
WORDT
NIET UITGELEEND ' Faculty of Mathematics and Natural Department of

Mathematics and
Computing Science

Scalability of Terrain
Visualization in Large Virtual

Environments

Esger G.N. Abbink

Advisors:
dr. J.B.TM. Roerdink

Department of Mathematics and Computing Science

University of Groningen

drs. M.J.B. van Delden
drs. M. Wierda

Virtual Environments, Systems, and Consultancy

Zeegse. (,- ,-,

June, 2000

Rkunlv,,,I OIOi*S
DDothk
W1s*ud. 'iMP* I RS&SIICSIWI'U: .'von S
r- ;tus 800
9 ' Av r')1rs.r

Scalability of terrain visualization in large Virtual
Environments

Esger G.N. Abbink

Department of Mathematics and Computing Science
Graduate specialization High Performance Computing and Imaging
Studentnumber 0831425

Gerkesklooster/ Zeegse, April 2000
Rapport vesc WR-2000/3

Table of Contents

Scalability of terrain visualization in large Virtual Environments . .1

1. Introduction 4

2. Virtual Environments 6

2.1 Starting points 6

2.2 Means-end analysis 6

2.3 Man-in-the-loop 6

2.4 Hardware 8

2.5 Real-world simulators 9
2.5.1 Flight Simulators 9
2.5.2 Driving Simulators 9
2.5.3 Rail vehicle simulators 10
2.5.4 Ship Simulator 11

2.5.5 yE Walkthrough 11

2.5.6 Entertainment Simulators 12
2.5.7 Telepresence 12
2.5.8 Virtual GIS 13

2.6 Summary & practical continuation 13

3. Scalable terrain visualization 15

3.1 Introduction 15

15
16
16
16
16
16
18
19
23

3.4 Implementation
3.4.1 Terrain data generation
3.4.2 Implementing Central Differencing
3.4.2 Interfacing 4Space
3.4.3 Memory management
3.4.4 Dynamic data storages
3.4.4.1 Queue
3.4.4.2 Dynamic List & Pool
3.4.4.3 Red-Black Tree
3.4.4.4 Dynamic Storage
3.4.4.5 Evaluating performance

31
32
33

•1

15
15

3.2 The sample implementation
3.2.1 Introduction
3.2.2 Getting it to work
3.2.3 Porting the sample implementation to 4Space
3.3 Design
3.3.1 Goal
3.3.2 Requirements
3.3.3 Terrain representation
3.3.4 Basic setup
3.3.5 Tessellation algorithm
3.3.6 Implementation approach

24
24
24
28
29
30
30
31

2

4. Testing •34
4.1 Test setup 34

4.2 Results 35

5. Remaining topics 48

5.1 Functionality

5.2 Efficiency

5.3 Loose ends 50

6. Conclusion 52

Al Literature 53

A2Glossary 56

A3 MRterrain 59

3

1. Introduction

Only recently one is able to build dedicated low cost PC's for simulation or visu-
alization. The cost/effectiveness has been substantially improved by the fact that 3D
accelerators (a piece of hardware which implements part of a graphics pipeline) market-
ed as toys for garners are in fact high-end graphics hardware with all the required profes-
sional features for high end visualization. Such a game" card is used increasingly by pro-
fessionals, which may be not so surprising when you compare the performance of these
'gaming cards' with the professional systems of a few years ago. Together with the
increased computing power of a PC and other developments, for instance the usability of
OpenGL on Windows, the PC has become a viable platform for simulation and visualiza-
tion.

As a consequence applications which before required a workstation or even more
powerful hardware, can now be run on a PC at fairly low costs. Of course the capabilities
of top non-PC systems are increasing too and their performance is still way beyond the
capabilities of a PC. To conclude one may say that the use and development of visualiza-
tion and/or simulation systems has become more accessible. Also it is concluded that, that
depending on aim and budget, there is a choice from an increasing range of computing
hardware.

Unfortunately, choosing a different hardware setup has currently a major draw-
back: in many cases it will be necessary to rework or even rewrite large parts of the soft-
ware to make use of the increased (or decreased) computing power. A software system
optimized for a low-end hardware target platform will not be directly usable on a high-end
Silicon Graphics (SG) multiprocessor system graphics computer. For example, when port-
ing a simulation software system from a Pentium PC to a SG graphics workstation
chances are that the Pentium computer will still have a better performance measured in
Frames per Second (FPS) than the SG This may be due to system specific optimizations,
leaving the SG not using its full hardware potential. This problem not only occurs when
moving between low and high-end computing hardware but also between generations of
both low and high-end machines.

Changing the aim of a simulator is another common cause in making software
obsolete, leading to the necessity of having to rewrite simulator software. For example, a
flight simulator may have been optimally designed and built for the visualization of air-
planes. As an effect it may render the architecture obsolete when it is required to simulate
helicopters as well, resulting in a loss of investment. Since software development is an
expensive and/or time-consuming affair it is preferable to avoid this problem in the first
place. Required, then, is a software architecture that runs as optimal as possible on dif-
ferent hardware platforms and is capable of accommodating simulations and/or visualiza-
tions with different purposes (flight simulation, driving simulation, walkthrough, etcetera).
Such an architecture may be called a multipurpose, scalable simulation and visualization
system.

This study attempts to make a start with the design of such an architecture by
making some first steps, leading to the implementation of a part of such an architecture:

1. An analysis and description is given of the various functions and concepts that
may be found in the literature on different types of simulators;

2. The results of the study are put into work by testing the concept of scalability.
Effectively, the visualization of a large scale terrain is designed as a scalable

4

subsystem of a simulation architecture. A piece of software is made that runs
on various PC's, with respect to hardware, and that will adapt or can be adapt-
ed parametrically by hand to the available computing resources on that partic-
ular computing platform.

3. The technical/practical application of the routine is tested on a broad set of
PC's.

The study is concluded with a discussion of the results of 2 and 3 ending in some recom-
mendations for future research and software design or implementation.

This study has taken place at Virtual Environments Systems & Consuftancy
(VESC), a company seated in Zeegse. VESC engages itself mainly by doing real-time 3D
visualization projects and has delivered several different systems. Internal tutor was dr.
J.B.T.M. Roerdink (University of Groningen), external advisors were drs. M. Van Delden
and drs. M. Wierda (VESC).

5

2. Virtual Environments

2.1 Starting points

To be able to design a virtual environment system, first it has to be established
what the desired features are. In this study the most central desired feature is scalabili-
ty, interpreted broadly. The system should be able to scale in visual quality and speed.
Also it should support both small and (very) large databases/environments at multiple res-
olutions. The study is limited to these aspects strictly to avoid a combinatonc explosion:
one could add audio, multi-user capabilities, issues related to force feedback, dynamic
physical simulation, multi-computer and/or multiprocessor hardware architectures Before
addressing the scalable visualization of variable terrain databases, the process and con-
ditions of Virtual Environment design in general are discussed.

2.2 Means-end analysis

One of the basic issues is the intended purpose of the system. In our case the
intended purpose for and use of the new system are not fixed or specifically defined. On
the contrary, the goal is to make the system as widely usable as possible for as many
applications. There are many applications for virtual environment systems. And each
application and purpose has its own set of requirements. Making an in-depth summary of
all applications and their respective features, specifications and requirements is nearly
impossible and would require one to be an expert in all those fields. It is questionable,
however, whether the resulting list would be of much value. Filled with technicalities it
would probably devaluate with every appearance of new technologies or applications.
Also the technologies and algorithms themselves are not the main point of our interest,
much more important is to know why they are used. We first need to look at virtual envi-
ronment systems on a higher level than that of an architecture or a collection of tech-
niques. As a starting point to look at applications / simulators the cognitive psychological
approach to man-machine interaction is taken.

2.3 Man-in-the-loop

The first thing we can establish is that we are talking about systems designed to
have a human subject do, undergo or experience something in an interactive environment.
Or still better, we are talking about "man-in-the-loop" systems. And we further restrict our-
selves to those systems where the "man-in-the-loop" controls some kind of object (vehi-
cle, airplane, etc.) moving through a simulated environment (where hereafter "simulator"
is mentioned, these restrictions are implied). Following from this specification we can split
the system under design in three parts: the human subject, the simulation itself and the
interface between the two. The first part, the human subject, is taken as is. The second
and third part are the components that are to be designed and subsequently built.

The interface is the communication medium between the human subject and the
noticeable part of the simulation, and is a combination of in- and outputs (or channels). It
not only makes sense but is required to use the in- and outputs of a human subject in the
same way as he or she would use them in real life. For example, if a subject in a driving
simulator approaches a red traffic light the simulator could use a variety of ways to make
the subject aware of this fact: an auditory or haptic signal, a spoken message or even a
visual signal. But the only way to make the experience as close to reality as possible is to
let the subject see a red traffic light where one would expect a light, correctly colored and
lit. The same goes for the other senses and also for the construction and operation of the
controls (to continue with the same example, the subject should steer the car with a steer-

6

ing wheel and not with a mouse or keypad). Figure 1 shows the various (possible) chan-
nels of an interface.

Simulation fl ''2"' Human
audio j- subject

__

: ,

[___ rInterface i of the wcdd and the iimul.smd I

___ ______

taácnvronmag

if

figure 1 - 'Man in the loop" simulator

Interesting is that each channel need not be fully used to achieve a particular level
of realism sufficient for a specific goal and it is often even possible to omit one or more
channels completely. This is the main reason that such a wide range of usable simulators
exists within most, if not all, application fields. For instance, for the visual display one could
use a computer screen, a 360 degree projection system or a stereo head mounted dis-
play. All of these provide visual input for a human subject, but they differ in the levels of
'reality they can achieve. Similar examples can be found for the other channels. Since
these channels (other than visual) offer an excellent opportunity to implement scalability
they should be borne in mind. A listing of the various channels and how they may be filled
in can be seen in figure 2.

Hans.,, input, Inter/act .u.te
— . h. k

i.ut s - .sUr - msIai. -20! 3Dpips -30 s&
- ptef.c uya . is —s - DA!AD!i sà -
-IIMD . --___
aidpejsthi. .nksá! bs

- 3D,I.m (s.g. k..L..,) - o/iii,s
4 -I_

-. - — - — ..ud.,I.ws bo.te - —
body - - — , - — - .,A1 —

•b... . C . __.t As -
-s.thuyod.

çsic p . si.J Is.dN -#00? -..I locust iyu - pbylesl pep..s
- — cu - — .sds
- st- -s
-

- odno .sod

Humass outpute lisle face Inputs

d*o
.ià ,àss ç. •..Janca) -.ssls,sI

mists. ts •b .si5d sats' - .,,muIJ sws . DO?psts/
• '! jsc..s.u, -pmiits. bstes. obu5
bud mmipststs s.) . #00?
body

figure 2 - Input.' Output channels

7

The third part is the simulation. The simulation process continually evaluates the
input it gets. Input is generated by the subject (delivered by the interface), the dynamic
objects and everything else present in the simulation world. This input is used in conjunc-
tion with the current state of simulation world and objects to generate a new state for world
and objects. Also the simulation process feeds the data into the interface needed for the
output channels directed to the subject. Conceptually we can split the simulation in three
parts: content, geometry and dynamics (see also Ellis, 1991). The content comprises the
objects (either static or dynamic) and actors in a virtual world. Objects and actors are
described and stored via properties like position, orientation, acceleration, texture, color
etcetera. The geometry is the description of the world in terms of dimensionality and met-
rics. It specifies the terms needed to specify a position vector, the rules to order and relate
positions and the range of allowed positions. The dynamics describe the interactions
between objects and can be seen as the "laws of nature" of the simulation.

Different simulators feature different simulation parts, but the differences are not
a question of one having "a content" and the other having not. The difference lies in the
fact that one simulation may have a content consisting of, among others, 100 objects with
highly complex and detailed behavior while an other might use just ten actors with very
basic behavior. So the two main points of difference, also for the dynamics and geometry,
are complexity and size. Both are dimensions that should be taken into account when
designing a scalable system.

2.4 Hardware

Until now we only have spoken about a simulation system on a conceptual level.
Eventually however we want an implemented system that "works". But a running system
implies the presence of hardware to run the simulator software. It also implies that a
choice has to be made: what hardware will be used? There are many different systems
and platforms available, ranging from a top-of-the-line Silicon Graphics Infinite Reality to
a basic PC without a 3D graphics accelerator. Often budget concerns are the primary rea-
son to choose a particular system/platform, but in addition personal preferences of devel-
opers play a role.

In this analysis we explicitly do not want to commit ourselves to a specific platform
and be locked to it afterwards. Instead we want a system capable of performing well on a
variety of hardware and platforms. Therefore we have to know what the differences are
between the various hardware systems and platforms. There are too many systems to
make an exhaustive comparison. Like we did above the comparison needs to be lifted to
a conceptual level.

Basically any computer consists of the following components: a central processor,
temporary storage, permanent storage, input devices and output devices. These compo-
nents have many faces and also have rather different features. The main differences are
in terms of speed and size (processor type/clock, memory size/access time, pixel fillrate,
texture resolution, polygon count etcetera). Apart from increasing speed by using a faster
processor it also is possible to use multiple processors, either within a single cabinet (a
SMP or MPP system) or within multiple cabinets (distributed processing).

Unfortunately the "similarity" of the differences does not imply that all hardware
can be operated or "driven" the same way by software. On the contrary, every piece of
hardware or computer system component has a degree of uniqueness, which can become
a very large obstacle if it is not taken into account early enough when porting a piece of
software from one platform to another.

8

2.5 Real-world simulators

Leaving the theoretical approach we will now take a different perspective and see
how existing (real-world) simulators fit the analysis. To do this most simulator types will be
briefly discussed and if appropriate we will try to give a general fulling in of the channels (a
channel will be specified by either the devices used, or by aqualityul where quality stands
for realism). In addition we will take a closer look at the characteristics of the scenes or
'theaters of action, in particular the terrain, of the different simulators. In the next chapter
a technique for terrain visualization will be discussed.

2.5.1 Flight Simulators

This widely known type of simulator may cost millions of Euros and is used exten-
sively by both commercial airlines and military airforce organizations to train, evaluate and
maintain their pilots. In many cases a simulator is available before the actual plane has
been built and is used to test the design. The use of these simulators as trainer imposes
several important requirements: the physical model and the environment need to be of
sufficient fide'ity, the system must allow for orchestrated scenarios and real-time operator
intervention, plus that it must be possible to record various streams of data in the simula-
tor during a session for the purpose of later evaluation and/or debriefing.

Channel Human input Human output

VisUal overall high quality display (high resolution,
large field of view projection system,
anti-aliased, high framerate etc.),
realistic operating environment
(mockup of cockpit)

audio realistic radio-traffic (done by operator)

haptic loaded controls (stick etc.), stick, buttons, switches etc.
6 DOF motion system

figure 3 - Flight simulator channels

Scene & terrain:

Typically, because of the nature (speed, altitude) of the simulated vehicle, these
simulators feature very large terrains in terms of geometric size (several hundreds or even
thousands of square kilometers) but also in the distances at which terrain is still visible
(and visualized). Landscape and or object detailing is not done extensively. Usually only
the major landmarks are included and buildings are low detail. This is less true for low-alti-
tude trainers involving helicopters or other low-flying aircraft. For the most part surface fol-
lowing is not important, it becomes important only when in a take-off or landing situation.

2.5.2 Driving Simulators

This is a very broad category, both in terms of functionality and costs Although the
first association with 'driving' is 'a car' a driving simulator may have many moving and con-
trollable vehicles such as trucks, busses, racecars, firetrucks, ambulances while militaries
use various tank and other armoured vehicle simulators. The main purpose of these sim-
ulators is to train personnel, the second studying environment and task-dependent human
operator behaviour.

9

For a vehicle driving simulator it is important that the simulated environment is
real-time controllable (an operator can influence the behaviour (of part) of the simulation
environment at run-time) or at least orchestratable (an operator can set up the simulation
environment for specific behaviour to appear but has no influence during run-time).
Performing specific repeatable experiments like having a car cross a red light or perform-
ing an emergency stop in front of the simulated car is impossible without direct or indirect
control over the scene and the dynamic objects. In the case of a training simulator it must
be possible to create the driving context or traffic situation in which you want to place the
trainee(s) given his or hers current state of capabilities and knowledge.

Channel Human input Human output

visual low- to high quality I realism

audio none to high quality I realism

haptic loaded controls (steer, pedals) and steer, pedals, keyboard
motion system

figure 4 - Driving simulator channels

Scene & terrain:

Depending of the aim of the system the scenes are small to medium sized, depict-
ing areas of several square kilometers. Due to the short viewing distance, objects and ter-
rain detailing should be high. Because of the type of vehicle accurate terrain/surface fol-
lowing is necessary. Generally, since the viewpoint is close above the terrain, it is not pos-
sible to view very far.

2.5.3 Rail vehicle simulators

Used in both stand-alone and hybrid configurations, these kind of simulators are
in use at railroad companies, tram companies and similar. The hybrid configurations con-
nect one or more 'standard' simulators with a simulation of the railway operator station.
The main use of these simulators is training personnel. The objectives differ per site.
Some simulators are only used for route-memorizing, others are mainly used to train per-
sonnel in emergency situations while others are used to train basic train control operations
(like coupling train-units or braking). Especially in a simulator used for the latter an envi-
ronment as realistic as possible (a high fidelity) is required. In these cases the application
of a motion-base is more rule than exception (and more compelling as well). Route-mem-
orizing on the other hand is however mainly audio-visual oriented and a highly accurate
physics model of the train-unit is not necessary. Again, depending on the objective sce-
nario control is needed.

Channel Human input Human output

visual low- to high quality I realism

audio none to high quality / realism

haptic loaded controls (steer, pedals) and steer, pedals, keyboard
motion system

figure 5 - Train simulator channels

10

-'

Scene & terrain:

For the most part these simulators are similar to driving simulators but with two
differences. The first is the possibly larger size of the scene. The second is unique for
these type of simulators: the driver can only go forward (and possibly) backwards on a
predestined track. The view from any position on the track is known upfront, apart from
dynamic objects, given way for the use of fairly simple but highly effective scenedata
reduction algorithms.

2.5.4 Ship Simulator

This is a less common type of simulator. Most are large scale and use high-end
hardware like motion platforms and 360 degree projection screens. Operated by both
naval military departments and commercial vessel companies they are mainly used for
training personnel. The simulated ships range from trawlers and destroyers to super-
tankers. Given the possibly major consequences of error and the small margins of error in
controlling these ships (in particular when dealing with massive tankers) the physics model
of these simulations must be extremely accurate. A major difference with other types of
simulations is the importance of the environmental forces of nature. In most simulators an
accurate natural environment is not necessary, but here an accurate modeling of very
complex natural phenomena is mandatory with respect to water and weather such as cur-
rents, flows, tides and visibility with respect to rain, bough spray, wind (-effects), etcetera.

Channel Human input Human output

Visual high qUality display

audio realistic radio-traffic (done by operator) voice

haptic motion system, loaded controls joysticks, buttons, switches etc.

figure 6 - Ship simulator channels

Scene & terrain:

The scenes used in these simulators are either open waters (sea) or special situ-
ations (harbor, sluices) where specific skills are trained. Depending on the aim of the sim-
ulator scenes may look very simple and monotone, a flat water surface, or very high detail
(the movement and currents of the water are visualized as realistically as possible). If
there is a shore, generally detailing will be low. In the second case more detailing is done,
but mostly requirements are relatively low and as such often only the minimum needed is
done.

2.5.5 VE Walkthrough

The most numerous form of a simulator of this type is as PC game (the first-per-
son shooter) and includes titles like "Doom", "Quake" and numerous others. Other appli-
cations also exist. Architects and contractors can use a virtual three dimensional repre-
sentation of a not yet existing (re-) building, instead of the effortful interpretation of con-
struction schemes and artist drawings to have their customers make better founded deci-
sions during the design process, all before a stone is laid. Complete houses, buildings and
building complexes can be previewed like this. Another slowly emerging use is the three
dimensional 'virtual walkthrough' of a specific site or building (university, city, lab etcetera),

11

gallery or museum, in some cases for use over the Internet, as a successor of or alterna-
tive to traditional two-dimensional representations (Internet website, brochure, slide pre-
sentations).

Human input Human output

visual low- to medium quality

audio medium- to high quality

haptic keyboard, mouse, joystick

figure 7 - Walkthrough channels

Scene & terrain:

Caused by both technological limitations and limited application content, most of
the scenes for these systems are indoors in the form of interconnecting rooms. However,
due to technological advances, outdoor scenes are also used increasingly. The scenes
may be highly detailed, but because of view blocking walls it is not possible to look very
far.

2.5.6 Entertainment Simulators

Mostly, these applications are not real fully functional simulators. The visiting and
paying subjects are to believe that they are in some kind of moving vehicle (often a car-
riage of some sort) but they cannot control it, the traveled route is preprogrammed. In
these systems there is no input from human to machine (simulation), they are entirely
focussed on output to the subjects. The aim is to give them via this stimulation a fun or
exciting ride.

Channel Human input Human output

visual medium- to high quality

audio medium- to high quality

haptic motion system

figure 8 - Entertainment simulator channels

Scene & terrain:

Most of the time these systems use a different visualization approach than the
simulators discussed above. In those cases the image was computed real-time, in this
case the image (or rather the series of images) are precomputed. The complexity of the
scene can thus be far higher than would be the case when the images would be comput-
ed real-time.

2.5.7 Telepresence

The restriction we made earlier was that we were only interested in systems
where a human subject controls a moving object while it moves through a simulated envi-
ronment. The mainstream of simulators that satisfy this specification are vehicle (car,
truck, train, airplane etcetera) simulators, which are therefore our main interest. In all

12

.'

these simulators the human subject is supposed to be seated in the simulated vehicle and
most of them portray a realistic task-environment. The concept of realism is interpreted as
that the scene and actions must be believable thus constituting a real-world scene.
However they are not the only ones fitting the restrictions we made. A wide variety of sys-
tems that allow the operator to get into environments where that would be impossible in
the real world (robot control, human body, microscopic worlds, hazardous environments)
exist also.

Many of these systems are not really virtual in the sense that they do not portray
a situation that does not exist (at the same time) in the real world, instead the controlled
robot does exist and moves around somewhere. The quality requirements for the various
channels can not be specified in a single table for all systems in this category due to their
large differences. One thing sets them apart from the other systems mentioned above
though. They in general do not have to realistically mimic a real world situation from the
viewpoint of a human, because in the real world a human does not have or even cannot
have a viewpoint in that specific situation/environment. Because of this they do not nec-
essarily have a need for a high level of quality/realism.

Scene & terrain:

The scenes used in these systems vary strongly. Generally however the content
of the visualization is symbolic and not an as-realistic-as-possible image.

2.5.8 Virtual GIS

In itself not a simulator, a virtual GIS (Geographic Information System) system is
used for displaying a different kind of (high level) information (very large terrain databas-
es for instance). As such it can be used as an educational or planning tool. But it is also
possible to combine the use of a GIS with a vehicle simulator. Take for instance military
exercises where tank- and aircraft simulators are coupled with GIS systems where com-
manders give orders to several (tank) platoons and/or flight squadrons.

Scene & terrain:

The common characteristic of these systems is that the size of the area or terrain
database is huge. Depending on application only non-perspective views of very large
pieces of terrain (satellite photos for example) or local perspective views or even a com-
bination are possible.

2.6 Summary & practical continuation

If we evaluate the different simulators and their characteristics we may draw the
following conclusions. We can see that most simulator types do not necessitate a specif-
ic quality for a channel, instead most seem to allow a range of possibilities. Above that,
the actual implementation of a particular simulator system is dependent on the task to be
accomplished and foremost the available budget. As a result, even when the constraints
with respect tot ergonomics, psychology and human perception may be precise and firm,
wide ranges of a single simulator type may exist. For example, one may have a budget
driving simulator (with a TV screen, a game steeringwheel plus pedals and a chair) but
also a high fidelity (scientific measurement) simulator (with 16 high-end graphics pipes
and a huge motion system. This means a system capable of performing all/most of those
tasks at different budgets will have to be customizable to allow for these differences. We
can also see that most of the time when one channel is of a particular quality, the other

13

channels that are used are of matching quality, so as to not disturb the experience by too
great a difference of realism presented to the subject.

Another observation is that apparently not all channels are of equal importance.
This is not only true for a particular simulator: independent of simulator type it is possible
to make a general ordering based on importance. Not really surprising, the visual (input to
human) channel is, as a rule, the most important. Together with being the most important
it is also the most demanding in terms of hardware resources (computing power, memo-
ry, display devices etc.) and requires also considerable effort for content production. This
is demonstrated in practice by the large research and development efforts in this area and
the costs of high-end visualization hardware. The second part of thiS study will focus on
implementing a specific part of the visual channel.

14

.'

3. Scalable terrain visualization

3.1 Introduction

The visualization of large pieces of terrain by mesh reduction, triangulation, Level
Of Detailing (LOD) etcetera is a challenging technical problem for which several solutions
exist. Most are based on some form of model simplification: a piece of terrain can be
shown using a number of different geometry sets. This is called a multiresolution terrain
(MT). Very few of these are suited for real-time applications and even fewer exist that will
run acceptably on anything other than high-end hardware. Also in many cases the avail-
able literature (for example Puppo, 97 and Lindstrom, 96B) deals only with such a mul-
tiresolution terrain algorithm as is and does not provide additional information (on, for
instance, texturing the terrain, or integrating it with an all-purpose visualization toolkit).

The subject of this study will be the (partial) design and implementation of a MT
algorithm including features such as texture mapping which is intended to run on both low-
end and high-end hardware with OpenGL support. This will be achieved by a parameteri-
zation of the software to make it adjustable to available features and performance of the
hardware. The implementation will be based on an existing algorithm (used in the sample
implementation of Sharp, 99B). This choice was made because from the sample imple-
mentation a promising base performance was observed and the algorithm and mathe-
matical objects have some very practical features (see also section 3.3). After a perform-
ance evaluation on different platforms to assess performance and identify bottle-necks,
optimizations will be proposed.

The implementation and other programming work has been done on a Windows
NT based computer using Visual C++ (a programming environment) and 3D Studio MAX
(a 3D modeling program). The implementation will be added to a development snapshot
of 4Space, the VESC 3D visualization toolkit The available test computers range from
high-end Intergraph workstations to off-the-shelf PC's equipped with a (game) 3D accel-
erator.

3.2 The sample implementation

3.2.1 Introduction

The sample implementation (SI) mentioned above is a program containing an
example implementation of the central differencing algorithm discussed in Sharp, 99B.
More information about central differencing in general can be found in Watt and Watt's
"Advanced Animation and Rendering Techniques" (Addison-Wesley 1992). For an expla-
nation of the central differencing algorithm in the form it is used here see section 3.3.5.

3.2.2 Getting it to work

The SI was obtained from the Internet webpage of the author (http://www.cs.dart-
mouth.edu/—bsharp/gdmag) and contained the source, a dataset as well as pre-compiled
binaries. Unfortunately both MS Visual C++ 5 and 6 were unable to compile this source.
Assistance of the author was to no avail. The pre-compiled binaries did work however and
showed good framerates while displaying a multi-textured patch landscape on a
Pentiumll-266Mhz computer equipped with a 3D accelerator card based on the Nvidia
TNT chipset (a game card).

15

3.2.3 Porting the sample implementation to 4Space

Because of several reasons it was deemed impractical to port or transfer the
source of the SI to 4Space. First of all the fact that the SI did not compile. But mainly the
fact is that it was set up as a one-trick program. It shows a patch landscape and to accom-
plish that does its own GL calls, loads textures itsetf etcetera. Also these subparts of the
program are very much weaved together. The goal was however a general approach inte-
grated in a general 3D toolkit. This does imply a new implementation was needed and that
that implementation had to be built from scratch.

3.3 Design

3.3.1 Goal

The design constraint of the Multiresolution Terrain to be implemented is that it

should be a "general approach integratable in a general 3D toolkit". The toolkit is in this

case 4Space.

3.3.2 Requirements

The practical requirement is a scalable terrain visualization extension to 4Space
with as few limitations as possible. The extension should be platform independent
(although at this moment 4Space runs only on Microsoft Windows, it is developed to be
platform independent and other platforms may become available in the future). To allow
the extension to adapt or be adapted to the capabilities of different target systems the
extension should be parameterized with respect to controlling image quality and geomet-
nc complexity. To allow for simulator-self-adaptation it must be possible to change param-
eter values at run-time.

A set of concrete requirements for the functionality of the extension can be deduced:

- It must function transparently in 4Space.
- It must be parameterized.
- It must react correctly to changes of parameter values at run-time.
- The landscape it represents must be deformable (creation of bomb craters,

tracks) at run-time.

Added to these top level functionality requirements some more technical ones are added:

- The displayed landscape must be a relatively close approximation of the math-
ematical form.

- The displayed landscape should look realistic. To accomplish that (multi-)textur-
ing, smooth shading and/or vertex coloring have to be supported.

- The extension will have to be usable in a production environment. As a conse-
quence the extension (or a yet to be built converter utility) has to be able to build
its internal representation from an external source. In other words, importing ter-
rain data from other formats has to be possible.

3.3.3 Terrain representation

As basic representation of the terrain the Bicubic Bézier Patch (BBP) is selected
since BBP's have particular properties that prove rather practical for real-time visualiza-
tion. A BBP surface lies within the convex hull that is defined by the control points of the

16

patch and interpolates its four corner control points. A terrain surface is built up from inter-
connected BBP's, the number of which is limited only by the available memory at run-time.
Along shared edges the corresponding control points of two BBP's have the same coor-
dinates (the patches share these control points). This composed surface is inherently
(because of the shared controls) C° continuous while Cl and G1 (less strong as C' as the
tangent vectors only need to have the same direction, not the same size) continuity are
easily achievable. Other bicubic patches (i.e. Hermite or B-Spline) easily achieve GO, C'
and even higher order continuities also, the higher continuities are not necessarily need-
ed though. More important, other bicubic patch types often lack either one or even both of
the first two properties (interpolate corners, convex hull) mentioned above. Also they are
generally more complex and more computationally intensive.

Using BBP's for landscape creation has a practical advantage: many 3D model-
ing programs support some form(s) of bicubic patch to create surfaces. These may be
NURBS, Bézier or other surfaces. Important is that it is always possible to substitute one
form of bicubic patch with (multiple) instances of another form (see also figure 10).

a

figure 10 - a) curve (no Bézier) b) two Bezier curves descnbing the same geometry

It is inferred from above that it will be possible to export and if necessary convert
the terrain surface in the form of bicubic patches from a modeler to 4Space. However,
standard export filters will write polygon geometry and not the actual patch descriptions
(the control points i.e.). In the case of 3D Studio MAX a possible solution is to write an
exporter plug-in that actually accesses the mathematical surface descriptions and writes
them interpretably to file. Modeler programs that do not allow access to these descriptions
(or do not allow for plug-ins) as well as terrain models/datasets that come in other forms

17

figure 9 - Two interconnected Bézier patches

b

than bicubic patches require a different approach. This could include surface fitting or
interpolation algorithms to generate, as required result, interconnected BBP's.

3.3.4 Basic setup

We have a set of Bézier control points describing a terrain and a 3D engine
(4space) that can draw polygons The extension which will be added has to be the bridge
between these two. As input it has a set of control points, and as output it has to deliver a
4Space compliant geometry so it can be rendered.

I .ndsO

V

figure 11 - 4Space & MT structure

.%. 3

Because the extension will have to function properly and transparently in 4Space
it is important to consider the basic structure of 4space. In 4Space a scene is represent-
ed as a tree of nodes. Each node represents an object, light, transformation etcetera. To
comply with 4Space the patch terrain has to be integrated in this tree structure. The gener-
ic structure of the 4Space node-tree allows for the creation of new node types, so a
patchterrain node type will be introduced.

This new node will be implemented as the C++ class cFSPatchTerrainNode. It has
"a patchterrain as its most important member and will act as middle-man between 4Space
and the also new cPatchTerrain class. The cPatch Terrain class contains a geometry node
and a number of instances of a third new class cBezierPatch. The instances of this
cBezierPatch class are the individual patches that compose the landscape. The node is
used for rendering and will be discussed in section 3.4.2. The resulting structure can be
seen in figure 11.

18

1: a render cal ii done to the root of the tree to render the scane
2: the nodes handle the render cal and relay ft to their dikiren
3: the PatchTerrainNode insttucts the PatthTerrain to create a

GeometryNode ii response to the render cal
4: the PatcliTerreinNode relays the render cal to the just created

GeometryNode

3.3.5 Tessellation algorithm

As can be seen in figure 11 the cPatchTerrain class creates geometry from its
patches. Actually it asks its patches (instances of cBezierPatch) to tessellate themselves.
Tessellation is a process where from the mathematical description of a curved surface, tn-
angles are generated to create an approximation of this surface to a specified degree.

figure 12 - surface S tessellated to a degree X

The mathematical description of the terrain is the set of control points and the mathemat-
ical formula for a bicubic bezier patch (BBP):

3 3

Eq.1: P(u,v)=E E pB(u)B(v)
=0 j=O

as the controls of patch P
and Bi and B as the Bernstein Basis functions

This formula gives for every valid (u, v) the corresponding point on the surface in
Cartesian coordinates. The Bernstein functions look like this:

n-i
Eq.2: B'(u) = (?)u(1-u) for 0ln

19

surface S tessellated to degree X + n

figure 13 - Bernstein Basis functions

Triangles are created between points (vertices) in 3D space. By looking at both
equations it can be determined that a simple uniform grid of which the points are calcu-
lated by using equation 1 is not practical. This would be very expensive computationally
because of the Bernstein basis functions making equation I cubic in both u and v.
Furthermore using a uniform grid would result in horrendous amounts of triangles for land-
scapes of any but the tiniest (unusable) sizes. This approach is useless since any real-
time 3D render engine will choke in the numbers of triangles. To overcome high amounts
of triangles the quality of the approximation could be decreased. However the (compulso-
ry) low triangle-count terrain will be visually lacking in quality. The solution is to use high
amounts of triangles only if the curvature of the surface requires it and use less elsewhere.
The tessellation used here is based on the Central Differencing algorithm. To explain the
working of the Central Differencing algorithm (CDA), it is put to work on the one-dimen-
sional counterpart of a BBP, the Bézier curve.

The basis of the CDA is the Taylor polynomial. A function f(x) can be approximat-
ed near a value v using a Taylor polynomial. The higher the order of this Taylor polynomi-
al, the closer it resembles the function f(x) near v.

Eq. 3: f(v + dv) =
i!

f'(v)

with:

f' = the ith derivative

Eq.4: C(v)= t pB(v)

Equation 4 is the mathematical formula of a Bézier curve. The Bernstein bases
cause equation 4 to be cubic. So for a Taylor approximation of equation 4 every term after
the fourth will be zero. This results in:

Eq.5: C(v+dv)= -9f C'(v)

= C(v) ÷ dv C'(v) + -4- C(v) + -- C"(v)

This equation will prove practical for central differencing. Central differencing is an
approximation that works by finding the midpoint between two (end)points on a curve and
then the same method is applied recursively to the new points. Now we take C(v) as the
midpoint and add up equation 5: C (v + dv) and 6: C (v - dv).

Eq. 6: C(v - dv) = C(v) - dv Cs(v) + -- C'(v) - j- C(v)

Eq. 7: C(v + dv) + C(v - dv) = 2C(v) + dv2 C(v)

E 8 C'v' — C(v + dv) + C(v - dv) - dv2 C(v)
2 2

The first term in equation 8 simply is the average of the two endpoints. The sec-
ond looks more tricky but it is the second derivative of a cubic function which is a linear
function. Therefore this also simply is an average, this time of the second derivatives at
the endpoints. Substituting all this into equation 8 gives:

E 9• C
— C(v+dv)+C(v-dv) dv2(C'(v+dv)+C'(v-dv))

q. . (v)_
2 - 4

Using equation 9 it is possible to compute the midpoint C(v) between two points
on a curve if the (Cartesian coordinates of the) points and the second derivatives in those
points are known. For central differencing to work, this has to be repeatable. In other
words to compute midpoints between the corners and the new point, for the new point
these two pieces of information, the coordinates of this point and the second derivative in
this point, need to be known. Fortunately we already have both. The coordinates of the
midpoint are known because they were just computed. For the second derivative we look
again at equation 8: the second term was the average of the second derivatives in the
endpoints. And because the second derivative was a linear function this is the second
derivative in the midpoint.

The equations above allow for recursing and new midpoints to be computed a lot
faster than from the general curve function (equation 4). This is however just one part of
the problem. There still has to be a way to limit the number of curve segments generated.
Instead of just recursing to an arbitrary preset level, the algorithm should base the deci-
sion to recurse upon the amount of local curvature. The Taylor polynomial provides a solu-
tion here. If we look at equation 8 the midpoint consists of the average of the endpoints
and the average of the second derivatives of the endpoints. This means that it is the sec-
ond term of equation 8 which determines how far away the midpoint is from the midpoint
of the line through the endpoints. The size of the second term is as such a direct meas-
ure of the local curvature and therefore we can use it in the decision whether to recurse
or not.

21

a) Curve

figure 14

Now we know how to tessellate a curve we need to extend that approach to make
it work for patches. To make recursion work the patch has to be subdivided. A logical
approach is to compute the midpoints of the edges and the center point, which results in
four similarly shaped smaller pieces. Let us take a patch P. then P (u, v) is the patch sur-
face for u and v in the range (0, 1]. If we now take P (0, v), and similarly P (1, v), P (u, 0)
and P (u, 1), that gives us the four edges of the patch. The edges are one-dimensional
functions in u or v, in other words: curves (defined by the particular edge control points).
So the midpoints of the edges are computable straightforwardly using one-dimensional
central differencing. Before we turn to the center point, we need to compute some addi-
tional values for the midpoints Ml, M2, M3 and M4.

P(Oj)

figure 15- Patch P subdivided (Ml, M2, M3 and M4 are midpoints, C is the center point)

We need to know the second order partial derivatives at the midpoints. Otherwise
one-dimensional central differencing cannot be used again in both directions for the recur-
sion step to work. More specifically: the second partial derivative with respect to v at the
midpoints of P (u, 0) and P (u, 1) and the second partial derivative with respect to u at the
midpoints of P (0, v) and P (1, v). We are already able to compute the other partials. To do
this we go back to equation I and take the second order partial derivative with respect to
v.

Eq.1O:
a2P(u,v) =

p. B3(u)
a2B(v)

i av2

Since both basis functions are cubic, the partial derivative is a cubic function in u.
This function can be interpolated in u using the one-dimensional central differencing algo-
rithm. For this to work we need to know the partial second order mixed derivatives and

22

b) Uniform Tesselation C) central differencing

P(l .0)

(see equation 9) derivatives in the endpoints. So, to compute the necessary information in
the midpoints we need the following information at the corners:

Expr.1: P(u,v)

Expr.2: a2P(u,v)
au2

2

Expr. 3: a P(u,v)

Expr.4: a4P(u,v) — a4P(u,v)
au2av2 — av2au2

Using these and central differencing provides the same information in the mid-
points. (Note that the fourth partial derivatives are linear in u and v and can simply be inter-
polated from the corners.)

The computation of the center point is yet unresolved. It is unclear how we could
compute it from the corners. But again one-dimensional central differencing provides a
solution, for we have computed the midpoints. The center point is the midpoint of both the
curve between the u-midpoints and the curve between the v-midpoints. Using the same
technique as before we can compute the expressions 1 - 4 for the center, just as we
already have for the other points. Now we have enough information for recursion and do
the same thing for the four smaller squares. Obviously the algorithm is not allowed to
recurse infinitely, so a way to determine when it should stop recursing is required. This
subject will be dealt with in detail later in this text (see section 3.4.2). In any case, the
same mechanism used earlier for curves can be used for these surfaces.

3.3.6 Implementation approach

The proposed extension of 4Space is a fairly complex one. Therefore, due to lim-
ited time, for this study only a partial implementation will be done. This means some things
will be left to be done at a later date. The initial implementation will limit the form of the ter-
rain to a rectangle, with the same number of patches on each side. As a third limitation
just one instance (one node) of a patch landscape will be supported. Non-essential sup-
port functions required by 4Space, load/save etc, will also be left unimplemented. Terrain
deformation will be limited to control point changes. Finally the terrain will only be flat-
shaded in the first implementation. This does not mean however there is no regard for
these features during implementation. Everything will be set up to allow for later extension
with these features as much as possible.

The core that is implemented is an extension that allows 4Space to render in real-
time a flat-shaded landscape described by a square of interconnected BBP's.

23

3.4 Implementation

3.4.1 Terrain data generation

Before a visualization can be implemented and run, there has to be something to
show. Because import and export lies beyond the scope of this study a shortcut is taken.
Terrain data will be generated by a utility program TerrainGen. This program first creates
an evenly spaced grid of control points in x and y direction. The number of control points
is specified, as well as the length and width of the grid. Secondly each control point is
assigned a random z-value (height) recursively. This z-value is not fully random but medi-
ated by the range of z-values of neighbouring control points. Finally the z-values of the
control points are corrected to make the composed landscape Cl continuous. This gen-
erates a smooth (rolling) landscape.

Subsequently the generated control points are saved to a file named "terrain.ptd".
This file will be read by the "MRterrain" program (see also appendix A3). This is a front-
end program using the 4Space engine which will set up a scene containing a patchterrain
and instructs it to load its control points from the file "terrain.ptd". Also the program sets up
an interface to interactively change parameters of the patches.

3.4.2 Implementing Central Differencing

In section 3.3.5 it is described how to tessellate a Bézier patch surface if given
enough information about its corners. To implement this approach first the cPo!ynomial,
the derived cBezierBasis and the cBinomial classes are constructed. These are used to
compute and represent (the Bernstein bases of) equations 1 and 2.

As import of the terrain data has been handled in section 3.4.1 and the new class-
es above are able to handle the equations of section 3.3.5 all seems ready to implement
the last part: the tessellation process. Unfortunately there are still three problems which
have not yet been (fully) addressed: stopping the tessellation recursion, data reduction
and cracks.

Recursion

Initially, the corners of each patch are computed. To compute additional points the
above described central differencing algorithm is used recursively. To stop the recursion a
few mechanisms are available. The most obvious and easiest is to limit the recursion
depth. The second method is discussed in section 3.3.5. In essence it is using the last
term of equation 9. As this is a measure for local curvature, it is possible to specify a
threshold value. If this curvature term for a particular point is smaller than this threshold
the point is not generated and recursion stops. Note that the value of this threshold deter-
mines the amount of deviation in the approximation: the threshold is a control for the bal-
ance between quality of the landscape and rendering speed by controlling the number of
triangles in use.

Data-reduction

If the portion of the patch in question is very far away from the camera position,
(the camera which generates a view on the virtual landscape) it is not necessary to use a
lot of triangles for this patch, even if it has a high amount of local curvature (and thus is
requesting lots of triangles). Furthermore, usually a large part of the terrain lies outside the
view volume of the camera. The patches residing in this part need not be tessellated at

24

all, given the already large burden of computational costs. The data reduction has the fol-
lowing steps:

1. determine if the point we are about to compute will be visible. If so, the curva-
ture term is computed and we proceed to step 2, otherwise stop.

2. if the curvature term is above the threshold proceed to step 3, if not stop;

3. if the size of the curvature vector (the vector from the midpoint to the actual sur-
face point), computed and expressed relative to screensize is larger than a "vis-
ibility threshold", then proceed to step 4, otherwise stop.

4. tessellate using central differencing and do a recursion step;

As a consequence, portions far away (and thus occupying few pixels) are tessel-
lated with lesser detail than the portions of the terrain closeby (which occupy a lot of pix-
els). A second consequence is that a recursion step is only done if the curvature is actu-
ally visible from the camera location. Both effects can be seen in figures 16 and 17.

figure 16 - A landscape tessellated using uniform tessellation (8281 triangles)

25

Cracks

Because different portions of the terrain are tessellated to different depths, the
resulting vertices of neighbouring patches or squares (see below) may not coincide,
resulting in the occurrence of cracks in the terrain (see figure 18). These cracks occur
where two different depth squares are adjacent, because one of the joining edges has
more vertices. This leads to a so called T-junction if the extra vertex is on the line between
the previous and next point. Because of imprecise floating point arithmetic this may still
lead to a small hole in the surface when drawing. If the extra vertex is not on the line
between the previous and next point (which will most often be the case because of cur-
vature) a permanent hole or crack is created because the two surfaces do not connect
(completely) along their joining edges.

Cracks will not be filled by simply adding triangles. The cracks may have a wide
variety of complex forms rendering the filling method too complicated and unpractical. A
second disadvantage of this method is that it causes irregularities or discontinuities in the

26

—

figure 17 - landscape tessellated using view based tessellation (2646 triangles)

figure 18 - different levels of tessellation causing cracks

surface (see figure 19). Instead the cracks which may appear will be limited to one form
only. For this form a standard and simple method to close it can be used (see figure 20).

figure 20 - a crack is fixed by adjusting the bordering tilangles

Instead of allowing the terrain to tessellate to the desired depth, the depth of the
neighbours (up to four) will also be considered: recursion will only be allowed if the depth
difference between two squares will not become larger than one. This will limit the form of
cracks that can appear to be only of the form shown in the figure above. If a potential crack
is created the new vertex causing the crack is marked. When a later recursion step caus-
es the crack to disappear the same vertex will be unmarked. After vertex generation the
cracks will be fixed if a marked vertex is found.

To do all this efficiently the patches will be tessellated simultaneously (this way
cracks along patch edges can be addressed in the same manner as cracks internal to a
patch). A queue (see section 3.4.4.1) is used to store records containing the four corners
and the depth of a square. This queue is initialized with the corners of every patch (see
figure 21a). One by one the records (or squares) are removed from the queue. When a
square is tessellated to one depth level higher the square is subdivided, the four new
squares are appended to the queue (see figure 21b) and the generated points are stored.
This prevents any work being done twice: any square will only occur once in the queue.
Also only the squares (and thus the triangles) that will actually be used are generated, so
no time is lost in generating unused points. Tessellation is complete when the queue is
empty.

27

figure 19 - a crack is fixed by fiuing" it, causing an irregularity in the terrain

Patches A, B. C, D

figure 21a - Queue initialization

...IIx,yzI

/Xa IIXb\
/xcII Xd\

figure 21 b - Recursion step

3.4.2 Interfacing 4Space

I Z ...
Xa,y+1 Xb,y+1 Xc,y+1 Xd,y+1

When the tessellation routine stops it has emptied the queue and generated ver-
tices. From these vertices a 4space geometry node has to be built and subsequently
4Space can be asked to draw the node. This step will be dealt with in a very straightfor-
ward (inefficient) fashion since it is beyond the scope of this study's practical part.

For the generation of the geometry node a recursive approach is used. For each
patch it is determined whether a centerpoint exists. If there is no generated center, two tri-
angles are generated for this square. If the center does exist, the square (patch) is subdi-
vided and the centers of the four smaller squares are checked. However if one of the sides
is marked to be collapsed (for crack fixing) three triangles are created and recursion takes
place only for two squares. The generated triangles are added to a queue. This way, for
every patch a queue is generated. From these queues triangles are extracted and corre-
sponding normals are computed. The triangles combined with normals are finally added
to a GeometryNode. Any information 4Space requires, bounding volumes for example, is
computed. The Render call to cFSPatchTerrainNode that initiated the creation of the tes-
sellated terrain is passed on to the Geometa'yNode which is drawn, finally, by 4Space.

28

-I

append to empty queue

I I I

I I I

I AOIB.OIC.OID,OI

3.4.3 Memory management

One of the largest problems during implementation was the very high upper
bound on main memory usage. In fact, if the maximum recursion depth is increased, this
upper bound quickly becomes too large for even supercomputers to handle. For example,
if we have a landscape of 16 by 16 patches and a maximum recursion depth of 8 the total
amount of memory allocated for the storage of all vertices and additional information
exceeds 1 Gigabyte, for 32 by 32 patches and a depth of 10 it jumps to 60 Gigabytes and
even with a depth of 5 this landscape still requires more than 60 Megabytes.

While we have a very bad worst case the average case memory demands are of
a few magnitudes smaller. This means that instead of using a two-dimensional array
(which allocates room for all possible points) we have to take a different approach.
Required is a storage system that can access data indexed by (x, y) tuples with a very fast
access time. At the same time it should not allocate (a lot) more room than needed for the
points actually used. Also it is not allowed to keep allocating large amounts of new mem-
ory if large parts of the currently allocated memory aren't used anymore.

Elaborating on the above: the storage system should only allocate room for index
(a, b) if that position is actually used. Or put in an other way, the system should allocate
room when position (a, b) is first accessed since generally before that moment it is not
known whether or not data will be placed at (a, b). Furthermore, because of the large num-
ber of accesses done each frame both unused and used points need to have very fast
accessibility. This means that use of multiplications, divisions, allocations and other time-
consuming actions should be kept to a minimum in the access function. As a last require-
ment it not only must be possible to add points quickly but also to delete them quickly.

At first sight a solution would be to allocate a two-dimensional array of pointers.
This would allow for a (very) fast and time-constant access function. If a pointer is NULL
the point is not in use, if not NULL, the point is allocated and can be used. This would still
require enormous amounts of memory just for the pointers and is thus infeasible. Hashing
the indices would be another option but computing a hash function is costly. Also running
out of space would require resizing the table. This is not a 0(1) operation and would
require more and more time after a few consecutive resizes.

The approach used here uses (red-black) trees to store indices. The top tree
stores nodes that are indexed by x and store a reference to another tree which stores the
y-indices for that particular x. The y-tree nodes reference the actual data. This provides an
access function of 0(19 n) (where n is number of nodes in the tree), but the average case
does not cost more than a few comparisons. To prevent frequent allocation, nodes and
data are stored in dynamic lists. Room in the lists is pre-allocated. Resizing is 0(1) and
consists of appending (pre-allocated) fragments retrieved from a pool. Only the pool
needs to allocate new memory when needed.

Garbage collection or freeing up memory is an entire problem in itself and sever-
al solutions exist. A reasonable approach to start with would be to look at the nodes' valid
values. These store the last frame number the nodes were used. If a node stores a very
old frame number it generally is not very likely that this node will be used again anytime
soon. So we can delete these nodes from the tree. The main problem with this approach
is that we have to check all nodes every now and then. This will cause a longer frame time
and if it takes too long a hiccup.

Three concepts need to be implemented: the red-black tree(s), the dynamic list
and the pool. The lists consist of linked blocks or fragments of fixed size which store a

29

number of data-entries and some book-keeping to track usage. If the list runs out of space
it can request a new fragment from an assigned fragment pool. The fragment pool stores
a fixed number of references to allocated fragments. Upon request these references are
handed out to the lists that are assigned to it. If there is no unused reference (fragment)
available new fragments are allocated and all references are updated. Both the list and
the pool are implemented using a C++ template class so the lists can store any kind of
data.

Because two different types of data must be stored the red-black trees are also
implemented using a template class. The implementation of this class is standard and
straightforward except that a dynamic list is used to store the nodes. These structures and
classes will be explained in detail in section 3.4.4.

3.4.4 Dynamic data storages

In this section the various classes used to support the tessellation process by pro-
viding (dynamic) storage are discussed. For every class the use will be explained.

3.4.4.1 Queue

The cQueue class implements a queue. The queue can be used to store any kind
of data. The tessellation process uses it to store squares while tessellating the terrain (see
also section 3.4.1). By storing the indices of the first and last queue entries both append
and mmove are fast 0(1) operations. Because a priori there is no knowledge of the max-
imum number of squares that need to be stored the queue may not be limited in storage
space. This is accomplished by breaking up its storage in fragments. When needed an
extra fragment is allocated and added to the queue.

first_idx last_idx

III II II II I

V
remove append

figure 22a - a cOueue consisting of three fragments

first_idx Iast_idx

I II II IIIL I

. _____1

V
remove append

figure 22b - a Remove and an Append have been perlormed

30

3.4.4.2 Dynamic List & Pool

The cDynamicList class is mainly used to support the dynamic storage class
described in section 3.4.4.4. In addition it is used to store triangles during the export of
geometry to 4Space. In both cases accesses need to be fast and the maximum number
of elements to be stored is unknown. To allow for both, the list is broken up in fragments
(the cDynListFragment class), just like the queue above. Because many lists will be used
simultaneously the lists are not allowed to allocate new fragments themselves. To keep
allocation time to a minimum this is handed over to a pool, an instance of the cPool class,
which keeps a number of unused fragments around for lists that may want them.

A fragment has a fixed length and is able to store a certain number of elements.
For every fragment the index of the first free entry is stored. Combined with keeping track
of the first fragment with at least one free entry this allows for fast 0(1) addition to the list.
Note that no ordering is enforced, elements are stored in the order they were added.
Likewise, removal is 0(1).

Access is not 0(1) but is 0(n) where n is the number of fragments in the list.
Because access is done by index in the total available entries (not only the ones that are
used) it is straightforward to compute the number of the fragment which holds the required
element. This fragment is accessed by starting at the first fragment and taking the next
fragment until the desired one has been reached. Now the element can be accessed by
a simple array access.

Although both the cPool and the cDynamicList class have a destructor, the
cDynListFragment class does not, because the only data members that (possibly) need
destruction are elements that were added to the list the fragment belongs to. These ele-
ments are of unknown type, so it is left to the calling function or program to clean up its
own data.

Pool Pool

I I

21
I 2List1.,

List 2,

I I I

I

figure 23 - a Pool handing out two references, its first the first three fragments have been
fragment has already been handed out handed out

3.4.4.3 Red-Black Tree

This cRB Tree class is used by the dynamic storage class described in section
3.4.4.4. It implements a standard red-black tree (see also Cormen, 1990) and its associ-
ated operations (insert, delete and access). The nodes of the tree are stored using a
dynamic list (see section 3.4.4.2). The tree is able to store any kind of data in its nodes.
The pool to be used by the dynamic list is passed on by the constructor of the tree. A sec-
ond pool is used for the data members of the nodes. If a new node is inserted a pre-allo-

31

cated pointer is requested from this pool. Also, functions must be supplied to initialize or
destroy the data member of the node when added to or removed from the tree. A tree
access is O(n log m), where n is the number of fragments of the dynamic list and m the
number of nodes.

3.4.4.4 Dynamic Storage

data

151218131

nodes reference each other by index

This class uses both the cR8 Tree and cDynamicLisf classes to provide a dynam-
ic storage. Any kind of data can be stored as long as it can be indexed by a (x, y) tuple
with x and y being elements of Z. It is especially suited to store large two-dimensional
sparse arrays memory-efficiently since only the entries containing data are actually stored.
The cBezierPatch class uses a dynamic storage to store information for every generated
vertex.

figure 25 - cOynStorage structure

32

figure 24

cRBTree nodes stored in list

The storage is constructed using a cR8 Tree to store x-values. In every node of
this x-tree an y-tree is stored. The nodes of the y-trees store the data. Therefore a single
access of a (x, y) position consists of two red-black tree accesses and is thus O(n log m).

3.4.4.5 Evaluating performance

Since initially an implementation was done using arrays instead of the storages
described above a comparison could be made. The implementation using dynamic stor-
ages proved to be somewhat slower than the one using arrays, which was not unexpect-
ed. Using the Intel VTune Performance Analyzer 4.0 hotspots (frequently called functions
etc.) were found. These were inspected, minimized and optimized for speed. After this the
differences between the two versions were marginal or very small.

33

4. Testing

4.1 Test set up

To test the performance and scaling capabilities of the implementation a bench-
mark was constructed. This benchmark consists of four runs of a modified version of "MR
terrain". For each run parameters are specified (see table 1), of which only the visibility
threshold value (see section 3.4.2 "Data Reduction") is varied. For the curvature thresh-
old (see section 3.4.2 "Recursion") a sufficiently small value is chosen to allow for a fine
tessellation.

The terrain used consists of 16 by 16 patches. A maximal recursion depth of 8
allows for a fairly close approximation (a maximum of 256 x 256 x 2 triangles per patch).
Combined with the chosen value for the nonlinear deviation threshold non-viewbased tes-
sellation is infeasible since this would result in a geometry of approximately 30 million tri-
angles. The visibility threshold is used to keep triangle numbers within acceptable limits.
A fifth run was proposed but it generated in excess of 50.000 on-screen triangles and
exceeded as such a 4Space limitation. Therefore run 5 was discontinued.

Runnr max. recursion depth nonlinear deviation threshold visibility threshold

1 8 1.0 0.01

2 8 1.0 0.0025

3 8 1.0 0.000625

4 8 1.0 0.000156

table 1 - Benchmark run parameters

To ensure that any test-run is reproducible the camera travels a pre-destined path.
Camera advancement is invoked by the framecounter and not by time. Therefore all
benchmarked computers generate the same set of frames for the same run. Prior to test-
ing (close to) optimal values for fragment and pool sizes were selected (experimentation
revealed that changing sizes within reasonable values does not have a large impact on
performance). Each run produces three files: the first contains global timing data, the sec-
ond lists the number of triangles generated for every frame and the last lists all frame
times.

This benchmark was executed on a number of different computers. A selection
was made to be able to observe the effect of various possible performance bottlenecks.
The selected computers can be found in table 2.

nr. Cpu memory hardware graphics pipe Operating System
I Pentium II 266 128 Mb Nvidia TNT Windows NT 4.0
2a Dual Pentium III 450 256 Mb Intergraph XV25 Windows NT 4.0
2b Dual Pentium III 450 256 Mb Nvidia GeForce256 Windows NT 4.0
3a Dual Pentium III 500 256 Mb Matrox Millenium G200 Windows NT 4.0
3b Dual Pentium III 500 256 Mb Intergraph Wildcat 4000 'Mndows NT 4.0
4 Dual Pentium III 750 512 Mb Intergraph Wildcat 4110 VlO Wndows NT 4.0
5 Athlon 550 128 Mb Nvidia TNT Windows 98
6 Dual Pentium III 300 256 Mb Intergraph Wildcat 4105 Windows NT 4.0

table 2 - The test computers

34

4.2 Results

In graph 1 to 4 the triangle counts with respect to frame number of the four runs
are shown. These are the same for every test computer. Something that can be observed
from these graphs is that they are similarly shaped. Although triangle counts differ strong-
ly (from around 700 to around 17,000), the basic shape of the four graphs is identical. This
indicates that varying the visibility threshold value has a scaling effect. This is according
to what was expected, because the visibility threshold is (unconditionally) used always if
a recursion step is being done. This means that changing its value has effect everywhere.

35

figure 26 - camera movement, A: the camera rotates two times, B: after a jump to a new location the camera
follows the path

t
tnanø.
cQu

1000

800

600

400

graph I - triangle count of test run I

2500

2000

tflane
count

1000

500

graph 2- triangle count of test run 2

8000

7000

6000

5000

4000

3000

2000

1000

20000

thaLi 5000
count

10000

5000

0

graph 4- triangle count of test run 4

36

0 frames —0- 3500

0 3500

0 3500

graph 3- triangle count of test run 3

0 frames —o 3500

The graphs above have a few irregular regions. To explain these
camera movement and graph 4 are combined to get graph 5:

2500

2000

1500

1000

500

graph 5 - camera movement with respect to triangle count
(a, b: camera rotates 360 0, C: jump to another location, d: moving forward, e: rotate 150 o, f: moving
forward)

Graph 5 shows that large changes in the triangle count result from significant
changes of the camera view (note that a "free camera" is used: view angle is constant and
there is no fixed look-at point). During the first two peaks the camera rotates itself, which
changes the terrain in view from a small (camera is close to a slope) to a much larger
piece and back. After this the triangle count suddenly jumps to a much higher value, this
coincides with an instant jump of the camera to another location. From this location a large
part of the terrain is visible. The camera is moving forward now, which shrinks the portion
that is visible. This explains the slow but steady decrease in number of visible triangles.
When the camera stops moving forward it makes another rotation (about 150 degrees)
and descends. This causes the last peak in the graph. It then moves forward again while
more and more of the terrain goes out of view.

In the following graphs (6 - 13) the results of the tests are shown for each com-
puter. The graphs show the frame rate during the test-runs.

37

a bc e

15

12

'ate

6

3

0

8
746

I 5mere 4
3

2

1

0

t
I rue
rat.

50

40

30

20

10
0 3500

graph 6a -framerate of te.st-run Ion computer n. I

30

25

t 20
ham.
rate

15

10

5
0

graph 6b -framerate of test-run 2 on computer nrl

frames —0- 3500

0 frames -

graph 6c -framerate of lest-run 3 on computer nr I

3500

0 3500

graph 6d-frameraie of test-run 4 on computer nr I

38

graph 7b -framerate of test-run 2 on computer nr 2a

30

25

10

5

frwnes -

t
frame
rate

80

70

60

50

40

30

20
0

graph 7a -framerate of test-run I on computer nr 2a

50 —

40 -

30 —

3500

20

10
0 frames - 3500

0 3500frames -

graph 7c -frarnerate of test-run 3 on computer nr 2a

15

12

frame 9
rat.

6

3

0
0 3500

graph 7d -framerate of test-run 4 on computer nr 2a

39

60

.
frame
rate

30

20

10

12

rate

6

3

U

100 -

graph 8a -framerale of lest-run I on computer nr 2b

fram - 3500

kr
frames - 35000

graph 8b -framerate of lest-run 2 on computer nr 2b

35

30

25
frame
rate

15

10

5

graph 8c -framerate of test-run 3 on computer nr 2b

15

0 3500trnes -

0
0 frames —0- 3500

graph 8d -framerate of test-run 4 on computer nr 2b

40

30

25

20

15

10

20

t
frame
rate

0 f, _. 3500

graph 9a -framerale of test-run I on computer nr 3a

0 frames —0 3500

15
frame
rate

10

5

graph 9b -framerale of lest-run 2 on computer n.' 3a

15

12

frame
rate 9

6

3

graph 9c -framerate of lest-run 3 on computer nr 3a

8

7

f 6
frame
rate

4

3

2

1

0

0 3500frames -

graph 9d-framerate of test-run 4 on computer nr 3a

frames — 3500

41

35

A
30

T 25
frame
rate 20

15

10

5

frames -

100 —

graph IOa -framerate of test-run I on computer sir 3b

60

graph lOb -framerale of test-run 2 on computer sir 3b

3500

frames - 3500

0 _ 3500

graph lOc -framerate of test-run 3 on computer sir 3b

15

12

frame 9
rate

6

3

0
0

graph lOd -framerate of test-run 4 on computer sir. 3b

frame. —0- 3500

42

80

70

60
frame
rate 50

40

30

20

120

100

80

60

40

graph ha-framerate of test-run I on computer nr 4

0 3500

trainee —a- 35000

graph Jib -framerale of lest-run 2 on computer nr 4

50 —

40

30

20

10

0
0

graph lic -framerale of test-run 3 on computer nr 4

25

20

frame 15
rate

10

5

0

frames - 3500

0 . 3500

graph lid -frameraze of test-run 4 on computer nr 4

43

100

rate

40

20

0
frames - 35000

graph 12a -frarnerate of test-run I on computer n, 5

60

50

t 40
frame
rate

30

20

10
0

graph 12b -framerate of test-run 2 on computer nr 5

frames - 3500

35

30

t 25
frame
rate 20

15

10

5
0

graph 12c -framerate of test-run 3 on computer nr 5

frames - 3500

15

12

frame 9
rate

6

3

0
0

graph 12d -framerate of test-run 4 on computer nr 5

frames - 3500

44

40

35

30

25

20

15

10

5

60

$::
frame

rate

30

20

10
0

graph 13a -framerale of lest-run 1 on computer nr 6

t
fran.
rat.

3500

frames - 35000

graph 13b -framerate of lest-run 2 on computer nr 6

25

A
20

1 15
frame
rate

10

5

0

0

graph 13c -framerate of test-run 3 on computer nr 6

10

8

frame 6
rate

4

2

0

frames - 3500

0

graph 13d -framerate of test-run 4 on computer nr 6

frames - 3500

45

Table 3 shows the average frame rate achieved for each computer on each test-
run. From these results and the graphs two bottlenecks can be identified: the general cpu
processing power and the rendering power of the 3d accelerator. For instance, comparing
computer nr. I and nr. 3a shows that although nr. 3a has a much faster cpu it still scores
worse than nr. I in the first two runs. This is because nr. 1 contains a 3d accelerator which
can process the generated triangles faster. However, when the amount of triangles gen-
erated starts to rise (run 3 and 4), computer nr. 3a is faster. The amount of cpu-time spent
generating triangles has become a more dominant factor and the cpu of nr. 3a has about
twice the speed as the one of nr. 1.

Comparing computers nr. 3b with nr. 5 and nr. 2a with nr. 2b shows that the cpu
is the main bottleneck. If a certain level of rendering power is present, further increasing
this power does not increase performance accordingly. Between computers nr. 2a, 2b, 3b
and 5 there is little difference in performance. In contrast, the 3d accelerators they are
equipped with differ strongly (see table 2). These accelerators apparently all accomplish
or exceed a certain base performance level and it is the cpu that would make the differ-
ence (if they differed more in speed): the cpu limits system performance, not the 3D graph-
ics card. This is confirmed by the differences between computers nr. 3b and 4. Although
the 3d accelerators of these systems are not identical their differences are small, so any
large performance difference between computers nr. 3b and 4 can be attributed to the dif-
ference in cpu-speed. This also means the results of nr. 3b were limited by its cpu, not its
3d accelerator.

Computer nr. run I (fps) run 2 (fps) run 3 (fps) run 4 (fps)
1 33.4 12.9 4.8 1 . 4

2a 58.8 24.4 9.4 2 . 8
2b 66.9 27.2 10.7 3 . 2
3a 17.0 11.0 5.7 2 . 0
3b 66.3 28.4 11.3 3 . 4
4 87.7 38.2 16.0 5 . I
5 6.48 26.6 10.4 3 . 3

6 47.0 18.2 7.0 1 . 9

table 3 - Benchmark run results: average frame rate per run

Putting the measured framerates of test-run 1 and 2 in a graph (see graph 13)
shows that the cpu-bottleneck is linear: if cpu performance increases, frame rate increas-
es accordingly, permitted the 3d accelerator does not become a bottleneck.

4E

200 300 400 500 600 700 800
cpu-speed(MHz) —.

graph 14 - frame rate in relation to cpu-speed (black: testrun 1, gray: testrun 2)

46

Graph 14 also shows a small drop in performance at some point. Although the
computer (nr. 5) has a cpu with a higher clock speed it performs slightly worse than is
expected. This can be attributed to a number of possible causes. This particular Cpu 5 of
another make and model than the others in graph 14. However since this type is known
to be an excellent performer on floating-point operations, which are used quite heavily by
the benchmark, this is not likely to be the cause of the low performance. More likely the
3d accelerator it is equipped with has begun to form a bottleneck. It is of the same model
as used in computer nr. I and the slowest that is used (apart from nr. 3a, but that com-
puter is not included in graph 14). Judging from the results of both computer nr. 1 and nr.
6 this 3d accelerator is a bottleneck, since nr. 6 shows a considerable performance
increase with only a marginal difference of cpu-speed. Another possible cause is the oper-
ating system. All computers were running Windows NT 4.0 during the benchmark except
nr. 5, on which only Windows 98 was available.

47

5. Remaining topics

The implementation discussed so far is not complete, the remaining topics will be
discussed subsequently (see also section 3.3.4).

5.1 Functionality

Although 4Space is now able to render a terrain constructed from Bézier patches,
the extension is not yet really useful. Because the terrain is only flat-shaded it does not
look realistic and there is a visually very distracting popping effect when detail levels
change (caused by changing colors due to flat-shading when different triangles are creat-
ed from one frame to the next). To remedy both problems the terrain should be smoothly
shaded and textured. A simple form of texture mapping can be implemented quite easily
if one texture per patch is used. In that case the P(u, v) coordinates can be used as tex-
ture coordinates. Rendering shades into vertex colors can also further increase visual
realism of the terrain.

Another point of attention is terrain creation or import. Instead of using a random
landscape it must be possible to render a specific (be it real or imaginary) terrain.
Therefore the relationship (export and import of models) between the modeler in use (i.e.
3D Studio MAX), its features, and the MT module will have to be investigated. Terrain data
sets are a second possible source of models (i.e. GIS subsets or DEM files). For both it
will be necessary to develop a conversion to a format which 4Space can handle.

A simulation that uses the proposed and implemented landscape will require the
presence of diverse objects: stationary, mobile or animated. Some issues which currently
have not been considered then appear in the integration of landscape and objects. Two
examples are the following. Where terrain and other scenery (-objects) collide visual and
other problems may occur due to the varying spatial resolution of the various detail levels
of the terrain. For instance: buildings on slopes may become (partly) buried in the terrain
or floating in the air at different terrain detail levels. The second example is the require-
ment of tunnels in some environments. These problems can be resolved in two ways: the
first is to create two fixed openings in the patchterrain and create the tunnel with another
object. The second is to make the tunnel part of the terrain (which does imply the u, v coor-
dinates of the patch control points are no longer in a plane).

5.2 Efficiency

Chapter 4 showed that the current implementation partially achieves acceptable
frame rates. However, only on the low(er) complexity runs. Fortunately there is ample
room for optimization. Currently the following representations are used when the patches
are rendered:

U

U
0

0

0

figure 27

0

4Sp.gsom

In.9ss • nm

48

I

The terrain is initially represented by its control points. From the controls tessella-
tion creates a set of vertices. Triangles are created from the vertices and the triangles are
inserted in a GeometiyNode (see figure 27).

There are several ways to increase frame rate. First of all, the current implemen-
tation is rather simple and straightforward: each triangle is generated independently. No
use is made of triangle strips or vertex sharing. In addition, it probably is possible to skip
a full stage completely and go directly from vertices to 4Space geometry. Also a (special)
operational mode is possible where instead of a general 4Space geometry node a more
efficient form of geometry (i.e. vertex arrays) is used.

Another method to speed things up is to decrease the number of unnecessarily
created triangles. If the distance is large enough it is conceivable that two triangles are
enough for a 2 by 2 square of Bézier patches. In the current implementation any visible
patch always gets at least two triangles. This means the initial steps should be about
determining the curvature of multiple patches before a particular patch is tessellated.
Furthermore, all patches in the camera view frustum are treated as visible and get tessel-
lated, even if they are occluded or only their downside is visible. Using occlusion and the
equivalent of backface culling to eliminate these patches to enter the tessellation process
may result in a considerable performance improvement (especially in mountainous land-
scape environments). Finally, a situation is conceivable where the only terrain visible is
just a (small) part of a single patch. In that case, just generating the visible triangles and
not all triangles for that patch is more efficient.

Reusing vertex data is another means of preserving time. Instead of computing all
vertices and geometry each frame it is conceivable to compute only those portions that
were not computed during the previous frames. The remaining vertices can be reused
from these frames if the terrain has not changed shape. Depending on the speed of the
camera movement and amount of change in the terrain this should result in substantially
less computational costs per frame.

Currently no effort is made to actively control the number of triangles created. If
framerates are too low, it is conceivable to let the program autonomously adjust its param-
eters to restore a definable required frame rate. Also no effort is made to limit the varia-
tion in the number of triangles created. Due to local curvature a particular area may
require far too many triangles while the rest of the terrain is optimal. Possibly a mecha-
nism to put an upper (and lower) bound on the number of triangles can be added.

A lot of effort has already been put in making the implementation memory-effi-
cient, but this topic still requires attention. First of all, memory that is no longer used must
be freed (i.e. clearing storage entries). Some kind of garbage collection will be necessary
to sustain long-term use of large terrains. Also there is redundancy in the system: since
each patch independently stores its own data using its own DynStorage, the vertices of
shared edges are stored twice (once for each patch). If one larger DynStorage is used for
storing data for all patches this can be prevented. However, this does introduce problems
concerning the derivatives because these are not necessarily the same for both patches
sharing an edge.

Another optimization is to allow for differently sized patches in a terrain instead of
using a uniform grid of patches. This allows for local high degree curvature using small
patches while larger patches are used elsewhere. This prevents the use of high numbers
of small patches where they are not necessary. However, the use of differently sized
patches introduces non-trivial problems concerning continuity.

49

The last optimization that will be mentioned here, is to make use of more than one
processor. Multi-cpu (SMP) computers, especially those with two cpu's are becoming
more and more common. The current implementation uses one cpu, even if more are
present. The algorithm presented here may be suitable for parallelization because of two
aspects. First, the steps of the tessellation and geometry creation process are small and
repetitive. Secondly, during most if not all steps only local data is used.

5.3 Loose ends

There are some remaining issues: the integration with 4Space must be complet-
ed. Proper load and save functions for the 4Space FSO file format need to be added. Also
some other functions need to be implemented correctly (like bounding volume/sphere
computation). In addition there are limitations in 4Space that have not been dealt with yet
(i.e. the number of polygons in a 4Space geoset is bound by a maximum). The imple-
mentation of the extension discussed so far could use a cIeanp. This will remove short-
cuts and limitations which are present due to time constraints (allowing for multiple
instances of patch terrains, non-rectangular shape of the terrain etcetera).

At least for the following two issues corrections are necessary. The first is due to
the tessellation method. If the terrain has a particular shape an aliasing effect can occur.
The tessellation stops early and causes the generated triangles to deviate far too much
from the actual shape (see figure 28). Since the terrain is two-dimensional this does not
happen as often as in the case of a one-dimensional curve because the three other edges
of a square/patch can force subdivision of such an edge.

— — —

a

curve midpoint resulting tesselation

figure 27

The second issue is an artificial limitation which should be removed. Currently
each patch is always tessellated to at least depth 0 (which results in two triangles). This
causes two problems. As the terrain grows in size (the number of patches increases) the
number of unnecessary created triangles grows and eventually the system will choke on
them, limiting the size of the terrain and slowing down the visualization. Secondly,
because each patch is tessellated to depth 0, the patches that are visible border on edges
of depth 0. This results in an odd visual effect in which nearby terrain loses detail because
of the crack fixing routine, It creates a border area in which patches are every time tes-
sellated one step further than their neighbours to build a bridge between the (high detail)
part of the terrain in view and the (low detail) rest (see also figure 29).

50

51

figure 29- Landscape tessellated with a very small visibility threshold to emphasize the loss of detail near the
edges of the view volume.

6. Conclusion

The goal of this study was the implementation of a scalable method for visualiz-
ing large terrains. Additionally a front-end was created in a way such that benchmark test-
ing would be possible to mark system-component effects as well as scalability effects. This
scalability has three aspects:

1. hardware performance

2. terrain approximation quality (detail level)

3. terrain dimension

The implemented algorithm combines the first two aspects in such a way that from
a single source terrain description many different visualizations with respect to the num-
ber of triangles used are possible. This allows for very different hardware to show the
same terrain, albeit at varying levels of quality. This was shown in chapter 4. Performance
is still lacking for both low-end hardware and high-detail parameter settings, but imple-
menting the optimizations proposed in chapter 5 should improve this situation. Also in the
entire implementation no specific platform is assumed. Although 4Space is currently only
available for the Windows platform, there is no limitation in the implementation which will
prevent the retargeting of the extended 4Space. The only requirement is that a C++ com-
piler supporting templates exists for the new target platform (if templates are not support-
ed, retargeting is much more work but not impossible).

The third aspect is explained as the capability of supporting large terrains and has
not yet been implemented fully. Much of the work has been done but additional program-
ming is required. Firstly an optimization is required for the tessellation of invisible patches
(see section 5.3), a procedure that is fairly straightforward. A second addition is more com-
plex and consists of the implementation of a garbage collector (see section 5.2).

The goal has thus only been partly achieved. And even if the additional work
described above is finished, there is still a lot of work to do. Bringing the implementation
up to production standards concerning speed and features will require implementing the
bulk of the proposed additions and optimizations (see chapter 5) which will require con-
siderable time. But, the current results and the kind of optimizations possible indicate that
if this work is finished there could be a significant increase of speed. The proposed addi-
tions should cause the cpu to be a less dominant factor regarding performance while visu-
al quality can be raised considerably (for instance, the last two test-runs could then be run-
ning at acceptable frame rates).

Looking ahead, the technology is there to visualize large surfaces described by
patches while maintaining a good standard of visual quality concerning geometric shape.
Real benefits of this technology are that the visual quality of the terrain or surface can be
raised quickly if hardware capabilities keep increasing and that visual quality can be main-
tained at any zoom level. It is a point of further study whether this scalability will be main-
tained if the terrain is textured fully and in detail. It is also worth investigating if the tech-
nique used here can be applied more generally and be used for other objects. Especially
interesting is the case of objects which change shape frequently (i.e. a waving flag or a
walking person) for which, if they are constructed from Bézier patches, only the controls
have to be adjusted and not their entire geometry.

52

Al Literature

ARPA, "WRM Entity Flight Specification", version 1 draft 10, 1994

M.A. Bassiouni, M. Chiu, "Performance and Reliability Analysis of Relevance Filtering for
Scalable Distributed Interactive Simulation", ACM Transactions on Modeling and
Computer Simulation, Vol. 7, No. 3, pp.293 -331, 1997

S.L. Berg, S.H. Grigsby, "Improving the fidelity of distributed simulations through environ-
mental effects", 13th Workshop on Standards for DIS, 1995

B.S. Blau, "Object Oriented Terrain Databases for Visual Simulators", thesis, University of
Central Florida, 1990

W. Blumenow, G. Spanellis, B. Dwolatzky, "The Process Agent Model and Message
Passing in a Distributed Processing VR System", ACM Symposium on Virtual Reality
Software and Technology, Lausanne Switzerland, 1997

T.H. Cormen, C.E. Leiserson, R.L. Rivest, "Introduction to Algorithms", The MIT Press,
Second printing 1990

T.P. Das, 0. Singh, A. Mitchell, P. Senthil Kumar, K. McGee, "NetEffect: A Network
Architecture for Large-scale Multi-user Virtual Worlds", ACM Symposium on Virtual Reality
Software and Technology, Lausanne Switzerland, 1997

S.R. Ellis, "Nature and origins of virtual environments: a bibliographical essay", Computing
Systems in Engineering, Vol. 2, No. 4, pp. 321 - 347, 1991

S.R. Ellis, "What are virtual environments?", IEEE Computer Graphics & Applications,
1994

M. Froumentin, E. Varlet, "Dynamic implicit surface tesselation", ACM Symposium on
Virtual Reality Software and Technology, Lausanne Switzerland, 1997

0. Fullford, "Distributed Interactive Simulation: It's Past, Present, and Future",
Proceedings to the 1996 Winter Simulation Conference, Arlington USA, 1996

S. Gumhold, W. Strater, "Real Time Compression of Triangle Mesh Connectivity, SIG-
GRAPH 98 Conference Proceedings, pp. 133 - 140, 1998

L. Kobbelt, S. Campagna, J. Vorsatz, H. Seidel, "Interactive Multi-Resolution Modeling on
Arbitrary Meshes", SIGGRAPH 98 Conference Proceedings, pp. 105 - 114, 1998

E. Lantz, "The Future of Virtual Reality: Head Mounted Displays Versus Spatially
Immersive Displays", SIGGRAPH 96 Conference Proceedings, pp. 485 - 486, 1996

P. Lindstrom, 0. Koller, W. Ribarsky, L.F. Hodges, A. Op den Bosch, N. Faust, "An
Integrated Global GIS and Visual Simulation System", GVU Technical Report 97-07,
Georgia Institute of Technology, 1997

P. Lindstrom, 0. Koller, W. Ribarsky, L.F. Hodges, N. Faust, GA. Turner, "Real-Time,
Continuous Level of Detail Rendering of Height Fields", SIGGRAPH 96 Conference

53

Proceedings, pp. 109 - 118, 1996

P. Lindstrom, 0. KolIer, W. Ribarsky, L.F. Hodges, N. Faust, G.A. Turner, "Level-of-Detail
Management for Real-time Rendering of Phototextured Terrain", GVU Technical Report
95-06, 1995

R. Macredie, S.J.E. Taylor, X. Vu, R. Keeble, Virtual Reality and Simulation: an overview",
Proceedings of the 1996 Winter Simulation Conference, 1996

W.R. Mark, S.C. Randolph, M. Finch, J.M. Van Verth, R.M. Taylor II, "Adding Force
Feedback to Graphics Systems: Issues and Solutions", SIGGRAPH 96 Conference
Proceedings, pp. 447 - 452, 1996

E. Mascarenhas, V. Rego, J. Sang, "DISplay: A system for visual-interaction in distributed
simulations", Proceedings of the 1995 Winter Simulation Conference, 1995

S. Nishimura, T.L. Kunii, "'IC-i: A ScalabTe Graphics Computer with Virtual Local Frame
Buffers", SIGGRAPH 96 Conference Proceedings, pp. 365 - 372, 1996

J. O'Rourke, "Computational Geometry Column 33", SIGACT News 29(2), Issue #107 pp.
14-16, 1998

I. Oswalt, "Technology trends in military simulation", Proceedings of the 1995 Winter
Simulation Conference, 1995

I. Poupyrev, S. Weghorst, M. Billinghurst, T. Ichikawa, "A Framework and Testbed for
Studying Manipulation Techniques for Immersive VR", ACM Symposium on Virtual Reality
Software and Technology, Lausanne Switzerland, 1997

E. Puppo, R. Scopigno, "Simplification, LOD and Multiresolution Principles and
Applications", Eurographics '97 Vol. 16 No. 3, 1997

RF. Reynolds, JR. Natrajan, A. Natrajan, "Consistency Maintenance in Multiresolution
Simulations", ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 3, pp
368 - 392, 1997

GA. Schavione, S. Sureshchandran, K.C. Hardis, "Terrain Database Interoperability
Issues in Training with Distributed Interactive Simulation", ACM Transactions on Modeling
and Computer Simulation, Vol. 7, No. 3, pp. 332 - 367, 1997

0. Schmalstieg, M. Gervautz, "Modeling and Rendering of Outdoor Scenes for Distributed
Virtual Environments", ACM Symposium on Virtual Reality Software and Technology,
Lausanne Switzerland, 1997

Brian Sharp, "Implementing Curved Surface Geometry", Game Developer, Vol. 6, No. 6,
pp. 42 -53, 1999

Brian Sharp, "Optimizing Curved Surface Geometry", Game Developer, Vol. 6, No. 7, pp.
40-48,1999

G. Smith, J. Mariani, "Using Subjective Views to Enhance 3D Applications", ACM
Symposium on Virtual Reality Software and Technology, Lausanne Switzerland, 1997

54

A. Steed, 'Efficient Navigation Around Complex Virtual Environments", ACM Symposium
on Virtual Reality Software and Technology, Lausanne Switzerland, 1997

0. Sudarsky, C. Gotsman, 'Output-Sensitive Rendering and Communication in Dynamic
Virtual Environment", ACM Symposium on Virtual Reality Software and Technology,
Lausanne Switzerland, 1997

C. Ware, G. Franck, "Evaluating Stereo and Motion Cues for Visualizing Information Nets
in Three Dimensions", ACM Transactions on Graphics, Vol. 15, No. 2, pp. 121 - 140, 1996

B. Watson, N. Walker, L.F. Hodges, 'Managing Level of Detail through Head-Tracked
Peripheral Degradation: A Model and Resulting Design Principles", ACM Symposium on
Virtual Reality Software and Technology, Lausanne Switzerland, 1997

B. Watson, N. Walker, W. Ribarsky, V. Spaulding, "The Effects of Variation of System
Responsiveness on User Performance in Virtual Environments", 1996

B. Watson, N. Walker, L.F. Hodges, A. Worden, 'Managing Level of Detail through
Peripheral Degradation: Effects on Search Performance with a Head-Mounted Display",
ACM Transactions on Computer-Human Interaction, Vol. 4, No. 4, pp. 323 - 346, 1997

J. Wu, C. Duh, M. Ouhyoung, "Head Motion and Latency Compensation on Localization
of 3D Sound in Virtual Reality", ACM Symposium on Virtual Reality Software and
Technology, Lausanne Switzerland, 1997

55

A2 Glossary

3dfx (Inc.)

A company which started a revolution when it delivered performing 3D hardware rasteriz-
ers for the consumer market.

3D accelerator -

A piece of hardware which efficiently implements part of a 3D graphics pipeline

3D Studio MAX

A software program by which 3D models can be built and animated

Cpu

The central component of a computer (cpu: central processing unit), by which computa-
tion is done.

C continuity

A function is said to be continuous, if its n-th derivative is continuous

Crack

A hole in a polygonal surface caused by imprecise connections between polygons.

Distributed Interactive Simulation (DIS)

A standard for simulators designed to ensure interoperability.

Distributed Processing

The use of multiple interconnected computers to solve a single problem.

G1 Continuity

If two curves are joined in the endpoints and their tangents are of similar direction but not
necessarily of the same size the resulting compounded curve is called G1 continuous.

56

Geometry Accelerator

A part of a 3D accelerator which can perform matrix transformations and/or triangle setup.

Graphics pipeline

The steps involved in rendering an image of a 3D scene (typically: database (geometry
calculations (triangle setup (rasterization (frame buffer).

Head Mounted Display (HMD)

A device which is worn on the head providing (stereo) image by small displays (e.g. lcd)
in front of the eyes.

Projection system

A setup using beamers to project an image onto a screen.

Massively Parallel Processing (MPP)

The use of very large numbers of relatively simple or inexpensive processors in a single
computer to solve a single problem.

Motion system

A construction which can move a platform in a number of angles and speeds to suggest
movement to a person in a simulator on the platform.

Nvidia

A company specialized in delivering 3d accelerators for the consumer market.

OpenGL

A cross-platform graphics API.

Pixelfilirate

The amount of pixels which can be handled by the rasterizer in a certain amount of time.

Platform

The environment for a piece of software, consisting of both hardware and software (cpu
architecture, memory model, Operating System etcetera).

57

Plug-in

A piece of custom software which can be added to a program by a third party without the
need for recompiling that program.

Polygon

A shape in 20 or 3D space bounded by a series of points or vertices that lie in a plane.
From these complex 3D models are constructed.

Polygon count

The number of polygons of a 3D scene, model or camera view of a scene.

Rastenzer

A part of a 3D accelerator which does the transformation from 3D triangles to 20 pixels. A
simple 3D accelerator consists of only this part.

Silicon Graphics (SGI)

A leading company in the field of computer graphics.

Symmetric Multi Processing (SMP)

The use of a small number of (equivalent) powerful processors in a single computer to
solve a single problem.

Texture

A bitmap image that is draped onto 3D geometry.

58

A3 MRterrain

The MRterrain program was constructed using the extended 4Space. It loads a
terrain dataset from a file and displays the terrain. It provides controls to rotate and trans-
late the camera or the terrain. Also provided is a parameter settings window to change the
tessellation parameters real-time. Below are some screenshots of MRterrain (all screen-
shots are from the same session).

59

I1F2

figure 30 - MRterrain displaying a particutar terrain, the number displayed in the window bar is the triangle
count

60

__________________________________ ___________

P11112

figure 31 - MRterrain displaying the same terTain with different parameters

fl34o3 P11112

figure 32 - the parameter settings window

