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1. Introduction

The Centre for High Performance Computing of the University of Groningen has developed a project called
MIMICS (Model Intestinal Micro-flora In Computer Simulation) [1]. The aim of this project is to develop
simulation tools that can be used to examine the interaction between the host and its intestinal micro-flora.
The main tool of MIMICS is a large scale cellular automation, initially designed to examine the interactions in
the lumen of the intestine [2]. This program was written in the program language FORTRAN 90. It has been
optimized for parallel computation and runs on the Cray SV I e supercomputer.

Main quality that was envisaged in the development of the current tool was speed of computation whilst the
ease of use or modifiability was considered to be less important. This means that with the current tool it is
difficult to add new interactions. Therefore addition of a wall in the simulation (4] did already require
considerable redesign of the tool.

In order to make it easier to carry out new simulation tasks, a tool should be developed that provides more
flexibility. A graphical user interface should be added for improvement of the ease of use. However, not too
much speed should be sacrificed, especially when the model becomes more complex and computationally
intensive.

In this context a new project has been started up, which is subject of this report.
First aim of this project is to explore which design strategy can provide a tool that has sufficient modifiability,
ease of use and speed. For that purpose, the applicability of the existing software engineer methods [5, 6] will
be investigated.
On the basis of the chosen architecture, a new tool will be developed. Finally this tool will be implemented in
order to demonstrate its functionality.

Chapters 2 and 3 of this report are the result of a literature study into the current MIMICS project and
evaluation tools of software architecture of programs. In chapter 4 the terms of reference for the new software
tool are defined, including the evaluation method that will be chosen to assess notably its modifiability. In
chapterS and 6 the development and implementation of the new software tool is described. Chapters 7 and 8
explain the user interface of the new tool, and how to create a simulation. Finally, chapter 9 gives an analysis of
the new the tool.
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2. The current MIMICS project

2.1 General description

The intestinal micro-flora forms a highly complex community of an estimated 400 species. The exact number
of these species, and even their nature and role in the ecosystem, are not really known because the major part
(60-85%) of the microscopically visible bacteria in faecal content cannot be cultured [I].

There is an urgent need to understand better the bio-chemical reactions of intestinal micro-flora, because of the
rapid increase of antibiotic resistance of pathogenic bacteria [1]. The intestine ecosystem is considered to be a
first line of defense against invading pathogens. The better understanding of this veiy complex effect, called
colonization resistance, may contribute to the development of alternatives for antibiotics, such as priobotics
(live bacteria taken orally).

In order to provide alternatives for laboratory experiments, a quantitative simulation tool was developed, which
is the main tool of the MIMICS project. Thistool is a large scale cellular automaton which can simulate both
metabolic and transport processes in the human intestine [1]. The tool has been written in the program language
FORTRAN 90, and optimized for parallel computations on the Cray SV I e supercomputer of the Center for
High Performance Computing. Initially, only the interactions in the lumen of the intestine were included in the
program. The structure of this tool is described in the next sections.

2.2 The conceptual model as used in MIMICS

The simulation can be divided in five (somewhat interrelated) parts:
A. The bacterial metabolism
B. The chemistry of the environment
C. The geometry of the environment
D. The mechanics of transport
E. The interaction with the immune system

At this stage, the immune system is left out of the model. This is because of its complexity, and the fact that the
majority of bacteria in a healthy intestine does not seem to evoke an immune response. Therefore it is realistic
to keep the immune system out of the model.

Bacterial metabolisms & the chemistry of the environment
If the focus is on distinction between aerobic and anaerobic metabolisms, then bacteria can be classified in to
six types.

Four of the types of bacteria grow in completely oxygen free conditions:
Strict anaerobe: Can not survive with any oxygen
Moderate anaerobe: Can survive low concentrations of oxygen
Tolerant anaerobe: Are unaffected by oxygen
Facultative (an)aerobe Grow better with oxygen, but also in absence of oxygen

The two others need oxygen to survive:
Microaerophile: Need low concentrations of oxygen to survive, but will not survive at moderate

concentrations
Strict aerobe: Require oxygen to grow; no toxic effects at normal levels

4



Using the Monod model [5], the metabolisms can all be modeled with differential equations of the same general
form. This is the equation used to model the growth of the bacteria:

p(S, 02) [Pan + PO
KR± 02 ] K± S

—
KTO+ 02

— Pbasal (1.1)

P growth rate per unit of bacterial bionBss (s')
S concentration of food substrate (m05./)

concentration of oxygen ("°X)

maximum growth rate of anaerobic metabolism (s')
maximum growth rate of aerobic metabolism (s)

K5 food uptake saturation constant (mo)

KR respiratory oxygen uptake rate constant (mo/)

K1 toxic oxygen uptake rate constant ("I)
1C maximum oxygen kill rate (s)

Minimal metabolic requirement (s)
The first term of (1.1) is the oxygen dependent growth through food uptake. The second term is the cell
destruction due to oxygen, the third the maintenance energy cost.

All the above mentioned types of bacteria can be described with this equation by adaptation of the values of the
growth- and kill-rates:

Table 2-1: Aerobe and Anaerobe bacteria

1Lo K02

<0 >0
0 0

The differential equation for concentrationXt of the kh# specie of bacteria associated with growth rate Pk is as

follows:

7Pk(5,02)Xk (1.2)
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Stric: anaerobe > 0
Tolerant anaerobe > 0

Facuizanve (an)aerobe > 0 >0 0
Microaerophile 0 >0 > 0
Strict aerobe 0 >0 0



For an ecosystem with P species of bacteria, the food usage is described with the following differential
equation:

dS' °2 S

____

KRkO2 JKsk +S
K'c:)k

KTk °2
Xk (1.3)

maximum specific food uptake rate of the anaerobes
(s_I)

Vk maximum specific food uptake rate of the aerobes (s)
fraction of oxygen killed bacteria returned as food

(_1)

The differential equation for oxygen usage is:

cio2J 02 S °2 (14)
dt — R,k KR + 02 K5 + T,k

KTk + 02 r

13R.k maximum oxygen uptake rates due to aerobic metabolism (s_I)

maximum oxygen uptake rates due to toxic effect on anaerobes or
T.k microaerophiles

Bacteria are capable of producing toxins, called bacteriocins, which are harmless to the host, but highly toxin to

their competitors. If a bacteriumXk produces toxin T at a constant rate Tk then its growth is reduced

according to this equation:

(1.5)

toxin production rate constant (s')

If specie X, is senslive to the toxin, then its growth is reduced by a term proportional to the toxin

concentration:

.IL. = (p1( S,02)— c1T)X, (1.6)

rj toxin kill rate constant (s)
toxin concentration (moJ)

It is assumed that the toxin is lost in that reaction (1.6), so the toxin usage is described with the following
differential equation:

dT
jt'T.kXkPTJTXI (1.7)

f3i Toxin uptake rate constant due to toxic effect on (s')
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The geometry of the environment
The complex geometry of the intestine is simplified in this simulator to a single, asymmetric, tube. The tube is
subdivided in axial direction and in radial direction. The radius of the tube varies along the intestine.
A typical set of parameters for the simulation is: Total intestinal length of 6 m with a varying diameter; the first
4.98 m are the small intestine with a radius of 1 cm, the next 18 cm are the "caecum" with 5 cm radius,
followed by a colon of 84 cm and 3 cm radius. After various tests, it appeared that 10 radial subdivisions and
100 axial subdivisions are precise enough for the simulation. The time scale of the simulation is in the order of
days for the flora as a whole. The time steps of the simulation are in the order of 20 mm, since this is the fastest
doubling time of the bacteria, so smaller time steps do not change the result in any significant way.

The mechanics of trmsport
The transport mechanics are modeled separately from the metabolism and are divided in two parts:

• D(ffusion Transport trough diffusion applies to all volume elements. For this kind of transport, the
time steps must be so small, that only diffusion between immediate neighbors needs to be considered.

• Laminar Flow This transport is laminar, and can be computed for every radial subdivision of the
intestine independently.

The transport functions do not have to be the same for all the substances of the simulation. For instance, in the
implementation of an intestinal wall [4] some elements do not move at all.
A detailed description of the transport mechanics and its equations can be found in the MIMICS Technical
Report [2].

Boundary conditions
Food and oxygen are always present in the epithelium of the intestine and they can diffuse through the
intestinal wall. For all other substances the wall has to be considered as sealed hermitically.
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2.3 The program structure

The program structure can be described in a (C-like) pseudo language:

main()
{ initialize_exp()

for (t=O;t<=tmax; t++) {

metabolisyn();
laminar_f low();
diffusion_and_bounds U;
store_data
report_progress U;

final_report U;

Figure 2-1: program structure

initialize_exp Read experiment conditions from file, and initialize all data structures
metabolism Compute the metabolism interactions for every grid point
laminar_flow Compute the laminar flow through the tube for every radial layer
dffusion_and_bounds Compute the diffusion and boundary conditions for every grid point
store_data Store the new data
report_progress Report the progress after a certain number of iterations
final_report Generate a final report.

For the dffusion_and_bounds, a sub loop of smaller time steps may be needed to guarantee that only diffusion
between direct neighbors needs to be considered.

2.4 Results and conclusion

The current state of the MIMICS project shows that it is possible to simulate the intestinal micro flora and
transport processes. Various hypotheses have already been supported by the outcomes of simulations made by
the MIMICS tool. This means that the first steps have been made towards creating a realistic simulation
environment.
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3. Software architecture evaluation methods

When a new software tool is developed for the MIMICS project then such a tool should be evaluated.
The software architecture of a program can be defined as the structure or structures ofthe system, which

comprise software components, the external visible properties of those components, and the relationships
among them [6].
Analysis of software architectures is mainly carried out by the assessment of system qualities, like performance,
reliability, security, etc. There exist various methods to evaluate the software architecture of a project The next
sections consist of brief overviews of four existing evaluation methods of which one or more will be chosen for
the evaluation of the new tool.

3.1 SAAM — Software Architecture Analysis Method

The Software Architecture Analysis Method (SAAM) is the first documented architecture analysis method. It
was originally developed for the evaluation the architectures' modifiability and functionality, but has proven to
be useful to asses many other system qualities as well.

This method consists of six steps:
1. Development of scenarios. The system's stakeholders are asked to develop various scenarios that

illustrate the kinds of activities the system should support, and collect those changes that may affect
the software architecture.

2. Description of candidate architecture.The candidate architecture or architectures should be
described in a syntactic architectural notation in such a way that it is understood by all the parties
involved in the analysis. Practically, the development of scenarios and description of candidate
architectures will be done in several iterations, since new scenarios and adaptations will arise.

3. Classification and prioritization of the scenarios. The scenarios are inected and prioritized,
and divided in direct and indirect scenarios. Direct scenarios do not require changes of the software
architecture, while indirect scenarios require modification to be satisfied.

4. Individual evaluation of the indirect scenarios.The direct scenarios are mapped on the
architecture to verify functionality. For each indirect scenario, the impact on the architecture and
change costs are estimated and described.

5. Assessing scenario interactions. The results of the previous step are used to investigate whether a
single component is affected by more than one indirect scenario, called scenario interaction. This
reveals if the architecture supports an appropriate separation of concerns.

6. Overall evaluation. The scenarios and interactions should be ranked by importance. The result
should reflect the relative importance of the qualities that the scenarios manifest.

SAAM can best be used after the functionality has been allocated to the software architecture modules.

3.2 ATAM — Architecture Tradeoff Analysis Method

The Architecture Tradeoff Analysis Method (ATAM) is a method developed for the evaluation of software
architectures in relation to quality attribute goals. The ATAM is the successor of SAAM. It got its name
because it reveals how well software architecture satisfies particular quality goals and also provides insight into
how those qualities interact or trade off with each other. Like SAAM, this method is scenario based.

The ATAM consists of nine steps, which are separated in four groups. The following table is directly from the
creator of ATAM [6]:
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Presentation
I. Present the ATAM. The evaluation leader describes the evaluation method to the assembled

participants, tries to set their expectations, and answers questions they may have.
2. Present business drivers.A project spokesperson (ideally the project manager or system customer)

describes what business goals are motivating the development effort and hence what will be the
primary architectural drivers (for example, high availability or time to market or high security).

3. Present architecture. The architect will describe the architecture, focusing on how it addresses to
the business drivers.

Investigation and Analysis
4. Identify architectural approaches. Architectural approaches are identified by the architect, but are

not analyzed.
5. Generate quality attribute utility tree. The quality factors that comprise system "utility"

(performance, availability, security, modifiability, usability, etc.) are elicited, specified down to the
level of scenarios, annotated with stimuli and responses, and prioritized.

6. Analyze architectural approaches. Based upon the high-priority factors identified in Step 5, the
architectural approaches that address those factors are elided and analyzed (for example, an
architectural approach aimed at meeting performance goals will be subjected to a performance
analysis). During this step architectural risks, sensitivity points, and tradeoff points are identified.

Testing
7. Brainstorm and prioritize scenarios. A larger set of scenarios is elicited from the entire group of

stakeholders. This set of scenarios is prioritized via a voting process involving the entire stakeholder
group.

8. Analyze architectural approaches. This step reiterates the activities of Step 6, but using the highly
ranked scenarios from Step 7. Those scenarios are considered to be test cases to confirm the analysis
performed thus far. This analysis may uncover additional architectural approaches, risks, sensitivity
points, and tradeoff points, which are then documented.

Reporting
9. Present results. Based upon the information collected in the ATAM (approaches, scenarios,

attribute-specific questions, the utility tree, risks, non-risks, sensitivity points, tradeoffs) the ATAM
team presents the findings to the assembled stakeholders.

ATAM is a framework for analyzing the system qualities concurrently; it does not prescribe specific methods
for analyzing the individual qualities itself. Other methods like SAAM or AI.MA may be used within ATAM to
analyze qualities like modifiability and functionality.
ATAM can be a very comprehensive method that covers all system qualities. It can be applied when
architecture designs is completed enough to allow scenario walk-troughs and the major architecture design
approaches have been chosen. It is the most effective on a project with a large development team.

3.3 ARID — Active Reviews for Intermediate Designs

Active Reviews for Intermediate Designs (ARID) are a combination of the scenario-based methods as
mentioned above and ADR, Active Design Reviews. The method was developed because of the need for a
method that gives insight into the architecture design in an early stage of development.

ADR asks the reviewer to make use of the architectural design by assigning them review tasks that are carefully
structured to avoid asking yes/no questions. Such questions can undermine a review if a reviewer gives a
carelessly considered answer. An active design review demands the reviewer to utilize the design in a series of
exercises that test actual understanding. ARID can be described as an ATAMJADR hybrid and it consists of
nine steps, distributed over two main phases, the rehearsal and the review phase.
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Phase I: Rehearsal
In this phase, the lead designer and the review facilitator have a meeting to prepare the exercise.
1. Identify the reviewers. The reviewers of the project are identified, typically the software engineers

of the project.
2. Prepare the design briefing. The lead designer prepares a briefing to present the design in

sufficient detail so that the audience could use the design.
3. Prepare the seed scenarios. The designer and facilitator prepare about a dozen scenarios to

illustrate the concept of a scenario to the reviewers.
4. Prepare the materials. Make copies for presentation, scenarios, etc.

Phase 2: Review
The stakeholders are assembled and the main activities can begin.
5. Present ARID. The ARID method is explained to the participants
6. Present the design. The designer explains the design in a presentation, to investigate if the design is

suitable for the problem.
7. Brainstorm and prioritize scenarios. Stakeholders suggest scenarios for using the design to solve

problems they expect to face, like in the ATAM.
8. Apply the scenarios. The reviewers will be asked to start writing the (pseudo) code to solve the

problem as described in the scenario. They will make extensive use of the examples that were
handed out during the designer's presentation

9. Summarize. The participants are polled for their opinions regarding the efficacy of the review
exercise, and they are thanked for their participation.

ARID can be described as an ATAM/ADR hybrid and is particularly useful in an early stage of development,
duñng the architecture design. Like ATAM, ARID is most effective with a large development team.

3.4 ALMA — Architecture-Level Modifiability Analysis

The modifiability of a program can be defined as the ease with which a program can be mod (lIed to changes in
environment, requirement or functional spec(flcation [7]. This important system quality can be analyzed with
various evaluation methods, like mentioned in the previous sections. However, these evaluation methods can
have some fundamentally different results, because of the different goals pursued by each method. Therefore,
the Architecture-Level Modifiability Analysis (ALMA) [7] was developed, a generalized, adaptable method for
software architecture analysis of the modifiability.
ALMA consists of five steps:

I. Goal selection. The aim of the software architecture analysis of modifiability has to be determined.
It can be one of the following goals:
• Maintenance cost prediction. Estimate the cost that is required to modify the system
• Risk assessment. Reveal for what types of changes the current software architecture is

inflexible.
• Software architecture selection. Compare two or more software architecture candidates to

find the best one.
2. Software architecture Description. For the software architecture description, the following

information is essential:
• The decomposition into components
• The relationships among the components
• The (lower-level) design and implementation of the architecture
• The relationships to the system's environment
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3. Scenario elicitation. Finding and selecting the set of relevant scenarios. The selection technique
depends on which goal was chosen at step 1:
• Maintenance cost prediction: Bottomop approach; interview the stakeholders for the changes

they anticipate.
• Risk assessment. Top-down approach; focus the interview on changes that are expected to be

complex
• Software architecture selection. Top.down approach; only those scenarios that expose

differences between the candidate architectures are of interest.

4. Scenario evaluation. Evaluate the effect of the scenarios on the architecture and express the results
in a way suitable for the goal of the analysis. This is divided in the following steps:
• List the affected components
• Locate the operations that have to be modified
• Determine ripple effects

5. Interpretation. Depending on the selected goal, a conclusion has to be drawn from the results of

the previous step.

ALMA can be used when the data mentioned in step 2 is available.
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4. The terms of reference for the new tool

4.1 Current versions of MIMICS that should be integrated

Currently, there exist several versions of MIMICS, which should all be integrated into the new simulation tool.
The four most important versions are:

Simple food uptake version
This version only considers two bacteria that consume one food element. The differential equations for
these three substances are

S(x )
specie_a — max.p specie_a a- (

JXfOCdJ akXf,4

S(x )
Xspecieb — I•Lmab Xspecie_b

a— (.sX1,j b.Xfood

S(xfOQd)
F(Xjoj)=Vma,,aS(X,pecwa) ci \ a' ,'

.XfOOdJ+ 0X1
(2.3)

,, S(x,)
(( \k' I/

F Time derivative of specified element

S concentration of the specified element (mofrç)

Kaj, food uptake saturation constant (MaX)

/1,nax,a,b maximum growth rate of the bacteria (s')
V a b maximum food uptake rate (s_I)

• l2cygen version
Same as the previous version, but now oxygen is included. Therefore, the differential equations (1.1)
and (1.2) in chapter 2 are used to define the growth of the bacteria, the food uptake is defined with
(1.3), and the oxygen usage is defined with (1.4). An extra option is to add diarrhoea related variables
and functions to the program.

• Toxin version:
The toxin kill-rate and usage are included in the project, by implementing differential equations (1.5),
(1.6) and (1.7) in chapter 2. In this version, oxygen is not included, so the food uptake is defined like
in the Simple food uptake version.

• Intestinal Wall Version 31-5 -2001:
This version almost includes the previous ones, but now the intestinal wall is added to the simulation.
Bacteria can be divided in strictly luminal and wall attaching bacteria. The bacteria which are capable
of attaching themselves to the intestinal wall can be in two situations, which influence the rate of
growth: attached to the wall or not. When a bacterium is attached, it does not move i.e. it is not
affected by the transport routines. In the model, a wall population is situated next to the last element in
radial direction. More detailed description of this process and how it influences the differential
equations can be found in In Silico modeling of the human intestinal microflora [4].
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The intestinal wall version works with FORTRAN 90 modules instead of one big program, and can

use multiple differential equation solvers for computing the metabolism.

On the basis of the above, the most important variation points of the current versions are:

• Different numbers of substances and computation precision.

• The presence of the toxin andior oxygen elements in the simulation, which affects initialisation and

metabolism routines.
• Multiple differential equation solvers. (Rungk4 and DO2EAE routines)

• Use of FORTRAN 90 modules and multiple files
• The presence of the intestinal wall, which affects:

1. the transport functions, wall elements do not move
2. the metabolism reactions, wall elements have slight different metabolism reactions

3. the boundary conditions

Additionally to the differential equations already included in the current versions, several other equations can

be used to model the bacterial interactions in the gut. Various models and its equations are proposed in

MIMICS Technical Report II: Ordinary Equations for Modelling Bacterial Interactions in the Gut [3].

4.2 Comparison of the possible evaluation methods for the new tool

For the new MIMICS project, the most important systemqualities are:

• Performance The program should exhibit an acceptable performance. Currently, MIMICS satisfies to this

condition and some of its speed it may even be sacrificed to improve the other two qualities.

• Ease of use There exists no graphical user interface for MIMICS yet, so it is not very user friendly and this

should be improved in the next version
• Modifiability The most important system quality is the modifiability of the program, since the simulation

environment must be able to adapt easily to different simulation tasks.

One of the evaluation methods has to be chosen to make the first design decisions. ATAM is a comprehensive

method, but the new project is in a too early stage to use this method. ARID would be a good choice at this

moment, but the development team of this project is too small to have a good result. ALMA could be an option,

as the goal of the evaluation can be given, but it does not refer to all the system qualities that are important for
the MIMICS project. Therefore, it is decided to evaluate this project with the SAAM. This method has proven

to be especially valuable for analyzing modifiability, as well for the other system qualities. The SAAM results

may be used within an evaluation process with ATAM in a later stadium.

14



4.3 Evaluation of the new MIMICS tool with SAAM

Step I: Development of scenarios
Scenarios should illustrate the kinds of activities the system supports. In this case, a number of desired changes
and additions will be listed that should be or already have been made.

Table 4-1: Possible scenarios

Scenario
Number Scenario Description

Add an graphical user interface to the program

2 Real-time interaction during experiment

3 Include an immune system

4 Simulation of peristaltic movements

5 Addition of a intestinal wall

6 Easy insertion of new types of metabolism

7 Addition of facultative bacteria

Addition of a mucus layer

Use different kinds of food

Possibility to change the metabolism and transport equations easily

Generating multiple program languages for system different architectures

Access to the experiments through internet

Step 2: Description of candidate architecture(s).
The candidate architectures should now be described. However, SAAM does not provide a clear method to
make this description. Steps I and 2 have been developed in an iteration process.
The current tool appeared to be very suitable for data-parallel execution. This is because the metabolism, which
is the most computation intensive process of the simulation, can be computed for every grid point concurrently.
Research has proven that the best performance is obtained on memory-shared systems like the Cray SVI e
supercomputer. These systems work best with FORTRAN, which is not a language that gives the possibility to
use objects or add graphical user interfaces easily. In order to achieve the goal of a flexible system that covers
the variation points and some of the listed scenarios, but still keeps a high performance, there are two candidate
architectures:

Candidate 1
The simplest solution seems to adapt the latest version of the MIMICS tool in such a way that it is possible to
import differential equations for various situations. Therefore, a new FORTRAN package should be created,
from where the user can import the differential subroutines and their initialisation routines by simple
statements. The user interface could then be improved by making it possible to select the simulation model
from the command prompt, or by adaptation of the initialisation files.

Candidate 2
A more drastic solution is to develop a code generator to completely or partly generate the FORTRAN
simulation code. With such a code generator, it will be easier to generate or import new subroutines for
different situations. A graphical user interface can be added easily to such architecture. This software
architecture candidate can be divided into a client side, which is the computer that will generate the code, and
the server side, which will be for instance the Cray supercomputer. The client and server can be connected
through a LAN or internet. Figure 4-1 provides a global overview of this architecture:
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Client

iSeryerter
Figure 4-1: Architectural design

Client-side:
Graphical user interface
Files
Code generator

Server-side:
Compiler
Executer

The user gives its input though this module.
This can be imported subroutines, intialisation files and tables
This module generates the simulation code, by the input given by the files and the
GUI

The (FORTRAN) compiler which creates the excutabable file.
This module executes the program and sends its output back to the user interface

Step 3: Classification and prioritization of the scenarios
The related scenarios are grouped together, ordered by priority and classified as direct or indirect scenario for
each architecture candidate. Direct scenarios can be executed without any modifications to the architecture
whilst indirect do require modifications. Since none of the architectures have already been created, all
modifications are indirect. The next table shows the scenario groups.

Table 4-2: Scenarios ordered by priority and the effect on the candidate architectures

Priority Scenario Scenario Description Effect on candidate #1 Effect on candidate #2
Number

1 3,4,5,8

6,7,9,10

Possibility to include new
environment
circumstances, and new
bacteria and food elements
with their differential
equations.

For every model, new
subroutines, initialization-
files and routines have to
be included into the
package.

The code generator has to be
implemented in such a way
that it is easy to import or
generate new subroutines.

2 II Generating the simulations
code in different
languages, for different
system architectures and
computations.

Not possible. The code generator has to be
an interface, which can be
implemented for different
languages

3 1,12 Change the user interface
to a GUI, preferable Web-
based or Java

Not possible. A new GUI should be
developed which controls the
code generator in all its
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aspects.

4 12 Access trough the internet
to do experiments

Not possible. Add a server part to the
program, through which a
Java-applet or an active
script language can execute
experiments.

5 2 Real-time interaction
during experiment

Threads have to be The code generator has to
included in the simulation include threads in the
code, to make it possible generated code, so the user
to stop and continue the can interfere during the
simulation and modify the experiment.
current state.

Step 4: Individual evaluation of the indirect scenarios
At this step, the effect of the indirect scenarios on the architectures has to be evaluated. These effects are also
listed in table 4-2.

Step 5: Assessment of the scenario interactions
All the scenarios have to be mapped on the architectural representations, so the areas of scenario interaction can
be assessed. This reveals if the architecture supports an appropriate separation of concerns.
Only the first and last scenario groups can be implemented with architecture candidate I, and they affect
different parts of the program.
Scenarios 1, 2 and 5 affect the code generator component of architecture candidate 2. This indicates that when
the code generator is implemented, it should be split in multiple components on the basis of functionality.
However, the project is in a too early stage of development to assess this more precisely.

Step 6: The overall evaluation
At this step, the right architecture candidate should be chosen, and the relative importance of the qualities
should be assessed.
• Performance Both simulations will eventually be made ma FORTRAN program, so the performance of

the candidates should not be significantly different.
• Ease of use The ease of use of candidate 2 will be much better, because of its graphical user interface.
• Modifiability The modifiability of candidate 2 will be better. On the basis of this architecture it is easier to

import routines, or to change the structure of the program without rewriting the complete code.
• Change costs The implementation of a candidate I will probably be less time consuming as candidate 2.

Since the aim of this project is to create a simulation environment which can easily be adapted to new
simulation tasks in the future, the decisions has been made to choose for candidate 2.

Conclusion
A totally new design for the simulation tool is needed. Therefore, the decision has been made to generate the
simulation code, to get an optimal modifiability and flexibility of the tool. The code generator itself, should
have a high modifiability as well, so new features can easily be implemented at a later stage.
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5. Development of the new MIMICS tool: MIMICS-J

5.1 Variation points and decisions

The following design decisions have been made at the beginning of the development:

The tool will not do the simulation itself but generates the code to be compiled and executed
To make the modifiability of the simulation as high as possible and keep almost the same performance, the
simulation code will be generated.
It should also be possible to generate the code in a different program language, like for instance C++ with MPI
extension. With code generation, it is possible to add other programming languages in the future.

The code generator will be written in the programming language Java
The code generator obviously has to be written in an object oriented and flexible programming language, to get
a high modifiability for this tool as well. The choice has been made to use the programming language Java,
because this language is easy to use, frequently updated, can be executed on every operating system, and can
easily be used to implement internet based applications. Therefore, the new tool is called MIMICS-J.

Initialisation files will be read during execution time, not during the compilation
In the current version of MIMICS, all initialvalues of the environment, transport and metabolism variables of
the experiment are read by the program at the start of the simulation. Another option would be to insert the
values of these variables hard-coded in the generated simulation code. The advantage of the latter method
would be that all read errors can already be detected during the generation of the code. A disadvantage would
be that, every time the user wants to run a simulation with a slightly different initial situation, the complete
program has to be compiled again. In practice this situation occurs so often, that the choice has been made to
read the initialisation files at run-time.

Metabolism interactions can also be approached per reaction
In the current implementation, the metabolism interactions are approached per substance. In the next section it
will be demonstrated that if the interactions are approached per reaction, they can be described in a generalized
form that gives the user the possibility to add new interactions and bacteria more easily. Of course, the import
of substance interaction subroutines will still be possible.

The generated FORTRAN code will be divided in modules
To keep the generated code well organized, it will be divided by functionality in separate modules and files,
like for instance a transport module, an interaction module, an environment module, etc.
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5.2 Metabolism interaction with reactions

5.2.1 General description

The interactions between the simulation substances can be described by one or more differential equations. In
the current implementation, the equations are drawn up for oxygen, toxin, food and every bacterium separately.
The disadvantage of this approach is that these equations are difficult to implement in a user interface, because
they have different structures and parameters. A generalized form of interaction would make the process easier
to understand and to modify. Therefore, a new approach of defining the metabolism is introduced and this is the
description of the metabolism not per substance but per reaction. In the next section it will be demonstrated that
by this method a standard equation form can be used to define all interactions.

5.2.2 Reactions definition

Bio-chemical processes can be defined by the concentration of substances befbre the reaction, the concentration
of substances after the reaction and the effect of this reaction on the environment. This approach can be
described with this equation:

t time

(5.1)

derivatives with respect to I

the concentration of the substances at this grid point

a stochiometric constants which define the substance-concentrations that exist before the
reaction
stochiometric constants which define the substance-concentrations that exist after the
reaction

r the rate-equations

The reactions can use multiple rate equations to define the interactions. Currently, all the necessary interactions
can be modeled with two rate equations:

Mass Action Kinetics
The kinetic relationship between the substances is modeled with this simple equation:

rMOU(S)=HS, (5i)

Monod Growth Rate
The growth of the bacteria is modeled according to the Monod Growth Model [5].

— S"'
rMf (S) =

K,
(5.3)

The total equation for a reaction will be this:
ths Subs "',j

F = (b
— )fJ

-

K
(54)

j 1=1 if
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All the metabolism of the MIMICS project can be defined with (multiple) definitions of the form (5.4).

5.2.3 Converting substance interactions to reaction interactions

Case 1: Simple food uptake version

The simple food uptake (2.1, 2.2 and 2.3) can be converted to formula (5.4) easily.

This system can be defined by two reactions, the food consumption of bacterium a and of bacterium b. This

system consists of three substances; two bacteria at index I and 2, and one food element at index 3, so the

vectors have a size of three elements. For bacterium a, the reaction is defined as follows:

The Mass Kinetics power array ñ selects on which substances this reaction depends, in this case the first

bacterium:
1.0

0 (5.5)

0

The Monod Growth Rate power array th should be defined in such a way that only the food element

influences the growth:

0

rn= 0 (5.6)

1.0

For Monod Growth Rate array K, only the concentration of the food substrate has to be filled:

0= 0 (5.7)

K10

If these three vectors of the rate equations are inserted in equation 5.4, the result will be as follows:

F = (b—5) .S(x, . ).
S(x)

(5.8)
I' - S(x0,)+K(x,)

In vectors b and a the stochiometric constants can be defined to determine which substances exist before and

after the reaction.

The food concentration will decrease at a rate 0fV,,,, r(S, t)

0

a= 0 (5.9)
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The concentration of bacterium a will increase at a rate ofp,,,, r(S, t):

P max

b= 0 (5.10)

0

If vectors 5.9 and 5.10 are inserted in equation 5.8, the differential equation vector F is updated for all the
substances which are involved in the reaction of the food consumption of bacterium a. If a second reaction is
defined in the same way for bacterium b, then the simple food uptake is defined in reactions. The other versions
can be converted in a similar way, as shown in the next chapters.

Case 2: Toxin version

The toxin version can also be converted to formula (5.4). The food uptake is the same as in case 1, only a fourth
element is added to the system, the toxin. Assumed is that bacteria a produces toxin (1.5) to kill bacteria b (1.6).
The differential equation for toxin is defined by (1.7).
These are the reactions needed for this model, and the definitions in the arrays of formula (5.4).

The toxin production:

F(Xspecie a) = F(Xspecie A) — 'T.k Xspeciea) (5.11)

F(X,,) = F(X,) + . S(Xspeciea) (5.12)

0 1.0 0 0

- 0 - 0_ 0— 0—0
0 0

n=
0

m=
0

K=
0

(5.13)

0 0 0 0

The toxin destruction:

F(Xsp,cieb) = F(Xspecje ,) .S(X,,,) .S(X,,,j.b) (5.14)

F(X,011) = F(X,01) _Ji• . S(X,0)• S(X,,CjEb) (5.15)

0 0 0 0 0

ICTk - 0 - 1.0 — 0 — 0
a=

0 0 0
m

0 0
(5.16)

uric 0 1.0 0 0
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The bacterium growth (in a similar way for bacterium b'):

S(X)
F(Xsp a) = F(X_ a) 4U1 S(X1) + K(XfOOd)

S(Xs_ea) (5.17)

S(XIOOd)
S(Xspeciea) (5.18)F(X)= F(X_)-V S(X1)+K(X_)

1 0 \ (p (i.o\ (' =( 0 \
101

I;;=I

I=I I (5.19)avjb_ 0 I 101 101-

J

°

J

I K,d
I

0 0 OJ oJ
5 concentration of the specified element (/)

K half saturation of the specified element (uud/)

/1 maximum growth rate of the bacteria

V maximum food uptake rate

r.k toxin produce rate

f3rj rate for the loss of toxin due to its toxic effect on a bacterium

IC.J toxin kill rate

Case 3: Oxygen version

The metabolisms of the aerobe and anaerobe bacteria are defined with formula (1.1), (1.3) and (1.4). The fourth
index of the arrays is the oxygen. It is assumed that there are two bacteria: bacterium a is a strict aerobe and
bacterium b is a strict anaerobe (table 2-1). Below the reactions needed for this model, and the definitions in the
arrays of formula (5.4).

The growth of bacterium a:

S(x1) S(x,,)
F(x_)= p . S(x,,a) S(x1) +K(x1) S(x0 )+ KR(xo)

(5.20)

S(x1) 5(x0)
F(x1,)=—V .5(x). (5.21)

S(x1)+K(x1) S()+KR(x)
S(x) S(x)

F(x) = I3R S(Xs,,ea)
S(xfd) + K(xfd) S(z3)+ KR(xo)

(5.22)

[0]

(p02l (1.o (0 ( 0

- 0 0 - lo I—. IoI_ I 0 I

— n1 I m1 i K=I I (5.23)
101

1.°

KJOOdI

0 J 0) l.OJ J

22



The growth of bacterium b:

S(x1)
F(x_b)=i .S(x_ b) S(x1)+K(x) (5.24)

S(x)
(5.25)F(x1) = F(x1)—V S(x

S(x,)+ K(x)

(\ (Ø\ (\ (o\ (0
0

b=' u I Ii•o ;....I 0 =1 0
(5.26)

I I 0 I 0 I ILol IKj°° IoJ O) oJ oJ 0
J

The inhibition of metabolism of bacterium b by oxven:

S(x1,) S(x0)
(5.27)F(xb) = F(x S(x).

S(x1)+ K(x) S(x )+ KR(x)

102' 101
(\ '

— _ 0 1101 lOt__I 0 I

a=I — n=I irn=I K
0 0 1

I 0 1 '1 0 — K1 (5.28)

o J oJ o J i.OJ KR)

The oxygen destruction:

S(x)
F(xSpb) =F(x_ b) K Xs,,e b) S(x)+K(x) (5.29)

S(x)
F(xfd) = F(x1)+ Y

S(x)+K(x0)
(5.30)

S(x0)
(5.31)F(x) =F(x)— fT S(x0)+K(x4)(\ " 0 I\ (

- I1co2I I 0 I I•i 101 I I

a=I
i

0 I 'I1ç.,c I 1 0 I
mH

0 I "I 0 I
(5.32)

0 J l.OJ

23



S concentration of the specified element ("/)

K half saturation of the specified element ("/)

maximum growth rate of anaerobic metabolism

Vi,,, maximum specific uptake rate of the anacrobes

maximum specific uptake rate of the aerobes

I3R maximum oxygen uptake rates due to aerobic metabolism

I3T maximum oxygen uptake rates due to toxic effect on anaerobes or microaerophiles

K1, half saturation rate food concentration(mX)

KR half saturation respiration rate oxygen concentration(m')

half saturation kill rate oxygen concentration (/)

maximum oxygen kill rate

yield of substrate per unit of bacteria killed by oxygen
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5.3 Constraints of MIMICS -J and possible other applications

The MIMICS-i main tool will be useable not only for the MIMICS project but also for other comparable
situations. Therefore, it has to be defined which situations can be simulated by the new tool, and which fall
beyond its scope.

The tool covers only situations, in which the organisms are present in such a large quantity that it is impossible
to simulate it with individual entities.

If it was tried to get a betterinsight in the interaction of, for instance, a flock of sheep, then each individual
sheep could be simulated by a single process. But in situations like the microbial ecosystem in the human

intestines, there are too many entities ( iOfl), so this problem has to be approached with concentrations. Hence,
the tool will not be useful for small population experiments.

The tool covers only situations in which the interaction between the organisms and its environment can be
described as bio chemical reactions that can be defined as a list of differential equations. These equations
define how the organisms affect each other and in what way.

So this excludes any kind of process experiment that can not be described in such a way.

The simulation can be divided in interaction processes and transport processes.

The tool will make a clear distinction between these processes, so if the situation cannot be divided in that way,
then it falls beyond the scope of the possible application of the new tool.

Taking into account these constraints of the simulation tool, the conclusion must be that the concept of the tool
might also be applicable for simulation of other processes or situations than only the human intestine. Subject
to further examination one could think of:

• The ecosystem in a river: concentrations of bacteria and species
• Climate change models: greenhouse effects; concentrations of carbon-dioxide etc.
• Fermentation processes in biochemical industry



6. Implementation of MIMICS-J

6.1 The client-server model

The MIMICS-i tool is divided in a client and a server part (fig 6-I).

Graphical User Interface
Code generator
Import files

Figure 6-1: Client-server model of MIMICS -J

The creation and execution of a simulation will be done in five steps:
I. On the client, the user can give its input by the graphical user interface (see also fig 4-1). He/she can

define which routines should be imported for which situations and components. Also the interactions
can be defined, either by imported substance differential equations, or by manual defined reactions.

2. The code will be generated. It will be divided over different files and modules by functionality. Also
the initialization files of the components are created.

3. The simulation code and the initialization files are sent to the server. In the current implementation of
MIMICS-i, the files are sent to the Cray SV1e supercomputer by FrP.

4. The simulation code has to be compiled. Currently, this is done manually by a telnet-connection to the
Cray.

5. The simulation code is executed to do the actual simulation.

6.2 Overall program structure
The overall view of the MIMIC-i tool looks like this:

The main-file of the tool is the connection between all these components.
GUlSimulationFrame This is the graphical user interface of the tool; it will be explained in chapter 7.
RootProcess The root process holds the simulation processes of the simulation, like the transport

processes, the interaction processes, the initialization processes.
Simulation Variables This class holds the variables of the simulation. It is separated in groups like for

instance transport variables, environment variables, etc.
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CodeGenerator

SimFileHandler
FTPHandler
InitFileHandler

The code generator is an interface, which implementations will generate the actual
simulation code files.
This component handles the opening and saving of project files
This component handles the FTP connection to the server, the Cray.
This component generates and creates the initialization files.

6.3 The simulation processes and subroutines

In the MIMICS-J project, the simulations are divided in processes. A process is a component that can run
independently from the other components, and can be distinguished because of its functionality. Practically, this
will be a subroutine, or a group of subroutines to compute a particular part of the simulation. The default
process-class is SimProcess and it has the following attributes:
name the name of this process
description the description of this process
local Va rs the local variables needed for this process (section 6.4)
subroutines the subroutines of this process
code the code to be generated of this process (section 6.5)
loop this defines if the process needs a special sub-loop

A parent process is a process that holds and manages sub processes.
The root process is a specialization of the parent process, and holds all the processes ofthc
entire simulation. It holds three child processes, which are of the type ParentProcess as well:
the initialization process, the main process and the finalize process. The simulator will first
initialize with the child processes of initProcess, then iterate trough all the child processes of
mainProcess, and finalize the simulator with finalizeProcess
At the current stage the only real specialization of the default process is InteractProcess. This
process computes the interaction between the substances of the simulation. Its subroutines,
variables and initialization are not imported or manually created (see also section 6.6), but
they can be generated automatically, like for instance the differential equation routine D(fEq
(fig 6-4).

If a project is started from scratch, a root process is created with an empty InitProcess and FinalizeProcess, and
a MainProcess which holds InteractProcess as its only child.

27

am. String
.$criptiOn String —

ocalVars VaflabteGroup new VariableGroup()
ubroutinee S Vector new Vector()
ode Stang =

,oop Vector

Figure 6-3: Processes

There are a couple of inherited classes of the SimProcessclass:
PareneProcess
RootProcess

InteractProcess



6.4 The simulation variables

Figure 6-4: Subroutines

The simulation variables are structured as showed in fig &5.

Simulation Variables
Variable Group
Sim Variable

Constant Variable

Normal Variable

This class holds all the variables of the simulation
This class holds and manages groups of simulation variables.
This abstract class represents a suiulation variable. Sim Variable has a type attribute
that can be assigned with two values; REAL or INT. This represents the type of
values the variable can hold (reals or integers).
This class implements the Sim Variable class. It represents the kind of variable that is
set at the beginning of the simulation and does not change, like for instance the
number of substances. This variable is always 0 dimensional; it can hold only one
value, which can be an integer or a real.
This class also implements Sim Variable, and represents the kind of variable which
value is change during the simulation, so it has no value. This variable can consist of
multiple dimensions; therefore a vector is filled with objects of the type VarDim
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VarDim This class represents a dimension of a standard variable. A variable dimension has
an upper and a lower limit. Both limits arc specified with a constant variable and an
extra integer. This extra integer is necessary to correct the size of an array for
boundary conditions, like for instance the main grid. A standard variable temp with
one dimension will be like declared like this:
temp [lowerBound + lowerBoundlnt, upperBound +upperBoundlnt)

With this structure practically all necessary variables can be defined. If a project is started from scratch, the
default variable-groups and variables of table 6-I are automatically created.

Table 6-1: Default variables and groups

Group Variable Type Kind Description

Global Vars
Substances

Time
Timelnit
TimeStep

RadialMax
RadialMin
AxialMax
AxialMin
Iter
Maxlterator
Minlterator

mt

real
real
real

mt
mt

mt
mt

mt
mt

mt

constant

standard
constant
constant

constant
constant
constant
constant
standard
constant
constant

The global variables
This constant holds the number of species of this
simulation
This variable holds the real current time of the simulation
Initialization value of the Time
This variable holds the time-steps that are taken at every
iteration.
Radial subdivision maximal value
Radial subdivision minimal value
Axial subdivision maximal value
Axial subdivision minimal value
Variable for iteration through the main process
Iterations maximal value
Iterations minimal value

EnvirVars
MainGrid real standard

The environment variables
This multidimensional variable represents the whole
simulation grid, in radial, axial and substantial direction

MetabVars This group has to exist, so the interact process can add its
automatically generated variables to it.

This table can become larger, when more processes are explicitly implemented. Of course when a project like
MIMICS is created with the MIMICS-i tool, a lot of extra variables are needed. For instance, the environment
structure and transport variables are not declared yet.

6.5 The code generator

The code generator of fig 6-I is an interface. At this moment, only a FORTRAN 90 implementation of this
interface has been created, but this way it is possible to generate simulation code in other program languages in
the future (fig 6-6).

1F0a6enatoi1 CplusGenerator

CodeGenera tot

Figure 6-6: The code generator
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The code generator has several functions that can be grouped according table 6-2:

Table 6-2: Code generator function groups

Function type Examples

Statement functions creation of iterations, program headers, subroutine headers
Variablefunctions converting the MIMICS-J variables to the new language, creating variable

modules and files, make variable declarations, parsing arguments or dimensions
File functions create and manage the simulation code files
Math functions add, multiply, subtract and power operations
Logic functions bigger, smaller or equals statements
Subroutine functions create subroutine headers, call subroutines, or import subroutines

The FORTRAN implementation of this interface will also have language specific functions like parsing the
string lengths and generating comments. When the user demands to generate the simulation code, the code
generator takes the following steps:

1. The variable-groups are parsed. Eveiy variable group gets its own module and file. The code generator
starts with Global Vars (table 6.1), since important array sizes are defmed in this, which may be used
in other groups.

2. The root-process is passed to the generator. First mainProcess is parsed (fig 6-3). All its child-
processes are processed one by one in the right order. In some cases extra initialization subroutines has
to be added to initProcess. Every process gets its own module and file to keep the generated code
well-ordered.

3. Finally initProcess and finalizeProcess are passed to the code generator.

6.6 The interact process

The InteractProcess class is a specialization of SimProcess. This class simulates the interaction between the
substances. The process consists of two parts (6-6):

1. The Differential equation
2. The Differential equation solver

The differential equation solver is a routine that will be imported in most situations. At the current stage,
mainly the RungK4 solver [1] is used, but using other solvers, such as the DO2EAE routine from the
FORTRAN NAG library, will also be possible.
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All interactions between the substances are defined in one subroutine (DfEq) that holds all the differential
equations. This subroutine needs three arguments (table 6-3).

Table 6-3: Differential equation arguments

argument Description Type

t time input

S
the concentration of the substances at this

.

grid point
.

input

derivatives with respect tot output

This subroutine is passed to the differential equation solver, to compute the new concentrations at the current
grid point for the next time -step.

There are two forms of differential equations of the metabolism in this project:
1. Interaction per substance: Every substance is represented by a (complex) differential equation. In this

form of interaction the differential equations routine, and its initialization routines and files, will be
imported.

2. Interaction per reaction: Every reaction is represented by a differential equation. The differential
equations subroutine, the necessary variables and the initialization routines and files will be generated
by the code-generator through user input by theReactionBuilder class.

6.7 The reaction builder

The ReactionBuilder class generates the differential equation subroutine (table 6-3) by user input. Every
reaction can be described with equation (5.1). The class consist of two parts, theReaction class and the
RateEquation class.

1ReactionBuild:r

[action 1RateEquation

MonodGrowRate MassActionKics

Figure 6-7: Reaction builder

At the current stage, the project implements two rate equations (fig. 6-7); the Mass Action Kinetics (5.2) and
the Monod Growth Rate (5.3). For every reaction that is created by the user, the reaction-builder creates input
arrays, which sizes are as large as the amount of substances in the simulation.
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Table 6-4: Reaction input arrays

Array Description

b_minus_a conc. after reaction minus conc. before (5.1)

MassActionKtcs_n power n array of(5.2)

MonodGrowRate_n power n array of(5.3)

MonodGrowRate_k k array of(5.3)

These arrays are stored in the Metab Vars variable group of table 6-1. Note that only one array has to be used to
store (b-a) of equation 5.1. The Reaction class holds all the values of the input-arrays which are entered by the
users.

When the user demands to generate the simulation code, the ReactionBuilder class takes three steps:
I. The DJEq subroutine is filled with the operations according to formula 5.4, by calling the

makeEquation functions of the rate-equations. These functions generate the appropriate code by using
the Math and Logic functions of the code generator (table 6-2).

2. The Reaction classes are passed to the IniFileHandler (fig. 6.2) which generates a text file with all the
values of the reaction arrays

3. A subroutine is generated to initialize all the arrays that were added to the Metab Vars variable-group.
This subroutine is added to the first child-process of initProcess (fig 6-3).
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7. Building MIMICS in MIMICS-J

7.1 General description

The MIMICS-i tool has been implemented. The next step is to verif' the functionality of the tool by
inçlementing a MIMICS simulation. Therefore, it will be demonstrated how the food-uptake version (chapter
5.2.3, Case 1) can be generated with the MIMICS-i tool. An extensive description of all the transport and
environment variables and processes of MIMICS can be found in the MIMICS Technical Report [2]. The other
MIMICS versions can be simulated in a similar way, by adapting the reactions, and transport functions of the
simulation.

7.2 Variables

The MIMICS food-uptake version needs extra variables to define its environment. The following table shows
all the variables that should be created in the variable panel (See also Appendix A, fig. A-I — A-4), including
the default ones.

Table 7-1: Variables and groups

Group Variable Type Kind Val Description

Global Vars
Substances
Time
Timelnit
TimeStep
RadialMax
RadialMin
AxialMax
AxialMin
Iter
Maxlterator
Minlterator
FineStep

FineStepStart
Length

mt

real
real
real
mt

mt
mt

mt
mt

mt
mt

mt

mt
real

constant
standard
constant
constant
constant
constant
constant
constant
standard
constant
constant
constant

constant
constant

The global variables
4 The number of species of this simulation

The current time of the simulation
0.0 Initialization value of the Time

720.0 The time-steps that are taken at every iteration.
10 Radial subdivision maximal value

I Radial subdivision minimal value
100 Axial subdivision maximal value

I Axial subdivision minimal value
Variable for iteration through the main process

1000 Iterations maximal value
1 Iterations minimal value

10 Finer step to ensure that only the diffusion
between direct neighbors has to be considered

1 Start of the fine step loop
6.0 Total length of the intestine

EnvirVars The environment variables

MainGrid

Volume
Radius
Aaxial
Arad

real

real
real
real
real

standard

standard
standard
standard
standard

This multidimensional variable represents the
whole simulation grid, in radial, axial and
substantial direction
Volume of the elements, in axial direction
Local radius of the intestine, in axial direction
Axial contact area
Radial contact area

MetabVars
Foodlndex
NrOfpecies

nit

nit

constant
constant

Metabolism variables
3 The index of the food element in this simulation
2 The number of species in the simulation
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TransVars Variables for the transport processes
FIConc real standard Concentration of bacteria and food

Imax real standard Maximum flow rate
1mm real standard Minimum flow rate
Wjp real standard Weights pre -computation
Wim real standard Weights pre -computation

Wip real standard Weights pre -computation
Wjm real standard Weights pre -computation

Delta real standard Weights pre -computation

7.3 Processes & Imported subroutines

Most of the subroutines used in the MIMICS simulation in MIMICS-J, are modified parts of the original
FORTRAN code. The safest way to import a subroutine is to rewrite it in such a way, that all not local variables

used in it are passed by the arguments. The user can also refer hard-coded to the defmed variables, but this can
cause unexpected results and errors if a variable is ever changed or deleted. The following processes and
subroutines should be created in the process (fig A-5) and subroutine panel (fig A-i — A-I I).

Table 7-2: Process & subroutines

Parent-process Process Subroutine Description

Initialize Initialize Envirini Initializes the environment, except the grid
Translni Initializes the transport variables
Gridlni Initializes the main-grid of the simulation

DivideWgt DifWgt This subroutine pre -computes some of the
transport variables, to improve the
performance

Mainprocess InteractProcess - The interact process
LaminarFlow

Diffusion

StoreAndReport

LFLOW

Bounds
Diffus

StoreData
ReportProg

Computes the laminar flow through the
intestine
Computes the boundary conditions
Computes the diffusion between the
elements.
Store the new computed data
Report the progress of the simulation on
the command line

Finalize FinalizeSim FinalReport Generates a final report of the simulation

For the diffusion process, the loop (fig. A -6) has to be enabled from FineStepStart through FineStep, to ensure
that only the diffusion between direct neighbors has to be considered.
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7.4 Interaction specification

Firstly, the Per Reaction-button (fig. A-I 2) has to be selected. In the reaction specification (fig A- 13), the two
reactions (see Chapter 5.2.3, Case 1) should be created, by filling in the following tables:

Table 7-3: Reactions

As differential equation solver, the RungK4 solver should be selected (fig A- 12).
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Subs I
Specie 1

Subs 2

Specie 2
Subs3 Subs I Subs 2

Cone before (a) 0.0 0.0 2.OE-4 0.0 0.0 2.OE-4

Concafter(b) 1.OE-4 0.0 0.0 0.0 l.OE-4 0.0
MassActionKtcsn 1.0 0.0 0.0 0.0 1.0 0.0

MonodGrowRate.n 0.0 0.0 l.OE-4 0.0 0.0 l.0E-4
MonodGrowRate_ks 0.0 0.0 0.02 0.0 0.0 0.02

Subs 3



8. Analysis of MIMICS-J

8.1 Results and performance

If the original MIMICS tool is rebuilt with MIMICS-J, then the results of the simulation are the same.
Furthermore, if the food uptake version is created with reactions, then the results are still the same as the
original per substance version, which proves the functionality of the use of reactions. If the toxin-version is
created with the new tool, then a slight precision loss occurs, in the order of Furthermore, if the number of
iterations is set to a too large value (more than 2000), then the current differential equation solver seems to have
more problems to solve the equation. Further analysis is needed to explain this problem.

To test the performance, the original MIMICS simple food-uptake and toxin-version were created with
MIMICS-i. The differential equation was approached per substance, which means that the original differential
equation routine could be imported. So e xactly the same program was created, with the same subroutines and
computations, with the difference that the subroutines and variables were divided over different modules and
files.
It appeared that this caused a significant performance loss. Further amlysis revealed that this was because of
two reasons:

I. The use of modules and extra subroutines caused a significant overhead.
2. The original MIMICS tool uses special FORTRAN compileoptimize functions in the code in order to

increase the performance. This is not implemented (yet) in the code generator, so processes that
generate their code, like the interact.process, do not have this optimize settings. This makes it difficult
for the compiler to determine which parts can be computed parallel.

The MIMICS-Jprogram was further tested by creating the old MIMICS tool with the standard parameters as
described in the previous chapter, run on 8 CPU's of the Cray. The results of four variations are shown in table
8-I. The first column is the performance with 100 iterations in seconds; the second column with 1000 iterations
and the third column shows the performance after manually insertion of compiler.optimize statements.

Table 8-1: Performance

#ofiterations 100 1000 I000opt

Toxic version imported 7,1 60,2 40,6

Toxic version with reactions 14,7 250,6 200,7

Food uptake imported 6,4 74,14 42,3

Food uptake with reactions 10,2 194,4 90,8

It appeared that approaching the interactions per reaction is more computational intensive than approaching it
per substance. This is due to the fact that more program statements are needed to describe the reactions. The
above table is not fully representative for the performance. Variation in number of used CPU's on the Cray may
also influence the results. Especially when the compiler-optimize statements are used, the performance can be
improved by using more processors.
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8.2 Suggestions and adaptations for the future

The program is still far from complete. The following scenarios are possible further adaptations of the
MIMICS-i tool, ordered by priority.

1. Increase the performance by compiler optimize settings

The performance of simulations that were generated by the MIMIC-i tool can be improved by generating
compiler-optimize-statements in the code. This way, the computations can be better divided over the processors
of the Cray.

2. Implementation of the fransport processes

At the current stage, only the interaction process of MIMICS-i generates its own code by user input. The other
the subroutines are imported, and the variables manually created. This should change in the future. The
transport processes, for example, can be approached as a matrix vector system, with in the general case Navief
Stokes equations (10]. This can be implemented in such a way that the user inputs the initial values and the
transport functions. The simulation-code, initialization- files and subroutines, and the transport variables can be
automatically generated as in the interactions per reaction.

3. Generation the initialization of all constait variables

The constant variables of the program are now hard coded, to give the opportunity to modify them easily in the
user-interface. In the future, the constant values should be stored in an initialization file. The initialization-file
and its initialization-subroutines should be generated automatically. In this way, the change of an array size
would only result into regenerating the initialization file, instead of a new code generation and compilation.

4. Generation of all the initialization files

Currently, the initialization-tile of for instance the simulation grid has to be created with a text -editor or by a
separate initialization tool. In the future, initialization tools should be integrated in MIMICS-i, with various
default settings for typEal begin-situations.

5. Generation of a make-file for compilation

Currently, the simulation-code has to be compiled by making a telnet connection to the Cray, and entering the
right compilation command. It would be easier if the compilation-command was stored in an automatically
generated make-file, which is sent to the Cray by FTP as well.

6. Implementing an SSH or telnet connection

At this moment, the telnet or SSH connection has to be made with an external program. In the future, the user
should have the possibility to just push the make-button, and the code will compiled at the Cray or another
server automatically. The output of this compilation can be sent to the output panel. The actual execution of the
simulation can be done in a similar way.

7. Gathering and presenting the output of the simulation

The output and the result of the simulation are now shown at the command prompt, and store in output files. In
the future, the progress of the simulation should be sent back to the client and graphically represented, and the
result can be presented in graphics and charts. This way, the user can understand the results of the simulation
much easier and faster.
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8. Drastic improvement of the graphical user interface

The current interface is far from ideal, and should be improved in the future. If all the processes generate their
own code and initialization files, maybe a block-structure can be used, to add new processes and create
connections between them.

9. Implementation of other program languages and cross language implementations

Some computer systems work better with other program languages. For instance a C+-fcode generator should
be implemented, with MPI- extensions, to work on clusters. In some cases, it may even be useful to generate
cro program-language simulations to get the optimal performance, or to use FORTRAN 90 equation solvers
in a C++ simulation.

10. Real-time interaction during the simulation

If a large simulation is executed, then the user may want to test what happens if a high quantity of bacteria
invades the intestine immediately. This requires that the code is generated with threats, so the simulation listens
to user input while it is running.
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8.3 Modifiability

In order to be able to implement the adaptations as mentioned above easily, the modifiability of the MIMICS-i
tool should be good as well. The new software architecture is structured in such a way, that it is possible to
implement the modifications without changing the whole design.

To implement scenario 1, the FORTRAN code-generator should have extra functions to manually insert
optimizing code in modules.

The current interaction-process proves that it is possible to make a specialization of the simulation-process,
which creates its own initialization files and routines, so scenarios 2, 3 and 4 can also be implemented.

Scenario 5 requires an extra class for handling the make-files, just like the existing classes for handling the
project- and initialization-files.

To make a SSH- or telnet-connection as in scenario 6, a similar class like the existing FTP-handling class
should be created.

The output of scenario 7 can be gathered through the SSH-connection. A new graphical user interface can
implement a graphic- and chart panel, and the block-structured input as mentioned in scenario 8.

Other languages can be implemented by making a new realization of the code-generator interface. If the
different program language modules are connected in the right way, scenario 9 can be implemented.

Scenario 10 requires an adaptation of the code-generator interface. Depending on the possibilities of the
program language, threads should be inserted in the simulator code.
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9. Conclusion

Currently, there are not many simulation programs which work with such large quantities of species and
substances as the tools needed for the MIMICS project. As mentioned in the previous chapter, the MIMICS-i
tool could still be further improved. Nevertheless with the development of this new integrated tool a new small
step has been taken towards creating a realistic simulation environment for the human intestine and its
biochemical processes. Therefore, the development of MIMICS-i could make a contribution to the research
into medicines for diseases such cholera and other forms of diarrhoea. Furthermore, when finally more realistic
simulation environments are created, scientist will not have to resort to laboratory experiments on animals.

The application of the system architecture analysis tools was effective to assess the sensitivities of the new
system architecture. However, these analyses would have been more effective at a later stage of development of
the MIMICS-i tool and especially when this development would have been carried out by a large team.

When further developed, the MIMICS-i tool can be useful as a teaching tool, which can be used by researchers
that are less specialized in programming, for experiments with different models and situations.

Finally, the principles of the model and approach used for MIMICS-J may be useful for application in other
scientific fields within the constraints as described in section 5.3.
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Appendix A: User manual of MIMICS-J

A.1 General description

The MIMICS-J tool has been built with the software development kit of Java 2 Platform Standard Edition
(J2SE); version 1.4.1 [8]. The main class of the program, MIMICS.!. class can run with a JAVA virtual machine.
To make a FTP-connection to the Cray, an extia FTP-package [9] needs to be in included the $CLASSPATH
environment variable. The user interface has been developed to demonstrate the flexibility of the program, and
should be improved at a later stage of the development.

The program uses four subdirectories of the directory where it is located, to read and save its files:

./PROJECTS The project-files are read and saved in this directory. There is a file called default which
should not be altered. The program reads all default settings from this file when it is started.

.IIMPORT The subroutines to be imported, like the differential equation solver or the transport functions,
are stored in this directory.

./IN!TFILES The initialization files has to be located here. Also the reaction-builder stores its reactions
initialization-files here.

./FORTRAN This is the directory where the generated simulation code is stored.

A.2 The menu-bar

The menu bar is organized as in the following table:

Table A.1: The menu-bar functions

Menu Sub-menu Description
File New simulation Start a new simulation form scratch (loads the default file)

Open... Open a stored simulation, file -selector appears to choose a file
Save Save the current simulation
Save as Save the simulation with another name, file -selector appears
Exit Exit the simulation

Edit No functionality is allocated to this sub-menu yet
Actions Generate 4 Code & lmt Generate the FORTRAN simulation code and the initialization files

Generate 4 Only mit Generate only the new initialization-files (this case the reactions)
Ftp 4 Code & lnit Sends the simulation code and the initialization files to the Cray

through FTP
Ftp 4 Only mit Sends only the initialization files to the Cray
Make/Run No functionality is allocated to these items yet. For building and

running the simulation directly on the Cray in the future.
View Output Switch to the Output panel. In this panel the user can read all the

actions and errors made so far.
Variables Switch to the Variables panel
Processes Switch to the Processes panel

Some of the items are to be implemented in a later stage
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A.3 The variable-panel

In this panel, the user can add, modif' or delete variables and variable-groups. The variable-group panel (fig A-
I) is located at the left. With the New-button, a new group can be created. With the Edit-button, the name and
description of an existing group can be modified. When finished, theFinish- or Cancel-button at the bottom of
the frame should be pushed (not shown in picture). With the Delete-button, the user can remove the entire
variable-group with all its variables.

The variables-panel (fig A -2) is located at the right. When a variable-group is selected, all the variables of this
group are loaded in the variable -list. The variables can be edited in the same way as the variable-groups.

When a variable is created or edited, the value type can be selected by the radio buttons. When the Constant -

button is selected (fig A-3), the constant -panel appears. The user can fill in the integer or real value for this
variable, depending on which variable -type is selected.

i Constant •

VIwe-I4

Figure A-3: Constant variable

When the Normal-burton is selected, the normal-panel appears (fig A-4). The user first has to select how many
dimensions this variable should have, and then select the upper- and lower-bounds for every dimension. Note
that only constant-variables of the integer-type and located in the Global Vars variable-group, are present in the
bounds selection -box.

Variable Gieqs

New

EdI

Delete

ime _I
Figure A-I: Variable.roups

Figure A-2: Variables

Vue type
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Value type V&lableiype

S Wornial Q Constant JIo I,eer S Real

Oinenslons 2iJ

Dimi: RacIMin * -1 j [ithaNes ' '1

Dm 2: Axialtebn . 1 j 1Axlaz 1

Figure A-4: Normal variable

A.4 The processes-panel

A.4.1 Process specification

In this panel, the user can create, modify or delete processes. The process specification (fig. A-5) is located on
the top-left of the panel. On the top, the user can select with radio-buttons, if he wants to edit the process in the
initialization, the main-loop or in the finalization of the simulation. Similar to manage variables, the user can
create, modify or delete a process. With the move up and move-down buttons, the order of the processes can be
changed.

_______

Ro*Spedflcaiinn

D WUalize Main mop 0 Finalze

Process Speclilcallam

___

ractProcess
New Process

I •.'L EtMProcess
J $)Tuslon

Delete Process J JaiIoflDala [L"° doWfl

Process name jlJL
LaminarFiow

Figure 45: Processes specification

The loop selection (fig. A-6) is located at the bottoinleft of the panel. If the Loop through this process-button is
selected, the process will iterate through the process as selected in the Start and end variable selection-box.

• Loop through tiWs process..

startr!

________

—

_____ ____

Figure A-6: Loop selection
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A.4.2 Subroutine specification

When a normal process is selected in the processes specification, the subroutine specification (fig. A-7) appears
on the top-right of the panel. In this panel the user can import new subroutines for this process. With the browse
(...)-button, the subroutine-file can be selected. The subroutine name field should be the same as the name of
the subroutine to be imported. With the Edit-button the user can make changes to the subroutine directly. The
user has now to select how much parameters this subroutines uses by the arrows under the #Params-label.

_____

-H mJ
Edil Subroutew

____________

move down
Delete Sidxoutine

Sbridenne--- Flienne

LFLOW Laminarflowr :i
Figure A-7: Subroutine specification

Now the parameters have to be selected. There are four kinds of parameters. The first one is the substance-
range parameter (fig. A -8). With this parameter, the user can select which substances are affected by this
subroutine. This can be useful in case of transport functions which should not be applied to all substances. Only
the first parameter of the subroutine can be a substance range.

i [ii,sramve Subs s i • 2 • • t

Figure AS: Substance range parameter

When the subroutine needs a variable as its parameter, is can be selected in the variable parameter panel (fig.
A-9).

# 2 V&iable [iolvars er

Figure A-9: Variable parameter

An initialization-subroutine may need a file as its parameter. Therefore, a file parameter can be selected (fig. A-
10). With the browse (...)-button, the user can choose an initialization-file, and with the Edit-button the user
can make changes to it.

imimics_trans.nai
LI

Et
—- ——

Figure A-10: file parameter
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In some cases, the subroutine needs a string as its input, like for instance a subroutine name or output-file name.
Therefore, the string-parameter can be selected (fig A-li).

Figure A-lI: String parameter

A.4.3 Interaction specification
In the process -specification panel (fig. A-5), also the JnteractProcess can be selected. In that case, the
interaction specification (fig. A- 12) appears on the right of the panel. On the top, the user can select which
differential equation solver the simulation has to use. At this moment, the user can choose between the
RungK4 -solver [1] and a dummy -solver, which disables the interact process.

Now the type of differential equation can be selected. If the Per substance-button is selected then the s ubstance
panel appears (fig A- 12). In this case, the differential equations subroutine must be imported. It can be selected
and edited with the browse (...) - and Edit-buttons.

- hieraction Sped*iction

DitrerenhialEquatlonSalvu- - —---

____________

—
Differ ential Equation

0 Per reaction Per st$,s*ance

Edt st*istance

DllEqroutinenanie Filename -

MDiIEq Toood2 f ..

Figure A-12: Interaction Specification: Substances
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if the Per reaction-button is selected, the reaction pane) appears (fig. A- 13). In this panel the user can create,
edit and delete reactions. The reactions can be defined by filling in the appropriate values of the input arrays of
the rate equations for every substance (see also chapter 5.2.2).

De,Esation----
•' Per reaction 0 Per sistance

wReactmnj
EditReaction

n nne—----

-___

Figure A43: Interaction Specification: Reactions
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