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Preface
The main goal of sofrware engineering has been, and continuous to be, solving the cost, time

and quality issues associated with software development. Since the existence of software
engineering in the late 1960s, reuse through componentization has been the generally

accepted approach to address these goals. Over the last 40 years, several techniques have
been proposed that focused on the increase in the scale of reuse. However, primarily during

the last decade, it was realized that with the increase in scale, variability was needed to
increase the applicability of the components. Therefore, proper variability management is

regarded as a key success factor in addressing the main goals of software engineering. in this
thesis, we focus on variability management in one of the approaches to reuse, i.e. software

product families. in particular, we address the topic of evolution of software product families
in relation to variability management. We present a framework of concepts regarding

evolution of variability, and discuss a variability assessment technique for architecture
improvement.

Keywords: Software product families, variability, product derivation, evolution, variability
mismatch, variability assessment.
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Chapter 1 — Introduction

This chapter presents the motivation for our research, as well as the outline of this thesis.

1.1. Motivation

Over the past 40 years, reuse of software elements has evolved from small-grained
mathematical routines to large-scale reuse through techniques such as Object-Oriented
frameworks or software product families. Each of the adopted reuse approaches has had the
common goal of solving the cost, quality and time-to-market issues associated with software
development. One of the latest additions, software product families, focuses on intra-
organizational reuse through the explicitly planned exploitation of similarities between related
products. This approach has proven itself in quite a large number of industrial organizations.

In a product family context, software products are developed in a two-stage process, i.e. a
domain engineering stage and a concurrently running application engineering stage. Domain
engineering involves, amongst others, identifying commonalities and differences between
product family members and implementing a set of shared software artifacts in such a way
that the commonalities can be exploited economically, while at the same time the ability to
vary the products is preserved. During application engineering individual products are derived
from the product family, viz, constructed using a subset of the shared software artifacts.

The ability to derive various products is often referred to as the variability of the software
product family. Variability as research topic has grown substantially over the past few years,
as the software engineering community started to realize the difficulties of reuse are not
associated with capturing the commonalities between various products. Instead, preserving
the ability to handle the differences is identified as a major issue. Managing variability
properly is therefore considered as the key factor in the success of software product families.

Traditionally, variability management has been associated with two main tasks, i.e.
facilitating differences and exploiting variability. For the sake of simplicity and brevity in this
introduction, facilitating differences is mainly a concern during domain engineering, while
during product derivation, i.e. the derivation of a product during application engineering, the
variability of the software product family is exploited to obtain a unique product. In this
thesis, we urge that these two main tasks alone are not enough. We identify evolution as an
important cause of problems many organizations face during product derivation and recognize
active variability evolution as an equally important variability management task.
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Literature does address topics such as the creation and instantiation of generic and specific
product family assets as well as dealing with variability at the code level [Anastasopoulos
2001]. Although exceptions exist, e.g. [Svahnberg 2000], evolving variability has received, to
the best of our knowledge, little attention however. The work presented here, therefore aims
to investigate the consequences of evolution on variability and the actions that can be taken to
correct and prevent these consequences from occurring during product derivation.

The main contribution of this thesis, we believe, is that we present a framework of concepts
regarding evolution of variability, as well as a variability assessment technique for
architecture improvement.

1.2. Remainder of this Thesis

The remainder of this thesis is organized as follows. In chapter 2, we provide a short
overview of how reuse of software components evolved since the 1960s. Chapter 3 presents
background information and related work with respect to variability. In chapter 4, we discuss
a case study we performed at the University of Alberta. In chapter 5, we discuss concepts
with respect to evolution of variability and detail our problem statement. We present a
technique that enables an organization to proactively deal with the consequences of evolution
on variability, i.e. variability assessment, in chapter 6. In chapter 7, we conclude our findings.
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Chapter 2— Reuse

In the late 60s of the previous century, the software engineering community faced a major
crisis. The languages in which computer programs were written (machine specific string or
binary instructions) had evolved to higher level, platform independent languages (e.g. Fortran
(1957) and COBOL (1960) [IEEE 2002]). This enabled developers to address problems with
higher complexity, but also increased the complexity and costs of development itself. At the
same time, the market required shorter time-to-market, demanding more and more products,
which should adhere to a higher quality standard, and have a lower price label attached
[Jacobson 1997]. (We refer to these phenomena as the bigger-better-cheaper-faster market
principle).

—Market-
Shorter time- Cheaper Higher quality Larger

to-market products products systems

I I H I I

CONFLICT/\ /\II I I

-rev&opment
Increased Increased
complexity costs

Figure 2-1 — The Software Engineering Crisis

The existing software engineering practice did not sufficiently address the needs as illustrated
above (Figure 2-1). As a result, only a small percentage of software development projects
were completed on time and within budget. In addition, software products became associated
with a form of reliability that would not be acceptable in other engineering disciplines and up
to 80% of the total system costs were spent on maintenance.

One of the events that sparked the change in the world of software engineering, was the
introduction of Doug Mclllroy's view on reuse and software 'components' in [Mdlllroy
1969]. His ideas on utility libraries and mathematical routines evolved into the conceptual
reuse of software elements as a solution for the problems outlined above. Over the past
decennia, this concept didn't change, although market demands increased more and more and
the crisis is not completely over yet (as exemplified in Example 2.1). What elements are
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reused however and how they are reused changed considerably. In the next section, we give
an overview of how reuse strategies evolved over the years.

Although humankind generally tends to prefer to reflect its success stories,
documentation [Flowers 1997] on failed projects does exist. One example is the
PROMS project in the late 1980s, which cost $12M, was 10 weeks late on delivery and
eventually was suspended as the database system had a response time of over 30
minutes. Other examples include a project from the California Department of Motor
Vehicles, which spent over $44M but didn't get a single piece of useful software in
return and the CONFIRM project (1988-1994), which required 18 months of additional
work as the two main systems didn't work together on beta-testing. For a more detailed
overview of these and other examples, see [Flowers 1997]

Example 2.1 — Disaster projects

2.1. Reuse Strategy Evolution

To pinpoint when reuse actually began is rather difficult. Reuse of course, was not something
that didn't exist before McIlIroy wrote about it 1968. In fact, although often creditted the
source of the problems in the late 1 960s software practice, even code scavenging, or the "cut
& paste-strategy", is reuse of software elements. Also, compilers (or high-level languages for
that matter) are a form of conceptual reuse; it prevents typing similar pieces ofcode over and
over again by abstraction. However, reuse of software through componentization is a turning
point in the history of software engineering and thus provides a good starting point for a
historical overview.

2.1.1. Functions and Modules

A large issue associated with reusing pieces of code was the mismatch between the
namespace from which the original fragment originated and the namespace of the new
application. By separating (at least partially) the namespaces of procedures or functions,
imperative languages and procedural based design provided the first step towards component-
based, black-box reuse in the 1960s.

In the 1970s, the high-level languages developed further into modular languages. A module
basically groups procedures and functions to one instance of a single black-box with its own
namespace. Modules as utility libraries, or toolboxes, quickly opened a market for third party
development of commonly used functionality, and can thus be seen as an important step
towards inter-organizational reuse.

2.1.2. Objects and Object Oriented Frameworks

After being first published in 1960s, the object-oriented programming ideas originating from
Simula [Dahi 19661 became more widely accepted in the software engineering community in
the 1970s and 1980s. Object-oriented programming is focused around objects, i.e. concepts,
abstractions or things with crisp boundaries and meaning for the problem at hand [Rumbaugh
1991]. Objects are quite similar to frames in neural networks [Minsky 1975]. They capture
both functionality and state information in a single entity and remove the data dependency
problem of conventional programming [Taylor 1992]. The formal representation of this entity
without the state information is referred to as a class.

With the increased acceptance of object-oriented programming, Object-Oriented (00)-
frameworks emerged in the late 1980s. An Object Oriented Framework is a set of classes,
abstract classes, interfaces and 00-components bundled in a set of modules that partially
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implement an application in a particular domain [Gurp 2000a1. As such, 00-frameworks not
just represent larger reusable software elements, but also capture commonality of applications
in design, structure, and behavior.

Although most of the first 00-frameworks were large monolithic frameworks for graphical
user interfaces (e.g. the Smalltalk-80 Model View Controller-framework [Goldberg 1989]),
00-frameworks shifted towards other domains and became more fine-grained as well with
e.g. the CommonPoint application development environment [Andert 1994]. Over the years,
the research community has grown considerably, addressing topics such as framework
documentation through patterns [Johnsson 1992] [Gamma 1995] and hooks [Froehlich 1997],
framework design documentation [Beck 1989], framework evolution [Roberts 19961 and
framework composition [Sparks 1996].

2.1.3. Software Product Families

History

Since the industrial revolution at the time of Ford (1900s), a lot had changed. Technological
advances and a society that became increasingly focused on the individual, made that 'any
color' is not just 'black' anymore. This desire for variety eventually resulted in products that
expressed both manufacturing commonalities and differences. Examples of such product
families, i.e. products related by common characteristics, or alternatively, products of
common ancestry, exist in many areas, ranging from airplanes, cars, televisions and radios to
pipes and valves. It was not until the 1990s before product families emerged as a concept in
the software industry. However, David Pamas already realized the notion of related products
also applied to software in 1976, when he introduced the concept of hierarchical program
families [Parnas 1976].

An important influence in the emergence of software product lines was the softwarizafion
trend, i.e. the increase in the number of different products containing software. As the
functionality and underlying hardware of related products contain similarities, consequently
the software does too. Combined with the technological advances such as the reuse
techniques we described above, and the existence of common platforms (e.g. operating
systems, graphical user interfaces and databases), this resulted in more and more
organizations simultaneously developing multiple inter-related software systems in different
projects, whilst still pressured by quality, time-to-market and financial constraints.

Deja-vu feelings, but also detailed studies, showed that a large amount (up to 90 percent
[Cusumano 1991]) of labour in projects of those organizations in any given year, appeared
similar to what they had done in other (previous or co-existing) projects. It was realized that
similarities in software systems potentially brought an advantage through economies of scope
[Clements 2001], i.e. an economic benefit by an explicitly planned exploitation of those
similarities. The existing technique of arbitrarily connecting building blocks from previous
projects (bottom-up opportunistic reuse) was not sufficient for achieving these new goals of
efficient intra-organizational reuse, however. A new approach would not only require new
technical practices, but would also have a large impact on the organization itself.

An important lesson learned by the reuse community over the years, was that reuse had to be
explicitly planned by developing components that fit together into a higher-level structure in
order to be successful (top-down structural reuse) [Jacobson 1997]. Although E. Dijkstra
already expressed the importance of structure in his work on operating systems [Dijkstra
1968], it was not until the 1990s, before it was possible to identify an increasing awareness to
explicitly define software architectures [Bosch 2000]. Of course this lesson could have been
learned from other engineering disciplines; You don't build a skyscraper by arbitrary
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connecting stones, wood and metal, but start with a design and a subsequent construction and
selection of new and existing 'building blocks', respectively'.

Another important insight was that in order to reuse through explicit planning, software
engineers could not rely on technology alone, but that other factors such as management
commitment, focus on long term benefits and investment were very important as well.
Software product families are therefore not just a technological means to group related
products within a specific domain, but also in the process, business and organizational
dimensions, see e.g. [Jacobson 1997] and [Bosch 2000].

Product Family Assets

A software product family consists of the following two primary assets that are used to
develop the related products (also referred to as the product family members), i.e. a product
family architecture and the shared components.

Product Family Architecture: The product family architecture is the higher level
structure that is shared by the product family members. It denotes the "fundamental
organization of a system embodied in its components, their relationships to each other
and to the environment, and the principles guiding its design and evolution" [IEEE1471
2000].

• Shared Components: We use the definition of [Szyperski 1997] for the components: "A
software component is a unit of composition with contractually specified interfaces and
explicit context dependencies only. A software component can be deployed independently
and is subject to composition by third parties". Shared components are therefore the
reusable assets that fit into the overall product family architecture.

Development

Development within a product family can be viewed as process consisting of two
continuously and concurrenfly running stages. The first stage, domain engineering, is
concerned with the analysis, design and implementation of the product family architecture as
higher-level structure and software components as building blocks. The second stage,
application engineering, is concerned with using these shared artifacts to build individual
products.

'Note that this approach could be a combination of top-down and bottom-up: a decision to use existing
components may influence the design.
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Domain engineering: A software domain consists of products that share "a well-defined set
of characteristics that accurately, narrowly, and completely describe a family of problems for
which computer application solutions are being, and will be sought" [Berard 1992]. Domain
engineering therefore refers to all activities associated with constructing artifacts that together
implement (a subset of) those characteristics in a well-engineered manner. These artifacts
typically consist of a product family architecture, and a set of software components that
capture the commonalities in design concepts and implementation amongst the related
product family members.

Application Engineering: Application engineering is concerned with developing individual
products. These products are constructed by deriving the product architecture from the
product family architecture and subsequenfly selecting, configuring and instantiating shared
software components that fit into the product architecture. Where necessary, the shared
components are modified or extended with product specific code.

2.2. Summary

The overview of the various reuse approaches above, shows that the scale of the reusable
software elements has grown considerably over the past 40 years. In fact, the trend that one
can deduce from this overview, is that the emerged elements encapsulate each other. Modules
for example, achieve their scale by encapsulating a number of functions. Similarly,
components can encapsulate one or more modules or an entire 00-framework. 00-
frameworks in turn, encapsulate several objects. Finally, software product families achieve an
even larger scale by grouping multiple reusable components.

The shift from opportunistic to planned reuse opened up the possibility for inter-
organizational reuse such as module toolboxes, 00-Graphical User Interfaces and other
commercial off the shelve (COTS) components. As product families particularly focus on
intra-organizational reuse, inter-organizational reuse through product families is not yet a
wide spread phenomenon. This may very well change in the future however, as the growth of
system scale will constantly keep the software engineering community occupied with the
search for new techniques that also increase the scale of reuse. In addition, inter-
organizational reuse through software product families may be pushed by the open-source
community. An example [Gurp 2000a] can already be found in the Mozilla community
[Mozilla 2002].
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Chapter 3— Handling Differences

Software product families (SPFs) are an important topic in the research community,
considering the considerable number of books [Weiss 1999] [Bosch 2000] [Clements 2001],
papers [Parnas 1976] [Bosch 2001a] [Bayer 2002] and conferences and workshops. As stated
in the previous chapter, software product families are used as a means to capture various
commonalities between related products. The real difficulties however, are associated with
handling the differences between those products, which the software engineering community
is starting to realize as the attention with respect to product families is shifting towards
variability and variability management in particular, e.g. [Anastasopoulos 2001] [Bachmann
2001] [Batory 1992] [Clau 2001] [Griss 1998].

Before we state our concrete problem in chapter 5, this chapter presents the concepts of
variability in software product families as background. We start by defining variability in the
next section. In the following two sections, we describe the two main activities associated
with handling variability. In the last section, we discuss variability in relation to the two
stages of product family development.

3.1. Product Lifecycle and Variability

The lifecycle of an independent product is often represented using the phases of the waterfall
development model. Besides being well known, the waterfall model is also the first published
model of a software development process [Royce 1970]. The waterfall model is a phased
model, which, in each phase, consists of transformations from one level of abstraction to the
next, starting with the architecture design to detailed design, to implementation, to compile, to
link, to run-time. The model is uncomplicated, represents engineering practice, and has been
widely used in quite a number of organizations [Sommerville 19821. Another advantage is
that, although the exact nature of software development is technology specific, the model can
be tailored easily. If, for example, an interpretive language is used for product development,
run-time applies to compiling, linking and running code, whereas in a descriptive language
like C, run-time applies to running code (when disregarding dynamic linking).

In our opinion, three phases are missing however, i.e. a distribution, installation and a start-
up phase. During these phases important decision may still be taken, such as the decision to
ship an email client with or without a built-in editor (distribution phase) or installing the
'minimum' instead of the 'full' edition of a product (installation phase). In this thesis, we
therefore use the slightly adapted lifecycle model, as illustrated in Figure 3-1
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Figure 3-1 — The Expanded Lifecycle Model

Each product family member has its own, unique lifecycle, but expresses some form of
commonality with the related members on one or more levels of abstraction. The purpose of
the shared product family artifacts is to capture and exploit these commonalities by providing
a product family architecture, component designs and component implementations. In other
words, shared artifacts are implemented on three abstraction levels, to accommodate the
common characteristics of the product family members on nine levels of abstraction.

A product's value however, is determined by its unique characteristics. As a result, products
not only express commonalities on different levels of abstraction, but also differ on one or
more abstraction levels 2 Product family members may for example share the same
architecture, but include different component implementations. Shared artifacts therefore not
only have to be constructed in such a way that the commonality can be exploited
economically, but at the same time have to preserve the ability to vary the products. This
ability to facilitate known differences between products on different levels of abstraction is
referred to as variability, which literally means "the ability to be subject to change" [Webster
20021.

Managing the process of taking decisions regarding variability properly is regarded as the key
factor in the success of software product families. In literature, there are two main activities
associated with variability management, i.e. facilitating differences and exploiting variability.
For the sake of simplicity, we take the viewpoint of facilitating differences in domain
engineering and exploiting this variability during application engineering in the next two
sections. For a more detailed discussion on this viewpoint, see section 3.4.

3.2. Facilitating Differences

The first step in facilitating differences is to identify the known differences between the
products. Once these differences are determined, they can be accommodated by introducing
variability in the shared artifacts. We give a more detailed description of these steps below.

3.2.1. Identifying differences

Identifying the variable characteristics of related problems is a field that is studied extensively
(e.g. FODA [Kang 1990], FORM [Kang 1998], FeatuRSEB [Griss 1998]). For a large part
the research community agrees on two things however, i.e. 1. the concept of features can be

2 Although one may be able to prove that different designs transform into the same implementation, it
is save to say that in a product family, products that differ in one stage typically also differ in later
stages.
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used in order to focus on the essential characteristics in domain model descriptions and 2. in
using those concepts, [differences] can be identified more easily [Gurp 2002].

In [Bosch 2000] the definition of a feature is specialized for software systems: "[a feature is]
a logical unit of behavior that is spec(fied by a set of functional and quality requirement". The
book goes on by stating, "... there should at least be an order of magnitude difference
between the number of features and the number of requirements for a product (...)". In other
words, features are used to group and abstract from requirements.

This abstraction from features to requirements however, is not a transformation to an
independent space, in other words [Bosch 2000] features are not independent entities. Instead,
features abstract from requirements in an n-to-rn relation; each feature possibly implements
many requirements and a single requirement can apply to several features. This so-called
feature interaction [Zave 1997] [Gibson 1997] [Griss 2000] prevents straight forwarded
design from features to components as interdependencies between features result in situations
where [Griss 2000] "a carefully coordinated and complicated mixture of parts of dfferenz
components are involved [in the implementation of a single feature]". This particularly
applies for features that have an influence throughout the entire software system (crosscutting
features, see also [Kiczalez 1997]).

For a structured description of the essence of a domain, features can be categorized into
mandatory, optional, variant and external features as listed in [Gnss 1998] (the first three)
and expanded in [Gurp 2001] (the last).
• Mandatory features are the features that identify a product or product family, e.g. the

ability to view a webpage in a browser. Note that related products typically have different,
but not disjoint sets of mandatory features.

• Optional features are features that correspond to characteristics that are not essential to all
products in a domain, but add value to the core features of the product, such as an alarm
clock in a cell phone. In some cases, optional features evolve into mandatory features as
product markets proceed. For example, where a few years ago, a cell phone was
characterized by the ability to make and receive phone calls and almost anything else was
optional, nowadays a cell phone is also identified by its ability to send and receive short
text messages and play games.

• A variant feature is an abstraction for a set of related features and corresponds to
alternative ways to configure mandatory or optional features. Variant features either
exclude each other or may be used both. Examples of variant features are the ability to
support different communication protocols, or screen resolutions on mobile phones.

• External features correspond to features offered by the target platform of a system, such
as 110 functionality. External features are typically needed to be able to reason about the
context in which a system operates.

Due to feature interaction, features from one set can in- or exclude features from a different
set. A mandatory feature may for example require the existence of at least one particular
feature variant, or one optional feature may exclude another optional feature.

Over the past few years, several feature notations have been proposed. Most of them are basic
extensions of the original FODA modeling. RSEB, for example, extends the notation, while
[Gurp 2000a], introduces external features and the possibility to express the stage of the
lifecycle in which the feature should be bound (i.e. the binding time) to the model. [C1au3
2001] extends the standard UML [UML 2000] class diagram by using stereotypes. This
extension supports mandatory, optional, alternative and external features, binding time,
rationale, and constraints such as mutex, and requires.
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3.2.2. Introducing variability

Once the differences between product family members are known, variability can be
introduced in the product family artifacts by constructing variation points for the optional and
variant features. In [Jacobson 1997] variation points are defined as follows:

Variation points identify one or more locations at which variation will occur
within a class, type or use case.

The latter part of this definition is veiy specific, which makes it unsuitable for the entire
lifecycle of a product. In [Gurp 2000a] a different definition is used:

A variation point is an element of the representation at hand that refers to a
delayed design decision.

Although this definition is applicable to the entire lifecycle, it implies a design decision is
postponed, while actually a different, careful and educated design decision is made; the
decision to postpone the selection of alternatives. It furthermore suggests differences between
products (modeled with variant features) can be represented with a single point, while the
feature interaction problem suggests this would not be possible for all features. We therefore
adapt the definition used in [Svahnberg 2002]:

Variation points are places in the design or implementation that together 1.
provide the mechanisms necessary to make a feature variable [and 2. refer to

the delayed selection of the alternatives].

Constructing a variation point requires several steps [Bosch 2001 a]. First, the stable behavior
has to be separated from the variable behavior. Second, an interface has to be defined between
the stable and variant behavior. Third, a variability handling mechanism has to be designed.
Finally, one or more alternatives have to be implemented as variants

Alternative:
tUe-saved

We illustrate the basic mechanism for constructing variation points with a slightly adapted
example from the Prothos product family (see Figure 3-2). In this example, we are at the
detailed design level where two product family members need different mechanisms for
storing persistent objects, i.e. in text files and in memory. To accommodate this difference, a
software architect has to delay the selection of either one of the alternatives to a later stage,
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e.g. to installation time. This can be accomplished by constructing a variation point. Up until
this stage that variation point was implicit, the construction itself will make it explicit.

In the transformation of one level of abstraction to the next, the constructed variation point is
transformed as well, possibly to a set of variation points on a lower level. In addition, at a
lower level new variation points can be introduced for features that were not visible at the
previous level, as not all requirements are architecturally significant [Jacobson 1997]. In
addition, if the set of variants for variation point was open for adding new variants in the
previous stage, it may be closed when transformed to the next, i.e. to a set for which it is not
possible to add new variants. Furthermore, during the transformation dependencies may be
introduced to other parts of the variant due to implementation details.

Over the past few years, several variability realization techniques have been identified for the
various abstraction levels. Examples of these mechanisms include architectural design
patterns, aggregation, inheritance, parameterization, overloading, macros, conditional
compilation, and dynamic link libraries (see also, e.g. [Jacobson 1997] [Anastasopoulos
2001]). [Svahnberg 2002] presents a taxonomy of realization techniques.

3.3. Exploiting Variability

Once the product family architecture and components are in place, individual products can be
constructed by using these artifacts. The process of constructing product family members
from shared product family artifacts is referred to as product derivation. Where during design
and construction of the shared software artifacts variability is facilitated through variation
points, product derivation is typically the moment when the ability to handle differences
between products can be exploited by using those variation points.

Architecture Detailed Source Compilation Unl'Jng Disinbubon Installation Stait-up Execution

Design Desn Code

t t
closed Bound

Figure 3-3 — Variation Points and Binding

3.3.1. Collecting & selecting variants

Each explicit variation point is associated with a set of variants and can be bound to one or
more different variants from that set. As there may exist dependencies between variants of
different variation points, selection of variants requires careful analysis of dependencies and
constraints with respect to other variants from the collection.

3.3.2. Extending and constructing variants

In case the required variants are not completely designed or implemented yet, new (versions
of) variants can be implemented by extending existing or implementing new variants. Also
during this step, engineers have to consider the dependencies with other variants, as for
example, changes to existing variants should not lead to inconsistencies.

Whether the set of existing variants at a particular level of abstraction can be extended,
depends on the fact whether the variation point is open or closed [Gurp 2000a1, i.e. more
variants can be added to the system, or no more variants can be added, respectively.
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3.3.3. Binding

Finally, the variants have to be bound to the open variation points. We distinct between
internal and external binding [Svahnberg 2002]. In case of external binding, the variation
point is bound by a developer, while in case of internal binding, software code handles the
binding.

Closure and binding of a variation point can occur at different stages in the lifecycle. An
example (Figure 2-1) originates from [Svahnberg 2002]. This example involves an abstract
class (a variation point designed at the detail design level), which is open for adding new
subclasse until link-time, as it is impossible to add new subclasses without at least re-linking
the system. The system is then bound to a particular variant at run-time.

In case multiple variants exist in parallel, the variant selection and binding process is
performed each time the variation point is accessed, rather then being bound permanently.
This leads to a second distinction, i.e. permanently bound, and rebindable.

3.4. Variability vs. Domain and Application Engineering

Note that in previous sections, we described variability from the viewpoint of constructing
variable artifacts during domain engineering in order to be able to develop different product
family members during application engineering. This view is not entirely complete however.
First, besides handling known differences between products, an additional reason for
introducing variability can be found in the definition of a variation point in [Gurp 2000a]:

A variation point is an element of the representation at hand that refers to a
delayed design decision.

In other words, variation points may be needed in case it is not known which of the different
alternatives for a collection of requirements will be chosen. In addition, variation points are
not only essential in exploiting similarities between product family members, but also in
exploiting similarities in functionality within one application. In fact, this situation and the
one illustrated in 3.3 are quite the same [Bachman 2001]. In both situations, it is not known at
the abstraction level at hand which alternative will be chosen.

Second, the previous sections may have suggested that during domain engineering the number
of unbound variation points increases while during application engineering selections and
settings for a particular product cause the number of open variation points to decrease. This
picture is not complete however, as product specific variant construction and extensions may
very well introduce new variation points, for example, if there is a need for product specific
run-time variability.
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Chapter 4— Prothos, an AvraSoft Product
Family

To confirm the findings we present in this thesis, we conducted a case study of the Prothos
product family at AvraSoft, a small spin-off company of the University of Alberta, Canada. In
the next sections, we provide a general overview of the AvraSoft business model and
philosophies as presented at [AvraSoft 2002]. In the last section, we discuss the Prothos
product family.

4.1. AvraSoft and the University of Alberta

Avra Software Lab Inc. (AvraSoft) was started in 1998 to commercialize the technologies
discovered and developed by the Software Engineering Research Lab (SERL) at the
University of Alberta. SERL' s philosophy is to perform research on problems faced by
practitioners and to validate the findings resulting from those efforts in the field of practice as
well. Consequently, a considerable amount of work at SERL involves industrial contacts, both
in contract and grant settings. Acting on this philosophy provides SERL staff with valuable
insights for both research and teaching at the University of Alberta. In that respect, the
philosophy highly resembles our believes at the research group in Groningen.

Although basic research at SERL is published and promoted through the traditions of
academic research, some ideas lead to the development of new and practical technologies.
The University of Alberta retains the intellectual property rights on these technologies, which
are licensed to AvraSoft when there is an opportunity for commercialization. AvraSoft
subsequently undertakes continuing research and development to adapt and adopt these
technologies to its clients needs.

4.2. Avraso ft's Business Model

AvraSoft' s business model is based on both a development company and a virtual company
(see Figure 4-1). As a development company, AvraSoft provides both the development
service as the helpdesk service for commercial production applications to a variety of
customers. AvraSoft retains joint intellectual rights with clients, even when the product
ownership is transferred to the customer. Intellectual property rights are never licensed
exclusively to one customer.
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As a commercial product matures, it may be spun-off into a separate development company in
order to prevent AvraSoft from growing to an oversized and thus ineffective interface to
SERL. The resulting spin-off may provide distribution and support of its products or
outsource it. In this setting, AvraSoft can provide development and training services to the
spin-offs.

Funds are acquired by billing provided services (development and support) and collecting
royalties from the licensed technologies. AvraSoft in turn pays royalties to SERL. In effect,
both SERL and AvraSoft benefit from the collected royalties.

4.3. Development

AvraSoft aims at long term customer relationships. To this extent, AvraSoft provides
distribution and support services to the customers. This enables customers to focus on their
business rather the software their business is running on. Avrasoft furthermore takes an
evolutionary product family approach to software development. The evolutionary part is
motivated below:

1. Problems are usually better understood after you started to work on the solution.
2. Introducing applications to existing business processes changes them, thus adding

new requirements to the delivered applications (due to new demands and
possibilities).

3. Rapidly changing technologies (which particularly applies to e-commerce), keep
expanding possibilities at a fast rate.

4. The user interface and business workflow for buyers and users of engineered products
represent a relatively complex problem that requires evaluating alternatives.

Adopting an evolutionary product family approach not only solved many of the issues
associated with the motivation outlined above, but also provided AvraSoft with a competitive
advantage: the ability to provide new products and evolve existing products fast and at
relatively low costs.

Recent work at AvraSoft has concentrated on markets for engineered product sizing,
selection, and ordering software, in particular in the context of web-based c-commerce. In
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collaboration with SERL, this resulted in the Prothos Product Family. We discuss this product
family in further detail below.

4.4. Prothos Product Family

Prothos is a product family that provides a minimalist environment for implementing a web-
based client/server RDBMS (Remote Database Management System) application that wraps
order processing business classes into a working product. It supports the selection, display,
editing, and posting of persistent business data that has been structured into a set of instances
of business classes. The business classes implement the application's business rules, which
are responsible for the application-specific processing [Hoover 2000].

The Prothos Family is currently in its third generation. The Prothos architecture consists of
three 00 frameworks, i.e. the Prothos Framework, the User Interface Manager and the
Persistent Object Manager). The User Interface Manager is a sub-framework of the Prothos
Framework and coordinates the user interface to the set of persistent business classes. These
business classes encapsulate access to the business services and obtain their persistence by
inheriting from a second Prothos sub-framework, the Persistent Object Manager. The Prothos
Framework is mainly a utility framework that provides functionality such as exception
handling, file I/O, and logging.

The Prothos product portfolio includes an internet helpdesk application for pressure relief
valve engineering software (SizeMaster Helpdesk), a groupware and distributed development
environment (CafeAvra), a Process Safety Management application (PSM), and a groupware
and repository environment for the Westlink innovation network (Westlink).
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Chapter 5 — Problem Statement

In our discussion on variability in chapter three, we stated that in order to exploit the
similarities economically, known differences between product family members are facilitated
through variation points. In this chapter, we discuss the effect of unforeseen differences with
respect to problems that emerge during product derivation. The last part of this discussion
formulates our concrete problem statement.

5.1. Product Derivation Problems and Evolution

Typically, variation points are designed and implemented during domain engineering and
exploited during application engineering. The general belief in the research community is that
most benefits on reducing time-to-market and product development costs are gained by
spending most effort in domain engineering. However, industrial practice learns that the
situation has grown to a point where not always domain engineering is experienced as the
most expensive or difficult activity, but where deriving the individual product family
members from the variable artifacts poses more and more problems.

One of the problems many organizations face during product derivation is a situation that we
refer to as the inversely proportional product derivation problem (1PPDP, illustrated in Figure
5-1). This problem exists on both the product family and the individual product level, as
explained below.

1. The first level is on the level of the entire product family. In this situation, 60%-70% of
the product family members can be built by routine [derivation] [Hem 2000], and are
responsible for 10% of the total costs, whereas 10% of products require extensive artifact
modification and are responsible for over 60% of the total costs [MacGregor 2002]. In
other words, the percentage of products that requires change is inversely proportional to
the resulting share in the total costs for deriving product family members.

2. On the second level, i.e. the level of a single product, typically 70% of the functionality
can be built up very quickly without modifications, while the last ten percent requires
substantial development effort. This results in a situation where the percentage of
functionality requiring change is inversely proportional to the resulting share in the total
costs for deriving that product.

Apparently, during the derivation of new products there is functionality that is very hard to
implement. If we relate this to the concepts of variability presented in chapter 3, the question
is, "since the artifacts should contain facilities that ease handling of differences during
product derivation, why are extensive modifications required in the first place?"
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Provided that all steps related to handling known differences are carried out carefully, we can
find a hint to answer this question in Lehman's law on software evolution. His law states that
a useful software system must undergo continual and timely change or it risks losing market
share [Lehman 1997]. In that respect, it has a strong influence on software product families;
product families typically consist of over three products in order to be economically feasible3.
Consequently, not only the contemporary differences have to be analyzed and accommodated
when facilitating differences, but also the differences of future product family members.

An extreme example of changing markets is the web-browser market, just a few years
ago. The intense competition between the products of Microsoft and Netscape resufted
in a so called "browser war", with extremely rapidly evoMng products. This did not only
lead to a large number of new product versions and bug fixes, but also to a weafth of
entirely new functionality in just a few years.

Example 5.1 — Evolution to the extreme

Although guidelines suggest a five year prediction window for functionality when designing
software product families [Macala 1996], the example above illustrates that it may prove to be
very hard to predict the functional evolution of a product for even one year, let alone for all
products that will ever be derived from a product family. In addition, even if it could be
theoretically proven that a particular product family would be able to accommodate all
possible evolution paths, the question is to what cost. Increased variability generally implies
increased design and implementation complexity, increased resource consumption and it
generally costs more to develop a flexible artifact (see also e.g. [Jacobson 1997]). Providing
variability for something that might never be needed is thus not always economically feasible
as the chance of return on investment being zero is rather high. Furthermore, if a product
family would indeed adhere to one particular planned five-year path, unforeseen requirements
will emerge after that period, as product families are often exploited for over a decade.

In any case, once the product family is in place, at some point in the lifecycle, evolution will
force it to handle new functionality and thus previously unforeseen or unaccounted
differences. This results in situations that we refer to as variability mismatches. We detail the
concept of a variability mismatch in the following two sections.

A philosophical question that remains is when a system such as one that can be deployed in a home,
professional and enterprise flavor becomes a new or different product. If for example the configuration
resulting in an enterprise edition was done pre-deployment, would the enterprise edition be a different
product then the professional edition? And how about post-deployment (or the runtime) configured
editions? We leave this (challenging) discussion outside the scope of this thesis.
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5.2. The Notion of a Variability Mismatch

From the Webster dictionary [Webster 20021, we learn that to provide and to require is "to
supply or make available" and "to demand as necessary or essential", respectively. As we
described in chapter 3, variability of a product family is provided in terms of variation points
with associated interfaces, mechanisms, interdependencies, constraints, binding times and
variants. The set of requirements of a product family, i.e. a united set of requirements of the
individual product family members, represents commonalities and differences among those
members in terms of functionality and quality attributes. The presence of differences requires
from a product family the ability to handle them, which can also be expressed in terms of
variation points with associated interfaces, mechanisms, dependencies, constraints, binding
times, and variants.

A good example of well-supported differences between applications in the Prothos
product family is the instantiations of a variety of business classes during execution. As
soon as an application requires a business class with a rather unique workflow and
special processing however, a mismatch occurs between the variability that is provided
by the product family and what is required by the new product or product version.

Example 5.2 — Variability Mismatch

During evolution of a product family, the family members may present new requirements to
the existing requirement set that translate in both new commonalities and new differences. It
may be required to handle these new differences through variation points. In some situations
however, these differences cannot (at least not directly) be handled by the variability that is
provided by the product family. This is what we refer to as a variability mismatch (see
Example 5.2). If we summarize the above, we get the following definition:

A variability mismatch is a situation in which the variability supplied by the
product family (provided variability), is not suitably associated with the
variability that is demanded as necessary by new functional or quality

requirements imposed by product family members (required variability).

In the next section we will present a more detailed discussion of what 'not suitably
associated', 'provided' and 'requires' mean in the context of variability management and
evolution. In particular, we will discuss why the provided variability of a product family may
not be capable of handling the required variability and what issues are associated with actions
that have to be taken in order to solve the mismatch (in other words, change the variation
point).

5.3. Variability Mismatch in Detail

When the required functionality fits within the existing set of variation points, viz, can be
implemented by selecting, adding, extending or adapting variants, the provided product
family variability fits the required variability. Below, we list the situations in which the
opposite — a mismatch — occurs in further detail. This discussion is basically an extension of
the discussion on evolution patterns presented in [Bosch 2001a]. Here, we relate the
discussion to the notion of a variability mismatch, several issues associated with solving the
mismatch, as well as examples, amongst others, from our case study. We present these
mismatches in a pattern-like fashion (see e.g. [Gamma 1995] and [Buschmann 1996]), with
the following topics:

• Description: A detailed description of the mismatch.
• Example: An example of the mismatch from the case study.
• Issues: Issues associated with actions that have to be taken to correct the mismatch.
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5.3.1. Interface Mismatch

Description: Variable behavior is accessed through the interface and the associated protocol
of a variation point. A mismatch occurs if functionality requires addition or removal of
attributes in the provided or required interface or changes to the interface protocols.

Example: Up to version 2.2.0.10, the Persistent Object Manager (POM) supported three
variants for Persistent Business Class (PBC) management (Figure 5-2). Objects were saved
either to files, memory, or to a database with a Pen Database Interface (DBI). An appropriate
variant was selected and bound at start-up, by inserting the right pathname for the object in
the appropriate configuration file. The variation point mechanism was inheritance; each
variant overrode the necessary methods of the persistent base object (the super class). For
performance reasons, the interface was changed in version 2.2.0.11 to allow additional
behavior for the file-saved PBC variant.

Persistent
ObjectIII

File-variant DBI-vanant

Figure 5-2 - Database Management

Issues: Even minor changes to a variation point's interface may have large implications. A
straightforward change to the interface (such as an operation syntax change) leads to a
situation where either all existing variants may have to be changed accordingly in order to be
accessible from the calling component, or code has to be added to the calling components in
order to deal with situations that involve different provided interface. Changing the interface
can thus prove to be a quite effort consuming activity, especially for large variant sets.

Frequent changes to the same variation point furthermore lead to a situation where multiple
variants exist that express the same behavior, but have different interfaces. Additionally, if
not all existing variants have been changed, selecting certain combinations of variants may be
restricted as the variants are incompatible. This complicates the variant selection process.

5.3.2. Mismatch due to dependencies or constraints

Description: As we discussed in Chapter 3, variation points may depend on both stable and
other variable parts of a software system. In case of a variability mismatch, the selection of a
certain variant has undesirable effects on other variable behavior. This includes the situation
in which selecting a particular variant restricts the set of legal variants for a variation point in
such a way that it excludes other required functionality, or contrary, requires the selection of
other variants while this is undesirable or impossible.

Example: An example of a variant requiring another variant is inspired by a case discussion
in [Bosch 1999], involving Axis Communications AB and its file system and network
frameworks. In this discussion, it was stated that, at some point, implementation details
caused a tight coupling between particular file system variants that implemented file system
standards, and particular network protocol variants that implemented different networking
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protocols. A mismatch due to these dependencies would be a situation in which the file
system variants should vary independently from the networking variants.

Issues: Although in some cases variation point dependencies are inherent to the problem
domain, in case of a variability mismatch the dependencies are the result of implementation
details. Removing dependencies is complicated, however, by the fact that, often, not all
dependencies aie explicitly represented in the software system. After a change to the variation
point dependencies the software system may therefore seize to work correctly [Bosch 2001a].

5.3.3. Mechanism Mismatch

Description: A mechanism mismatch occurs when certain changes are required to the
variability mechanism. It may for example be that the point at which the variant set is closed
needs to be moved to a later stage in the product lifecycle, that the variant set has to be
extended, or that certain quality requirements require mechanisms that consume less
resources.

Example: In the second generation of the Prothos Family, handling of different HTTP-
requests was performed through aggregation, where the selection of the handler was based on
the URL extension. This variation point was closed at the implementation level, but bound at
run-time. A mismatch would occur both in the situation that a variant should be added, or the
time at which the set was closed should move to e.g. start-up time.

Issues: Although some mechanism mismatches can be handled by a few changes and addition
of variation management software, changing the entire mechanism may prove to be effort
consuming. Not only are variability mechanism often intertwined with stable behavior [Bosch
2001a], also, the variable behavior may have to be reimplemented in order to be accessible
through the new mechanism.

5.3.4. Binding time Mismatch

Description: A typical trend in software system development is that the binding of variation
points is evolving towards later stages in the product lifecycle, in order to increase the
flexibility of the software system. Consequently, variation points previously bound in early
phases of the lifecycle, such as compile-time, may now be required to be bound at later
stages, such as start-up or run-time. Binding time may also be required to be shifted to earlier
phases, for example to decrease resource consumption, or increase predictability. In contrast
to the binding time as presented in Chapter 3, the required binding time for a feature is not
necessarily associated with one abstraction level, but with a window of abstraction levels in
which the feature should be bound. We therefore introduce the notion of an earliest and latest
binding time. The earliest binding time denotes the earliest abstraction level at which a feature
may be bound, while the latest binding time denotes the latest abstraction level at which a
feature must be bound. In Figure 5-3 for example, the variation point may not be bound
before linking and at start-up at the latest. A binding time mismatch therefore occurs when the
actual binding time is outside this binding window.

- Unking Distribution Installation Start-up

A

Latest BInng

Figure 5-3 — Earliest and Latest Binding
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Example: In the third Prothos generation, a variant for database management (see 5.3.1) was
bound at start-up time, by specifying the right path name to the variant in a configuration file.
A situation in which a binding time mismatch would occur, is when the persistent object
manager should be able to rebind to another variant at run-time.

Issues: In fact, the suitability of the variation point binding time is closely related to the
suitability of the variation point mechanism, as the binding time is inherently connected to the
variability mechanism. On top of the issues associated with a mechanism change, however,
moving the binding time to a later moment in the lifecycle typically increases transport, load,
and runtime resource consumption [Bosch 2001a]. In addition, binding in stages later then
link-time requires management software that handles the selection and (re)binding of the
appropriate variants. This management software also has to handle cases in which selection
fails due to dependencies and constraints.

5.3.5. Mismatch due to non-existing variation point

Description: An additional situation in which a mismatch will occur is when functionality
needs to be implemented as variant or optional behavior, and no suitable variation point is
available. In this, we recognize two distinct situations. In the first situation the new
functionality is needed as option or alternative to already implemented stable behavior. This
situation mostly occurs if the need for variance was not recognized before or when a change
in market conditions forces the organization to support more than one alternative in parallel.
In the second situation, the existing system behavior is only extended with the new
functionality.

Example: An example of a case in the third generation of the Prothos family, where already
implemented functionality would be involved in the construction of a variation point and
associated optional variant would be optional access control. Although we note it is not very
likely to be required, no variation point exists in order to be able to turn access control on or
off.

Issues: In both the situations that the conceptual variant functionality did and did not exist as
stable behavior, an interface has to be defined between the variable behavior and the rest of
the system. Furthermore, an appropriate mechanism and associated binding time have to be
selected and the mechanisms and variant functionality have to be implemented (as also
discussed in section 3.2.2). In addition, in the situation where existing functionality is
involved, the implemented functionality has to be clearly separated from the rest of the
system and re-implemented as a variant that adheres to the variation point interface. In case
the binding time is in the post-deployment stage, software for managing the variants and
binding needs to be constructed.

Issues primarily emerge in the situation where already implemented functionality needs to be
re-implemented as variable behavior. First, as variability mechanisms typically require extra
resources and hamper testing due to the large number of possible combinations, quality
attributes of the system with the re-implemented functionality selected may differ from the
previous situation (e.g. predictability, reliability and resource consumption). Second, due to
code scattering and tangling [Kiczalez 1997], it may prove to be laborious and hard to find
and separate all the existing stable behavior. Third, as dependencies in between software parts
are often implicit, the software may seize to function correctly (see also 5.3.2).

5.3.6. Mismatch due to obsolete variation point

Description: A typical trend in software systems is that functionality specific to some
products becomes part of the core functionality of all product family members, e.g. due to
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market dominance. The need to support different alternatives, and therefore variation points
and variants for this functionality, may therefore disappear. This phenomenon leads to the
existence of obsolete variation points, i.e. variation points for which in each derived product
the same variant is chosen, or, in case of optional variants, not used anymore.

Example: An example of the Prothos family where a variation point would become obsolete
is related to the Persistent Objects in the Persistent Object Manager (see fig). Currently, the
POM supports three variants, although the memory variant is not used anymore. A likely
scenario is that the need to support the file variant will eventually disappear, leaving the
database variant as the only alternative.

Issues: Obsolete variation points are often left intact, rather then being removed from the
assets. Although the general opinion in the research community is that variability improves
the ability to select alternative functionality and thus the ease of deriving different product
family members, the lack of removing obsolete variation points and variants result in a
situation where the cognitive complexity in terms of number of variation points and variants
can only grow. This growth in cognitive complexity may hamper the product derivation
process.

On the one hand, removing unnecessary variation points requires effort in many areas. All
variation points related to the previously variable functionality have to be removed, which
may require redesign and reimplementation of the variable functionality. There may be
dependencies and constraints that have to be taken care of. Furthermore, changing a
component may invalidate existing tests and thus requires retesting. On the other hand,
removing variation points increases the predictability of the behavior of the software,
decreases the cognitive complexity of the software assets, and improves traceability of
suitable variants in the asset repository. We also note that if variability provided by artifacts is
not used for a long time, or removed from the documentation, engineers may start to forget
some facilities are there. Furthermore, when incomplete documentation leads to a situation in
which changes to artifacts result in the removal of parts of the facilities but not all, artifacts
may suffer from inconsistent behavior.

Even if it is obvious that a variation point is obsolete, determining whether it should actually
be removed may prove to be rather difficult. Although estimating the costs of redesign,
reimplementation, and retesting can probably be done rather accurately, predicting the
benefits of removing a variation point in terms of effort accurately may turn out to be hard, as
the benefits are typically related to cases in which obsolete variation points are problematic.
Also, the effects of removing a single variation point on cognitive complexity can be rather
small, as it is the collection of obsolete variation points that adds up to the complexity.

5.4. Handling Variability Mismatches

Rather then selecting different variants during product derivation, the variability mismatches
presented in the previous section, can only be accommodated by adapting the shared artifacts.
An organization can employ three types of adaptation in parallel, i.e. product specific
adaptation, reactive evolution, and proactive evolution.

• Product specific adaptation: The first level of evolution is where, during product
derivation, new functionality is implemented in product specific artifacts. To this purpose,
application engineers can use the shared artifacts as basis for further development, or
develop new artifacts from scratch. As functionality implemented through product
specific evolution is not incorporated in the shared artifacts, it cannot be reused in
subsequent products. One could argue that product specific adaptation would not be a
concern for variability management, as all changes cannot be reused and therefore be
hard-coded in the artifacts. Variability, however, is not only concerned with handling
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differences between product family members, but also e.g. between differences in
behavior at run-time (see also chapter 3). In other words, new requirements can also
require changes to variation points in product specific adaptation.

• Reactive evolution: The second level of evolution involves adapting shared artifacts in
such a way that they are able to handle the new functionality that was imposed by the
product at hand, and can still be shared with other product family members. As adapting
shared artifacts has consequences with respect to the other family members, those effects
have to be analyzed prior to making any changes.

• Proactive evolution: The third level is a pure domain engineering activity. It involves
adapting the shared artifacts in such a way that the product family is capable of
accommodating the various family members in the future. Proactive evolution requires
both analysis of the effects with respect to current product family members, as well as
analysis of the predicted future of the domain and the product family scope.

As effective reuse in software product families can only be achieved if it continuously
facilitates differences between its members, we can formulate an evolution law for product
families similar to [Lehman 1997]:

The variability of a product family has to undergo continual and timely change,
or it will risk losing the ability to effectively exploit the similarities of its

members.

The product specific and reactive evolution types described above both encompass reactions:
first, the mismatches emerge, and then they are dealt with. Although reactive evolution of
variability does provide a mechanism to enact part of our variability evolution law, i.e. to
continually change variability, the question is whether these reactions are really that timely.
Below, we formulate a number of related reasons for why we would want to prevent
variability mismatches from occurring during product derivation.

• Decrease time-to-market or increase amount of functionality: One of the goals of
many organizations is to decrease the amount of time spent in between start of
development and product delivery. If variability mismatches can be predicted and
prevented prior to the actual derivation of a software product, valuable time and effort in
the derivation process can be saved, or used elsewhere, for example to implement
additional functionality.

• Remove Overhead: A well-known fact in any engineering discipline is the fact that
reaching a goal in one big step is generally cheaper than in a number of small steps. A
typical example of a situation where by preventing mismatches overhead can be saved is
a situation in which evolution frequently requires changes to the same variation point.

• Flexibility: Related to the previous points is the reusability of the software assets.
Product engineers typically have an intense focus on time-to-market. In order to meet
deadlines, long-term benefits such as reusability are easily sacrificed. By preventing
mismatches from occurring during product derivation, required changes can get the
attention that they deserve.

Of course, preventing possible mismatches not only have benefits, but also have an associated
risk. Predictions always contain an amount of uncertainty. Spending time and effort in
changing predicted mismatches can therefore have two negative effects, i.e. either time and
money is spent on something that will never be needed or worse, on something that even
makes the mismatch larger. Any method for prediction and preventing mismatches should
therefore consider minimizing these risks.
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55. Concrete Problem

Considering the previous problem investigation, we conclude that evolution of variability
should be added as a main variability management task. This brings us to our concrete
problem. Literature does address topics such as the creation and instantiation of generic and
specific product family assets as well as dealing with variability at the code level
[Anastasopoulos 20011. Although exceptions exist, e.g. [Svahnberg 2000], evolving
variability has received, to the best of our knowledge, little attention however. The work
presented here, therefore aims to investigate the consequences of evolution on variability and
the actions that can be taken to correct and prevent these consequences from occurring during
product derivation. This thesis therefore aims to investigate the following research questions:

• Ri How can we prevent that variability mismatches occur during product derivation?

This question immediately results in the following sub questions:
o R1.1: How can we determine that mismatches occur
o R1.2: When should we take actions and when not?
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Chapter 6— Variability Assessment

As we stated in the previous chapter, in our opinion, the source of the inversely proportional
product derivation problem is related to the new differences and the resulting variability
mismatches that emerge during the product family lifecycle. We asked ourselves how we
could predict when variability mismatches will occur and whether actions should be taken to
prevent them. The answers to these questions, we believe, can be found in techniques for
variability assessment, which is the subject of this chapter.

6.1. Introduction

Over the past decade, several prediction methods have emerged for various software system
attributes, e.g. architecture assessment for quality attributes such as ATAM [Kazman 1996],
SAAM [Kazman 1998], and ALMA [Bengtsson 2002], as well as cost prediction with code
metrics [Boehm 19811, and design-level metrics [Bnand 1999]. An increasingly number of
architecture assessment methods contains the following generic steps:

1. Set assessment goal
2. Construct scenario profile
3. Analyze impact based on the profile
4. Interpret results

As this approach has been successfully applied for assessing modifiability and maintainability
[Bengtsson 20021, we considered the use of these steps for variability assessment. In the
following sections, we discuss a straightforward application of this approach for variability
assessment, and illustrate this approach by applying it to our case study. In the last section, we
discuss several unresolved issues associated with such an approach.

6.2. Straightforward Variability Assessment Approach

6.2.1. Assessment Goal

Prior to starting the assessment, it is important to determine the goal of the assessment, as
different goals pose different requirements on the results of the assessment. For variability
assessment, goals depend on the context in which the assessment is used, i.e. during product
derivation or during domain engineering.
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• Product Derivation: At the product derivation level, variability assessment involves
determining how well the product family is able to handle the differences imposed by the
product at hand. As such, it can be of assistance in cost prediction, and planning for the
project. In addition, variability assessment can be used to determine whether a difference
should be handled product specifically, or by reactively evolving the artifacts.

• Domain Engineering: At the domain engineering level, variability assessment has a
number of purposes. First, variability assessment may be of assistance in architecture
improvement activities, for example for organizations that have a platform heartbeat that
periodically incorporates functionality shared by a sufficiently large number of family
members (reactive improvement). In addition, architecture improvement may be used
during the design or later stages in the lifecycle of the product family (candidate selection
and proactive improvement, respectively), in order to prevent variability mismatches.
Furthermore, variability assessment may be used to assess which future events may pose
risks. We note that these forms of predictive assessment closely resemble a needs-driven
technique that is generally known as Technology Roadmapping. Basically, the technology
roadmapping process delivers a road atlas for making intelligent choices related to R&D
investments and marketing. Within the technology roadmapping process gaps are
identified between the [essential] product, market or corporate needs and the technology
available [Garcia 2002].

From these goals, only predictive variability assessment is directly related to our research
question. In the discussion of a variability assessment technique in the (sub)sections below,
we will therefore focus on predictive variability assessment for proactive architecture
improvement.

6.2.2. Construct Scenario Profiles

A common aspect of many assessment techniques is the use of a scenario profile that
specifies a set of scenarios [Bosch 2001b]. In case of modifiability assessment, these
scenarios are for example descriptions of possible relevant changes to a software system. For
a straightforward variability assessment technique, we choose the following definition:

Scenarios are descriptions of predicted essential product needs that emerge at
certain moments within a particular timeframe.

As features focus on the essential characteristics of the domain and abstract from
requirements they can be used to describe these essential needs (see also Chapter 3). These
features emerge from the time and space dimension of software product families.

Time and Space Dimension

In traditional one-at-a-time software development, variability is regarded to evolve in one
dimension, i.e. when a software artifact evolves over time. In software product families
however, a second dimension, space emerges, since software artifacts appear in several
products and evolve in that direction as well [Bosch 2001a]. To illustrate this, we constructed
a product evolution map for the Prothos product family, in which we plot several products
and their respective release dates and framework versions in time (see Figure 6-1). In this
illustration, the inner squares are colored according to the product name and the outer squares
according to the family generation they belong to (Prothos l.x.y, 2.x.y, or 3.ty). The colored
diamonds represent the respective platform versions.
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Complete vs. Selected Profiles

Scenario profiles can be either complete or selected [Bosch 2001b]. As evolution is concerned
with the space and time dimensions, in case of predictive variability assessment, a complete
scenario profile would encompass all possible evolution paths for all product family members
within a certain timeframe (also known as the horizon [Ommering 2001]). We constructed a
simplified representation of the evolution paths for a single product, where points in time are
represented as a number of states in which at each moment in time choices lead to a different
state (see Figure 6-2a). From this figure, it immediately becomes clear that, especially if we
combine all possible evolution paths for all product family members, complete profiles would
be far too large and complex.

The alternative, a selected profile, consists of a representative set of scenarios, e.g. the most
likely evolution path of the product family, the most likely evolution paths for each product
(as illustrated in Figure 6-2b), or a subset of possible evolution paths. Determining the most
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likely evolution paths highly depends on the experience and vision of the involved
stakeholders. These stakeholders should involve representatives such as from the marketing
department, architects, and in some cases even competitors. Competitors will most likely not
be actively involved in the assessment, although exceptions do exist [Maccan 2002].

6.2.3. Impact analysis

Once the scenario profile is available, the next step is to analyze the impact of the profile. In
case of variability, this boils down to comparing the variability required by the scenarios to
the variability provided by the product family architecture. The straightforward impact
analysis we present here uses a feature gap model [Deelstra 2002]. A feature gap model
presumes that the mismatch between the provided and required variability can be mapped to a
five-value scale that represents a normalized classification of the mismatches resulting from
the profile. For our straightforward approach, this classification is the normalized effort for
reactively solving the mismatch.

Additionally, in a feature gap model, features are weighted according to there classification.
This classification ranges from key, to desired, to fancy and is quite similar to the three
classes of software-functionality as distinguished by [Kano 1984], i.e. core, additional and
visionary functionality.

Each scenario is then represented by a dot in a feature gap diagram and the moment in time is
represented by the size of the dots. If a particular scenario occurs at T , T0< T < T, where
T0 is the start of the horizon and T the end of the horizon, the size is calculated as follows:

T-Tscale. T-7
where scale is a fixed scalar used to scale all dots to an appropriate size. The result of such an
impact analysis in a feature gap diagram would be somewhat similar to Figure 6-3, where the
largest dots represent the features that are needed closest in time, and the left most lower
corner denotes a scenario that does not represent a mismatch.
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Figure 6-3 — Impact Analysis using an FGD

6.2.4. Result interpretation

Once the impact analysis is finished, we need to interpret the results to take the appropriate
actions. This interpretation entirely depends on the initial goals of the assessment. In this case,
we were interested in when and whether changes had to be made to the set of variation points

32



in order to prevent possible mismatches. One approach could be, for example, to change the
largest mismatches for a key feature that emerges closest in time first, since based on the
information we have here, this ensures the highest certainty that the mismatch will actually
occur and will save most effort during product derivation.

6.3. Case Application

We illustrate the presented approach using an analysis performed on a particular version of
the architecture of the second generation of the Prothos Product Family (see Chapter 4). We
based our scenario profile on historical data and informal discussions that had already been
taken place with the chief architect of the Prothos family. In the scenario elicitation process,
we focused on scenarios that actually occurred during six months of the Prothos lifecycle,
rather then using predicted scenarios. The reason for this is that it is not our intention here to
illustrate the accuracy of predictions, but to illustrate the approach and to determine whether
the straightforward approach is really enough to perform sensible changes.

The process resulted in the selected profile that included the following scenarios:

Description Month
Si Require additional behavior for the file-based database management

variant for performance improvement
3

S2 Handle new 'kinds' of pages 6

S3 Access control for all page-handler variants, uniform for all rather then
per variant

6

S4 Support multiple database connections for DBI database management
variant

1

S5

S6 -

Support optional database arguments for database connections in the DBI
database management variant

3

Support new persistent business class variants ...

Using this profile, we performed our impact analysis, by classifying the effort needed to solve
any resulting mismatches in the architecture version at hand. The results are illustrated in
Figure 6-4.

Note that we disregarded the feature classification, as most of the scenarios that resulted in
mismatches were changes in Prothos that were really necessary. We also left out scenarios
involving the differences in terms of persistent business class instances as these are typically
well supported in the Prothos family.

6.4. Problems and Issues

The question that remains, is whether the analysis provides enough information to determine
whether and when a mismatch should be solved. In this section we will show that the
straightforward approach discussed above is a rather naïve approach. We identify several
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unresolved issues, which cause that this approach is not only not accurate enough, but also
does not provide enough information to make an expert judgment.

6.4.1. Scenario definition

The first issue, involves the definition of the scenario profile. In the straightforward approach,
a scenario was defined as a feature that was most likely needed at a certain moment within the
assessment horizon. This definition, however, does not provide sufficient information to
determine the mismatch between the provided and required variability, for a number of
reasons. First, features typically have associated dependencies and binding times, which are
needed to determine whether there will be a variability mismatch in the first place. Second, if
we recall the variant feature type (see Chapter 3), variability is not only concerned with the
presence or absence of a feature in different product family members, but also with handling
multiple features in parallel in a single product. Finally, some optional or variant features are
common to a subset of product family members. Being aware of this fact may turn out to be
very important for our assessment (see subsection 6.4.2)

As features emerge are grouped in new product versions, consequently, we redefine a
scenario as a product feature tree delta to the product family feature tree, including the
dependencies and binding times.

6.4.2. Interacting scenarios in space and time

The second unresolved issue, involves interacting scenarios [Bosch 2001b]. The
straightforward approach implicitly assumes that solving mismatches for one scenario has no
impact on the possible mismatches caused by features from other scenarios. However,
products in a product family are related to each other in the sense that different groups of
members have different commonalities and differences. Therefore, it is highly unlikely that
all of the scenarios from the profile only contain features that are alternative or variant to
existing features supported by the product family and not to other features from other
scenarios.

Point in time

Coincidental Consecutive

Same

H
Different

Figure 6-5 — Interacting scenarios

When considering the space and time dimensions, the scenarios may interact in the following
four ways (see also Figure 6-5):

(Ii) Multiple scenarios require the same variability that should be provided by a particular
variation point at (approximately) the same moment. In other words, multiple scenarios
represent the same mismatch for a particular variation point at the same point in time.

(12) Multiple scenarios represent the same mismatch for a particular variation point at
consecutive points in time.
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(13) Multiple scenarios represent different mismatches for a particular variation point at
(approximately) the same point in time.

(14) Multiple scenarios represent different mismatches for a particular variation point at
consecutive points in time.

Each of these four interactions has different implications on the accuracy and correctness of
our straightforward assessment. First, as the impact in our straightforward approach is
independently calculated for each scenario, (Ii) and (12) for example, would lead to double
counting as the effort required to change a variation point is counted for all scenarios, while in
practice the variation point only needs to be changed once (as was actually the case with
scenarios S2 and S3).

Second, when multiple features result in the same mismatch, we may wonder if the amount of
effort to solve the mismatch is enough to determine which variation point change should be
prioritized. Consider, for example, the imaginary situation in which a mismatch costs four
person hours, involves five scenarios compared to a mismatch that costs six person hours to
solve, and only involves one scenario. Obviously, solving the first mismatch may deserve
priority over the other, which calls for some form of weighing mechanism.

The interactions bring us further to a third important issue of our straightforward assessment,
i.e. the issue of costs versus benefits.

6.4.3. Costs vs. Benefits

So far, all we have considered are the costs of reactively incorporating either independent
scenarios, or scenarios sets that require the same variability. We illustrate that this is
insufficient with an example from the Prothos case

In the POM version 2.0.2.07, several interface changes were needed, amongst others,
an extension to handle multiple databases. In version 2.0.2.11, this extension was
changed to handle optional arguments. (see also section 6.3, scenao S4 and S5)

Example 6.1 — Consecutive Mismatches

From this example, it becomes clear that it is not only a question of whether and which
variation point we should change, but also how the variation point should be changed.
Scenarios such as presented in the example, should lead to the consideration to group these
so-called compatible scenarios and change a variation point at once rather then in several
consecutive changes. In other words, compatible interacting scenarios present a case in which
grouping particular changes to a variation point and handling them proactively at once is
beneficial with respect to reactively changing the variation point for each scenario.

Product Specific vs. Shared

Rather then being compatible, however, scenarios can also conflict with each other. Consider
for example two scenarios that have an impact on the same variation point, but the first
requires a latest binding time at compile-time, and the second an earliest binding time at run-
time. This not only iterates the importance of the timeline (see also 6.4.4), but also illustrates
the fact that not all scenarios can always be incorporated in shared artifacts, and therefore
some have to be implemented product specifically.

In fact, it cannot only be impossible to incorporate a change, but it can also be cheaper not to
incorporate the change if it is not needed by other products anyway. As a rule of thumb, a
change should not be incorporated, unless the costs and benefits of handling the change by
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evolving the shared artifacts outweigh the costs and disadvantages of product specific
adaptation.

6.4.4. Timeline and Certainty

Related to compatibility and conflicts, the timeline aspect causes that the costs of solving a
mismatch actually depend on the order in which the changes are executed. If two scenarios
involve a mismatch to one variation point at consecutive points in time, a change to the first
may influence the costs of the second change either positively (making it cheaper) or
negatively (making it more expensive), or, in case of conflicting scenarios, determine whether
the mismatches can be resolved in the first place.

A further concern is the timeline in relation to the certainty that the predicted scenario will
actually occur. So far, we have stated that for scenarios in the near future, we are more certain
that they will actually occur then for scenarios that occur in the far future. A good example of
the fact that this assumption does not hold in all cases, is related to legislation (see Example
6.2).

New laws are typically announced abundantly prior to the actual date at which they are
enacted. Software systems such as car engine controllers, whose quality attributes
depend on emission laws, for example, can be substantially more certain about
scenarios involving those laws even if they do not occur in the near future.

Example 6.2 — Time vs. Certainty

Rather then just taking the point in time, a better approach would therefore be to consider the
chance that a feature is needed by a product, where the time aspect is an influencing factor in
determining the chance. This does not mean that the time aspect should be thrown away,
however, since it is still needed to determine which changes should be prioritized.

6.4.5. Assessment Effort vs. Accuracy

A final important issue is the accuracy of an assessment in relation to the amount of effort
spent for the assessment. The assessment relies on the expertise and vision of the involved
stakeholders, and the criteria for selecting scenarios are based on expert opinion. Therefore,
the assessment technique should deal with uncertainty, but prevent too much quantization and
double counting of uncertainty margins.er bounda

Assessment Effort

Figure 6-6 — Accuracy versus Assessment Effort
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Furthermore, the scenario profile may grow quite large, particularly for assessments with a
large horizon, and many product family members. It is most likely that the time available for
the assessment is limited to some extent. Thus, a trade-off has to be made between the effort
spent for the assessment and the accuracy of the results. Ideally, when more effort is put into
the assessment, the accuracy should increase. As the assessment is based on predictions,
however, the ideal situation will be an assessment with the ability to determine the upper and
lower boundaries, which makes sure that the accuracy boundaries move as illustrated in
Figure 6-6.
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Chapter 7— Conclusion and Future Work

On a high level, research in software engineering is focused around effectively dealing with
the conflict resulting from the bigger-better-cheaper-faster market principle on the one side,
and the increase in development costs and complexity of software systems on the other side
(see Chapter 1). In this chapter, we summarize and highlight our contribution to this research
goal. Additionally, we provide research directions for future work.

7.1. Summary

We started this thesis with a brief overview of reuse techniques that have emerged over the
past 40 years. We continued with a description of concepts regarding variability as
background information and related work. In chapter 4, we discussed our case study, i.e. the
Prothos product family. In chapter 5, we provided the reader with a conceptual framework of
evolution in relation to variability and we stated that, in our opinion, the lack of attention to
evolution of variability is one of the main forces in the inversely proportional product
derivation problem. We also formulated a number of research questions, which we addressed
in chapter 6. In chapter 6, we presented a technique for variability assessment that we applied
to the Prothos family, and discussed the major issues associated with such an approach.

7.2. Contribution

The main contributions of this thesis, we believe, are the following main points:

• We have discussed the inversely proportional product derivation problem.
In section 5.1, we stated that organizations experience, both on individual product and
product family level, a situation in which the percentage of required changes is inversely
proportional to the resulting share in the total costs.

• We also have identified one important source of the inversely proportional product
derivation problem.
In section 5.2 we introduced the notion of a variability mismatch in terms of provided and
required variability. In section 5.3 we provided a more detailed discussion on various
mismatches.

• We have identified the importance of evolution as variability management task.
This is the conclusion (section 5.5.) of our problem investigation in chapter 5.
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• We have provided the reader with a framework of concepts for evolution of variability.

In addition to the concept of a variability mismatch, we formulated an evolution law,

which stated that variability should undergo continuous and ti,nely change. We

furthennore identified three zpes of evolution in order to deal with a variability

mismatch, and provided several reasons for preventing variability mismatches.

• In addition, we discussed a technique for assessing the variability of a product family.

We presented a straightforward application of a generic assessment technique to

variability in chapter 6. We applied this approach to our case study and identified several

problems and issues associated with this approach.

7.3.. Further Directions

In addition to our contribution, naturally, still some issues remain. We will summarize the

main open issues here.

• In chapter 5, evolution was pinpointed as one cause of the inversely proportional product

derivation problem. Additional research is required to determine other important sources,

some of which will be discussed in [Deelstra 2003].

• Also in chapter 5, we formulated several reasons for proactively improving the variability

of the product family architecture. In addition to variability assessment as technique to

assist in decreasing product derivation costs, however, several other techniques can assist

as well. Rather then preventing mismatches, techniques could be proposed that decrease

the costs of changing a variation point. Good separation of concerns and an explicit

description of important dependencies for example, should ease the process of finding all

parts of the implementation of certain behavior to some extent. Especially related to the

code scattering and tangling issues, Aspect Oriented Programming [Kiczalez 1997] shows

a promising approach [Murphy 2001].

• Most open issues with respect to variability assessment have already been formulated in

section 6.4. Of particular interest are aspects such as dealing with uncertainty and

determining the accuracy of the assessment, as well as the costs and benefits aspects in

relation to the interacting scenarios. Future work should aim to incorporate these issues,
and validate this changed technique to a number of case studies.

• One issue related to our straightforward variability assessment has not been discussed so

far. In our approach, we focused on proactive architecture improvement as assessment

goal. The other assessment goals, however, impose different requirements on an
assessment technique. For the assessment for proactive improvement as discussed in this

thesis, for example, the impact analysis can be performed on an implemented architecture

with existing dependencies. For candidate architecture selection in the design phase of a
product family, however, we would have to make assumptions about implementation
aspects. In addition, assessing variability for determining the change effort prior to
product derivation does not use a predicted set of scenarios, but a very concrete set, i.e.

the features that are needed for the product. In other words, more investigation is required

to determine the effects of the different goals on the proposed assessment technique.

7,4. Concluding remarks

The work presented here is the result of the research for my Master Science project. Part of

this research has been conducted at the Software Engineering and Research Lab of the

University of Alberta, Canada. The other part has been performed at the Software
Engineering and Architecture group at the Rijksuniversiteit Groningen, the Netherlands. The

results presented in this thesis will form a basis for my Ph. D., under supervision of prof. dr.

ir. J. Bosch.
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