" Wiskunde en
Informatica

ningen Faculteit der Wiskunde en Natuurwetenschappen

Estimating Quality of Segmentation for
Multistationary Time Series Modeling

H. Punt

SUPErViSors:
Dr. ir. J.A.G. Nijhuis
Drs. M. van Veelen

Oktober 2000

Technische Informatica RuG

114 T TPSUNIFS | S9N

1. Introductionefsos ves. o, o R BEEE Fosn frer s 4 @i
1.1. Background: sz, s . iimeeimEmi o s o d s gl Moo A BN T A o e
2 The Problem of Estimating Segmentation Quality
1.3. Thesis Goal
14. TThesSiSISIUCIUTE yond B Fiencns NPET 5 o0 ix HHN RN GG TS SETHE - MR AN LS

2. Time Series Mopdelingy : ... aret: atoom? . aflobbdadliy, = TN AR . THIL I
21, TimerSeries] 1 o o X5 s my i g By en s oo A s L e e
22 Time Series, MOdeling jucommrstenads & bt od b hed e ot PRIt 5. ity A
23. Time SeriesiModels ar s (08 . A8 5 4 it a5 M 8 s il R ITENN ~ g P
24. Stationanity §jg sk mewle Feavibe e s d s Al s A 0 g0 w: e | Ayl e iyl B
25. Monolitic Models and Nonstationarity

3. Modular Time Series Modelingc.iiiiiiiitnrnnnnnnnnnn
3.1 A framework for Modular Time SeriesModels
3121 Segmentation in Modular Time SeriesModels e
33. The problem of Estimating Segmentation Quality

4. Measures for SegmentationQuality o0t
4.1. Measuring Segmentation Quality in Modular Models
4.2. Measuring| Stationarity) e o ol o il a5 oS o 8 3¢ i T
4.3. Testingyfor Stationarity s see-swesadd. o 2 o ood'd b d bl dasin'sd bl b s M NSRRI
4.4. The Varratio Method for Measuring Stationarity b WA,
4.5. SUMMATY

5. Quality of Unsupervised Segmentationc.coiitivennnnn..
5.1 Unsupervised Segmentation
5.2 The SOLEX Model e
5.3. Unsupervised Segmentation of Multistationary Time Series

6. Quality of Segmentation Measurescccoevvuneennennnnnnnn.
6.1. Evaluating Quality of Segmentation Measures
6.2. Correlation of Varratio with Local Model Performance
6.3. Stability of Varration: smar S sodemmst - . B2 AL 12 2. PaaN el SRy v

7. Conclusions & Future Research coiiive...
REfEFERLES . .« . o o 0uBE . TETE o5 BT « Jalt Eoie eloln Buololl ola s Bolale s aleln olol e o) s ol 8

A. Multistationary Time Seriescciiiviiennn..

B, Statisticsoovtniiiiiiiiiiiiii ittt it

C. SOFMImplementationc.ccvvuiirrnineennnnennnsn

P "}W"‘.‘B’? ‘ g‘lnm iﬁn
.W
! levooiongiion | Belpon: «trus
Grolnges -
2

00 N NN

10
11
14
16

17
17
18
22

23
23
24
24
26
27

28
28

28
31

39
40
45

51

53

56

Abstract

The main problem associated with time series modeling is that of modeling non-stationary
time series. Monolitic, global models assume stationarity, e.g. the properties of the time se-
ries do not change with time. These models fail to capture the non-stationary dynamics of
many real-world time series.

One class of non—stationary time series are those that switch between multiple stationary re-
gions at certain points in time. These multistationary time series series can be modeled by
modular models which combine a segmentation of time series into stationary regions with
a number of local models specialized in modeling these regions. The outputs of the local
models are combined to form a single output.

Assuming good local models can be found for stationary local data and that they can be com-
bined successfully, the remaining problem is segmenting the stationary regions. During the
construction of a modular model the quality of segmentation must therefore be evaluated,
e.g. the stationarity of local data must be quantified. This is a problem because time series
modeling does not make assumptions about the properties of the stationary regions, and no
non—parametric estimate for stationarity exists.

One solution is to assume that stationarity of local data is expressed by the the local models,
estimating the quality of segmentation indirectly from their performance. This is the ap-
proach taken by modular models found in literature such as Gated Experts Networks. A num-
ber of problems are associated with this approach, caused by the interdependence between
segmentation and local modeling.

The goal of this thesis is was to find out if stationarity of local data can be expressed without
constructing local models, with the aim of breaking the interdependence between segmenta-
tion and modeling. Based on a hypothesis that stationarity may be expressed by means of a
number of traditional statistics, measures were developed to estimate segmentation quality
directly from the statistical properties of local data. The viability of these measures of seg-
mentation quality was subsequently tested in a number of experiments.

Based on the results of these experiments, the main conclusion must be that it is not possible
to generally estimate segmentation quality by means of estimating stationarity of local data
using traditional statistics. The newly developed measures of segmentation quality can there-
fore not be used to break the interdependence between segmentation and local modeling in
modular time series models.

1. Introduction

This thesis deals with the subject of time series modeling, more specifically it deals with some
of the problems associated with the construction of these models.

The field of time series modeling deals with the construction of models for dynamical pro-
cesses for which an adequate analytical description is not known, and hence analytical mod-
els cannot be build. Instead, time series models are build by considering the dynamic rela-
tions found in consecutive outcomes of such a process, e.g. a time series. This way an
analytical description of the process is not necessary in order to build a model.

Applications of time series models are found in many areas of science & industry; For
instance in the field of feedback control, models of the controlled plant are used to provide
estimates in the case where continues measurements on the real plant would be either too ex-
pensive or too dangerous. In the field of economics, time series models are used to simulate
the processes that govern economies. In this way insight is gained into the effects proposed
changes would have on these economies. Time series models may also be used to forecast
future observations on a given process. Numerous applications of time series forecasting
exist; Stock market analysis, where predictions are made on future stock values and for
instance weather and climate forecasting.

In order to properly state the thesis goal, a number of concepts & problems relating to time
series modeling need to be considered first. The following section will provide only a mini-
mal overview of time series modeling as needed to state the thesis goal. These concepts will
be discussed in more detail in chapter 2.

1.1. Background

Time series modeling starts of with some dynamic process for which a model needs to be
build:

Definition 1.1: Dynamic Process

A process P is called dynamic if the outputs of the process at some time ¢ not
only depend on the inputs at time ¢ but also on the history of previous inputs
and outputs of the process.

In time series modeling the nature of this dynamic process P is unknown (Otherwise an ana-
lytical model could have been used). This means that in the construction of a time series mod-
elM for P only consecutive observations on the outputs Y(¢) of P are considered. A sequence
of such observations on P is referred to as a time series and the task of constructing a model
for P from these observations is referred to as time series modeling.

If a time series consists of a sequence of single observations y, it is called a univariate time
series. When multiple simultaneous observations y, are made, the sequence y,,...,yy is re-
ferred to as a multivariate time series. For reasons of simplicity, this thesis only considers
modeling of univariate time series.

Time series modeling considers the dynamical relations found in a given time series in order
to express these in a model. The model works by providing a mapping from a limited number
of past observations y,_,,y,_,,...,y,_yto a forecast of a future observation y,, .. The mapping

is associated with a number of model parameters, the values of which are estimated from the
given time series using algorithmic parameter estimation methods with the aim of minimiz-
ing the models forecasting error.

Various types of models exist and a choice for a particular model will be based on assump-
tions about the nature of the dynamical relations in the time series. Traditional models such
as ARMA([1] assume linear relations and consist of a single linear mapping from past ob-
servations to the model forecast. In recent literature non-linear models have been introduced
capable of expressing non—linear dynamical relations.

The relation between dynamic process, time series and time series model is shown in
Figure 1.1:

- >y
X(t) —> P - Y1) Vi M Yier

= . (c) Univariate time series model/forecaster
(a) Dynamic Process (b) Time Series

—> Observations —> —> Parameter Estimation —>

Figure 1.2 Relation between dynamic process, time series and time series model

An important property of time series that must be considered in time series modeling is that
of stationarity. Multiple definitions of stationarity exist, but in the context of this thesis it will
be defined as follows:

Definition 1.2: Stationarity

A time series is said to be stationary if its properties do not change with time
[1][9), and consequently is considered non-stationary if its properties do
change with time.

In this thesis the focus will be on the problems associated with the modeling of multistationa-
ry time series. Multistationary time series are the class of non-stationary time series that
switch between different stationary regions at certain points in time. Within one region, the
properties do not change and the time series is stationary, but on a longer timescale the series
is non—stationary as its properties change from one region to the other. Time series of this
type are also referred to as being piecewise stationary. Examples of multistationary time se-
ries are given in Figure 1.3 and Figure 1.5, where the switching between two stationary re-
gions is clearly visible.

1.0 -vwsq d-» Bl == Local Mod 1.
s thbid CEEE EETE Y SRR S S SR Global Mod.
0.0 —slan - Local Mod 2.
(-
Time

Figure 1.3 A Simple Muitistationary Time Series
The main problem associated with multistationary time series is that they can not be effec-
tively modeled by traditional monolithic global time series models. These models can only

be adapted to reproduce the average global dynamics of the multistationary time series. The
monolithic model will therefore underperform in each of the local regions of the multista-
tionary time series. The most simple example of this is shown in Figure 1.3. In this example
a simple time series switches between two stationary regions with a different but constant
amplitude. If a mean model (a model that predicts a constant value) is used to model this se-
ries, it can do no better than to predict the mean of the series (0.5 in this case).

1.2. The Problem of Estimating Segmentation Quality

The fact that a multistationary time series contains multiple stationary regions suggests the
applicability of a divide-and—conquer strategy to the problem of modeling multistationary
series (Figure 1.4). In recent literature this approach has been adopted in the form of modular
models [10][11][12][13][14][15].

The idea behind this approach is to split or segment the multistationary series into its station-
ary regions (divide). Appropriate local models are then responsible for modeling the station-
ary dynamics in each individual region (model). Finally, the responses of the local models
are combined to form a single global forecast (conquer). The local models only need to mod-
el stationary dynamics and it has already been shown that modular models perform better
than a single global model [10][15]

This can also easily be seen in the example of Figure 1.3. If 2 mean models are used for this
series, one local model could be responsible for predicting the regions with amplitude 1 and
second local model for the regions with amplitude 0. Assuming that this series can be split
perfectly, the combination of the 2 local models will be optimal.

Note that in modular modeling the following assumptions are made;
1. A good segmentation will lead to stationary local data.
2. A good local model can always be made for local stationary data.

3. The predictions of the local models can be combined in optimally.

w»Ml—>£,'+,

x,—> S '—'—:>M2_>£,2+,"'>C'_>£,+,
>

M—»”/

j Xivr

1) divide 2) model 3) conquer

Figure 1.4 A modular approach to muitistationary time series modeling

Because of these assumption the problem of modeling multistationary time series with a
modular model essentially becomes a segmentation problem. Therefore attention shifts to
the problems associated with the process of segmenting the multistationary time series:

1. Source Identification. How many different types classes of stationary regions are
there and what are their statistical characteristics?.

2. Time Series Classification How to identify the stationary regions during the fore-
casting task. In other words, given a particular input of past observations which
local model is appropriate at the given moment?.

3. How to evaluate the quality of a particular segmentation during construction of
the model?.

All of these segmentation problems require that the (non)stationarity of the time series must
at some point be quantified (e.g. is the local data stationary for a particular local model?).
If assumptions about statistical properties of the time series can be made, e. g. the properties
of the multistationary time series are well understood,. these problems can be handled by
hand by the model designer. Just consider the example of Figure 1.3, here it is easily seen
that it is the mean value of the series that is changing with time and that there are 2 different
stationary regions. In this case a segmentation of the input can be made by setting a threshold.
If the input is above 0.5, Local Model 1 is used to predict the next value, otherwise Local
Model 2 is used. This is similar to the approach taken in [21] with the so called TAR or
Threshold Autoregressive models.

But what happens if the statistical properties of the multistationary time series are not
known?. Take for example the multistationary series of Fi gure 1.5. Itis clear that there 2 sta-
tionary regions in this series. But it is not clear exactly which statistical properties are switch-

ing.

le" M L

o 50 100 150 z00 250 300 3so
t

— m(-

»x{t)

Figure 1.5 Example of a multistationary time series
When addressing the problems of segmenting multistationary, the following chicken and egg
problem is encountered

In order to build a mulistationary time series model, stationarity of the time series must be
quantified. In order to quantify stationarity, proper knowledge is needed about the process
underlying the time series (which statistical properties switch in time?). But this was the rea-
son why the time series model needed to be build in the first place. So in order to build a mod-
el, amodel would be needed, etc., etc.

The discussion in thesis will be limited to the third problem of segmenting multistationary
time series, e.g. the question how to evaluate the quality of the segmentation during the
constructing of a multistationary time series model in the face of the chicken and egg prob-
lem.

One solutions to this problem, is to avoid quantifying stationarity of local data, and to esti-
mate the quality of the segmentation indirectly. This is the solution that is used by all the mod-
ular networks that were investigated in the context of this thesis (See chapter 3.). In particular
these modular models estimate the quality of the segmentation from the performance of the
local models. This is motivated by the assumption that if the performance of the local models
is good, then the local data must be stationary, and thus that segmentation quality is good.

Ateach iteration of their construction process the performance of the local models is evaluat-
ed, and the segmentation quality is estimated from these values. Using this estimate the seg-
mentation is updated to provide a new segmentation which produces lower model errors. The
construction process continues until the local models show no more significant reduction of
their errors. At this moment, it is assumed that the local data is stationary and that the seg-
mentation is optimal (See Figure 1.6).

Divide

Evaluate local mode! perfor-
mance to estimate Segmentation
Quality

time

Figure 1.6 Estimating Segmentation Quality from Local Model Performance

There are a number of problems associated with estimating segmentation quality in this way,
caused by the interdependence of segmentation and modeling during construction:

1. It only allows for one type of quality metric, e.g. quality of segmentation is de-
fined as optimal local model performance.

2. Dueto I, The dynamics of the local models in practice do not necessarily corre-
spond to the stationary regions of the multistationary time series. It is entirely fea-
sible that a particular segmentation exists which produces an excellent model in
the context of forecasting, but does not provide any insight in the modeled process
(interpretation problem).

3. Ifan’intelligent’ segmentation device is used (such as MLP in the GEN models),
it is possible that a clear separation of concerns is lost, e.g. part of the modeling
task ends up being done by the segmentation device (e.g. the *gate’ in GEN mod-
els).

4. The local models need to be constructed simultaneously with the segmentation. In
practice this can lead to long training times if a great number of local models are
used. Ideally one would like to have a modular construction process for a modular
model, e.g. first a satisfactory segmentation is made, secondly all the local models
are constructed only once for this particular segmentation.

To address these problems is the goal of this thesis and this will be discussed further in the
following section:

1.3. Thesis Goal

Itis the aim of this thesis to break the interdependence between segmentation and local mod-
eling in modular time series models. It is believed that a method of estimating segmentation
quality that does not rely on local model performance will lead to a more desirable construc-
tion process for multistationary time series models (see Figure 1.7).

Estimate Segmentation
Quality & Update Seg-
mentation

Create Local Models

= Evaluate & Update
« JLocal Model ; Local Models.
. r—————"
time | Combine |
i L=, == —N=" .

Figure 1.7 Estimating Segmentation Quality before constructing Local Models
With such a measure, the construction process for modular models will have more desirable
properties:

1. The freedom to use different quality measures for the segmentation. This way re-
quirements for a certain type of segmentation can be enforced by the model de-
signer by choosing an appropriate measure.

2. The modular model will have a modular construction process, the local models
need only be trained once, after a satisfactory segmentation has been achieved,
reducing complexity and training effort (see Figure 1.7).

3. A clear separation of concerns between the modeling and the segmentation task.
Thus the thesis goal is summarized as follows:

To find a method to estimate quality of segmentation in modular time series models indepen-
dent from local model performance.

And the following hypothesis is made:

The quality of segmentation in a modular time series model can be measured independent
Jfrom local model performance.

Assuming that local model performance will be good if local data is stationary, the following
hypothesis is motivated:

The quality of segmentation can be estimated by directly estimating stationarity of local data

Which leaves the question if measures of stationarity exist that can be used to quantify sta-
tionarity when the statistical properties of the time series are not known (e.g. the chicken and
egg problem introduced earlier). To overcome this problem the following hypothesis is
made:

Stationarity can be quantified by means of a limited set of traditional statistics
This hypothesis will be motivated further in chapter 4.

The approach taken in this thesis is to find a number of estimates for segmentation quality
that do not depend on local model performance. The quality of these segmentation measures
will be tested in a modular model and conclusions will be drawn on the validity of these hy-
pothesis and assumptions and the usability of the segmentation measures.

1.4. Thesis Structure

First the traditional theory of time series modeling will be discussed in greater detail in chap-
ter 2. The general theory of linear and non-linear time series modelling and analysis will be
introduced. And more formal definitions of stationarity are given. Finally the problem of
modeling multistationarity with monolitic models will be restated in more detail.

Chapter 3. continues with an overview of modular time series models for multistationary
time series. A literature survey is presented that provides an overview of a number of modular
architectures from current research with a focus on their construction process and the way
in which segmentation quality is estimated in these models.

In chapter 4, new measures for estimating segmentation quality will be developed.

Inchapter 5. an experimental setup is presented that provides unsupervised clustering of time
series. A new modular architecture for multistationary time series modelling is introduced
that employs Kohonens Self Organizing Feature Map for the segmentation task. The results
of experiments on the quality of unsupervised segmentation of multistationary time series
are also presented in this chapter.

In chapter 6. presents the results on the experiments on the quality of the new segmentation
measures.

And finally in 7. Conclusions are drawn on the usability of the new segmentation measures.

2. Time Series Modeling

This chapter provides an introduction to the theory of univariate time series
modeling. A number of common types of univariate time series models are
presented. The main problem associated with these models e.g. their inability
to model multistationary time series, is discussed at the end of the chapter.

2.1. Time Series

Definition 2.1:

A time series consists of a number of observations y, taken sequentially over time [1]:
[)'h)'z,---,)',], t = 1,2,...,T (21)

If a time series consists of a sequence of single observations y,, it is referred to as a univariate
time series. When rnultiple simultaneous observations y, are made, the sequence y,,...,yr 1S
referred to as a multivariate time series. For reasons of simplicity, only univariate time series
are considered in this thesis.

As said in the introduction, a time series is obtained by making observations on some process
P. As mostreal-world processes are continues, these observations could be made at any point
in time. However, in the context of time series modeling only discrete time series are consid-
ered, where observations are made at equally spaced intervals over time, e.g.:

Y, = Y(ndr + 1) 2.2)

Also, a time series is considered to be produced by a stochastic process. Each observation
on a stochastic process is unique, that is, it represents only one of many possible results which
might have occurred. As a consequence, if the output of the process is recorded as a function
of time, a specific time series is obtained. If the output of a second, identical process is re-
corded at the same time, it would produce a different time series. A single time series (or sam-
ple function) is thus only one realization of a stochastic process. The stochastic process itself
is defined by the ensemble of all possible realizations or time series it can produce .

Without further restrictions statistical properties of a stochastic process can only be calcu-
lated by considering the ensemble of all possible realizations. For example the ensemble av-
erage of a stochastic process:

N
ensemble average = u (1) = I&im ﬁkglx‘,(t) 2.3)

To estimate the ensemble average a large number of realizations are needed, while in practice
usually only a single realization is available. The common solution is to assume that the pro-
cess is ergodic. A full definition of ergodicity is beyond the scope of this thesis, but what it
basically means is that a suffiently long single realization of an ergodic process gives consis-
tent estimates of the ensemble statistical properties of the process. Attention may then shift
to time averaging a single realization k:

time average = p (k) = ;im

and for an ergodic process:
ulk) = E@(t) 2.5)

The time series used in this thesis are assumed to be ergodic, and consequently only single
realizations are considered.

2.2. Time Series Modeling

An important property of time series is that the value of an observation y, depends on the val-
ues of past observations y,_,,y,_,,...,y,_y.. It is the aim of time series modeling to find the rela-
tions between past and future observations from a given time series and express them in a
model.

A univariate time series model explains the movements of the series y, by predicting some
future value y,, using only past the observations y,.. The model defines a mapping M which
relates these past observations to the forecast y,, (Figure 2.1).

|7‘
¥ —>l M P ..

Figure 2.1 A univariate time series model
The architecture of a univariate model is characterized by:

1. The type of mapping M. This can be anything from a constant, a linear function,
or various types of non—linear mappings.

Its order N, the number of past observations considered to produce the forecast.

The number of hidden layers/hiddens if the model uses some form of multilayer
approach (as in a Multilayer Perceptron).

The mappingM is associated with a parameter vector w, also known as model parameters.
These parameters are estimated from a given time series during construction of the model
with the aim of expressing the dynamic relations of the time series.

Various statistical methods for estimating model parameters exist and depending on the type
of model different methods will be used. Traditional analytical methods of estimating model
parameters include Ordinary Least Squares regression and estimation from the correlogram
of the time series using Yule~Walker equations [1].

More recently sample-wise or pattern—wise parameter estimation methods are used. These
include Expectation Maximization (EM) [19][20], Maximum Likelihood (ML) and Least
Mean Squares (LMS) estimation and also Error Back Propagation [17]. These methods are
iterative algorithms where w is updated at each step with the aim of minimizing the error of
the model with respect to forecasting. This process of iteratively adapting model parameters
is referred to as learning, and these iterative algorithms for parameter estimation are known
as learning algorithms.

Depending on the properties of the time series, models with different characteristics will be
used. In the following section a number of common models are discussed (These models will
also be used later in this thesis).

10

2.3. Time Series Models

2.3.1. Mean Model

The simplest time series model is the mean model. It simply predicts the mean or bias of a
time series and past observations are not considered:

yo=w Vv, (2.6)

Its single model parameter w is estimated as the sample mean of a number of observations
y, from the series in the following way:

w=g Dy, @7

Although it may not be suitable for many types of time series, it has the advantage that it can
easily be constructed.

2.3.2. Linear Models

Time series are traditionally modeled as linear stochastic processes. Here the assumption is
made that the relations between observations are linear and that these relations can be ex-
pressed by a linear stochastic process.

An example of a linear stochastic process is the MA or Moving Average process. An MA(q)
process of order ¢ is defined by:
Definition 2.2 MA Process

Yi=&+0i€,, +... + ol{el—qv f SN ... VIF

Where ¢, is a sequence of uncorrelated random variables with mean zero and constant vari-
ance and 6 are parameters. A particular set of values of e,¢,,...,&,, results ina corresponding
sequence of observations y,y,,...,y;. By drawing a different set of values of ¢,¢,,..., ¢, a dif-
ferent set of observations is obtained, and the MA(q) process can be regarded as being capa-
ble of generating an infinite set of realizations over the period ¢ = 1,2,..., T. Thus, the process
effectively defines a probability distribution for the random variables y,y,,..., y;.

Another example of a linear stochastic process commonly used in modeling time series is
the AR or Auto Regressive process. The AR(p) process of order p is defined as:

Definition 2.3 AR Process
=0y, + - +6y_,+e t=1,..T

The MA(q) and AR(p) processes can be combined to form the ARMA(p,q) or Autoregres-
sive-Moving Average process defined by:

Definition 2.4 ARMA Process
y=0y_,+ - +0y._,+e+6_+ -+ 08—y Bo= N

An ARMA(p,q) model for a particular time series instance y, can be found by first estimating
the appropriate model order, that is finding the correct values for p and q. [1] suggests overes-
timating p,q followed by a cycle of construction/evaluation steps. At each step p and q are

11

decreased as long as the model performance remains satisfactory. For a pure MA(q) process,
[1] shows that the order q can be directly estimated from the correlogram.

Various methods of parameter estimating can be used for parameter estimation in
ARMA(p.q) models. Ordinary Least Squares, Yule—Walker equations and LMS are com-
monly used as well as Error Back Propagation.

Due to their linear mapping, ARMA models can only be used effectively in modeling linear
time series.

2.3.3. Artificial Neural Networks

The assumption of linearity in ARMA models is rather restrictive as most real world time
series are of a non-linear nature. Luckily the assumption of linearity can be dropped with
the application of Artificial Neural Networks or ANAS in time series models. Due to their
ability to express arbitrary complex non-linear relations between their inputs and outputs
ANNs can effectively be used to create non-linear time series models.

Traditionally ANNs are inspired by the way the human brain performs its wide range of tasks.
Both the brain and ANN perform computations by means of amassive interconnect of simple
(non-linear) processing units. The processing units of the human brain as well as those of
ANN:s are referred to as neurons.

The neuron is the basic information processing unit used in artificial neural networks. It cal-
culated the sum of its weighted input signals and transforms this sum to form the output by
means of an activation function. Figure 2.2 shows the neuron model, and its most commonly
used non-linear activation function (the sigmoid or logistic function).

Fixed input wy, = 0, (threshold)

x, = —1 g unckon
o— 1 Y T
Wteapa) —
03
X1 0 Activation 9
Function v
D : Output o
X2 0 — - ¢() T
) Yk %
Summing .
junction
[E]
Xp O—— F
Inputs Syr‘napuc o
weights
(including o-m 5 |c
threshold)

Figure 2.2 The Artificial Neuron

The neuron model contains four basic elements:

* Asetofconnections, characterized by their weights (w,, in Figure 2.2). This weight
is multiplied by the input signal. The connections are uni—directional, or feedfor-
ward connections.

12

e A summing unit for summing the weighted input signals.
¢ Anactivation function ¢(-) for transforming the sum into the output of the neuron.
* A bias or treshold term characterized by a fixed input (w,, in Figure 2.2).

Mathematically the artificial neuron can be described by the equations:
I)
u, = z WiX; (2.8)
j=0
y = @up (2.9)

Where x,x,,...,x, are input signals and w,,, w,,,...,w,, are the connection weights of neuron
k.

Two commonly used activation functions are;

e The sigmoid activation function (shown in Figure 2.2). This is the most common
activation function used in ANNSs. It is defined by:

1

pu) = m (2.10)
e The hyperbolic tangent activation function, defined by:
P(u) = tanh(3) (2.11)

It is also possible to use a linear activation function.

The manner in which the artificial neurons are connected determines the architecture of the
ANN. Figure 2.3 gives an illustration of a multilayer feedforward network architecture.

Input Layer Hidden Layer Output Layer

Figure 2,3 A muitilayer feedforward network

The first layer of neurons is the input layer. This is where the network receives information
from its environment. The second layer is called a hidden layer. A multilayer feedforward
network contains one or more hidden layers. The last layer of the network is the output layer.

Information in the feedforward network flows from the input layer through the hidden lay-
er(s) to the output layer. In this way the network provides a functional input—output mapping.
Depending on the type of activation function used in the neurons this mapping can be either
linear or non-linear.

13

The actual mapping of the network is determined by its free parameters, the connection
weights w,,. A mapping can be learned by the network by employing a learning algorithm
in which the weights are adjusted iteratively according to examples from the desired map-
ping. The class of multilayer feedforward networks that employ the error back—propagation
learning algorithm are called Multilayer Perceptrons (MLP). The MLP architecture and the
back—propagation learning algorithm are treated extensively in [17].

Due to the fact that the MLP only provides a static non—linear mapping from its inputs to its
outputs, the MLP cannot be used directly as a time series model. If the MLP is to be used
to capture the dynamic releations of a time series, memory must be added to the network
structure. The easiest way to do this is to provide unit delay elements to the inputs as shown
in Figure 2.4. The input vector for the network then consists of a fixed number of previous
observation on the series.

The set of unit delay elements can be considered as a separate component from the network
structure and is commonly refered to as a tapped delay line. Other, more complex neural ar-
chitectures with memory have also been developed such as the TDNN or time delay neural
network and FIR networks. An overview of the capturing temporal information in neural net-
works can be found in [24] and [17].

Input

n=1

—_— Static
2 T Multi- Outpuf
I layer —_— T X
T — lprf;fep'
z—l
x o—>

n—p

Figure 2.4 MLP used as a non-linear time series model

2.4. Stationarity

The models of the previous section all share the property that they assume stationarity of the
modeled time series. The assumption of stationarity and the existence of time series that are
non-stationary leads to a modeling problem that will be discussed in section 2.5. First the
concept of stationarity must be properly defined.

The definition of stationarity in time series may be a problem by itself, and a number of dif-
ferent (statistical) definitions can be found in literature [1][9][17)]:

Definition 2.5 Weak Stationarity:

A time series is considered weak(ly) stationary if the following conditions are
satisfied for all values of 1:

Ely) = p (2.12)

14

E[(y, = #)"] = ¥(0) (2.13)

ElW, = $)0uee =)] = 90, T =1,2,.. (2.14)

In other words, a time series is considered weakly stationary if:

* It does not have a time—varying mean value.

* It does not have a time—varying mean square value (variance).

* Linear dependencies between observations at different times (autocorrelation) do
not vary with time.

Note that this only requires linear properties to remain constant over time. This definition
is usually found in literature on traditional time series models (ARMA), where the assump-
tion of linearity is already made. As real world time series may be nonlinear, a more general
definition of stationarity is also used:

Definition 2.6 Strict Stationarity:

A nume series is said to be strictly stationary if the joint probability distribution
X)), ..., X(1,) is the same as the joint distribution of X(t, + 1),..., X(t, +) for
all

The problem with this definition is that in time series modeling the probability distribution
of the series is unknown (This is the reason why a model is needed in the first place). So this
definition does not provide a means to make statements about the (non)-stationarity of some
arbitrary time series.

As estimates on different features of the probability distribution can be calculated from statis-
tical properties of the series (inean, variance, skewness, kurtosis, etc. etc), the following
more intuitive definition is motivated:

Definition 2.7 Thesis definition of Stationarity:

A timeseries is said to be stationary ifits statistical properties donot vary with
time.

Which leaves the following questions unanswered:

1. Which statistical properties should not vary with time for the time series to be
considered stationary.

2. At what timescale the statistical properties of the time series should not vary with
time.

Altough literature research on the subject did not provide answers to these question, this will
be the definition of stationarity used troughout the remainder of this thesis. Tthe question
which statistics and timescale are appropriate will need to be addressed in later chapters.

Two important examples of non-stationary behaviour found in time series are switching and
trending. Time series that switch between different stationary regions at certain points in
time are said to be multistationary, or piecewise stationary. Within one region, the statistical
properties do not change and the time series is stationary, but on a longer timescale the series
is non—stationary as its statistical properties change from one region to the other. Time series
of this type are usually generated by a process that switches between multiple modes of sta-

15

tionary dynamics at certain points in time. A synthetic example of a multistationary time se-
ries is given in Figure 2.5, where the switching between two stationary regions is shown:

W TN
i |

Py " o N " "
o S0 100 150 200 250 300 3so

=

x(t) m(ty S

Figure 2.5 Multistationary time series

Trending non-stationarity is found when one or more statistical propérties slowly change
with time. An example of this kind of non—stationary behavior is shown in Figure 2.6.

T — —

— v
| /
o.6 |-
o.a |-
o.2 ://///
o
oz |
-0.4 |-
-0.6 |-
-o.8 |
-1 —— — + L -
100 180

200 250 300 350 40C
T

x(t)
Figure 2.6 Trending non-stationary time series
This type of non-stationarity can be observed in industrial processes, where the dynamics
of the underiying process slowly change in time due to wear, or aging of the mechanical com-
ponents. Only multi—stationary time series will be considered in this thesis.

2.5. Monolitic Models and Nonstationarity

Now that the concept of stationarity in time series has been defined, the problem of modeling
multi-stationary time series can be reiterated:

The models introduced in section 2.3. are all monolithic models, which means that they only
contain a single model process. This single process can only be estimated to reproduce the
average global dynamics of a multistationary time series. The monolithic models will there-
forunderperform in /ocal regions of the multistationary time series. An example of this prob-
lem has already been given in section 1.1.

In the following chapter it is shown that this problem can be solved if these monolithic mod-
els are used in a modular approach.

16

3.1.

In the previous chapter a number of monolithic time series models were presented. It was
shown that these models fail when modeling multistationary time series. A number of mul-
tistationary time series models have been introduced in recent literature that overcome the
problems associated with monolithic models. These models employ a divide and conquer

Modular Time Series Modeling

Inthis chapter anumber of solutions from current literature are presented that
address the problem of modeling multistationary time series by employing a
modular divide & conquer approach. These models segment a time series into
its stationary regions and specialize a number of local models for modeling
these regions. This chapter discusses the problem of estimating segmentation
quality during their construction. It will become clear that these models use
the error performance of the local models as an estimate for segmentation
quality, and that this leads to some undesirable properties of current modular
models.

A framework for Modular Time Series Models

strategy to multistationary time series modeling.

The principle of divide—and—conquer is a principle that has proven to be very useful in solv-
ing many problems in the area of computing. Divide—and—conquer algorithms attack a com-
plex problem by dividing it into simpler problems whose solutions can be combined to yield
a solution to the complex problem. In the context of multistationary time series models, the

divide and conquer strategy is used in a modular framework (Figure 3.1):

-» M R B
Xy —> S '__:, M2_>£yz+r:—> C —>XAV+1
> Mj Bt
1) divide 2) model : 3) conquer

Figure 3.1 Modular divide-model-conquer framework

This framework, which will be referred to as the divide/model/conquer framework is moti-

vated by the following definition of multistationary time series:

Definition 3.1 Multistationary Time Series:

An observation y, in a multistationary timeseries can be considered to be gen-
erated by a source process S(z,), where z, is a time varying source parameter,
taking values in a finite set of parameter vectors ¢ = [¢ ,_¢2,...,¢K]. For every
value of z, a source process S(z,) is activated, which produces y, using
Yi_1sY,-2- -, and parameter vector ¢ [13].

17

This means that a multistationary time series is considered to be generated by a finite number
of stationary sources that are activated in time according to some unknown process.

The idea behind the modular approach is then to identify these different sources (divide) and
to construct an appropriate local model for each distinct source (model). The local models
are constructed using only stationary data generated by their associated source processes.
During forecasting, at each time step ¢, the currently active source process $(z,) is classified.
Depending on the actual implementation of the modular model on more local model(s) are
then selected to provide the forecast. Finally these forecasts are combined to provide the re-
sponse of the modular model (conquer). In this way the local models are only used on sta-
tionary data and the modular model is expected to outperform monolithic global time series
models (chapter 2.) in the context of forecasting multistationary time series.

In this thesis the assumption is made that a good local model can always be made for station-
ary data, and that the forecasts of these models can be combined optimally, the problem of
modeling multistationary time series can then be considered to be a segmentation problem.
The focus of this thesis will therefore be limited to the problems associated with the seg-
mentation of multistationary time series.

In the following section the problems associated with the segmentation of multistationary
time series are discussed further and a number of modular time series models from literature
are reviewed to see what kind of solutions exist to overcome them.

3.2. Segmentation in Modular Time Series Models

The aim of the segmentation in modular time series models is to increase the stationarity of
the data that is presented to the local models, e.g. to enforce a specialization of local models
on the stationary regions of the multistationary time series. The problem of segmenting mul-
tistationary time series can be broken down into the following 3 subproblems:

1. Source Identification. How many different types classes of stationary regions are
there and what are their statistical characteristics. e.g. the source set

® = |¢,85....¢x] must be determined.

2. Time Series Classification How to identify the stationary regions during the fore-
casting task. In other words, given a particular input of past observations which
local model is appropriate at the given moment?. e.g. determining at every time
step ¢ the active source S(g¢,) that generated y,.

3. Evaluating Segmentation Quality How to evaluate the quality of a particular seg-
mentation during construction of the model? e.g. Does a particular segmentation
enforce stationarity of local data?.

In the following section a number of implementations of modular models from recent litera-
ture are reviewed to see how these problems are handled.

3.2.1. PREMONN

The modeling of multistationary time series is discussed in a number of papers by Kehagias
and Petridis [13], [14], [15].

1R

In [13] they present a general framework (PREMONN) for the time series classification
problem. The PREMONN architecture (Figure 3.2) consists of a number of predictor mod-
ules and a decision module. It is assumed that the source processes are known and that the
appropriate local models have been trained. The article presents a decision module that em-
ploys a Bayesian approach to the time series classification problem. A every time ¢ the deci-
sion module produces an estimate of the conditional posterior probability p*, that the ob-
servation y, was produced by process ¢, from the observations y,_,,y,_,,..., . The active source
at time ¢ is credited to be the one with maximum probability p. An iterative method is pre-
sented to efficiently compute pf from p*_,, y,_,,y,_,..., and the prediction error ¥, where
et =y, —y;. The PREMONN architecture by itself provides no solution to the source identifi-
cation problem. The outputs of the local models are combined (mixed) according to their pos-
terior probability. Thus input vectors are not segmented exclusively among the different local
models in the PREMONN architecture. Instead, all models are trained on the same data, and
a’soft’ segmentation is performed afterwards by the decision module. The quality of the seg-
mentation during construction is evaluated by means of the error of the local models, and
the segmentation itself is updated by calculating new posterior probabilities from these errors
at each step of the learning algorithm.

Fo. =

al 2
2 _>;l+| 7@ 2 Xits

—_—> Decision Module

Figure 3.2 PREMONN

An application of the PREMONN architecture is given in [15] where Kehagias and Petridis
et al. present the use of their bayesian classification algorithm in the context of short term
electrical load forecasting. The article presents three global models that are in use to predict
the hourly demand for electricity on the island of Crete, Greece. The models use the relations
between several factors such as weather conditions, past demand patterns, day of week and
time of day to produce the short—term demand forecast (one hour). Two of the models are
of the linear ARMA type, the third a non-linear ANN model. Motivated by the fact that the
errors made by these models depend on the time of day (some models performed better dur-
ing certain hours than others), a PREMONN is presented with a bayesian decision module
as in [13]. The decision module combines the forecasts made by the three existing ’local’

19

models based on their posterior probability p¥. It is shown that the PREMONN consistently
outperforms the original global models.

A solution for the source identification problem is presented in [14]. In this paper, an unsu-
pervised divide and conquer method is presented that can be used in the PREMONN frame-
work. The presented algorithm starts of with a single non-linear ANN local model that is
trained on the first fixed length data block of a series y,. Then for each iteration of the algo-
rithm a consecutive data block is considered. Time delayed windows or segments are taken
from the data block. The segments are presented to the current local models to calculate the
Segment-Average Square Prediction Error, or SASPE for each segment. Each segment is
assigned to the local model with the the minimum SASPE for the segment. If the minimum
SASPE falls below a certain threshold a new local model is created, and the segment is as-
signed to this model instead. When all segments of the data block are assigned, all the local
models are retrained for a number of iterations using their most currently assigned data seg-
ments. The algorithm continues until each consecutive data block of y, has been considered.

3.2.2. Gated Expert Networks

Gated Experts (Weigend [10]) and Mixture of Experts (Jacobs et. al. [19] [20]) are a class
of modular time series models typified by the architecture shown in Figure 3.3.

I [Expert Model \
81

X .| Expert Model | _| > @ -t
$]

X »| Expert Model | | Tg
3

N B ¢ 71

Figure 3.3 General architecture of Gated Experts and Mixture of Experts models

This architecture is more or less the same as that of the PREMONN (Figure 3.2). but Gated
Experts and Mixture of Experts also solve the source identification and classification prob-
lems.

In this architecture a component called *Gate” is responsible for the segmentation of the input
space (divide). The gate assigns a weight g, to each of the experts to denote the probability
that it generated the current input vector x. In this way an input vector can be assigned to more
than one expert, thereby soft—partitioning the input space.

The response of the model is a linear combination of the outputs.of the individual experts,
weighted by the probabilities given by the gating component (conquer). The difference be-
tween the Gated Experts (GEN) and Mixture of Experts (MoE) models is that the GEN em-
ploys non-linear ANNSs for both the gate and experts. The MoE architecture uses linear mod-
els for the gate as well as the experts.

The GEN and MoE architectures are constructed (trained) using an iterative algorithm (Ex-
pectation Maximization, EM, see also [17]) that simultaneously trains the gating network

20

and the expert networks. During training input vectors are assigned to the individual experts
according to their current probability given by the gate. In each iteration (epoch) of the train-
ing algorithm the experts are trained on their currently assigned input vectors. After which
the gate is updated from the current error performance of the experts and the input vectors
are reassigned to the experts based on the new probailities given by the gate. In this way the
different local models ’compete’ for train data and they will specialize more at each step of
the algorithm. Training ends when the local models show no more significant reduction in
their error performance.

Given the training method as described above, it can be seen that in GEN and MoE models,
source identification is achieved by the competition among experts, titne series classification
is done during forecasting by the gate, as it assign a probability to each model according to
the current input and finally that the quality of segmentation during trairiing is evaluated from
the performance of the local models.

The training a GEN or MoE model can be computationally intensive, as each input vector
can be assigned to each of the experts (worst case) and each expert has to be retrained at every
step of the training algorithm. The GEN and MoE models still require the designer to make
some assumptions about the process underlying the series. The models use a fixed number
of experts. Therefore, an estimate must be made before training on the number of experts that
are needed to create a good model. This in contrast to [14] where the right number of experts
(local models) is automatically found.

3.2.3. Competing Neural Networks

Another implementation of the divide—conquer—model framework is given by Kohlmorgen
[11]. The article mainly focuses on the ’divide’ task. The source identification task is per-
formed during training where several local models (experts) compete for train data. The ap-
proach is similar to that of [10], but there is no gate. Instead the error performance of the ex-
perts is lowpass filtered to give an estimate of the posterior probability for each expert that
the current input vector was generated by it.

Competition between the experts is increased during training. Also at every step the experts
are trained on the data associated to them by the competition. After training the models repre-
sent the sources present in the data. It is clear that this method is computationally expensive
especially when non-linear local models are used (the same problem as in [10]).

The time series classification task in these ’competing neural network’ models is performed
by the low—pass filter as it assigns a weight to each of the local models based on their perfor-
mance on recent history.

The quality of segmeﬁtation is estimated during construction from the low—pass filtered error
performances of the local models (At each iteration of the competition, just as the GEN and
MoE models).

F. Reine and R. Zoeller [16] acknowledge the computationally expensive method of [10] and
[11] and present a variant which can significantly reduce training time by using less general
local models. The same competition between experts as in [11] is used to perform the source

21

Y
<

K
E|L

Xy =

— 612+| "&—'/-@ -£I+r

2z

2

— o/ 7

1+1

Local
models

F Low Pass Filter

i

Figure 3.4 Competing Neural Network

identification task. A two—stage local model is introduced that consists of a non~linear stage
followed by linear stage. At the beginning of training, the local models are trained to predict
the whole time series. During training only the linear stage of the local models is updated
thereby reducing the training effort. The article presents some experimental results that show
that the two-stage local models can be used effectively on a number of multistationary time
series.

3.3. The problem of Estimating Segmentation Quality

The modular time series models discussed in the previous chapter all share the property that
in the learning process of the model, the quality of segmentation is evaluated by means of
the error performance of the local models. The reason for doing this is clear: By assuming
that local data is stationary (and hence segmentation quality is good) if the models are per-
forming well, these models can avoid the chicken and egg problem presented in chapter 1.
E.g. the stationarity of local data is estimated indirectly from the performance of the local
models, and no assumption about the properties of the multistationary time series need to be
made.

The problem with this approach is that it invariably leads to a construction process where the
segmentation needs to be learned simultaneously with the local models. This means that the
number of free parameters that must be optimized during construction is large e.g. Lets say
that the number of parameters of the segmentation device is N, and that the number of param-
eters of a local model are M. Then the learning algorithm of the complete modular model
must cope with N x M degrees of freedom in optimizing the performance of the complete
modular model. This is the cause of the problems already discussed in chapter I. (e.g. inter-
pretation problems, loss of separation of concerns, long training times).

It is the goal of this thesis to find a way to estimate the quality of segmentation in modular
models without accounting local model performance. This way a good segmentation can be
found first, aftershock local models only need to be constructed once, leading to a modular
construction process with only N + M degrees of freedom, In the following chapter new mea-
sures of segmentation quality are presented that could potentially achieve this thesis goal.

22

X,

4. Measures for Segmentation Quality

In this chapter a new measure is proposed for estimating quality of segmenta-
tion in modular time series models. This measure does not depend on local
model performance. Instead segmentation quality is measured by estimating
stationarity of local data using traditional statistics.

4.1. Measuring Segmentation Quality in Modular Models

It has been shown in the previous chapter that the common approach for measuring seg-
mentation quality in modular models is to estimate it from the performance of the local mod-
els. It was also shown in chapter 1. that there are a number of problems associated with this
approach which motivated the goal of this thesis;

To find a way to estimate segmentation quality in a modular model, independently of local
models.

In order to find such a new measure of segmentation quality, the typical architecture of a
modular model is inspected for locations for measuring segmentation quality in Figure 4.1.

S ®
o T h P

+ > — ;)

=)

_»82

!

¢
I
Y

2)[2

e

Figure 4.1 Locations for measuring quality of segmentation in a modular model

This inspection reveals 4 locations where segmentation quality could be measured;

At location 4. the error performances of the local models are used to provide an estimate for
segmentation quality. The problems with this approach have already been described in the
previous chapter.

At location 3. properties of the local models could be considered to provide the quality esti-
mate. In [23] large changes in the activations of the hidden units of a non-linear model are
used as an indication for segmentation quality. This will again lead to an interdependence
between local models and segmentation device and is therefore likely to cause similar prob-
lems as location 4.

This leaves locations 1 & 2 as possible locations where the quality of the segmentation could
be measured independently of the local models.

Atlocation 1. quality parameters of the segmentation device itself could be used to measure
segmentation quality. A disadvantage of this location is that the measure would depend on

23

the actual type of segmentation device. In the case where segmentation is to be performed
by a Self Organizing Feature Map, measures for map goodness [22] could potentially be used
to estiimate segmentation quality.

At location 2. the quality of the segmentation is estimated from the statistical properties of
the local data, e.g. by directly measuring the stationarity of the local data. The assumption
is made that segmentation quality is good if the local data is stationary. Advantages of this
location; The stationarity of local data may be measured independently of the type of seg-
mentation device/method used and it doesn’t require local models to be build. The main dis-
advantage is that at present no non—parametric measures of stationarity exist (the chicken and
egg problem, see chapter 1).

Both locations 1 & 2 could provide the means to estimate the quality of segmentation inde-
pendently from the local models. Due to time constraints only location 2 has been consid-
ered., and this is the basis for the approach taken in this thesis.

4.2. Measuring Stationarity

A choice was made in the previous chapter to estimate segmentation quality by measuring
the stationarity of local data after segmentation. A major obstacle with this approach is the
chicken and egg problem introduced in chapter 1; In order to measure stationarity, assump-
tions must be made on the nature of the data (e.g. which statistical properties are changing/
switching in time). Literature research on the subject did not provide a non—parametric sta-
tistic for measuring stationarity. A common approach taken in literature is to consider only
changes in the mean and variance statistics in time when qualifying stationarity (e.g. the
weak definition of stationarity). Obviously this is a rather limited approach that will fail on
real-world time series where no assumptions on the non—stationary behavior may be made.

Also, no method to actually measure stationarity was found in literature, only methods for
testing stationarity are given ([1][9]).

To overcome these problems, a new approach is taken in this thesis.

First the hypothesis is made that stationarity of arbitrary time series may be measured by us-
ing a wider range of traditional statistics. This hypothesis is motivated by the results of an

experiment involving festing for stationarity using various traditional statistics. The results
of this experiment are presented in the following section.

Based on the stationarity tresting procedure of this experiment, a new method for actually
measuring stationarity was developed. This method will be presented in section 4.4.

4.3. Testing for Stationarity

A procedure to test for stationarity is suggested in [1] and [9]. The procedure is inspired by
the formal definition of weak stationarity (definition 2.5) and in its original form the proce-
dure consists of calculating the mean and variance statistics for successive time windows of
a time series.

The resulting sequences of values for mean and variance of the time windows are then also
considered to be time series. In the case of trending non—stationarity, this resulting series can

24

then be tested for the presence of a trend, or in the case of multistationarity, a threshold can
be defined on the result series to detect the switching of regimes in the original time series.

This procedure was extended to include a number of traditional statistics that measure prop-
erties of the time series; e.g. sample mean, variance, standard deviation, skewness, kurtosis,
autocovariance, rms, median, peak count and zero count. Definitions of these statistics can
be found in Appendix B.

The following experiment was performed to check their usability in testing for stationarity.
Figure 4.2 and Figure 4.3 show the results of performing the traditional stationarity test on
atrending non-stationary time series and a multistationary time series. In these graphs only
those statistics are shown that successfully detect the non-stationary features of the series.

A A — k

-0.2

S

-0.4

-0.6

-0.8

100 150 200 25C

x(1) zero count -------- autocorrelation -.—.-.—
markov(t) peak count

Figure 4.2 Stationarity test of a multistationary time series

In Figure 4.2, the presence of the multistationary switching behavior is detected by the zero
count and peak count statistics in the frequency domain, and by the autocorrelation statistic
in the time domain.

25

: RARARRARININN

o} 200 400 600 800 1000 1200 1400 1600 1800 200

x(t) zero count ------- peak count -------- zero distance

Figure 4.3 Stationarity test of a trending non-stationary time series

In Figure 4.3 the presence of trending non—stationarity is shown by the observed trend in the
results for the zero count and peak count statistics.

The nature of the non—stationary feature influences the capability of a particular statistic to
detect the non-stationary feature. Not all statistics of Appendix B were able to detect the
non-stationary features of the two time series. Still in both cases at least some were able to
detect the non—stationary feature. This corroborates the hypothesis that stationarity may be
measured by using a wider range of traditional statistics for arbitrary time series.

Another consideration is the time scale at which to detect the non—stationary feature. The
time scale is determined by the size, or lag r of the time window used in the test. The lag
should be large enough to permit long—term trends to be differentiated from (random) fluc-
tuations in the time series. The lag should also be small enough to show local non—stationary
properties such as regime switching.

Based on the testing method presented in this section, a new method was developed to mea-
sure the stationarity of time series using traditional statistics.

4.4. The Varratio Method for Measuring Stationarity

In Figure 4.2 it can be observed that the value of a particular statistic used in the test remains
more or less constant during one region, but has a different value in the different regions of
the series. The idea is o calculate the variance of the result series of this statistic as a measure
of stationarity. If a time series is more or less stationary, the variance will be low. If different
regimes are present, the variance will be higher. The more the statistical properties in each
regime differ, the higher the variance will be. Note that this method will only work for mul-
tistationary time series.

The actual variances that are found will depend on the properties of the data, making it impos-
sible to compare the measure of stationarity between different time series. However, this is
not a problem because only a relative measure of stationarity between original and local data
is needed in the case of a multistationary time series model (Figure 4.4).

26

ﬁ

» al

Xrer

—>» xl+! _’O* Xisr

] xl+r

Y-
ZTO

(%)

X,

o)
>)
Figure 4.4 Measuring statlonarlty a modular time series model

During construction of such a model, time series data is presented to the model as a set of
consecutive windows [of past observations of the series x,. It is the task of the segmentation
device S to assign each of these windows to a local dataset O; in such a way that this local
data is stationary. The stationarity of the local dataset only needs to be quantified relative
to that of the original dataset /.

=

f

The above can be summarized in the following definition of the new method for measuring
stationarity in modular models. The method is called varratio.:

Definition 4.1 Varratio:

Let f.(x) be a function that calculates a particular statistic s for vector x,, and 7, 1,...,Jthe index
of the local datascet 0 then:

L, = {f{x)x € 1) 4.1)
and:
0;;, = |f(0)o € O} (4.2)
Then the varratio 5, of local dataset 0, equals:
- var(0;,,)
L e (4.3)

A value 5, > 1 signals a decrease in stationarity of local dataset 0; , relative to the original
dataset I, a value 5, < | an increase.

4.5. Summary

In this chapter a choice was made to estimate quality of segmentation in modular time series
models by means of directly measuring stationarity of segmented local data.

In order to circumvent the chicken and egg problem, a hypothesis was made that stationarity
may be measured using a number of traditional statistics. (and subsequently motivated by
the results of the experiment of section 4.3.

Finally, the varratio method was presented as a method to measure stationarity in modular
models using traditional statistics.

The viability of the varratio as a method to estimate segmentation quality in a modular time
series model will be tested in chapter 6. The experimental setup needed for these tests will
be presented first in the foliowing chapter.

27

5. Quality of Unsupervised Segmentation

In this chapter the experimental setup is presented to test the quality of the
newly developed varratio as a measure for segmentation quality. A new mod-
ular time series model was developed that provides unsupervised segmenta-
tion of time series, and the quality of the unsupervised segmentation was sub-
sequently evaluated in a number of experiments.

5.1. Unsupervised Segmentation

In the previous chapter a new method for measuring quality of segmentation was presented.
This "varratio’ measure is to be used as a way to measure quality of segmentation indepen-
dent of local models. In order to test the viability of the varratio an experimental setup is
needed that provides for an unsupervised segmentation of time series (e.g. independent of
local model performance, in contrast to the segmentation methods of the models in chapter
3. which are all essentially supervised by the error performance of the local models).

In this chapter this experimental setup is introduced in the form of a new multistationary time
series model that provides an unsupervised segmentation of time series by means of a Self
Organizing Feature Map. The quality of the unsupervised segmentation of this model was
evaluated visually in a number of experiments. The results of these experiments are presented
in section 5.3. of this chapter. The data generated by these experiments was subsequently
used to test the quality of the varratio measure itself. The results of those experiments are
presented in chapter 6.

5.2. The SOLEX Model

A new multistationary time series model was developed as an experimental setup for testing
the quality of the varratio method. This model provides an unsupervised segmentation of
time series by means of a Self Organizing Feature Map (or SOFM, Kohonen[5]). The model
is based on the divide-model-conquer framework introduced in chapter 3. and is called SO-
LEX or Self Organizing Local EXperts network (Figure 5.1).

¥
Local Model
Feature _
Extrac- : ~
TDL) 5 Local Model X, 41
Xy X tion
> L —»-| SOFM | >
Local Model
Local Model

Figure 5.1 The SOLEX model.

The use of the SOFM as a device for time series segmentation is motivated by the fact that
it can be used to split a set of input vectors into unlabeled clusters of vectors with similar

28

statistical properties. In section 4.3. it was shown that in atime series, similarities in the statis-
tical properties of consecutive time windows are an indication for stationarity. If these time
windows are presented to a SOFM, it is assumed that the resulting local clusters represent
the stationary regions of the original time series.

In the following sections the various parts of the architecture are discussed in more detail.

5.2.1. Tapped Delay Line

The SOFM and the local models used in the SOLEX architecture provide only a static map-
ping from an input vector to an output vector. To be able to capture the dynamic nature of
a time series some form of memory is needed.

In the SOLEX architecture memory is provided by means of a Tapped Delay Line. The delay
line generates a set of consecutive time windows from a time series in the following way:

The series:
Xy Xgyooh Xy t=1,2,...,T 5.1
Is converted into a the set of vectors (time windows) of length N
I = [x,‘xz'... ,x,,],p =1,2,..,T (5.2)

where:
(5.3)

Xp = X Xpitsee s Kpyn

The proper size of the time window N depends on the properties of the time series. Appropri-
ate settings for N were investigated in the experiments presented in section 5.3.

There are other ways to include memory in a SOFM, an example can be found in [4] where
delay elements are added between the output neurons of the SOFM. The TDL approach was
chosen for reasons of simplicity and because the time delayed windows can also used to train
the local models.

In the implementation of the TDL the input time series is zero padded at the end. This to ob-
tain a number of delayed vectors equal to the number of observations in the input time series.

5.2.2. Feature Extraction

Although the SOFM always provides a segmentation, the nature of a particular segmentation
depends on the features the SOFM finds in its inputs. To guide the segmentation process a
feature extraction pre—processing step was added to the SOLEX model to exploit prior
knowledge about the non—stationary feature of the time series.

This knowledge can be introduced by applying some form of feature extraction on the time
windows coming from the TDL. For example the fast fourier transform can be used to force
a segmentation of data into clusters with similar spectral properties. Also a combination of
one or more of the statistics presented in appendix B can be calculated from the time window
and presented to the SOFM.

If no feature extraction is done, the SOFM produces a clustering based on the spatial proper-
ties of the data in the input time window (euclidian distance).

29

5.2.3. The Seif Organizing Feature Map

The SOLEX model depends on the SOFM to provide the unsupervised segmentation of time
series data. It performs both the source identification and time series classification tasks of
the the divide-model—conquer framework. Source identification is performed during train-
ing of the SOFM, as it learns to represent the stationary regions by means of a set of internal
prototypes. Time series classification is performed by classifying the current input vector of
time delayed observations into one of the clusters found during training. This cluster then
corresponds to the appropriate local model for the current input.

Formally the SOFM is described as follows:
An input vector of the SOFM is denoted by:
X = XXX p=1,2,..,P (5.4)
The SOFM stores a set of prototypes or synaptic weight vectors defined by:
WelWeir Weas oo s Wephie = 1,2,...,C (5.5)

Where C is the number of output neurons or clusters of the SOFM. When presented with in-
put vector x, the index i(x) of the winning neuron or cluster is determined by:

i(x) = arg.minlx — w/lc = 1,2,...,C (5.6)
Where || denotes the euclidean distance between vectors.

During training the SOFM is presented with a set of input vectors /. An iterative learning
algorithm [17] adapts the weight vectors to minimize the total euclidean distance between
the input vectors and the stored prototypes.

After training the SOFM is used to segment a set of input vectors (time windows of observa-
tions on the time series):

I'={cx. x}n=12.,N 5.7
into a set of output clusters:
0 ={0,0,...0.),c = 1,2,..,C (5.8)
where:
X, € Oy and0; C Jand¥(I < k < J,1 < j < Jk = 0,00, = Q) (5.9)
These clusters of local data are then used to train the local models. During forecasting, each

consecutive input vector is assigned to exactly one local model according to the response of
the SOFM (Hard partitioning).

Note that the proper number of clusters C must be chosen in advance. Appropriate settings
for C were investigated in the experiments presented in section 5.3.

Further notes on the implementation of the SOFM as used in this experimental setup can be
found in appendix C.

5.2.4. Local Models

The SOLEX architecture places no restriction on the types of local models used. A choice
can be made based on knowledge about the properties of the modeled time series. If the time

30

series is linear, a linear ARMA model (section 2.3.2.) can be chosen. If the time series is
known to be non-linear, a non-linear model is chosen such as the dynamic MLP of section
2.3.3.If speed is important Mean models can be used (section 2.3.1.). Mean models can only
predict the mean target value for their associated cluster, but they have the property that they
are very easy to build.

Training of the local models is performed after segmentation (clustering) of some amount
of train data by the SOFM. A distinct local model is then constructed for each of these clusters
of local train data.

No local ARMA models were implemented. Instead MLP models with linear output neurons
(linear activation function) were used in the experiments.

5.3. Unsupervised Segmentation of Multistationary Time Series

A number of experiments were performed to investigate the quality of the unsupervised seg-
mentation of multistationary time series by the SOFM. Also, these experiments were used
to gain some insight into the appropriate settings for the three important parameters in the
SOLEX architecture; N, the depth of the delay line used to split the available time series into
a set of input vectors (or time windows, see section 5.2.1.); C, the number of clusters the
SOFM creates and finally F, the type of feature extraction. More specifically these experi-
ments were conducted to obtain a ’feeling’ as to what settings produce a’ good’ unsupervised
segmentation of multistationary time series.

The problem is of course to define exactly what constitutes a ’good’ segmentation. In earlier
chapters it was already shown that this would imply stationarity of the clustered local data.
The varratio measure was developed as a way to estimate the stationarity of local data, but
this method is not yet proven so it cannot be used here as a means of estimating the quality
of the segmentation provided by the SOFM (The quality of the varratio itself is investigated
in the next chapter).

To overcome this problem, only synthetic time series are used in these experiments. Because
the number of stationary regions, or input classes, is known for these computer generated
time series, an indication of segmentation quality can be obtained by visual inspection of the
results after clustering. Ideally one would like to see a 1 to 1 mapping between the activation
of the stationary regions present in the multistationary input time series, and the resulting
activation of the clusters by the SOFM trough time. Details about the various experimental
time series used in the following experiments can be found in appendix A.

5.3.1. A Simple Multistationary Time Series

In this first experiment the effects of different settings of the delay parameterN on the SOFM
segmentation are investigated. To keep the problem small, a simple multistationary time se-
ries with known properties is used so that the C and F parameters can be fixed. A ’simple’
multistationary time series was generated (see appendix A.). This time series switches be-
tween two regions with a different mean value every 100 steps for a total of 600 observations
(Figure 5.2). Because of this, the C parameter can be fixed to 2 clusters and the appropriate
feature F is known to be the mean statistic.

31

B e e e ek e

- TRV R Y PP

-O.2

500 soo oo 800 QP00 1000
]

timeseries

100 200 a3oo -

Figure 5.2 The 'Simple’ Multistationary time series

Starting with a setting N = 8, 28 global trainsets were obtained using the TDL on the simple
time series , increasing the amount of delay N with 2 with each run. These sets were then
feature extracted with the mean statistic (Figure 5.3), leaving 28 feature extracted trainsets,
each containing the mean values of the original time windows. The same procedure was fol-
lowed to obtain 28 independent testsets using a different instance of the simple time series.

ol N

0.6 |

0.4 -

TR

0.2

-0.2 | 4
—~ 0.3
—-0.6 |

-1.0 Ek Q/_A
[} S0 100 150 200 250 300 350 00 450 S00 550 600
Pattermn

Figure 5.3 Mean statistic driving the segmentation
28 SOFMs with a 1x2 map (2 clusters) were constructed from the global trainsets, and the
clustering was subsequently performed on the corresponding global testsets.

The visual results of this clustering can be seen in Figure 5.4, where the activation of the clus-
ters in time is shown. This type of plot will be referred to as ’cluster activation’ plot, and it
shows both the activation of the stationary regions on the input of the SOFM (mkov), and
the activity of the clusters as identified by the SOFM trough time.

32

block n=10, #c=2 block n=44, 8c=2

251 25

2 + [ttt tiattatie! — 2 [aaesssssssasany '—-—"*"“I i - .

i

15 15 i i

t 1 3 I 1 3 i

() 100 200 300 400 500 600 (1) 100 20 300 400 500 600
L L
cluster 1 —— dusler2 —— My === cluster 1 —— cluster 2 —— kY =

Figure 5.4 Cluster activation of simple time series for N=10 and N=44

As would be expected in this particular experiment, the SOFM is perfectly capable of finding
the perfect segmentation for each value of N. The conclusion of this experiment is to use the
lowest possible value of N as it leads to the shortest lag between the change in stationary re-
gton and the detection of this change by the SOFM. Note that exact mapping of the 2 input
classes onto the 2 output clusters may be different for each instance of the experiment (As
can be seen in Figure 5.4.).

5.3.2. A Multistationary Time Series with Overlapping Input Domains.
(Chaotic Return Maps)

The next experiment looks into the effect of the 3 parameters N, C and F in a more complex
setting, e.g. a multistationary time series with unknown statistical properties.

In this experiment the effects of different settings of these parameters on the SOFM cluster-
ing of the synthetic multistationary Chaotic Return Maps series (CRM, Figure 5.5) are ex-
plored. In this experiment the CRM series was generated with 4 possible stationary modes
(classes). The CRM series in this experiment switches randomly between these modes every
512 samples, for a total of 8192 samples. It was made sure that both the train instance and
the test instance of the series contained exactly 4 regions of each of the 4 stationary modes
(To eliminate the possibility of an asymmetrical mapping of the 4 classes over the available
SOFM clusters, caused by overrepresentation of one class over the others [17]).

33

‘ﬂl

o AN R wfl,ﬂn’“ H{'ﬂm’l,]:"rr =

1l "

. bl ! S lllh E LY R

(o] 1000 2000 3000 4000 5000 6000

1

1

[}

'

A

7000 8000 2000

t

x(t)
Figure 5.5 A typical instance of the multistationary Chaotic Return Maps series
First a choice was made as to what particular feature extraction F to perform. Because the
CRM series is computer generated, the number of classes and their corresponding vectors
in the trainset are known. Therefore it is possible to visually inspect radarplots of the trainset
to check the separability of the 4 classes with different types of feature extraction. Note that
this information is generally not available with real world series, but that it is used here to
reduce the number of different parameters settings to check by fixing F.

m(t) -+

Radarplots were made from a time delayed trainset (N=64) and the following types of feature
extraction on this set (Figure 5.6); a) No feature extraction, the SOFM will cluster purely on
spatial properties of the data. The radarplot shows almost completely overlapping input do-
mains of the 4 classes. Consequently this would not be a good choice for F. b) FFT, the SOFM
clustering will be on spectral properties of the data. This radarplot shows less overlap of the
4 classes in the frequency domain and c) Statistics, SOFM clustering based on the statistical
properties; variance, skewness, kurtosis, median, rms, zero_cross and peak_count. This plot
shows the best visual separability of the 4 classes. Therefore this type of feature extraction
was chosen for the actual experiment.

34

(a) None (Pure TDL). (b) FFT

Taryet 3 5o Towgt 4 (1500

° 7
{0/
| l
ow 4 v

(c) Statistics
Taryst 1 (1500) Tawgst 2 145)
Vargei 3 (1500 Torget & (15080

Figure 5.6 Radarplots of Feature Extraction on Chaotic Return Maps Timeseries

The actual experiment was performed in the same way as described in the previous section
for the ’simple’ time series, only this time both the N and € parameters were changed for each
run. The clustering was performed 16 times, one run for each combination (N, C), with
N € {8,16,32,64} and C € {9, 16,25, 36}. N was chosen to be a power of 2 to speed up a cross—
checking experiments with FFT feature extraction. C was chosen this way to have a square
topological neighborhood for the SOFM, which leads to better clustering (this was found in
a preliminary experiment on SOFM clustering, see appendix C.).

Visual inspection of the cluster activation of the results of the various runs of the experiment
is not very usable as the number of clusters becomes quite large. Still the cluster activation
plots for C=9 are somewhat informative (Figure 5.7). The left plot shows what is perceived
to be a bad segmentation, where each of the 9 clusters are active in each of the stationary re-

35

gions of the input. The segmentation is visually better in the right plot, where a specialization
occurs between the clusters. This is best shown by clusters 4, 5 and 6 which are (almost) only
active for regions of class 4. Still this is not the ideal clustering where each individual input
class is mapped exclusively to its own set of clusters. For instance, in the right plot, clusters
1,2,7 and 8 are at some point active for both class 1 and 3.

Another observation that can be made in the right plot is that if a set of clusters is exclusive
for 1 particular region, these clusters will be activated in rapid succession during this region.
From a modeling standpoint it would have been nicer if each of these cluster would be re-
sponsible for only one phase in the region, for instance one cluster that is activated only at
the beginning of the region, one for the middle part, and one for the last part, just prior to
the transition to the following region.

Chuster Activabon CRM N=8, #C=9 Cluster Activaton CRM N=64, #C=9
2% T T T T T T T T 25 T T T T T T T T
ME | | IO TR SRR] I LR IO |1V 1 ml | a1)]
zl'h_ll__ AUIDRMBUAN L)) M MR] PP M 00 g mame o ge
il 13 ! 4 1 S U | S— T T BTN D
iyl BN B

[N TR 1] -
1ol Lo i [T O OO W11
V1 S I I O 0 I T Y
PRI 1 S T 1 071) T 1 7V1] Y —

S S —

T £
S H app——— ‘) ey
' v W ! 1
H] i — Lo
- [S——r OO} —
1 n i 1 4 I 1 1 0 " s o I I i L L

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
1 1

cluster | —— cluster 3 —— cluster 5 —— cluster? —— clustery —— custer! —— cuser3 —— cusier5s —— duster] —— custer ——

clusler 2 cluster 4 ——— clusier§ —— cluster § —— m{t) eeeeeee cusier2 ——— cluserd —— dusterf —— cluster§ ——— mit) -

Figure 5.7 Cluster activation on Chaotic Return Maps series

Rather than looking at the activation of clusters in time, a better visualization is obtained in
the following way; Ateach point in time exactly one cluster is active. Also, it is known what
class is active at that particular time. Therefore a matrix can be calculated containing the
number of times each cluster is active for each of the classes (for the whole testset). Then,
at each time step, for each class, the number of times the current cluster is activated at some
point for that class can be plotted relative to the total number of times the current cluster is
active at some pointin time. In this way, at each time step, for each class, a number is obtained
with a value in the range from 0.0 to 1.0, providing an indication on the distribution of the
currently active cluster over the classes. This type of plot will be referred to as ’class activa-
tion plot’. The advantage of this type of plot is that it can be used to directly compare the
results of the various runs of the experiments where different numbers of clusters where used
for each run.

From the 16 class activation plots obtained in this experiment, the two most important ones
are shown in Figure 5.8. The left plot shows the results of the parameter setting which led
to the worst segmentation (visually). The right plot shows the parameter setting which led

36

to the best segmentation. Comparison of all the plots leads to the conclusion that large values
of N, and large numbers of clusters C are needed to obtain a good segmentation.

Class Actvation CRM N=8, #C=36 Class Actvation CRM N=64, 8C-36
T o e
10
e L
— ™M ™

T " ’
» . i ’ :] UIUMMMMM
!) T h]
L . Iy L s | lm
" . : 2 S r— = N '
| bed
L 1 i L A 1 13 s o 1 1 'S Il ' L I} 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
t t
dass | —— class 2 —— clags) ——— class 4 —— m) - dass | —— dass2 —— cdass) —— dass 4 ——— mit) -

Figure 5.8 Class activation on Chaotic Return Maps series

5.3.3. A High Dimensional Chaotic Multistationary Time Series (Mackey—
Glass)

The same experiment as described in the previous section was repeated for the multistationa-
ry Mackey Glass time series (Figure 5.9). The same feature extraction was used (Statistics),
and the same settings for parameters N and C.

1 L

0.8

Il
|,‘|
I

0.8

o.

&

o]
N

|
o

ll

10 .
\i'. | " Iyl Al | Ll i
tiz s i L | _
l)

o4 ,I | :

B

WU

" " A s
o 1000 2000 3000 4000 5000 6000 7000 8000 2000

x(t) — m(t) -

Figure 5.9 Instance of the multistationary Mackey—Glass series

Figure 5.10 Shows the class & cluster activation plots for the parameter setting N = 64 and
C = 9 which led to the best segmentation.

Fromall the class activation plots, it can be concluded that on the Mackey~Glass series a large
N is also beneficial to a good segmentation. In contrast to the CRM series, larger numbers
of clusters did not improve segmentation quality.

37

Class Actvation MG N=64, #C=9 Cluster Actvabion MG N=64, #C=9

12 _—_“ulMW ’ T T T Nm% 5 T T T T Y T T T

T T ITBINYT 78}

| Leemeer L Lot | ®[e 1 | L (1

T il L dT™ Moo | s T e B RN

Lume 1LNIAINN i1
6 " H e .
I “ | I l l l — | (1110 AT 3T ITIIVERD 1§]
10
L ot LA fm |
i : — 1 f_id TR
— I I S— .
2 ‘___J = 5] L ~" LI = el
0 T 1 A A A 1 A i 1
0 - = L S 5 . - g 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0 1000 2000 3000 4000 5000 6000 7000 8000 8000 1
1
dustef 1 —— duster 3 —— cluster5 —— chuster7 ——— cluster § ——
class | —— dass 2 —— class3 —— dass 4§ —— mit) ——- duster2 —— custer § —— cluster 6 —— cluster 8 —— ml) -

Figure 5.10 Class & Cluster activation on Mackey—Glass series

The overall conclusion that can be made after visually evaluating the effect of the various
parameter settings on the SOFM segmentation is that large N improve the segmentation. This
can be attributed to the feature extraction with statistics and the fact that these statistics will
become more distinctive for each class if they are calculated for larger windows. The prob-
lem with larger N is that this leads to a longer delay between the switching of classes and the
detection of this switch by the SOFM.

No general conclusions can be drawn on the right number of cluster €. On the CRM series
more clusters improved the segmentation, but on.the Mackey—Glass series it did not improve
segmentation and the lowest setting of C = 9 produced the best segmentation.

The feature extraction with statistics turned out to be the best choice for both the CRM and
MG series and a conclusion can be made that this would provide a reasonable default choice
if no prior knowledge is available about the nature of the stationary regimes.

If the visual results on SOFM segmentation of multistationary time series are compared with
results presented in literature, especially those of Kohlmorgen[11] and Reine, Zoeller [16]
on the CRM series, it must be concluded that these results are rather disappointing. In contrast
to these results of unsupervised SOFM segmentation, these articles present a perfect seg-
mentation of the CRM series using their respective competition based supervised methods
(see section 3.2.3.). Only in the case where the appropriate feature was known in advance
(section 5.3.4., segmentation of simple series), was the SOFM able to achieve a perfect clus-
tering.

Although the SOFM did not perform very well as a means of unsupervised clustering of time
series, the data generated by these experiments can be used to test the quality of the varratio
measure developed in chapter 4. As each instance of these experiments used a variety of set-
tings for the parameters N and C, consequently a lot of different segmentations with varying
stationarity of local data were generated. These datasets are used in the following chapter to
test the quality of the varratio method.

38

6. Quality of Segmentation Measures

6.1. Evaluating Quality of Segmentation Measures

In chapter 4. the varratio method was introduced as a means to estimate the quality of the
segmentation by measuring the stationarity of the local data. In this section the results of the
experiments on the varratio method are presented. The purpose of these experiments is to
show if the varratio method is a good way to measure quality of segmentation in modular
time series models. Also, these experiments should provide some insight into which particu-
lar statistic would be appropriate to use in the varratio method.

The approach taken to test the varratio method is based on the assumption that if the local
data in a modular time series model is stationary, the performance of the local model will be
optimal. If the varratio method is a good method there must be a relation between the degree
of stationarity it measures in local data and the performance of a local model trained on that
data. In other words if a correlation between varratio and local model performance can be
found, itis concluded that the varratio method is a valid way to measure stationarity and con-
sequently a good way to estimate the quality of segmentation in modular time series models.

Besides being correct, the varratio measure must also be stable, that is, small variations in
the actual segmentation of the time series should not lead to big variations in the varratios
of the local data. Furthermore, the varratio should be independent of the type of local models
and time series.

To perform the experiments, clustered local data is needed produced from a variety of seg-
mentations (good & bad) and time series. For this the clustered data produced by the experi-
ments on SOFM segmentation was reused (the time delayed clustered local datasets). The
stationarity of the local data produced by the SOFM segmentation in these experiments will
vary due to differences in the parameter settings of the SOFM. Also, this data originates from
a number of different experimental sources (Simple, CRM and MG time series). Further-
more, in these experiments the segmentation was performed twice, once during training of
the SOFM on one instance of the time series, and once on another instance of the series for
the evaluation of the resulting segmentation. In this way, two independent local datasets were
created for each cluster. These local datasets are reused here and will be referred to as ’local
trainsets’ and ’local testsets’.

Local models were then constructed for each available local trainset and the performance of
these local model was measured with the Ratio of Squared Errors metric:

z (observation,, — prediction,)?
RSE = €T 6.1)
z (observation,, — observation,, _)?
neT

The RSE is calculated from the predictions the local model makes on the local testset. The
RSE measures the performance of the local model relative to the performance of a ’virtual’
reference model that takes the current observation as its prediction. The RSE will be smaller
than 1.0 if the local model performs better than the reference, and larger than 1.0 if its perfor-
mance is worse.

39

In the experiments, the RSE of the local models is also measured relative to the performance
of a global reference model. This global reference model is trained on the global trainset
(time delayed data of the whole time series). When the performance of alocal model is evalu-
ated on its local testset, the performance of the global model on this set is also measured. The
RSE of the local model is then divided by the RSE of the global model. In this way a perfor-
mance measure for the local model is obtained that is smaller than 1.0 if the local model per-
forms better than the global reference, and larger if it performs worse.

Results are obtained by plotting the performance of any number of local models against the
varratio of their corresponding local testset. Ideally, this would show a good positive correla-
tion between local model performance and varratio.

The experiments were done individually for the three experimental multistationary time se-
ries Simple, Chaotic Return Maps and Mackey—Glass. In the following sections the results
of these experiments are presented.

6.2. Correlation of Varratio with Local Model Performance

6.2.1. A multistationary time series with known properties

In this first experiment, the clustered local datasets resulting from the segmentation of the
"Simple’ time series are reused (see section 5.3.1.). The stationarity of each of these local
datasets differs as the delay parameter N was changed with each run of that experiment. Note
that the segmentation experiment produced a total of 112 local datasets, consisting of an inde-
pendent train and test set for each of the 2 SOFM clusters for each of the 28 different SOFMs.

Subsequently, a local averaging model (section 2.3.1.) was created for each of the 56 local
trainsets. The averaging model type was chosen because it is the simplest model that still
matches the modeling task (on the simple time series predicting the mean of the local region
is the best any type of local model can do). Performance of these local models on the corre-
sponding local test sets was expected to decrease for local data obtained by clustering with
increasing values of the delay parameter N. The reason for this is that as N increased, more
and more time windows in the global dataset spanned region boundaries, resulting in clus-
tered local datasets containing more and more observations from both regions (regions with
a mean of 0.0 and 1.0). as the local averaging model only predicts a single mean value for
its cluster, its performance can be expected to decrease with increasing N.

Then the varratio was calculated for each of the 10 statistics of appendix B. and for each of
the 56 local testsets. For each statistic, the varratios of the local testsets were plotted against
the performance of the corresponding local averaging model of that testset. In this way any
correlation between that particular varratio and local model performance will be easily vis-
ible from the plot. If the assumption is made that the varratio method is a good way to measure
stationarity, then it is expected that the *mean’ varratio of the local testsets increases with
larger N because the 'mean’ stationarity of these sets is known to decrease with larger N.

The actual results of these experiments are shown in Figure 6.1 and Figure 6.2.

40

(a) Local model performance

(b) Mean varratio

2 v T T T

Test error (ASE)

08
"
08 e et

04 + 1

o8

os

Varrato

04

02

T T T T T

§° . . +
.t s, H
L . M ettt
B e .‘.::‘,323. '
0 i It n " n i 0 2 f GUUe 1 . n 2 "
0 10 20 0 40 50 60 0 10 20 0 40 50 60
N N
Figure 6.1 Local Model performance & Mean varratio vs. N
(a) (b)
mean ms
2 T T T T T T T T 2 T T T T T T T T
18 18}
16} 16F
14 144 J
12¢ 4 12¢
2 2
£ EE
€ 3
> >
08¢ 08 :
.
08+ st ":,
¥,
*Ny,
L | (T
04 04 Yo TROT
ozf u}“"‘”’.’. ot 02r
o T e i 1 L " " L 2 s 0 2 : L " s " n))
0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 45 18 2
Test Error (RSE) Test Emor (RSE)

Figure 6.2 Mean and RMS Varratio vs. Local Model Performance

As expected, local model performance decreases, and the *mean’ varratio increases with
larger N (Figure 6.1). Note that in these plots two ’lines’ can be seen, diverging with larger
N. This is caused by a slight overpresence of time windows with a zero mean, in turn caused
by the initialization of the TDL with zeroes.

If local model performance is plotted against the mean varratio (Figure 6.2a), it shows that
in this experiment, the mean varratio is a good measure of stationarity (high positive.correla-
tion between varratio and local model performance). In this experiment, it was known in ad-
vance with which statistic to measure stationarity (e.g. mean). The problem is that in general
this is not known (chicken/egg). It is therefore informative to see what results would be ob-
tained if another statistic would have been chosen. This is shown in Figure 6.2b, where the
RMS varratio is plotted against local model performance. Again this shows a nice correlation
between model performance and varratio, but in this case a negative correlation is seen, e.g.

41

as the RMS varratio indicates increasing stationarity, local model performance becomes
worse. This was also the case when plotting the other statistics of appendix B. against local
model performance. Either the the correlation was negative, or their was no correlation at
all (noise).

The conclusion of this experiment is that it is possible to measure the stationarity of local data
with the varratio method if the right statistic is can be chosen in advance. Another conclusion
is that if the *wrong’ statistic is used in the varratio method, the resulting estimate of the sta-
tionarity of the local data may be entirely wrong.

6.2.2. Multistationary time series with unknown properties

In this experiment the clustered data generated from segmentation of the CRM series in sec-
tion 5.3.2., and the MG series in section 5.3.3. is reused to see if any of the proposed varratio
measures show a general correlation with local model performance (e.g.. no prior knowl-
edge about the nature of the stationary regions).

The experiment consisted of training the three types of local models of section 2.3. (Averag-
ing, Linear and MLP) for both the CRM and MG series, and for each of the clustered local
trainsets generated in the segmentation experiments. The stationarity of each of these local
datasets differs, as they originate from clustering with various SOFM settings
(N € {8,16,32,64} and C € {9,16,25,36}). In this way (9+16+25+36)*4 = 344 local models
were trained of each model type, for each time series.

The performance of these local models was then plotted against the 344 varratios of the corre-
sponding local testsets. A different plot was made for each of the 10 varratio statistics of ap-
pendix B.; mean, rms, variance, stdev, zero_cross, peak_count, autocorrelation, skewness,
kurtosis and median, and each type of local model. Thus, a total of 60 scatter plots of varratio
vs. local model performance were made this way (3 model types X 10 statistics X 2 time se-
ries).

To make comparisons easier, the correlation coefficient r between the varratio and local mod-
el performance was calculated for each of these plots. The correlation coefficient is a mea-
sure of the degree of linear relationship between a pair of random variables [3]. The correla-
tion coefficient ris a value in the range [-1.0, 1.0], where r < 0 indicates negative correlation,
r = 0 indicates no correlation and r > 0 indicates positive correlation.

Although the actual relation between local model performance and varratio could possibly
be non-linear, the linear correlation still provides some indication on the predictability of
local model performance from the varratio. In order to draw a positive conclusion on the suit-
ability of a particular varratio as an estimator of local model performance, its correlation co-
efficient on the two series should at least be positive. Furthermore a high positive correlation
would increase confidence in the suitability of the statistic.

The results of the experiments are rather disappointing. None of the scatter plots provides
a visual indication of a clear relation between any of the statistics of the varratio method and
local model performance. A selection of the best and worst plots based on the linear correla-
tion they show is presented here. On the CRM series, the best linear correlation is found be-
tween the median varratio & linear local models. (Figure 6.3a), and the worst between the
kurtosis varratio and local mlp models (Figure 6.3b).

42

(@)

Modet=Tnear, Stabsdc="medan’, Cometaton = 0.21

(b)

Modet="mip, Statsdc="kurtass’, Cometation = 0.31

.

o, b e
PR AL TIOTL

T T T v T T

.

* 8, s .
it i e S s ks

+

025 T T T T T T T T T 2 ~T T T
18}
o
02 16
q
14
s
015 3 oo + 12t .
§ o §
* *
5 o T i . g
> 5 4 >
o1 f +* ooz. ' .: N . o8/l
L - <
* . . *
o 06|
+ 50{”‘::.’ 8 * te + - .
4
* D)
(13 R R . 13:{,% 0 04l
. o
ol y ° :Q"t’"’f{t'f' AR N
0 & 00:’,0 + ol ey It N 0z 1
N
COMROAR W " . e e
g PR S UL iy 1 LA d ;
0 02 04 06 08 1 12 14 16 18 2 0 02 04 05
Test Emmor (RSE)

08 1
Test Emor (RSE)

12 14

16 18 2

Figure 6.3 Correlation between varratio & local model performance on the CRM series

On the MG series, the best linear correlation is found between the median varratio & linear
local models. (Figure 6.4a) and the worst between the mean varratio and mlp model

(Figure 6.4b).
(@ (b)
Model="Inear, Stalisbc="median’, Correlation r = 0.38 Modet="avg’, Stahstc="vanance’, Correlation r = -0.34
1 T Y T T T T 09 T T T T T T
+
.
09t 08 v
. .
08 f s 07
+ +
07 - .
. * + 08 -
. . .

05 . 3 , 1 4
2 o B g 05 X
£ost N ‘. . g
s . * N . . + 3

Al ™z Pl , . N 04t
84k = Wt e B UK . .
.
od . " . é o.' . ot 1, + . 03
- PRI et + ¥ 1
. o 0‘..‘0'.’03’:’..:' .‘.. ‘e =
02r .’.'o:' ""o *” .':: '.0“ : :v a2y
e .
. ,’."o" o gAY .
off hyte g st T 1 ok
[AT ast s e . ’ o
*
A SO s T T PO P p— —
1] 02 04 06 08 1 12 14 16 18 0 14 16 18
Test Emor (RSE) Test Error (RSE)

Figure 6.4 Correlation between varratio & local model performance on the MG series

Visually the results of these plots are disappointing, most of the plots showed little visible
correlation between varratio and local model performance. To make comparisons more easy,
the calculated linear correlations between all the varratios, time series and local model used

in this experiment are shown in the following table:

CRM mean CRM mlp CRM linear |MG mean

MG mlp MG linear

zero 0.14 mean 0.20 medi 021 |auto 0.17

mean 0.10 |medi 0.38

43

medi 0.12 medi 0.18 mean 0.18 [zero 0.17 |[medi 0.08 [auto 0.32
mean 0.12 peak 0.15 zero 0.18 ([peak 005 [rmsq 0.03 [rmsq 0.27
vari 0.12 zero 0.11 peak 0.17 |[medi 0.04 Jauto 0.03 [mean 0.25
auto 0.12 rmsq -0.08 |auto 0.09 |rmsq 0.02 |vari 0.02 |[peak 0.20
peak 0.09 auto -0.09 |[vari 0.08 |mean -0.06 [zero 0.00 |zero 0.17
skew 0.05 vari —0.12 |rmsq 0.06 |skew -0.12|stdv -0.05]|vari 0.13
rmsq 0.04 stdv. -0.25 |skew -0.03 |kurt -0.23 |[peak -0.06 [stdv —0.03
stdv. -0.04 |skew -0.26 |kurt -0.09 {stdv -0.29 [kurt -0.07 [skew -0.06
kurt -0.04 |kurt -031 |[stdv -0.12 {vari -0.34 [skew -0.07 |kurt -0.16

Table 6.1. Linear correlation between varratio and local model performance

The same data is also shown more graphically in the radar plots of Figure 6.5:

kurtosis

— CRM mean models
=+ + =CRM mip modeis
...... CRM linear mode!s

Figure 6.5 Radarplots of Linear correlation of the various varratio’s

These results all show that almost none of the 10 statistics (measures of segmentation quality)
show significant linear correlation between varratio and (future) local model performance.
The exception is the correlation between the median varratio and the linear models on both
time series. Although the median varratio showed best or second best correlation in of 5 out
of 6 combinations of local model type and time series, the correlation between median varra-
tio and mean and mlp models on both series is very low. Therefor, it may still not be consid-
ered as a generally usable estimate of segmentation quality.

The conclusion from these results must be that none of the 10 statistics provides a general
estimator for local model performance on these two time series. Consequently neither of
these statistics will provide a good estimate on the quality of segmentation on these series.
It therefore not likely that any of these statistics would perform better on arbitrary real world
multistationary time series.

44

6.3. Stability of Varratio

To further research the viability of the varratio method the following experiment was per-
formed to check its stability. If the varratio method is a good method of measuring stationar-
ity of local data, then it must also be stable. This means that slight variations in the stationarity
of a local dataset must not lead to large variations in the measured varratio for the same local

dataset.

The general setup of the experiment is to perform the SOFM clustering a great number of
times on the same instance of a synthetic multistationary time series. Because the nature of
this time series is known, the correct feature extraction, number of clusters C and delay pa-
rameter N can be chosen in advance, resulting in a perfect clustering each time the clustering
is performed. Still, the stationarity of the clustered local data will differ slightly with each
run, due to little variations in the initialization of the SOFM. Then the varratio of each of the
local datasets of each run is calculated with the appropriate statistic and the variance among
these varratios is calculated. If this variance is low, the varratio method is considered to be
stable. Note that although it is difficult to specify how low this variance must be, it must at
least be lower than the variance found in local model performance

Time Series: Using DTMF time series. Samplerate = 4000Hz because the highest DTMF fre-
quency is 1633Hz and the samplerate should be at least two times higher (Nyquist). 16
Classes (All tones of the DTMF system), One region of every class in the timeseries. region-
length = 1024 samples, because window size N is fixed to 64. Regionlength should be large
compared to window size to keep the number of windows that span region boundaries low,
chosen 1:16 in this case). Total number of samples in timeseries is 16*1024=16384. Test data
is same as Traindata.

TDL & Feature Extraction: Because the time series is multistationary in the frequency do-
main, the FFT is the most appropriate feature extraction. Time delay N is fixed to 64 Reason:
The SOFM performs the segmentation on the FFT of the input windows. To be sure of a per-
fect segmentation we want the 8 frequencies in the DTMF data mapped onto separate inputs
of the SOFM. It can be shown that for a samplerate of 4000Hz, and the 8 particular frequen-
cies of the DTMF System, the first window size N where this is the case is 39. To be on the
save side and to speed up the FFT N was taken to be 64. A hamming windowing function
was applied to the windows (really needed, else bad segmentation).

AAHMMHM' |
o | | ‘ w P W
= IRIKIL -

-1

1

o.e

0.6

O.a

o.2

| [i | T
—

o

o 50 100 180 200 250 300 360 400
t

timeseres — —— mMkov -

Figure 6.6 Instance of the DTMF series, showing 4 stationary regions (tones)
For the SOFM the number of clusters was chosen to match the number of classes present in
the data (16).

45

25 Feature Maps were trained on this data, with 32 inputs (the power spectrum) and 16 clus-
ters. For each feature map the varratios for every clusters were calculated resulting in
25*16=400 varratios per varratio statistic.

Results of unsupervised segmentation of the DTMF series: The SOFM assigns a cluster to
the region boundaries, this could be seen on every instance. As a consequence some classes
are mapped to the same cluster. Visual inspection revealed that these classes share acommon
frequency. Noteworthy is the fact that the SOFM assign a cluster to the switch boundary be-
tween the regions.

i tones n=b4, #c=16

50 T T T T 3 T T 50 T T T T
i L U
45 T 45 S
) g g
gr— | ¥
.. == .) s
i A i 1 A i 1 1 1 1 :_|l] 1 : = I
|) gy WIS
| o | /1
= == I e 25 1 i L 1 1 1 1 'l A [l 1 H ' 1
L — I I L
R Y e U | g
F 20 —/
S T
15 e o 15 ol —
10 . J___,.._J 10 ;—‘f—.;___,_ !
= B L g
§ — 5t e
‘c 20 O s B e W o B T e o B e
t [}
duster | —— Cluster § —— custer {1 —— cluster 16 —— chster | —— custer 6 —— chusler 14— cluster 16 ———
duster 2 —— cluster 7 —— custer 12 —— cluster?2 —— duster 7 —— cluster 12— miov
clusterd —— cluster 8 —— cluster 13 —— chusterd — duster§ —— cluster 13 ——
cluster 4 —— cuslery —— cluster 1§ —— cluster 4 —— cluster§ —— cluster 14 ——
cluster § —— cluster 10 —— cluster 1§ =—— cluster5 —— duster 10 —— chuster 1§ ——
Figure 6.7 Cluster activation of 2 SOFM instances of DTMF series
Results of the stability experiments:
Statistic Mean Variance Statistic Mean Variance
(% of mean) (% of
mean)
mean 0.97 22 peak_count [0.19 18
rms 1.04 64 autocorrela- [0.99 1
tion
variance 1.04 65 skewness 0.97 137
stdev 1.04 65 kurtosis 1.02 147
Zero_cross 0.76 35 median 0.86 117
Table 6.2. Varratio stability results

These results show that the zero_count and peak_count varratios are both <1 (indicating in-
creased stationarity), and are more or less stable (low variance). These varratios can also be
considered the appropriate’ varratios given the nature of the multistationarity in the frequen-
cy domain. The varratios that are less appropriate are also less stable.

The conclusion is that this also indicates that the proposed varratios are not general enough
to provide a means of estimating segmentation performance.

46

7. Conclusions & Future Research

It has been the goal of this thesis to find a way to estimate segmentation quality in modular
time series models independent of local model performance, with the aim of breaking the
interdependence between segmentation and local modeling.

In the course of achieving this goal, the following hypothesis were made:

I. The quality of segmentation in a modular time series model can be measured in-
dependently from the local models.

Based on the assumption that segmentation quality is good if the local data is stationarity,
the following hypothesis was made:

2. The quality of segmentation in a modular time series model can be measured by
directly estimating stationarity of local data.

And finally, in order to circumvent the chicken and egg problem (no non—parametric measure
of stationarity exists, see chapter 1.):

3. Stationarity can generally be quantified by means of a number of traditional sta-
tistics.

Based on these hypothesis the new varratio method for measuring segmentation quality in
modular time series models was developed. The varratio method allows a number of tradi-
tional statistics to be used as a measure of stationarity of local data.

The varratio method was put to the test in a number of experiments, the results of which are
summarized according to the following criteria:

I. Correlation of Varratio with Local Model Performance. The varratios of the vari-
ous statistics show little correlation with local model performance. Only if the ap-
propriate statistics are known in advance (with respect to the nature of the mul-
tistationary time series), a significant correlation can be found.

2. Stability of Varratio. The varratio is only stable if the appropriate statistic is
known.

3. Generality of Varratio. In each experiment on the correlation and stability of the
varratio method, the best results were obtained if the nature of the multistationary
time series was taken into account.

The results of the experiments (lack of correlation and generality) must lead to the rejection
of hypothesis 3, thus:

Stationarity may not be quantified by means of traditional statistics.

The experiments did not provide enough evidence to reject hypothesis 2, e.g. It may still be
possible to estimate segmentation quality by measuring stationarity of local data. This how-
ever, would require a better way to measure stationarity. Future research could find a non—
parametric measure of stationarity, but given the results of this thesis, it may be unlikely that
such a measure exists.

Hypothesis 1 may also hold, e.g. it may still be possible to measure segmentation quality in-
dependently of local model performance. Future research could include the possibility of us-

47

ing properties of the segmentation device as an estimate for segmentation quality. An exam-
ple would be the 'map goodness’ measure for Self Organizing Feature Maps as proposed by
Ypma [22].

Thus, the overall conclusion of this thesis must be that:

It is not possible to generally estimate segmentation quality independently of local model
performance by means of estimating stationarity of local data using traditional statistics. The
newly developed measures of segmentation quality can therefore not be used to break the in-
terdependence between segmentation and local modeling in modular time series models.

48

References

(1]
(2]

(3]

(4]

(5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

A.C. Harvey. Time Series Models. Philip Allen Publishers Itd., 1981.

R. van Asselt, a.o. Wiskunde voor het hoger onderwijs 3. Educaboek BV, 1991 (niet
zo cool).

Takeshi Amemiya. Introduction to Statistics and Econometrics, Harvard University
Press, 1994

Neil R. Euliano and Jose C. Principe. Spatio-Temporal Self-Organizing Feature
Map IJCNN96, IEEE/INNS Joint Conference on Neural Networks, June 1996.

Teuvo Kohonen. Self-organized Formation of Topologically Correct Feature Maps.
Biological Cybernetics, 43:59-69, 1982

Jose C. Principe, Bert de Vries and Pedro Guedes de Oliveira. The Gamma Filter.
IEEE Transactions on Signal Processing. 41 No. 2:195-201, February 1993. noref

Mathew B. Kennel. Statistical Test for Dynamical Nonstationarity in Observed
Time-Series data. Physical Review E, vol 56. nr 1, July 1997

Ahn, Byung Chul. Testing the Null of Stationarity in the Presence of Structural
Breaks for Multiple Time Series. Unpublished, 1994

R.S. Venema. Aspects of an Integrated Neural Prediction System. PhD thesis, De-
partment of Computing Science, University of Groningen, 1999.

Andreas S. Weigend. Time Series Analysis And Prediction Using Gated Experts
With Application To Energy Demand Forecasts. Applied Artificial Intelligence,
10:583-624, 1996.

Klaus-Robert Mueller, Jens Kohlmorgen and Klaus Pawelzik. Analysis of Switching
Dynamics with Competing Neural Networks. IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, E78-A, No.10, Pp-
1306-1315.

J. Kohlmorgen, S. Lemm K.-R. Mueller, S. Liehr, K. Pawelzik. Fast Change Point
Detection in Switching Dynamics using a Hidden Markov Model of Prediction Ex-
perts. ICANN'99. Proceedings of the International Coneference on Artificial Neural
Networks. pp. 204-209, 1999

Ath. Keagias and Vas. Petridis. Predictive Modular Neural Networks for Time Series
Classification. Neural Networks. Vol.10, No.1, pp.31-49, 1997.

Ath. Keagias and Vas. Petridis. Time Series Segmentation using Predictive Modular
Neural Networks. Neural Computation. Vol.9, pp.1691-1710, 1997.

A. Bakirtzis, S Kiartzis, V. Petridis and A. Kehagias. A Bayesian Combination Meth-
od for Short Term Load Forecasting. Electrical Power and Energy Systems. Vol.19,
pp.171-177, 1997.

F. Reine, R. Zoeller. Characterization of Time Series By Dynamical Clustering. ?niet
gepubliceerd?

49

[17]

(18]

[19]

(20]

(21]
[22]

(23]

[24]

(25]

Simon Haykin. Neural Networks, A Comprehensive Foundation . Prentice Hall inc.,
1994.

J.McNAMES. Winning Entry of the K.U. Leuven Time-Series Prediction Competi-
tion. International Journal of Bifurcation and Chaos. Vol. 9, No. 8, pp. 1495-1500,
1998.

R.A. Jacobs, M.A. Jordan, S.J. Nowlan, G.E. Hinton. Adaptive Mixtures of Local
Experts Neural Computation., Vol 3, No. 1, pp.79-87, 1991.

Michael I. Jordan and Robbert A. Jacobs. Hierarchical Mixtures of Experts and the
EM Algorithm. Neural Computation, Vol 6, No. 6, pp.181-214, 1994.

Tong, Lim. TAR Treshold autoregressive model. 1980.

A. Ypma, R.P.W. Duin, Novelty Detection using Self Organizing Maps, Proceedings
3d Annual ASCI Conference, pp.236-240, in: H.E.Bal et al. (eds.), June 1997.

A. Doutriaux, D. Zipser., Unsupervised discovery of speech segments using recur-
rent networks. Proceedings of the 1990 connectionist models summer school,
pp-303-309, 1990.

M. van Veelen, J. Nijhuis, R. Venema and B. Spaanenburg, Neural network ap-
proaches to capture temporal information.?

J.S. Bendat, A.G. Piersol Random Data, Analysis and Measurement Procedures.
John Wiley & Sons Inc., 1971

50

A. Multistationary Time Series

In this appendix the synthetic multistationary time series are given that were
used throughout the experiments.

A.1. Simple

The "Simple’ time series is introduced as an example of a very basic multistationary time
series. The ’simple’ time series is a block wave with some gaussian noise added
(u = 0,0 = 0.05.). Every 100 steps the series alternates between two states (classes) with
u# = 0and u = 1. See Figure 5.2 for a plot of an instance of this time series.

A.2. DTMF Tones

The 'DTMF’ series is an example of a multistationary time series which is non-stationary
in the frequency domain. The series simply consists of the consecutive 16 DTMF tones. Each
tone consists of two sine waves. The tones were sampled at 4000Hz, and the duration of each
tone is 1024 samples (region length).

A.3. Chaotic Return Maps

The Chaotic Return Maps series is introduced in an example of a multistationary time series
with overlapping input domains. The process uses 4 chaotic return maps:

£i®) = 4x(1 = x),x € [0,1] (1.1)

fox) = {2x,ifx € [0,5)and2(] — x),ifx € [0.5, 1]) (1.2)
fi) = ¢ (1.3)

J) = f, - f (1.4)

where f - f denotes the iteration f(f(x)).

A multistationary timeseries is obtained by iteration of the following recursive definition:
Xe1 = filx) (1.5)

where f, is chosen randomly from the set {f,1.f.f,} every 100 iterations.

To obtain a better segmentation from the SOFM, function (1.3) was changed from the origi-
nal definition by kohlmorgen [11], f,(x) = f, - £, , to the uniform random process fy(x) = e.

A.4. Mackey-Glass

The Mackey—Glass Equation is an example of a high dimensional chaotic system. It was orig-
inally introduced as a model of blood cell regulation and is used in numerous publications
on time series forecasting as a testcase.

() _ 0.2x(t — 1) 1.6
R A T L (5=

51

A time series is obtained by numerical integration of the Mackey—Glass delay differential
equation (1.6) using the fourth order Runge—Kutta method. The model is then sampled at an
interval A.

To obtain a multistationary time series the delay parameter is switched every 100 samples.
In the experiments the following values for r have been used; r = 10;17;23;30. These values
are commonly found in literature [13], [11]. The sampling interval 1 was set to 5.

592,

B. Statistics

This appendix presents the various statistics used in the experiments are pre-
sented. These statistics were used as features to drive the segmentation of mul-
tistationary time series by the SOFM, and to measure the stationarity of the
resulting clustered local data with the varratio method.

B.1. Time Domain
In the time domain relations between observations at different points in time are considered

The time domain statistics presented here are usually defined in terms of their expected value
E over all possible realization of a time series. In practice only a limited number of observa-
tions are available and thus the real value of the statistic can be only estimated. The formulas
presented here all show how to calculate the estimate for the particular statistic from a vector
x of consecutive observations x; with length N. Note that in this thesis this vector represents
a time delayed window on the time series under consideration.

The Nth order moments are a set of statistics that describe a number of features of the actual
probability distribution of a stochastic process;

The first order moment is the sample mean and it gives the average value of N observations:

N=-1
Sample Mean = yu = -[%ij
j=0
The second order moment is the variance. It gives an estimate of the absolute average devi-
ation of the samples from the mean:

N=1
Variance = o* = ‘IIVZ(XI' — u)?
j=0

Closely related to the variance is the standard deviation o. It is defined in terms of the vari-
ance:

Standard deviation = o = /variance

The third order moment is the skewness of a set of N observations. It gives an estimate of the
lack of symmetry in the joint probability distribution of x;:

k

N—-1
Skewness = 1 x,{_;,u_
Nl-=‘, v Variance
The fourth order moment is kurtosis. kurtosis is a measure of how “fat” a probability distribu-
tion’s tails are, measured relative to a normal distribution having the same standard devi-
ation:

4

N=1
. | X; — K
Kurtosis = — _] -3
N Z(\/Variance)

j=0

Another important tool in time domain analysis is the autocorrelation function function r(r).
This function gives an estimate on the linear dependence of sample y, on sample y,_, . The

53

autocorrelation function r(r) is derived from the autocovariance function y(r) in the followin g
way:

The autocovariance function y(z) of a series y, is defined by:

Y(I) = E[(yr L /‘)(yr—x X /‘)]

And is called the sample autocovariance ¢(r) when estimated for a particular y, using the
equation:

N—1
1) = ﬁZ(yi = i — n)

j=0

The sample autocovariance function is normalized by dividing through the variance of y,.
This gives the autocorrelation function r(z):

n(t) = c(r)/c(0)
Or:

N-t

D00 = W0 — 1)

i=1
Z(Yi —u)y
i=1

Ty =
The autocorrelation as used in the experiments on the varratio method actually consisted of
the autocorrelation at lag 1, or r(1).

The Root Mean Square statistic gives an estimate of the average absolute value of x,.
N-1
RMS = [L% g

And finally the median statistic; Let the vector y be the result of sorting the time delayed vec-
tor x by value, then the median is defined by:

' i=W+1)/2, Nis odd
median =y, i= N2, N is even

B.2. Frequency Domain

In frequency domain analysis cyclic properties of a time series are considered. The most
important analysis tool in this domain is fourier analysis. Fourier analysis is based on the fact
that under conditions (Dirichlet), a function can be described by a linear combination of a
possibly unlimited number of sine and cosine functions [2]:

x() = c + Zancos;.mzt " Zb" sin ;:rnt
n=1 n=1]

For discrete functions (time series), the coefficients a,, b,and ¢ are found by applying the Dis-
crete Fourier Transform to the series. In this way a time series can be decomposed into its
frequency components.

54

Even in its fastest incarnation, the Fast Fourier Transform or FFT, the discrete fourier trans-
form is rather expensive operation with a time complexity &(n Ig n). When speed is important
the following two statistics are used to give a crude estimate on the base frequency of a series
by counting the number of zero crossings or peaks in the series:

Il x, <O0Ax, >0

zero count = Z Il x,>0Ax, <0
=1 |0 otherwise

N-1

vt |1 Vx, <0AVx,, >0

peak count = Z 1 Vx,>0AVx, <0
-1 |0 otherwise

55

C. SOFM Implementation

To obtain some insight and gain confidence into the correct workings of the SOFM imple-
mentation, two small experiments were performed. The first experiment was conducted to
check the basic clustering capabilities of the SOFM. The second experiment was performed
to check the convergence to a stable mapping with the chosen training scheme.

Basic clustering ability of the SOFM implementation was checked with the following experi-
ment. 4 random vectors (input prototypes or classes) of length 4 were created. These are
shown in figure C.1a. Train & testsets were composed from these vectors, each containing
approx. 500 instances of each of the 4 classes. 10% noise was added to each vector in the sets.
Using the trainset, a SOFM with a linear map arrangement (I x8 output neurons = 8 clusters)
was trained and the resulting 8 prototypes of the SOFM were plotted (C.1.b).

(a) input prototypes (b) SOFM prototypes after training

06 [

st

04
~—

[
ot [

as)

[

o4l

N "
05 1 15
1

class class 2 class 3 class 4

Figure C.1 Input & SOFM prototypes

The unequal distribution of map prototypes across the 4 input classes clearly shows the free-
dom the SOFM has in forming this mapping during training. The particular distribution is
different each time the SOFM is trained. The results of clustering the testset are shown in the
confusion matrix of table C.I (classes on rows, clusters on columns):

4 5 6

0 0 0

0 0 8

1 226 227

4 479 |22 IO

Table C.1 Confusion Matrix of Basic SOFM Clustering with Noise (10%)

This clustering shows only an insignificant misclassification of classes 4 into cluster 5, class
3 into cluster 4 and class 2 into cluster 6.

Given the simplicity of the given clustering task these results could be expected from a cor-
rect implementation of the SOFM. Therefore the conclusion is drawn that the implementa-
tion of the SOFM is correct.

In SOFM training there are 2 parameters that affect the convergence of the SOFM training
algorithm; The learning rate parameter 7(n) and the width of the neighborhood o(n). These
parameters are both dependent on time n (epochs) and must be slowly decreased during each
consecutive epoch. The SOFM implementation used in this thesis follows the suggestion
mentioned in [17], to exponentially decrease these parameters during the first phase of train-
ing (also referred to as the ordering phase) and then to hold these parameters at small values
during a second phase.

What is not clear from literature is how many epochs of training are needed. Therefore a sec-
ond experiment was performed; 4 different instances of the SOFM were used to cluster a
trainset of the multistationary mackey—glass series with 4 stationary modes (or classes) into
4,8,12 and 20 clusters respectively. Each of the SOFMs was trained for 6, 30, 75, and 150
epochs and the Average Quantization Error (The average euclidian distance between the train
vectors and the SOFM prototypes) was computed during each epoch, the results of which
are shown in Figure C.2.

SOFM training. 4 clustars SOF M training. 8 clustera

s o4
0.38 gl o3s B
i :
oa jii
} ool [
t H
£ § § oxsfinin
i azb i !
I 8 WL
3 oz2f i | ! i \
« i < o1 M\
0.1§ \»\ e W o
b ar S M
oy N s N N N . " . N " n
° 20 40 60 [100 120 140 160 ° 20 0 60 80 100 120 140
spoch spoch
sopochea? — #epochss 10 swpache=2 aspoches10 Sepactien26 Sepoches50
SOFM raiing. 12 ciusiers SOFM trasung. 20 clusters
04 g -~ T o4 T g v -r v
0as 035 1 4
]
= 03 4
] gL
5 H 3 0251‘—,}\
5 025 s \ AN
& § oz} g\
Y 1 5| o
: -
H i \
< 0as “ -
1\) = \\
a1 \ oos b N . s
008 R . - o " s .
° 20 40 60 80 100 120 140 160 ° 2 0 s 80 100 120 140 160
spoch spoch
sepochem? —— ®epochs=10 --- e e sep0chs=10 - sepochs=25 #opoche=50

Figure C.2. Average Quantization Error vs #epochs in SOFM training

As expected, the final average quantization error decreases as the number of clusters avail-
able to the SOFM increases. More importantly, the final quantization error does not depend
on the number of epochs used in training. From these results it the conclusion was drawn that
25 epochs of training is sufficient for the SOFM to converge. This number was then used
throughout all the following experiments.

A final note on the form of the topological neighborhood of the SOFM implementation. The
best results on clustering multistationary time series were obtained using a square, but
’folded’ arrangement of the output neurons, e.g. a sphere.

57

