Multi-X task invocation by messages more accurately. An empirical study proves method speculation
to be able to speedup Java programs by a factor of approximately two [7].

A number of products have emerged from the research architectures mentioned above. One is a new compile-
time loop parallelisation technique for Java programs [32]. Two processors exploiting task-level parallelism by
speculation are Sun's MAJC architecture [64] and NEC's MP98 [43]. A feasibility study on the use of these
processors is conducted in the Multi-X project.

2.5 Thesis project specification

The Multi-X prototype might be optimised in a number of ways. One optimisation proposed to analyse the
functions' code statically and extract parts that certainly can be executed in parallel. This approach alone,
however, proved no substantial performance gains [12].

Another way to optimise the performance of the Multi-X prototype is to modify existing parameters; e.g. the
collision detection algorithm, the granularity of tasks, the granularity of the marker area, the cache coherence

Background 13

Scheduling in Multi-X — a performance evaluation

protocol or the task scheduling. It is unknown to what extent these parameters influence the overall performance
and how they are co-related. The task numbering needed for the proposed collision detection algorithms impose
a too strict order on the tasks. Allowing tasks to be committed out-of-order might also give some performance
gains. Rollback and commit is done per task, but the task granularity might also be defined as a single function
or a complete transaction (see Figure 1). Collision detection is based on marker areas, which are now defined as
single variables, single array or an element of an arrayed structure. Other granularities are possible; e.g. a
number of related variables. Caches are known to influence performance substantially, and different cache
coherence protocols might influence the overall performance of the Multi-X prototype. This is investigated in a
master thesis project [531 carried out in parallel with this master thesis project.

This thesis will focus on the consequences of different task distribution principles, also called task scheduling. A
preliminary survey has been done, resulting in six straightforward distribution principles [30]. The goal of this
thesis is to gain a more profound understanding of how scheduling influences the overall performance of the
Multi-X prototype; i.e.: how does scheduling relate to other parameters in the Multi-X prototype and what is its
importance?; how can tasks be scheduled?; what performance can we expect from different ways of scheduling?
In the next chapters, concepts will be defined more clearly and the questions mentioned above will, at least
partly, be answered.

The next chapter explores scheduling, starting with definitions and a summary of scheduling in other projects.
The last two sections focus on scheduling in Multi-X and define a number of scheduling algorithms to
investigate. Chapter 4, "Measuring scheduling performance" defines how the performance of the proposed
scheduling algorithms will be measured. The succeeding chapter presents measurement results and this report
ends with conclusions in chapter 6.

Background 14

Scheduling in Multi-X — a performance evaluation

3 Exploring scheduling

In this chapter, scheduling as a whole is explored, starting with general definitions and ending with Multi-X
specific proposals. The first section gives a theoretical framework on scheduling. The second section explores
scheduling solutions proposed by related projects. Section three defines the position of scheduling in Multi-X, in
order to propose a number of relevant scheduling methods in the last section.

3.1 Definition of scheduling

If a task is generally defined as an uninterrupted sequence of program functions or instructions, then scheduling
can be defined as :he process of deciding what task to execute where and when '. Scheduling decisions are
made on (dynamic) properties of the objects to be executed or on (dynamic) properties of the environment in
which the objects are executing. The goal of scheduling is to improve performance (e.g. the total execution time)
by minimising one or more costs (e.g. the number of cache misses in cache-affinity scheduling [68] or the
number of missed deadlines in real-time environments [1]).

A large number of scientific papers have been written on scheduling, a lot of them introducing a new way of
scheduling to minimise some specific cost for some specific environment. Casavant [5] proposes a taxonomy of
scheduling in distributed computing systems. Figure 3 is an abstract of this taxonomy.

task scheduling

local global

static dynamic

centralised distributed

Figure 3 Casavant's taxonomy of task scheduling in distributed computing systems

Local scheduling is involved with the assignment of processes to the time-slices ofa single-processor system.
Global scheduling is the problem of deciding where to execute a process, and the job of local scheduling is left
to the operating system. Given perfect information at compile-time about the execution time and the memory
referencing behaviour of the individual tasks, a static scheduling strategy can pre-compute an optimal schedule.
Since all scheduling decisions are made at compile-time, there is no run-time overhead associated with static
scheduling. In many applications, however, the necessary information is not available at compile time, which
may lead to sub-optimal performance. To compensate for this lack of a priori information, dynamic scheduling
postpones the assignment of tasks to processors until the program is executing. Scheduling decisions are then
adjusted to match the dynamically changing conditions encountered at run-time. Centralised and distributed
dynamic scheduling strategies have been proposed. Typically, the distributed strategies spread the scheduling
operation over the processors so that idle processors assign work to themselves from a central or distributed
queue of available tasks. The centralised strategies consider storing global information at a centralised location
and use this information to make more comprehensive scheduling decisions. To do this, they use one or more
dedicated processor's computing and storage resources. A major issue to take into account in designing
distributed or centralised dynamic scheduling algorithms is the overhead associated with executing such
algorithms. In many of the existing techniques, the time required to perform this scheduling adds directly to the
total program execution time [221.

Note that scheduling is not restricted to one level. Within a task, instructions might be (re-) scheduled. See also the
definition of scheduling in chapter 1, "Introduction".

Exploring scheduling 15

Scheduling in Multi-X — a performance evaluation

3.2 Learning from other projects

Before going deeper into scheduling targeted specifically for Multi-X, it is interesting to see what other projects
have achieved on this topic. In order to relate as much as possible to the Multi-X prototype, four areas have been
investigated: I) scheduling in similar projects at Ericsson; 2) scheduling in instruction-level parallelism; 3)
scheduling in task-level parallelism; 4) scheduling in online transaction processing.

3.2.1 Similar projects at Ericsson
The only project conducted at Ericsson similar to Multi-X is the Tor project [50]. This project had the same
premises as Multi-X, but was a hardware-only approach. The Tor project did not provide any new ideas on
scheduling. The scheduling algorithm used was the same as the initial scheduling algorithm in the Multi-X
prototype; the next task in the queue is simply sent to an idle IPU. No other ways of scheduling have been
investigated.

3.2.2 Instruction-level parallelism
Scheduling for instruction-level parallelism [25, 31, 42,70, 71] deals with distributing a single instruction stream
among the processor's functional units and reordering instructions. Scheduling is constrained by data and control
dependencies. Data dependencies can be divided into four groups. For true data dependencies, the result of the
first instruction is an operand of the second. These are also called read after write (R4 W) dependencies. The
second group is anti-dependencies, where the first instruction uses the old value in some location and the second
sets that location to a new value. These dependencies are also called write after read (WAR). Instructions have
an output dependency or a write after write (WA W) dependency, if both instructions assign a value to the same
location. The last group of dependencies is read after read (RAR) dependencies, where two instructions read
from the same location. WAR, WAW and RAR dependencies are false data dependencies and can be resolved
using register renaming and alias analysis (see also chapter 1, "Introduction"). There is a control dependency
between a branch and an instruction whose execution is conditional on it. Branch predictors can partially resolve
control dependencies.

r1:=f(r3) r2:=f(r1) r1:=f(r2) r2:=f(r1)...
r2:=f(r1) r3 :=f(i) r1 :=f(r3) r1 :=f(r2)

RAW dependency RAR dependency WAW dependency WAR dependency

Figure 4 Classes of data dependencies

At compile-time, a sequential program can be divided into basic blocks. A basic block is a code sequence that
does not contain a branch or a branch target, except at the beginning or at the end. Scheduling such code
sequences is easy, since we know that every instruction in the block is executed if the first one is. We can simply
make a graph of the dependencies among the instructions and order the instructions so as to minimise the stalls.
The critical path of such a graph is that path with the minimum execution time of the entire sequence — no

amount of instruction concurrency can make the execution time shorter. The critical path places a lower bound
on the execution time and identifies the operations that determine this execution time. The optimal scheduling
can be calculated, but this is often time-consuming. Mostly, a near optimum is calculated using heuristics.
Examples of such scheduling algorithms are list scheduling and branch-and-bound scheduling. List scheduling
encompasses a class of algorithms that schedule operations one at a time from a list of operations to be
scheduled, using prioritisation to resolve contention for execution units. Branch-and-bound scheduling [45]
considers all possible instruction orderings and selects the optimum ordering. Heuristics are used to limit the size
of the search tree.

Though scheduling basic blocks causes the execution time of each basic block to be nearly optimal, this does not
necessarily cause the execution time of the overall program to be nearly optimal, because the processor hesitates
at each branch. The ability to look across basic-block boundaries gives the scheduler more flexibility to create a
good schedule. Also, the scheduler knows about critical paths that span several basic blocks. Examples of these
scheduling algorithms are trace scheduling, loop unrolling and software pipelining. A trace is a possible path
through a section of code, spanning more than one basic block. The sequence of instructions in the trace is
determined by assuming a particular outcome for every branch in the sequence. The effectiveness on trace
scheduling depends on software knowing the likely execution trace. With trace scheduling, the execution time of
likely traces is reduced at the expense of unlikely ones. Compensation code is inserted to recover from incorrect
predictions. With loop unrolling, the instructions for two or more loop iterations are written explicitly. The result
is a larger loop that executes half as many times. Unrolling exposes more instructions per loop iteration to the

Exploring scheduling 16

Scheduling in Multi-X — a performance evaluation

scheduler. Software pipetining is also targeted for loop iterations and might be used in combination with loop
unrolling. Basically, if the processor has n execution units, iteration i is executed sequentially on execution unit i
modulo n. So the first iteration is execution on the first execution unit. After a certain time interval, the second
iteration is executed simultaneously at the second execution unit. The length of the time interval is determined
by the dependencies of the variables in the iteration's basic block.

Just the main scheduling algorithms for instruction-level parallelism have been mentioned here. All algorithms
can be implemented for both static scheduling (during compilation, or at least before execution) and dynamic
scheduling (at run-time), although some are more appropriate for static scheduling. We have made a difference
between scheduling only within one basic block and scheduling beyond basic block boundaries. In reality, this
distinction is not that clear; e.g. branch scheduling where a scheduler simply tries to fill stall cycles after a
branch with useful instructions. The techniques mentioned might also be combined, e.g. [381. When applying
scheduling techniques for instruction-level parallelism to Multi-X, a number of observations can be made.
Firstly, the APZ CP is a transaction processing system. This means little static information is available, unlike
static scheduling techniques for instruction-level parallelism. A solution for this is to statically calculate all
possible traces for every external signal and to base scheduling decisions on this information. As mentioned in
the previous chapter, this approach has already been investigated and proved no substantial performance gains
[12]. Secondly, within every function (see "Figure 1 Relationship between transactions, tasks, functions and
messages"), basic blocks can be identified and a near-optimal scheduling can be calculated statically. This
approach is seen as an optimisation that is beyond the scope of this thesis project. This thesis will focuson
higher-level (task-level) scheduling. This is, for the time being, assumed independent of lower-level (basic
block-level or instruction level) scheduling. Lastly, some scheduling techniques for instruction-level parallelism
are loop transformations. As mentioned, in APZ CP code, loops are rare. This excludes techniques like loop
unrolling and software pipelining. In section 3.4, "Different ways of scheduling for Multi-X", some of the ideas
from scheduling for instruction-level parallelism will be used for scheduling within Multi-X.

3.2.3 Task-level parallelism
Section 2.4, "Related work", shows the results of a literature survey on scheduling in task-level parallelism.
Table 1 shows the different ways of scheduling in the different architectures. Since loop constructions are rare in
APZ CP code, round robin scheduling as in Hydra cannot be used here. The WarpEngine proposed scheduling
based on time-stamp heuristics, but this is not elaborated. The other prototypes implement scheduling as is done
now in the Multi-X prototype. From this literature survey, it becomes clear that this thesis project is the first in
its kind to investigate the consequences of scheduling in task-level parallelism!

3.2.4 Online transaction processing
Until now, the focus of this section has been on scheduling seen from a speculative execution viewpoint. We
might, however, see the APZ CP as an online transaction processing (OLTP) database system and see how close
this resembles the Multi-X prototype. From this, we might find some ideas for scheduling in Multi-X.

In traditional transaction processing systems [4], transactions have four critical properties known under the
acronym ACID (Atomic, Consistent, Isolated, Durable). A database state transition is atomic if it executes
completely or not at all (commit versus rollback). A transaction is consistent if it preserves the internal
consistency of the database. Isolation means that a program running transactions in a multi-user environment
must behave exactly as it would in a single-user mode. This topic is also called concurrency control (the
problem), serialisability (the underlying theory) or locking (the technique). Durability requires that the results of
transactions having completed successfully must not be forgotten by the system; from its perspective, they have
become part of reality. The transaction processing system guarantees atomicity, isolation and durability.
Consistency is a responsibility shared between transaction programs (the user) and the transaction processing
system.

Two-phase locking mostly attains the isolation property. It says that a transaction must get all of its locks before
releasing any of them. The two-phase locking theorem states that if all transactionsare two-phased locked, then
the execution is serialisable. This implies a basic difference with the Multi-X prototype. Let us take Figure 5 as
an example where two transactions share a variable x. Let us assume (for this example) that every transaction in
Multi-X consists of only one task.

Exploring scheduling 17

Scheduling in Multi-X — a performance evaluation

start read(x) wnte(x) end

transaction I •
start read(x) write(x) end

transaction 2 I I
time

Figure 5 Two transactions running in parallel

In traditional transaction processing system with two-phase locking, no collision will occur and transaction 2
will commit before transaction I. In Multi-X, the transaction number (i.e. the transaction start time) dictates the
commit order. Since the prototype prescribes in-order commit, transaction 2 will not commit until transaction I
has committed. Locked data areas are not released until commit, which causes a data collision at the reading of x
in transaction 1. Running transactions on a transaction processing system with two-phase locking results in some
serial execution order of those transactions. It is this basic property that contradicts the Multi-X prototype, where
transactions run in the serial execution order, dictated by the transaction number. The reason for in-order commit
is the requirement for an exact similar behaviour to the serial execution on today's single-processor system. With
in-order commit, this can be proved and implemented fairly easy. The Multi-X prototype might later be extended

as to relax the strict commit ordering, but for now this is beyond the scope of this thesis project.

Because of this difference, scheduling techniques for online transaction processing have not been investigated
more thoroughly. Two related fields of research where the ACID properties are relaxed or the transaction
structure is more advanced are workflow management [13, 39] and real-time databases [1, 3, 35].

A workflow consists of many steps, where each step executes as a (traditional) transaction. Workflow
management proved to focus mainly on long-lived computations resembling business processes. Often,
workflow transaction models even allow human intervention. This does not correspond with the high-speed, near
real-time transaction processing of the Multi-X prototype. Scheduling with time constraints in workflow
management is still a relatively unexplored field of research [14]. No relevant scheduling algorithms have been
found in workflow literature.

Like a traditional database system, a real-time database system must process transactions and guarantee that the
database consistency is not violated. However, conventional database systems do not emphasise the notion of
time constraints or deadlines for transactions. The performance goal of a system is usually expressed in terms of
desired average response times rather than constraints for individual transactions. Thus, when the system makes
scheduling decisions (e.g., which transaction gets a lock, which transaction is aborted), individual real-time
constraints are ignored. A real-time database strives to minimise the time constraints that are violated, since it is
very difficult to guarantee all time constraints. Whereas traditional database systems mostly use pessimistic
concurrency (e.g. two-phase locking), real-time databases sometimes use optimistic concurrency control. Here,
the execution of each transaction consists of three phases: a read phase, a validation phase and possibly a write
phase, in that order. During the read phase, all writes take place on local copies. Then, if it can be established
during the validation phase that the changes the transaction made will not violate serialisability with respect to
all committed transactions, the local copies are made global. Only then, in the write phase, these copies become
accessible to other transactions. When comparing this to the prototype of Multi-X in section 2.3, "Overview of
the Multi-X prototype", it becomes clear that we might view Multi-X as an implementation of a real-time
transaction processing system. However, scheduling algorithms for real-time databases base decisions mostly on
transaction properties like release time (earliest time a transaction can start), deadline or estimated duration of
the transaction. Only the first property is available in the APZ C? transactions. Deadlines are avoided by re-
routing traffic at a higher management level.

3.3 Position of scheduling in the Multi-X prototype

In order to define a number of scheduling methods for Multi-X, we first need to have a better understanding of
the position of scheduling in the Multi-X prototype. Taking Casavant's classification (Figure 3) as a guideline,
only global scheduling will be considered in this thesis. Clearly, global scheduling in Multi-X will have to be
dynamic because of the dynamic behaviour of online transaction processing. The architecture outlined in "Figure
2 Architecture of the Multi-X prototype" tends to centralised scheduling, but does not exclude distributed
scheduling.

Exploring scheduling 18

Scheduling in Multi-X — a performance evaluation

The overall goal for scheduling in Multi-X is to improve speedup (= performance) by minimising execution time
(= the cost). The question is how to minimise execution time. To be able to answer this question, we need to
know what parameters affect scheduling. Figure 6 gives an overview of those parameters. This set of parameters
has been obtained from a number of sources, including the definition of the Multi-X prototype (see section 2.3,
"Overview of the Multi-X prototype") and [10]. These are the most important parameters, but more maybe yet
unknown or underestimated.

number of
processors

granularity collision detection
tasks

4,
algorithm

granularity commWrollback
marker field / \ implementation

traffic cache
behaviour behaviour

Figure 6 Relation of scheduling to other parameters in the Multi-X prototype

• The number of processors will influence scheduling performance dramatically. When measuring scheduling
performance, the number of processors will have to be variable. More processors give more freedom to the
scheduler and more processing capacity, but also more data collisions between the scheduled tasks. The
graph speedup = f(number of processors) will therefore be a curve with a top at the optimum number of
processors.

• Two collision detection algorith,ns have been proposed so far, as listed on "Appendix A Collision detection
algorithms". More might be proposed in the future. When measuring scheduling performance, both
algorithms have to be tested and compared. Since every task will eventually rollback or commit, the number
of rollbacks and commits will have to be an output parameter of the scheduler. This gives also rise to four
other output parameters indicating the use of a processor: idle time are those cycles spent when no task is
running on a processor; wasted time are those cycles spent on running a task that is rolled back (later),
including the execution of the rollback itself; executed time are those cycles spent on running a task that is
committed (later), including the execution of the commit itself. In Hjalmarson's algorithm,a task might
even be put on wait. The cycles spent on waiting are measured by the waiting time.

• As explained in section 2.3, "Overview of the Multi-X prototype", performing commits and rollbacks might
be implemented in different ways. In this thesis project, this parameter will be static and equal to the Multi-
X prototype (i.e. the original method).

• Cache behaviour and scheduling are expected to relate in two ways. First of all, scheduling itself will
influence cache perforniance. E.g., if a specific function is often executed and consistently scheduled at the
same processor, the function's code and data will remain in the cache memory and cache-hit ratio will
increase. Besides this, cache dimensioning like size, number of levels and coherence protocol will influence
scheduling algorithms differently. Parallel to this thesis project, another thesis project will investigate cache
behaviour [53]. A cache simulator will be implemented, which might be combined to scheduling
performance measurements.

• The traffic behaviour will also influence scheduling performance. E.g., short GSM calls will give other
traffic characteristics than long ISDN connections. Also, traffic intensity changes in time,e.g. peaks during
daytime and low intensity at night-time. Different standards exist for e.g. mobile communications. All these
properties result in different traffic characteristics, which will probably need different ways of scheduling.
How to define the traffic behaviour parameter is discussed more detailed in section 4.2, "Finding the right
traffic data".

Exploring scheduling 19

Scheduling in Multi-X — a performance evaluation

The granularity of the marker field has been explained and defined in section 2.3. A more fine-grained
marker field will result in less data collisions but more overhead. A more coarse-grained marker field will
result in less overhead but more data collisions. In this thesis project, this parameter will be static and equal
to the Multi-X prototype.

Task granularity is defined in "Figure 1 Relationship between transactions, tasks, functions and messages".
But we might also define a task as a function or an entire transaction. We will not change the definition of a
task or make it variable. The current definition resembles reality best and will be easiest to implement.

3.4 Different ways of scheduling for Multi-X

After having examined the relevant parameters, we can conclude that we can minimise execution time by: a)
minimising processor idle cycles; b) minimising the number of rollbacks, and c) minimising cache-miss ratio. In
this section, a number of scheduling algorithms will be proposed aiming to minimise these costs in different
ways.

When comparing different scheduling algorithms, it is interesting to know the upper and lower bound of
scheduling performance, given the parameters as explained in the previous section. A lower bound will be
difficult to define, but every scheduling algorithm resulting in a speedup equal to or smaller than 1.0 can be
discarded. In that case, we have not gained any performance compared to an ordinary sequential execution on a
single-processor system. The upper bound is equal to an optimal scheduling. As explained in section 3.2.2,
"Instruction-level parallelism", optimal performance can be obtained by calculating the critical path of an
execution trace. In order to do this, we need to know all instructions to execute in advance. How this is done, is
explained in the following chapter.

The literature survey summarised in section 3.2, "Learning from other projects" merely gave some ideas, but did
not result in any algorithms specifically suitable for Multi-X. Consequently, we have to go back to the basic
definition of scheduling. In the first section of this chapter, we stated that scheduling decisions are made on
(dynamic) properties of the objects to be executed or on (dynamic) properties of the environment in which the
objects are executing. Based on this, we define three different ways of scheduling: first-come-first-serve
scheduling, function-based scheduling and source-based scheduling.

I. First-come-first-serve scheduling means simply to send the next task to an arbitrary idle processor. This
method is used at the moment in the Multi-X prototype. Scheduling decisions are neither based on any
property of the tasks nor on any property of the environment. An advantage of first-come-first-serve
scheduling is that it is easy to implement with little overhead. It will be easy to maximise processor load but
no actions are taken to avoid rollbacks. Cache-hit ratio is not taken into account either.

2. From several sources in speculative execution literature, it becomes clear that avoiding data collisions is
often better than curing data collisions [7, 36, 41]. Function-based scheduling is an attempt to avoid
unnecessary rollbacks by examining what functions a task will execute. If two tasks use the same function, it
is likely that they share a variable. This, in its turn, will cause a data collision and at least one rollback. It
might be better to postpone one of the tasks. In fact, function-based scheduling focuses on the properties of
the objects to be scheduled, but ignores properties of the environment. Like trace scheduling in section
"Instruction-level parallelism", we will have to be able to look ahead and predict the future execution trace.
At task start only the first function to be executed is known from the initiating message. This means we will
have to extend the Multi-X prototype with control speculation (e.g. branch predictors), since currently only
data speculation is supported. The prediction mechanism will have to be implemented in software, since we
assume no hardware support for task-level parallelism. This will increase scheduling overhead. Maximising
processor load will be more difficult for function-based scheduling than for first-come-first-serve
scheduling. However, the number of rollbacks will decrease and the assignment of tasks to processors might
be done carefully in order to increase cache-hit ratio. The function-based scheduling as defined here is a
division of function in time. Another solution is to divide functions in space; i.e. by assigning every function
to one specific processor. Space-division is hard in our case, since we defined the task granularity as a
number of functions.

3. With source-based scheduling, we focus on the properties of the environment but ignore the properties of
the objects to be scheduled. The idea is to base scheduling decisions on the origin of the external messages

Exploring scheduling 20

Scheduling in Multi-X — a performance evaluation

(see "Figure 1 Relationship between transactions, tasks, functions and messages"). All external messages
originate from some remote processor. Every remote processor serves a number of devices, and every
device serves a number of subscribers. Consequently, source-based scheduling is an attempt to map
individual subscribers to individual processors. Since every subscriber has its own data, cache-hit ratio will
improve. Since different subscribers will use different services in time, i.e. functions, source-based
scheduling is also expected to decrease the number of rollbacks. Balancing and maximising processor load
is assumed not to raise any difficulties. If it does, higher-level traffic management might solve this by
dividing load more evenly from the different remote processors.

The three different ways of scheduling proposed here are by no means exhaustive; they just indicate three basic
solutions. In fact, these are three extremes that give a broad understanding of scheduling behaviour in Multi-X.
The best solution for Multi-X will probably be some combination of the scheduling algorithms mentioned here.

Even if the best scheduling algorithm can be defined for a particular set of parameters (see Figure 6), this
scheduling algorithm will probably not be best if some parameter changes. This leads to the notion of an
adaptive scheduling algorithm [66]. We define a scheduling algorithm to be adaptive if 'the rule base for making
scheduling decisions is no:fixed but changes with the dynamic behaviour of the environment'. The environment
does not only include the set of parameters as in Figure 6, but also output parameters of the current scheduling
(e.g. number of rollbacks or waiting time). Note that this definition differs from the definition of dynamic
scheduling in Casavant's classification (Figure 3). A dynamic scheduling algorithm might very well have a fixed
rule base. One way to implement an adaptive scheduling algorithm is a two-level approach. A number of non-
adaptive scheduling algorithms are defined, all optimised for a specific environment. At a higher level, another
algorithm classifies the environment (at run-time) and selects the best suiting non-adaptive algorithm. The
classification algorithm might be implemented using techniques from the field of computational intelligence, e.g.
fuzzy logic as in [11] or neural networks. One step further is to let the high-level algorithm not only classify the
environment, but also produce a scheduling algorithm. This might be solved using neural networks [46, 60J or
even genetic algorithms [74]. For now, an adaptive scheduling algorithm is remote future. This thesis will focus
on the non-adaptive approaches mentioned above. Based on that knowledge, an adaptive algorithm might be
defined in a later stage. The next chapter will summarise the different ways of scheduling and will describe how
to investigate these.

Exploring scheduling 21

Scheduling in Multi-X — a performance evaluation

4 Measuring scheduling performance

The previous chapter defined four ways of scheduling to investigate: three practical algorithms (first-come-first-
serve scheduling, function-based scheduling and source-based scheduling) and one theoretical algorithm
(optimal scheduling). The latter will give us an upper bound on scheduling performance. As output parameters
for the scheduling algorithm we defined the number of commits, the number of rollbacks and for every
processor: executed time, wasted time, waiting time and idle time. The cache-hit ratio will indirectly be an
output parameter if the scheduling algorithm can, in some way, be linked to the cache simulator. Performance,
expressed in speedup, can be deduced from these output parameters.

In the first section of this chapter, three ways of measuring performance parameters are compared. One way,
implementing a simulator, is chosen for measuring perfàrmance in this thesis project. The succeeding chapter
defines the data to be used as input for the simulator and describes how this data is obtained. Some statistics on
the input data are presented. Section 4.3 describes the model of the prototype used as a basis for the simulator.
Most issues have already been highlighted in previous chapters. Here, we merely present some important
implementation details. Performance of optimum scheduling, as a theoretical approach, cannot be measured
using the simulator. The last section of this chapter explains how optimal scheduling will be calculated.

4.1 How to measure performance parameters

Now we know what to investigate, we can decide how to investigate scheduling performance. Basically, we have
three possibilities: implementing the scheduling algorithms in the Multi-X prototype, defining a mathematical or
statistical model or simulating the Multi-X prototype.

I. Implementing the scheduling algorithms in the Multi-X prototype is probably easiest for the three practical
algorithms. It will give quick results and will take into account the entire environment, even those
parameters that are currently unknown or underestimated. Unfortunately, there are a number of
disadvantages. The main disadvantage is that this approach excludes optimal scheduling entirely, since we
need to be able to foresee a trace of execution. For the other algorithms, it gives us little freedom to test new
ideas, e.g. the control speculation needed for function-based scheduling. Another disadvantage is the
dependency that would arise between this thesis project and the development of the Multi-X prototype. At
the beginning of this thesis project, the initial Multi-X prototype implementation was not finished yet and
was expected not to be stable for the next coming months. Furthermore, measurements are difficult to
perform on the prototype's implementation. Since the prototype is processing transactions at a high speed,
measurements influence performance substantially. At the beginning of this thesis project, the project group
was still investigating how to do correct measurements and to what extent measurements influence
performance. Even if measurements can be done correctly, they will still include overhead, e.g. caused by
the data collision algorithm or by the implementation of rollback and commit. Eventually, these overheads
have to be taken into account. For now, the prototype's implementation can be optimised in several ways,
which might lead to a lower overhead. In this thesis project, we want to focus on the performance of
scheduling primarily, irrespective of the way particular parts of the system will be implemented. For these
reasons, the approach of implementing scheduling algorithms in the prototype is not preferred.

2. By defining a mathematical model, all disadvantages mentioned above are avoided. But two other problems
arise. The first problem is traffic modelling. We have to model not only the prototype but also the
environment as depicted in "Figure 6 Relation of scheduling to other parameters in the Multi-X prototype".
Especially traffic behaviour will be hard to model. In fact, Multi-X is a test case to find out if it is possible to
run traffic on a multiprocessor system. Statistical information is only available for single-processor systems;
e.g. the number of variables accessed per function, the number of functions per task, etc. It is yet unknown
what traffic characteristics are important for Multi-X or for a multiprocessor system in general. The second
problem is the behaviour of the functions to be executed. Here, it is also totally unknown how these
functions will behave in a multiprocessor system, e.g. what variables will cause data collisions and what
not?; what functions are parallelisable and what function have to be run in a serial fashion? The Multi-X
project has just started to answer these questions, e.g. [12, 73]. For these reasons, a mathematical model will
lack important details. Even if we can find out all relevant details, the model will be very complex. For these
reasons, the approach of a mathematical model is not preferred either.

Measuring scheduling performance 22

Scheduling in Multi-X — a performance evaluation

3. The best solution would be to combine to advantages of the two approaches mentioned above, while trying
to avoid the disadvantages. We need to model the prototype to get clear results independent of some
implementation. At the same time, we need real traffic in order to be able to avoid modelling unknown
details on traffic behaviour. A simulator will be able to combine these requirements and will therefore be
developed in this thesis project. Although developing a simulator makes it easier to take all relevant details
into account (compared to a mathematical model), we still might miss some. This is the main disadvantage
of this approach.

The properties of the Multi-X prototype as explained in section 2.3, "Overview of the Multi-X prototype",are
the basis for the simulator model. We also include the static parameters of "Figure 6 Relation of scheduling to
other parameters in the Multi-X prototype" (commit/rollback implementation, marker field granularity, task
granularity) in this model. Cache behaviour can be modelled by linking the scheduling simulator to the cache
simulator. The number of processors and the collision detection algorithm will be variable input parameters for
the simulator. The next section describes what traffic data will be used and how it is obtained. The subsequent
section describes the details of the simulator model.

4.2 Finding the right traffic data

One of the most time-consuming parts of this thesis project was to find the right input data for the scheduling
simulator. In this section, we will start by defining more precisely what data is needed. After having defined the
required data, section 4.2.2 describes where this data was found and how it is pre-processed to the desired
format. A great deal of time has been spent on verifying the acquired data. This process is described in section
4.2.3. The last section presents some important statistics on the acquired data.

4.2.1 What traftic data is needed
In order to model traffic behaviour correctly, we will have to use a trace of live data. To be able to simulate all
proposed scheduling algorithms, this trace should include the following data: a list ofmessages; for every
message (i.e. every task), a list of functions; for every function, a list of instructions; for every instruction, the
memory references of code segment and data segment. At the highest level, the trace should be a list of
messages. For every message, we need to know if it was generated externally or internally. If it was generated
externally, we need to know the initiating remote processor. If it was generated internally, we need to know the
initiating task. This way, we can reconstruct the sequence of tasks for every transaction. We also know the
source of every task in a transaction. To be able to simulate data collisions, we need to know the references to
the data segment (i.e. the data areas guarded by a marker field) and the function, since every variable is global
only within its own function.

In order to reconstruct a live traffic flow, we also need timing information. We need to know at what time
externally generated messages are inserted in the FIFO queue and we need to know the execution time of every
instruction. Both issues are problematic. Even if we know the execution time of every instruction, it will be an
execution time obtained from a spec (fic environment; i.e. a specific cache-hit ratio, a specific memory access
time, etc. When simulating different ways of scheduling, we have to abstract from that specific environment and
make an estimation of the execution time for every instruction in the environment of our simulator. Related
problems arise with the arrival time of externally generated messages. Even if we know these times, they will
relate to some architecture, i.e. a single-processor system. When simulating architectures with a different number
of processors, that architecture will likely process a different number of transactions per second. When using the
same timing information in a simulation, this will lead to either an overload or an underload of the simulating
architecture. In some way, we have to abstract from this timing information too.

The solution to these problems was found by reconstructing timing information from the instruction name and
memory references. This information is needed anyway in order to simulate data collisions. If the instruction
name is known, we can obtain minimum, maximum and average instruction execution time from statistical
information [44]. This statistical information is based on application measurements done in another project.
Execution time is expressed in cycles, not in seconds. From this information and the memory references, we can
compute an estimation of the instruction's execution time by feeding every reference to the cache simulator and
count the number of cache hits (see Equation 2, conform [53]). If we know the execution time of every
instruction, we also know the total execution time of every task and every transaction. The problem of external
message insertion timing was solved by simply inserting the next externally generated message as soon as the
total number of messages in the FIFO queue gets below a certain limit. The average number of messages in the
FIFO queue for current APZ CP systems is 2-4. We will set the limit to 10, for two reasons: 1) the current APZ

Measuring scheduling performance 23

Scheduling in Multi-X — a performance evaluation

CP system is a single-processor system, a multiprocessor system will give a higher average of processed tasks
per second; 2) a high limit means a heavy-loaded system. In fact, we abstract from traffic peaks and bursts by
modelling a constant heavy load. We assume that if our simulating architecture performs well in this situation, it
will also perform well with an ordinary traffic load or with bursty traffic.

misses
texeculion = exeeu:,onmln + — texec.j:imin)

references

Equation 2 Calculating instruction execution time

4.2.2 Where to find traffic data
Now we know what traffic data is needed, where can we find it? The initial attempt was to record a trace from
the running Multi-X prototype. Unfortunately, this turned out to be hard to implement and time consuming.
Other problems with the Multi-X prototype were described in the previous section. Eventually, the Tor project
mentioned in section 3.2.1 proved to have most data available. Here, live recordings were done from a number of
real (single-processor) APZ CP systems [55, 56, 57]. Three different types of traffic are available: CMS, a US
standard for wireless communication; GSM, the European standard for mobile communication; and Transgate, a

standard for traffic between telecommunication exchanges. For every type of traffic, three to five recordings
were available, all recorded in the same format. Every recording contains approximately 200ms of live traffic.
Figure 7 gives a simplified overview of the pre-processing performed on the recordings. The pre-processing

results in four data files that can be used as input to the simulator. The 'live recording' file is a list of instructions
executed; for every instruction the contents of the address bus, the contents of the data bus, function number and
priority are recorded. Priority indicates if this instruction was ordinary traffic or a background process.
Background processes are only started if the FIFO message queue is empty and are interrupted if an external
message arrives. These instructions are filtered away, since we will simulate a heavily loaded system running
real traffic. Simulating background processes will also lead to a much more complex simulator, e.g. different
priority levels would demand a more complex data collision detection algorithm. The 'live recording' and
'memory dump' file are fed to an instruction disassembler. The output of the disassembler is combined with the
results of instruction timing calculations and results in the 'trace info' file. This file contains all information
listed at the beginning of this section. The disassembler was taken from the Tor project and modified and
extended to the needs of this thesis investigation. Four extraction routines produce the simulator's input files.
Data in these files is internally connected by pointers; i.e. every message is a part of a task sequence (a
transaction), every task is a sequence of functions, every function is a uence of instructions.

instruction instruction
extraction data

4.2.3 VerifyIng traffic data
A number of problems arose when pre-processing the recordings. Intelligent filtering solved most problems, but
left some errors in the resulting data files. Only those problems are mentioned here and an upper bound of the
resulting errors is defined:

1. The 'live recording' file could not be recorded perfectly, the recording equipment left 1-2% errors. For these
errors, instruction address and/or bus data contents are wrong. Most of the addresses could be restored by

Measuring scheduling performance 24

Figure 7 Data flow in the pre-processing of simulator mput data

Scheduling in Multi-X — a performance evaluation

predicting the address of every instruction from addresses of preceding instructions. The first instructions of
a function and instructions following a branch could not be restored this way. It turned out that most errors
occurred on the last instruction(s) of a task. These errors, in its turn, cause the pre-processor's extraction
functions to miss task boundaries. Eventually, the overall error on task boundaries was proved not to exceed
a 3% limit. This figure is however 'worst-case'; in reality the error is expected not to exceed 1%.

2. In order to obtain the memory references of an instruction, we not only need the instruction name but also its
parameters. Some parameters are available on the recorded data bus, while other parameters reside in the
processor's internal registers, which have not been recorded. Mostly, the contents of these registers could be
traced by finding the last instruction (re-) setting the particular register. In some cases, the contents of a
register originates from a message, whose data is not recorded. If message data is not copied to a register,
this data could not be traced. Those memory references were simply discarded. It has been proved that less
than 0.4% of all memory references is discarded for this reason.

3. If task boundaries, function boundaries and memory references can be extracted, then all necessary
information within every task is known. We also need to reconstruct the sequence of tasks in every
transaction, since this information is not recorded. This was solved by tracingevery message sent in the
extracted tasks (messages are sent by special instructions). From this information and by simulating a FIFO
queue, the sequence of tasks can be deduced. For reasons similar to and related to the two problems
described above, not all send message instructions could be extracted correctly. These messages were
simply discarded. Compared to the total number of send message instructions, not more than 2% of the send
message instructions was discarded. This results in a number of transactions to be shorter than reality.

4. Like arguments of some instructions, information on remote processors needed for source-based scheduling
is sent with a message. This information is stored in an internal register on task entry. In 25% of all
externally generated messages, this information could not be recovered. See section 5.4, "Source-based
scheduling", for a more detailed discussion on this problem.

Except for the remote processor information, the errors mentioned above are within tolerable boundaries.
Lowering these error bounds means a great deal of extra work and has been renounced in favour of more
simulations. The resulting data has been verified extensively, both at a low level (by comparing instruction data
execution code with the original code) and at a high level (by comparing statistics on the traces with known
statistics). All tests showed the resulting data to resemble reality to a good extent.

4.2.4 StatistIcs on used traffic data
Although the recordings were done in the same format and the pre-processing code is general to all recordings,
pre-processing, analysing, verifying and simulating one recording turned out to be very time-consuming. In the
remainder of this report, only one CMS recording is used. For the other recordings, verification samples were
taken at random in the pre-processing stages of the investigation. All tests gave results similar to the one
recording we use throughout this report. The CMS traffic type was chosen because the Multi-X prototype also
runs this type of traffic. By focusing on CMS traffic, results can be compared more easily with the prototype.

Measuring scheduling performance 25

Scheduling in Multi-X — a performance evaluation

percentage real traffic in recording
percentage background processes (filtered away)

84%
16%

total number of transactions
total number of tasks

total number of functions
total number of instructions

total number of cycles

2,672
14,045
28,051

1,588,536
8,079,225

total number of variables accessed
percentage single variables plus single arrays

percentage arrayed structure variables

556,922
42%
58%

percentage externally generated traffic messages
percentage internally generated traffic messages

percentage operating system messages

10%
81%

9%

average number of tasks per traffic transaction
average number of functions per task

average number of instructions per task
average number of variable references per task

9.22
2.00

113.10
39.65

average number of cycles per task
average number of cycles per function

average number of cycles per instruction

575.24
288.02

5.09

clock frequency of recorded system in MHz 40
total execution time in ms 201.98

average execution time per task in us 14.38

Table 2 Some statistics on the pre-processed data

Table 2 shows some statistics on the pre-processed recording used throughout the remainder of this report. All
information is on the 84% of real traffic. The other 16% are background processes that have been filtered away.
On analysis of the recorded data, it turns out that not all transactions start with an external message initiated from
a remote processor. Approximately half of all transactions are initiated by the operation system. These
transactions perform various administrative tasks. For source-based scheduling, a distinction is made between
real traffic transactions and operating system transactions (see section 5.4, "Source-based scheduling", for a
more detailed discussion on this topic). The timing information mentioned in Table 2 is based on the average
execution time of every instruction. This information was extracted from timing statistics, as depicted in Figure
7. Figure 8, Figure 9 and Figure 10 show some extra information on the pre-processed data. From this
information, it becomes clear that most transactions are small.

400%
4.40%

166%

•°:'. D
l049%1%O4r%

I 2 3 4 5 9 7 6 9 10 11-20 21-a 31-40 41-60 51.40 61-70 71.90 61-90 91-100 I00

Figure 8 Distribution transaction size (in number of tasks)

Measuring scheduling performance 26

45%

40%

0.31% os 016% 001% 0 0 006% 007% 0.45%

0 I 2 3 4 5 I 7 I 0 10 10

Figure 10 Distribution followers per task (in number of tasks)

The entire set of input data does not constitute more than 200ms of live traffic. In the next chapter, it is checked
if this is enough to get stable results.

4.3 Modelling the prototype

The basic properties of the model used for the implementation of the simulator have been described throughout
this report, see: section 2.3, "Overview of the Multi-X prototype"; section 3.3, "Position of scheduling in the
Multi-X prototype"; section 4.1, "How to measure performance parameters"; section 4.2.1, 'What traffic data is
needed"; and "Appendix A Collision detection algorithms". A number of important detailson the
implementation of the model:

1. Instructions are not really executed by the simulator. For every instruction, the simulator simply waits for a
number of cycles. All timing is measured in cycles, since this information is available in the simulator's
instruction data input file. The core of the simulator is an event queue, where every instruction executed on
some processor results in an event.

Measuring scheduling performance 27

Scheduling in Multi-X — a performance evaluation

I. . -

1.4

I1
I

10

ss
Ix t0.0

Figure 9 Distribution of task size (in number of instructions)

5470%

50%

20%

10%
1.75%

Scheduling in Multi-X — a performance evaluation

2. The simulator does not model any overhead, e.g. administrative processing on starting, ending, committing
or rolling back a task or on accessing data areas. Some of the disadvantages of overhead are mentioned in
section 4.1, "How to measure performance parameters". Two main reasons not to model overhead are: I) It
is hard to quantify the different overheads. The current implementation might be optimised in several ways.
E.g., in the future, a dedicated processor might hide some of the administrative tasks. 2) We would like to
measure the potential of different scheduling algorithms, independent of some specific implementation.

3. As explained in section 2.3, "Overview of the Multi-X prototype", rollback and commit can be implemented
in several ways. Since instructions are not really executed and since we do not model any overhead, the
simulator is independent of the way rollback and commit is implemented.

4. It was decided not to link the scheduling simulator to the cache simulator. The main reasons for this decision
are the time needed to implement this and to avoid too many dependencies on the thesis project resulting in
the cache simulator. All measurements are done using the average number of cycles for every instruction, as
obtained from the statistical timing information (Figure 7). This average is obtained from a specific
environment with a specific cache-hit ratio. Of course, the cache-hit ratio will change for different ways of
scheduling and for a different number of processors. This topic is discussed for the simulation of various
scheduling algorithms in the succeeding chapter. A number of problems that will arise when the scheduling
simulator is linked to the cache simulator: I) The cache simulator works on an instruction basis and the
cache simulator on a memory reference basis. This means that, if an instruction has several memory
references, the interleaving with instruction executed on other processors is not as in reality. 2) Cache
memory is large nowadays. It has not been investigated if the number of instructions available in the
recordings is enough to initialise caches and give stable simulation results. 3) The simulator's input data
files include the addresses referred in the code segment. References to the data segment can be added by
extending the functionality of the extractors in pre-processing. The AXE CP system, however, has even a
third type of memory: the pointer segment. This segment includes pointers to various administrative tables
(e.g. signal specifications) and was added to ease system administration. Since a large part of the
instructions uses the pointer segment, this information should be added when simulating cache behaviour. It
has not been investigated what effort this will take.

5. All rollbacks are done on a certain task causing the data collision and allolder tasks. This resembles the
implementation of the Multi-X prototype. In Tikekar's algorithm, this might be optimised as listed on
"Appendix A Collision detection algorithms". In the implementation of the prototype, rolled back tasks are
not restarted until the task it collided with has completed. This avoids unnecessary clustered rollbacks. In the
simulator, rolled back tasks are restarted immediately. The main reason for this is a simplified
implementation of the simulator. It also gives more clear results of the potential of the scheduling
algorithms. The order of rollbacks is important in the real implementation. Since we do not really execute
instructions, rollback order is irrelevant for the simulator. As in the Multi-X prototype, a rolled back task is
restarted on the same processor.

6. A processor is released as soon as the last instruction has been executed. An ended task does not necessarily
commit immediately, since we model in-order commit. Since rollback is done from a task up to the youngest
task and rolled back tasks are restarted at the same processor, this might cause several tasks to compete for
the same processor. In this case, the oldest task takes priority.

7. In Hjalmarson's algorithm, tasks might be put to wait. Processors are not released during wait, as in the
Multi-X prototype.

8. In Tikekar's algorithm, the marker field's size is limited to the allowed level of speculation. In the current
implementation of the prototype, the number of uncommitted tasks never exceeds the level of speculation.
This is achieved by simply stalling task extraction from the FIFO queue. The same approach is used in the
scheduling simulator. Another implementation is to put tasks on wait as soon as a marker field overflows.

Based on the simplifications in the simulator, speedup can be defined as in Equation 3. Note that this definition
is based on in-order commit. After having processed the entire input data, speedup is simply the quotient of the
number of cycles in the input data and the global clock cycle count.

Measuring scheduling performance 28

Scheduling in Multi-X — a performance evaluation

sum of cycles in input data task I ..n
speedup(n)=

global clock cycle count at commit of task n

Equation 3 Definition of speedup

The implementation of the simulator has not been proved correct. A large amount of pre- and post-conditions
were defined and inserted in the code in order to enforce a correct execution. Only small sub-sets of input data
have been tested extensively. For the entire set of input data, tests were mainly done by analysing results.

4.4 Calculating optimal scheduling

The simulator described in the previous section can be used to simulate the three practical scheduling algorithms:
first-come-first-serve scheduling, function-based scheduling and source-based scheduling. But is it able to
simulate optimal scheduling? To answer this, we have to define optimal scheduling more clearly. We define
optimal scheduling to be 'the way of scheduling resulting in the maximum speedup for a given set of input data
when assuming infinite resources and assuming all transactions to execute are known in advance'. Infinite
resources includes an infinite amount of processors and an infinite amount of uncommitted task (the latter is
finite in reality because of limitations in memory size).

How can optimal scheduling be obtained? Intuitively, rollbacks cause sub-optimal scheduling. But waiting in
Hjalmarson's algorithm sometimes leads to a better speedup. E.g. the situation Figure II. With Hjalmarson's
algorithms task 2 waits for task I to commit before reading the shared variable. If task 2 would not wait, it had to
be started later causing task 3 to commit later.

stall read(a) write(a) end/commit

taskti I I I

start read(b) wait read(a) end/commit

task2l I I I

start read(b) efld/COflUfllt

sk3I I I

time

Figure 11 Waiting time in optimal scheduling

Clearly, optimal scheduling cannot be simulated but has to be calculated. For both data collision detection
algorithms, an algorithm has been developed to calculate optimal scheduling. These algorithms are listed on
"Appendix B Algorithms and proof for optimal scheduling" and a proof of correctness is given. In general,
proving correctness for optimal scheduling with limited resources is very hard. For this reason, the algorithms
have not been extended for a limited number of processors. For Tikekar's data collision algorithm,performance
will be influenced to a large extent by the allowed level of speculation. The straightforward implementation of
limiting the level of speculation in the Multi-X prototype made it easy to extend the optimal scheduling
algorithm with the level of speculation as a parameter. In the succeeding chapter results of optimal scheduling
and of scheduling using the simulator are shown and analysed.

Measuring scheduling performance 29

Scheduling in Multi-X — a performance evaluation

5 Simulation results

The previous chapter defined how to measure performance for the proposed scheduling solutions. A simulator
was designed to measure the three practical algorithms. Two algorithms were defined to calculate optimal
scheduling. This chapter presents the results from these calculations and measurements. As explained in the
previous section, all measurements and calculations are done on a static set of input data with average execution
times for every instruction.

Results of optimal scheduling are described in the first section of this chapter. The three succeeding section
describe first-come-first-serve, function-based and source-based scheduling respectively. Conclusions are
presented in chapter 6. All source data of the figures presented in this chapter are listed on "Appendix C Data on
simulation results".

5.1 Optimal scheduling

Optimal scheduling for Hjalmarson's data collision detection algorithm gives a speedup of 2.47. The results for
Tikekar's algorithm are shown in Figure 12. Tikekar's algorithm was tested for a speculation depth of 12, 28, 44,
60, 76 and for an unlimited speculation depth. This resembles a marker field size of 64, 96, 128, 160, 192 and an
unlimited number of bits respectively.

7.0

6.0

5.0

3 4.0

13.00
2.0

1.0

0.0

ecuIation depth
Figure 12 Speedup for optimal scheduling with Tikekar's algorithm

The result of Hjalmarson's algorithm is somewhat disappointing. For a speedup of 2.47 we need unlimited
resources and have not included any overhead. The main reason for this limited speedup is the stall time inherent
to this implementation of collision detection. In fact, even read after read dependencies (see "Figure 4 Classes of
data dependencies") lead to stall times. Tikekar's data collision detection algorithm was proposed at a later stage
to avoid unnecessary dependencies and rollbacks. A drawback of this algorithm is an increase in required
memory. The implementation of the prototype uses a speculation depth of 12, resulting in a memory requirement
four times as high as for Hjalmarson's algorithm. Figure 12 shows the potential of Tikekar's algorithm to be
much higher, even for a speculation depth of 12 tasks. Speedup increases substantially when raising speculation
depth to 28.

We still have to check if the results of the calculations are stable. For this, we plot speedup as a function of
(commit) time; Figure 40 and Figure 41 on "Appendix C Data on simulation results". In both graphs, speedup
stabilises after having processed half of the input data. This indicates the input data to be large enough. Figure 41
shows the results of optimal scheduling with a speculation depth of 12. For a higher speculation depth, speedup
stabilises even sooner. Generally, speedup is higher at the beginning of processing, since tasks have fewer older
tasks to be dependent on at that stage.

The speedup calculated for optimal scheduling will never be reached in reality. In the succeeding three sections,
we will simulate more practical approaches, which can be compared to the upper bound of optimal scheduling.

Simulation results 30

6.63

12 28 44 60 76 unlimited

Scheduling in Multi-X — a performance evaluation

5.2 First-come-first-serve sched UI I ng

With first-come-first-serve scheduling we simply send the next task to an arbitrary idle processor. Note that this
way of scheduling is deadlock free; at least the oldest task is always executable since it does not have any
dependencies. The oldest task will therefore never be rolled back either. In Figure 13 the results are shown for
both data collision detection algorithm. For Tikekar's algorithm, this is for a speculation depth of 12. Up to six
processors have been measured since not more will be used in practice anyway. Optimal scheduling is added as
an asymptote, since this is only calculated for an unlimited number of processors.

35

30

25

20
a5nati

èf.COfl.4Il*4I,,S ThKM
15

10

05

00 -,

1 2 3 4 5 6
nuu,b o p,c.sson

Figure 13 Comparison first-come-first-serve scheduling for both data collision detection algorithms
As expected, Tikekar's algorithm performs better than Hjalmarson's algorithm. It is interesting to notice, though,
that Hjalmarson's algorithm does exploit its potential better than Tikekar's algorithm. However, for Tikekar's
algorithm rollback is done for all tasks from a certain task up to the youngest task. This can be optimised later,
see also the definition of the algorithm on "Appendix A Collision detection algorithms".

Before going on, we first have to check if the length of the input data is sufficient for the simulator to reach
stable results. As for optimal scheduling, this is checked by plotting speedup in time. Results are shown in Figure
42 and Figure 43 on "Appendix C Data on simulation results". Only results for four processors, for both data
collision detection algorithms are shown. For Tikekar's algorithm, only the results of a speculation depth of 12
are shown. Some other speculation depths and number of processors have been tested at random and gave
similar results. Surprisingly, speedup is very low during the first 25% of simulation. This can be explained from
Figure 44, which shows that the first 2,700 tasks are relatively small with one exception, the largest task in the
input data. Very large tasks cause many depending younger tasks, resulting in a nearly sequential behaviour.
Very small tasks cause large sequences of cascaded rollbacks, resulting in a decrease of performance. Speedup
increases as soon as these 2,700 tasks are processed; for Hjalmarson's algorithm after 800,000 cycles. For all
graphs, speedup stabilises after 75% of the input data has been processed. This proves the input data to be just
large enough. Since it has been proved that the input data is large enough for both optimal scheduling and first-
come-first-serve scheduling, this is not checked again for function-based scheduling and source-based
scheduling.

Let's take a closer look at the results of the simulations. Figure 14 shows the distribution of time for a different
number of processors. The definition of idle time, waited time, wasted time and executed time is given in 3.3,
"Position of scheduling in the Multi-X prototype". Time is expressed as a percentage of the total number of
cycles; e.g., the total sum of executed cycles on four processors is divided by the total sum of all cycles on these
four processors. Waiting time increases exponentially for Hjalmarson's algorithm, while idle time remains
virtually zero. For six processors, idle time is just 0.80%; this is only due to the fact that processors remain idle
at the very last part of the simulation when there are no more tasks to be scheduled. Wasted time increases with
the number of processors, but remains low, especially for a small number of processors (5.27% for four
processors). Figure 15 shows more detailed information on rollbacks. Rollbackfrequency is defined as 'the
quotient of the number of rolled back tasks and the total number of committed tasks'. For both algorithms,

Simulation results 31

. .

Scheduling in Multi-X — a performance evaluation

rollback frequency increases exponentially. This is mainly because of repeating rollbacks. This includes all tasks
that are rolled back once more after a previous rollback and before they have been re-started. Wasted time gives
a better indication of time lost on rollbacks. For Tikekar's algorithm, wasted time does not increase
exponentially. However, we do not include any overhead. If we would, these curves will deteriorate. Tikekar's
algorithm does not put any tasks on wait, but a price is paid in wasted time; more than double the amount of
Hjalmarson's algorithm. Idle time is surprisingly high in Tikekar's algorithm. This is due to the limits in
speculation depth. For four processors, idle time is nearly 17%. Execution time is higher for Tikekar's algorithm,
for every amount of processors. This results in a higher speedup, as plotted in Figure 13.

o dIe
o waited

• wasted
o executed

number of proceors numberof procs.rs
Figure 15 Rollback frequency (left) and wasted time (right) for both data collision detection algorithms

Both speedup graphs saturate at a certain level. If we had taken overhead into account, the graphs would have
been curves with a top at the optimum number of processors. E.g., for Tikekar's algorithm, speedup is 2.79 for
five processors and 2.80 for six processors. Wasted time is 19.15% and 20.09% respectively, but rollback
frequency increases with nearly 100% from 184% to 270%. In reality, wasted time will be higher due to the
increase in rollback frequency, resulting in a lower speedup for six processors.

What is the effect of a larger speculation depth for Tikekar's algorithm? Figure 16 shows speedup as a function
of speculation depth. Surprisingly, speedup hardly increases with a higher speculation depth for two or three
processors. Only with more than three processors, we see a substantial increase in speedup when increasing
speculation depth from 12 to 28. Increasing speculation depth beyond 28 only pays off for a large number of
processors.

number of proceors number of proceeeors

Figure 14 Distribution of time for Hjalmarson's algorithm (left) and Tikekar's algorithm (right)

300%y 25%

—..— Hjalmarson

-.--likekar_-

1 2 3 4 6

Simulation results 32

Scheduling in Multi-X — a performance evaluation

4•of

—4-— I piocessor
—--2 Processors

2.0 3processors
PrOCeSSOrS

—*-— 5 processors

——6 processors
1.5

1.0 -

0.5 -

0.0

12 28 44— depth

Figure 16 Speedup as a function of speculation depth

This behaviour can partly be explained from Figure 14. From this figure, it becomes clear that idle time is
virtually zero for two processors, but increases rapidly when increasing the number of processors. Figure 17
plots all idle time information. With first-come-first-serve scheduling, processors are idle only if the total
number of uncommitted tasks has reached the speculation depth limit. E.g., if speculation depth is 12, four
processors are each running a task and eight tasks are ended but not yet committed, then a 13th task cannot be
started on the fifth processor. This processor is idle until a task commits. Obviously, such situations rarely occur
for a small number of processors. Increasing speculation depth does not increase performance since there are no
cycles left to exploit the increased speculation depth. For a large number ofprocessors, limited speculation depth
does result in a considerable amount of idle cycles. Increasing speculation depth decreases the number of idle
cycles, resulting in a higher speedup. At the same time, a price is paid by an increased number of rollbacks and
an increased wasted time. This explains the relatively smaller differences in increase of speedup when increasing
the number of processors. Increasing speculation depth too much for a high number of processors (5 or 6
processors, speculation depth 76 tasks) even leads to a decrease in speedup. This can be explained from the
larger sequences of cascaded rollbacks.

Simulation results 33

10%

0% 4—

speculatioi depth

Scheduling in Multi-X — a performance evaluation

—+- 1 processor

—.— 2 processors

3 Processors

—,— 4 p cesors
——5 prOcessors

——6 proce!j

Figure 17 Idle time as a function of speculation depth

All measurements on first-come-first-serve scheduling were taken with an average number of cycles per
instruction. With a different cache-hit ratio, this number of cycles per individual instruction will change (see
"Equation 2 Calculating instruction execution time" in section 4.2.1). However, cache-hit ratio for first-come-
first-serve scheduling is not expected to change very much compared to single-processor architecture. There are
no reasons to assume cache-hit ratio will deteriorate. At the same time, we have not taken any precautions to try
to increase cache-hit ratio. For this reason, first-come-first-serve scheduling is expected to give similar results,
even if the scheduling simulator is linked to the cache simulator.

After having investigated optimal scheduling and first-come-first-serve scheduling, it is clear that Tikekar's
algorithm has more performance potential than Hjalmarson's algorithm. The same conclusion can be draw from
results of the prototype's implementation. Therefore, only Tikekar's algorithm is used for testing function-based
scheduling and source-based scheduling.

5.3 Function-based scheduling

The goal of function-based scheduling is to avoid unnecessary rollbacks by examining what functions a task will
execute. If two tasks share a function, it is likely that they share variables and cause a data collision. Let us
assume we can foresee all functions that every task will execute. In fact, this assumption means the scheduler
can predict functions to execute perfectly. Perfect prediction is not feasible, but the assumption is fair since more
than 75% of all tasks only executes one function; see Figure 18. The first function to execute is always known
from the initiating signal.

Simulation results 34

25% — - -

20%

15%

5%

12 28 44 60 76

2 3 4 5 6 7 8 9 10 >10

number of functions per ta*

Figure 18 Distribution of number of functions per task

Less than 25% of all tasks executes more than one function and some functions might be executed several times.
The number of unique functions executed per task support the assumption even better; see Figure 19.

Figure 19 Distribution of number of unique functions per task

If all functions to execute are known in advance, a simple scheduling rule can be formulated: "a task can start
execution if it does no: share a function with any older uncommitted task". With perfect prediction, this way of
scheduling will not cause a single rollback. Note that this way of scheduling is deadlock free, since the oldest
task is always executable and will not be rolled back. Results of this simulationare shown in Figure 20, where
function-based scheduling is compared to the other ways of scheduling. As mentioned, we only test Tikekar's
algorithm. Only a speculation depth of 12 tasks was tested; this resembles the level of speculation used in the
prototype's implementation.

Scheduling in Multi-X — a performance evaluation

76.07

70

60

40
30

20. 12.48

0
0.21 1.52 0.23 1. 0.16 1.99

80 76.07

70

60

:50
40

20

10

0-——

14.42

0.16 0.03 0.00

1 2 3 4 5 6 7 8 9 10 >10

number of unique functions per thc

Simulation results 35

Scheduling in Multi-X — a performance evaluation

::
25

F1
05

00
1 2 3 4 5 5

,9aaibst

Figure 20 Comparison of scheduling for Tikekar's algorithm with a speculation depth of 12 tasks

As expected, function-based scheduling with perfect function prediction does not lead to any rollbacks. For two
processors, function-based scheduling gives a good result, similar to first-come-first-serve scheduling. Note that
first-come-first-serve scheduling with Hjalmarson's algorithm does not outperform function-based scheduling
with Tikekar's algorithm up to three processors. Speedup for function-based scheduling is limited if more than
two processors are used. The reason for this is shown in Figure 21; idle time increases drastically since too many
tasks are not executable. In fact, this way of scheduling proves once more that speedup for speculative execution
is limited to a significant degree when resources are locked [72].

6691%

40%

Z
2 —*-- iw,i-om.qv-,.,vs

mas, o(,.c

Figure 21 Comparison idle time Tikekar's algorithm with a speculation depth of 12 tasks

Somehow, we have to relax locking restrictions. An obvious way to do this is to lock functions that often cause
data collisions but to allow execution for functions that rarely cause data collisions. As a first step, data
collisions in first-come-first-serve scheduling were analysed. This was done for Tikekar's scheduling algorithm,
a speculation depth of 12 tasks and two processors. The two-processor case was chosen to ease analysis of
colliding functions; for three processors it is not always clear what functions caused a data collision in cascaded
and repeating rollbacks. Table 3 shows some statistics on the data collisions in this simulation.

Simulation results 36

Scheduling in Multi-X — a performance evaluation

total number of collisions
number of collisions, without repetitions

2,557
715 (28%)

total number of functions installed
total number of functions used in recording
number of functions that cause at least one collision in this recording
number of functions that never collide in this recording

899
299

51 (17%)
248 (83%)

total number of function calls
number of calls to functions that never collide
number of calls to functions that collide at least once

28,047
8,172 (29%)

19,836 (71%)

number of collisions on single variables and single arrays
number of collisions on arrayed structure variables

578 (81%)
137 (19%)

Table 3 Some statistics on data collisions

Since rolled back tasks are re-started as soon as possible, these tasks might collide again with the same task it
collided with earlier. The first data collisions only constitute 28% of all collisions. It is these first data collisions
we focus on in Figure 22. By trying to avoid the first data collisions, repeating collision will not occur. Figure 22
shows the collision frequency for the 25 functions that collide most often. Collision frequency is defined as the
quotient between the number of times afunction causes a data collision and the total number of data collisions'.
Note that these 25 functions constitute 91% of all data collision, the first 10 functions cause 68% of all data
collisions. Single variables and single arrays cause 81% of all data collisions, while these constitute only 42% of
all variable references (see "Table 2 Some statistics on the pre-processed data" in section 4.2.4). Arrayed
structure variables are referred most often (58%), but only cause 19% of all data collisions.

115

10
U

5

308 306
266 2.52

2.24 210 2.10 1.96 1.82 1.82 1.82 1.82 1.68 1.54
1.12 0.98 0.96 0.98 0.84

,s,,,,,,, q$,,,o,, 1/i? $c4/
ncd

Figure 22 Collision frequency for functions in recording

The information in Figure 22 can be used for making scheduling decisions. For now, this list is static but can
later be build up and maintained during run-time, resulting in a dynamic scheduling algorithm. The scheduling
rule is extended by allowing all functions that have a collision frequency below a certain limit to execute. Results
on speedup on shown in Figure 23. The dashed line is added for comparison and indicates speedup for first-
come-first-serve scheduling.

Simulation results 37

25

20

10.07

6.99 6.85

4.34

a.

I

Figure 23 Speedup as a function of allowed collision frequency

Scheduling in Multi-X — a performance evaluation

A number of unexpected results were found in Figure 23. Firstly, the difference between 'no allowed collision
frequency' and an allowed collision frequency equal to 0. This is explained from the statistics in Table 3. No
allowed collision frequency results in a speedup exactly equal to plain functional scheduling. A collision
frequency equal toO does allow the 29% of calls to functions that never collide to execute. This results in a
higher speedup. Secondly, the difference between first-come-first-serve scheduling and an allowed collision
frequency equal to 25.0. This should result in equal speedup, since the collision frequency allows all tasks to
execute. The only difference between this way of function-based scheduling and first-come-first-serve
scheduling is the way tasks are extracted from the FIFO queue. For function-based scheduling, the scheduler
looks ahead in the queue as far as the level of speculation allows. This is beyond the limit of 10 tasks in first-
come-first-serve scheduling (see section 4.2.1, "What traffic data is needed"). A possible explanation for the
increase in speedup is the following hypothesis. The increased look-ahead capability of the scheduler causes
more distinct transactions to reside in the actual (enlarged) queue than first-come-first-serve scheduling. This
increases the number of distinct functions used, since different transactions most likely use different services (i.e.
functions). This, in its turn, reduces rollback frequency and increases execution time. This is supported by the
data on "Appendix C Data on simulation results". If this hypothesis is correct, it implicitly also means that a
heavily loaded Multi-X system performs better than an under-loaded system (in speedup, assuming all tasks can
be processed in time)4.

Another unexpected result in Figure 23 is the overall path of the speedup curve. The curve was expected to
increase with the allowed collision frequency up to a certain maximum, the optimum collision frequency, and to
decrease beyond this maximum. From Figure 24 it becomes clear that idle time does decrease when the allowed
collision frequency increases. However, rollback frequency does not increase monotonously. By increasing the
allowed collision frequency from 4.0 to 5.0, rollback frequency decreases from 11% to 9%.

41n fact, Wall [70] discovered the same, but reasoned the other way around: performance is restricted because of the limited
number of instructions in the scheduler's pool.

Simulation results 38

1.86
1.848

no 0 0.5 1.0 2.0 3.0 4.0 5.0 10.0 15.0 25.0

Scheduling in Multi-X — a performance evaluation

25%— - - 14% -

I

__

0 0.5 1.0 2.0 3.0 4.0 5.0 10.0 15.0 25.0 no 0.0 0.5 1.0 2.0 3.0 4.0 5.0 10.0 15.0 25.0

alIo.d collläon fr.qu.ncy aIIcwsd coINon k.qu.ncy

Figure 24 Rollback frequency (left) and idle time (right) as a function of allowed collision frequency

This behaviour can be explained by comparing Figure 25 to Figure 22. Usage in Figure 25 is defined as the
quotient of the number of tasks using that function and the sum of unique functions per task. By increasing the
allowed collision frequency from 4.0 to 5.0, the functions LOAS and MBLOC are allowed to execute without
waiting. The former function is not used that often (2l in Figure 25), the latter is one of the most frequently
used functions (2'' in Figure 25). By allowing MBLOC to execute without waiting, we release a frequently used
function that leads to relatively few rollbacks. Since MBLOC is allowed to execute without waiting, the relative
chance for other tasks to collide decreases which shows in Figure 24.

9%

8.1%
8%

7%

6.3%

6% -

5.2%

5% -
3.9%

4% —.
- 3.5%

3.0%
3%

2.5% 2.5%
-- 2.3% 2.2%

- •
2% - -

$ 4' '?Qi, ,G Q

Figure 25 Distribution of the 25 mostly used functions

In fact, Figure 22 lists an absolute collision frequency. Instead, collision frequency should be expressed relative
to the usage of a function. Relative collision frequency is defined as 'the quotient of the number of times a
function leads to a data collision and the number of times afunction is used by tasks'. Every function is only
counted once per task, even if a function is used several times in a task or leads to several data collisions for that
same task. This results in Figure 26. The list is similar to Figure 22 but sorted differently. As the absolute
collision frequency, this list is static but can later be built up and maintained at run-time. There is an initialisation
problem, which also shows in Figure 26. The first function CCD is used only three times and causes one
rollback; this means function CCD causes a rollback in 33% of all cases (as a comparison: the next function,
MTCDR, is used 150 times and leads to 49 rollbacks). We should first run the simulator for a while to build up a
list of relative collision frequencies before using it. For now, there is no more input data available and we ignore
this initialisation problem.

Simulation results 39

function n.m.

Figure 26 Relative collision frequency for functions in recording

Scheduling in Multi-X — a performance evaluation

The new results are shown in Figure 27. First-come-first-serve is added as a dashed line for comparison. Here,
we do see the expected curve with a top at a relative collision frequency of 20. Speedup is increased with 1%
compared to first-come-first-serve scheduling. But this also includes the extra speedup gained from a different
way of task extraction from the FIFO queue (as explained above).

Although speedup gain is very moderate, rollback frequency might be of more importance. The 1.840 speedup
for first-come-first-serve scheduling was achieved at a rollback frequency of 20.4%; the 1.859 speedup for
functional scheduling was achieved with only 15.0% rollback. If we had taken overhead into account in the
model, this lower rollback frequency would have caused a bigger difference in speedup. Rollback frequency is
shown in Figure 28. As expected, rollback frequency does increase monotonously with the allowed relative
collision frequency.

Simulation results 40

35.0
32.7

31.1

30.0

25.0
22.9

20.0

15.0

10.0

12.5
11.1 10.6 10.6

5.0

- 91-

7.3
6.7

6.0 5.8 5.8
5.1 49 4.8 45

-—lu-n, 4*

I

15 20

•lIcwd rslatlv co8lslon fv.qusncy

Figure 27 Speedup as a function of allowed relative collision frequency

Scheduling in Multi-X — a performance evaluation

allowed collilan frequency

Figure 28 Rollback frequency (left) and idle time (right) as a function of relative collision frequency

So far, we assumed perfect prediction. How will performance change when relaxing this assumption? Figure 29
shows results for a limited prediction of 1, 2 and 3 tasks. Every prediction itself is still perfect. E.g. a perfect
prediction, two ahead. In this case, up to two functions in a task can be foreseen without any error, but a third
function can not be foreseen at all.

30

0.0 -,

1 2 3 4 5 5

nuwbsr ci ,....c

Figure 29 Function-based scheduling with limited prediction

Limited prediction was expected to decrease performance. However, it increases performance since locking is
relaxed. No prediction mechanism is needed to implement function-based scheduling since the first function in a
task is always known from the initiating message. As a last measurement on function-based scheduling, a
simulation was done for the relative collision frequency approach without function prediction (i.e. perfect
prediction, 1 function ahead). Results are shown in Figure 30. The results are similar to Figure 27; the optimum
collision frequency is still at 20. Optimal speedup is exactly equal to Figure 27 and no price is paid for the
limited prediction. Both unlimited perfect prediction and limited prediction result in a 15.0% rollback frequency.
This is 5.4% below first-come-first-serve scheduling.

allowed collilon frequency

2.5

20

115

1.0

0.5

pwlscl prs,. 3 ciwed
pst.ct p's,. 2 th..d
— " 1 awed

Simulation results 41

I

Scheduling in Multi-X — a performance evaluation

Because of limited time, measurements for function-based scheduling have only been done for the two-processor
case and a speculation depth of 12 tasks. When increasing the number of processors, the collision frequency list
should be optimised for that case. Also, according to Figure 14 and Figure 17, speculation depth will have to
increase to avoid idle cycles caused by a limited level of speculation. Cache-hit ratio has not been investigated,
but might increase slightly if enough processors are available and the same task is assigned to the same
processor. When taking overhead into account, the difference between first-come-first-serve scheduling and
function-based scheduling is expected to increase in favour of function-based scheduling.

5.4 Source-based scheduling

The goal of source-based scheduling is to map individual subscribers to individual processors. Since every
subscriber has its own data, cache-hit ratio is expected to improve. Since different subscribers will use different
services in time, i.e. functions, source-based scheduling is also expected to decrease the number of rollbacks.
Balancing and maximising processor load is assumed not to raise too many difficulties.

To investigate the feasibility of source-based scheduling, the distribution of external messages from different
remote processors has been examined first. In this examination, it turned out that almost half of all transactions
are not initiated by a message from a remote processor but by a message from the operating system. These
transactions are used for various administrative purposes. We call these transactions operating system
transaction, as distinct from real traffic transactions. Table 4 gives some statistics (compare "Table 2 Some
statistics on the pre-processed data"). Although operating system transactions constitute 48% of all transactions,
all tasks directly or indirectly started by an operating system message are only 13% of the total number of tasks.
Furthermore, these tasks are small; the sum of all cycles of these tasks is only 6% of all traffic. Based on these
observations it can be concluded that operating system transactions will not disturb the concept of source-based
scheduling very much.

Simulation results 42

nO 0 5 10 15 20 25 30 35

Iowed rsIativs coflhson frequency

Figure 30 Speedup as a function of allowed relative collision frequency with no prediction

Scheduling in Multi-X — a performance evaluation

total number of transactions
total number of transactions initiated from a remote processor
total number of OS transactions

2,672
1.383 (52%)
1,289 (48%)

average number of tasks per OS transaction
total number of tasks in recording
number of OS tasks

1.42
14,045

1,827 (13%)

total number of cycles in recording
number of OS cycles

8,078,187
474,151 (6%

Table 4 Some statistics on operating system transactions

Remote processors serve several devices and every device serves several subscribers. Internally, remote
processors are organised in several software modules. Mostly, module-device mapping is one-to-one or one-to-
many, but in some situations several modules can serve one device [19]. From the recordings used here, both
initiating remote processors and its module could be derived for 75% of all externally generated (traffic)
messages. An even finer-grained mapping from external message to device or subscriber could not be traced
back. The module-device mapping is specific for every switching system configuration and could not be
recovered for the recordings used. Figure 31 shows the results for the remote processor ids. Apart from some
exceptions, load seems to be distributed fairly well. Even load in time was analysed for a number of individual
remote processors. This distribution proved to be quite fair too.

20

0

RP nwnbs

Figure 31 Distribution of external signals from remote processors

For source-based scheduling we will base scheduling decisions on the combination of remote processor Id and
module id. Once the first task in a transaction is assigned to a processor, all following tasks in that transaction
will be assigned to the same processor. This will exploit cache affinity for that processor. The key combination
of processor id and module id was fairly unique for the given input data. Only 11 times, two consecutive
transactions had the same key. Based on this knowledge, the following scheduling rule was formulated and
implemented: "for every external message, start its task on the least loaded processor". Note that specific
remote processor or module information is not included in this rule and that this rule does not make a difference
between operating system transactions and real traffic transactions. At the later stage, this might be added, e.g. to
exploit cache affinity even better. Processor load is defined as 'the number of uncommitted task that have run or
are runningon that processor'. At any time, there is at most one task running on every processor. Tasks that
have run on a processor are either ended successfully and wait for commit or have been rolled back and wait for
the processor to become available. We count tasks waiting for commit to the load since these tasks might be
rolled back later. Note that this way of scheduling cannot lead to deadlocks since every task is assigned to a
processor and the oldest task will never be rolled back. Results are shown in series "source-based, speculation
depth 12" of Figure 32. As a first step, a maximum speculation depth of 12 was used as in the Multi-X prototype.

Simulation results 43

80-

I

l0

— *88 Sa a as

Scheduling in Multi-X — a performance evaluation

In the simulations for source-based scheduling, cache-hit ratio cannot be measured. However, we can measure
rollbacks and test the assumption that load balancing is fair.

2 3 4 5 6

Figure 32 Speedup for source-based scheduling

The results for source-based scheduling are disappointing. Speedup is much lower than first-come-first-serve
scheduling. The main cause for this behaviour is load imbalance, as shown in series "source-based, speculation
depth 12" of Figure 33. Here, the four-processor case is depicted. For every processor, the number of non-idle
cycles is compared to the average number of non-idle cycles. The last column shows the absolute average for all
four processors.

Dhrst-come-t,rst-serve •source-based, speculation depth 12

Osource-based, speculation depth 12. renewed load balanCinQ 0 source-based, speculation depth 28

Figure 33 Load balancing for source-based scheduling compared to first-come-first-serve for 4 processors

If several processors are idle, the next task is scheduled at the lowest processor number. This explains the high
figures for processor one and the low figures for processor four. Even first-come-first-serve scheduling has 1%

Simulation results 44

25

2.0

I
1.5

1.0

0.5

number o procssws

—e--tome-trsl-setve —— source-based. speculation depth 12

source-based, speculation depth 12. renewed load balancing -*- source-based, speculation depth 28

15%

20%

15%

10%

5%

0%

I

I

I

12%
3%

- 9%
8%

4%

0%-U'
-1%

-15%

seerage (absolute)

Scheduling in Multi-X — a performance evaluation

load imbalance; this is only due to the fact that processors remain idle at the very last part of the simulation when
there are no more tasks to be scheduled. Why does source-based scheduling lead to an unbalanced load? After
detailed analysis, it turned out that this is mainly caused by the limit on speculation. Whereas a limit in
speculation depth caused many idle cycles for first-come-first-serve scheduling, the penalty for source-based
scheduling is even worse since follower tasks are automatically assigned to the parent task's processor. The total
idle time is increased compared to first-come-first-serve scheduling; see series "source-based, speculation depth
12" of Figure 34.

60%

50%

40%

20%

10% -

0%

1 2 3 4 5 6

number of pocessos

-* twstcome-tirstserve —U-- Sourcebased. Speculation depth 12
source-based, speculation depth 12. renewed k3ad balancrig —ir--source-based, speculation depth 28

Figure 34 Idle time for source-based scheduling compared to first-come-first-serve scheduling

Is it possible to refine the load-balancing rule? In the current rule, the contents of the FIFO queue is not taken
into account. Here, a lot of follower tasks might reside which have already been assigned to a specific processor.
Therefore, the definition of processor load was restated to 'the number of uncommitted task assigned to that
processor'. This includes all tasks; those that have been running, are running and will run on a processor. Results
are shown in series "source-based, speculation depth 12, renewed load balancing" in Figure 32, Figure 33 and
Figure 34. Load balancing is improved and idle time decreases, but the increase in speedup is not substantial.
The reason is shown in Figure 35; the number of rollbacks and wasted time increases with the new load
balancing rule. With four processors, wasted time is much less than for first-come-first-serve scheduling but
speedup is restricted too much by the number of idle cycles. Wasted time seems to decrease for a larger number
of processors. This is only caused by the fact that wasted time is expressed relative to the total number of cycles.
In absolute terms, the number of wasted cycles did increase monotonously with the number of processors.

Simulation results 45

Scheduling in Multi-X — a performance evaluation

35%

30%

25%

number of processors

—S—first-come-first-serve —U- source-based, speculation depth 12
source-based. speculation depth 12. renewed load balancing —*— source-based. Speculation depth 28

Figure 35 Wasted time for source-based scheduling compared to first-come-first-serve scheduling

Another solution to decrease load imbalance is to enlarge speculation depth. Results are shown in series "source-
based, speculation depth 28" in Figure 32, Figure 33, Figure 34 and Figure 35. The increase in speculation depth
improves load balancing, but a high price is paid in wasted time. Resulting speedup does not come up to first-
come-first-serve scheduling for a speculation depth of 12 tasks.

From these measurements, it can be concluded that load-imbalance does lead to a deterioration in performance.
Even if cache affinity can be exploited and measured, a 30% increase in performance is needed to come to the
same speedup as first-come-first-serve scheduling. It is very doubtful if this can be accomplished. The
underlying cause for load imbalance is not an uneven distribution of tasks from remote processors. This
distribution proved to be balanced both in time and in space (Figure 31). Limits on speculation depth proved not
to be the real problem either. The real reason seems to be the strict task ordering combined with the fact that
every follower is sent to the same processors as its initiator. The latter demands a higher speculation depth. The
former causes larger sequences of cascaded rollbacks, resulting in an increased wasted time. Source-based
scheduling was also expected to lead to a decrease in rollbacks. This assumption seems to be supported by
results in Figure 35. However, when comparing similar speedup, the assumption does not hold. E.g., speedup is
1.84 for first-come-first-serve scheduling with two processors and a speculation depth of 12 tasks. This leads to a
rollback frequency of 20.4%. For source-based scheduling with 3 processors and the same level of speculation, a
speedup of 1.82 and 1.85 is achieved by the two ways of load balancing. For these figures, rollback frequency is
21.6% and 20.7% respectively; similar to first-come-first-serve scheduling (see "Appendix C Data on simulation
results" for detailed data).

Simulation results 46

Scheduling in Multi-X — a performance evaluation

6 Conclusions

In this chapter, some conclusions on this thesis work are formulated. Section two summarises results from
measurements. Section three present some general conclusions on scheduling and Multi-X. In the first section,
the main design decisions are evaluated.

6.1 Evaluation of design decisions

After having explored scheduling in chapter 3, a number of design decisions have been made on measuring the
proposed ways of scheduling. The most important design decisions were: the choice to implement a simulator
using live traffic data as input; the simplifications not to link this scheduling simulator to the cache simulator and
not to take into account any overhead; the way timing information is reconstructed from the input data.

1. The decision to implement a simulator was based on a number of arguments, which proved to hold
throughout this thesis project. Implementing scheduling algorithms in the Multi-X prototype would not have
been possible. The prototype has only recently been proved to process a low traffic load correctly. Platform
stability and measurability are still problematic. Furthermore, it would not have been possible to test new
ideas like control speculation for function-based scheduling. The traffic data used as input to the simulator
proved to be much more complex than expected. A great deal of time has been spent on extracting the right
information and verifying the resulting data. The resulting data let to a better understanding of
multiprocessor issues. E.g., single variables and single arrays turned out to cause by far most data collisions.
These insights would have been missed if scheduling algorithms were evaluated using a mathematical
model.

2. It was decided not to link the scheduling simulator to the cache simulator. The reasons for this were to avoid
dependencies on the thesis project resulting in the cache simulator and the time needed to implement and
(re-) measure performance. It would have been interesting to see performance results with cache simulation.
However, for the reasons mentioned the simplification was mainly forced and hard to avoid. Overhead was
not taken into account for two reasons: it was hard to quantify overhead; and we want to measure the plain
performance of scheduling without any disturbances. The simplification in overhead made it easy to
implement the simulator and analyse its results. Taking into account overhead would have led to fewer
results. At this moment, it is fairly well decided in what way the prototype will be implemented; it should be
possible by now to quantify overhead. The plain performance without overhead is described in this report.
These results are very useful, but are only a first step towards the understanding of scheduling in Multi-X.

3. From the live recordings, no timing information could be extracted. To solve this problem, instruction
execution times were taken from statistical information. Internal messages are inserted in the FIFO queue as
soon as the initiating task commits; as in the Multi-X prototype. External messages are inserted in the FIFO
queue as soon as the number of messages in the queue drops below a certain limit. The limit was set high, so
a high traffic load is simulated. In fact, throughput is measured this way because the queue is never empty.
This might result in too pessimistic figures for speedup. In reality, there will be intervals in time whereno
messages or very few messages reside in the FIFO queue. This means less data dependencies, which in its
turn leads to a higher speedup. Actually, speedup is hard to define in this case but should somehow be
related to system load. For the recordings used throughout this report, the real system load was only 35%.
Obviously, compressing time the way done here has led to data dependencies that did not exist in reality;
e.g., two tasks residing at the same time in the FIFO queue. Then again, if 30% processor load is
representative, a multiprocessor system is superfluous. A multiprocessor system will in reality be loaded
with a higher number of transactions per second. One of the prerequisites for Multi-X is unmodified code;
i.e. unmodified traffic. The approach in this thesis is the best we can do for now. At a later stage,
performance should be measured with various limits in the number of FJFO-tasks and with various time
intervals for the insertion of externally generated messages.

6.2 Results from measurements

Four ways of scheduling were investigated in this thesis project; optimal scheduling in order to define a
theoretical upper bound on performance and three practical algorithms. Not all combinations ofparameters could
be measured because of limited time. A lot remains to be measured; e.g. overhead, cache performance, other
types of traffic, other speculation depths for functional scheduling, variable queue length.

Conclusions 47

Scheduling in Multi-X — a performance evaluation

1. Optimal scheduling was measured for both data collision detection algorithms. Hjalmarson's algorithm
resulted in a speedup of 2.47. Tikekar's algorithm resulted in a maximum speedup of 6.63. With a
speculation depth limited to 12 tasks, maximum speedup dropped to 3.18. These results are somewhat
disappointing since no overhead is taken into account and optimal scheduling assumes an infinite look-
ahead capability of the scheduler.

2. First-come-first-serve scheduling is used at this moment in the prototype. It is easy to implement and does
not lead to much extra scheduling overhead. Configurations from one up to six processors were measured.
Speedup for Hjalmarson's algorithm comes up to 92% of optimal scheduling. Tikekar's algorithm comes up
to 88% of optimal scheduling, for a speculation depth of 12 tasks. These figures are for six processors. In
reality the optimal number of processors will be lower, probably four. Since we do not take overhead into
account, speedup saturates with a high number of processors, where it would decrease in reality. Tikekar's
algorithm proved to perform better, both in the simulations done here and in the prototype's implementation.
Therefore, all other measurements have been done on this algorithm only. The level of speculation in the
Multi-X prototype is currently set to 12 tasks. Simulations show that an increase in speculation does not lead
to a large increase in performance. Only for more than three processors, we see an increase in speedup when
increasing speculation depth to 28 tasks. Increasing speculation depth beyond 28 tasks will not pay off in
real implementations.

3. Function-based scheduling is an attempt to avoid unnecessary rollbacks by examining what functions will be
executed in a task. Simulations proved that knowing the first function to execute is sufficient for
implementing function-based scheduling. This first function can easily be traced from the initiating
message. No (software) control predicting mechanisms are needed. Function-based scheduling led to a very
moderate increase in speedup of 1% compared to first-come-first-serve scheduling. More importantly,
rollback frequency was decreased substantially. This will increase function-based scheduling performance
when overhead is taken into account. Even cache-affinity might lead to some extra performance gains. The
proposed method for implementing function-based scheduling is a dynamic collision frequency list. This can
be implemented with a fairly low overhead.

4. The idea behind source-based scheduling is to map individual subscribers to individual processors. This was
expected to increase cache-hit rates and decrease the number of rollbacks. Balancing load was assumed not
to raise many difficulties. Simulations show these assumptions to be incorrect. The number of rollbacks did
not decrease when comparing speedup similar to first-come-first-serve scheduling. Load balancing does lead
to problems, expressed either in a high number of idle cycles or a high number of wasted cycles. Source-
based scheduling is dissuaded unless traffic dimension changes or cache affinity can increase performance
by 30%. The former was discussed in the last part of section 6.1. The latter is not likely to be realised.

When comparing performance of the scheduling algorithms, first-come-first-serve scheduling performs very
well. Ideas from function-based scheduling can be additive to first-come-first-serve. The resulting performance
is quite near optimal scheduling. It will be hard to come closer to optimal scheduling, since this algorithm
assumed an infinite look-ahead impossible to implement.

6.3 General conclusions, discussion and future topics

A number of general conclusions can be formulated:

I. This simulation was the first simulation of the Multi-X model with all relevant parameters included.
Theoretically, the concept has been proved to hold. But is it possible to use the concept in a real
implementation? This will mostly depend on the overhead induced by speculative execution. Let us make
some rough estimation. From "Table 2 Some statistics on the pre-processed data", it becomes clear that 35%
of all instructions refer to a variable. All these instructions have to use the data collision detection algorithm.
This means that every single read or write instruction expands to at least six instructions: one to get a lock;
one to read the marker field; one to classify the operation from the collision detection algorithm; one to
write the marker field; one for the actual read or write; and one to release the marker field lock. An APZ CP
instruction takes on average 5 cycles. Let us assume the extra five instructions can be implemented
efficiently and optimised by cache affinity, resulting in I cycle execution time for each instruction. Then
every 100 instructions, i.e. 500 cycles, expand to 675 cycles. This is still without any overhead on rollback.
commit and scheduling. Let us assume we use four processors and a level of speculation of 12 tasks. This

Conclusions 48

Scheduling in Multi-X — a performance evaluation

leads to 16% wasted time in our measurement. This can be improved by function-based scheduling, let us
assume down to 10%. Then the original 500 cycles expand to approximately 750 cycles. A 50% overhead
with optimistic assumptions! The original speedup will therefore halve from 2.68 to 1.34. Of course, a lot of
assumptions have been made here and figures have to be checked. But it does point out that expectations
should not be set too high. Although 35% increase in real performance is not much, it is gained without
changing any other application code and using commercially available components. If the goal is doubling
APZ CP performance every third year, Multi-X is one step towards that goal. A step relatively cost effective
and fast to implement. Furthermore, it is one step towards a new multiprocessor architecture [65]. New
application code can be implemented with this architecture in mind, whereas existing application code is
able to run without changes.

2. From measurements done here, it becomes clear that scheduling should really be seen as an optimisation.
Only a moderate performance increase can be accomplished by scheduling. Other parameters (see "Figure 6
Relation of scheduling to other parameters in the Multi-X prototype") are much more important than
scheduling. E.g., the difference between Hjalmarson's algorithm and Tikekar's algorithm for the 'collision
detection algorithm' parameter. Even an efficient implementation will probably lead to more performance
gains than an advanced scheduling algorithm.

3. Source-based scheduling resulted in poor performance caused by load imbalance. Clearly, scheduling is too
restricted by the task numbering used in the Multi-X model. This numbering virtually dictatessome form of
first-come-first-serve scheduling, since it does not allow changing execution order. In (real-time) database
literature, similar problems are known and analysed [15, 54]. Here, many constrains are artefacts. This
results in an over-constrained and infeasible scheduling problem. In the Multi-X model, task numbering
allows for a relatively easy implementation. At the same time, the induced task ordering is clearly more
restricted than strictly necessary. Can task ordering be relaxed in the Multi-X model?

4. With function-based scheduling some performance was gained. This was achieved by analysing traffic
behaviour and translating that knowledge to scheduling rules. There is still a lot to investigate on traffic
behaviour. E.g., can variables that cause data collisions be classified more precisely? Where in the tasks are
references done? Can this be exploited when scheduling new tasks?

Conclusions 49

Scheduling in Multi-X — a performance evaluation

References

I. Robert K. Abbot, Hector Garcia-Molina. Scheduling Real-Time Transactions: A Performance Evaluation. ACM
Transactions on Database Systems. Vol. 17, No. 3, September 1992.

2. Gene M. Amdahl. The Validity of the Single Processor Approach to Achieving Large Scale Computing
Capabilities. AFIPS Conference Proceedings, pp. 483-485, 1967.

3. Naser S. Barghouti, Gail E. Kaiser. Concurrency Control in Advanced Database Applications. ACM Computing
Surveys, Vol. 23, No. 3, September 1991.

4. Philip A. Bernstein, Eric Newcomer. Principles of Transaction Processing. Morgan Kaufmann Publishers, 1997.

5. Thomas L. Casavant, Jon 0. KuhI. A Taxonomy of Scheduling in General-Purpose Distributed Computing Systems.
IEEE Transactions on Software Engineering, Volume 14, Number 1, January 1988.

6. Chalmers University of Technology. High-Performance Computer Architecture Group. URL:
hitp:I/www.ce.chalmers.sel—casel.

7. Michael K. Chen, Kunle Olukotun. Exploiting Method-Level Parallelism in Single-Threaded Java Programs.
Proceedings of the International Conference on Parallel Architectures and Compilation Techniques, Paris, France,
October 12-18, 1998.

8. John G. Cleary, Richard H. Littin, J.A. David McWha, Murray W. Pearson. Constraints on Parallelism Beyond 10
Instructions Per Cycle. University of Waikato, New Zealand, Report No: 97/27, 1997.

9. John G. Cleary, Murray W. Pearson, H. Kinawi. The Architecture of an Optimistic CPU: The WarpEngine.
Proceedings of the Hawaian International Conference of System Science, Hawaii, USA, Vol. 1, pp. 163-172,
January 1995.

10. David E. Culler, Jaswinder Pal Singh, Anoop Gupta. Parallel Computer Architecture - a Hardware/Software
Approach. Morgan Kaufmann Publishers, 1999.

11. Sascha Dierkes, Ludger Frese. Load Balancing with a Fuzzy Decision Algorithm: Description of the Approach and
first Simulations. University of Dortmund, Chair for Computer Science I, June 20, 1995.

12. Niklas Dykstrom. Undersokning av parallelt exekverbara trddar i AXE IO-tillampningar. Kungliga Tekniska
Hogskolan, NADA. 1999.

13. Johann Eder, Walter Liebhart. Workflow Transactions. In: P. Lawrence (ed.) - Workflow Handbook 1997.
Handbook of the Workflow Management Coalition WfMC., Wiley & Sons, pp 195 — 202, 1997.

14. Johann Eder, Euthimios Panagos, Michael Rabinovich. Time Constraints in Workflow Systems. In: M. Jarke, A.
Oberweis (eds.): Advanced Information Systems Engineering, 11th International Conference, CAiSE99, Springer
Verlag, LNCS 1626, Heidelberg, Germany, pp. 286-300, June 1999.

15. Cecilia Ekelin, Jan Jonsson. Real-Time System Constraints: Where do They Come From and Where do They Go?
Proceedings of the International Workshop on Real-Time Constraints, Alexandria, Virginia, USA, October 1999.

16. Ericsson Telecom AB. AXE 10 Architecture Description. Ericsson Internal, No.: ENILZ 101 1845-R2, 1995.

17. Ericsson Telecom AB. AXE Survey. The platform and the applications. Ericsson Internal, 1998.

18. Ericsson Telecom AB. Plex-C I. Ericsson Internal, No.: EN/LZT 101 1279 R5A, 1997.

19. Ericsson Telecom AB. Plex-C2. Ericsson Internal, No.: EN/LZF 101 1280 R4A, 1997.

References 50

Scheduling in Multi-X — a performance evaluation

20. Marco Fillo, Stephen W. Keckler, William J. Daily, Nicholas P. Carter, Andrew Chang, Yevgeny Gurevich, Whay
S. Lee. The M-Machine Multicomputer. Proceedings of the 28th Annual International Symposium on
Microarchitecture, Ann Arbor, Michican, USA. 1995.

21. John L. Gustafson. Reevaluating Amdahl's Law. Communications of the ACM (CACM), Volume 31, Number 5,
pp. 532-533, May 1988.

22. Babak Hamidzadeh, David J. Lilja. Dynamic Scheduling Strategies for Shared-Memory Multiprocessors.
Proceedings of International Conference on Distributed Computing Systems, May 1996.

23. Lance Hammond, Ben Hubbert, Michael Siu, Manohar Prabhu, Mike Chen, Kunle Olukotun. The Stanford Hydra
CMP. IEEE MICRO Magazine, March-April 2000.

24. Lance Hammond, Mark Willey, Kunle Olukotun. Data Speculation Support for a Chip Multiprocessor.
Proceedings of the 8th ACM Conference on Architectural Support for Programming Languages and Operating
Systems, San Jose, California, USA, October 1998.

25. John L. Hennesy, David A. Patterson. ComputerArchitecture - A Quantitive Approach. Morgan Kaufmann
Publishers, 1996.

26. Tomas Hjalmarson. Multi-X Data Structures and Algorithms. Ericsson Internal Document, No.: UAB/M/U-99:005,
October 1999.

27. Tomas Hjalmarson, Nikhil Tikekar, Lars-Ake Johansson. Multi-X August 1999 Report. Ericsson Internal
Document, June 1999.

28. Per Holmberg, Nils Isaksson. APZ 21230— Ericsson's new high-capacity AXE central processor. Ericsson
Review, No. 3, 1999.

29. Quinn Jacobson, Steve Bennett, Nikhil Sharma, James E. Smith. Control Flow Speculation in Multiscalar
Processors. International Conference on High Performance Computer Architecture, February 1997.

30. Lars-Ake Johansson. Load Distribution in Multiprocessor System. Ericsson Internal Report, No.: UABIMJL-
99:043, November 1999.

31. M. Johnson. Superscalar Microprocessor Design. Prentice-Hall, 1991.

32. Iffat H. Kazi, David J. Lilja. JavaSpMT: A Speculative Thread Pipelining Parallelization Model for Java
Programs. Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS), May 2000.

33. Stephen W. Keckler, William J. Daily. Processor Coupling: Integrating Compile Time and Runtime Scheduling for
Parallelism. 19th Annual International Symposium in Computer Architecture, Queensland, Australia, 1992.

34. Robert M. Keller. Look-Ahead Processors. Computing Surveys, Vol. 7, No. 4, December 1975.

35. C.M. Krishna, Kang G. Shin. Real-Time Systems. McGraw-Hill, 1997.

36. Ganesh Lakshminarayana, Kamal S. Khouri and Niraj K. Tha. Wavesched: a novel scheduling technique for
control-flow intensive behavioral descriptions. Proceedings of the 1997 IEEE/ACM International Conference on
Computer-Aided Design, San Jose, California, USA, November 9-13, 1997.

37. Monica S. Lam, Robert P. Wilson. limits of Control Flow on Parallelism. Proceedings of the 19th Annual
International Symposium on Computer Architecture, Gold Coast, Australia, May 19-21, 1992.

38. Jack L. Lo, Susan J. Eggers. Improving Balanced Scheduling with Compiler Optimizations that Increase
Instruction-Level Parallelism. Proceedings of the ACM SIGPLAN95 Conference on Programming Language
Design and Implementation (PLDI), La Jolla, California, USA, June 18-2 1, 1995.

References 51

Scheduling in Multi-X — a performance evaluation

39. C. Mohan. Recent Trends in Workflow Management Products, Standards and Research. Proceedings of NATO
Advanced Study Institute (AS!) on Workflow Management Systems and Interoperability, Istanbul, August 1997.

40. Johan Montelius. Exploiting Fine-grain Parallelism in Concurrent Constraint Languages. PhD Thesis, Computing
Science Department, Uppsala University, May 1997.

41. Andreas Moshovos, Scott E. Breach, T. N. Vijaykumar, Gurindar S. Sohi. Dynamic Speculation and
Synchronization of Data Dependences. Proceedings of the 24th International Symposium on Computer
Architecture, Denver, Colorado, USA, June 2-4, 1997.

42. Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann Publishers, 1997.

43. NEC Laboratories. MP98—A Mobile Processor. URL: http://www.Iabs.nec.co.jpfMP98.

44. Linh Nguyen. The Execution Times inAPZ2I2 20. Ericsson Internal, No.: 111551-CNZ 211 383 Uen, April 1996.

45. Nils J. Nilsson. Principles ofArtjficial Intelligence, Morgan Kaufmann Publishers, 1980.

46. Mehrdad Nourari, Christos Papachristou, Yoshiyasu Takefuji. A Neural Network Based Algorithm for the
Scheduling Problem in High-Level Synthesis. Proceedings of the IEEE European Conference on Design
Automation, Hamburg, Germany, September 7-10, 1992.

47. Kunle Olukotun, Jules Bergmann, Kun-Yung Chang, Basem A. Nayfeh. Rationale and Design of the Hydra
Multiprocessor. Stanford University Computer Systems Lab Technical Report CSL-TR-94-645, 1994.

48. Jeffery Oplinger, David Heine, Shih-Wei Liao, Basem A. Nayfeh, Monica Lam, Kunle Olukotun. Software and
Hardware for Exploiting Speculative Parallelism with a Multiprocessor. Stanford University Computer Systems
Lab Technical Report CSL-TR-97-715, February 1997.

49. Chris H. Perleberg, Alan J. Smith. Branch Target Buffer Design and Optimization. IEEE Transactions on
Computers, Volume 42, Number 4, April 1993.

50. Johan Petersson, et al. APZ-TOR: Dimensioning. Ericsson Internal Report, No.: 10/0062-I /FCP 105 306, January
1999.

51. Lennart Petterson. Overi'iew of the Multi-X Prototype. Ericsson Internal Report, No.: UAB/B/T-99: 189, November
1999.

52. Lennart Petterson. Project Speafication for Multi-X Stage 2. Ericsson Internal, No.: UABIB/X-99:397 Uen,
September 1999.

53. Mirco Porcari. Cache-Simulator of a MultiprocessorArchitectureforAxE CP. Master's Thesis, Chalmers
University of Technology, May 2000.

54. Krithi Ramamritham. Where do Time Constraints Come From and Where Do They Go? International Journal of
Database Management, Vol. 7, No. 2, Spring 1996.

55. Thomas Siljeströmer. ASA2JOC, General Assembler Instructions. Ericsson Internal, No.: 13/1551-ANZ 211 51
Uen, January 1995.

56. Thomas Siljesirömer. CPS Principles. Ericsson Internal, No.: 21155l-ANZ 211 60 Uen, January 1995.

57. Thomas Siljeströmer. Summary of Reference Information. Ericsson Internal, No.: 1/1551-ANZ 211 60 Uen,
September 1997.

58. James E. Smith. A study of branch prediction strategies. Proceedings of the 8th Annual Symposium on Computer
Architecture, pages 135-148, May 1981.

References 52

Scheduling in Multi-X — a performance evaluation

59. Gurindar S. Sohi, Scott E. Breach, T. N. Vijaykumar. Multiscalar Processors. 22th International Symposium on
Computer Architecture (ISCA-22), 1995.

60. Tan H. Soon, Robert de Souze. intelligent simulation-based scheduling of workcells: an approach. Integrated
Manufacturing Systems, Document No: 8/I [1997] 6-23, 1997.

61. Per Stenström. Architectural Trends for Shared-Memory Multiprocessors. 30th Hawaii International Conference on
System Sciences, 1997.

62. Per Stenstrom. Metoderfor effektivt utnyttjande av multiprocessorteknologi i transaktionsorienterade system.
Projektplan 2000-2001, Chalmers Tekniska Hogskolan, 1999.

63. Per Stenström, Erik Hagersten, David J. Lilja, Margaret Martonosi, Madan Venugopal. Trends in Shared-Memory
Multiprocessing. IEEE Computer, Vol. 30, No. 12, December 1997.

64. Sun Microsystems, Inc. MAJC'"' Architecture Tutorial. URL:
http ://www.sun.com/microelectronics/MAJC/documentation/docs/majctutorial .pdf, 1999.

65. Nikhil Tikekar. A Step by Step Migration Stazegy. Ericsson Internal Report, December 1999.

66. Nikhil Tikekar. Flexible Multiscalar Architecture. Ericsson Internal Note, December 1999.

67. Jenn-Yuan Tsai, Jian Huang, Christoffer Amlo, David J. Lilja, Pen-Chung Yew. The Superthreaded Processor
Architecture. IEEE Transactions on Computers, vol. 48, no. 9, September 1999.

68. Andrew Tucker. Efficient Scheduling on Multiprogrammed Shared-Memory Multiprocessors. PhD Thesis,
Department of Computer Science, Stanford University, Technical Report CSL-TR-94-601, November 1993.

69. Dean M. Tullsen, Susan J. Eggers, Henry M. Levy. Simultaneous Multithreading: Maximizing On-Chip
Parallelism. Proceedings of the 22' Annual International Symposium on Computer Architecture, Santa Margherita
Ligure, Italy, June 1995.

70. David W. Wall. Limits of instruction-Level Parallelism. Western Research Laboratory, Research Report 93/6,
November 1993.

71. David W. Wall. Speculative Execution and Instruction-Level Parallelism. Western Research Laboratory, Technical
Note TN-42, March 1994.

72. Fredrik Warg. A Platform for Evaluation of Multiprocessors in Throughput-Oriented Systems. Master's Thesis,
LuleA Tekniska Universitet, 1999.

73. Philip Yao. A study of evaluating parallel execution of existing non-parallel telecom applications. Master's Thesis,
Kungliga Tekniska Hogskolan, NADA, 1999.

74. Kelvin K. Yue, David J. Lilja. Designing Multiprocessor Scheduling Algorithms Using a Distributed Genetic
Algorithm System. University of Minnesota, Technical Report No: HPPC-96-03, May 1996.

References 53

Scheduling in Multi-X — a performance evaluation

Appendix A Collision detection algorithms

At this moment, two data collision detection algorithms have been proposed. The first section of this appendix
describes Hjalmarson's approach, which is mainly based on locking. The second section describes Tikekar's
approach. This algorithm was proposed at a later stage and is more aggressive by allowing a larger speculation
depth per variable. It is important to notice that all instruction in the APZ CP that access a variable are either
read instructions from one variable or write instructions to one variable. No instruction performs both a read and
a write and no instruction accesses more than one variable. Both algorithms mentioned below have been
simplified and only show the code relevant for this thesis.

Hjalmarson's algorithm

In Hjalmarson's algorithm, the marker field is defined as in Figure 36. The variable 'wcon' is set to the number
of the first task writing the data area of this marker field. The variable 'rcon' is set to the number of the first task
reading the data area of this marker field. Tasks are assigned a number circularly from I to 255. Value 0 is
reserved indicating 'no task'. The algorithm itself is described in Table 5 and Table 6.

struct marker {
unsigned char wcon;
unsigned char rcon;

Figure 36 Marker field for Hjalmarson'salgorithm

on write wcon
0 (unused) <own (older) = own (equal) > own (younger)

rcon

0 (unused) write wcon:
carry on

wait carry on rollback wcon;
wait<own (older)

= own (equal)
> own (younger) rollback rcon; rollback rcon; rollback rcon; rollback rcon and

write wcon; wait carry on wcon;
carry on wait

Table 5 Data collision detection algorithm at writing

on read wcon
o (unused) <own (older) = own (equal) > own (younger)

o (unused) write rcon; rollback wcon;
carry on wait

rcon <own (older) wait
= own (equal) carry on
> own (younger) rollback rcon; rollback rcon and

wait (optimisation to 'carry on' possible) wcon;
wait

Table 6 Data collision detection algorithm at reading

Tikekar's algorithm

In Tikekar's algorithm, marker fields are defined differently (Figure 37). The first variable is used to gain atomic
access when modifying the marker field or its data area. The variable 'oldestTaskNr' carries the number of the
oldest task accessing this data area. Task numbering is done as in Hjalmarson's algorithm. The displacement bits
indicate the other (younger) tasks that have accessed the field. E.g. if 'oldestTaskNr' is 34 and
'displacementB its' contains the pattern 0001 0000 1001, then this indicates that task 34 had read, 35 has
written and 38 has read this data area. The size of 'displacementBits' is linear to the level of speculation; 6 in our
example. The algorithm is listed in Figure 38.

Appendix A Collision detection algorithms 54

Scheduling in Multi-X — a performance evaluation

struct marker {
mt atomicAccess;
unsigned char oldestTaskNr;
unsigned char displacementBits[f(LEVEL_QF_spEctmATI0N)];

Figure 37 Marker field for Tikekar's algorithm

DATACOWSIONDEThCTIONTIKEKAR
I get atomic access
2 get action from Table 7 or Table 8
3 if action is 'proceed normal' then
4 perform required read or write operation
5 if the existing oldest TaskNr is older than own task number then
6 set the relevant displacement bits
7 else

8 left shift displacement bits with the difference between oldest TaskNr and own task number
9 overwrite oldestTaskNr with own task number
10 set relevant displacement bits
11 release atomic access
12 else
13 ifwritingthen
14 rollback all younger tasks that have read or written
15 else { reading
16 rollback all younger tasks that have written
17 start from beginning of algorithm
Figure 38 Tikekar's data collision detection algorithm

If only one of the actions in the tables is met then the corresponding action should be taken. If more than one
condition is met then rollback actions take priority.

write older than self younger than self empty
if others read bit set proceed normal initiate rollback of other proceed normal
if others write bit set proceed normal initiate rollback of other proceed normal

Table 7 Action table for writing

on read older than self younger than self empty
if others read bit set proceed normal proceed normal proceed normal
if others write bit set proceed normal initiate rollback of other proceed normal

Table S Action table for reading

Appendix A Collision detection algorithms 55

Appendix B Algorithms and proof for optimal scheduling

In this appendix, the algorithms and their proof of correctness is given for calculating optimal scheduling. The
first section is on Hjalmarson's algorithm, the second on Tikekar's. See "Appendix A Collision detection
algorithms" for a listing of these data collision detection algorithms.

Optimal scheduling for Hjalmarson's algorithm

OPTIMALHJALMARSON
input: A trace Tof tasks, sorted in time of original sequential execution. See section 4.2.1, "What traffic data

is needed" for the definition of the contents of a trace.
For every task v in T, the earliest commit time for v.output:

I (mit)
2 foreachtaskvinTdo
3 if the corresponding message is external then
4 cndtirne0
5 insertvinFlFOqueueq
6 Pcommi: time

7 (main)
8 until q empty do
9 gettaskvfromq
10 for each instructions i in task v do
Ii Vcp4 lime e,iecutioti time

12 ifireadsavariablexthen
13 = latest commit time of all older tasks reading x
14 if Vep4 time < then
15 =
16 = latest write time of all older tasks writingx
17 ifve,i,,..<wwumethen
18 =
19 i i writes a variablex then
20 = latest commit time of all older tasks writing x
21 if 1end time < then
22
23
24
25 v • =
26 if V4Ume < Pcoinmit then
27 = Pcommit time
28 time = ep4 time
29 Pcommit time = 'con,mjz time
30 for each follower taskf of v, from youngest to oldest, do
31 fenti time =
32 insertf in q
Figure 39 Hjalmarson's data collision detection algorithm

theorem 1
For every task v in T, is the earliest commit time for v.

proof
To prove this theorem, we will first define and prove a number of lemmas.

lemma 1
For every task v extracted from q, v is 'as young as possible' and the calculated —'_ is the earliest commit
time for v.

Appendix B Algorithms and proof for optimal scheduling 56

Scheduling in Multi-X — a performance evaluation

Ver4 time = W,p.jp1jp,
= latest read time of all older tasks reading x

if V,.4 time < WUme then

-

Scheduling in Multi-X — a performance evaluation

proof
Using induction to M. the number of tasks extracted from q:
1. basis (Iq=0). Trivial.
2. hypothesis (q=n). For every task v in the n tasks extracted from q, v is 'as young as possible' and the

calculated is the earliest commit time for v.
3. step (fr,I=n+l). Follows immediately from lemma 3 and lemma 6.

lemma 2
Task n+1 is inserted in q as early as possible.

proof
Task n+I is either externally generated or internally generated:
• If task n+I is externally generated, then it is inserted on initialisation in lines 1-5. Task n+1 cannot be

inserted earlier, since this would violate the sequential order of T.
• If task n+1 is internally generated, then it is inserted in lines 30-32. According to the Multi-X model, an

internally generated task is inserted on commit of the initiating task. Inserting task n+1 earlier would violate
this rule.

lemma 3
Task n+1 is 'as young as possible'.

proof
The age of a task is the task number received on insertion in the FIFO queue (Multi-X model). According to
lemma 2, task n+1 is inserted as early as possible.

lemma 4
On extraction of task ni-I, the execution start time of ni-I is as early as possible.

proof
The execution start time on extraction is defined by Task n+1 is either externally generated or
internally generated:
• If task ni-i is externally generated, then is set to zero at initialisation.
• If task n+ 1 is internally generated, then this task cannot start execution before the initiating task has

committed. In line 31, fl+Ie,.4(u,,e is set to the commit time of the initiating task. According to the induction
hypothesis, this time is as early as possible.

lemma 5
Every instruction in ni-I ends as early as possible.

proof
Using induction to mi-h, the number of instructions in n+1:
1. basis (In+1I=O). Follows immediately from lemma 4.
2. hypothesis (In+1I=m). All instructions up and until mend as early as possible.
3. step (In+hI=m+l):

Instruction m cannot end before it has executed its number of cycles. Adding less cycles in line 11 would violate
this rule.

From the algorithm listed on "Appendix A Collision detection algorithms", the fact that n+I is 'as young as
possible' (lemma 3) and the fact that all older tasks are 'as young as possible' (induction hypothesis lemma I),
six rules can be defined:
1. Task ni-I cannot write a variable that is written by older tasks before all these older tasks have committed.
2. Task ni-i cannot write a variable that is read by older tasks before all these older tasks have read the

variable for the last time.
3. Task n+1 can immediately write a variable that is neither read nor written by older tasks.

Appendix B Algorithms and proof for optimal scheduling 57

Scheduling in Multi-X — a performance evaluation

4. Task n+I cannot read a variable that is read by older tasks before all these older tasks have committed.
5. Task n+1 cannot read a variable that is written by older tasks before all these older tasks have written the

variable for the last time.
6. Task n+I can immediately read a variable that is neither read nor written by older tasks.

Proof for the six rules listed above:
1. Writing the variable earlier will lead to either a rollback (if an older task writes the variable later) or a wait

(if an older tasks has written the variable). In the latter case, the release time for that variable is the commit
time of the older task (Multi-X model).

2. Writing the variable earlier will lead to a rollback (if an older task writes the variable later).
3. Trivial.
4. Reading the variable earlier will lead to either a rollback (if an older task reads the variable later) or a wait

(if an older tasks has read the variable). In the lattetcase, the release time for that variable is the commit
time of the older task (Multi-X model).

5. Reading the variable earlier will lead to a rollback (if an older task reads the variable later).
6. Trivial.

From these six rules follow two rules for optimal scheduling:
I. The earliest time for task n+I to write a variable is the latest time in the combined set of the commit times

of all older tasks writing the variable and the latest read times of all tasks reading the variable. If the set is
empty, the variable can be written immediately.

2. The earliest time for task n+1 to read a variable is the latest time in the combined set of the commit times of
all older tasks reading the variable and the latest write times of all tasks writing the variable. If the set is
empty, the variable can be read immediately.

From these rules, lines 12-25 follow immediately. Similar to lemma 3-lemma 5 and using lemma 2, it can be
proved that every instruction in all older ends as early as possible. Adding less cycles in lines 12-25 would
violate the scheduling rules mentioned above, so every instruction reading or writing a variable ends as early as
possible.

lemma 6
The calculated is the earliest commit time for ni-I.

proof
Follows immediately from lemma 5 and the in-order commit rule in the Multi-X model (lines 26-29 and line 6).

lemma 7
Every task in T is extracted once from q.

proof
All external tasks are inserted in q exactly once, at initialisation. All internal tasks are inserted in q exactly once,
in lines 30-32. All inserted tasks are extracted exactly once, in line 8-9.

proof theorem 1
The proof for theorem I follows immediately from lemma I and lemma 7.

Appendix B Algorithms and proof for optimal scheduling 58

Scheduling in Multi-X — a performance evaluation

Optimal scheduling for Tikakar's algorithm

OvrIMLTIIIc&R
input: A trace T of tasks, sorted in time of original sequential execution. See section 4.2.1, "What traffic data

is needed" for the definition of the contents of a trace.
output: For every task v in T, v,ume, the earliest commit time for V.
I (mit)
2 foreachtaskvinTdo
3 if the corresponding message is external then
4 Vep4ume=O

5 insert v in FIFO queue q
6 Pconv,ut rj,ne = 0
7 (main)
8 until q empty do
9 gettaskvfromq
10 w = task 'level of speculation' older than v
11 if < then
12 rend time = W,.jpj jje
13 for each instructions i in task v do
14 Vep4Ume+=Iexjip
15 ifireadsavariablexthen
16 = FINDLASTWRrrE(v, x)
17 if tiasi write> Vep4tjme then
18

19 if i writes a variable x then
20 las,,ejrerep.ce = FINDLASTREADORWRITh(v, x)
21 if lastrrep.ce> Ver4 rime then
22 Vep4 time = tktet reference

23 if rend then
24 Vepd ume = Pcomnut un
25 =
26 =
27 for each follower taskf of v, from youngest to oldest, do
28 f =
29 insert! in q

FINDLASTWRrFE
input: A task v, a variable x.
output: Latest time a task older than v wrote variable x.
1 tlastwrje=O
2 for each task w older than v, from youngest to oldest do
3 (flask w writes variable x then
4 find last instruction i writing variable x
5 Zp,aowing = sum of execution times for all instructions in w succeeding i
6 iw, write = Wend time - followu,g
7 jf t write > t1 then
8 = t, wr
9 ItUflI Ijj ,.mtefoiuid

FINDLASTREADORWRITE
input: A task v, a variable x.
output: Latest time a task older than v read or wrote variable x.
Implementation similar to FINDLAsTWRIm.

theorem 2
For every task v in T, vmeu, is the earliest commit time for v.

Appendix B Algorithms and proof for optimal scheduling 59

Scheduling in Multi-X — a performance evaluation

proof without lines 10-12
To prove this theorem, we will first define and prove a number of lemmas. This proof excludes lines 10-12, i.e. it
proofs optimal scheduling without any restrictions on the level of speculation.

lemma 8
For every task v extracted from q, v is 'as young as possible' and the calculated is the earliest commit

time for v.

proof
Using induction to jq. the number of tasks extracted from q:
1. basis (IqI=O). Trivial.
2. hypothesis (q=n). For every task v in the n tasks extracted from q, v is 'as young as possible' and the

calculated is the earliest commit time for v.
3. step (M=n+l). Follows immediately from lemma 8and lemma 13.

lemma 9
Task n+1 is inserted in q as early as possible.

proof
Task n+1 is either externally generated or internally generated:
• If task n+1 is externally generated, then it is inserted on initialisation in lines 1-5. Task n+1 cannot be

inserted earlier, since this would violate the sequential order of T.
• If task n+I is internally generated, then it is inserted in lines 27-29. According to the Multi-X model, an

internally generated task is inserted on commit of the initiating task. Inserting task n+1 earlier would violate

this rule.

lemma 10
Task n+1 is 'as young as possible'.

proof
The age of a task is the task number received on insertion in the FIFO queue (Multi-X model). According to

lemma 9, task ni-i is inserted as early as possible.

lemma 11
On extraction of task n+1, task ni-i cannot start before

proof
The execution start time on extraction is defined by Task n+1 is either externally generated or
internally generated:
• If task ni-i is externally generated, then n+i,,.,,,,,,,., is set to zero at initialisation.
• If task n+ 1 is internally generated, then this task cannot start execution before the initiating task has

committed. Inline 28, fl+ieyd(,, is set to the commit time of the initiating task. According to the induction
hypothesis, this time is as early as possible.

lemma 12
Every instruction in ni-i cannot end earlier than calculated.

proof
Using induction to mi-u, the number of instructions in ni-i:
1. basis (Ln+1I=0). Follows immediately from lemma 11.
2. hypothesis (In-s-1I=m). All instructions up and until m cannot end earlier than calculated.
3. step(In+iI=m+1):

Appendix B Algorithms and proof for optimal scheduling 60

Scheduling in Multi-X — a performance evaluation

Instruction m cannot end earlier than before it has executed its number of cycles. Adding less cycles in line 14
would violate this rule.

From the algorithm listed on "Appendix A Collision detection algorithms", the fact that n+I is 'as young as
possible' (lemma 10) and the fact that all older tasks are 'as young as possible' (induction hypothesis lemma 8),
four rules can be defined.
1. Task n+ I cannot write a variable that is read or written by older tasks before all these older tasks have read

or written the variable for the last time.
2. Task ni-i can immediately write a variable otherwise.
3. Task n+1 cannot read a variable that is written by older tasks before all these older tasks have written the

variable for the last time.
4. Task n+I can immediately read a variable otherwise.

Proof for the four rules listed above:
1. Writing the variable earlier will lead to a rollback.
2. Trivial.
3. Writing the variable earlier will lead to a rollback.
4. Trivial.

From these rules follow two rules for optimal scheduling:
I. The earliest time for task ni-I to write a variable is the latest time an older task reads or writes the variable.

If no such older task exists, the variable can be written immediately.
2. The earliest time for task ni-i to read a variable is the latest time an older writes the variable. If no such

older task exists, the variable can be read immediately.

From the induction hypothesis of lemma 8 and the two scheduling rules above, lines 15-22 follow immediately.
Adding less cycles in lines 15-22 would violate the scheduling rules mentioned above, so every instruction
reading or writing a variable cannot end earlier.

lemma 13
The calculated n+i,,,,,,,, is the earliest commit time for ni-I.

proof
Follows immediately from lemma 12 and the in-order commit rule in the Multi-X model (lines 23-26 and line 6).

Jemma 14
Every task in T is extracted once from q.

proof
All external tasks are inserted in q exactly once, at initialisation. All internal tasks are inserted in q exactly once,
in lines 27-29. All inserted tasks are extracted exactly once, in line 8-9.

proof theorem 2 without lines 10-12
The proof for theorem 1 follows immediately from lemma 8 and lemma 14

proof theorem 2
Follows immediately from the proof of theorem 2 without lines 10-12 and the Multi-X prototype implementation
on level of speculation (i.e. the number of uncommitted tasks never exceeds the level of speculation).

Appendix B Algorithms and proof for optimal scheduling 61

Scheduling in Multi-X — a performance evaluation

Appendix C Data on simulation results

On this appendix, all data of figures presented in chapter 5 is listed. Section two to four present data on first-
come-first-serve, function-based and source-based scheduling respectively. In the first section some graphs are
included supporting the check if simulator input data is long enough in time, see also section 5.1 and section 5.2.

Speedup in time

35

I

0 500.000 1.000.000 1.500.000 2.000.000 2.500.000 3.000.000
n.(

Figure 40 Speedup in time for optimal scheduling with Hjalmarson's algorithm

I::

2.6

2.4

22

2.0
0 1.500.000 2.500.000 2.500.000

6.,.(cycMs)

Figure 41 Speedup in time for optimal scheduling with Tikekar's algorithm, speculation depth 12

Appendix C Data on simulation results 62

Scheduling in Multi-X — a performance evaluation

2.8

1:26

:tI::III:::1IIIIIIIII:I.:
0 1,000,000 2,000,000 3,000,000 4,000,000

time (cycles)

Figure 42 Speedup in time for first-come-first-serve scheduling, Hjalmarson's algorithm, 4 processors

3.228IIII
0.4±
0.0— -____________________________

0 1,000,000 2,000,000 3,000,000

time (cycles)

Figure 43 Speedup in time for first-come-first-serve scheduling, Tikekar's algorithm, speculation depth
12,4 processors

Appendix C Data on simulation results 63

20,000 - -

15,000

U

5,000

0

Scheduling in Multi-X — a performance evaluation

task (ordered In time)

Figure 44 Task, ordered at position in input data, in number of cydes

First-come-first-serve scheduling

number of
processors

speedup rollback
frequency

executed wasted waited idle total

1 1.00 0.00% 100.00% 0.00% 0.00% 0.00% 100.00%
2 1.60 4.15% 80.23% 1.50% 17.97% 0.29% 100.00%
3 1.94 20.78% 64.73% 3.04% 31.77% 0.46% 100.00%
4 2.13 4544% 53.14% 5.27% 41.02% 0.57% 100.00%
5 2.21 78.51% 44.19% 7.81% 47.31% 0.69% 100.00%
6 2.28 116.75% 38.06% 10.50% 50.65% 0.80% 100.00%

Table 9 Resu ts first-come-first-serve scheduling with Hjalmarson's algorithm

iumber of
wocessors

peedup oliback
requency

xecuted tasted vaited die otal

1 1.00 0.0% 100.00% 0.00% 0.00% 0.00% 100.00%
2 1.84 20.4% 91 .98% 6.74% 0.00% 1.27% 100.00%
3 2.39 61.3% 79.74% 12.46% 0.00% 7.80% 100.00%
4 2.68 111.8% 66.92% 16.23% 0.00% 16.85% 100.00%
5 2.79 184.4% 55.84% 19.15% 0.00% 25.01% 100.00%
6 2.80 270.9% 46.67% 21.09% 0.00% 32.24% 100.00%

Table 10 Results first-come-first-set-ye scheduling with Tikekar's a lgorithm at a speculation depth of 12

number of
processors

speedup rollback
frequency

executed wasted wafted idle total

1 1.00 0.0% 100.00% 0.00% 0.00% 0.00% 100.00%
2 1.86 19.8% 93.20% 6.45% 0.00% 0.36% 100.00%
3 2.52 61.8% 84.00% 14.32% 0.00% 1.68% 100.00%
4 2.99 113.6% 74.63% 21.04% 0.00% 4.33% 100.00%
5 3.26 202.8% 65.29% 28.36% 0.00% 6.35% 100.00%
6 3.44 316.9% 57.39% 33.80% 0.00% 8.81% 100.00%

Table 11 Results first-come-first-serve scheduling with Tikekar's algorithm at a speculation depth of 28

Appendix C Data on simulation results 1,4

2,000 4,000 6,000 8,000 10,000 12,000 14,000

Scheduling in Multi-X — a performance evaluation

number of
nrocessors

speedup rollback
frequency

executed wasted waited Idle total

1 1.00 0.0% 100.00%

0.00% 0.00% 0.00% 100.00%
2 1.86 19.5% 93.24% 6.42% 0.00% 0.34% 100.00%
3 2.54 62.8% 84.52% 14.37% 0.00% 1.11% 100.00%
4 2.97 129.4% 74.27% 23.38% 0.00% 2.35% 100.00%
5 3.35 220.5% 66.97% 30.11% 0.00% 2.92% 100.00%
6 3.61 310.9% 60.19% 35.95% 0.00% 3.86% 100.00%

Table 12 Results first-come-first-serve scheduling with Tikekar's algorithm at a speculation depth of 44

number of speedup rollback executed wasted waited idle total
rocessors frequency

1 1.00 0.0% 100.00% 0.00% 0.00% 0.00% 100.00%
2 1.86 19.5% 93.24% 6.42% 0.00% 0.34% 100.00%
3 2.52 63.5% 84.15% 15.16% 0.00% 0.69% 100.00%
4 3.00 130.6% 74.91% 23.65% 0.00% 1.44% 100.00%
5 3.36 214.1% 67.16% 30.65% 0.00% 2.18% 100.00%
6 3.58 331.6% 59.68% 37.25% 0.00% 3.07% 100.00%

Table 13 Resu Its first-corne-first-serve scheduling with Tikekar's algonthm at a speculation depth of 60

number of speedup rollback executed wasted waited Idle total
processors frequency

1 1.00 0.0% 100.00% 0.00% 0.00% 0.00% 100.00%
2 1.86 19.5% 93.24% 6.42% 0.00% 0.34% 100.00%
3 2.53 64.9% 84.45% 14.97% 0.00% 0.58% 100.00%
4 2.98 135.6% 74.38% 24.38% 0.00% 1.24% 100.00%
5 3.29 232.5% 65.86% 32.50% 0.00% 1.64% 100.00%
6 3.59 347.2% 59.88% 37.91% 0.00% 2.21% 100.00%

I ITable 14 Results first-come-first-serve scheduling wit

Function-based scheduling

Tikekar's gorithm at a speculation depth of 76

number of
processors

speedup rollback
frequency

executed wasted wafted idle total

1 1.00 0.00% 100.00% 0.00% 0.00% 0.00% 100.00%
2 1.74 0.00% 87.07% 0.00% 0.00% 12.93% 100.00%
3 1.96 0.00% 65.36% 0.00% 0.00% 34.64% 100.00%
4 2.01 0.00% 50.35% 0.00% 0.00% 49.65% 100.00%
5 2.02 0.00% 40.32% 0.00% 0.00% 59.68% 100.00%
6 2.05 0.00% 34.09% 0.00% 0.00% 65.91% 100.00%

Table 15 Results function-based scheduling with Tikekar's algorithm, speculation depth 12, perfect
prediction

Appendix C Data on simulation results 65

Scheduling in Multi-X — a performance evaluation

allowed
collision
frequency

speedup rollback
frequency

executed wasted waited idle total

no 1.741 0.0% 87.07% 0.00% 0.00% 12.93% 100.00%

0 1.761 0.1% 88.03% 0.01% 0.00% 11.96% 100.00%

0.5 1.765 1.5% 88.26% 0.34% 0.00% 11.39% 100.00%

1.0 1.781 2.7% 89.07% 0.57% 0.00% 10.36% 100.00%

2.0 1.797 5.3% 89.85% 1.54% 0.00% 8.60% 100.00%

3.0 1.821 8.5% 91.05% 1.89% 0.00% 7.06% 100.00%

4.0 1.812 10.9% 90.62% 2.83% 0.00% 6.54% 100.00%

5.0 1.823 9.2% 91.15% 2.46% 0.00% 6.39% 100.00%

10.0 1.820 13.0% 90.98% 3.01% 0.00% 6.01% 100.00%

15.0 1.822 15.2% 91.08% 3.40% 0.00% 5.52% 100.00%

25.0 1.848 19.4% 92.41% 6.04% 0.00% 1.55% 100.00%

Table 16 Results function-based scheduling with collision frequency, Tikekar's algorithm, speculation
depth 12, perfect prediction

allowed
relative
collision
frequency

speedup rollback
frequency

executed wasted waited idle total

no 1.741 0.0% 87.07% 0.00% 0.00% 12.93% 100.00%

0 1.761 0.1% 88.03% 0.01% 0.00% 11.96% 100.00%

5 1.795 5.2% 89.73% 1.49% 0.00% 8.78% 100.00%

10 1.822 10.4% 91.10% 2.53% 0.00% 6.37% 100.00%

15 1.856 14.9% 92.80% 5.56% 0.00% 1.64% 100.00%

20 1.859 15.0% 92.94% 5.44% 0.00% 1.63% 100.00%

25 1.858 15.5% 92.88% 5.59% 0.00% 1.52% 100.00%

30 1.858 15.5% 92.88% 5.59% 0.00% 1.52% 100.00%

35 1.848 19.4% 92.41% 6.04% 0.00% 1.55% 100.00%

Table 17 Results function-based scheduling with relative collision frequency, Tikekar's algorithm,
speculation depth 12, perfect prediction

number of
nrocessors

speedup rollback
frequency

executed wasted waited idle total

1 1.00 0.00% 100.00% 0.00% 0.00% 0.00% 100.00%

2 1.77 3.28% 88.57% 2.89% 0.00% 8.54% 100.00%

3 2.04 7.21% 68.09% 4.32% 0.00% 27.59% 100.00%

4 2.14 9.56% 53.54% 3.89% 0.00% 42.57% 100.00%

5 2.18 10.86% 43.66% 3.58% 0.00% 52.76% 100.00%

6 2.16 11.94% 36.05% 3.27% 0.00% 60.69% 100.00%

Table 18 ReSUlts function-based scheduling with Tikekar's algorithm, speculation depth 12, perfect
prediction, 3 ahead

Appendix C Data on simulation results 66

rable 21 ReSUltS function-])ased scheduling with relative collision I
speculation depth 12, perfect prediction 1 function ahead

Scheduling in Multi-X — a performance evaluation

number of
rocessors

speedup rollback
frequency

executed wasted waited idle total

1 1.00 0.00% 100.00% 0.00% 0.00% 0.00% 100.00%
2 1.49 21.59% 74.58% 8.08% 0.00% 17.34% 100.00%
3 1.82 42.56% 60.58% 10.57% 0.00% 28.85% 100.00%
4 2.01 56.97% 50.25% 9.95% 0.00% 39.80% 100.00%
5 2.10 77.55% 41.94% 10.10% 0.00% 47.96% 100.00%
6 2.18 90.36% 36.26% 8.82% 0.00% 54.91% 100.00%

Table 22 Results source-based scheduling with Tikekar's algorithm, speculation depth 12

Appendix C Data on simulation results 67

number of
processors

speedup rollback
frequency

executed wasted waited idle total

1 1.00 0.00% 100.00% 0.00% 0.00% 0.00% 100.00%
2 1.79 3.65% 89.30% 3.18% 0.00% 7.52% 100.00%
3 2.08 9.36% 69.40% 4.87% 0.00% 25.73% 100.00%
4 2.17 11.72% 54.15% 4.92% 0.00% 40.93% 100.00%
5 2.20 13.41% 44.08% 4.54% 0.00% 51.38% 100.00%
6 2.20 14.72% 36.63% 4.01% 0.00% 59.36% 100.00%

Table 19 Results function-based scheduling with Tikekar's algorithm, speculation depth 12, perfect
prediction, 2 ahead

number of speedup rollback executed wasted waited idle total
processors frequency

1 1.00 0.00% 100.00% 0.00% 0.00% 0.00% 100.00%
2 1.80 4.89% 90.17% 4.29% 0.00% 5.54% 100.00%
3 2.19 13.20% 73.12% 7.35% 0.00% 19.53% 100.00%
4 2.32 22.37% 58.11% 8.79% 0.00% 33.10% 100.00%
5 2.36 30.19% 47.19% 8.93% 0.00% 43.88% 100.00%
6 2.40 33.02% 39.92% 8.13% 0.00% 51.95% 100.00%

Table 20 Results function-based scheduling with Tikekar's algorithm, speculation depth 12, perfect
prediction, 1 ahead

allowed speedup rollback executed wasted waited idle total
relative frequency
collision
frequency

no 1.803 4.9% 90.17% 4.29% 0.00% 5.54% 100.00%
0 1.807 5.0% 90.33% 4.27% 0.00% 5.40% 100.00%
5 1.832 8.8% 91.61% 4.86% 0.00% 3.53% 100.00%

10 1.849 14.2% 92.45% 5.43% 0.00% 2.12% 100.00%
15 1.856 14.9% 92.82% 5.55% 0.00% 1.63% 100.00%
20 1.859 15.0% 92.96% 5.42% 0.00% 1.62% 100.00%
25 1.858 15.5% 92.88% 5.59% 0.00% 1.52% 100.00%
30 1.858 15.5% 92.88% 5.59% 0.00% 1.52% 1 00.00%

35 1.848 19.4% 92.41% 6.04% 0.00% 1.55% 100.00%

I I

Source-based scheduling

requency, Tikekar's algoril hm,

Scheduling in Multi-X — a performance evaluation

number of
processors

speedup rollback
frequency

executed wasted waited Idle total

1 1.00 0.00% 100.00% 0.00% 0.00% 0.00% 100.00%
2 1.54 20.69% 77.13% 8.77% 0.00% 14.09% 100.00%
3 1.85 43.30% 61.60% 11.26% 0.00% 27.14% 100.00%
4 2.07 62.57% 51.65% 11.50% 0.00% 36.84% 100.00%
5 2.16 79.77% 43.25% 10.23% 0.00% 46.52% 100.00%
6 2.28 84.36% 38.00% 9.30% 0.00% 52.70% 100.00%

Fable 23 Results source-based scheduling with Tikekar's algorithm, speculation depth 12, improved load
balancing

number of
processors

speedup rollback
frequency

executed wasted waited Idle total

1 1.00 0.00% 100.00% 0.00% 0.00% 0.00% 100.00%
2 1.58 36.52% 78.89% 16.04% 0.00% 5.07% 100.00%
3 1.94 77.53% 64.58% 23.66% 0.00% 11.76% 100.00%
4 2.22 119.44% 55.51% 27.07% 0.00% 17.42% 100.00%
5 2.32 179.05% 46.34% 29.49% 0.00% 24.17% 100.00%
6 2.52 228.00% 41.94% 30.10% 0.00% 27.96% 100.00%

Table 24 Results source-based scheduling with Tikekar's algorithm, speculation depth 28

Appendix C Data on simulation results 68

