

Contour Tracing in
Schemes

H.C. Duifhuis
Advisor: G. Vegter

Masters Thesis

SubdivisionS S U

Rijksuniversiteit Groningen
Informatica
Postbus 800
9700 AV Groningen 6th March 2000

Contents

1 Introduction 6

2 Background
2.1 Topology
2.2 B-spline curves
2.3 Tensor product B-spline surfaces

3 Subdivision Curves 14
3.1 Introduction 14
3.2 Classification 15
3.3 Evaluation masks 15

4 Subdivision Surfaces
4.1 Introduction
4.2 Classification
4.3 Analyzing the limit surface

4.3.1 Affine Invariance
4.3.2 Convergence .

4.3.3 Smoothness

18
18
18
20
21
21

21
23

24
24
24
25
26
28
29
29
30
31
31
31
33
33
34
35
35

9
9

11
13

4.4 Subdivision Surfaces vs. other Representations

5 Three Subdivision Algorithms
5.1 Loop Algorithm

5.1.1 Three-directional Box Spline
5.1.2 The Algorithm
5.1.3 Convergence and Smoothness
5.1.4 New Faces and Vertices Generation

5.2 Doo-Sabin Algorithm
5.2.1 Biquadratic B-spline
5.2.2 The Algorithm
5.2.3 Face Classification
5.2.4 Convergence and Smoothness
5.2.5 New Faces and Vertices Generation

5.3 Catmull-Clark Algorithm
5.3.1 Bicubic B-spline
5.3.2 The Algorithm
5.3.3 Convergence and Smoothness
5.3.4 New Faces and Vertices Generation

1

CONTENTS 2

6 Contour Tracing 38
6.1 Introduction 38
6.2 Curve Contours 39
6.3 Surface Contours 46
6.4 Quadrilateral schemes 46
6.5 Analyzing Contours in Surface Subdivision 48

6.5.1 Testing the expectation band 48
6.5.2 Test results 50

6.6 Conclusion 52

7 Implementation 54
7.1 Introduction 54
7.2 Basic Class Structure 55

7.2.1 Vertex 55
7.2.2 Face 55
7.2.3 Polyhedron 56

7.3 Loop Algorithm 57
7.4 Doo-Sabin Algorithm 58
7.5 Catmull-Clark Algorithm 59
7.6 Contour 60

8 Gallery 62

A CLass Interfaces 70
A.1 Class Vertex 70
A.2 Class Face 71
A.3 Class Polyhedron 72
A.4 Class DooSabin 75
A.5 Class CatmuilClark 75
A.6 Class Loop 75
A.7 Class Contour 76

List of Figures

1.1 Chaikin's algorithm for a curve. The top left shows the initial
function. The top right shows the function after one step. The
bottom left shows the function after two steps and the bottom
right shows the limit curve 6

1.2 Loop subdivision 8

2.1 Polyhedron representation of a pyramid 11

2.2 Level 0,1 and 2 basis functions 12

2.3 Subdivision of level 0,1 and 2 basis functions 12

3.1 Chaikin's algorithm 14

3.2 The splitting step 15

4.1 The characteristic map for a triangular scheme with a vertex with
valence 5 22

4.2 One segment of a triangular characteristic map 22

5.1 Three steps in a Loop subdivision scheme and the limit surface.. 24

5.2 The Loop algorithm 27

5.3 Three steps in a Doo-Sabin subdivision scheme and the limit
surface 29

5.4 The Doo-Sabin algorithm 32

5.5 Three steps in a Catmull-Clark subdivision scheme and the limit
surface

5.6 The Catmull-Clark algorithm 36

6.1 Viewing vector in a perspective and parallel projection of a polygon. 39
6.2 Equality of edge normal-directions in Chaildn's algorithm 40

6.3 Dependency of normal in B-spline subdivision step of degree 1+1,
where 1/2 is even 43

6.4 Dependency of normals in B-spline subdivision step of degree
I + 1, wnere 1/2 is odc. 43

6.5 Dependency of normals in B-spline subdivision step of degree
1 + 1, where (1 — 1)/2 is even 44

6.6 Dependency of normals in B-spline subdivision step of degree
l + 1, where (1 — 1)/2 is odd 45

6.7 A 'hole' in the contour generated by a non-planar face. Such a
face is called a contour face 47

3

LIST OF FIGURES 4

6.8 Faces of the expectation band generated by a contour edge and
a regular contour vertex in Loop subdivision 48

6.9 Faces of the expectation band generated by a contour edge and
a regular contour vertex and a regular contour face in Doo-Sabin
subdivision 49

6.10 Faces of the expectation band generated by a contour edge and
a regular contour vertex and a regular contour face in Catmull-
Clark subdivision 49

6.11 Eight polyhedral objects tested 50

8.1 Three Loop subdivision steps of an octahedron and the limit sur-
face 63

8.2 Three Doo-Sabin subdivision steps of an octahedron and the limit
surface 64

8.3 Three Catmull-Clark subdivision steps of an octahedron and the
limit surface 65

8.4 Three Doo-Sabin subdivision steps of a torus-like object and the
limit surface 66

8.5 Three Catmull-Clark subdivision steps of a torus-like object and
the limit surface 67

8.6 An initial polyhedron, subdivided three times with Doo-Sabin
and the limit surface 68

8.7 The same polyhedron, subdivided three times with Catmull-Clark
and the limit surface 69

List of Tables

4.1 Classification of three subdivision sem. 20
6.1 The number of edges (ne), the average number of band edges (ñb)

and contour edges (n), and the number of directions where there
are contour edges outside the expectation band (d) in three steps
of Loop subdivision 51

6.2 The number of edges (r&e), the average number of band edges
(ñb) and contour edges/faces (n), and the number of directions
where there are contour edges outside the expectation band (d)
in three steps of Doo-Sabin subdivision 51

6.3 The number of edges (ne), the average number of band edges
(ñb) and contour edges/faces (n), and the number of directions
where there are contour edges outside the expectation band (d)
in three steps of Catmull-Clark subdivision 52

5

Chapter 1

Introduction

Figure 1.1: Chaikin's algorithm for a curve. The top left shows the initial
function. The top right shows the function after one step. The bottom left
shows the function after two steps and the bottom right shows the limit curve.

Surfaces play an important role in three-dimensional computer aided geo-
metric design (CAGD). Flat faces are always represented by polyhedral meshes.
A cube, for example, can be represented by 6 quadrilateral polygons, squares.
But it is impossible to represent a smooth sphere using these polygons. There
are several different ways to represent smoothly curved surfaces.

The classical way to do this is to use piecewise polynomial surfaces, like
tensor product Bézier surfaces and tensor product B-sphne surfaces. Tensor
product non-uniform rational B-splines (NURBS) have become the most stan-
dard representation. A major disadvantage of these tensor product surfaces is
the requirement that control nets, defining the surface, must consist of a regular
rectangular grid of control points. Therefore these surfaces can only represent
limited surface topologies (planes, cylinders and tori).

Chaikin's use of subdivision to create curves inspired Catmull and Clark and

6

-.4

CHAPTER 1. INTRODUCTION 7

simultaneously Doo and Sabin to use subdivision to create surfaces, called sub-
division suilace,. This work provided the first method of constructing smooth
surfaces of arbitrary topological type. Subdivision surfaces received little at-
tention from the computer graphics community for many years, but regained
interest because of the intimate connection between subdivision and multireso-
lution analysis.

George M. Chaildn [2] was the first to use recursive subdivision in 1974.
Chaikin's algorithm can be thought of as a 'corner cutting' procedure to succes-
sively smooth down an initial piecewise-linear function to represent a smooth
curve, as shown in Figure 1.1. At each step new vertices are placed and of
the way between the old vertices. The new curve has twice as many segments,
and repeatedly applied this process yields a piecewise-linear curve with a great
number of segments that closely approximates a smooth curve.

Similarly the subdivision surfaces introduced by Catmull and Clark and also
by Doo and Sabin are defined as the limit of an infinite refinement process of a 3D
control mesh or control polyhedron, using a specific subdivision algorithm. These
algorithms are based on the binary subdivision of uniform B-spline surfaces.

The main advantage of using subdivision surfaces is that surfaces of arbi-
trary topologies can be represented. Because of its recursive structure arbitrary
detail can still be reached. Subdivision surfaces are a good compromise between
polygonal meshes and spline patches. They can be treated as large collections
of small polygons, and behave like composite patches. The simplicity behind
the idea of subdivision makes it easy to understand and implement. In Chapter
8 some examples are illustrated.

In this work, three different subdivision surfaces will be discussed:

1. Loop surfaces, which are based on three-directional quartic box spline
surfaces (see Figure 1.2).

2. Doo-Sabin surfaces, which are generalizations of biquadratic uniform B-
spline surfaces.

3. Catmull-Clark surfaces, which are generalizations of bicubic uniform B-
spline surfaces.

CHAPTER 1. INTRODUCTION 8

Figure 1.2: Loop subdivision

Chapter 2

Background

Abstract. In this chapter some topological definitions that are im-
portant to our subdivision algorithms are recalled. B-spline curves
and surfaces are introduced and some basic properties are men-
tioned.

2.1 Topology
Definition 1 A vertex v = (xi, y,;) is a point in R3. Vertices will be referred
to in some cases as points or control points.

.vi

Definition 2 An edge e1 is defined as a straight line segment between two
vertices VQ,Vi.

Vertices VU and v1 are called the endpoints of the edge. In most data structures
an edge is represented by its two endpoints. Its midpoint is defined as the
average of the two endpoints.

Definition 3 A face f, is represented by a list of three or more coplanar' ver-
tices {v0,... ,v_,} defining the enclosed (convex) region which is constructed
by connecting each two successive vertices (and in addition v_, and V0) in the

'Three vertices are always coplanar, but more vertices are not necessarily. In Chapter 6
we will redefine a face for non-coplanar vertices. Until then are faces discussed are planar.

9

CHAPTER 2. BACKGROUND 10

face representation.

V1

The face normal n is defined as the normalized vector perpendicular to the plane
defined by f. The order of the vertices defining f determines the direction of
n using the right-hand-thread rule. We define the facepoint or midpoint or
centroid of f to be the average of v0,... , defining the face. A face is
called quadrilateral if n =4 and triangular if n =3.

Definition 4 A polyhedron P is a pair (K, V) where V = {vi, V2,... ,Vm} $8

a set of vertices defining its shape in R3 and K is a complex representing the
connectivity of the vertices by edges and faces, thus determining the topological
type of the polyhedron.

We recall that edges are represented by their two endpoints and faces by their
defining vertices. In both representations we use indices referring to elements
in the vertex set V. A polyhedron is called quadrilateral/triangular if all of
its faces are quadrilateral/triangular. The number of faces (or edges) joining in
a vertex is called the valence of that vertex. Normally two faces join at each
edge. If only one face joins at an edge, we call that edge a boundary edge.
The boundary of P can now be defined as the set of all boundary edges of
P. The endpoints of a boundary edge have a 'valence irregularity' in the sense
that the number of edge and face joining in that vertex are not the same. To
avoid boundary irregularities our main interest goes to closed polyhedra, i.e.
polyhedra without a boundary. We will allow polyhedra with holes 'through'
it, like a torus. The number of holes through a polyhedron is called the genus.
Other terms used for a polyhedron are mesh and net.

For example, the polyhedron P = (K, V) with vertex list V:

V = {(—1,0,0), (0,—1,0), (1,0,0), (0, 1,0), (0,0, 1)},

and complex K:

vertices: {1}, {2}, {3}, {4}, {5},

ecges: {., 2}, {, 4}, {., 5, {2, 3}, {2, 5), {3, 4), {3, 5), {4, 5),
faces: {1,4,3,2},{1,2,5}, {2,3, 5}, (3,4, 5), (4, 1, 5)

represents a pyramid in R3 as shown in Figure 2.1.

Another important concept we are going to use in further chapters is the
neighborhood of a vertex.

n

ro

CHAPTER 2. BACKGROUND 11

Definition 5 The k-neighborhood (k = 2,3,...) of a vertex v0 is the union
of the 1-neighborhoods of all vertices in the (k — 1)-neighborhood of Vo, where
the 1-neighborhood of a vertex v0 is the set of vertices that can be connected to
v0 with no more than 1 edge, including v0 itself.

In the example of the pyramid, the 1-neighborhood of the fifth vertex in-
cludes all five vertices, while the 1-neighborhood of one of the other vertices
include only four vertices.

2.2 B-spline curves
I will now summarize the most important features of B-spline curves and surfaces
and B-spline refinement which is the basis for understanding and analyzing
subdivision curves and surfaces. For proofs and background, see eg. [4, 12, 8].

A B-spline curve of degree I can be written as

5(t) = pB(t) (2.1)

where the p form a set of control points which define the position in R2 and
the B are order I B-spline basic functions which define the curvature of the
spline. Each basis function is defined over a partition of the real axis called a
knot vector. A zero-degree basis function is defined as follows:

B0(t_f 1 if O�t<1
'.'iO otherwise,

The function B° (t) can be written in terms of its dilates, giving a subdivision
formula for basis B-spline functions:

B°(t) = B°(2t) + B°(2t — 1).

A basis function of degree i is defined as the convolution of a basis function of
degree 1 — 1 with a zero-degree basis function:

B'(t) = (B'' ® B°) (t)

= jBi_1(s)B0(t — s)ds,

Figure 2.1: Polyhedron representation of a pyramid

CHAPTER 2. BACKGROUND 12

IH
Figure 2.2: Level 0,1 and 2 basis functions

The functions B' (t) are C', non-negative polynomials, with compact sup-
port between 0 and £ ÷ 1. The functions B are translates of B':

B(t) = B'(t —1).

The sum of the translates is the function 1. By linearity of convolutions a
subdivision formula for the functions B' (t) can be found:

1+1

B'(t) =8kB'(2t—k), (2.2)

where s, are constants, found using the following theorem ([12, 16]):

Theorem 1 Let h(t) denote the continuous convolution of two functions, 1(t)
and g(t), with subdivision formulas

1(t) = >ajf(2t—i),

g(t) = >b59(2t—j).

Then, h(t) has the subdivision formula

h(t) = > c,h(2t — k),

where the set ck denotes the discrete convolution of the two sets a, and b,:

ck = a,b1.

Using the binomial theorem we now find

1 11+1
k

Figure 2.3: Subdivision of level 0,1 and 2 basis functions

CHAPTER 2. BACKGROUND 13

In matrix notation, the B-spline curve will be

5(t) = Bt(t)p

where

P-i
P P0

P1

and

B(t) = { B'(t+1) B'(t) B'(t—l) J.
The subdivision formula can be written as

B'(t) = B'(2t)S,

where S is the subdivision matrsx The elements of S are related to the coeffi-
dents Sk in (2.2) by

S2÷1 = 8k

We can rewrite 5(t) as

5(t) = B'(2t)Sp,

where we can think of B' (2t) as the new basis functions and Sp as the new
control points. This process is called a subdivision step and can be repeated
indefinitely and the piecewise linear curve B' (2't)Sip through the control points
converges uniformly to 5(t).

Conclusively, we have found that we can recursively add additional control
points to a B-spline curve of any degree, such that a piecewise-linear function
through these control points would converge to the curve itself. This is the basis
idea for subdivision curves and subsequently for subdivision surfaces, as we will
see in the next section.

2.3 Tensor product B-spline surfaces
A parametric tensor product B-spline surface is written as

S(u,v) = >p,5Br(u)B(v), (2.3)
U

where the Pij form a rectangular control mesh.
A B-spline surface S(u, v) is cr continuous with respect to u and C contin-

uous with respect to v. If r = a = 2 then S(u, v) is called a biquadratic B-spline
surface, and if r = a = 3 then S(u,v) is called a bicubic B-spline surface.

This refinement property of B-spline surfaces is the basis for the idea of sub-
division surfaces. In particular, the three subdivision surfaces described in this
work (Loop surfaces, Doo-Sabin surfaces and Catmull-Clark surfaces) are gen-
eralizations of existing spline surfaces, respectively three-directional box spline
surfaces, biquadratic B-spline surfaces and bicubic B-spline surfaces. More de-
tailed accounts will be given in the next chapter.

Chapter 3

Subdivision Curves

Abstract. The concept of general subdivision is introduced for
curves, before it is applied to surfaces in the next chapter. In this
chapter the main terminology such as masks and classifications are
introduced. I will begin with discussing the first important subdivi-
sion method introduced by Chaikin.

3.1 Introduction
Chaildn's work [2] provided the first method of constructing curves through a
simple process known as recursive subdivision, or just subdivision. This was
the inspiration for creating surfaces using a similar process, called subdivision
surfaces.

I I
I I

I I

o
1/4 "

2
9i4 1114

Figure 3.1: Chaikin's algorithm

The basic idea behind recursive subdivision is to create a function by repeat-.
edy refining an initial piecewise !inear fzncton f°x) to prodtce a sequence of
increasingly detailed functions f'(x), f2(x),... that converge to a limit function

/(x) := lim f1(z).
J—+00

Let f° (x) be a piecewise linear function with vertices at the integers. In general,
the function f'(x) will be a piecewise linear function with vertices at the dyadic
points i/21. For most schemes, including Chaildn's algorithm, the values of

14

CHAPTER 3. SUBDIVISION CURVES 15

f(x) at its vertices are computed very simply as follows:

f () = >rf'' (i+k)

One such a computation is called a subdivision step. The sequence
r = (....,r_1, r0, r1,. . .) is called the averaging mask of the scheme. For Chaikin's
algorithm, the averaging mask is r = (ro,ri) = (1, 1).

3.2 Classification
Such a scheme, as Chaikin's algorithm, is called a uniform subdivision scheme
because the same mask is used everywhere along the curve (i.e. r does not depend
on i), and it is stationary because the same mask is used on each iteration of
subdivision (i.e. r does not depend on j). If a curve is bounded by one or two
endpoints extra masks should be introduced for the boundary vertices. The
averaging mask for those vertices will be r = (ro, r1,...) or r (... , r_1 , ro).

Figure 3.2: The splitting step.

A subdivision step can be divided into two steps: the splitting step, which
explicitly introduces midpoints, and the averaging step, which computes the
weighted averages indicated by the equation. All subdivision schemes for curves
share the splitting step, but differ in the averaging step. In Figure 3.2 the
general splitting step is shown. Each vertex v,' generates the vertex at the
same position, and at the midpoint between each two vertices v and v44 the
new vertex is inserted. Lane and Riesenfeld showed that uniform B-spline
curves of degrees I + 1 can be generated by the averaging mask

1 1fi\ fl\ fl\\r = 1 to)'

and that Chaikin's algorithm generates uniform quaäatic (1 =) B-spline
curves.

An averaging step can be either approximating, like Chaikin's algorithm, or
interpolating. An interpolating scheme doesn't change the positions of vertices
by local averaging, once computed, while an approximating scheme generally
does.

3.3 Evaluation masks
It turns out that functions defined through subdivision can be exactly evaluated
at an arbitrarily dense set of points. This is accomplished by taking weighted av-

CHAPTER 3. SUBDIVISION CURVES 16

erages according to an evaluation mask specific to the subdivision procedure. If
the subdivision scheme is smooth (i.e. the functions f'(x) converge to a smooth
limit function f(x)), derivatives of the function can also be computed exactly
using a derivative mask

This based on the observation that vertices can be tracked throughout the
subdivision process. A vertex v0 of /0 can be associated with a sequence of
vertices v of /1 converging to a limit position v of f. Let's consider the
situation for uniform cubic B-spline subdivision. The averaging mask in this case
is r = (1, 2,1). The key observation in determining v is that in each step
of subdivision, the position of v and immediate neighbors can be determined
from v' and its immediate neighbors. Let v and v denote the left and right
neighbors of v3. Then the splitting and averaging steps combined would give

vs
-

— 2

— vT'+6v'+v?T'
8

vi
- vi1+v:l

2

In matrix notation, this becomes

fv\ 1f4 4 o\fv'\
v 1=—li 6 iii vi—' I,4J\v?')

S

where 5 is called the local subdivision matrix for the subdivision scheme. All
schemes can be represented by an n x n local subdivision matrix, where n the
the number of elements in the averaging mask. For Chaikin's algorithm the
local subdivision matrix is

141 3
For stationary schemes the (local) subdivision matrix is used at each subdi-

vision step. Therefore we have the following formula to find the limit positions
v°°,v and v

fv\ fv\ fv.
I v°° I = urn I v 1 = urn Si I v°
II QQ J 4OQ j J i—OO\V+ / \V+/

Studying the eigenstructure of S shows us what happens to v, v' and
v' and therefore determines the what the limit curve looks like (note that the
scheme must be uniform and stationary). Let a local subdivision matrix S has
eigenvalues A, A1,... , A, with associated right eigenvectors Ro, R1,... , R,1.
Let M° denote the array (v0, Vj,... ,)T of length n. We can write M° as
a linear combination of these eigenvectors, because they form a basis:

M =aRj.

CHAPTER 3. SUBDIVISION CURVES 17

Applying S gives

SM = S>ajtj

= a1SRj

= >a1A1R.j

Applying S j times gives

M' = S'M° = a1AR.j. (3.1)

As j approaches infinity, M' would grow without bound if any A > 1. It
possible to show that only a single eigenvalue should be 1 [12]. Let

1=.Xo>IA,I, i=1,... ,n—1.

The limit vector M°° is then computed as follows:

M°° = lim SM° = lim > a1AR. = ao.
i=O

The coefficient a0 can be computed using the dominant left eigenvector (asso-
ciated with Ao) L0 as follows:

(Zo=L0M°.

Conclusively, the dominant left eigenvector serves as an evaluation mask. For
Chaikin's algorithm, the evaluation mask is (1, 1). And for the cubic B-spline
subdivision, the evaluation mask is (1,4,1).

It is shown in [12] that a1 represents the tangent vector at center point
of M°° to the limit curve if all eigenvalues of S except A0 are less than A1.
Therefore the left eigenvector L1 corresponding to the eigenvalue A1 serves as a
derivative mask. For Chaildn's algorithm, the derivative mask is (1, —1). And
for the cubic B-spline subdivision, the derivative mask is (—1,0,1).

Also, the subdivision matrix should be affine-invarsant, meaning that any
distance-preserving transformation to the initial vertices shouldn't change the
shape of the limit curve. Let 1 be an n-vector of l's and a E R2 a displacement
mR2. We get

S(M°+l.a) = SM°+S(l.a)
= M'+S(l•a),

where we would want

S(l.a) = l.a.
Therefore, I should be the right eigenvector of S corresponding to the eigenvalue
A0.

Chapter 4

Subdivision Surfaces

Abstract. I will now introduce the main concept: subdivision sur-
faces. I will explain what they are, how can they be classified, and
some convergence properties. In the last section I will compare some
important features of subdivision with other representation methods
(classic splines, implicit surfaces and variational surfaces) to show
why it is such a powerful tool in CAGD.

4.1 Introduction
Recursively refining an initial polyhedron, increasing the number of faces and
vertices, leads to an approximation of a smooth surface called a subdivision
surface. This means that we create a sequence of polyhedra P°, P',... , P"
by repeatedly applying one or a set of subdivision algorithms to an initial poly-
hedron P°. Each polyhedron in the sequence should resemble the limit surface
more closely than the previous one. In general, closed form expressions for limit
surfaces are not known. However, various properties of subdivision surfaces are
known:

• The topology is determined by the topology of the control polyhedron.

• Exact points on the surface can be computed.

• Exact tangent planes on the surface can be computed.

I will further explain these properties in Section 4.3. It turns out in practice
that we only need a few subdivision steps (n = 3 or 4) to reach a desirable
approximation of the limit surface, which means that by successfully rendering
the approximation a smooth surface can be simulated.

4.2 Classification
Similar to subdivision curves, each subdivision step (to construct P4' from Pi)
consists of two substeps: a splitting step and an averaging step. The splitting
step introduces new points for the new mesh after the subdivision and the
averaging step computes the weighted averages of all points in the new mesh
using a specific averaging mask.

18

—4

CHAPTER 4. SUBDWISION SURFACES 19

Definition 6 An averaging mask of a SD subdivision algorithm is a 2D rep-
resentation of the vertices and their weights in P1 needed to compute a new
vertex in pi+l•

We can distinguish two types of splitting steps: face schemes, which replace
each face with a number of subfaces, and vertex schemes, which replace each
vertex and edge with a new face. Face schemes are also referred to as vertex
insertion schemes, while vertex schemes are also called corner-cutting schemes.
Two types of averaging steps for face schemes can be distinguished: interpolating
or approximating schemes. An interpolating face scheme doesn't change the
position of the old vertices, while an approximating face scheme does. Therefore
the limit surface of an interpolating scheme passes through the vertices of P°.

A subdivision schemes can also be classified as being either triangular, where
triangular meshes are generated, or quadrilateral, where quadrilateral meshes
are generated. When using a face scheme, our polyhedron is completely trian-
gular/quadrilateral after only one subdivision step, whatever the original poly-
hedron looked like. If we're using a vertex scheme however, only new trian-
gular/quadrilateral faces will be created but irregular vertices and faces will
always generated new irregular faces. I will discuss these irregularities more rig-
orously in the next section. The following figures show standard quadrilateral
and triangular splitting rules for face schemes.

The old vertices are represented by circles and the new (inserted) vertices by
squares. In both cases four new faces are created. Each edge generates a new
vertex (edge point) and in the quadrilateral case each face also generates a new
vertex (face point).

The following figure shows a standard splitting step for a quadrilateral vertex
scheme.

S

, — , -
-H F- — -H F— -

.
-H F— — -H F- —
J L J L

.

II
S a

I'

The old vertices are represented by circles and the new (inserted) vertices by
squares. Each vertex, edge and face creates a new (quadrilateral) face.

As with curves, subdivision schemes can also be either uniform or non-
uniform, and stationary or non-stationary. A uniform scheme uses the same

CHAPTER 4. SUBDIVISION SURFACES 20

averaging mask for every vertex, and a stationary scheme uses the same aver-
aging mask for every level of subdivision.

In the next chapter I will introduce three uniform and stationary subdivision
schemes, i.e. Loop, Doo-Sabin and Catmull-Clark. Table 4.1 shows how they
are classified:

approximating
face scheme vertex scheme

quadrilateral Catmull-Clark Doo-Sabin
triangular Loop

Table 4.1: Classification of three subdivision schemes.

4.3 Analyzing the limit surface
The schemes that will be discussed are generalizations of spline refinement pro-
cedures and differ from them in the fact that they handle extraordinary points.
Splines are defined over a strict triangular or quadrilateral mesh, where all ver-
tices have valence 6 resp. 4 (called ordinary or regular points), while subdivision
introduces irregular vertices, where a different nuznber of edges and faces co-
incide. These vertices are called extraordinary points. Extraordinary points
can only be introduced in the original mesh. The subdivision scheme will only
create new ordinary points and will isolate the extraordinary points. There-
fore the subdivision surface will be a spline surface except for a fixed and finite
number of extraordinary points, which can be 'linked' to the ones introduced in
the original mesh. Because spline surfaces are perfectly smooth we only have to
analyze the surface near these extraordinary points.

To study local properties of a limit surface, such as differentiability, in the
vicinity of a particular control point, we define a local subdivision matrix. This
matrix holds the rules for the generation of one limit point and it's immediate
neighbors, similar to a local subdivision matrix for curves. We can only define
such a matrix if these rules specify that a finite number of vertices are used
to compute any new point. The size of the matrix depends on the invariant
neighborhood, i.e. the k-neighborhood of the original point which influences its
new position after a subdivision step. From now on S will denote the local
subdivision matrix, and), As,... , A,,, its eigenvalues which satisfy

Let M° denote the array (vo, Vi,... , v,J" of vertices constituting the invariant
neighborhood of vertex v0. The n + 1 by n + 1 subdivision matrix S represents
the rules for computing the refined neighborhood M' of v:

M' =SM°.

The subsequent neighborhoods M" can be derived by

M=S•M1=S.M°, j=1,2

CHAPTER 4. SUBDIVISION SURFACES 21

4.3.1 Affine Invariance
As with curves, we expect the subdivision matrix to be afline-invariant which
implies 1 to be an eigenvalue of S which corresponding right eigenvector 1 =
(1,... ,i)T.

4.3.2 Convergence
The following theorem is proven in Reif [11] performing an eigenanalysis of 5:

Theorem 2 The polyhedron converges uniformly to a continuous surface if

1 = Ao > IA1I

and (1, 1,... , 1)" is the right eigenvector corresponding to the eigenvalue 1.

The limit point v of a vertex v of F' at any subdivision level j is

(4.1)

where L0 = ,l) is the normalized left eigenvector of A0. This vector
formula forms an evaluation mask for limit points. An example of an evaluation
mask is given in the next chapter in case of the Loop subdivision scheme.

4.3.3 Smoothness
There are no rigorous proofs for sufficient and necessary conditions for conver-
gence of general subdivision schemes to smooth (i.e. C1-continuous) surfaces.
I will discuss a sufficient condition for smoothness presented by Reif [11J. It
is based on the concept of the characteristic map. The characteristic map is
a smooth map from some compact domain U to R2 which can be assigned to
stationary linear subdivision schemes. It depends only on the structure of the
algorithm and not on the data.

Let fI = N2\N1 the ring of faces around a vertex defined as the difference
between the 2-neighborhood (N2) and 1-neighborhood (N1) of that vertex.

Definition 7 For a local subdivision matrix S for a vertex with valence n and
1 > IA1I = 1A21 > IA, the charucteriatic map W : U x Z, — fl C R3 is
defined by

'I' : (u,v,j) —* b(u,v,j)[Lj,L2],

where U is either

U' ={(u,v)u,v � 0 and 1 � u+v :S 2}

for triangular nets or

U° = {(u,v)u,v � 0 and is max{u,v} <2)

for quadrilateral nets, and L1, 1,2 are the left eigenvectors of eigenvalues A1 and
A2. The function b(u, v, j) is a row vector of a certain set of basis functions
bk(u, v,j)

CHAPTER 4. SUBDWISION SURFACES

'I,
U xZ5

U

22

Figure 4.1: The characteristic map for a triangular scheme with a vertex with
valence 5.

Theorem 3 (Reif's sufficient condition for smoothness) Suppose the eigen-
vectors of a subdivision matrix form a basis, the largest three eigenvalues are real

and satisfy

1=). > A1=X2,
1A21 > 1A31,

and if the characteristic map is regular (i.e. continuously differentiable and Ja-
cobi matrix of maximum rank) then the corresponding algorithm generates tan-
gent plane continuous limit surfaces. If the characteristic map is also injective
these surfaces will also be C' -continuous.

Peters and Reif [10] introduced sufficient conditions for regularity and injec-
tivity for the characteristic map for quadrilateral subdivision schemes. Let the
restriction of ' to one (of k) segment be denoted 'I (see Figure 4.2). Because
of its symmetry properties analysis of ' can be reduced to analysis of one of
these segments, say 'I'°. Let 'I' and W denote the partial derivatives of W°
with respect to v.

'P1

Figure 4.2: One segment of a triangular characteristic map.

Theorem 4 If '?,,(u,v), 0(u,v) > 0 for all (u,v) E U, then the character-
istic map 'i' is regular and injective.

The formula for the tangent plane at a limit position v' is given by the left
eigenvector of the eigenvalues Xi and A2 as follows. Let L1 = (ao, al,... ,a)

UA

CHAPTER 4. SUBDIVISION SURFACES 23

and L2 = (b0, b1,... , b,,) be the left eigenvectors of A1 and A2, then the tangent
plane is the span of the following vectors:

= aovo + a1v1 + + and
= bovo + b1v1 + • + b,v,.

These vector formulas for the tangents to the limit surface form two deriva-
tive masks or tangent masks for a limit point. An example of tangent masks is
given in the next chapter in case of the Loop subdivision scheme.

4.4 Subdivision Surfaces vs. other Representa-
tions

In this section I will compare some important properties of subdivision surfaces
with three other (smooth) surface representations: traditional spline.s, implicit
surfaces (or iso-surfaces) and variational surfaces.

Efficiency: Subdivision algorithms are easy to implement and are computa-
tionally efficient, because only a small number of neighboring vertices
are used to compute new ones and subdivision rules are few and simple.
Splines are a little more efficient, because the subdivision rules are a little
simpler. On the other hand, implicit surfaces are much more costly. An
algorithm such as marching cubes is required to generate the polygonal
approximation needed for rendering. Variational surfaces are even less ef-
ficient, because a global optimization problem has to be solved each time
the surface is changed.

Arbitrary topology: Subdivision can handle arbitrary topology quite well
without losing efficiency. Classic spline approaches lack this quality. Be-
cause all vertices should have the same valence, only closed of genus 1
can be represented. Implicit modeling methods handle arbitrary topology
better than both above, but the genus, precise location and connectivity of
a surface are difficult to control. Variational surfaces can handle arbitrary
topology even better than any other method, but computational cost can
be high.

Surface features: Subdivision allows flexible control over surface features. We
can choose the locations of control points and manipulate the coefficients of
the subdivision rules to create features such as creases control boundaries.
Splines offer a more precise control, but it is computationally expensive
to include features like arbitrary positioning. Implicit surfaces are very
difficult to control, since all modeling is performed indirectly and there is
much potential for undesirable interactions between different parts of the
surface. Variational surfaces provide the most flexibility and exact control
for creating features.

Complex geometry: For interactive applications such as the internet, effi-
ciency is of the utmost importance. Therefore subdivision applies very
well for these applications. Concepts such as level-of-detail rendering and
compression can be handled sufficiently.

Chapter 5

Three Subdivision
Algorithms

Abstract. In this chapter I will discuss the three most prominent
subdivision algorithms creating smooth subdivision surfaces. I will
explain how they are based on B-spline refinement processes and
why they converge to C' limit surfaces.

5.1 Loop Algorithm

Figure 5.1: Three steps in a Loop subdivision scheme and the limit surface.

The Loop algorithm [9] is an approximating triangular face scheme. As all
triangular face schemes the splitting step consists of adding vertices at each
edge in the original mesh. Each triangle will be then subdivided into four sub-
triangles by reconnecting the new vertices.

5.1.1 Three-directional Box Spline
The Loop algorithm is a generalization of three-directional quartic box spline
refinement (see [16]). Unlike more conventional splines, the three-directional

24

box spline is defined on a regular triangular grid. Refinement rules for the
averaging step can be expressed by the following two averaging masks for an
edge rule and a vertex rule:

8 16 16

ii ii

1 1

1

8 ii
The vertex rule is only applicable to vertices with valence 6. The Loop

algorithm generalizes this rule for vertices with valence n 6 (extraordinary
vertices). The averaging mask becomes

where the coefficient fi should be cho8en carefully to guarantee C' limit surfaces.
Loop proposed the following coefficient

=--— (3+2cos)2
8n 64n

which, as we will later see, guarantees smooth limit surfaces.

5.1.2 The Algorithm
The Loop algorithm can be divided in the following substeps. These steps are
shown in Figure 5.2. Let v0 denote a vertex having neighbors v1,... , v,.

1. For each vertex v0, generate a new vertex point (vs) which is
calculated by the following formula:

avo+bv,+.•-+bv
8

CHAPTER 5. THREE SUBDIVISION ALGORITHMS 25

where

a =8—

CHAPTER 5. THREE SUBDWISION ALGORITHMS 26

and

b——
(3+2cos)2

8n

2. For each edge {vo, v1}, generate a new edge point (v) which is
calculated by the following formula:

3v0 + + 3v1 +
8

, for s=1,...,n.

3. Generate new edges by connecting all new edge points of the
edges defining the old face.

4. Generate new edges by connecting each new vertex point to the
new edge points of all old edges incident on the old vertex.

New faces are then defined as those enclosed by new edges.

5.1.3 Convergence and Smoothness
To prove convergence at extraordinary vertices in the Loop scheme we have to
perform some checks on the subdivision matrix. The (n+ 1) x (n+1) subdivision
matrix can be written as

ab b b b b331 0 01
1

313 1 0... 00S= 3 0 1 3 1 0 0

30 0 1 31310 0 13
where a and b are defined in the previous section. They are chosen such that
all the rows of S sum up to 1. Therefore) = 1 is an eigenvalue, and its cor-
responding right eigenvector is (1,1,... , 1). The corresponding left eigenvector
is (w, 1, 1,... , 1)/(w + n) where w = 3/b. From (4.1) on page 21 follows that

oo—wvo+v1+...+vn
V0 — w+n

This can be represented in the following evaluation mask:

/

CHAPTER 5. THREE SUBDIVISION ALGORITHMS 27

V1

Figure 5.2: The Loop algorithm

before 1

V1

after

To prove that Loop's subdivision matrix satisfies Reif's sufficient smoothness
condition we have to look at the second three eigenvalues and find:

A1,2 = (3+2c0s(27r/n))/8,
A3 = (3+2cos(4ir/n))/8

and thus the condition is satisfied for n > 3. For the left eigenvector for A1 and
A2 we find

L1 = (O,Cl,C2,... ,c)
= (0,81,82,...

It remains to prove that the characteristic map of the Loop subdivision
algorithm is regular and injective. Umlauf [15] shows that with some adjust-
ments, the conditions for regularity and injectivity can be applied to subdivision
schemes for triangular nets. Let 4' be the characteristic map defined for a trian-
gular domain. He shows that by covering a quadrilateral domain U0 with the
two triangular domains U' and A1UA the map for quadrilateral domain ('i')
adopts the properties of map for triangular domains (4" and A4"). And there-
fore if 4'° satisfies conditions presented by Peters and Reif, 4' will also be regular
and injective. Umlauf then proves that 4'?, and '°2, are positive by proving
that their Bézier points are all positive. Smoothness is therefore guaranteed in
view of Theorem 4.

5.1.4 New Faces and Vertices Generation
Before step n, let F,, be the number of faces, E,, the number of edges and V,,
the number of vertices. After step n, let F,,+i, E,,+j and V,,+1 be the number

CHAPTER 5. THREE SUBDWISION ALGORITHMS 28

where Cj = cos (21,_1)) and s, = sin (2i_1)). And thus, the tangent vectors
can be written as

and

= >cos
(2_—_1Y\

i=1
" I

= sin (27r(i —1)).
This can be represented in the following tangent masks (see page 23):

82

C3

Sn

CHAPTER 5. THREE SUBDWISION ALGORITHMS 29

of faces, edges and vertices respectively, we have:

V,1 = V,,+E,,
F+i =
E+i = 2E+3F.

Through recursion we can calculate the number of vertices, faces and edges as
a formula of the initial number of vertices, faces and edges, giving:

V = V0 + (2" — 1)Eo + 21 * 5"3F0,
7? — A"L'n — 0,

E = 2"E0 + 3(22_1 — 2"')Fo.

n >2,

These formulas are quite useful, because we can use them to predict the size of
our data structures and the computational costs for levels of approximation.

5.2 Doo-Sabin Algorithm

Figure 5.3: Three steps in a Doo-Sabin subdivision scheme and the limit surface.

Donald Doo and Malcolm Sabin [3] developed a quadrilateral vertex scheme.
As well as all quadrilateral vertex schemes the splitting step consists of replacing
each face, vertex and edge with a new face. Intuitively it can be seen as first
'cutting' off the vertices and then 'cutting' off the edges.

5.2.1 Biquadratic B-spline
The Doo-Sabin algorithm is a generalization of biquadratic B-spline surface
refinement. Refinement rules for the averaging step can be expressed by the

CHAPTER 5. THREE SUBDWISION ALGORITHMS 30

following mask for each of the four vertices in a quadrilateral:

9 3

•0
0O

3 i
16 16

The new vertex is represented by the solid circle. The other three points (open
circles) are determined in the same way, by rotating the entries in the mask. A
new face is constructed, connecting these four new vertices. Each vertex belongs
to a new face corresponding to an old vertex and two new faces corresponding
to the two old edges incident at that old vertex. This is shown in the previous
chapter.

The Doo-Sabin algorithm generalizes this rule to faces with a different num-
ber of vertices, say -i (n 4). The averaging mask becomes

a0

°

The coefficients cr are defined by the formulas:

1 5a0 = —+—
4 4n
3+2cos

a, =
, for s=1,... ,n—1.

5.2.2 The Algorithm
The algorithm can be divided in the following substeps. These steps are shown
in Figure 5.4.

1. For each vertex of each face of the polyhedron, generate a new
point which is the average of the vertex, the two edge points
(the midpoints of the edges that are adjacent to this vertex in
the polygon) and the face point of the face.

2. For each face, connect the new points that have been generated
for each vertex of the face similar to the way their originals
where connected in the old face.

3. For each edge, connect the new points that have been generated
for the faces that are adjacent to this edge.

CHAPTER 5. THREE SUBDIVISION ALGORITHMS 31

4. For each vertex, connect the new points that have been gener-
ated for the faces that are adjacent to this vertex.

5.2.3 Face Classification
Because for each face, vertex and edge a new face is formed, they can be easily
classified. And characteristics can be generalized for each class.

Type F: an n-sided face gives a new and smaller n-sided face within itself.
This type of new face is termed type F (formed by a face).

Type V: a vertex with valence n produces an n-sided face. This is termed type
V (formed by a vertex).

Type E: each edge produces a 4-sided face. This is termed type E (formed by
an edge).

These three types of faces are linked together the same way the elements
they where formed by where connected in the original polyhedron. They share
common edges and vertices and form the new polyhedron.

5.2.4 Convergence and Smoothness
The eigenvalues of the subdivision matrix are found by applying the discrete
Fourier transform to a, = a,,,j E Z (see [10]). Affine-invariance and sym-
metry, i.e. = 1 and a = a,...,,j E Z, imply that this transform is real
and of the form & = [1,&i,â2,... These a, are the eigenvalues of the
local subdivision matrix. The following theorem is proven by Peters and Reif
[10]:

Theorem 5 If A := = &,_1 satisfies1 -
1 > A> max{, 1a21,... , Iafl—21},

128A2(1_A)_7A_2+9Acos >0,

then the generated limit surface is smooth for almost every initial polyhedron.

In particular, the coefficients presented by D. Doo and M. Sabin comply with
this condition, and hence the algorithm generates smooth limit surfaces.

5.2.5 New Faces and Vertices Generation
Before step n of the subdivision process, let F be the number of faces, E the
number of edges and V the number of vertices. After step n, let F+1, E+j
and V+1 be the number of faces, edges and vertices respectively, we have:

F+i = F + En + Vn

Each old edge gives a quadrilateral with 4 new vertices; however any 2 adjacent
edges in a face share 1 new vertex; hence,

Vn+t2En

CHAPTER 5. THREE SUBDWISION ALGORITHMS 32

before

Figure 5.4: The Doo-Sabin algorithm

1

after

CHAPTER 5. THREE SUBDIVISION ALGORJTHMS 33

Each old edge gives a quadrilateral with 4 new edges; hence,

E÷1 = 4E.

Through recursion we can calculate the number of vertices, faces and edges as
a formula of the initial number of vertices, faces and edges, giving:

V,, = 22n—1,

F = F0 + (22Th1 - 1)E0 + V0,
E = 4nF4

5.3 Catmull-Clark Algorithm

Figure 5.5: Three steps in a Catmull-Clark subdivision scheme and the limit
surface.

E. Catmull and J. Clark [1] developed a quadrilateral face scheme. As well
as all quadrilateral face schemes the splitting step consists of adding vertices at
each edge and face in the original mesh. Each face will then be subdivided into
a number of smaller faces.

5.3.1 Bicubic B-spline
The Catmull-Clark algorithm is a generalization of bicubic B-spline surface re-
finement. There are three averaging masks representing a face rule, an edge rule
and a vertex rule:

1. 1 1

1

16 16

3 3
8 8

1

1

16 16

1

__ __

1

32

I

__ __

I
32 32

1

__

1 1

64 32

1

fl\ fl\
/fl /

1

ti II

CHAPTER 5. THREE SUBDWISION ALGORITHMS 34

These rules are only applicable to faces, edges and vertices in a strictly
quadrilateral mesh. The Catmull-Clark algorithm generalizes these rules for
arbitrary meshes, therefore three new rules are introduced. Arbitrary polygonal
meshes cab be reduced to a quadrilateral mesh using a more general form of the
algorithm:

Face rule: A new face point is computed as the average of all the vertices
defining the face.

Edge rule: A new edge point is computed as the average of the endpoints of
the edge and newly computed face points of the two adjacent faces.

Vertex rule: A new vertex point is computed with the following formula:

— F+2E+(n—3)V
Vnew—

n

where F is the average of the newly computed face points of all adjacent
faces, E is the average of the midpoints of all adjacent edges and V is the
original vertex.

After this step all new faces are quadrilaterals and the only difference from a
strictly quadrilateral mesh are the extraordinary vertices. Therefore the original
face and edge mask can be used and the new vertex (with valence n) mask will
be

1
TI

where the coefficients fi and 'y should be chosen carefully to guarantee C' limit
surfaces. Catmull and Clark suggest the following coefficients:

3

2k
1

5.3.2 The Algorithm
For each subdivision step this algorithm is performed. The algorithm can be
divided in the following substeps. These steps are shown in Figure 5.6.

CHAPTER 5. THREE SUBDWISION ALGORITHMS 35

1. For each face, generate a new face point which is the average
of all the old points defining the face.

2. For each edge, generate a new edge point which is the average
of the midpoint of the old edge with the average of the two new
face points of the faces sharing the edge.

3. For each vertex, generate a new vertex point which is calculated
by the following formula:

F+2E+(n—3)V
Vnew =

n

where F is the average of the face points of the faces adjacent
to the old vertex, E is the average of the midpoints of the edges
adjacent to the old vertex, V is the corresponding vertex from
the original polyhedron and n is the valence of the old vertex.

4. Generate new edges by connecting each new face point to the
new edge points of the edges defining the old face.

5. Generate new edges by connecting each new vertex point to the
new edge points of all old edges incident on the old vertex.

New faces are then defined as those enclosed by new edges.

5.3.3 Convergence and Smoothness

To prove convergence, let a := 1 — — 'y. Eigenvalues of the subdivision ma-
trix are given by Peters and Reif [10] and they suffice to the conditions for
convergence, because

— 4a—1±(4a—1)2+8fl—4
A1,2

— 8

The following theorem is proven by Peters and Reif [10]:

Theorem 6 Given the three weights a, fi and . If

2I4a_1±a_1)2+8_4I<cfl+5+\/(cn+9)(cfl+1),

where c = cos, then the limit surface is smooth.

In particular, the coefficients presented by Catmull and Clark comply with this
condition, and hence generate smooth limit surfaces.

5.3.4 New Faces and Vertices Generation
Before step n, let F be the number of faces, E the number of edges and V,
the number of vertices. After step n, let F+1, E÷t and V,÷1 be the number
of faces, edges and vertices respectively, we have:

Vertices: V41 = F + E + V, (face points, edge points and vertex points
respectively).

CHAPTER 5. THREE SUBDWISION ALGORITHMS

before

Figure 5.6: The Catmull-Clark algorithm

36

I

1

after

CHAPTER 5. THREE SUBDIVISION ALGORITHMS 37

Faces: each old edge contributes to the construction of 4 new faces, but each
two edges share one such face; hence,
F÷j = = 2E1.

Edges: each old edge contributes to the construction of 4 new edges; hence
E+1 = 4E.

Through recursion we can calculate the number of vertices, faces and edges as
a formula of the initial number of vertices, faces and edges, giving:

V,. = V0+(22'-1)E0+F0,
—

n — 0,

E = 4'E0.

Chapter 6

Contour Tracing

Abstract. In this chapter, I will address the concept of contours on
subdivision curves and surfaces. Furthermore, I will present a rule
for the position of contour vertices in a uniform B-spline subdivision
process of any degree for curves. Subsequently I have studied the
extension of this rule for the subdivision surfaces presented in the
previous chapter. Moreover, I have considered the question: How
well can the subdivision of a contour be predicted? It appears that
for Loop and Catmull-Clark subdivision surfaces the position of the
contour can be predicted in most cases, where little variation in
curvature appears. At each subdivision step the contour lies in the 1-
neighborhood of the contour in the previous subdivision level. This
1-neighborhood is called an expectation band. Unfortunately, the
expectation band does not predict the contour very well for Doo-
Sabin subdivision.

6.1 Introduction
Contours play an important role in 3D polyhedral graphics when data compres-
sion and rendering speed is an issue. More often highly complex geometry is
needed for visualizations, requiring high computational costs to achieve optimal
visual results, such as high detail. There have been a few approaches to reduce
data and complexity without loss of the quality of the visualization.

• One approach is level-of-detail rendering. In this approach, more poly-
gons are used for nearby objects than for distant objects. In the context
of the previous chapters, one could say that nearby objects are further
subdivided than distant objects.

• Another approach is texture mapping and its descendant image based ren-
dering algorithm. In this approach, a high-detail texture is mapped onto
an object with low complexity to simulate higher complexity. One limita-
tion of this approach is that high quality silhouettes cannot be obtained,
since this method uses a small number of polygons.

• Another approach, given by Gu et al. [5], addresses the problem of reduc-
ing complexity using a method called silhouette clipping. In this method,

38

CHAPTER 6. CONTOUR TRACING 39

in addition to the combination of the previous approaches, high level sil-
houettes are computed to clip parts of the low level projection to simulate
high complexity on the silhouette.

In this last approach it is important to be able to compute a high level
silhouette quickly. When using a subdivision scheme to create high level of
detail, instead of computing the silhouette of the polyhedron at each subdivision
level separately, an efficient way to trace the contour throughout the subdivision
process could save a lot of unnecessary computations. In the following sections
I will propose a hypothesis for predicting the position of a polyhedral silhouette
given the position of the silhouette on the polyhedron at the previous subdivision
level.

6.2 Curve Contours
Let us take a step back and start with the 2-dimensional case of subdivision
curves. Let P be a piecewise linear curve or polygon in R2 with vertices
v0,v1,... and edges e0,e1 Figure 6.1 illustrates an example, where P is a
closed polygon with 5 vertices and edges.

Figure 6.1: Viewing vector in a perspective and parallel projection ofa polygon.

Define a parallel or perspective projection from R2 to a projection line 1. For
parallel projection, let the viewing vector p, at a vertex v2 be the vector parallel
to the projection vector p and intersecting v. For perspective projection, let
the viewing vector be

pi = vi — C,

where C is the projection reference point of the perspective projection.

Definition 8 A vertex v1 of P is a contour vertex if both edges sharing v1
lie in the same halfplane defined by the supporting line of the viewing vector p.
The set of all contour vertices of P is called the contour of P.

A normal of an edge determines whether the edge is either front-facing or
back-facing. An edge is front-facing if the angle between its normal and the

1

p1

p5

CHAPTER 6. CONTOUR TRACING 40

viewing vector (at one of the edge'8 endpoints) is greater than , and it is back-
facing if that angle is smaller than or equal to . It is not always possible to
define a direction for a normal, that is, to define whether an edge is front- or
back-facing. When P is a simple closed polygon, it is common to define the
enclosed region to be the inside of the polygon and thus pointing each normal
towards the outside. A contour vertex can then also be defined as a vertex
incident to both a front-facing edge and a back-facing edge.

We shall look at what becomes of these contour vertices when subdivision is
applied. Let us look again at Chaikin's algorithm. The averaging mask of this
algorithm is r = (ro, r1) = (1, 1). Together with the splitting step we have

=

v1 =

Let {cb} be the well-defined (non necessarily unit) normal of the line
through vertices a = (as, a5) and b = (be, b5) defined as follows:

fl{a,b) = (a5 — b5, b — a,).

The length of the normal is therefore equal to the length of the vector b — a.
Note that n := is a normal of the edge e = {v, v÷1}. So, if we order
the vertices of a polygon clockwise, the edge normals have 'outward' direction.
From Figure 6.2 it can be easily concluded that

= (6.1)

and

+1 1
72i+1 = {v!,v+2} (6.2)

J+1
n21_2,

Figure 6.2: Equality of edge normal-directions in Chaikin's algorithm.

With this notion we can predict the position of a contour vertex of P in
subdivision level j + 1. This contour vertex is a direct 'descendant' of the

CHAPTER 6. CONTOUR TRACING 41

contour vertex we derive this prediction from. Let for example P be a closed
polyhedron and let v be a contour vertex of P. If 4_ is front-facing then 4
must be back-facing and vice versa. Due to (6.1), e2 and are also front-
and back-facing, respectively. Therefore either v1 or v1 is a contour vertex,
depending of {v:_, Following this line of reasoning, I have derived the
following theorem:

Theorem 7 Let P° be a piecewise linear curve or polygon and let F' be the
curve or polygon afterj subdivision steps of (Jhaikin's algorithm. A vertex vji
or vj' of pi+i can only be a contour vertex of pi+i if v is a contour vertex
of P.

Proof To prove this theorem we have to prove that t4 and vj' can
not be contour vertices of J+i i v is not a contour vertex of P. If v is not
a contour vertex, edges 4_ and 4 are both either front-facing or back-facing.
Due to (6.1), both 42 and e' are also front-facing (resp. back-facing).
Furthermore, Figure 6.2 shows that lies somewhere 'between' n_1

and n, which proves, due to (6.2), that also 4 must be front-facing (resp.
back-facing). This proves that neither v1 or v' can be contour vertices.

The last theorem can be generalized for any uniform B-spline curve subdi-
vision of degree 1.

Theorem 8 Let P° be a piecewise linear curve or polygon and let F' be the
curve or polygon after j subdivision steps of a uniform B-spline refinement pro-
cess of degree 1+1 � 2. A vertex of P1 can only be a contour vertex if it is
within the set

Et(i) =

if I is even, or

r.i_ri+l .i+i
— ''2i+Li

if! is odd. The set E1 is associated with a contour vertex v,' of P' and is called
the expectation band of

Proof A uniform B-spline subdivision scheme has an averaging mask
= fr ((J (i),..., (i)). The indices differ in symmetry if 1 is odd or even:

r=I (r_,... ,r) ifliseven
i (r i—i,... ,ri+i) if ha odd

1

CHAPTER 6. CONTOUR TRACING 42

When I is even, we can compute two successive normals as follows

= fl{t4t1,vi)
= EL (&)4.r EL_ (b)tI.+l)

= (, (k)'k.V — 2
k=-4

j, (k)'.Z — >! (. ±

= (-- k) ('tk, — tfk+l,y' 14i+k+1,Z —

=
k=—4

±

where the r' are introduced in Section 3.2. Similarly

=
k=—4

k){tb+1.i4t++2)

We define Cf to be the set of edge normals defining an edge normal (I) of
the next subdivision level (j + 1). If all these normals are either front-facing or
back-facing, the resulting normal will face the same way, because it is a weihted
average of those normals, and all the weights (rk) are positive. For n this

yields

C,'1 = {fl{,J+a ,i+a fl... ,fl{J+1 j,I+l
2J+4

We can see from Figure 3.2 that

1.
flj.j+j •j+i = flh.j+i .5+1 i = —fl1v2 ,V2,.2J iv2i+iv2i+2s 2

for any i andj. And therefore we have

Cj' = ,n÷} if is even

C,'1 = {n',... ,n'} if is odd

For similar sets can be found:

Cj'1 = ,n'} if is even

Cj'1 = {n,... , 1+42 } if is odd

CHAPTER 6. CONTOUR TRACING 43

Figure 6.3: Dependency of normal in B-sphne subdivision step of degree I + 1,
where 1/2 is even.

We distinguish the two cases. First the situation where 1/2 is even. In this
case both and n', have the same set C1. Now, if v? is a contour vertex,

the set of possible contour vertices generated by v of p1÷' is bounded to the

right by tt'. And if '+1 is a contour vertex, the set of possible contour

vertices generated by of P'+' is bounded to the left by v't'2. In other
words, if v is a contour vertex of P' the set of possible contour vertices of PI+'
generated by v is the set

.2+1— 1..v2i_.,...

Figure 6.4: Dependency of normals in B-spline subdivision step of degree 1+ 1,
where 1/2 is odd.

In the situation where 1/2 is odd, we shall look at the normals '4t'1 and
n1. These two normals have the same set C1, bounded by the normals n_

and n3 t-2 Therefore, if v 1+2 is a contour vertex, the set of possible contour

vertices generated by v? of P1k' is bounded to the right by vW,. And if

is a contour vertex, the set of possible contour vertices generated by

of p1+' is bounded to the left by v1. In other words, if v is a
contour vertex of p1 the set of possible contour vertices of p1+' generated by

is the set

E(_IvJ+l v3+'— 1 2i—.'••• ' 2-4-

This concludes the proof for the situation, where I is even. The other situa-
tion, where I is odd, is proven in the same way with only a difference in indices.

I I

v.I

CHAPTER 6. CONTOUR TRACING 44

When 1 is odd, we can compute two successive normals as follows

2t = 2 (L11'+ k)

and

=
k=_

(1
k) W+l+2I

For '' this yields

Cf1 = {fli+i j,i+1 i,... ,n,j+i j,i+l
2a_LjV 2i_Lji+ 2+i!' 24+41+1

Here two cases can be distinguished as follows:

Cj'4 = ,n'÷,} if 1 is even is odd)

Cj'1 = ,n'} if -j is odd (i is even)

For n1 similar sets can be found:

C'1 = {n' ,,.. , } if L1 is even

Cf1 = {n',,... ,n'} if is odd

Figure 6.5: Dependency of normals in B-spline subdivision step of degree 1+ 1,
where (1 — 1)/2 is even.

Again, we distinguish the two cases. First we consider the situation where
(1 —1)12 is even for n't' and n4t1. It can be concluded from Figure 6.2 that
if is a contour vertex, the set of possible contour vertices generated by

v...1 of P'1 is bounded to the right by v1. And if v_ = is

a contour vertex, the set of possible contour vertices generated by of

P' is bounded to the left by In other words, if vj is a contour vertex
of P' the set of possible contour vertices of P'1' generated by v is the set

E_1J+ j+1
— 1V2. !4i,"

CHAPTER 6. CONTOUR TRACING 45

For the situation where (1 — 1)/2 is odd, it can be concluded from Figure
6.2 that if v = v is a contour vertex, the set of possible contour

vertices generated by ii of P'' is bounded to the right by i4. And
is a contour vertex, the set of possible contour vertices generated

by of is bounded to the left by v2. In other words, if v is a
contour vertex of p1 the set of possible contour vertices of p1+1 generated by
v is the set

This concludes the proof.

E(i)— v"—{ 2i_!.!'" '

With this theorem a significant computational reduction can be made when
tracing a contour throughout a uniform B-spline subdivision process. This
proves an inexpensive way to find contour vertices of high-level subdivision
curves. Instead of first performing a number of subdivision algorithms and sec-
ond checking for all vertices to be in the contour, the following steps can be
performed to reduce the number of vertices that have to be checked:

1. Find the contour of the initial curve by checking all vertices.

2. Perform the subdivision steps to reach the desired curve. At each level,
find the contour for the curve at that level using Theorem 8. This will
finally result in the desired contour.

The number of vertices to be checked for each contour vertex is I + 1. Let the
initial curve P° have vi vertices and n contour vertices, where n, � n (n is
usually a lot smaller than n). For the subdivided curve F', instead of checking
all 2n vertices, only (1+ 1)n vertices have to be checked. Assuming that each
contour vertex generates exactly one contour vertex in the next subdivision
level, we can conclude that for a subdivided curve p1, instead of checking all
2'n vertices, only (I + 1)n have to be checked during the whole subdivision
process.

v.i.u,I,.s.I

Figure 6.6: Dependency of normals in B-spline subdivision step of degree 1+ 1,
where (1 — 1)/2 is odd.

CHAPTER 6. CONTOUR TRACING 46

6.3 Surface Contours
The extension of the approach described in the previous section from two to
three dimensions requires some altering of the definitions, but they are intu-
itively quite obvious.

Let P be a piecewise linear surface, for example a polyhedron, and let p
be the viewing vector through a vertex v of P. Furthermore, define P as
the plane spanned by two viewing vectors p and p1. Note that the following
definition is only applicable when working with planar faces only. The next
section deals with situations where faces are not necessary planar.

Definition 9 An edge of P is called a contour edge if either it ii a
boundanj edge or if both faces sharing lie in the same halfspace defined by

Pij
The endpoints of a contour edge can be denoted as contour vertices. It

proves that all contour vertices are incident with two or more contour edges.
On the other hand, not each edge with two contour endpoints is a contour edge.
This leads to the conclusion that there are no contour vertices without any
neighboring contour vertices.

Definition 10 The set of all contour edges of P is called the contour of P.
We will denote the contour of P by Cp.

The contour consists of one or more closed sets of edges, i.e. each edge of
the contour adjoins to one or more other contour edges. As a rule of thumb (see
[5]), if a high resolution polyhedron has n1 faces, and it is tessellated evenly,
the contour is usually made up of 0(n1) edges. Let C, be the projection of Cp
on a certain projection plane (or view plane) p.

Definition 11 The silhouette of P on p ii defined a. the outline of the union
of all regions enclosed by Ci,.

The contour of an object specifies the boundary between the visible and
invisible part of the object. Invisible parts of the object may then be culled out,
resulting in a reasonable data reduction. The silhouette distinguishes the parts
of the projection plane which are occupied by the projection of the object and
the parts that are not.

6.4 Quadrilateral schemes
One has to be careful, when dealing with quadrilateral faces schemes (e.g.
Catmull-Clark and Doo-Sabin), because non-planar faces can be created. Nor-
mally this does not cause fundamental problems, because the further an object
is subdivided, the more each non-planar face will approximate a planar face.
A renderer will usually triangulate all faces before the rendering starts. But
where contours are concerned, they might cause some problems. Because there
are different normals on one face some contour edges might not be detected. A
solution for this problems is close at hand. But first, we need a new definition
for a face.

CHAPTER 6. CONTOUR TRACING 47

Definition 12 A face is a smooth surface, lying within the convex hull of a set
of three or more vertices. The surface interpolates the boundary edges, which are
line segments connecting each two successive vertices (including the last vertex
with the first) in the set.

The face has to be closed within the hull and not self-intersecting. In this case,
each pair of points on a face can be connected by a smooth curve lying completely
on that face. Normals on the surface are interpolated vectors between the vertex-
normals, which are the vectors perpendicular two both edges sharing the vertex.

A contour edge is now defined as follows.

Definition 13 An edge is a contour edge if it is either a boundary edge, or
if it is shared by two faces f and f,, the vertex-normals off, in both endpoints
are front-facing' and the vertex-normals off1 in both endpoints are back-facing,
or vice versa.

Figure 6.7: A 'hole' in the contour generated by a non-planar face. Such a face
is called a contour face.

In this definition not all contour vertices are shared by two or more contour
edges. In this case 'holes' seem to appear in the contour as in Figure 6.7, which
was previously defined as a (number of) closed set of edges. Here two contour
vertices do not share an edge, but they do share face. Now, we have to introduce
two new definitions:

Definition 14 A vertex is a contour vertex if it is either a boundary vertex,
or if it is shared by a number of faces for which the vertex-normals in that vertex
are not all front-facing or all back-facing.

Definition 15 A face is a contour face if its vertex-normals in its defining
vertices are not all front-facing or all back-facing.

if we triangulate each contour face new contour edges arise (and sometimes old
ones disappear), but no new contour faces arise. If we do this, the problem
of 'holes' in the contour is solved. This is a smart step before rendering a
projected polyhedron, but we might not want to triangulate any face until the
object is sufficiently subdivided to preserve uniformity. Only after the final
subdivision step the necessary faces should then be triangulated to create the
proper contour.

'Labeling normals to be either front- or back-facing (i.e. determining their direction) is
usually a choice of the person who created the object. Commonly when referring to a closed
polyhedron, normals are pointing away from it's 'inside'.

CHAPTER 6. CONTOUR TRACING 48

6.5 Analyzing Contours in Surface Subdivision
The next logical step would be to extend Theorem 8 to three dimensions in a
similar manner as with curves. The expectation band is then defined as a set of
edges in a subdivided polyhedron P3+', determined by the contour edges of F',
which are the most likely edges to be contour edges of P+'. The extension to
three-dimensional tensor product B-spline subdivision surfaces seems obvious:
The expectation band Ej(i) would be defined by the tensor product of the
two two-dimensional bands of one specific vertex generated by the two B-spline
curves passing through that vertex.

Based on uniform B-spline subdivision for curves, I have defined the expec-
tation band for contours in the three schemes discussed in the previous chapter.
My research is about how well this band predicts the contour in subdivision
schemes for surfaces as it does for curves. And if we can specifr the situations
where the prediction fails.

6.5.1 Testing the expectation band
The expectation band in three dimensions is visualized as a collection (a band)
of connecting faces. The edges of all these faces are considered the actual expec-
tation band, that is; the edges most likely to be contour edges after a subdivision
step. For the following three subdivision schemes I have determined the expec-
tation band as

Loop the set of edges connecting the vertices in the 1-neighborhood of vertex
points generated by contour vertices and edge points generated by contour
edges (see Figure 6.8).

Figure 6.8: Faces of the expectation band generated by a contour edge and a
regular contour vertex in Loop subdivision.

Doo-Sabin the set of edges of the vertex faces (type V) generated by contour
vertices, edge faces (type E) generated by contour edges and face faces
(type F) generated by contour faces (see Figure 6.9).

CHAPTER 6. CONTOUR TRACING 49

I

H I

+ HHR

Figure 6.9: Faces of the expectation band generated by a contour edge and a
regular contour vertex and a regular contour face in Doo-Sabin subdivision.

Catmull-Clark the set of edges connecting the vertices in the 1-neighborhood
of vertex points generated by contour vertices and face points generated
by contour faces (see Figure 6.10).

_HrHT

Figure 6.10: Faces of the expectation band generated by a contour edge and a
regular contour vertex and a regular contour face in Catmull-Clark subdivision.

These sets enclose a region of faces in the polyhedron. The number of faces
in the band generated by one contour vertex or contour edge depends on the
invariant neighborhood of the subdivision scheme the same way it does for
curves. For Loop, each contour vertex generates n faces (where n is the valence
of that vertex) and each contour edge generates 6 faces, of which 2 faces are
not generated by vertices as well. The overall width of the band is therefore
2 faces. Doo-Sabin and Catmull-Clark subdivision are generalized extensions
of uniform B-spline curve subdivision of degree 2 and 3. For Doo-Sabin, each
contour vertex, edge and face generate 1 face in the band. The overall width
of the band is therefore 1 face. And for Catmull-Clark, each contour vertex
generates n faces (where n is the valence of that vertex) and each contour face
generates m faces (where m are the number of vertices defining the face). The
overall width of the band is 2 faces.

I have generated data for testing the expectation band as follows; on a sphere
surrounding a polyhedral object from 114 uniformly distributed directions a
viewpoint is set determining the contour of that object, and three subdivision

CHAPTER 6. CONTOUR TRACING 50

steps are applied. At each subdivision step the expectation band and the contour
edges (and contour faces) are determined, and it is checked whether these edges
are edges of the expectation band. In case of contour faces, it is checked if all
edges defining the face are band edges. For all three subdivision schemes I have
performed this test with several different objects.

These tests are performed on the following polyhedral objects; a simple cube
(cube), an octahedron (octahedron), a union of two tetrahedrons (pointy), an
L-shaped object (1), a long bar with 3 bends of 90 degrees (twist), a torus
(torus), a union of two tori (2tori) and a union of three tori (3tori). The
first two objects are convex, the rest is not.

(e) twist

Figure 6.11: Eight polyhedral objects tested.

\\ \\

(d) 1

6.5.2 Test results
In the tables Table 6.1, Table 6.2 and Table 6.3 we refer to the objects in Figure
6.11. At each subdivision for each object, n represents the total number of
edges, fAb represents the average number of edges in the expectation band over
all 114 directions, ñ represents the average number of contour edges (plus
contour faces) over all 114 directions and d represents the number of directions
where there are contour edges (or faces) which are not part of the expectation
band.

(a) cube (b) octahedron (c) pointy

(f) torus (g) 2tori (h) 3tori

CHAPTER 6. CONTOUR TRACING 51

level n b n,., d level n b n d
(a) 0

1

2

3

18
72

288
1152

-
58
131
278

5.9
10.5
21

41.7

-
0

0
0

(e) 0
1

2

3

54
216
864

3456

-
174
389
802

30.2
61.6
122

4
0
0

(b) 0
1

2

3

12
48
192
768

-
41.5
102
223

46
8.35
17
33

-
0
0
0

(f) 0
1

2

3

48
192
768

3072

-
152
343
699

11.8
26.6
53.2
108

-
8
0
0

(c) 0
1

2

3

36
144
576
2304

-
126
250
547

W
21.8
43.2
83.4

0
0
0

(g) 0
1

2

3

90
360
1440
5760

-
288
661
1330

20.9
50.6
102
203

13
1

0
(d) 0

1

2

3

30
120
480
1920

-
94.1
208
420

-ir
16.3
31.5
63.7

2
0
0

(h) 0
1

2

3

126
504

2016
8064

-
401
905
1820

28.4
69
140
279

-
17
1

0

Table 6.1: The number of edges (ne), the average number of band edges (ñb)
and contour edges (n), and the number of directions where there are contour
edges outside the expectation band (d) in three steps of Loop subdivision.

level n ñ ii., d level n b t1c d
(a) 0

1

2

3

12
48
192
768

-
29.5
61.9
127

5.9
10.3
20.8
42.9

-
0
0
0

(e) 0
1

2

3

36
144
576
2304

-
83.9
178
365

15
29.5
59.9
121

-
7
10
27

(b) 0
1

2

3

12
48
192
768

-
27.4
62.7
130

4.6
10.5
21.6
42.9

-
0
0
0

(f) 0
1

2

3

32
128
512
2048

-
70.7
145
293

11.8
24.1
48.8
97.1

-
8

16
0

(c) 0
1

2

3

36
144
576
2304

-
96.2
191
399

19
31.9
65.7
132

-
0
0
32

(g) 0
1

2
3

60
240
960

3840

-
132
283
567

21
45.9
92.9
186

-
24
94
92

(d) 0
1

2

3

20
80

320
1280

-

46.9
99.4
207

8.8
16.5
34.3
69

-
6

0
0

(h) 0
1

2

3

84
336
1344
5376

-
182
394
791

28.4
64

130
260

-
28
93
97

Table 6.2: The number of edges (na), the average number of band edges (flb) and
contour edges/faces ('ia), and the number of directions where there are contour
edges outside the expectation band (d) in three steps of Doo-Sabin subdivision.

CHAPTER 6. CONTOUR TRACING 52

level -i
I

level lie b [1..± 1
(a) 0 12 (e) 0 36 - 15 -

1 48 40.4 10.5 0 1 144 121 29.1 0

2 192 104 20.6 0 2 576 291 57.2 0

3 768 214 42.9 0 3 2304 580 114 0

(b) 0 12 - 4.6 - (f) 0 32 - 11.8 -
1 48 42 10.9 0 1 128 108 24.4 0

2 192 101 21.8 0 2 512 242 48.7 0

3 768 218 42.8 0 3 2048 487 99.9 0

(c) 0 36 - 19 - (g) 0 60 - 21 -
1 144 129 29.8 0 1 240 206 45.8 8

2 576 284 55.9 0 2 960 470 91.3 2

3 2304 562 111 0 3 3840 941 183 0

(d) 0 20 - (h) 0 84 - 28.4
1 80 65.7 16 0 1 336 287 61.8 14

2 320 158 31.2 0 2 1344 641 124 5

3 1280 314 63.4 0 3 5376 1290 252 0

Table 6.3: The number of edges (ne), the average number of band edges (fib)
and contour edges/faces (n), and the number of directions where there are
contour edges outside the expectation band (d) in three steps of Catmull-Clark
subdivision.

6.6 Conclusion
Loop

In case of Loop subdivision in simple convex objects no flaws to the pre-
diction of the band is detected. When somewhat more complex (non-convex)
objects are tested this no longer holds. The results of these tests are shown
in Table 6.1. Usually in the first step there are some contour edges 'near to'
the band, i.e. within the 2-neighborhood of vertex or edge points generated by
the contour. A broadening of the expectation band from a 1-neighborhood to a
2-neighborhood of vertex and edge points generated by the contour would solve
this problem. Note that objects in Loop subdivision are completely triangular
and therefore no contour faces have to be introduced.

The more complex an object, the more flaws are detected. This gives the
impression, that in regions where the curvature varies a lot in within a smaller
region (i.e. within a 1- or 2-neighborhood of a certain vertex) it is hard to pre-
dict the position of the contour after a subdivision. When 2tori and 3toxi are
tested, there is one direction in which the second subdivision gives a secondary
problem. In this case there is a back-face created surrounded by front-faces
'away from' the band, i.e. not within the 2-neighborhood of vertex or edge
points generated by the contour. These faces are situated on the border region
of the union of 2 tori, where apparently the Gaussian curvature of the limit sur-
face is 0. But in other case, this characteristic does not give the same result and
therefore I can make no solid statement about that. Furthermore, these tests
prove that the chance of this occurrence is about 1%. In general, the number
of edges outside the expectation band is always very small (i.e. no more than 4
in the objects tested).

CHAPTER 6. CONTOUR TRACING 53

Conclusion: When finding the silhouette of a high-level Loop surfce, one can
confine in testing the expectation band for contour edges after the second subdi-
vision step. As can been seen in Table 6.1, this gives a reasonable computational
reduction, because the number of band edges are about 7 times the number of
contour edges, which in turn is usually O(,fli7). Further research may follow
to examine special surface features, like zero Gaussian curvature, and their in-
fluence to contour subdivision.

Doo-Sabin
The prediction of the band does not seem to hold at all when Doo-Sabin

subdivision, the (generalized) 3-dimensional extension of Chaikin's algorithm,
is applied. Only the two convex objects are tested flawlessly. The expectation
band has a width of 1 only face. This seems to narrow for for a good prediction.
All contour edges outside the band are 'near to' the band, such as in case of
Loop subdivision. For all objects tested a significant number of steps generated
problems, as can be seen in Table 6.2.

Conclusion: The extension of Theorem 8 is not applicable to Doo-Sabin subdi-
vision. A broadening of the band probably only reduces the number of flaws.
To do this, is to eliminate more flaws, but discarding the generality of theorem,
as introduced with curves.

Catmull-Clark
Catmull and Clark's scheme is the (generalized) 3-dimensional extension of

level 3 uniform B-spline subdivision for curves. It shows, given the test results
in Table 6.3, for almost every subdivision step in every direction for each object
the expectation band predicts the position of contour correctly. Only for the
last two objects tested (2tori and 3tori) a slight number of flaws to prediction
occur. I cannot detect any specific surface characteristics, but is surprising that
all flaws are generated by contour surfaces adjacent to the expectation band.
The number of these faces is always small (1, 2 or 3). The second advantage
is that after two subdivision steps, similar to Loop, Catmull-Clark subdivision
does not create more flaws to the prediction of the band.

Conclusion: When finding the silhouette of a high-level Catmull-Clark sur-
face, one can confine in testing the expectation band for contour edges after the
second subdivision step. For convex polyhedra this can even be done from the
first step. As can been seen in Table 6.3, this gives a reasonable computational
reduction, because the number of band edges are about 5 times the number of
contour edges. Further research may follow to eliminate the flaws created by
contour faces.

Chapter 7

Implementation

Ab8tract. In this chapter I will explain how I implemented the
main data structures, the three subdivision algorithms and contour
generation and the determination of the expectation band for these
subdivision algorithms.

7.1 Introduction
Viewing pipeline for implementation:

The implementation was written in C++ (see [8] for a Maple implementation
given by Ha Quang Le). It is based on the base class Polyhedron, which con-
tains several data structures for and some information about a 3D polyhedron.
The subdivision algorithms are implemented in classes derived from this base
class. For example, an object of type DooSabin is a polyhedron whicL can
be refined using the Doo-Sabin subdivision algorithm. A special class Contour
holds all the information about a parent Polyhedron and creates the expectation-
band when subdivided. The data for a polyhedra is read from a file in a specific
poiy-format; beginning with the number of vertices and faces, followed by a list
of vertex coordinates and a list of faces, expressed by a list of vertex indices of
the previous vertex list (N.B. the vertex list starts with index 1). The following
example is a data representation of a cube:

vertices: 8
faces: 6

54

CHAPTER 7. IMPLEMENTATION 55

vO 00
vlOO
vi 10
vO 10
vOO 1
viOlviii
vO 11

f 1432
f 1265
f2376
f3487
f4 158
f5678
The graphical user interface (GUI) is written in Qt (a toolkit for C/C++). Qt
has a special widget, for displaying OpenGL graphics. OpenGL renders the
projection of a 3D polyhedron, taking care of hidden-face removal and lighting.
The data of the polyhedron is presented to OpenGL by a collection of faces,
each face (GL_POLYGON) being a set of coordinate positions (glVertex3f 0) and
normals (glNormal3f C)) in these vertices. The surfaces can be represented by
flat shading using face normals or smooth shading (Gouraud) using interpolation
between vertex normals.

7.2 Basic Class Structure
A polyhedron is defined as a structure of vertices, edges and faces, but the faces

implicitly define the edges. Therefore I created the three following basic classes:
Vertex, Face and Polyhedron.

7.2.1 Vertex
A Vertex object defines a coordinate point in R3 with a normal vector (because
it is point on an object surface). I have chosen for this structure, for easy
interaction with OpenGL.

See Appendix A.1 for the class interface.

7.2.2 Face
This class contains the vertices defining that face. They are stored in counter-
clockwise order when looking at the face from outside the object. This is also
how OpenGL distinguishes the in- and outside of a face. This class is also able
to give the midpoint of the face, points on its edges and normals in its vertices.
Normals in the vertices, as discussed in the previous section, are calculated
averages of these face normals of all faces adjacent to that vertex.

See Appendix A.2 for the class interface.

CHAPTER 7. IMPLEMENTATION 56

7.2.3 Polyhedron
This class contain seven structures. The first is the set of vertices defining the
shape of the object. The other six different sets define the connectivity between
vertices, faces and edges:

1. A numbered list of the Vertex objects.

2. A numbered list of the faces expressed in terms of the numbers of their
defining vertices.

3. A numbered list of the edges expressed in terms of the numbers of their
defining vertices.

4. The list of vertices, where each vertex is expressed in terms of the numbers
of the edges coincident at this vertex.

5. The list of vertices, where each vertex is expressed in terms of the numbers
of the faces coincident at this vertex.

6. The list of faces expressed in terms of the numbers of their defining edges.

7. The list of edges, where each edge is expressed in terms of the numbers of
the faces coincident at this edge.

List no. 2 and 6, defining the faces, contain sorted lists of vertex and edge
numbers in order to establish the inner and outer side of the object. They
are sorted in the same way; in counterclockwise order, if viewed from outside
the polyhedron. Note that this structure can only be applied if beforehand we
denote an inside and outside of an object. Because we omit open polyhedra,
this can easily be done. Lists described in 4 and 5 are not sorted.

Each structure can be accessed by a specific member function of the class
Polyhedron, where i is a list index starting at 0:

1. Vertex const &getVertex(uint I) const.

2. uint const *getFace(uint i, true) const.

3. uint const *getEdge(uint i, true) const.

4. uint const *getVertex(uint i, true) const.

5. uint const *getVertex(uint i, false) const.

6. uint const *getFace(uint i, false) const.

7. uint const *getEdge(uint i, false) const.
Considering the functions getFace; each ith edge of a face is the edge be-

tween the ith and (I + 1)th vertex of that face (Note that the last edge is the
edge between the last and first vertex). There is also an overloaded function
getFace() that returns a Face object. The valence of a vertex can be ob-
tained by the member function getVertexSizeO, and the number of vertices
and edges defining each face can be obtained by the member function getFace-
Size(). Each edge is defined by two vertices and two faces, because there can
not be any boundaries in a closed polyhedron.

The sizes of each structure can be obtained by the following member func-
tions:

CHAPTER 7. IMPLEMENTATION 57

1. uint const getNVertices() const.

2. uint const getNFaces() const.

3. uint const getNEdges() const.

4. same as 1.

5. same as 1.

6. same as 2.

7. same as 3.

See Appendix A.3 for the class interface.

7.3 Loop Algorithm
For the implementation we look again at the Loop algorithm in Section 5.1.2
and go through it step by step.

1. For each vertex v0, generate a new vertex point which is calculated by the
following formula:

avo+bvj+•+bv
8

where

a =8— nb

and

b—
(3+2cos)2

n 8n

To calculate this formula, we need all the neighboring vertices of each vertex.
We ca accorpbs! this by !ookig at a!! ts adacet edges (use s rctre 4)
and the two vertices defining those edges (use structure 3). To sum all the
neighboring vertices, first sum all the vertices defining all the adjacent edges and
then subtract the original vertex n times. The formula is then easily calculated
and the new vertices are stored in the new vertex list (of structure type 1).

2. For each edge {v0, v1 }, generate a new edge point which is calculated by
the following formula:

3vo+v_1 +3v+v+i
8

for s=1,...,n.

To calculate this formula, we first add the two midpoints of the faces adjacent
to this edge (use structure 7 and the Face class). Multiply these by 3, because
they are averaged. Then add the two defining vertices of the edge (use structure
3) and divide the result by 8. New vertices are appended to the new vertex list.

3. Generate new edges by connecting all new edge points of the edges defining
the old face.

CHAPTER 7. IMPLEMENTATION 58

4. Generate new edges by connecting each new vertex point to the new edge

points of all old edges incident on the old vertex.

Step 3 and 4 are performed by looking at each old face and first form a new
face by connecting each of its edge points, and second for each of its (three)

vertices connect the corresponding new vertex points with the two edge points

of the corresponding edges of this face adjacent to the vertex. So, for this we
need structures 2 and 6.

7.4 Doo-Sabin Algorithm
For the implementation we look again at the Doo-Sabin algorithm in Section
5.2.2 and go through it step by step.

1. For each vertex of each face of the polyhedron, generate a new point which

is the average of the vertex, the two edge points (the midpoints of the edges

that are adjacent to this vertex in the polygon) and the face point of the

face.

For this step we traverse the face list using the function getFace(i). This

function returns a Face object. For each vertex of that face we can easily

generate a new vertex, using the functions getVertexO, getEdgepoint() and
getMidpoint() of class Face.

The following three steps are immediately performed when generating each

new vertex. This is possible, because we know each new vertex belongs to four

new faces. These correspond to the face it is generated from (type F), the two

edges of the that face coincident at that vertex (type E) and the old vertex (type
V). In our new list of faces, these three types are distinguished and numbered

as their corresponding face, edge or vertex is numbered. This way we can easily

trace them.

2. For each face, connect the new points that have been generated for each

vertex of the face.

3. For each edge, connect the new points that have been generated for the
faces that are adjacent to this edge.

4. For each vertex, connect the new points that have been generated for the
faces that are adjacent to this vertex.

As we are traversing through the faces, we calculate the vertex and edge num-

bers of that face using structures 2 and 6 of the class Polyhedron. So as we
generate a new vertex for the ith vertex, we add its number to the vertex lists
of the following four faces; the face of type F corresponding the face under con-
sideration, the faces of type E corresponding the (i — 1)th and ith edge of that
face, and the face of type V corresponding that vertex. Like this, all vertices of

all new faces are stored.
But the vertices should also be stored in the correct order to distinguish the

outside of each face. Each new face of type F has the same number of vertices

as the face is was generated from and they are stored in the same way, because

the new face is a similar, smaller version of the old one. So they are already
sorted correctly and we don't have to change them.

CHAPTER 7. IMPLEMENTATION 59

The vertices of the new faces of type E can be sorted by looking at the way
they were stored. We know that the first and last two come from the same (old)
faces. And because they where stored in a counterclockwise fashion they are
stored in a clockwise fashion to an adjacent face. Therefore the order of the
first two vertices is reversed as well as for the last two. Note that we have to
consider that the last vertex and the first are succeeding vertices.

We sort the vertices in the faces of type V by looking at the faces of type
E correspondent to the old edges coincident at the old vertex. To do this first
make a list of edges adjacent to that vertex: when traversing the faces store the
(i — 1)th edge for each ith vertex. This way each vertex of the new face of type
V corresponds to a separate edge. Then the following is done: For each vertex,
consider the face of type E stored for this vertex. The vertex list of this face
also contains this vertex. And because we took the (i — 1)th edge for each ith
vertex we know that the vertex previous to this one, should be the next one in
the vertex ist of the face under consideration. Then take this next vertex and
repeat the process until all vertices are sorted.

7.5 Catmull-Clark Algorithm
For the implementation we look again at the Catmull-Clark algorithm in Section
5.3.2 and go through it step by step.

1. For each face, generate a new face point which is the average of all the old
points defining the face.

This is done by traversing through the faces, using the function getMidpoint 0
of the Face class and storing these in a new vertex list (structure type 1). Note
that in this new list vertices are distinguished as face, edge or vertex points and
numbered as their corresponding face, edge or vertex. This way we can easily
trace them.

2. For each edge, generate a new edge point which is the average of the
midpoint of the old edge with the average of the two new face points of
the faces sharing the edge.

Using structures 3 and 7 of the Polyhedron class we find the vertices and faces
adjacent to each edge. Then average the vertices with the two face points (use
the first part of the — already formed — vertex list) of those faces. These new
vertex are appended to the new vertex list. In this step we store this midpoints
of each edge for the next step.

3. For each vertex, generate a new vertex point which is calculated by the
following formula:

F+2E+(n—3)V
Vnew=

n

where F is the average of the face points of the faces adjacent to the old
vertex, E is the average of the midpoints of the edges adjacent to the old
vertex, V is the corresponding vertex from the original polyhedron and n
is the valence of the old vertex.

CHAPTER 7. IMPLEMENTATION 60

We rewrite the formula:

F + 2E + (n - 3)V
Vnew =

=

= E(Fi+2E1)+n(n—3)V

where F, and E8 are face points and midpoints of edges adjacent to the original
vertex. Using structures 4 and 5 we find these faces and edges. We find the face
points in the first part of the — already formed — vertex list and the midpoints of
the edges were stored in the previous step. The formula is now easily calculated
and the vertices are again appended to the new vertex list.

4. Generate new edges by connecting each new face point to the new edge
points of the edges defining the old face.

5. Generate new edges by connecting each new vertex point to the new edge
points of all old edges incident on the old vertex.

Step 4 and 5 are performed by looking at each old face and for each of its vertices
form a new face connecting the following four points: the corresponding new
vertex point, the two edge points of the corresponding edges of this face adjacent
to the vertex and the new face point. So, for this we need structures 2 and 6.

7.6 Contour
A Contour object finds a contour of a given Polyhedron using a given projec-
tion reference point or viewpoint The parent polyhedron can be obtained using
the public member function

Polyhedron const *getpent() const;.

When an object is created, it checks all edges of the parent polyhedron if it
is a contour edge or not. Each edge is shared by two faces and is a contour edge
if

1. one of these faces is front-facing, and

2. the other face is back-facing.

A face is front-facing if the angle between its face normal and the viewing vector
through its midpoint is smaller than ir/2 and it is back-facing if that angle is
ir/2 or greater. Subsequently, the endpoints of a contour edge are determined
as contour vertices.

The array indices of the contour edges, contour vertices and contour faces in
the Polyhedron data structures are then stored in the Contour object. These
indices can be obtained using the public member functions

uint getEdge(uint i) const;
uint getVertex(uint i) coust;
uint getFace(uint 1) const;.

CHAPTER 7. IMPLEMENTATION 61

A Contour can be subdivided assuming its parent Polyhedron is already
subdivided. It finds the new contour and uses the old contour to create the
expectation band. The expectation band is a collection of faces and each of
those faces can be obtained using the function

uint getBandFace(uint I) const;

It returns the face index in the array structure of the parent Polyhedron. The
edges of these faces are considered to have the highest expectation of becoming
a next-level contour edge. The way the band is formed depends on the way
the polyhedron is subdivided. First is checked if the Polyhedron is a Loop,
DooSabin or a CatmuilCiark object. Next, the following distinctions are
made:

Loop: In this case, the expectation band is formed by the faces incident with
the vertex points generated by the contour vertices or the edge points
generated by the contour edges.

DooSabin: In this case, the expectation band is formed by the edge-faces (type
E), vertex-faces (type V) and face-faces (type F) generated by the contour
edges, vertices and faces.

CatmuilCiark: In this case, the expectation band is formed by the faces in-
cident with the vertex points generated by the contour vertices and face
points generated by the contour faces.

Chapter 8

Gallery

In this chapter a few series of pictures are shown which are generated by a
'screen-grab' of the screen output of the implementing program. These series
consist of an initial polyhedron, followed by three subdivided polyhedra. These
are all flat shaded and the edges are black. The last object is a simulation of
the limit surface, generated by smooth-shading the third subdivided polyhedron
and omitting the black edges. As you can see, at this resolution they look like
smooth surfaces.

62

CHAPTER 8. GALLERY 63

Figure 8.1: Three Loop subdivision steps of an octahedron and the limit surface.

CHAPTER 8. GALLERY 64

Figure 8.2: Three Doo-Sabin subdivision steps of an octahedron and the limit
surface.

CHAPTER 8. GALLERY 65

Figure 8.3: Three Catmull-Clark subdivision steps of an octahedron and the
limit surface.

S

CHAPTER 8. GALLERY 66

Figure 8.4: Three Doo-Sabin subdivision steps of a torus-like object and the
limit surface.

CHAPTER 8. GALLERY 67

Figure 8.5: Three Catmull-Clark subdivision steps of a torus-like object and the
limit surface.

CHAPTER 8. GALLERY 68

Figure 8.6: An initial polyhedron, subdivided three times with Doo-Sabin and
the limit surface.

CHAPTER 8. GALLERY 69

Figure 8.7: The same polyhedron, subdivided three times with Catmull-Clark
and the limit surface.

Appendix A

Class Interfaces

A.1 Class Vertex
public member functions:

Vertex 0;
Default constructor. Constructs an object with coordinates (0,0,0) and
normal vector (0,0, 0).

Vertex(double x, double y, double z);
Constructs an object with coordinates z, y and z. The normal vector
becomes (0,0, 0).

Vertex(double x, double y, double z, double nx, double ny, double nz);
Constructs an object with coordinates (x, y, z) and normal vector (nx, ny, nz).

Vertex(Vertex const &other);
Copy-constructor.

VertexØ;
Destructor.

Vertex const &operator=(Vertex const &right);
Assignment operator.

Vertex const &operator+ =(Vertex const &right);
Adds to all coordinates the coordinates of right and returns a reference
to this.

Vertex const &operator— =(Vertex const &right);
Subtracts all coordinates by the coordinates of right and returns a refer-
ence to this.

Vertex const &operator* =(double factor);
Multiplies all coordinates with factor and returns a reference to this.

Vertex const &operator/ =(double nominator);
Divides all coordinates by nominator and returns a reference to this.

70

APPENDIX A. CLASS INTERFACES 71

void setPosition(double x, double y, double z);
Changes the coordinates to (x, y, z).

void setNormal(double nz, double ny, double nz);
Changes the normal vector to (nx, ny, nz).

void setNormal(Vertex const &ot her);
Copies the normal vector from other.

void addNormal(Vertex const &other);
Adds to the normal vector the normal vector of other.

Vertex const &translate(double tx, double ty, double tz);
Add to the coordinates tx, ty and tz respectively and returns a reference
to this.

Vertex const &normalizeO;
Changes the normal vector such that its length is 1 and returns a reference
to this.

double x() const;
Returns the first coordinate.

double O const;
Returns the second coordinate.

double zO const;
Returns the third coordinate.

double const *n() const;
Returns a pointer to the first coordinate normal vector;

double nxO const;
Returns the first coordinate of the normal vector.

double ny() const;
Returns the second coordinate of the normal vector.

double nz() const;
Returns the third coordinate of the normal vector.

double length() const;
Returns the distance between the coordinate position in anc the origin.

A.2 Class Face
public member variable:

typedef unsigned uint;
public member functions:

FaceO;
Default constructor. Constructs an object with 0 vertices.

Face(uint nvertsces);
Constructs an object with nverticea default vertices.

APPENDIX A. CLASS INTERFACES 72

Face(uint nverticea, Vertex const *vertices);
Constructs an object with nvertices vertices listed the array vertices.

Face(Face const &other);
Copy-constructor.

FaceO;
Destructor.

Face const &operator=(Face const &right);
Assignment operator.

void resize(uint nvertices);
Changes the number of vertices to nvertices. If nvertices is less than the
previous number of vertices, the vertex list is truncated, otherwise default
vertices are appended.

void newVertex(uint i, Vertex const &vertex);
Changes the ith vertex to vertex.

uint getNVertices() const;
Returns the number of vertices of the face.

Vertex const &getVertex(uint I) const;
Returns a reference to the ith vertex of the face.

Vertex getEdgepoint(uint I, double ratio) const;
Returns a point on the edge between the ith and the (I + 1)th vertex with
ratio ratio.

Vertex getMidpoint const;
Returns the average of all the vertices of the face.

Vertex getNormal(uint i) const;
Returns the vector perpendicular to two adjacent edges of the face. Its
sign is determined by the order the vertices are stored.

A.3 Class Polyhedron
public member variable:

typedef unsigned uint;
public member functions:

PolyhedronO;
Default constructor. Constructs an object with 0 vertices and 0 faces.

Polyhedron(uint nvertices, uint n/aces);
Constructs an object with rivertices default vertices and n/aces default
faces.

P&yhedroi(Po1yhedron cois &other);
Copy-constructor.

Po1yhedron;
Destructor.

APPENDiX A. CLASS INTERFACES 73

Polyhedron const &operator=(Polyhedron const &right);
Assignment operator.

void resize(uint nvertices, uint nface8);
Changes the number of vertices to nvertices and the number of faces to
nf aces. If r&vertices (r&f aces) is less than the previous number of vertices
(faces), the vertex (face) list is truncated, otherwise default vertices (faces)
are appended.

void newVertex(uint i, Vertex const &vertex);
Changes the ith vertex to vertex.

void newNormal(uint i, double nx, double ny, double nz);
Changes the normal of the ith vertex to (nx, ny, nz).

void newFace(uint i, uint const *f, uint size = 3);
Changes the ith face to face, where face is a pointer array of size vertex
numbers.

void complete(bool newNormals = true);
Calculates all connectivity arrays and a bounding box and if newNormais
is true all normals in all vertices as well.

uint getNVertices() const;
Returns the number of vertices of the polyhedron.

uint getNFaces() const;
Returns the number of faces of the polyhedron.

uint getNEdges() const;
Returns the number of edges of the polyhedron.

uint getPrevNVertices() const;
Returns the number of vertices of the polyhedron before it was subdivided
(0 if not subdivided).

uint getPrevNFaces() const;
Returns the number of faces of the polyhedron before it was subdivided
(0 if not subdivided).

uint getPrevNEdges() const;
Returns the number of edges of the polyhedron before it was subdivided
(0 if not subdivided).

Vertex const &getVertex(uint i) const;
Returns a reference to the ith vertex of the polyhedron.

Face getFace(uint i) const;
Returns a Face object of the ith face of the polyhedron.

uint const *getVertex(uint i, bool edge&or_face8) const;
Returns a pointer to the ith vertex represented by the numbers of edges
coincident at that vertex if edges.or...f aces is true or faces coincident at
that vertex otherwise.

APPENDIX A. CLASS INTERFACES 74

uint conat *getFace(uint 1, bool vertices_or_edges) const;
Returns a pointer to the ith face represented by the numbers of vertices
defining that face if vertices..oredge8 is true or edges defining that face
otherwise.

uint const *getEdge(uint i, bool vertices..or_faces) const;
Returns a pointer to the ith edge represented by the numbers of vertices
defining that edge if verticesor_f aces is true or faces defining that edge
otherwise.

uint getVertexSize(uint i) conat;
Returns the valence of the ith vertex.

uint getFaceSize(uint i) const;
Returns the number of vertices defining the ith face.

Vertex const *boundingBox() const;
Returns a pointer to an array of vertices defining the bounding box of the
polyhedron.

virtual void subdivideO;
Function to be used by derived classes for the subdivision routine. In-
creases the subdivision level by one stores the number of vertices, faces
and edges.

uint getLevel() const;
Returns the subdivision level.

mt getEulerCharacteristic() const;
Returns the Euler characteristic of the polyhedron.

protected member functions:

void resizeFaces(uint nface8);
Changes the number of faces to nf aces. If n/aces is less than the previous
imber of faces, the face !!st s tr.ncated, otherwise defaz!t faces are
appended.

void computeArraysØ;
Computes the following connectivity arrays: vertices defined by faces,
vertices defined by edges, faces defined by edges, edges defined by vertices,
edges defined by faces, edges defined by vertices and faces defined by edges.

void computeNormaIs;
Computes the normals in the vertices.

void computeBounds;
Computes the bounding box of the polyhedron.

class MyiJintArray;
A dynamic array-object used for the storage of all connectivity arrays.

APPENDIX A. CLASS IIqTERFACES 75

A.4 Class DooSabin
Derived from Polyhedron.

public member functions:

DooSabinO;
Default Constructor.

DooSabin(Polyhedron const &other);
Copy-constructor.

void subdivideO;
Performs the Doo-Sabin subdivision on the polyhedron and replaces this
with the subdivided polyhedron.

A.5 Class CatmullClark
Derived from Polyhedron.

public member functions:

Cat muilCiarkO;
Default Constructor.

CatmullClark(Polyhedron const &ot her);
Copy-constructor.

void subdivideO;
Performs the Catmuli-Clark subdivision on the polyhedron and replaces
this with the subdivided polyhedron.

A.6 Class Loop
Derived from Polyhedron.

public member functions:

Loop;
Default Constructor.

Loop(Polyhedron const &other);
Copy-constructor. The Polyhedron copied is first triangulated.

void subdivideO;
Performs the Loop subdivision on the polyhedron and replaces this with
the subdivided polyhedron.

APPENDIX A. CLASS INTERFACES 76

A.7 Class Contour
public member variable:

typedef unsigned uint;
public member functions:

ContourØ;
Default Constructor.

Contour(Polyhedron const *parent, double const eye[3]);
Constructs an object by searching all edges of parent for contour edges
considering the projection reference point eye.

Contour(Contour const &other);
Copy-constructor.

Contour const &operator=(Contour const &right);
Assignment operator.

uint getNEdges() const;
Returns the number of edges in the contour.

uint getNVertices() const;
Returns the number of vertices in the contour.

uint getNFaces() const;
Returns the number of contour faces.

uint bandSize() const;
Returns the number of faces in the expectation-band (0 if not yet subdi-
vided).

Polyhedron const *getParent() const;
Returns a pointer to the parent Polyhedron object.

uint getEdge(uint 1) coust;
Returns the (Polyhedron) index of the ith edge of the contour.

uint getVertex(uint i) const;
Returns the (Polyhedron) index of the ith vertex of the contour.

uint getFace(uint i) const;
Returns the (Polyhedron) index of the ith face of the contour.

uint getBandFace(uint i) const;
Returns the (Polyhedron) index of the ith face in the expectation-band.

void subdivide 0; Finds new contour assuming the parent Polyhedron has
subdivided and makes a expectation-band.

Bibliography

[1] E. Catmull & J. Clark. Recursive generated B-spline surfaces on arbitrary
topological meshes, Computer Aided Design, 10 (1978), pp. 350—355.

[2] G. Chaikin. An algorithm for high speed curve generation, Computer
Graphics and Image Processing, 3, 1974.

[3] D. Doo & M.A. Sabin. Behaviour of recursive division surfaces near ex-
traordinary points, Computer Aided Design, 10 (1978), pp. 356—360.

[4] G. Farm. Curves and Surfaces for Computer Aided Geometric Design, A
Practical Guide, Academic press, 1990, Second Edition, ISBN 0-12-249051-
7.

[5] X. Gu, et al. Silhouette Mapping, Harvard University, 1999, Computer Sci-
ence Technical Report: TR-1-99.

[6] M. Henle. A Combinatorial Introduction to Topology, W.H. Freeman and
Company, San Fransisco, 1979, ISBN 0-7167-0083-2

[7] L. Kettner and E. Weizi. Contour Edge Analysis for Polyhedron Projec-
tions, Institut für Theoretische Informatik, ETH Zurich, 1997, CH-8092
Zurich, Switzerland.

[8] H.Q. Le. Subdivision Surfaces, Unpublished manuscript, University of Wa-
terloo, 1997.

[9] C. Loop. Smooth Subdivision Surfaces Based on Thangles, Master's thesis,
University of Utah, Department of Mathematics, 1987.

[10] 3. Peters & U. Reif. Analysis of algorithms generalizing B-spline subdivi-
sior&, SIAM Journal of Numerical Analysis, 2 (1998), pp. 728—748.

[11] U. Reif. A unified approach to subdivision algorithms near extraordinary
vertices, Computer Aided Geometric Design, 12 (1995), pp. 153—174.

[12] P. Schroder, et al. Subdivision for Modeling and Animatio, Course notes
for SIGGRAPH 99, http : //wvw.multires . caltech.edu/pubs.

[13] J.E. Schweitzer. Analysis and Application of Subdivision Surfaces, Depart-
ment of Computer Science and Engineering, University of Washington,
Seattle, 1996, TechnicaL report UW-CSE-96-08-02.

[14] E.J. Stollnitz, T.D. DeRose, D.H. Salesin. Wavelets for Computer Graphics,
Morgan Kaufmann Publishers, Inc., San Fransisco, 1996.

77

BIBLIOGRAPHY 78

[15] G. Umlauf. Analyzing the Characteristic Map of 7iangular Subdivi-
sion Schemes, To appear: Constructive Approximation. Downloadable at
http://i33wwv. ira.uka.de/um].auf.

[16] .1. Warren. Subdivision methods for geometric design, Unpublished
manuscript, Dept. of Computer Science, Rice Univer8ity, 1995.

