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Abstract

This report describes the design of a Replication Framework that facilitates the implementation and com-
parison of database replication techniques. Furthermore, it discusses the implementation of a Database
Replication Prototype and compares the performance measurements of two replication techniques based
on the Atomic Broadcast communication primitive: pessimistic active replication and optimistic active
replication.

The main contributions of this report can be split into four parts. Firstly, a framework is proposed
that accommodates the comparison of various replication techniques. Secondly, the implementation
requirements and the theoretical performance characteristics of the pessimistic and the optimistic active
replication techniques are thoroughly analysed. Thirdly, the two techniques have been implemented
within the framework as a proof of concept, forming the Database Replication Prototype. Finally, we
present the performance results obtained using the Database Replication Prototype. They show that in
large-scale networks, optimistic active replication outperforms pessimistic active replication.
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Introduction

A database system is a computer system that offers data storage facilities to client applications. Database
systems constitute an increasingly vital part of contemporary applications, such as search-engines, group-
ware and banking systems. The popularity of database systems comes from the fact that they offer ab-
stractions, features and guarantees that surpass those offered by, for example, the standard file system of
the operating system. For instance, a database system [EN94]

e provides an interface that abstracts from the low level problems of data storage and retrieval (for
example, a query language such as SQL)

o allows concurrent access to data while guaranteeing data integrity

e survives severe failures such as machine crashes or power failures without corrupting data

In the mentioned applications, many, often impatient users access the database system concurrently.
These users demand high availability and quick response times. As we discuss next, current database
systems sometimes slow down applications, which in turn fail to meet the expectations and demands of
their users.

The problem: database reliability and performance

Traditionally, a database system is implemented centrally: the system runs on one single machine. This
approach has the following disadvantages:

o when the machine fails, the whole database is unavailable for extended periods of time
o the machine can become a bottleneck to applications when the load exceeds the machine’s maxi-
mum throughput.
A solution: database replication

An alternative approach is the replicated database system. In this system, identical and redundant copies
(replicas) of a database are distributed over different machines linked by a network. Compared to the
aforementioned centralized database, the following advantages can be obtained:

e availability is improved (due to the redundancy, the system can remain fully available even when
a few replicas fail)

¢ performance is improved:

— the throughput is larger (since computation can be distributed over the replicas)

- response times are shorter (because replicas can be situated closer to applications)




In Figure 1, a replicated system is shown that consists of three replicas. The small cylinders represent
the three replicas that each manage an identical copy of the database. Users of the system are not bothered
by the fact that it is replicated: logically it acts as one database system, as depicted by the large cylinder.

replicated database system

Figure 1: Replication example

Project goals and project steps

The replicas mentioned in the previous section need to stay up-to-date when the database is changed. To
achieve this, special replication techniques (replication protocols) are used that operate over networks
interconnecting the replicas. The database community has devised many techniques during the last
twenty years, but either these techniques are very slow, or they fail to satisfy certain desirable correctness
properties. !

A possibility recently suggested is to base replication techniques on Group Communication prim-
itives known from the distributed systems community. It is expected that this way, alternative tech-
niques can be devised that are correct and still perform reasonably fast. The main goal of the DRAGON
project [DRA98], in the context of which this Masters project was conducted, is to perform research into
this direction and decide whether these new techniques constitute a viable alternative.

The goals of this Masters project were to:

© create a replication framework that facilitates the implementation and comparison of various repli-
cation techniques in a prototype environment called the Database Replication Prototype

@ implement two replication techniques based on Group Communication primitives (called pes-
simistic and optimistic active replication) as a proof of concept

® measure the performance characteristics of both techniques using the Database Replication Proto-
type

O compare both techniques by evaluating the measurement results obtained
To attain these goals, the following steps were taken:

© the field of database replication was briefly studied to form an understanding of the problems and
system models involved

® existing replication techniques based on Group Communication were studied carefully to deter-
mine their characteristics and implementation requirements

'These correctness properties, also called the ACID properties, are discussed in section 1.1.




© the replication framework was devised
O the two techniques were implemented using the framework
® the prototype was validated and experiments were conducted to obtain performance measurements

® the techniques were compared

Report structure

This report closely follows the steps outlined in the previous section.

In Chapter 1 (System Model and Definitions), the adopted system model and some basic concepts and
definitions are presented. In Chapter 2 (Replication Framework), the various components of the replica-
tion framework are defined. Chapter 3 (Active Replication Techniques) gives a detailed description of
the implemented replication techniques in the context of the replication framework.

Chapter 4 (Database Replication Prototype) briefly discusses how the prototype was implemented
according to the Replication Framework. In Chapter 5 (Performance Results and Evaluation), the perfor-
mance results obtained using the prototype are presented and discussed. Finally, Chapter 6 (Conclusion)
summarizes the results obtained and gives some directions for future work.




Chapter 1

System model and definitions

In this chapter, the system model and main definitions used for the Database Replication Prototype are
presented. Then, the concept of replication is related to the model.

1.1 System model

We consider the following system model [BHG87]. Client applications connect to a server on which a
database system runs. A client can submit read and write operations to a server in order to retrieve data
from, and store data in the database system. These read and write operations are submitted in the context
of transactions, so that certain desirable properties (e.g., data integrity) can be guaranteed. So, the system
model roughly follows that of a distributed, client-server, transactional database system.

In this section we briefly explain the characteristics of such a database system and define the concepts
that are used in the rest of report. At the end, we motivate the choice for this system model.

1.1.1 Client and server processes

In the system, two types of processes can be distinguished: server processes and client processes. Each
server process has its own database storage and processes database operations (for example, retrieving or
storing data). A client process submits operations to a server process using some communication system
and may do computations (see Figure 1.1).

i
-8
e

Client Server

-

== ”"I_‘ | communication

8 E |8 :Database
- |e»:Client/Server
=

Figure 1.1: Basic system model
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1.1.2 Data and operations

In the database storage of each server process, a constant number of items is stored. These items contain
values of equal size! and are denoted by integer locations. The database may thus be viewed as a one-
dimensional array that contains a constant number of values. The data operations supported on each item
are:

e read(location), which returns the value stored at location

o write(location, value), which sets the value stored at location to value

A particular assignment of values to all items in the database is called a database state.
Notation: In most examples, r and w are used to mean read and write, respectively.

1.1.3 Transactions

Clients always submit data operations in the context of transactions. A transaction is an atomic unit of
work that is either completed in its entirety or not completed at all [EN94].

The transaction concept facilitates reasoning about the execution of operations that logically belong
together. Consider, for example, the updating of a bank account when doing a cash withdrawal action.
The old account value must be read, the amount withdrawn must be subtracted, and the resulting value
must be written back into the database system. This cash withdrawal transaction consists of two opera-
tions, read(Account) and write(Account, value), that belong together: either both must be performed, or
none of them (resulting in cancellation of the withdrawal).

In the next subsection we discuss which properties the database system must fulfill when processing
transactions. Before that, we define the transaction concept more formally.

A transaction is started with the transaction operation begin, followed by one or more data operations,
and terminated with either the operation abort or the operation commit. The begin operation announces
that a certain transaction is going to be submitted to the system.? When a transaction ends with an abort,
all 1ts effects on the database (that is, all its write operations) are discarded. If it ends with a commit, all
its effects are made permanent.

For an example transaction, see Figure 1.2. In this example, the database items contain integer values.
The transaction consists of five operations: two transaction operations and three data operations. A client
submitting the transaction would do so sequentially, from left to right.

begin | | read(7) | [write(7, 42)| [ write(0, 3) | [ commit

Figure 1.2: An example transaction

A transaction 1s called read-only (or a query) if its data operations are all reads. All other transactions
are called update transactions. In Figure 1.2, an update transaction is shown. The readset (writeset) of
a transaction contains every database item for which the transaction contains at least one read (write)
operation. In Figure 1.2, the readset is {7} and the writeset is {3, 42}.

A transaction (client) is said to request commit if it ends with (submits) a commit operation.

Two operations are said to conflict if they operate on the same database item, are issued by different
transactions, and at least one of them is a write operation. Two transactions are said to interfere when
one or more of their operations conflict.

"This size is called the item granularity [EN94).
?One could omit the begin operation and let the first data operation of a transaction implicitly announce the beginning of
that transaction. For presentation clarity we decided to make the beginning of a transaction explicit.
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The data operations and the transaction operations together form the full set of operations supported
by the database system.

1.1.4 ACID properties

It is considered desirable for the following four transaction properties, called the ACID properties, to
always hold (directly from [EN94]):

e Atomicity: A transaction is an atomic unit of processing; it is either performed in its entirety or
not performed at all.

o Consistency preservation: A correct execution of the transaction must take the database from one
consistent state to another.

e Isolation: A transaction should not make its updates (i.e., the effect of its write operations) visible
to other transactions until it is committed.

e Durability (or recoverability): Once a transaction changes the database and the changes are com-
mitted, these changes must never be lost because of subsequent failure.

The Consistency preservation property mentions a consistent database state. To see what this means,
consider a database that stores employee records and a list of departments on behalf of some application.
Each employee record contains information about an employee, including the department she belongs
to. Assume that the application specifies the following invariant: in every database state, all employee
records contain the name of a listed department. Now imagine a transaction that tries to set the depart-
ment name in an employee record to a non-listed name. Committing such a transaction would break the
aforementioned invariant and leave the database in an inconsistent state. However, when the Consistency
preservation property is satisfied, such a transaction can not be committed.

In general, the Consistency preservation property specifies that every committed transaction leaves
the database in a consistent state, i.¢., a state that satisfies all invariants specified for the database. Since
the property depends on the application-level meaning of the data stored in the database, we consider
it an issue that should be solved at that level. This means that we expect the application to commit
only transactions that respect the invariants.3 Thus, we do not consider Consistency preservation in the
remainder of this report.

The other three properties are considered when the correctness of the replicated database system de-
scribed in this report is treated (section 3.4). To reason about the Isolation property, some more concepts
are needed. These are presented in the next subsection.

1.1.5 Histories and serializability

To increase the performance of transaction processing, transactions are often executed in parallel. To
reason about these (parallel) executions, for example to see if an execution upholds the Isolation property,
the concepts of (execution) history and serializability are used [BHG87].

In this report we use the following, simplified notion of history: A history is a partial order of
operations that includes only those operations specified by all committed transactions in the system.*
Furthermore, the following must hold:

Some database systems allow application invariants to be expressed as constraints on the database state. Upon committing
a transaction, such a system checks whether the constraints will be violated because of the transaction. If so, it forcefully aborts
the transaction. While the Consistency preservation is handled by the database system in this case, we see the support for
constraints as an additional feature that could be added on top of the system model presented in this report.

“This notion corresponds to the committed projection of the history as defined in [BHG87).

11
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e operations of the same transaction are ordered and appear in the history in the same order as they
were specified by that transaction

e conflicting operations are ordered

For an example history, see Figure 1.3. At the top, two transactions are shown, consisting of five and
four operations respectively. At the bottom, a possible history is shown. The history could occur on, e.g.,
a time shared system with one processor. It would first execute the first operation of transaction 1, then
the first operation of transaction 2, then operation 2 and 3 of transaction 1, etc., as shown in the figure.

Transaction 1: ( begin 1 l r(X) | ‘L(X, aﬂ 'ﬂ(Y, b)l |commit |

Transaction 2: :_ t?e&n_ 1| :__r()?)_1I ;_ w-EX_,cg } ;_c-c)—m_mi_t]I

Example interleaved execution history:

[ begin | [ begin | [ ) ] [weX.a)| | 09 | [ wiX,e) | | commit | [wqY, b) | ["commit]

Figure 1.3: A history containing two transactions

To reason about database system correctness, it is useful to compare different histories. First, we
give an informal description of the notion of history equivalence. Assume that every trarisaction’s writes
are a function of the values it reads [BHG87]. Then, two histories result in the same final database state
if all read operations read the same values in both histories (because per assumption, all write opetations
then write the same values). Since the effect on the database state is the same for both histories, we call
them equivalent.

A read operation r(X) of a transaction T is said to read from a transaction T5 when r(X) reads the
value written to X by the last write(X) operation of T5. Using this, we formally define that two histories
H) and H, are view equivalent if the following conditions hold:

e exactly the same transactions and operations appear in both
e if some r(X) reads from some transaction T in Hj, it also reads from T in Ho

o if some w(X) is the last operation that writes to X in Hj, it is also the last operation that writes to X
in H 2

A history is serial if none of the transaction operations are interleaved (i.e., such histories are pro-
duced by a database system that processes transactions sequentially as opposed to in parallel). A history
is called serializable if it is view equivalent to some serial history.’

1.1.6 Database system correctness

Using the definitions of the previous subsection, we can now state the correctness criterion for database
systems: a database system is correct if all execution histories it produces are serializable.

The rationale behind this definition is as follows: executing all transactions serially guarantees the
Isolation property. So does an interleaved execution history if it is equivalent to a serial one, because all
transactions see the same database view and thus behave identically in both histories.

More precisely, this is called view serializability. Other notions of serializability exist but are not be considered here,
because view serializability is needed to reason about replicated database systems [BHG87).



For a history that is serializable, see once again Figure 1.3 and observe that the interleaved execution
is equivalent to the following serial execution: Transaction 1 followed by Transaction 2. For a history
that is not serializable, see Figure 1.4. It contains the same transactions as the previous figure, but with a
slight difference: the r(X) of transaction 2 is executed in between the r(X) and w(X, a) of transaction 1.

[Coegn ] Coeor | (100 00} [wcm] i) | ot} [0 [comi

Figure 1.4: A non-senalizable history

One could try to serialize the history shown in Figure 1.4 in two ways: Transactiori 1 followed by
Transaction 2 or the other way around. In the first case, T5 would read X from T3, whereas in the second,
T would read X from T3. In both cases, this differs from the original history, where both T} and T
read the initial value of X. This means that the proposed serial histories are not view equivalent to the
original history. Since we exhausted all possible serial histories, it follows that the history shown is not
serializable.

An algorithm that ensures that concurrent transactions do not violate serializability, is called a con-
currency control technique [EN94]. In section 2.2.3 we discuss how concurrency control is realized in
the Database Replication Prototype.

1.1.7 Motivation for the system model

The system model for the Database Replication Prototype has been kept as simple as possible. This way,
a working prototype could be constructed within a short period of time. However, the question arises
whether the system model presented is general enough to encompass common real-world situations. This
question is briefly discussed here.

The answer to the generality question can be short: the model allows any conceivable database
function, including those used in real-world situations, to be expressed. To see this, imagine a client that
is submitting the following transaction to the database:

1. begin the transaction
2. read all data from the database into some local storage

3. perform any calculations and make any modifications to the local storage (possibly including out-
putting data and/or asking a human user for input)

4. write all data in the local storage to the database

5. commit the transaction

Thus, clients can transfer the database from any state to any other, allowing all possible database
applications to be modelled.

The fact that the database size is fixed could be seen as a limitation. However, this is not considered an
actual constraint, since a real database system would run on a specific hardware configuration imposing
its own size limitations. Setting the database size in the model to the maximum size supported by the
hardware would in fact not constrain our database system any more than any other imaginable database
system running on the same hardware.

Of course, creating a client application within the proposed model is a fedious task because only the
low level read and write operations are available. Therefore, most database systems used in real-world
applications provide higher level interfaces, such as the SQL database query language. These languages
allow manipulation of data using additional operations and powerful abstractions. However, the system
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model is still applicable to the lower level parts of these database systems. This because at some point
during processing, the SQL statements are (automatically) transformed to low level read and write opera-
tions and passed on to a transaction processing engine. Conceptually, the Database Replication Prototype
could fit in at exactly this level.

1.2 Replicated database systems

The model presented in the previous section does not specify how data is distributed among the different
server processes. One possibility® is to require that all server processes, or replicas, contain identical
copies of the database. This is the approach taken for the Database Replication Prototype. Its key
properties are presented in this section.

synchronization Since it is invariant that each replica holds a fully replicated version of the database,
the versions must be synchronized when a client submits a transaction that modifies the state of the
database. When trying to commit a transaction, the replica must somehow communicate with all
other replicas, using a replication technique, to decide on a new, system wide state of the database.
Figure 1.5 shows a replicated database system: in addition to the server processes holding the
databases and the clients, there is a communication network connecting the server processes.

o

il
o

R =N

e

- . ~ % O:Server/Server |
<—||llil communication |

Figure 1.5: Communication in the replicated system model

One way to classify replication techniques is by the moment in time the client is informed of
the result of a commit request [WPS+00b]. This can be (1) after the state changes have been
synchronized and recorded among all replicas or (2) before there has been synchronization among
the replicas.

The first class is called eager replication: replicas are not allowed to independently modify their
copies of the database. The replicas always communicate and agree upon state changes before
they commit transactions. The advantage of eager replication is that it satisfies the ACID prop-
erties. The drawback is that it tends to slow down response times because of the intra-replica
communication taking place before the result of a commit request is sent to the client.

The second class is called lazy replication: transactions are independently committed at different
replicas and state changes are propagated to the other replicas afterwards. The advantage of lazy
replication is that response times are quick and that the updates of different transactions can be
sent to the other replicas in batches, leading to less communication overhead. The drawback is that

®It is also possible to design a more complex system in which data can be replicated to different degrees, varying from fully
replicated to not at all. We have chosen the simplicity of full replication, since we want to investigate and compare only the
basic properties of replication techniques without worrying about complex implementation issues.

14



(temporary) data inconsistencies can occur between replicas, which violates the ACID properties.
Furthermore, the database state needs to be reconciliated manually or automatically to correct the
more severe inconsistencies.

Because we think that correctness is important to database users and that the use of suitable Group
Communication primitives can minimize the time needed for communication, we focus on eager
replication techniques. An additional reason is that comparing lazy techniques is very difficult
because they violate the ACID properties in various ways (i.e., they fulfill different specifications).

distribution transparency In the proposed replicated database system, a client can submit its transac-
tions to any replica. This because all replicas hold copies of the same database and all of them are
available for operation processing.

As far as one client is concerned, there exists only one database. Since the client need not con-
cemn itself with updating all replicas when modifying the database, it may behave exactly the same
as when connected to a centralized database system. This feature is called distribution trans-
parency [EN94]7.

correctness The correctness criterion for a replicated database system is formulated as follows: the
execution history produced by all replicas together must be one-copy serializable [BHG87).
Informally, this means that (1) every database item appears as one logical copy to all transactions,
despite the fact that a copy of each item exists at every replica, and (2) every execution history
produced by the replicated database system is view equivalent to some serial execution involving
the logical copies. The formal definition of one-copy serializability requires a more thorough
introduction to serializability theory than is provided in this report, so we do not present it here.

1.2.1 Advantages and cost of replication

In a centralized database system, all clients connect to the same server, whereas in a replicated database
system, the clients may choose various servers to connect to. In the introduction chapter, both systems
were already briefly compared. We now do this in some more detail. For quantitative comparisons, we
refer to Chapter 5 (Performance Results) .

When each replica is running on a different machine, replicated database systems have, in theory,
two key advantages over centralized databases:

high availability If a replica crashes due to a software or hardware failure, the remaining replicas can
continue to operate. Compare this to a centralized database system, which becomes completely
unavailable after one crash.

better performance The transaction processing load can be distributed among all replicas (machines)
in the system. This leads to two improvements:

larger throughput The replicas can independently execute queries and the read operations of
update transactions, because these don’t change the database state. Only the write operations
need to be executed on all replicas. Because of the fact that a part of the transaction load
can be handled decentrally, the replicas can process more transactions per time unit than a
centralized system (which must always execute all operations).

shorter response times Response times are shorter for queries because these can be executed on
one replica, close to the client, without further communication between the replicas.

"More precisely, when talking about distribution transparency, [EN94] use the term user to refer to a client, and the term
client to refer to the replication technique.
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However, these advantages come at the following cost:

added processing and communication overhead The replicas must communicate to ensure that mod-
ifications are applied to all database copies. This increases the load on the machines (more pre-
cisely, the communication subsystem) and on the communication network, which may degrade
overall performance.

higher system complexity The replicas run asynchronously on different machines and asynchronously
receive client requests that modify the database. Reliably synchronizing the database copies across
the replicas requires advanced communication and transaction processing algorithms.
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Chapter 2

Replication Framework

The replication framework provides a conceptual infrastructure for the implementation and comparison
of various replication techniques. The framework consists of five components, which are identified and
specified in this chapter. First, the design methodology is explained.

2.1 Object oriented frameworks

The replication framework and the Database Replication Prototype, which is an instance of this frame-
work, have been developed using object oriented methodology. An object oriented framework is a
reusable design expressed as a set of abstract classes and the way their instances collaborate [Fel98].

Two types of frameworks can be distinguished: white-box and black-box frameworks. In a white-box
Jframework, the user of the framework may modify the internal structure of components to suit his needs.
In a black-box framework, the user may only access the components using the well-defined interfaces
they provide.

The replication framework is a mixed white-box/black-box framework. As described in the next
section, one of the components (the Replication Manager) is a white-box component: it needs to be
internally modified according to the replication technique that is implemented. (How this can be done is
explained in Chapter 3 for two specific replication techniques) The other four components are black-box
components: all replication techniques rely on the interface defined for these components in the current
chapter. In the next section, the components as well as their positions in the framework are outlined.

2.2 Framework Components

The following components, which each have a clearly distinctive function within the replication frame-
work, can be identified:

Database Service Database storage and concurrency control facilities. A black-box component.

Group Communication Service Group Communication primitives used for communication between
replicas. A black-box component.

Replication Manager Handles the transactions submitted by clients. Implements a given replication
technique and provides (additional) concurrency control. A white-box component.

Client Transaction source that generates a workload. In the Database Replication Prototype, the Client
is used to test the system and measure the performance of replication techniques. A black-box
component.
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Operations The database and transaction operations. A black-box component.

Figure 2.1 shows the dependency relationships between these components, as well as the processes
in which they reside. In every replica, there exist more or less independent instances of the Database
Service, the Group Communication Service and the Replication Manager. On the other hand, Operations
are visible to a particular Client and to one or more replicas.

Client Process Replica (Server Process)

- Replication Mgr | '
Client —_r = .- - A A _
Group Communication Service
Scheduler
TN
> Operations | r = P Lock Manager I Database Service
: ' A
]

Figure 2.1: Component dependency relationships

In the following sections, all components are specified and related to each other. However, collabo-
ration diagrams that show more precisely how the components interact appear in the next chapter. This
because these graphs are specific to the replication techniques implemented.

2.2.1 Database Service

This service is used as the local database storage on every replica. The service provides the following
standard database functionality:

storage management This subcomponent offers persistent (stable) storage and retrieval of a constant
number n of database items, with values that are arbitrary sequences of bytes of equal length. The
items are indexed by an integer in the range 0...n — 1.

This component executes the data operations of transactions. When some read(X) is executed, the
value of database item X is retrieved. When some write(X, a) is executed, the value of item X is set
to a.

lock management This subcomponent provides a concurrency control technique, which is needed to
prevent concurrent transactions from violating serializability. The technique chosen is two phase
locking, which is presented in section 2.2.3. Basically, the service offers lock and unlock primitives
for every database item. When these primitives are used correctly, they ensure mutual exclusion
for conflicting operations.

transaction management This subcomponent executes the transaction operations begin, commit and
abort according to their semantics defined in section 1.1.3.

The Database Service upholds the ACID properties.

There is one special requirement: this service should never decide by itself to abort a transaction.
Under normal system conditions this is usually not a problem, but in the case of heavy loads or full
disks, standard database systems tend to unilaterally abort transactions. If this requirement is not met,
the replica at which the service resides is considered to have crashed. Recall that the replicated system
is able to continue as long as the other replicas are still running.
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2.2.2 Group Communication Service

This service provides communication primitives that allow the replicas to exchange messages that syn-
chronize the database state. The advantage of using Group Communication primitives as opposed to
the normal means of network communication available in operating systems, is that the primitives offer
higher-level abstractions with properties that are desirable in the context of replication.

The exact specifications of the primitives depend on the needs of the replication techniques to be
implemented. However, we explain the Atomic Broadcast primitive right now because it serves as the
basis for the active replication techniques considered in this report. Why Atomic Broadcast is needed is
explained in Chapter 3 (Active Replication Techniques).

Atomic Broadcast

Most operating systems allow processes to communicate across networks by message passing. They
offer the send(m, p) and receive(m) primitives for sending a message m to process p and receiving a
message m, respectively.

The Atomic Broadcast primitive is built on top of these standard send and receive primitives (see
Figure 2.2) [GS97]. Informally, it allows processes to broadcast messages to a group of processes,
while guaranteeing that all members of the group deliver all messages in the same order. Furthermore,
it ensures that all (non-crashing) group members deliver every message that is broadcast. Finally, the
primitive keeps working even when some of the group members crash’.

Arbitrary Application
ABCast deliver
Atomic Broadcast Protocol
send receive
Transport Layer (OS)

Figure 2.2: Protocol stack featuring Atomic Broadcast

Formally, if a process executes ABCast(m, G), it sends a copy of message m to all processes in the
group G. deliver(m) is executed on each process in G to deliver the message m. The semantics of these
operations are specified as follows:

Order Consider two messages m; and m,, ABCast(m,, G), ABCast(m;, G) and p;,px € G. If p; and
pr deliver my and mo, they do so in the same order.

Atomicity Consider ABCast(m, G). If p € G executes deliver(m), all correct? processes in G eventually
execute deliver(m).

Termination Let ABCast(m, G) be executed by process p. If p is correct then every correct process in
G eventually executes deliver(m).

In Figure 2.3, an example run of two ABCast invocations is shown where two sender processes each
broadcast one message to a group of three member processes. The rectangles depict the delivery of the
messages. As shown by the message arrows arriving at member 3, this member receives the messages in
a different order than the other members. However, the messages are delivered in the same order.

'A process that crashes ceases functioning forever.

2A correct process is a process that does not crash.

*To achieve this, an algorithm that implements Atomic Broadcast exchanges additional messages (not shown here) between
the group members to agree on a certain order. In point-to-point networks, typical message amounts are 1 to 3 times the number
of group members per ABCast invocation [UDS00].
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Figure 2.3: Example of Atomic Broadcast

2.2.3 Replication Manager

The Replication Manager is responsible for processing transactions and their operations. It consists of
two subcomponents: the Scheduler, which accepts transactions submitted by clients and executes them
on the database, and the Lock Manager, which provides concurrency control to the Scheduler. The two
subcomponents are now discussed in detail.

Lock Manager This subcomponent provides concurrency control that the Scheduler uses to ensure se-
rializability and durability. The concurrency control used in the Database Replication Prototype is
strict two phase locking (strict 2PL).

Briefly, strict 2PL* entails the following: A lock is associated with every item in the database. An
item’s lock is used to ensure mutual exclusion of conflicting operations on the item. There exist
two types of locks: read locks and write locks. The Lock Manager manages a data structure, called
the lock table, and offers an interface to the Scheduler for acquiring and releasing locks on behalf
of transactions.

Formally, when processing transaction operations, the Scheduler must enforce the following strict
2PL rules (adapted from [BHG87)):

e if a client issues a data operation o as part of transaction T on database item X then it must
first request a read or write lock for X from the Lock Manager. The type of lock requested is
in accordance with the type of X. The request is granted unless a conflicting lock is already
held. In the first case, the lock is said to be held (also acquired or obtained), and o can
be executed on the database. In the latter case, the execution of o is delayed until the lock
becomes available and T is said to be blocked on the lock request for X.

Two locks conflict if they lock the same database item, they are issued by different tfansac-
tions, and at least one of them is a write lock.

o the read locks held by a given transaction can not be released until all its data operations
have been executed. The write locks it holds can not be released until the transaction has
been committed or aborted. After the transaction is committed or aborted, it releases all the
locks it still holds. After a lock is released, it can be acquired by other transactions.

A problem of the strict 2PL approach is that deadlocks can occur. A deadlock is a situation in
which each of two transactions is waiting for the other to release its locks: neither transaction can

*For a more detailed discussion and a correctness proof of (strict) 2PL, see [BHGS7].
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ever continue processing. In the literature, there exist different solutions to counter this problem.
The solution that is adopted for the Database Replication Prototype is to always request locks in
some fixed order, for example, in the order of the database item locations for which the locks are
requested. This way, deadlocks are prevented from occurring [EN94].

Since locks are requested on behalf on operations, this means that clients must submit all opera-
tions of a transaction in a fixed order. While this imposes a severe limitation on the client, it is
sufficient for comparing active replication techniques, and avoids the implementation complexity
of other solutions such as deadlock detection and time out mechanisms. The motivation for this
argument is given in section 3.5 because it requires an understanding of the compared replication
techniques.

When implementing the functionality described above, the Lock Manager is supposed to build
upon (reuse) the Database Service’s lock management.

Scheduler The Scheduler processes the Operations (subsection 2.2.5) submitted to the Replication Man-
ager by the Client (subsection 2.2.4). The Scheduler may delay operations, or reject them and
forcefully abort the transaction instead. In the latter case, the Scheduler behaves as if the rejected
operation was actually an abort operation. However, the Scheduler must explicitly inform the client
about this “conversion”. A client may always try to resubmit a forcefully aborted transaction at a
later time.

The Scheduler is replication-aware: it ensures that the database state changes caused by write
operations (of committed transactions) are consistently recorded in all databases at all replicas.
In other words, the Scheduler must guarantee one-copy serializability. A Scheduler instance can
directly modify the state of its local database. For this it uses the local Database Service’s storage
and transaction management. To modify the state of other databases, it needs to communicate
with the Schedulers of other replicas using the Group Communication Service. How the Scheduler
ensures one-copy serializability depends on the replication technique that is implemented.

Replication techniques

Using the components of the Replication Framework, we can now more precisely define the term repli-
cation technique. A replication technique is an algorithm that exactly describes how the components
Scheduler, Lock Manager, Database System and Group Communication Service interact and operate to
achieve a replicated database system. Many replication techniques have been proposed, with different
levels of performance and varying levels of Isolation® (for a discussion, see [WPS+00b]).

For this project, we have focused on eager replication techniques (for a classification, see [WPS00a]).
They all achieve one-copy serializability, but are implemented differently and have varying performance
characteristics. This replication framework hopes to accommodate most of the interesting techniques. As
a proof of concept, and to obtain comparative performance measurements, two algorithms based on the
Atomic Broadcast communication primitive are implemented (for a classification, see [WPS99]). They
are discussed in the next chapter.

2.2.4 Client

In general, a Client generates a transaction workload: it models an application that uses the database.
A Client creates Operations (see next section) and submits these to one of the Replication Managers.

SIn this report, upholding the Isolation property is considered equivalent to ensuring serializability. Other interpretations of
the property exist that do not require serializability: the isolation level is said to be lower [KA]. E.g., some techniques allow
lost updates: consider two transactions T and U and the allowed history r(X); w(X), w(X)y. The problem is that if the last
W(X)r depends on the first r(X), the intermediate value of X written by U is not considered by T and thus lost upon the last
w(X) .
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Operations that belong to the same transaction may not be submitted in parallel, but must be submitted
one by one. In other words, the Client must always wait until it receives the result for the previous
Operation before it submits the next one. In the rest of this report, the uncapitalized term client also
refers to the Client defined in this section.

When submitting Operations, clients must respect the operation ordering rules imposed by the trans-
action mechanism (see section 1.1.3) and by the concurrency control mechanism (see section 2.2.3).

In the Database Replication Prototype, clients test the system and measure its performance. They
randomly create Operations and submit these. The kind and number of Operations submitted is speci-
fied in relation to the transactions they belong to. We parameterize these transactions according to the
following criteria:

Interactivity of transactions Transactions can be either one-shot, all operations are sent ta the Replica-
tion Manager at once, or inferactive, operations are sent one by one and may depend on the results
of earlier operations.

The one-shot variant models the stored procedure that is popular in the database world. A stored
procedure is a predefined program, stored in the database, that is executed when it is called by the
client. A one-shot transaction contains exactly the operations that would be executed by such a
stored procedure. The major advantages of stored procedures are that the client needs to send only
one message to the database system, and that the transaction can be efficiently executed within the
database. Both advantages are preserved by the one-shot transactions in our model.

Because one-shot transactions model stored procedures, the fact that they are a query or an update
transaction is only known at the time the last data operation of the transaction is executed. Our
model does not support predeclared queries: transactions for which the client announces that they
are queries upon submission of the first operation (or the one-shot transaction).

Number of operations per transaction

This number is highly dependent on the type of application. For example, in the simple bank-
ing application of retrieving money from an ATM, only a few read and write operations are
needed [TPC94], whereas in decision support systems, millions of database items may be read
when compiling a company status report.

Percentage of commit transactions The number of times that a transaction ends with a commit opera-
tion instead of an abort operation.

One would maybe expect clients to always try to commit transactions because aborting a trans-
action would mean that the whole transaction was superfluous. However, this is only true for
one-shot transactions. In the case of interactive transactions, clients may not know whether or not
they are going to commit a transaction before having started processing it. For example, when an
ATM application detects, by reading from the database, that a user is low on cash, it may decide
to abort a money withdrawal transaction.

Percentage of queries The number of times that a transaction contains zero write operations.

Number of transactions submitted per time period
In a physical system, this number is bound by the maximum load the system can handle.
Fraction of write operations in update transactions The number of times that a data operation is a
write operation instead of a read operation.

This fraction may not be chosen lower than (1/number of operations per transaction) because this
would imply that the transactions are queries.
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An additional parameter that is often used is the distribution of the database items accessed. To
simplify things, we have chosen the uniform distribution. I.e., the transaction load produced by the client
accesses each database item equally often.

2.2.5 Operations

This component models the data and transaction operations as defined in section 1.1. In some pro-
gramming methodologies one would not define a component for the data that is manipulated by other
components. However, since we follow the object oriented approach, we define Operations and their
behaviours explicitly.

Operations are created and submitted by Clients (defined in the previous section). An Operation can
request the locks it needs from the Lock Manager and execute itself using the Database Service. When
the Scheduler processes an Operation, it delegates the locking and executing tasks to this Operation.

An Operation models one of the operations read, write, begin, commit and abort (as defined in
section 1.1). In the case of a read or write, the Operation contains the locations to access and, in the latter
case, the value to write.

An Operation can also model a one-shot transaction. In this case, it contains a sequence of Operations
that forms a transaction. The processing of such an Operation entails the sequential processing of the
Operations it contains.

In the rest of this report, we identify the abstract read, write, begin, commit and abort operations and
their respective Operation instances. If an Operation represents a one-shot transaction, we denote this by
using the term oneshottransaction. In the rest of the report we do not make the distinction between the
capitalized “Operation” and the uncapitalized *“operation”.
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Chapter 3

Active Replication Techniques

Within the Replication Framework defined in Chapter 2, replication techniques can be constructed. As
a proof of concept, and to obtain comparative performance measurements, two active replication tech-
niques based on Atomic Broadcast (see Figure 3.1) are implemented: pessimistic active replication and
optimistic active replication. The implementations are part of the Database Replication Prototype.

Client submitting a transaction

submit retum result
Active Replication Technique
ABCast deliver
Atomic Broadcast Protocol
send receive
Transport Layer (OS)

Figure 3.1: Protocol stack featuring active replication

For reasons that are explained shortly, the replication techniques require different scheduling and
lock management behaviour. Therefore, the component Replication Manager contains technique specific
algorithms. On the other hand, the components Database Service, Group Communication Service and
Operations function the same independently of the techniques.

In this chapter, we first explain the concept of active replication. Following that, the techniques to be
implemented are presented. Finally, the tradeoffs between both techniques are discussed by means of a
qualitative comparison.

3.1 Active replication

The standard notion of active replication is that clients submit a transaction by Atomic Broadcasting all
its operations to all replicas. The replicas contain a centralized database system which deterministically
processes the database modifications (updates) in the same order. This way, the database state remains
consistent at all replicas at all times.

In pessimistic active replication [SR96], replication is accomplished by distributing all submitted
transactions to all replicas using the Atomic Broadcast primitive. This technique is also called immediate
update replication.

The optimistic active replication [PGS99] tries to avoid some of the communication overhead of pes-
simistic active replication. This is done by Atomic Broadcasting only the write operations of transactions
to all replicas, avoiding the needless broadcasting and processing of read operations by all replicas. In-
stead, read operations are only processed by one replica. This technique is also called deferred update
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replication.

Active replication techniques are sometimes referred to as the database state machine approach [PGS99],
since the database system is seen as a state machine that deterministically computes the next database
state as a function of the previous state and a given operation. As read operations do not affect the state,
they need not be processed on every replica.

3.1.1 Active replication within the Replication Framework

To accommodate different techniques in the same framework, we have diverged a bit from the standard
notion of active replication. In the Database Replication Prototype, clients only send their operations
to one replica. It is the task of this replica to distribute the operations to all replicas (as needed) using
Atomic Broadcast.! Another advantage of this approach is that it achieves distribution transparency
(see section 1.2). The Scheduler running on the replica contacted by the client is called the originating
Scheduler in the following sections.

Hereafter, the mentioned replication techniques are presented in detail and connected to the compo-
nents of the Replication Framework.

3.2 Pessimistic active replication

In Figure 3.2, it is shown how the framework components collaborate in a typical run of the pessimistic
replication technique. The diagram shows a system that contains three replicas. The steps taken when
processing one particular Operation are numbered and named. These steps are referred to in the descrip-
tion of the technique given in the remainder of this section.

While steps 3 to 7 are the same on every replica, these are only detailed for the third one in the
diagram. As explained hereafter, steps 5 and 6 are only applicable to data operations. Actually, there
exists a part of the Group Communication Service on every replica, but because this is logically one
system wide component, it is drawn only once.

Now follows the description of the technique. The numbers in parentheses refer to Figure 3.2.

When submitting a transaction, a Client connects to an arbitrary Replication Manager (1). Its Sched-
uler immediately passes the Operations on to the Group Communication Service that broadcasts them to
all Replicated Schedulers using the Atomic Broadcast primitive (2).

When an Operation is delivered to the Scheduler (3), the Operation is processed in a deterministic
way according to its type (4):

data operation the Operation requests the lock it needs from the Lock Manager and waits until it obtains
the lock (5, 6). The Lock Manager deterministically grants the request or queues it until it can
be deterministically granted. After granting or queuing the request, the Group Communication
Service is allowed to deliver the next Operation.

When the Operation obtains its locks, it executes itself on the database by submitting the desired
data operation to the Database Service (7). Upon receiving the service’s response, the Operation
returns it to the Scheduler, which in turn sends it back to the originating Scheduler. Note that for
the response message, the standard send primitive is sufficient. We assume that this primitive is
provided by the Group Communication System.

Upon receiving the first response from any Scheduler, the originating Scheduler forwards the re-
sponse to the Client. The other responses are discarded since they are the same as the first response

'In this approach, the replica to which a client connects acts as a proxy that handles the task of Atomic Broadcasting the
Operations instead of the client itself.
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Figure 3.2: Collaboration diagram for pessimistic replication

(because of the deterministic processing at every replica).

transaction operation the Operation is executed immediately. It asks the Database Service to carry out
the corresponding action and waits for the response (7). After receiving the response, the next
Operation may be delivered. The response is returned to the Client like in the previous case.

oneshottransaction operation the Operations this transaction contains are deterministically processed
in sequence, as described before. The transaction can be deterministically queued when an Op-
eration’s lock is not available. When deterministic processing or queuing is guaranteed, the next
’ Operation may be delivered. When the transaction is committed or aborted, the result of the com-
mit (or abort) operation is returned to the Client. The results of other Operations are not returned

to the Client.

3.3 Optimistic active replication

The basic idea of optimistic active replication is that the operations of a transaction are executed locally
on one replica until the commit operation is reached. Then the updates (write operations) of the trans-
action are collected and Atomic Broadcast to all replicas. Upon delivery of the updates, a certification
test’ is performed at every replica to check if committing the transaction does not violate serializability.
If serializability cannot be guaranteed, the transaction is aborted on every replica, otherwise, the updates
are applied on every replica.

The outcome of the certification of a given transaction T is the same on all replicas because the
certification test only takes into account those transactions that were previously delivered. Because
of the properties of Atomic Broadcast, all replicas are bound to have seen exactly the same delivered
transactions before T is delivered. Therefore, they can deterministically make the same decision as to
the abort or commit of T'. The result is that the database state at every replica is guaranteed to remain
identical.

2How the certification test works is explained in section 3.3.1. However, the proof showing that it ensures serializability is
beyond the scope of this report. It can be found in [PGS99).
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Before describing optimistic active replication in detail, we note that in this technique, a state is
associated with each submitted transaction. This state can be: executing, committing, committed or
aborted. The corresponding state transition diagram is shown in Figure 3.3. All states and transitions
are explained in this section.

commit (update tr.) [—_certifica tion | pass
| |
commit (quer
Executing (query) /fail

abort

»  Aborted

Figure 3.3: Transaction states and transitions for optimistic active replication

In Figure 3.4, it is shown how the framework components collaborate in a run of the optimistic
replication technique. In this figure, it is assumed that an update transaction is submitted. The diagram
shows a system that contains three replicas. The main steps taken when processing an Operation are
numbered and named. All steps are explained in the remainder of this section.

if o= o= 1. submit(Operation o)
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Figure 3.4: Collaboration diagram for optimistic replication (update transactions)

If a query is submitted to a given replica, the processing is only performed locally because a query
contains only read operations. The collaboration diagram for this case is depicted in Figure 3.5. As is
clearly shown, the Group Communication Service and the other replicas are not involved.

The algorithm for optimistic active replication entails the following procedure (adapted from [PGS99]).
The numbers and letters in parentheses refer to Figures 3.4 and 3.5.

I. When submitting a transaction, a Client connects to an arbitrary Replication Manager (1). Its

Scheduler starts processing the Operations locally using the Database Service until the last Oper-
ation is reached (2-5). During this local processing, the transaction is in the executing state. If
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the last operation is an abort operation, the transaction is immediately aborted (it passes to the
aborted state).

If the last operation is a commit operation, and the transaction is a query, it is committed imme-
diately (5). Otherwise, the transaction passes to the committing state. First, it releases all its
read locks. Then, all its updates are collected in one message and are broadcast to all Replicated
Schedulers using the Atomic Broadcast primitive offered by the Group Communication Service
(a). More precisely, this update message contains the readset, the writeset and the values to be
written.

Upon delivery of the update message (b), each Scheduler deterministically certifies the commit-
ting transaction to test if serializability can be guaranteed. If this is the case, the transaction passes
to the committed state.

Otherwise, the test fails and the transaction passes to the aborted state. On the originating Sched-
uler, the transaction is aborted. On the other Schedulers, the update message is simply not applied.
After the certification the next update message may be delivered.

How the certification test works is discussed in subsection 3.3.1.

The result of the certification, commit or abort, is returned to the originating Scheduler which re-
turns the first result it receives to the Client. At this point, we slightly diverge from what is stated
in [PGS99] (adapted to our terminology): The Client receives the result of the certification when
the originating Scheduler has certified the transaction. The difference is that in our implemen-
tation, the Client does not have to wait for the originating Scheduler to perform the certification.
Since the outcome of the certification is deterministically defined, the result of any Scheduler can
be passed to the Client.

When a transaction has reached the committed state, its update message proceeds in one of two
ways, depending on the Scheduler where it is delivered. Assume that the update message is deliv-
ered on a given Scheduler. Then:

e if the update message originated from this Scheduler, the transaction is simply committed
because the write operations have already been performed on this replica (6 on Replica 1).

e if the update message originated from a remote Scheduler, a begin operation is executed
at the Database Service to start the transaction. Then, write locks for all write operations
contained in the update message are requested from the Lock Manager at the same time (c,
d on Replicas 1 and 2). The Lock Manager deterministically grants the request or queues it
until it can be deterministically granted. If the queue contains requests that ask for conflicting
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locks, the Lock Manager grants these in the order the corresponding update messages were
delivered.
Three cases need to be considered when granting the request:

- if a locally executing transaction holds a lock that conflicts with one of the locks that
the update message requests, the Lock Manager aborts the local transaction so that the
lock can be granted to the update message.

- if a transaction T that executed locally has reached the committing state (so it is sure
that its update message will be delivered sometime after the current update message)
and holds a conflicting write lock, the write operation is postponed until the certification
of T:

* if T is aborted, the write operation is immediately applied. Observe that because T
held the write lock for the operation before aborting, the write operation can always
be performed without locking conflicts.

* if T passes to the committing state, the write operation can be forgotten since the
value that T' wrote is the most up to date value.

- if a previously delivered update message that passed to the committed state is holding
a conflicting write lock, the current update message is deterministically queued until the
lock is available.

After granting or queuing the lock request, the next update message may be delivered.
When the update message obtains its locks, it performs itself on the database by submitting
its write operations to the Database Service (e on Replicas 1 and 2). Following that, the
commit operation is submitted.

3.3.1 Certification

A transaction passes certification and enters the committed state if it does not conflict with any previously
committed transaction. Otherwise the certification fails and the transaction passes to the aborted state.

We do not formally define the notion of conflicting transactions in this report (for a formal definition,
see [PGS99]). Informally, if two transactions conflict, committing both of them violates serializability.
The certification mechanism detects these conflicts and makes sure that one of the conflicting transactions
is aborted, thus ensuring serializability.

In the rest of this subsection we describe how the certification test is performed.

Assume that a transaction 11, originally processed at replica py, is to be certified. This means that
we must check whether T3 conflicts with any previously committed transaction T, originally processed
at py (p1 # p2)- When checking for a conflict between T} and T, and deciding whether or not to certify
T, three cases can be distinguished:

1. Before T started executing, T5 passed to the committed state (so it passed certification) at p;. In
this case, Ty passes the certification test. This because there is no interleaving of Ty and T5, thus
certifying T7 will not violate serializability.

2. When T was executing, T, passed to the committed state at p;. Because of the local concurrency
control at p; (strict two phase locking) this execution can never violate serializability. So T} passes
the certification test.

3. When T} was in the committing state, T passed to the committed state at p;. This means that T}
was delivered after To. Whether or not T} passes the certification depends on the data operations
that 77 and 75 have performed:
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o if the writeset of 75 and the readset of T} overlap, T} fails the certification test. This because
the overlap means that in the context of Ty, the (old) value of some database item X was read
that has been subsequently overwritten when T3 committed. Committing T after 75 would
be a violation of one-copy serializability, so 7} is aborted.

e otherwise, T; can be committed without violating serializability.

Observe that when T} and T> were originally processed on the same replica (i.e., p;y = ps), the
transactions can never conflict because the local concurrency control mechanism prevents this.

3.3.2 Example execution

In Figure 3.6, an example execution of the optimistic replication technique is shown. Replica p; locally
processes the update transaction Ty: begin r(X) w(X, a) commit. Replica p, locally processes the update
transaction T5: begin r(X) w(X, b) w(Y, ¢) commit.

replica p,, executes transaction T, locally replica p,, executes transaction T, locally
execution stateof T, stateof T, comments execution  state of T, stateof T, comments
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Figure 3.6: Example execution of the optimistic replication technique

As shown in the picture, the Atomic Broadcast algorithm decides that the update message of T is
delivered before that of Ty. T5 then passes the certification test because no transactions have passed
certification yet. On p, T3 is simply committed. On py, T5’s writes are applied, but since T} still holds
the lock for X, the w(X, b) operation can not be applied yet. The operation is delayed until the outcome
of the certification of T} is known.

When the update message for T} is delivered, T} cannot pass the certification test on both replicas.
The transaction states registered at p;, show that T, passes to the committed state when T3 is in the
committing state. Subsequently, it must be checked whether the readset of T and the writeset of T are
disjoint. This is not the case: database item X is contained in both sets. The result is that 7} is aborted
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on p;. Since this means that the lock for X becomes available again, the delayed w(X, b) is applied. On
P2, the update message is discarded.

From the example it becomes clear that the certification test needs information about the events
happened on other replicas to be able to make the same decision on every replica. More precisely, to
certify T, the certification algorithm at p, must know if T, was already certified at p; when T} passed
to the committing state. This information is obtained as follows:

e The delivery of every update message is tagged with a sequence number (starting at 1). By the
Order property of Atomic Broadcast, this number is the same on every replica for a particular
update message.

e When an update message is ABCast to all replicas, the sequence number of the update message
that has most recently passed certification is piggy-backed.

The above steps are sufficient to perform the certification test, as we now demonstrate using the
example.

When p; ABCasts the update message for T, there is no most recently certified transaction, so the
value 0 is piggy-backed. When the update message for T is delivered on po, it is tagged with sequence
number 1. Similarly, the update message for T; is tagged with number 2. Using this information, the
certification test at p; detects that T passed to the committing state before T was certified at p;. This
because T3 has a sequence number (1), that is higher than the value that was piggy-backed (0).

3.4 ACID properties

Since clients may connect to any of the replicas that form the replicated database system, it is not im-
mediately obvious that the ACID properties are upheld by the system as a whole. In this section, proof
sketches are given that show that the ACID properties are satisfied for the pessimistic replication tech-
nique. The correctness proof for the optimistic replication technique requires a more thorough introduc-
tion to serializability theory than provided in this report. We therefore do not present it here, but refer to
[PGS99].

First, the proof sketch for the Durability property given, it applies to both techniques. Thereafter, the
Atomicity and Isolation properties are treated in the case of the pessimistic technique.

Durability Once a transaction changes the database and the changes are committed, these changes must
never be lost because of subsequent failure.

In centralized database systems, it is assumed that the database state is stored on some durable
medium that never fails (e.g., a hard disk). The failed system can then recover by retrieving the
database state from the durable medium and continuing from that state. These systems do not
guarantee Durability when the durable medium fails.

In replicated database systems, Durability can be enforced when it is assumed that during the
lifetime of the system, always at least one replica is running.3

Theorem: The Durability property holds for both pessimistic active replication and optimistic
active replication.

Proof (sketch): The property trivially holds for queries and for transactions that end with an abort
operation, because these do not modify the database state. For update transactions that erid with a
commit operation, the property is proven as follows.

3Section 3.6.2 explains how the system can recover when all replicas crash at the same time.
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By definition, the Database Service at every replica process satisfies the Durability property. From
the Atomicity property of Atomic Broadcast it follows that if a commit operation is delivered
on one replica, it is delivered on all replicas. To enforce Durability, this commit operation must
have the same outcome (commit or abort) on all replicas.* This is guaranteed by the determinism
constraint on the Database Service, which completes the proof.

In the next two subsections, the Atomicity and Isolation properties are treated separately for each
technique.

3.4.1 Pessimistic active replication

Atomicity A transaction is an atomic unit of processing; it is either performed in its entirety or not
performed at all.

Theorem: The Atomicity property holds for pessimistic active replication.

Proof (sketch): Similarly to the proof of the Durability property, we only consider update transac-
tions that try to commit.

Since Atomicity is assumed for the Database Service, we only need to check that for a certain
transaction, all write operations have been processed by all replicas before its commit operation
is processed. Remember that clients submit operations one by one, always waiting for the result
returned by the previous operation before submitting the next one. By the Order property of
Atomic Broadcast, all replicas process these operations before the commit operation is ABCast
and delivered, which was to be proved.

Isolation A transaction should not make its updates (i.e., the effect of its write operations) visible to
other transactions until it is committed.
Theorem: The Isolation property holds for pessimistic active replication.

Proof (sketch): As we show next, the property is satisfied by this technique because the technique
1s correct in respect to one-copy serializability.

Observe that all operations are processed on every replica

e in the same order (by the Atomic Broadcast primitive), and

e in exactly the same way (by the determinism constraint).

This means that the replicas always behave identically. Since it is assumed that every local
Database Service guarantees serializability, it follows that one-copy serializability is guaranteed
by the replicated database system.

3.5 Deadlocks

As noted in section 2.2.3, deadlocks do not occur in the Replication Framework because locks are always
requested in a fixed order. The absence of deadlocks makes the Database Replication Prototype simpler
to implement. However, the order restriction has a considerable impact on the Client, because it needs to
submit operations in the order of the locations these operations refer to. In real-world applications, this
may not be feasible for two reasons:

“To see this, consider that one diverging replica aborts the transaction and all others commit. Subsequently, the client is
told that the transaction has committed. Then, all replicas except the diverging one crash. The system is still running, but has
violated the Durability property because it “lost” the committed transaction.
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o the Client usually does not know how database items are ordered. For example, if SQL is used to
access the database, the exact locations of database items are not visible to the Client.

e even if we assume that the Client somehow knows the order in which to submit the operations, a
program may want to access some items out of order to perform certain functions. One solution
for this is to let the Client predeclare the items it intends to access. Then, the Lock Manager
can already obtain locks for these items in the correct order at the beginning of the transaction.
However, this approach is also not feasible because the Client often does not know in advance
which items it is going to access in a given transaction.

To overcome these limitations, the order restriction needs to be lifted. In principle, the Replication
Framework can be easily adapted to allow operations to be submitted in any order. However, this may
result in deadlocks. The way to resolve deadlocks is to abort transactions involved in a deadlock until
the remaining transactions can progress again. We now outline how each technique can be adapted to
resolve deadlocks.

Pessimistic active replication. After every n operations delivered, the Scheduler stops delivering oper-
ations. It waits until all transactions are blocked for a lock or or waiting for an operation to be delivered.
In other words, the Scheduler waits until all operations have stopped executing. If the execution of an
operation leads to the release of locks, the Lock Manager deterministically grants these to transactions
that were previously blocked for these locks. The Scheduler waits also for these transactions to finish
executing operations.

After this, the Lock Manager runs a deadlock detection algorithm® [EN94]. This algorithm finds
the transactions that are involved in a deadlock and deterministically picks and aborts some of them
until the deadlock ceases to exist. Observe that all replicas abort exactly the same transactions at this
point because each one has delivered and executed exactly the same set of operations before it runs the
deadlock detection algorithm. How this algorithm is implemented is beyond the scope of this report,
but any standard algorithm can be used because it needs to consider only those transactions on the local
replica (i.e., a distributed deadlock [EN94] detection algorithm is not needed).

As to the choice of n: n is preferably large so that the Scheduler and Lock Manager do not spend too
much time waiting and searching for deadlocks. On the other hand n must be small enough for deadlocks
to be detected in a timely manner. Since the exact value of n depends on the actual system configuration
and the kind of transactions processed, we do not further discuss it here.

Optimistic active replication. We first consider transactions. in the executing state. These run locally
and can deadlock with other executing transactions, but not with transactions in other states as we ex-
plain later. For resolving these local deadlocks, any standard (nondeterministic) deadlock detection or
prevention algorithm can be periodically run that only takes locally executing transactions into account.

One more adaptation needs to be made to this technique: when an update message requests write
locks, it must do so in a fixed order. We now show that with this change, transactions in the committing
or committed states can not be involved in a deadlock situation.

When a transaction T passes to the committing state, its update message m is bound to be delivered
and certified. After the certification, T passes to either the aborted or the committed state. In the former
case, T"’s write locks are released on the originating replica and m is ignored on the other replicas, so T
can not be in a deadlock situation.

’Actually, a deadlock prevention algorithm [EN94] could be used just as well, as long as it acts in a deterministic way. For
example, a timestamp based algorithm that aborts transactions for which the last operation has been delivered more than some
fixed amount of delivers ago.
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In the latter case, if m is delivered on its originating replica, T is committed and releases its locks.
If m is delivered on another replica, it requests its write locks in the order of the locations of the corre-
sponding database items.® Then T cannot deadlock because:

e any executing transaction that holds a lock needed by T is aborted.

e when a lock that T needs is held by some committing transaction U, T does not request the lock
(it delays the write until the certification outcome of U is known).

e when a lock is held by some transaction U that passed to the committed state before T did, T is
blocked. But, since locks for update messages are always requested in a fixed order, T' does not
deadlock with U.

Discussion. We have sketched how both techniques can be extended to deal with deadlocks. However,
the adopted solutions are quite different. In the pessimistic technique, the Scheduler needs to wait now
and then for “things to settle down”. Only this way the deadlock detection algorithm will deterministi-
cally find the same deadlocked transactions on every replica. The optimistic technique is affected in two
ways: the ordering requirement on the write locks of update messages and the local deadlock detection
or prevention algorithm.

It is difficult to predict how these changes affect the performance of the adapted techniques when
many transactions interfere. However, when few transactions interfere, the performance degradation
will be negligible. This because deadlock checks can be done very infrequently without risking that
many transactions are waiting because of deadlock. These infrequent checks incur little overhead for
both techniques. When comparing the (unadapted) replication techniques in the rest of this report, we
consider scenarios with relatively little transaction interference. Therefore, the results obtained are also
applicable for the adapted techniques as long as the transaction interference is low.

3.6 Some reliability aspects

As noted in section 1.2.1, a major advantage of replicated database systems is their ability to tolerate
replica crashes. In this section, we briefly discuss how crashes affect the replication techniques presented
in this chapter.

In section 3.4 it was shown that the ACID properties are upheld when at least one replica is always
running. Now, we explicitly discuss a scenario in which a crash occurs. A crash means that one replica
suddenly stops processing. Observe that in every technique, there is an ABCast invocation and corre-
sponding delivery before any update transaction is committed. Imagine that the replica crashes just after
it has committed a transaction and informed the client. This transaction is bound to be delivered and
committed on all replicas, guaranteeing Durability.

The Atomicity and Isolation properties are also satisfied in this scenario: The crashed replica was
processing transactions correctly until the moment it crashed. Because all remaining correct replicas are
bound to deliver and deterministically process these transactions, the properties are upheld.

The presented replication techniques fail to solve two problems: the addition of replicas to the sys-
tem, and the crashing of all replicas. Also, it has not yet been discussed what happens to a client that is
submitting a transaction to a crashing replica. We discuss these issues in the next subsections.

%Since all needed locks are known in advance and since the Lock Manager is a low level component that knows the locations
of the database items, this order restriction is easily met.
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3.6.1 Adding replicas to a running system

While the addition of (previously crashed) replicas is not possible in the Database Replication Prototype
designed in this report, this could be added easily. The following requirements would need to be satisfied:

dynamic groups The Group Communication Service should have the possibility to dynamically change
the configuration of the group of replicas at runtime. This way, the added replica can perform
ABCast invocations and is able to deliver the messages sent to the group.

state transfer mechanism When the added replica joins the group, its database state is not synchronized
with the state of the other replicas in the group. Therefore, there should be a mechanism that allows
the complete database state to be transferred from (one of) the running replicas to the newly added
one.

The dynamic groups requirement is solved by adding a Group Membership Service to the Group
Communication Service. Basically, this service makes sure that the Atomic Broadcast algorithm knows
the different group configurations that exist during the lifetime of the system.

The state transfer mechanism is a harder problem, because transferring the state may involve sending
large amounts data over the network. An additional problem is that for the state to be consistent, the
sending replica may not modify its state during the transfer.” Thus, the mechanism may lead to high
network loads and the delaying of clients connected to the sending replica.

If the replica that joins was previously crashed, the state transfer can be done more efficiently. The
Database System at the joining replica has durably stored the transactions that were committed before
the crash, so only the database modifications since the crash would need to be transferred. Depending on
the amount of modifications between the crashing and the joining of the replica, this “delta” state transfer
can be (much) smaller than a full state transfer.

3.6.2 What if all replicas crash?

If all replicas crash (i.e., zero replicas are running), the replicated database system stops functioning
forever. This because the crash-stop model is assumed: if a process crashes, it stops altogether and never
Tecovers.

A solution to prevent this situation, is to allow new replicas to be added to the system, as described
in the previous subsection. However, this only works when there is at least one replica still running.

In case the system has stopped, the database states that were correct before the crash are still durably
stored on the crashed replicas. One might try to resurrect (one of) these replicas. To uphold the Durability
property, the replica with the most up to date state must be found and resurrected first. Only then, the
other replicas can be added to the system following the standard state transfer procedures.

Note that the first replica to be resurrected can be found as follows: All replicas that were running
before the crash are restarted and first agree on the sequence number of the last message that was deliv-
ered before the crash. The replica with the highest sequence number is the first one that must be added
to the system. Of course, if not all replicas can be restarted, Durability can not be guaranteed.

3.6.3 Clients facing replica crashes

When the replica to which a client is connected crashes, the client must find a new replica and resubmit
the transaction. To detect the crash of the replica, the client can use a failure detection mechanism (for

7A way to shorten the delay of clients is to make an in-memory copy of the state and transferring this copy afterwards. The
sending replica can continue serving replicas immediately after making the copy, which is usually faster than waiting until the
state has been transferred over the network [DMS98].
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example, a mechanism based on timeouts). Next we demonstrate that such a mechanism introduces a
problem.

The problem: update transactions committed twice

In the case of slow network connections, the failure detection mechanism may falsely indicate that a
replica has crashed. It could be that the transaction was committed, but that the replica did not respond
fast enough. Another possibility is that in the case of a commit operation, the replica crashed after
ABCasting the commit. It is possible that the transaction has been committed on every correct replica,
but the crashed replica could not inform the client of this result.

In both cases, the client can decide to resubmit an update transaction to a different replica, even
though the update transaction was already committed. Often, this behaviour is undesirable. For example,
the transaction of transferring a certain amount of money from one bank account to another must not be
applied twice without notice to the client.

A solution: attaching ID numbers to transactions

To prevent the problem outlined before, the client attaches a unique transaction sequence number to every
submitted operation. Such a number can be constructed by combining, for example, the client’s machine
ID, its process ID and a local sequence number. When a client resubmits a transaction, it uses the same
sequence number as used for the first submission.

It is the task of the replicas to detect that an already committed update transaction is resubmitted.
Aborted transactions and queries need not be detected because retrying or executing these multiple times
is not considered harmful. We only sketch the procedure for pessimistic active replication to keep this
section from becoming too detailed:

e Every replica manages a list containing the IDs of the most recently delivered and committed
update transaction on a per client basis. This list is updated by piggy-backing the sequence number
of a transaction on every ABCasted commit operation. The list is thus the same on every replica.

e Using the list, each replica can detect if an operation is delivered on behalf of an update transaction
that has already been committed. If this is the case, the operation is discarded and the transaction
being resubmitted is aborted. Then, the replica informs the client of the duplication and of the fact
that the transaction has already been committed.

3.7 Qualitative comparison of pessimistic and optimistic replication

In this section, the active replication techniques presented are qualitatively compared. As discussed in
section 1.2.1, a replicated database system provides a higher degree of availability® than a centralized
database system. However, the degree of availability provided by the two active replication techniques is
the same, since they both tolerate the crashing of all replicas except one. Therefore, only their expected
performance characteristics are compared in this section.

The main performance criterion considered in this report is the mean response time per transaction,
given a fixed transaction load. In Chapter 5, this criterion is explained in more detail. In this section,
we qualitatively discuss the following five factors that could influence the relative performance of the
techniques:

¢ number of ABCast invocations per transaction

#In terms of tolerated machine crashes.
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¢ amount of processing in addition to the processing performed on a centralized database system

load balancing

e determinism requirements

abort rate

In the next subsections, the performance factors above are explained one by one. In every subsection,
the tradeoff between pessimistic active replication and optimistic active replication are be outlined in
respect to each factor. Then follows a discussion that takes all factors into account. Finally, some rules
of thumb are given to help choosing between the techniques given a particular situation. For a quantitative
comparison, we refer to Chapter 5.

3.7.1 Number of ABCast invocations per transaction

This subsection discusses the number of ABCast messages sent on behalf of a single transaction.

In today’s computer systems, the speed of network communication is usually lower than the processor
speed, so this factor may have a significant impact on the performance. We do not consider the message
size because this does not have a large impact on (local area) network performance.

Pessimistic active replication. In this technique, the number of ABCast messages sent per transaction
depends on the interactivity of the transaction:

e interactive transactions are submitted and ABCast operation by operation, so the number of AB-
Cast invocations per transaction is equal to the number of operations of the transaction

e one-shot transactions are submitted and ABCast at once, so there is | ABCast invocation per

transaction

Optimistic active replication. In this technique, the number of ABCast messages sent per transaction
depends on the type of operations that the transaction contains:

e queries are executed locally, so there is no ABCast invocation at all

¢ update transactions are first processed locally and then ABCast using an update message, so there
is 1 ABCast invocation per transaction

3.7.2 Amount of processing in addition to the processing performed on a centralized
database system

This subsection discusses the overhead incurred by the replication technique, which may slow down the
processing of transactions.

Pessimistic active replication. Submitted operations are immediately ABCast by the replica that was
contacted by the client. Upon delivery, the operations are executed by the Database System without
additional processing. Therefore, there is no processing overhead compared to a centralized database
system.
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Optimistic active replication. Submitted update transactions are first processed locally and then AB-
Cast. Upon delivery, a certification test is performed. This test requires additional processing because
the update message needs to be compared to the write operations of recently committed transactions.

3.7.3 Load balancing

This subsection discusses the amount of operation and transaction processing that is performed indepen-
dently on the replicas. This factor is important for situations of high loads, where performance may be
increased by balancing (parallelizing) some of the processing load across the replicas instead of replicat-
ing all processing on all replicas. We assume in this subsection that the clients are fairly distributed over
the replicas.

Pessimistic active replication. The load is never’ balanced, because there is no independent decen-
tralized processing. All replicas process exactly the same operations and transactions.

Optimistic active replication. Queries and transactions that request abort are decentrally processed
at one replica only. The same holds for the read operations of update transactions. Only the write
operations of transactions for which the client requests commit are processed at every replica (if the
transaction passes certification). So this technique offers considerable load balancing.

3.7.4 Determinism requirements

This subsection discusses the determinism required to guarantee that replicas are always identical.

Determinism can be achieved by constraining the concurrent execution of transactions, thus making
sure that (arbitrary) scheduling decisions do not cause violation of the determinism requirement.!® De-
creasing the amount of concurrency can have an adverse effect on transaction processing performance
because the resources of the system can be utilized less efficiently.

Pessimistic active replication. Every operation is processed deterministically.

Optimistic active replication. Similarly to the previous factor, only the write operations of transactions
that end with a commit are processed deterministically at every replica.

3.7.5 Abort rate

This subsection discusses the probability that a transaction is aborted even though a client submitted a
commit operation.

These forced aborts happen if the replicated database system cannot guarantee one-copy serializabil-
ity unless the transaction is aborted. The client that submitted a forcefully aborted transaction will try to
resubmit it. So from the client’s point of view, the response time for the transaction is slower because
it needs to wait longer before the transaction is finally committed. In general, a high abort rate leads to
slower average response times.

Due to the locking and deadlock prevention schemes adopted (see section 2.2.3), deadlocks do not
occur because of serializability problems local to the replica (i.e., not at the Database Service’s level).

%0One could also say that the load is perfectly balanced in this case because the same load is processed at every replica. Since
this is not at all beneficiary for performance, we decided not to call this load balancing.

'9For example, in the Replication Framework, the Lock Manager, in collaboration with the Scheduler, grants locks in such a
way that determinism is guaranteed where needed.
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Pessimistic active replication. Forced aborts do not occur because all operations are ABCast to all
replicas and then directly submitted to every local Database System. As explained in the previous para-
graph, this system does not forcefully abort transactions.

Optimistic active replication. Because transactions start processing independently on one replica,
some conflicts between transactions are only detected at certification time. As described in subsection
3.3.1, the certification test forcefully aborts transactions when one-copy serializability can not be guar-
anteed.

Furthermore, when an update message does pass certification, locally running transactions may be
forcefully aborted at the time the Lock Manager grants locks to the update message (see section 3.3,
step V).

3.7.6 Discussion

In the previous sections, the two techniques were compared considering one factor at a time only. The
question arises which technique has the best performance when all factors are added up.

There is no clear-cut answer to this question, because the answer depends on the characteristics of
the transaction load that is processed by the system. In subsection 2.2.4, the transaction load was param-
eterized from the client’s point of view. We now consider these parameters in respect to the replication
techniques and the performance influencing factors that were introduced.

Interactivity of transactions In the case of interactive transactions, the pessimistic technique uses an
amount of ABCast invocations that is linear in respect to the number of operations per transac-
tion. The optimistic technique does a significantly better job because it uses only 0 or 1 ABCast
invocation. Because networks tend to be slow compared to CPUs, the pessimistic technique is not
considered feasible for interactive transactions [WPS*00b].

In the case of one-shot transactions, there is not much difference: both techniques use a constant
number of ABCast invocations.

Number of operations per transaction This parameter is orthogonal to both techniques in the case of
one-shot transactions. For interactive transactions, it can make a considerable difference as to the
amount of ABCast invocations. See the previous parameter.

Percentage of commit transactions If the commit percentage is low, many transactions end with an
abort operation. In this case, the optimistic technique uses 0 ABCast invocations per transaction,
whereas the pessimistic technique uses at least 1.

If the commit percentage is high, there is no difference.
Percentage of queries If the query percentage is low, there are many update transactions which means

that both techniques use about 1 ABCast per transaction. However, there is a major difference
between the techniques in respect to the amount of additional processing and the abort rate:

o In the pessimistic technique, there is no additional processing and the abort rate is 0.

e In the optimistic technique, there is additional processing in the form of the certification
step. Furthermore, if the transactions have a tendency to access the same database items (i.e.,
transaction often interfere), the abort rate can be high because of failed certification tests and
locking conflicts.

On the other hand, if the query percentage is high, the optimistic technique uses much less ABCast
invocations than the pessimistic technique. Also, the former balances the query processing load
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across the replicas, which can significantly improve performance in respect to the pessimistic
replication technique.

Number of transactions submitted per time period Because of the load balancing possibilities of the
optimistic technique, it can in some cases handle a higher number of transactions per time period
than the pessimistic technique. For a discussion of these cases, see the previous and the next
parameters.

Fraction of write operations in update transactions A low write fraction means a high fraction of
read operations. In this case, the optimistic technique can load balance these reads and performs
better than the pessimistic technique.

In the case of a high write percentage, there is no difference between the techniques.

There was one factor that was not mentioned when considering the transaction load parameters: the
determinism requirements. This because we did not explain yet how exactly the determinism require-
ments are met for the different techniques (since this is a design level issue). But even if we had this
information, it would not be easy to relate the performance implications of determinism to the character-
istics of the submitted transactions. We therefore do not pursue this topic in detail, but make a general
observation only:

It is likely that the determinism requirements have a more negative influence on the performance of
the pessimistic technique than of the optimistic technique. This because in the pessimistic technique ev-
ery operation needs to be deterministically processed, whereas in the optimistic technique, determinism
is only needed for the processing of update messages.

Rules of thumb  Concluding this discussion, we give the following rules of thumb to determine which
replication technique is best used in a given situation:

* The pessimistic replication technique does not have the drawbacks of added processing overhead
and possibly high abort rates. It follows that this technique should be used when the submitted
transactions:

— are one-shot and mostly update transactions with many writes, or

— are interactive, very short (very few operations per transaction), and mostly update transac-
tions, or

- are mostly update transactions that often interfere, or

- may not risk being aborted (for example, real-time systems could require this to ensure live-
1
ness ')

e The optimistic replication technique should be used in all other cases, because it uses less ABCast
messages and balances some of the processing load.

"'The Database Replication Prototype does never ensure liveness because the Lock Manager may choose to delay a transac-
tion indefinitely. The Lock Manager’s policy could however be changed in order to ensure liveness in the case of pessimistic
replication.
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Chapter 4

Database Replication Prototype

The Database Replication Prototype is a replicated database system that is structured according to the
Replication Framework. Two replication techniques were implemented within the prototype: pessimistic
and optimistic active replication. For comparison reasons, a centralized database system was also created
that uses the same components as the replication techniques. In Chapter 5, the prototype is used to
compare the implemented replication techniques.

In this chapter we briefly discuss the main implementation choices and considerations. Also we
explain how the prototype was tested. For details on the implementation we refer to the source code doc-
umentation. This documentation can be found on the web at: http://1sewww.epfl.ch/~rvandewa

4.1 Implementing the components of the Replication Framework

For the implementation of the components Database Service and Group Communication Service, existing
software was used. Three different implementations of the Replication Manager were developed: one
for each replication technique and one for the centralized database system. The components Client and
Operations are specific to the Database Replication Prototype, so these were also developed as part of
the project.

The implementation language used is Java, because it allows applications to be developed in a rea-
sonably short time. The fact that Java is not a high performance language is not relevant to us: the
prototype will only be used to compare the relative performance of replication techniques.

In the following subsections, we present the software used to implement the Database Service and

the Group Communication Service. We also discuss the limitations of the software and how these were
circumvented.

4.1.1 Database Service: POET

The Database Service is implemented by the POET Object Database [POE97]. This is a database with
many features, but we only use it to store an array of objects that corresponds to the database items, and
for its locking and transaction management. POET satisfies the ACID properties.

POET offers strict two phase locking, but it is not deterministic. The Lock Manager of the Database
Replication Prototype solves this problem by constraining the order in which locks are requested from
POET (when this is needed for the replication technique).

Recall that the optimistic replication technique needs to access the write operations and the read set
of an update transaction when it passes to the committing state, so that it can ABCast an update message
to all replicas. However, POET does not provide this access. Therefore, the Replication Manager itself
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manages a copy of the readset and the writes for all executing transactions.

Another shortcoming of POET is that it does not allow read locks to be released before a transaction
has been committed (even though this is allowed by the strict 2PL specification). The solution adopted
is the following. When the read locks of a transaction need to be released, the transaction is aborted.
Immediately after that, a new transaction is started. This new transaction acquires the write locks that
where held by the old transaction and also executes the write operations of the old transaction. Note that
the abortion of the old transaction and the acquiring of write locks for the new transaction must be done
in one atomic step to prevent other transactions from “stealing™ the locks.

4.1.2 Group Communication Service: OGS

The Group Communication Service is implemented by the Object Group Service (OGS) [Fel98]. OGS is
a prototype that is built on top of CORBA. It is an infrastructure for distributed objects. These objects can
communicate using Group Communication primitives and concepts. In the Database Replication Proto-
type, the replicas play the role of distributed objects and they communicate using the Atomic Broadcast
implementation provided by OGS.

The Atomic Broadcast implementation of OGS satisfies the Atomic Broadcast specification (see
section 2.2.2), but only under the assumption that a majority of the processes do not crash.! The majority
of n processes is equal to n/2+ 1. When the assumption does not hold, the Group Communicate Service
may cease to deliver messages. Because of this, the availability of the Database Replication Prototype
is less than optimal: instead of tolerating the crashing of all but one replica, the Database Replication
Prototype tolerates the crashing of only a minority of replicas.

A problem encountered when using OGS was that it violated the Order property of Atomic Broadcast
in some cases: messages were sometimes delivered out of order at one replica. This problem was fixed
by debugging and correcting the source code of OGS.

4.2 Testing the prototype

While successful tests are never a guarantee for correctness, they do increase the confidence one has in
a system. Therefore, the Isolation and Atomicity properties were tested as described in this section. The
Durability property was not tested.

The system is put under a high load transaction load. Every submitted transaction randomly decreases
some database items by some random values and increased the same amount of items by the same values.
Thus, every transaction modifies the database state, but the total value stored in the database always stays
the same.

If after many committed transactions, the database value is still the same as in the beginning, the
system is likely to guarantee Isolation and Atomicity. This because of the two properties were not
guaranteed, the total value of the database would change.

The Database Replication Prototype was subjected to many test runs and never exhibited a change in
the total database value. Thus, we are confident that the properties are upheld.

'More precisely, OGS’ Atomic Broadcast is based on the Consensus algoritim by [CT96] which requires a majority of
processes to operate.
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Chapter 5

Performance Results and Evaluation

Using the Database Replication Prototype, the performance of replication techniques can be compared.
In this chapter, we compare two techniques: pessimistic and optimistic active replication. This chapter
first presents the parameters that are fixed for all experiments, those that vary across experiments, and the
adopted performance indicators. Following that, it presents the measurement results of various scenarios
and compares the two techniques quantitatively.

5.1 Prototype parameters and environment

In this section, we first define the terminology used for experiments. Then we discuss the prototype
parameters that are fixed for all scenarios and those that are varied across scenarios. Finally, we describe
the hardware/software environment in which the experiments are conducted.

5.1.1 Basic definitions

To talk about the configuration of experiments and the way they are conducted, we introduce the follow-
ing terms:

scenario A scenario is a particular setting of all prototype parameters that may affect the performance
of the replicated database system. Examples of prototype parameters include: the transaction char-
acteristics defined in subsection 2.2.4, the replication technique used and the number of replicas in
the system. The prototype parameters are described in the next subsection.

run A run is an execution of the prototype until some fixed number of random transactions has been
committed. During the run, the prototype and the transactions are parameterized according to a
given scenario. The performance results for a run are obtained by calculating performance indica-
tors using the measurements taken during the run.

performance indicator A performance indicator is a value that characterizes the performance of the
system during a run, for example, the mean response time for committed transactions. A perfor-
mance indicator can be used as a performance criterion to compare runs that are parameterized
according to different scenarios.

experiment An experiment is characterized by a number of (slightly different) scenarios. The goal of
an experiment is to gain insight into the impact of a few prototype parameters on the system’s
performance. This is done by executing runs that are parameterized according to the scenarios and
by comparing the performance indicators of these runs.
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5.1.2 Prototype parameters

The prototype parameters configure the Database Replication Prototype. They can be divided in two
classes: system parameters and application parameters. The system parameters are implementation
choices that are not visible to the client. There are two system parameters: the replication technique
and the number of replicas in the system.

On the other hand, the application parameters depend on the kind of application the client is mod-
eling and are thus visible to the client. These parameters are independent of the implementation. The
application parameters are: the transaction parameters defined in subsection 2.2.4, the database size, the
database object size and the number of clients in the system.

The rest of this subsection explains which of the prototype parameters are fixed, and which are
variable, respectively.

Fixed prototype parameters

Since many prototype parameters are orthogonal to the compared replication techniques, varying these
does reveal characteristics of the prototype that are of interest to us. Moreover, since the possible param-
eter variations are very numerous, some main searching directions had to be chosen to be able to perform
the experiments within the time that was available for the project. These two considerations resulted in
the fixation of the following parameters:

number of operations per transaction: 10. This means that each transaction contains 8 data opera-
tions. The number of data operations is loosely modelled after [TPC94], where the retrieval of
money from an ATM results in a transaction of 3 read operations, 3 write operations and an update
of the ATM’s retrieval history, which we model as the execution of two additional operations.

As stated in subsection 3.7.6, this parameter makes a considerable difference between the replica-
tion techniques in the case of interactive transactions. However, for more than a few operations,
pessimistic active replication is not considered a viable approach. We decided that for this reason,
we do not deeply investigate the characteristics of this case.! Since varying the parameter does not
make a difference for one-shot transactions, we thus not vary it at all.

Note that this parameter might influence the amount of interference between transactions. Because
of the limited time available, we have chosen not to investigate how this affects the replication
techniques.

percentage of commit transactions: 100. This means that clients always request commit.

number of transactions submitted per time period: This parameter can, by design, not be set in the
Database Replication Prototype. This because the number of clients is fixed for a given run and
because the clients wait for the previous transaction to finish before submitting the next (see also
the varied number of clients parameter).

However, this number is related to the measured throughput of the system: the number of transac-
tions it commits per time period. Let C; be the set of transactions committed in a run r, then we
define:?

#C,

Ihroughput(r) = m

'Indeed, as is explained in subsection 5.4.3, doing multiple ABCast invocations per transaction costs so much time that
pessimistic active replication with interactive transactions is not viable.
24 C is the cardinality of a set C, i.e., the number of elements C contains.




fraction of write operations in update transactions: 0.5. This is roughly in line with the ATM case
described before.

As described in subsection 3.7.6, varying this fraction might reveal differences between the replica-
tion techniques as to their load balancing of read operations. However, in the Database Replication
Prototype, the execution of operations takes very little time in comparison to ABCast invocations
(see subsection 5.4.1). For this reason, we do not expect differences to be measurable, and thus,
we do not vary this fraction.

database size: 1000 database objects.

Changing this parameter influences the amount of transaction interference. Because of the limited
time available, we have chosen not to investigate how transaction interference affects the replica-
tion techniques. Therefore, this size is fixed.

database object size: 1 byte.

This number is chosen to minimize both the memory usage of Operations and the size of commu-
nication messages. Because of the prototype character of the project, the memory management
of the Database Replication Prototype and of the Group Communication Service is not optimized.
Choosing a small object size avoids problems due to excessive memory usage.

Variable prototype parameters

The following parameters are varied across the scenarios. We only give a global impression of the role
these parameters play in the experiments. In the sections about the measurement results we exactly
describe and motivate the parameters that are varied for a particular experiment.

replication technique: pessimistic active replication and optimistic active replication.

For analysis and comparison reasons, the performance of a centralized database system is also
determined. This system is built using the same components and in the same environment as the
Database Replication Prototype.

number of replicas: 3 to 5. The case of 2 replicas can not be examined because the Atomic Broadcast
implementation of OGS requires at least 3 replicas to be able to deliver messages.

A large number of replicas increases the availability of the system, but might incur overhead be-
cause the ABCast primitive needs to synchronize messages across more replicas. On the other
hand, this overhead may be compensated because of load balancing.

interactivity of transactions: interactive and one-shot.

percentage of queries: 0 to 99. We do not to set this percentage to 100 because a read-only system
would be implemented in a very different manner than the Database Replication Prototype (for ex-
ample, the ABCast primitive, lock management and certification are not needed in such a system).

From the system’s point of view, this parameter influences the behaviour of the replication tech-
niques in various ways (see subsection 3.7.6).

From the client’s point of view, the percentage of queries depends on the kind of application being
modelled: an application with few queries, such as an ATM application, or an application with
many queries, such as web pages. Observe that most web pages are read by many visitors and
changed by only a few editors.

Thus, since this parameter is significant internally as well as externally, it plays an important role
in the experiments that compare replication techniques.
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number of clients: 1 to 36. These clients are evenly distributed over the replicas.

The number of clients determines the degree of concurrency in the system. To see this, recall
that each client submits its transactions sequentially. It follows that the maximum number of
transactions concurrently processed by the system is equal to the number of clients. Note that
the throughput depends on the number of clients because the degree of concurrency influences
resource utilization, and thus, the throughput.

5.1.3 Scenarios and experiments revisited

Using the prototype parameters as defined in the previous subsections, this subsection introduces some
notation for scenarios and experiments.

A scenario is denoted by a 5-tuple containing one valid value for every variable parameter. The
values are ordered in the same order as their respective parameters in the previous subsection. Because
the fixed parameters defined in subsection 5.1.2 have the same value in every scenario, they are not
explicitly mentioned in the tuple. For example, let some scenario s be defined as follows:

s = (pessimistic, 3, interactive, 50%, 15)

This means that s is a scenario in which the pessimistic replication technique is used in a system
with 3 replicas. The transactions are interactive and 50% of them are queries. Finally, the total number
of clients in the system is 15.

An experiment is denoted by a 5-tuple containing a set of valid values for every variable parameter.
The sets are ordered in the same order as their respective variable parameters in subsection 5.1.2. For
example, let some experiment e be defined as follows:

e = ({pessimistic, optimistic}, {3, 4, 5}, one-shot, {0% — 99%; 10%}, 15)

We interpret e as the set containing all possible scenarios that can be constructed from the 5-tuple. A
scenario can be constructed if its first value is included in the first set of e, its second value in the second
set of e, etc. Two example scenarios that can be constructed from e: (optimistic, 4, one-shot, 20%, 15)
and (optimistic, 3, one-shot, 99%, 15).

About the notation adopted for experiments: For singleton sets, the set brackets are optional. A
notation in the form {a — b; c} denotes the set that contains a,b and alld = a + ncjn € NAd < b. In
the case of experiments with a centralized database system, the number of “replicas” is always 1.

5.1.4 Hardware/software environment

The experiments with the Database Replication Prototype were conducted using 5 Sun Solaris worksta-
tions connected by a Local Area Network. Each workstation hosts one replica as well as the clients that
connect to this replica.

More precisely, the clients are modelled as separate threads that run in the same process as the
replica they connect to. The client/server communication is just the invocation of the process method
of the replica’s Scheduler by the client. This means that the communication between the client and
the replicated database system takes almost no time, which is just fine because this communication is
orthogonal to the performance comparisons made in this chapter.

The main specifications of the workstations and the network are as follows:
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workstations In scenarios with 1 to 4 replicas, 1 to 4 Ultra-60 workstations are used, each with a
360MHz CPU and 256MB of RAM.

In scenarios with 5 replicas, 1 Ultra-30 workstation is used in addition to the 4 Ultra-60’s above.
The Ultra-30 is equipped with a 248MHz CPU and 128MB of RAM.

network All workstations are connected via an Ethernet-LAN running at 100Mbps.

Since the workstations and the network were used for standard office applications during workdays,
experiments were conducted only during night hours and weekends to avoid interference from these
applications.

The Database Replication Prototype is compiled and executed using the Java Development Kit 1.1.7B
provided by Sun.

5.2 Performance indicators

For the performance comparison of the active replication techniques we use the following main perfor-
mance indicators: mean response time per committed transaction and throughput. To gain insight into
the tradeoff between CPU utilization and network utilization, the network and processing delays per
committed transaction are considered. In the case of the optimistic replication technique the abort rate
is used to assess the impact of abortions due to the fact that this technique is certification based (see also
subsection 3.7.5).

This section defines the mentioned indicators, but first it gives some basic definitions.

5.2.1 Basic definitions

From the client’s point of view, the time it takes for some Operation o to be processed by a database
system is the time between the submission of o and the reception of o's result. The fact that in many
cases o is processed at all replicas is of no importance to the client. In the following definitions we
therefore only consider the time the database system spent on processing o to obtain the result that the
client received.

proc(o) The amount of time that o spent in the components Database Service and Replication Manager
from the moment o is submitted by the client, until the moment the client received o’s result.

Some factors influencing this time are bookkeeping activities in the Scheduler, the waiting for
locks in the Lock Manager and the execution of Operations by the Database Service.

net(o) The amount of time that o spent in the component Group Communication Service from the mo-
ment o is submitted by the client, until the moment the client received o’s result.

If 0 is ABCast, this time is the sum of: the time between the ABCast of o at some originating
replica p and the delivery of o at some replica g, and the time it takes for the result of o to be sent
back from q to p.

If 0 is not ABCast, this time is zero.
total(o) The amount of time between the moment o is submitted by the client, until the moment the
client received o’s result.

This value is equal to: proc(o) + net(o).

*Recall that in the case of the processing of o on all replicas, the result returned to the client is the first result that arrives at
the originating replica.
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5.2.2 Mean response time for committed transactions

The response time for a committed transaction is loosely defined as follows: the time between the sub-
mission of the first Operation of the transaction by the client and the moment at which the client receives
the response that the transaction was committed.

This definition has two implications:

e transactions that end with an abort operation are not considered, and

e transactions that are forcefully aborted are only considered when the client resubmits these (pos-
sibly multiple times) until they are committed. The response time is then defined as follows: the
time from the submission of the first Operation of the first forcefully aborted transaction until the
reception of the “commit succeeded” response.

Let O be the collection of all Operations that are submitted on behalf of T. The response time for a
committed transaction T is then formally defined as follows:

total(T) = > _ total(o)

o€0

In case that T commits the first time it is submitted, O contains exactly those Operations that form T.
When T is forcefully aborted one or more times, some Operations of T appear multiple times in O.

Let Cr be a set containing all transactions committed in a given set of runs R. The performance
indicator mean response time for committed transactions is defined as follows:

ZTGCR total(T)
#Cr

To illustrate this definition, Figure 5.1 shows a typical frequency diagram for 100 runs of 2000
submitted transactions each. This is an example only, the full results are presented and analyzed in
section 5.4. All runs the figure were executed according to the following scenario: (pessimistic, 3,
one-shot, 50%, 15). The diagram shows the relative frequency distribution of the response times of
committed transactions: the higher the line for a given response time, the more often that response time
was observed during the runs. The mean is plotted as a vertical dotted bar, its value is 1221 ms.

mean(R) =

committed transactions

/|
IVIEAN
N

0 500 1000 1500 2000 2500 3000

-> response time (ms)

Figure 5.1: Typical distribution of response times for pessimistic replication
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5.2.3 Throughput

The mean response time for committed transactions can be directly converted to the throughput of the
system: the number of transactions it commits per time unit. Let #clients(r) denote the number of
clients in a run r, then:

throughput(r) = #clients(r)/mean(r)

So the throughput takes into account the number of clients. When comparing scenarios that have
the same number of clients, we use the mean response time. When the number of clients varies, we
use the throughput. Note that the throughput performance indicator plays an important role in industry
benchmarks such as [TPC94].

5.2.4 Network and processing delays for committed transactions

Let O be the collection of all Operations that are submitted on behalf of T. Similarly to the response
time, the network delay and the processing delay for a committed transaction are defined:

net(T) = Znet(o)

[1={0]

proc(T) = Znet(o)

o€0

5.2.5 Abortrate

The abort rate in a run r is defined as follows:

number of transactions forcefully aborted

abortRate(r) = 2 :
( ) total number of transactions committed or aborted

This performance indicator only applies to scenarios featuring the optimistic replication technique,
since in the pessimistic replication technique transactions are never forcefully aborted.

5.2.6 Separating queries and update transactions

As described in section 3.3, the optimistic replication technique processes queries on one replica only,
whereas update transactions are processed on all replicas. Because of this fundamental difference, we
consider queries and update transactions separately in some comparisons.

Let R be a set of runs. mean(R|q) denotes the mean response time for committed queries in R.
mean(R|u) for the mean response time for committed update transactions in R.

To illustrate these definitions, Figure 5.2 shows a frequency distribution similar to Figure 5.1. How-
ever, the scenario is different: (optimistic, 3, one-shot, 50%, 15). The leftmost diagram shows all
committed transactions, mean(R) = 858. In the middle diagram the committed queries are plotted,
mean(R|q) = 187. The rightmost diagram shows the committed update transactions, mean(R|u) =
1540.

Since the scenario specifies 50% queries, one might expect that:
mean(R) = (mean(R|q) + mean(R|u))/2 = 864

However, this is somewhat different from the actual value of mean(R) (858). This difference is due
to two factors. Firstly, the implementation only approximates the 50% value because it uses a random
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generator to decide on the interactivity of a submitted transaction. Secondly, some of the submitted
transactions have been forcefully aborted, influencing the number of queries and update transactions
actually committed.

all committed transactions committed queries committed update transactions (scaled)
T T 1 T T T ¥ T T
: mean: 858 —l: mean: 187} | Lmean: 1540
1 L |
| t
; i |
T 1 T T "
| | |
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-> response time (ms) -> response time {Ims) -> response time (ms)

Figure 5.2: Typical distribution of response times for optimistic replication

5.2.7 Motivation for the performance indicators

We have chosen to use the mean transaction response time and the throughput as the main performance
indicators. Advantages of these indicators are that they are very commonly used and that they take into
account all measured values.

A disadvantage is that they do not include information on the distribution of the measured values.
A related problem is that for interactive applications (i.e., those involving impatient end users), the
maximum expected response time may be more interesting than the mean response time. We address
these issues when discussing the typical frequency distributions for the response times in both replication
techniques (see section 5.4.1).

5.3 Data gathering

This section explains how reliable experimental data was gathered using the Database Replication Pro-
totype. It discusses the stability of the prototype during long runs and analyzes the behaviour of the
throughput of the system when the concurrency level is varied. (The comparison of replication tech-
niques is treated in section 5.4.)

5.3.1 Reliable performance indicators

As defined in subsection S5.1.1, an experiment is a set of scenarios. The performance indicators for a
scenario are obtained by conducting runs according to this scenario.

A way to obtain statistically reliable indicators for a scenario is to conduct one run parameterized ac-
cording to the scenario. In this run, transactions are submitted and response times are measured until the
performance indicators reach a certain degree of statistical stability. This approach has two disadvantages
that make it infeasible for experiments conducted using the Database Replication Prototype:

e As the experiments are conducted in an office environment, the performance indicators obtained
during a single run can be subject to interference. Such interference can be caused by, for exam-
ple, users logging in at unexpected times, the operating system behaving unexpectedly, network
congestion due to web-site traffic, etc.
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o The approach assumes that the system reaches a steady state [TPC94] after some number of trans-
actions is processed and remains in that state ever after. The system is in a steady state when
submitting any number of additional transactions does not noticeably influence the performance
indicators.

The steady state assumption does not hold for the Database Replication Prototype. More precisely,
the performance of the Atomic Broadcast primitive offered by OGS declines over time: the later
a message appears in the total order, the slower it is delivered at all replicas (i.e., net(T) gets
larger over time). Another problem of OGS is that it crashes after delivering about 3000 Atomic
Broadcast messages.* Note that these behaviours are due to the prototyping nature of OGS: more
mature implementations usually do not crash after sending just a few thousand messages and the
delivery time does not vary as a function of the system’s lifetime.

For a quantitative illustration, see Figure 5.3. It shows the evolution of the network and processing
delays of transactions during the lifetime of the system. The scenario is: (pessimistic, 3, one-shot,
50%, 15). net(T) is short for the first 30 transactions, but after that it more or less stabilizes at
1200 ms. However, after the 300th transaction the times start to increase steadily, reaching more
than 1300 ms per transaction. The run was stopped after about 670 ABCast invocations per replica
(the system-wide total was fixed at 2000). Aside from a slow start, proc(T') is constant over time.
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Figure 5.3: Evolution of network and processing delays

As is clear from the figure, net(T) dominates over proc(T'). Recall that the performance indicator
mean response time for committed transactions is an average over the sum of net(T') and proc(T).
The instability of net(T') thus disturbs the comparison of replication techniques, because these
utilize varying amounts of ABCast messages during the lifetime of the system.

Since both disadvantages are particularities of our implementation, they need to be overcome to
obtain performance comparisons that are generally applicable. The solution adopted is to measure the
performance indicators of a scenario s by performing multiple short runs parameterized according to
s. Now, random interference is ruled out by spreading the runs over time and by interleaving the runs of
different scenarios.

Furthermore, the performance degradation of Atomic Broadcast is overcome by stopping each run
when either 2000 messages have been delivered or 8000 transactions have been committed. The latter
bound is imposed to prevent runs from taking too long in scenarios with very few ABCast messages.

“These problems are likely due to the fact that OGS does not garbage collect certain buffer structures, leading to unbounded
memory usage, decreasing performance and crashes. The problems were discovered when the project was already in an ad-
vanced stage, so it was not doable to replace OGS by another implementation.
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By defining runs this way, we ensure a fair comparison between the techniques: when 25% or more
of the committed transactions in a given run require an ABCast message to be sent, all techniques ob-
serve exactly the same characteristics of the Atomic Broadcast implementation. If less than 25% require
ABCast messages, the impact of the ABCast performance degradation becomes sufficiently small for it
not to have a disturbing influence.

Stability of the Scheduler, Lock Manager and Database Service In the previous discussion, we did
not consider whether components other than the Group Communication Service reach a steady state. This
is important because the number of transactions committed may vary between 2000 (if all transactions
require an ABCast message) and 8000 (if less than 25% require ABCast). In Figure 5.4, proc(T) is
shown just as in Figure 5.3, but now for a centralized database system. The scenario is: (centralized, 1,
one-shot, 50%, {5, 10,15}).
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Figure 5.4: Evolution of the processing delay in a centralized database system

The number of clients is varied to approximate the concurrency levels of the two active replication
techniques. In the case of 3 replicas and 15 clients, the pessimistic technique has a concurrency level
of 15 on every replica, while for the optimistic technique, it varies between 5 and 15 according to the
load balancing. The figure shows that for all levels of concurrency, proc(T) is more or less constant over
time. The conclusion is that the Scheduler, Lock Manager and Database Service indeed reach a steady
state: varying the number of transactions does not disturb the performance indicators.

Number of runs per scenario To decide how many runs need to be conducted to obtain statistically
relevant performance indicators for a scenario, we conducted 100 runs per scenario for the following
typical experiment. In Figure 5.5 mean(s) is plotted for ({pessimistic, optimistic}, 3, one-shot, 50%,
15). Every point plotted corresponds to the mean response time for committed transactions, averaged
over batches of 5 runs.

In the optimistic scenario, mean(100 runs) = 858. The minimum and maximum observed for
batches of 5 runs are 843 and 868, and the standard deviation for all 20 batches is 6.5. Assuming
that the mean computed over 100 runs is a good approximation for mean(s), it is highly probable that
the mean computed using any 5 runs is within 2% of mean(s). For the pessimistic scenario, the numbers
are similar.

The performance indicators in the rest of this chapter are computed over at least 5 runs. Since the
scenarios considered are similar to the scenarios in Figure 5.5, the error for the mean in these scenarios
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Figure 5.5: Mean response time observed during 100 runs, averaged per 5 runs

is very likely also smaller than 2%. Following a similar procedure, the error for the abortRate(s) is
determined to be smaller than 5%.

5.3.2 Optimizing throughput

In real world situations, the number of clients is usually determined by the application. Therefore, we do
not vary this number when comparing replication techniques in the next section. Still, we must choose an
appropriate value for this parameter. In line with [TPC94], we use a value that (more or less) optimizes
the throughput. The current subsection explains how this value was determined.

As described in section 5.1.2, the number of clients determines the concurrency level of the Database
Replication Prototype. In order to find the concurrency level that results in a high throughput, we con-
ducted the following experiment: (centralized, 1, one-shot, {0%,50%, 99%}, {1 — 10;1} U {12, 15,
21, 36}) (for the moment, we only consider the centralized case).

Figure 5.6 shows the throughput as a function of the number of clients. For 3 to 5 clients, throughput
is more or less optimal. Then it starts to degrade to about 50% of the maximum, at which it stabilizes
(from 15 clients and up).
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Figure 5.6: Throughput in a centralized database system
The general trend shown is explained as follows: 1 or 2 clients poorly utilize the available resources

because the system wastes a considerable amount of CPU time waiting for /O operations to complete.
In the case of 3 to 5 clients, the system can use all resources with limited transaction interference: a
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submitted transaction can obtain all its locks without being delayed. When more than 5 clients are
used, transactions start interfering, so the probability that a submitted transaction is delayed increases.
From an implementation point of view, delaying a transaction means that its Java thread is blocked
and later restarted when the requested lock is available. The fact that Java thread operations are very
time-expensive explains the steep drop for 6 to about 15 clients, because transaction interference rises
significantly during this interval. For more than 15 clients, the transaction interference increases less
quickly, leading to a more gentle decline of the throughput.

The similar shape of the three lines indicates that the behaviour of the throughput is independent
of the query percentages. However, the throughput for high query percentages is better than for low
query percentages. This is explained by the fact that update transactions potentially interfere with both
queries and other update transactions, leading to locking conflicts and delays. On the other hand, queries
only delay when they interfere with update transactions. So, the higher the query percentage, the less
transactions are delayed and the higher the throughput.

We have no explanation for the throughput drops in the scenarios with 7 clients and in the scenario
with 4 clients and 99% queries. Maybe they are due to peculiarities in POET’s transaction scheduling or
Java’s thread scheduling mechanisms.

Throughput in replicated scenarios To have a good throughput value in a replicated system, the
number of transactions concurrently processed on each replica should be optimal. However, the replica-
tion technique chosen influences the load balancing across replicas and thus the number of transactions
concurrently processed on each replica.

We decided to set the total number of clients to 15 in scenarios with 3 or 5 replicas and to 16 in
scenarios with 4 replicas. This way, the number of transactions concurrently processed varies between,
approximately, 3 and 16 (dependent on the replication technique, the query percentage and the number
of replicas).

A possible drawback of this choice is that for the pessimistic replication technique, the number of
concurrent transactions at each replica is 15 or 16 because all processing is replicated. We do not consider
this a serious problem for the following reasons:

e The network time plays a dominant role in this technique (see section 5.3.1), so the performance
loss due to the suboptimal concurrency level does not have a large influence on the overall perfor-
mance.

e The alternative of allowing only one client per replica results in the desired 3 to 5 concurrent
transactions on all replicas. However, such a low number of clients per replica would be too
distant from real world situations.

5.4 Quantitative comparison of pessimistic and optimistic replication

In this section we present and discuss the performance results obtained for the pessimistic and the opti-
mistic replication techniques. First, we show the frequency distributions of two typical scenarios to get
a general idea of the characteristics of each technique. Then, we present the behaviour of the techniques
in case the query percentage is varied, because this parameter is important to the application as well as to
the replication technique. After this, we discuss the influence of the interactivity of transactions on both
replication techniques and explain why we do not consider interactive transactions in other experiments.

Since scalability is an important topic, we extensively discuss the performance of the techniques
when the number of replicas is varied. We conclude by giving a summary of the results. We also state
the limitations of our approach and discuss some possible improvements of the optimistic technique.
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5.4.1 Frequency distribution of response times

We discuss the general characteristics of the two techniques by showing the frequency distribution of
the response times for two typical scenarios. The experiment conducted is: ({pessimistic, optimistic},
3, one-shot, 50%, 15). The submitted transactions contain random operations that uniformly access all
database objects. Hereafter, the scenario that features the pessimistic (optimistic) technique is called s,
(0)-

Figure 5.7 shows the frequency distribution for query response times and update transaction response
times in s,. For the frequency distributions in s,, see Figure 5.8. Next, we discuss and compare several
aspects of the distributions.

committed queries committed update transactions
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Figure 5.7: Frequency distribution of response times for pessimistic replication
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Figure 5.8: Frequency distribution of response times for optimistic replication
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General shape The frequency distributions, except for the one showing the queries in s,, have the same
shape. This is explained by the fact that in the corresponding scenarios, one Atomic Broadcast invocation
is performed for each transaction. Recall that the time required for sending an ABCast message is
dominant over all other transaction processing (see section 5.3.1). Thus, the shape is formed by the
Atomic Broadcast primitive.

Atomic Broadcast Figure 5.9 separately shows the distribution of the network delays (i.e., ABCast
delays). Clearly, it has the same Gaussian shape as seen in Figures 5.7 and 5.8.

0 1000 2000 3000 4000

network delay (ms)

Figure 5.9: Frequency distribution of network delays

The shape resembles the Gaussian distribution for the following reason. The Atomic Broadcast
primitive is built on top of a stack of network protocols that each manage message queues. Each message
passes through these queues and risks being delayed in every queue. The most likely case is that a
message is delayed by some of these queues and not delayed by others. It is less likely that a message is
queued almost nowhere or almost everywhere. When many messages are sent, this results in a Gaussian
distribution. Because a message requires a minimum time to pass through the protocol stack and be
transmitted over the network, even when it is never queued, the response time does not get below a
certain minimum value. The minimum value observed was 131 ms.

Queries in optimistic replication In s,, the Atomic Broadcast primitive is not used for queries. The
result is that most queries take no more than 15 to 20 ms, as can be seen in the close-up. Some queries
take longer: they are delayed because of a locking conflict with some other transaction. Queries that take
very long are probably delayed by a write lock held by a committing update transaction: such a lock is
not released until the update transaction has been delivered and certified, which may take a few seconds.
Also, some queries have been forcefully aborted and resubmitted, extending their response time.

Extreme values For update transactions, the maximum response time observed is 4313 ms in s, and
15458 ms in s,. For queries, the maxima are 3021 ms and 5907 ms, respectively. In s,, the maxima are
lower than in s, because transactions are never forcefully aborted in s, whereas in s,, the abort rate is
6.9%. For the same reason, the distributions are skewed more in s, than in s, (i.e., in s, the “tails of the
distributions” are longer and contain more transactions).

The difference between the techniques is larger for update transactions than for queries. This is
explained by the fact that if an update transaction is forcefully aborted, multiple expensive ABCast in-
vocations are needed which severely slow down the transaction. For queries, resubmissions are less
expensive.
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Queries vs. update transactions Clearly, queries and update transactions behave very differently in
So- In s, however, the distributions are nearly the same for both types. The conclusion is that in scenarios
featuring the pessimistic technique, a transaction’s response time does almost not depend on its type.’

5.4.2 Percentage of queries

As noted in section 5.1.2, the percentage of queries parameter is important when comparing replication
techniques. The parameter characterizes the application (i.e., many queries or many update transactions)
and has a significant effect on the techniques (i.e., a varying number of ABCast messages per transaction).
For these reasons we vary the query percentage in all following experiments. We do not show the
frequency distributions but limit ourselves to the two performance indicators mean response time and
abort rate. In order to shorten the text somewhat, we use the terms PR and OR for pessimistic replication
and optimistic replication, respectively.

This subsection discusses how the query percentage affects the two techniques in the case of 3
replicas. Figure 5.10 shows mean(s) for the scenarios in the experiment ({pessimistic, optimistic}, 3,
one-shot, {0%,25%} U {50% — 99%; 10%}, 15). Queries and update transactions are displayed in sep-
arate diagrams because there is a considerable difference between the way the techniques handle these.
The lines for queries start at 25% because queries are not submitted in scenarios with a query percentage
of 0%.
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Figure 5.10: Mean response time per technique for varying query percentages

Queries The diagram on the left shows that queries are handled about 6 times faster in OR than in PR,
independent of the query percentage. Recall that in OR queries are only processed locally, while in PR
queries are Atomic Broadcast to all replicas. The slowness of the ABCast primitive of OGS is the main
cause for the observed difference.

In both techniques, the response time goes down as the query percentage increases. The reason for
this is that the transaction interference decreases (since queries do not interfere with queries). However,
in relative terms the decrease is much larger for OR. To see this in the extreme case, compare the response
time for 99% queries to that of 25% queries: OR gains about 50% while PR gains about 5%. The reason
for this is the load balancing capability of OR: the processing load on every replica decreases as the query
percentage increases, leading to lower response times. Though some queries were forcefully aborted in
OR (see next paragraph) this does not have a significant impact because resubmitting and reprocessing a
query is not very expensive.

3This is orthogonal to the query percentage parameter because this parameter affects the amount of transaction interference
and thus the response time of all transactions.
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Update transactions The diagram on the right shows that in most cases, PR handles update transac-
tions 20% to 30% faster than OR. The difference is relatively small because in both techniques a slow
ABCast is used per update transaction. It is due to the fact that for low query percentages the abort rate
(in OR) is noticable: from 13% for 0% queries to 5% for 60% queries (see the curve for 3 replicas in
Figure 5.15). Aborting update transactions is expensive because it is resubmitted and ABCast again,
leading to two or more ABCast invocations (or more) for the same transaction.

For query percentages beyond about 85%, OR does better than PR. In these cases, relatively few AB-
Cast messages are sent in OR. The load on OGS is thus very low, resulting in a much better performance
of the Atomic Broadcast primitive and lower overall response times.

5.4.3 Interactivity of transactions

In most experiments we consider one-shot transactions only. This section shows how the replication
techniques behave in the case of interactive transactions. Also, it explains that interactive transactions
are (1) not feasible in pessimistic replication and (2) exhibit the same behaviour as one-shot transactions
in optimistic replication. Though it is not shown in this section, the conclusions also apply when the
number of replicas is varied.

Optimistic replication Figure 5.11 shows mean(s) for the experiment (optimistic, 3, {one-shot, in-
teractive}, {0% — 99%;25%}, 15).° The mean response time for interactive transactions is always
approximately 200 ms larger than the mean for one-shot transactions. The reason is that for interactive
transactions, the client repeatedly invokes the originating replica for every operation, while for update
transactions, the client invokes the replica only once. Since (1) this overhead is some constant time for
all transactions and (2) all other processing is the same in both scenarios, the difference between the
mean response times in both scenarios is constant. The figure shows that excluding this difference, the
techniques behave the same in both situations (the response times decline in the same way when the
number of queries is varied).
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Figure 5.11: Interactive vs. one-shot transactions in optimistic replication

Pessimistic replication Figure 5.12 shows mean(s) for the experiment (pessimistic, 3, {one-shot, in-
teractive}, {0% — 99%;25%}, 15). The mean response time for interactive transactions is almost 8
times higher than the mean for one-shot transactions. This is explained by the fact that 10 (slow) ABCast
messages are sent per interactive transaction instead of 1 per one-shot transaction.

®Because it does not influence the conclusions, we do not separate queries and update transactions in this section. Also note
that the linear character of the curves is accidental.
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When we consider interactive transactions and compare the two techniques, the mean response time
in PR is at least 4 times the mean in OR.

For one-shot transactions, both techniques have comparable response times: for few queries, PR
performs better, whereas for many queries, OR wins.
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Figure 5.12: Interactive vs. one-shot transactions in pessimistic replication

Conclusion For interactive transactions, optimistic replication outperforms pessimistic replication by
far. This large difference makes the pessimistic technique infeasible for all scenarios that feature interac-
tive transactions. For one-shot transactions, the response times of both techniques are similar. Therefore
we focus on this transaction type in other experiments.

5.4.4 Scalability

This section examines the scalability properties of the two replication techniques, i.e., the behaviour of
the techniques when the number of replicas is varied. In both replication techniques, adding replicas
increases the availability of the system. However, because of increased communication overhead, adding
replicas may hurt performance. In this section we quantify this tradeoff. We show that in most scenarios,
performance decreases, but that in some scenarios, the optimistic technique scales nicely: adding replicas
then results in sustained or increased performance.

The experiments presented in this subsection are similar to the experiment discussed in subsec-
tion 5.4.3. The difference is that here, the number of replicas is varied as well. For a discussion of
the behaviours that are independent of the number of replicas we refer to subsection 5.4.3. The number
of clients is 15 or 16 (depending on the number of replicas in a scenario) because the implementation
requires that there is an equal amount of clients on every replica. To compensate for this variation we
use the throughput as the performance indicator.

Pessimistic replication Figure 5.13 shows the results for the experiment (pessimistic, {3,4,5}, one-
shot, {0%,25%} U {50% — 99%; 10%}, 15 or 16). Queries and update transactions are mixed because
their response times (and their throughputs) are the same (subsection 5.4.1). The interpretation of the
figure is straightforward: pessimistic replication does not scale well because the throughput decreases
significantly as replicas are added. This is explained by the fact that the Atomic Broadcast primitive
offered by OGS gets slower when a message must be sent to a larger group of processes.

Optimistic replication Figure 5.14 shows the results for the experiment (optimistic, {3,4,5}, one-
shot, {0%, 25%} U {50% — 99%; 10%}, 15 or 16). Next, we treat the two diagrams separately.
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Figure 5.13: Throughput of pessimistic replication for varying numbers of replicas
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Figure 5.14: Throughput of optimistic replication for varying numbers of replicas

queries For five replicas, the throughput is lower than for 3 or 4 replicas since the fifth replica runs on
a significantly slower machine (see subsection 5.1.4). The scenarios with 3 and 4 replicas exhibit
approximately the same performance. The reason is that for high query percentages, about 5 and
4 transactions are concurrently processed in the cases of 3 and 4 replicas, respectively. As can be
seen in Figure 5.6, throughput is approximately the same for these amounts of clients. Thus, for
queries the number of replicas can be scaled to 4 without hurting performance.

update transactions As the number of replicas increases, the throughput gets lower without exception.
This is mainly because update transactions depend on the slow Atomic Broadcast primitive. Like
for the pessimistic technique, the time an ABCast message takes goes up when the number of
replicas increases. A secondary negative influence is the abort rate which grows when replicas
are added (the abort rate is treated in the next paragraph). Thus, as far as update transactions are
concerned, scaling costs performance.

Abort rate Figure 5.15 shows the abort rate for the optimistic replication experiment described in the
previous paragraph. We distinguish two trends: (1) the abort rate goes down when the query percentage
increases and (2) the abort rate goes up when the number of replicas increases. Next we explain both
trends.

query percentage Forceful aborts are only caused by update transactions. According to the result of

the certification test, an update transaction is either committed or forcefully aborted because of a
conflict with another update transaction. When it is committed, it potentially causes the forceful
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Figure 5.15: Abort rate

abort of locally executing transactions. When the query percentage increases, less and less update
transactions are processed and certified during a run, leading to a lower abort rate.

number of replicas As the number of replicas grows, processing becomes more and more decentralized.
We explain why this decentralization leads to a higher abort rate using the following example. First
recall that conflicts between transactions processed at different replicas are detected afterwards,
at the certification test. Then imagine that 5 update transactions are processed on, and fairly
distributed over, a set of either 3 or 5 replicas:

o In the case of 3 replicas, two replicas each process two transactions and one replica processes
one. When each transaction is certified, it is checked if it conflicts with some other committed
transaction. Now imagine that one of the two transactions originating from the same replica
is certified and committed. Sometime later, the second transaction originating from the same
replica is certified. When it is compared to the first transaction, it never conflicts because
because both transactions originate from the same replica. On this replica, the Lock Manager
prevented the transactions from conflicting. The same holds for the other pair of transactions
processed at the same replica. Of course these transactions may still conflict with the 3
transactions originating from other replicas.

o In the case of 5 replicas, every transaction runs on a different replica. Because there is no
synchronization between the transactions before they are certified, they could conflict with
any 4 of the other transactions.

The conclusion is that for 3 replicas, conflicts are somewhat less likely to occur than for S replicas,
as is illustrated by Figure 5.15. As stated in section 5.3.1, the differences for individual points
might be off by up to 5%. For example, in scenario (optimistic, 4, one-shot, 0%, 16) the abort rate
lies within 14.25% and 15.75%. Since the measured points show a consistent behaviour, i.e., the
lines between them do not cross, we think the figure does illustrate the effect described.

5.4.5 The big picture

In the previous subsections, we looked at the performance tradeoff between the replication techniques
from different angles and explained the behaviours encountered. In this section we combine the results
and present a brief overview of the tradeoff between the centralized approach, the pessimistic technique
and the optimistic technique.
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Figure 5.16 compares the throughput in a centralized database system, in pessimistic replication and
in optimistic replication. The two replicated systems contain 4 replicas (machines). The centralized
database system runs on one machine. To the system, 16 clients are connected. This means 4 clients per
replica in the replicated case and 16 clients on one machine in the centralized case. The query percentage
is varied from 0% to 99% because the main benefit of optimistic replication is that queries are processed
on one replica only. All transactions are counted, i.e., queries as well as update transactions.
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Figure 5.16: Throughput for centralized and replicated scenarios

The figure shows that the performance of pessimistic replication is very poor and that it is only bet-
ter than active replication when the transaction load contains few queries. From 25% queries and up,
optimistic replication outperforms pessimistic replication while offering the same degree of availability.
From 93% queries and up, optimistic replication starts performing much better than a traditional central-
ized database system, at the same time guaranteeing higher availability than this traditional system.

Conclusion In slow, large-scale networks (e.g., the Internet), optimistic replication outperforms pes-
simistic replication for most transaction loads. Furthermore, in situations with very few update transac-
tions, optimistic replication can achieve true load balancing: it performs better than a centralized database
system subjected to the same load.

However, when update transactions form at least 10% of the load, optimistic replication does not
scale well from a performance point of view. The reason is that the communication overhead grows
significantly when the number of replicas increases. Another problem of optimistic replication is that the
abort rate increases when replicas are added, even when the overall load on the system remains constant.
This problem is typical for optimistic replication and does not depend on the speed of the network.

5.4.6 Limitations and improvements

First, this section summarizes to what extent the results obtained match the characteristics predicted
during the qualitative comparison (see section 3.7). Then it discusses the limitations of the approach
taken, considering (1) the characteristics of the transaction processing load and (2) the way the Database
Replication Prototype was implemented.
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Qualitative vs. quantitative comparisons The measurement results presented in this chapter confirm
most of the performance characteristics predicted for both techniques in subsection 3.7. However, we
have not been able to quantify the impact of two factors: the amount of processing in addition to the
processing performed on a centralized system, and the determinism requirements. The reason for this is
the slowness of the Atomic Broadcast implementation: all other processing is largely hidden behind it.
To measure the two factors, the Atomic Broadcast implementation should be replaced by a much faster
one.

Characteristics of the transaction processing load In the experiments, we constrained the transac-
tion load quite severely to look at the most interesting aspects within the available time. However, the
results presented are likely to change when the following limitations are relaxed: low transaction inter-
ference, small number of operations per transaction and small database size. Hereafter, we discuss why
the results would be different and we give directions on how the optimistic technique could be improved
to accommodate the modified transaction characteristics. We take the perspective of the optimistic tech-
nique because this technique is the most promising.

low transaction interference Transaction interference is low in our experiments, as reflected by the rel-
atively low abort rate (see Figure 5.15). This is an oversimplification because in most applications,
a small number of database items (the hot spot) is accessed very frequently while a large number
of database items is rarely accessed. In OR, transactions that access the hot spot will likely have a
high abort rate and thus progress only slowly. PR may perform better in such cases.

Since the pessimistic technique is not sensitive to abort rates, an idea is to mix the best of both
techniques: transactions that access the hot spot are ABCast from the beginning of the transaction,
like in PR, and other transactions are processed locally first and then ABCast, like in OR. A problem
is that the the read and write sets of a transaction (and the hot spot of the system) need to be known
in advance to be able to choose the approach. A variation that solves this is to use the pessimistic
approach only for transactions that have been forcefully aborted some minimum number of times.

number of operations per transaction If a transaction contains more operations, the processing it takes
longer. In OR, the probability increases that some remote update transaction forces the abort of a
locally processing transaction. This would increase the abort rate and probably change the tradeoff
between the replication techniques.

A solution to this is to have multiple versions [BHG87] of the database items on each replica.
When an update transaction commits, its values are written to new versions of the items while the
old versions are kept. Now, locally executing queries do not need to be aborted when they interfere
with an update transaction that is committed. They can continue to lock and read the old values of
the data items changed by the update transaction without violating serializability or getting in the
way of the update transaction because of a locking conflict.

small database size The small item and database size in our experiments allow the Database Service to
cache all items in memory, speeding up the read operations. While caching the whole database in
memory may become more and more feasible considering the ever increasing memory sizes, con-
temporary systems still store less frequently accessed data on disk only. If reads take significantly
longer, transactions submitted in OR take longer to be processed locally, leading to higher abort
rates as described for the previous item.

Implementation Important limitations of the implementation are the slowness of sending an ABCast
message and the slowness of thread handling in Java. Next, we discuss each limitation in turn.
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Atomic Broadcast primitive The slow performance of OGS has influenced our results very much. This
does not invalidate the results because the slowness of OGS matches that of an efficient Atomic
Broadcast implementation in large-scale networks.

However, in Local Area Networks, the performance of some ABCast implementations is two orders
of magnitude better than that of OGS (i.e., delivery in about 10 ms to large numbers of replicas
instead of 1 s to only a few replicas). With such an efficient implementation, database processing
will likely become the slowest factor in the system, leading to very different experimental results.
PR would perform much better because it heavily relies on Atomic Broadcast but doesn’t have any
processing overhead or abort rates. But also OR would benefit in the case of update transactions.
Also, the scalability of both techniques is likely to be affected in a positive way.

thread primitives Java’s thread synchronization primitives are used to implement the blocking of trans-
actions when a lock cannot be granted. These primitives are very expensive in Java 1.1, leading
to quite slow behaviour when transactions are delayed and continue when the lock becomes avail-
able. A possibility is to switch to Java 2 and see if this changes things. This has not been done
during the project because OGS is not compatible with Java 2.

In OR, an alternative is to forcefully abort transactions that cannot get a lock. When the lock be-
comes available soon after the forceful abort, this will work. However, when a lock is unavailable
for an extended period of time, a lot of processing time may be wasted when the transaction is
retried again and again.
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Chapter 6

Conclusion

A replicated database system is a database system that is distributed over multiple machines, each con-
taining identical copies of the database. The goal of replication is to improve the availability (by redun-
dancy) and performance (by load balancing) of the database system.

Database replication is a topic that is being actively investigated, despite the fact that the subject
has been around for more than 20 years. For performance reasons, commercial replicated database sys-
tems usually implement lazy replication techniques that are not correct. To users, this can be a problem
because data retrieved from the database may exhibit inconsistencies. To counter this, eager replica-
tion techniques have been developed, which ensure that all replicated machines exhibit a consistent and
correct behaviour to applications. The drawback of eager techniques is that until now, they lacked per-
formance.

In this report, we have considered active replication techniques, which promise to offer better perfor-
mance than traditional eager techniques. When the database is modified, active replication techniques use
the Atomic Broadcast communication primitive to distribute the modifications and ensure consistency
across replicas. We have focused on two active replication techniques, pessimistic active replication and
optimistic active replication. These techniques were compared qualitatively as well as quantitatively.

6.1 Contributions
The main contributions of this Masters thesis can be split into four parts:

Replication Framework The Replication Framework is an object oriented framework for implement-
ing replication techniques. By defining components that are common for all techniques, new tech-
niques can be added easily. Furthermore, the performance and the requirements of the techniques
can be compared on equal grounds.

The framework defines five components: Database Service, Group Communication Service, Repli-
cation Manager, Client and Operations. The Replication Manager is the component that needs to
be adapted for every technique. The other components stay the same across techniques.

Systematic analysis of pessimistic and optimistic replication The differences between pessimistic and
optimistic active replication are analyzed in detail and the performance characteristics of both tech-
niques are compared in a qualitative manner. These qualitative comparisons are independent of a
particular implementation.

Database Replication Prototype The Database Replication Prototype is a proof of concept implemen-
tation of pessimistic and optimistic active replication. The prototype conforms to the Replication
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Framework and is therefore an extensible basis to which additional techniques can be added. Fur-
thermore, it offers measurement facilities that support the quantitative comparison of the replica-
tion techniques.

In the Database Replication Prototype, the Database Service is implemented by the commercial
POET centralized database system. The Group Communication Service is implemented by OGS,
an Object Group Service built on top of CORBA. The prototype proves that the two replication
techniques can be made to work using off the shelf components (POET and OGS) within a period
7 months.

Performance Results The performance of the Database Replication Prototype was measured for pes-
simistic and optimistic replication. Various performance indicators were considered: the mean
response time, the throughput and the abort rate. By conducting many experiments with varying
transaction characteristics, the behaviour of the techniques was measured in various situations.

The results show that in large networks, optimistic active replication outperforms pessimistic active
replication, especially when the transaction processing load contains many queries (that is, many
read-only transactions). Furthermore, optimistic active replication is shown to be partly scalable:
in certain cases, it can handle a higher load than a centralized database system, even when the
network is slow.

6.2 Related work

The DRAGON project [DRA98] tries to create eager replication techniques that reach performance levels
comparable to those achieved by lazy replication techniques. Two main directions currently pursued in
the context of the project are:

o The Postgres-R database system: a replicated relational database system [KAQ0O]}. The goal is to
integrate replication inside the existing PostgreSQL database system and make thé system scale
well in Local Area Networks. In this approach, the replication technique can directly access the
internal structures maintained by the storage manager, transaction manager and lock manager of
the host database system.

The advantage of Postgres-R is that it does need to duplicate any internal database structures. The
drawback is that the database engine cannot be replaced easily. Contrast this with the Database
Replication Prototype which sees the Database Service as a black box. This results in duplication
of structures, i.e., locking tables and the read and write operations of executing transactions. How-
ever, the prototype is independent of the database system that happens implement the Database
Service.

» A simulator for eager replication techniques (work in progress). This simulator determines the
performance of replication techniques for different transaction loads, hardware configurations and
software configuration. The use of a simulator instead of an actual setup such as the Database
Replication Prototype has several advantages:

— It produces results faster.
— It can be configured according to various hardware/software configurations.

- It allows replication techniques to be added easily because only the essential characteristics
of a replication technique need to be modeled. Details that do not affect performance can be
left out.
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The main drawback of using a simulator is that it might be based on wrong assumptions, leading
to performance results that are impossible to achieve in a physical system. This can be countered
by comparing and tuning simulator results to the results obtained in actual systems (for example,
the Database Replication Prototype).

6.3 Future work and research

Next follow several suggestions to improve the Database Replication Prototype and to gain additional
insight into the various replication techniques. The suggestions are listed by increasing difficulty of
realizing them.

Replacing OGS by another implementation When OGS is replaced by an implementation of the Group
Communication Service that offers better performance, results can be obtained that are relevant for
Local Area Networks. It would be interesting to compare these results to those of Postgres-R, to
assess how much Postgres-R gains from its integration with the database service.

More replication techniques The modular structure of the Database Replication Prototype allows new
techniques to be added and compared easily. One could add more replication techniques based
on Atomic Broadcast, but it is also possible to add other types of eager techniques. In principle,
nothing prevents lazy techniques from being added, but comparing these will be difficult because
they tend to fulfill different specifications.

Additional performance indicators To pinpoint more clearly what is happening inside the system dur-
ing transaction processing, additional performance indicators could be measured. Examples of
performance indicators that would be interesting to add: execution time of operations, number of
delays due to locking conflicts, and average amount of time transactions are delayed for locks.
Furthermore, it would be useful if all measured data could be linked back to individual transac-
tions. This way, the performance indicators can be correlated. For example, one could examine
the relation between the amount of time a transaction is delayed and the risk that a transaction is
forcefully aborted. A problem of collecting lots of measurement data is that this may slow down
the system’s performance.

Changing the interface to the Database Service The Replication Manager could be more efficient if it
had direct access to certain low level data structures in the Database Service. The solution adopted
by Postgres-R is to integrate replication into a particular database system. Because this makes it
impossible to change the database system, we propose a different solution: change the specification
of the Database Service and add access to exactly those low level structures needed by replication
techniques. This way, the implementation of the Database Service remains interchangeable, but
duplication is avoided. Before specifying the interface, one would have to do extensive research
to determine which low level data structures and operations are needed by the various replication
techniques.

67



Bibliography

[BHGS87)

[CT96)

[DMS98)

[DRA9S]

[EN94)

[Fel98)

[GS97)

[(KA]

[KA00]

[PGS99)

[POE97)
[SR96]

[TPC94]
[(UDS00)

[WPS99)

[WPS*00a)

P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Journal of
the ACM, 43(2):225-267, March 1996.

X. Défago, K. R. Mazouni, and A. Schiper. Highly available trading system: Experiments with
CORBA. In N. Davies, K. Raymond, and J. Seitz, editors, Middleware’98: IFIP International
Conference on Distributed Systems Platforms and Open Distributed Processing, pages 91-104, The
Lake District, UK, September 1998. Springer-Verlag.

Information & Communcations Systems Research Group, ETH Ziirich and Laboratoire de Systémes
d’Exploitation (LSE), EPF Lausanne. DRAGON: Database Replication Based on Group Conununi-
cation, May 1998. http://www.inf.ethz.ch/department/IS/iks/research/dragon.html.

R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. The Benjamin/Cummings Pub-
lishing Company, Inc., 1994.

P. Felber. The CORBA Object Group Service: A Service Approach to Object Groups in CORBA. PhD
thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland, 1998.

R. Guerraoui and A. Schiper. Software-based replication for fault tolerance. IEEE Computer,
30(4):68-74, April 1997.

B. Kemme and G. Alonso. A new approach to developing and implementing eager database replica-
tion protocols. ACM Transactions on Database Systems. To appear.

B. Kemme and G. Alonso. Don’t be lazy, be consistent: Postgres-R, a new way to implement database
replication. In Proceedings of the 26th VLDB Conference, Cairo, Egypt, 2000.

F. Pedone, R. Guerraoui, and A. Schiper. The database state machine approach. Technical Report
SSC/1999/008, Ecole Polytechnique Fédérale de Lausanne, Switzerland, March 1999.

POET Software Corporation. POET Java SDK Programmer’s Guide, 1997. Version 1.0.

A. Schiper and M. Raynal. From group communication to transactions in distributed systems. Com-
munications of the ACM, 39(4):84-87, April 1996.

Transaction Processing Performance Council. TPC Benchmark A, 1994. Revision 2.0.

P. Urban, X. Défago, and A. Schiper. Contention-aware metrics for distributed algorithms: Compar-
ison of atomic broadcast algorithms. In Proceedings of the 9th IEEE International Conference on
Computer Communications and Networks (IC3N 2000), October 2000.

M. Wiesmann, F. Pedone, and A. Schiper. A systematic classification of replicated database protocols
based on atomic broadcast. In Proceedings of the 3" Europeean Research Seminar on Advances in
Distributed Systems (ERSADS’99), Madeira Island (Portugal), April 23-28, 1999. BROADCAST
Esprit WG 22455.

M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Database replication techniques:
a three parameter classification. In Proceedings of 19th IEEE Symposium on Reliable Distributed
Systemns (SRDS2000), Niirnberg, Germany, October 2000. IEEE Computer Society.

68




[WPS*00b] M. Wiesmann, FE Pedone, A. Schiper, B. Kemme, and G. Alonso. Understanding replication in
databases and distributed systems. In Proceedings of 20" International Conference on Distributed
Computing Systems (ICDCS’2000), pages 264-274, Taipei, Taiwan, R.O.C., April 2000. IEEE Com-
puter Society Los Alamitos California.

69



