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Abstract

Two-dimensional implicit curves are defined as the zero set of a function f : R? — R. Several algo-
rithms for piecewise linear approximations of regular implicit curves exist, usually without guaranteeing
a correct topology. In this thesis, we develop and implement an algorithm that guarantees to find a
topologically correct, polygonal approximation of a given implicit curve. This adaptive enumeration
algorithm uses mesh refinement, based on the bad edge concept, to refine both quadtree and Delau-
nay triangulation meshes. This theoretical framework then defines the curve's topologically correct,
piecewise linear approximation.
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Chapter 1

Introduction

This thesis is written as partial fulfillment of the requirements for the Master's Degree in Scientific
Computing and Imaging at the University of Groningen, The Netherlands. We give a detailed overview
of the theory, design, implementation, and results of this Master’s research project. The subject of
research is a method to create piecewise linear approximations of implicit curves.

In this first chapter, we describe the problem of approximating implicit curves, and introduce some
definitions with respect to implicit curves. Next, the related work on this matter is described and
finally, the project goals are stated.

1.1 Problem Description

There are three types of curves: explicit, implicit, and parametric curves. Explicit curves are the best-
known curves of these three. These curves are of the form y = f(z), the example below (figure 1.1)
shows the graph of y = z2, a parabola. For every z-value, there is exactly one possible y-value. To
display such a curve, a series of y-values (belonging to sequential z-values) is computed and these
points are connected.

In the parametric representation, curves are defined with an extra variable, generally called t. An
example is (z,y) = (cos(t), sin(t)), which is the unit circle, shown on the right in figure 1.1. Displaying
such a curve is performed by computing sequential (z(t), y(t))-coordinates by taking sequential t-values
and connecting these points.

Figure 1.1: Examples of an explicit and an parametric/implicit curve. Left: y = z2, right: z2+4y%—1 =
0 or (cos(t), sin(t)).

Implicit curves on the other hand, are defined as the zero set of a function f(z,y). These curves exists
of the points for which f(z,y) equals zero. In figure 1.1, 22 + y? — 1 = 0 is shown, the unit circle
again. The parametric representation (cos(t), sin(t)) thus is just an explicit way of describing this
implicit curve. In an implicit curve, every z-value can correspond to multiple y-values, and the other
way around (which means the curve is not injective or surjective). This is the reason why the explicit
way of displaying a curve does not work for implicit curves. In 3D, f(z,y,z) = 0, the same holds for
implicit surfaces. Approximation techniques have to be used to display these kind of curves or surfaces.
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Implicit curves are common in physics and the medical world. They are also powerful for modelling
purposes in Computer Graphics. In particular their 3D counterparts, implicit surfaces, can be generated
in such a way that they model real-life objects very accurately, see figure 1.2.

This leads to the need of displaying these curves by precise approximations that are guaranteed to be
topologically correct. We give an exact definition of a curve's approximation being topologically correct
later, after some necessary terminology is introduced.

Figure 1.2: Two examples of solid modelling with implicit surfaces [1].

1.2 Implicit Curves
Implicit curves in 2D and surfaces in 3D are defined by equations of the type

f(z,y) = 0 (in 2D) and
f(z,y,z) = 0 (in3D),

where f is a real-valued C? function on R? or R3, respectively. A C? function can be differentiated
at least two times, which implies fz, = fyz., and has continuous derivatives. Figure 1.3 shows some
examples of implicit curves. Although we keep implicit surfaces in mind, the algorithms presented in
thesis only consider the approximation of implicit curves, the 2D-case. We will come back to a higher
dimension in chapters 6 and 7.

In every point p = (z,y) € R2, and therefore in every point on the implicit curve, the gradient of f,
written as V£, is defined as

Vit = Lo Zon.

The gradient V f(p) is a 2D-vector, which in every point p on the curve is normal to the curve.

As mentioned earlier, implicit curves cannot be displayed as easily as graphs of the form y = f(x).
This is mainly because they are not necessarily injective and surjective. Furthermore, the gradient can
turn 180 degrees over a small distance, which can result in complex curves. Finally, the curve can
consist of multiple connected components, closed or open. An implicit curve can have singular points,
also called singularities. These are the points p = (z,y) € R? that satisfy

Vi) = (X, LE) =(00),

which are the extreme points if the 3D surface of z = f(z,y) is considered. In this thesis, we only
consider regular (non-singuiar) implicit curves. The curves belonging to this special group do not pass
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through any of their singular points and thus are not self-intersecting.
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Figure 1.3: Four examples of implicit curves, displayed by Mathematica using the ImplicitPlot package.
The first one, a good example of the modelling possibilities of implicit curves, is defined by the equation
flz,y) = ((z -1 +y2—05) - ((z — 1)+ 3> - 0.25) - (z* + y* = 0.5) - (z® + y* — 0.25) - (z — 0.46) -
(z — 0.54) + 0.000001 = 0. The second one is defined by f(z,y) = z?(1 — z)(1 + z) —y? +0.01 = 0.
The third curve, which is not polynomial, is defined by the equation f(z,y) = cos?(z) + y =0. The
last one is a singular, self-intersecting curve, defined by the same equation as the second one, minus
the 0.01 term.

When is an approximation of an implicit curve topologically correct? Let f(z,y) be the curve we want
to display the zero set of. Let the implicit curve, ¢ = f~1(0), be a (regular) curve, contained in a box
B. A homeomorphism h : B — B is a continuous bijection with a continuous inverse. Note that if B
is compact, every continuous bijection has a continuous inverse.

Definition 1 A curve ¢’ is a topologically correct approximation of ¢ if there is a homeomorphism
h: B — B such that h(c) = ¢

Figure 1.4 illustrates this definition with an example of a curve and its approximation. Intuitively, this
means that a topologically correct approximation has the same number of connected components as
the implicit curve and these components do only intersect themselves if the corresponding component
of the curve does.

Figure 1.4: The straight line segment on the right is a topologically correct approximation of the curve
on the left.
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1.3 Related Work

As mentioned in the previous section, several algorithms for piecewise linear approximation of implicit
curves exist, usually without guaranteeing a correct topology. The methods that have been proposed
until now can be subdivided into two groups: continuation methods and adaptive enumeration meth-
ods. We discuss some examples of these methods and their (dis)advantages.

1.3.1 Continuation Methods

The first group of methods is based on continuation, or following, of the curve. These methods are
curve-based, as opposed to the adaptive enumeration methods, which are discussed later and are grid-
based. A continuation algorithm starts with a (set of) seed point(s) on the curve and computes more
sample points of the approximation while following the curve. Eventually, connecting these sample
points forms a piecewise linear approximation. We describe a few of these methods in short here.

A first continuation method is based on Bresenham’s algorithm for displaying a certain function of
the form y = f(z). Bresenham's original aigorithm decides which pixels of a pixel map should be set
for a reasonable display of f [2]. This decision between pixels is based on the sign of y — f(z) on
either side of the curve. On the curve itself y — f(z) equals zero, but its two half-planes correspond
to y — f(z) < 0 and y — f(z) > 0. Aken and Novak adapted this algorithm to decide which pixels
should be set in order to display a given implicit curve reasonably [3].

Both Aron [4] and Taubin [5] proposed special robust algorithms for algebraic curves that are
defined by polynomial functions and therefore have special properties. For example, it is possible to
know the maximum number of singular points beforehand. Aron and Taubin take advantage of these
properties in their algorithms. In this way, specific algorithms can be devised that are not generally
applicable, but are very useful (fast, efficient and robust) for this special type of curve.

Dobkin et al. propose a different approach which is not based on approximating the curve, but on first
approximating the function f by interpolation (for example, with Lagrange or Hermite interpolation or
with splines) and then drawing that curve exactly. This approach resuits in polygonal lines [6].
However, the best-known continuation method is the so-called predictor corrector path following
method, among others described by Bremer and Hughes [7]. In this algorithm, the continuation of the
curve is performed by foilowing the tangent for one given time step. After this, via projection along the
gradient, the next sample point is corrected to be positioned on the curve. This process is illustrated

in figure 1.5.

k—»

Figure 1.5; illustration of the predictor corrector path following process.

Unfortunately, this group of methods has a few difficuities. Generally, the number of connected com-
ponents of the curve is unknown beforehand. To display all these components, a seed point should be
available on each one of them. But if the number of components is unknown, how can you make sure
this is the case? Another difficulty can occur when the time step is taken too large. If the tangent is
followed to compute the next sample point, this point can wrongly lie on a different component of the
curve. This is illustrated in figure 1.6. The second group of approximation techniques tries to solve
these problems.
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Figure 1.6: By taking the time step too big, the next sample point can wrongly lie on a different
component of the curve.

1.3.2 Adaptive Enumeration Methods

The second group of approximation methods consists of the so-called adaptive enumeration methods,
which are grid-based. The algorithm presented in this thesis belongs to this group. Adaptive enumer-
ation methods generally perform three steps that are described in short here.

The first step is the generation of an initial mesh within some bounding box. Most of the methods in
this group use quadtree meshes or triangulated meshes. For a description of these meshes, see chapters
2 and 3. The initial mesh generation is usually governed by a precondition about the mesh that should
hold before the next step can be performed.

This next (and most important) step of the adaptive enumeration methods is the refinement of the
mesh. This step is performed to remove ambiguities with respect to the approximation of the curve
within each mesh cell. The refinement step is performed until in all grid cells, some criterion is sat-
isfied. This criterion can be based on heuristics or a theoretical framework. However, it always tries
to guarantee that in a cell satisfying this criterion, the curve's approximation is uniquely defined. In
general, this results in a more detailed grid in the neighbourhoud of the curve, hence the adaptive in
the group’s name (see figure 1.7).

Figure 1.7: lllustration of the adaptive enumeration process. Near the curve, the grid is refined until
some criterion is satisfied and the curve's approximation is defined uniquely.

Finally, when the grid is sufficiently refined and all cells satisfy the given criterion, the approximation
of the implicit curve on this grid is determined. Often, this is a set of points or line segments, which
together form a piecewise linear approximation of the curve. However, the approximation can also be
a set of intersected grid cells that will be highlighted to display the curve. Either way, the result is
a series or set of some sort, hence the enumeration part of the group's name. The main difference
between the methods described here, is the refinement criterion.

The first adaptive enumeration method is proposed by Suffern [8]. The critérion he uses is based on
heuristics that indicate when a curve's approximation within a grid cell is uniquely defined. Because

10
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heuristics cannot guarantee anything about the approximation, Suffern developed another algorithm.
Together with Fackerell, a new criterion was devised that uses interval arithmetic [9]. Affine arith-
metic is a variant of interval arithmetic with which even tight interval bounds can be achieved [10].
The refinement criterion of this method is based on characteristics of the interval of the gradient value
in a mesh cell.

Snyder proposed a very general parametrizability criterion, including an example in which he uses
this criterion to approximate implicit curves [11]. The parametrizability criterion states that a grid cell
should not be subdivided if the gradient of f can be parameterized in this cell in some direction. This
implies that the gradient differs by at most 180 degrees and the curve is the graph of a function in this
cell.

The adaptive enumeration methods have a few advantages. First of all, these methods are adaptive.
They are more detailed near the curve, which is necessary to eliminate the problem in figure 1.6. There-
fore, they give good resuits for more implicit curves than the continuation methods. Indeed, some of
these methods can be proven to give topologically correct results, which of course depends upon the
criterion that is used. This precision must unfortunately be paid for by computational inefficiency. In
some of the mentioned methods, for example the one by Suffern and Fackerell, the interval-Newton
method is applied to a great extent (maybe even four times per grid cell) which of course is very costly.
Unfortunately, it is almost impossible to state anything about the complexity of any approximation
algorithm, because these are seldom mentioned.

1.4 Topological Correctness

For some grid-based methods, topological correctness can be proven. This possibility depends on the
refinement criterion that is used. We define a requirement that a mesh should satisfy after refinement
with a given criterion, to be able to guarantee topological correctness of the approximation computed
on this mesh:

Requirement 1 For each element (cell) c of the mesh, the intersection f~1(0) (¢ of the curve with
the cell is either empty or a topological segment (note that a point is a degenerate case of a topological
segment).

If requirement 1 holds and the intersection of a mesh cell with f=1(0) is non-empty, the straight line
segment connecting the two points f~1(0) () c is a topologically correct approximation of f~1(0) N ec.

Definition 2 The approximation of f~1(0) is defined as the set of straight line segments that connect
the points f~1(0)( Oc of each cell ¢ of the mesh.

These line segments are ordered in such a way that they form a piecewise linear approximation.
Claim 1 Requirement 1 implies topological correctness of the approximation of f.

The proof of this claim uses the same techniques as [12]. Since it is completely standard, we omit fur-
ther details. Concluding: if every mesh cell ¢ has a topologically correct approximation in the straight
line segment connecting the points f~(0) () dc, the entire mesh has one in the ordered set of these
straight line segments.

1.5 Project Goals

In this project, we develop and implement an algorithm that guarantees to find all connected com-
ponents of the implicit curve within a given bounding box. In addition, the resulting piecewise linear
approximation of each component will be topologically correct. Thus, the algorithm guarantees to
approximate the implicit curve correctly, but obviously only within the given bounding box.

This algorithm is an adaptive enumeration technique, it refines a mesh until a certain criterion is satis-
fied by all mesh elements. This criterion is based on the bad edge concept, which is described in detail
in chapter 4. With this criterion, the need for any Newton root-finding method, especially the costly
interval-Newton method, is eliminated.

11
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The goal of this Master's research project is to design and implement an adaptive enumeration
algorithm to compute topologically correct, piecewise linear approximations of implicit curves.
We use both a quadtree mesh (squares) and a Delaunay triangulated mesh (triangles) and compare
results. To realize this goal, we divide the algorithm into three steps:

1. Generate an initial mesh over the given bounding box;
2. Refine this mesh to remove ambiguities in the topology of the implicit curve’s approximation;

3. Compute the intersection of the curve with the mesh, which satisfies requirement 1 of section
1.4, and display the polygon that is the result.

This algorithm is described in detail in chapter 5. The three steps are illustrated in figure 1.8, where
the quadtree mesh is used. For the implementation of this algorithm, we use C++, the common
computational geometry library CGAL [13] and the interval library filib++ [14].

?_
_H

Figure 1.8: The three steps of polygonizing an implicit curve (this example illustrates the quadtree
method).

| = 4

In chapters 2 and 3, we look at the underlying theory of the quadtree mesh and Delaunay triangulated
mesh used in this algorithm. Chapter 4 introduces the bad edge concept, which is the basis of this
algorithm. We discuss the implementation of the three steps of the algorithm in chapter 5. In chapter
6, we discuss results and make a comparison of the two methods. Finally, chapter 7 discusses the
functionality that could be added to the program in the future and the extension of the algorithm to
3D.




Chapter 2

Quadtrees and Refinement

To approximate an implicit curve, we need a mesh covering some user-defined bounding box. This
mesh will be refined until topological correctness of the approximation is guaranteed, as described in
requirement 1 of section 1.4. In this chapter, we discuss the first of the two meshes and the way it can
be refined: quadtrees and quadtree refinement.

2.1 Quadtree

A quadtree (QT) is a geometrical subdivision of the plane into a hierarchical tree of squares which do
not necessarily have the same size [15]. Each square is either a leaf of the tree, or an interior node.
Interior nodes are split into four, hence quadtree, equal-sized children in the four compass directions
north-west (NW), north-east (NE), south-west (SW), and south-east (SE).

A quadtree node has four neighbours in the four cartesian directions; a neighbour is a square of the
same size, sharing a side. If the node is on the boundary of the quadtree, there is one or more direction
in which it has no neighbour. If there is no square of the same size in some direction, the neighbour
in that direction of the parent is the child's neighbour as well. A corner of a quadtree node is one
of the four vertices of its square face. The horizontal and vertical sides that bound a face are called
edges. A side can consist of multiple edges; this happens if the neighbouring node on that side is
subdivided. When a quadtree is balanced, any side of a non-split leaf node has at most two edges.
This balance restriction implies that every mesh cell differs at most a factor two in size with any of
its four neighbours. This property is very useful for various operations or algorithms, for example
neighbour finding.

The root of a quadtree mesh is some given bounding box. This root can be refined by subdivision,
which means that each leaf node that does not satisfy a given refinement criterion (see section 1.3.2)
is subdivided into four children. This subdivision of leaf nodes is repeated until all leaf nodes of the
quadtree satisfy the given criterion. When a node is subdivided, the midpoint of the square is a new
vertex of the subdivision. This midpoint is a corner of all newly created leaf nodes.

Figure 2.1: An example of an unbalanced quadtree and the corresponding subdivision. This tree is not
balanced because the north-east child of the quadtree root is not split, but the south-east child of its
western neighbour is.
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The main advantage of quadtrees is their simple extension to higher dimensions, for example the oc-
tree structure in 3D. By extending squares to cubes, four children to eight, and four neighbours to
six, quadtrees can be generalized to octrees. Whether algorithms using quadtrees (for example, point
location or approximating implicit curves) can be generalized to 3D depends on the nature of that
particular algorithm.

Another advantage of quadtrees is the ease of many operations, for example point location and refine-
ment. Because of the symmetry of the squares in the subdivision and the axisymmetry of the edges,
these operations are almost trivial to understand and implement.

The last two advantages of the quadtree are also important if the corresponding mesh is used for
numerical simulations. The first is the possibility for a mesh to have cells of much varying sizes over
small distances. This prevents unwanted large amounts of nodes on parts of the mesh were a detailed
subdivision is not necessary. Of course, maintaining the balance restriction will not be beneficial to this
favourable property, yet it does not completely eliminate this. Secondly, all angles in a quadtree mesh
are 90°, which prevents numerical problems (like computing with very small angles) and thus enhances
the quality of simulation results.

2.2 Data Structure

Unfortunately, the currently available stable release of the C++ computational geometry algorithms li-
brary CGAL does not contain a data structure for quadtrees. That's why we create one ourselves. First,
we set up a list of requirements, then make a design for the structure. In section 5.1.1 we describe the
implementation of this data structure.

2.2.1 Requirements

We formulate a list of requirements with respect to the implicit curve's approximation algorithm for a
quadtree data structure. The need for these different requirements becomes clear in section 5.1, when
the role of the quadtree mesh in our algorithm is explained in detail.

Requirement 1 | A quadtree can be generated by recursively subdividing nodes

until some criterion is satisfied by all leaf nodes

Requirement 2 | The 2D data structure can easily be extended to a 3D octree data structure
Requirement 3 | From the planar subdivision, given by the leafs of the quadtree, a Delaunay
triangulation can be constructed

Requirement 4 | Tree traversal is possible, easy and efficient

Requirement 5 | The structure is easily passed on to CGAL to be displayed

Requirements 1, 3, 4 and 5 are considered in section 2.2.3. Requirements 2, 3, 4 and 5 will guide the
design below.

2.2.2 Data Structure Design

We now design what the data structure for a quadtree mesh should look like, using the requirements
from the previous section.

. The root of the tree is the cell that represents the bounding box

. Each internal node in the tree represents a subdivided cell of the planar subdivision
. Each leaf of the tree is an undivided cell

. Every node or leaf contains the following information:

BW N

- Cartesian coordinates of the north-west (NW) corner point

- Cartesian coordinates of the south-east (SE) corner point

- Pointer to the parent cell (which is null for the root node)

Pointers to all 4 child cells (which are null for leaf nodes)

Compass direction of this node, as seen from its parent (NW, NE, SE or SW)

14
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- Flag indicating whether this node is allowed to be subdivided
- Flag indicating whether this node is subdivided
- Level of this node in the tree

Pointers to neighbouring celis are not strictly necessary, because the lookup of neighbours can aiso
be implemented by a routine that finds the desired neighbour only when it is actually asked for (see
section 2.2.3). If the tree is balanced, neighbour finding is possible in constant time. This reduces the
difficulty in keeping all pointers up-to-date when for example refining the tree.

The above setup can easily be extended to 3D (requirement 2) by replacing the four pointers to child
cells by eight (plus the four cartesian directions to eight). The classification of tree nodes into root,
internal node and leaf remains usable in 3D. By keeping the tree balanced and having the coordinates
of the NW and SE corner as information of a node, a triangulation can be made easily (requirement
3). The same holds for the passing of the structure to CGAL (requirement 5), since a node can simply
be displayed by four CGAL line segments. By keeping pointers to parent and children, traversal of the
tree is possible (requirement 4), as well as neighbour searching

2.2.3 Operations Design

Besides the actual structure that contains the data which describes a quadtree, some operations on
this structure should be available. To fulfill requirements 1, 3, 4 and 5, the following operations should
be implemented:

1. Subdivide a leaf node into four child nodes, turning this node into an interior one.

2. Refine a quadtree mesh by subdividing leaf nodes until all ieaf nodes satisfy a given criterion.
3. Get the neighbouring node in one of the four cardinal directions.

4. Get the square that bounds a leaf node.

Of course also the neighbours in the other cartesian directions than north (as in method 3) should be
retrievable.

For requirement 1, the first two methods are needed. To be able to convert the quadtree mesh
to a triangulation later (requirement 3), operation 2 should maintain the balance restriction of the
quadtree. Operation 3 (together with parent and child pointers) gives opportunity for traversal (re-
quirement 4). The last method is needed for displaying this quadtree node (requirement 5).

2.3 Refinement Method

As described in section 1.3, an adaptive enumeration technique refines a mesh to obtain an approxi-
mation of an implicit curve. As long as there is a mesh cell that does not satisfy the given refinement
criterion, that cell is split into four child nodes. The refinement method of the quadtree mesh is based
on the good/bad- qualification of edges mentioned in chapter 4. Section 4.2 describes the precise
criterion that has to be satisfied by every mesh cell after refinement.

Refining a quadtree takes the following steps:
1 - List all leaf nodes of the current quadtree in list L
2 - While L is not empty, pop a leaf node and perform steps 3 & 4:

3 - Check if the given criterion is satisfied by the current node

4 - If not so, split node and add children to L whilst maintaining the balance restriction

All these steps are straightforward, except for step 3. The details of this check are explained in section
5.1.2.

15



Chapter 3

Delaunay Triangulations and Refinement

The second type of mesh that is used to approximate implicit curves, is the Delaunay triangulation. In.
this chapter, we describe this type of mesh and the way it can be refined.

3.1 Delaunay Triangulation

A triangulation of a point set P is a planar subdivision of the convex hull of P into triangles with
vertices in P. In other words, the triangulation T(P) is a maximal planar straight line graph, where
the vertices of the graph are the points of P. Each face, or facet, is a triangle. The three sides of
a triangle are called edges. The circumcircle of a triangle is the unique smallest circle that passes
through all three vertices of the triangle.

A triangulation is called a Delaunay triangulation (DT) if and only if the circumcircle of any triangle
in the triangulation does not contain any vertex in its interior ([16], see figure 3.1).

Figure 3.1: This triangulation, consisting of two triangles, satisfies the Delaunay property. Both
triangles have a circumcircle that does not contain any other vertices.

A constrained Delaunay triangulation (CDT) is a triangulation where certain edges are constrained.
These constrained edges (or constraints) are forced to be present in the triangulation, after which the
triangulation tries to be 'as much Delaunay as possible’. Constraints are usually (part of) the input of 2
refinement algorithm, the so-called Planar Straight Line Graph (PSLG). As these constrained edges do
not have to be Delaunay edges, the triangles of a constrained Delaunay triangulation do not necessarily
fulfill the empty circumcircle property. However, they fulfill a weaker constrained Delaunay property.
To state this property, it is convenient to think of constrained edges as blocking the view. Then, a
triangulation is a CDT if and only if the circumcircle of any face encloses no vertex visible from the
interior of the face {13].
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Insertion of a new vertex in a CDT can lead to a situation called encroachment. This denotes that
the vertex we try to insert lies in the circumcircle of a constrained edge. If this point were inserted, it
would violate the constrained Delaunay property. What action has to be taken in such a situation to
still insert a new vertex, is described in section 3.2.

To avoid numerical difficulties and approximation errors when a grid is used for numerical simulations,
a constraint can be put on the minimal size of any angle of a triangle in the triangulation. Bearing this
in mind, Delaunay triangulations have some favourable properties [17]. The most important property
is that they maximize the minimum angle among all possible triangulations of that particular point
set. They minimize the radius of the maximal circumcircle as well. Because of these properties, the
Delaunay triangulation has been very popular in mesh generation for many years.

Triangulations can be generalized to higher dimensions, for example to their 3D counterparts tetra-
hedrizations. Unfortunately, not all algorithms using triangulations can. For example, the flipping
algorithm, which creates a Delaunay triangulation from an arbitrary triangulation by flipping edges
that do not locally satisfy the Delaunay property [18], is not applicable in 3D. It can get stuck in a
local optimum (with respect to the minimum angle), which does not have to lead to a global optimum.
Uniike the 2D-algorithm, in which a local optimum always leads to a global optimum.

3.2 Refinement Method

Delaunay triangulations can be refined to satisfy a given criterion in various ways. We describe an
adapted version of Ruppert’s refinement algorithm for 2D quality mesh generation [19] in short here.
Ruppert’s algorithm is probably the first theoretically guaranteed meshing algorithm to be truly satis-
factory in practice [17]. It allows the density of triangles to vary quickly over short distances and the
algorithm is accompanied by a theoretical framework with which Ruppert proves that the algorithm
produces meshes that are both nicely graded (a small feature in one part of the mesh does not unrea-
sonably reduce the edge lengths at places sufficiently far away) and size-optimal (the number of mesh
elements is within a constant factor of optimal in size) [20].

Our variant of Ruppert’s algorithm starts with an initial constrained Delaunay triangulation of input
vertices and constraints. This initial triangulation is described in section 5.2.1. It refines this mesh
by inserting additional vertices (also called Steiner points) until all triangles satisfy the given quality
constraint. Normally, this quality constraint only involves the size of the angles of a triangle, but in
this case it is extended to the good/bad- qualification introduced in chapter 4. Section 4.2 describes
the precise criterion that has to be satisfied by the mesh after refinement.

The algorithm keeps a list of triangles that do not satisfy the refinement criterion. The algorithm
handles triangies from this list until it is empty (while updating it along the way). Handling a triangle
boils down to the insertion of a new vertex, which is performed as follows [21]:

¢ Insertion of the circumcenter of the triangle is attempted. This fails if the new vertex encroaches
upon a constrained edge.

¢ [f the above fails, the midpoint of the edge upon which the circumcenter encroached is inserted.

This process of either splitting a triangle or subdividing an edge is illustrated in figure 3.2

Figure 3.2: The circumcenter of the right triangle can not be inserted, because it encroaches upon the
constrained edge (thick). Because of this encroachment, the midpoint of that edge is inserted as the
new vertex.

17




Appraximation of implicrt Curves Using the Bad Edge Refinement Concept 3 Delaunay Triangulations and Refinement

Using this refinement method, the maximal size of the triangles will decrease and the minimal angle
will increase. If the refinement criterion is constructed in such a way that the refinement will terminate
if the minimal angle becomes large enough and the size of the triangles small enough, the algorithm
will eventually terminate and all triangles will satisfy the given criterion. This is discussed in more
detail in section 3.2. In figure 3.3, an example of the refinement of a triangulation is illustrated.

Figure 3.3: A triangulation is refined by triangle splitting or segment subdivision. The vertices that are
inserted in this process are indicated by small squares.

3.3 Data Structure

Luckily, the C++ library CGAL already contains a data structure for a constrained Delaunay triangulation.
We use a CDT instead of just a DT to force the bounding box of the mesh to be in the triangulation and
thus keep the original geometry of the mesh. The data structure restores the constrained Delaunay
property automatically when a new vertex is inserted. it does not check for encroachment, so we
implement this ourselves (see section 5.2.2). The CDT data structure is defined in the header file
Constrained_Delaunay_triangulation_2.h. Among others, operations are available for insertion
and removal of vertices, insertion of constraints, queries about the triangulation, faces, or edges, and
point location (the variable t has the CDT type CGAL: :Constrained_Delaunay_triangulation_2}:

1: Vertex_handle t.insert (Point p)

2: void t.remove (Vertex_handle v)

3: void t.insert_constraint(Point a, Point b)

4: int t.number_of _vertices ()

5: int t.number_of _faces ()

6: bool t.is_face (Vertex_handle v1,
Vertex_handle v2,
Vertex_handle v3)

7: bool .is_infinite ( Vertex_handle v)

9: bool .is_infinite ( Edge e)

t
8: bool t.is_infinite ( Face_handle f)
: t
10:Face_handle t.locate (Point query)

These operations make our the refining algorithm a lot easier to implement. The implementation is
described in detail in section 5.2.2.
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Chapter 4

Bad Edge Concept

This chapter introduces the bad edge concept, which is the basis of the algorithms presented in this
thesis. This concept guides the design of the precondition for mesh refinement and the criterion a
mesh should satisfy after refinement to guarantee topological correctness of the approximation of the
implicit curve over this mesh.

4.1 Bad Edges

The gradient of a C? function f(z,y), Vf = (%ﬁ, %5), is defined in every point of R?. If a point lies
on the implicit curve, the gradient in this point is normal to the tangent of the curve in that point. By
looking at the gradient 7 f, an edge can be qualified as being good or bad ([21], relint is the relative
interior of a line segment):

Definition 3 An edge e of the mesh is called bad if there is a point p in relint(e) such that V f(p)l.e.

An edge that is not bad, is called good. If an edge is good, the number of intersections it has with
f~1(0) is either 0 or 1. A bad edge, on the other hand, can be intersected by f~1(0) an unknown
number of times, because the gradient changes direction (possibly once or more). This observation is
illustrated in figure 4.1. Because we do not want to use interval-Newton to find all intersections of an
edge, we decide to compute intersections of an edge with f~!(0) only when this edge is good. The
intersection of an implicit curve with a good edge can be approximated by linear interpolation, to even
eliminate the use of the normal Newton method.

drbstlulzs || L

Figure 4.1: An edge is bad if the gradient of the function f at some point on the edge is perpendicular
to it. This means that in that particular point, the isoline of f in that point is parallel to the edge,
and thus the gradient may change its direction.

Using this definition, we also qualify a face of a planar subdivision to be good or bad:

Definition 4 A face s is said to be good if one of the following conditions hold:

1. s does not intersect f~1(0)

2. s intersects f~1(0), contains no singular point, and does not have two adjacent bad edges.
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This definition includes the condition ‘contains no singular point’ to prevent small components of the
curve from lying entirely inside a face, see figure 4.2. Any closed component of an implicit curve has at
least one singular point inside, hence this condition. Such a face should be refined until the face that
contains this singular point no longer intersects the curve. This is the reason why we only approximate
regular curves. Why a face cannot have two adjacent bad edges is explained in the proof of theorem 4.1

Figure 4.2: A face with an entire closed component of an implicit curve inside it.

A face is called bad if it is not good. To guarantee topological correctness of the approximation of an
implicit curve over a certain mesh, requirement 1 from section 1.4 should be fulfilled by this mesh. We
show how the bad edge concept can be incorporated, considering this requirement, in the refinement
of triangulations.

Definition 5 A bounded line segment is called positive (negative) if the value of f is positive (negative)
at both endpoints.

Theorem 1 [f a triangulated mesh has only good triangles, requirement 1 of section 1.4 is fulfilled
and thus the approximation of an implicit curve f~1(0) from definition 2 is a topologically correct
approximation.

Proof In a triangulation with only good triangles, a face that intersects the implicit curve has at most
one bad edge. We distinguish two cases:

e If a face has no bad edge at all, as illustrated at the left of figure 4.3, the intersection of this face
with f~1(0) is either a point or a topological segment (which can be approximated by a straight
line segment). Now, the intersection points of the curve with the edges uniquely define the way
the curve passes through this face (definition 2). Within the face, the curve can be different
from the straight line, but topologically, the approximation is correct [21].

e If a face has one bad edge (middle of figure 4.3), two faces meeting at the bad edge can be
combined along this common bad edge to form a larger face (a quadrangle). Note that this larger
face may be concave. This quadrangle has only good edges on the outside, and is a good face
itself that has a uniquely defined (topologically correct) approximation of f~1(0). The proof of
this statement is based on the fact that such a quadrangle can not have one positive and one
negative diagonal [21]. For illustration of this idea, see figure 4.3.

gé@%‘ﬁfﬁ

Figure 4.3: Four examples of possible situations for a triangle (from left to right: no bad edges, one
bad edge (convex), one bad edge (concave), and two adjacent bad edges).
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If a face would have two (or more) adjacent bad edges (at the right of figure 4.3), then these edges
could all be intersected by f~1(0) an arbitrarily large number of times. The approximation of f~1(0)
within this face is then not uniquely defined, because the correct way of connecting the (possibly many)
intersections of the implicit curve with the edges is not known. Because the intersection of f~1(0) with
this face is not guaranteed to be at most a single topological line segment, requirement 1 of section
1.4 would not hold.

Concluding, if we use a triangulation in which every face is good, the approximation of the implicit
curve can be determined uniquely from definition 2.

4.2 Preconditions and Refinement Criteria

The purpose of the refinement step of the approximation algorithm has become clear: after refinement,
the mesh should not have any bad faces in order to determine a topologically correct approximation of
the implicit curve at hand. How do we accomplish this?

4.2.1 Delaunay triangulations

Let's consider Delaunay triangulated meshes first. The refinement method should remove all bad
triangles from the mesh; triangles which intersect the curve, should not contain a singular point, or
have two adjacent bad edges. We choose to do this in two steps. We first generate an initial mesh
that isolates the singular points from the curve and then refine the mesh to remove all triangles with
two or more adjacent bad edges. For reasons that become clear in section 5.2.2, we also remove all
skinny triangles. A triangle is skinny if it has an angle below 20.2 degrees. In this way, the following
precondition is put on the refinement step:

Precondition 1 The initial Delaunay triangulation does not have any triangle that contains a singular
point and intersects f~1(0) as well.

The refinement criterion for the Delaunay triangulation method now can be stated:

Criterion 1 The Delaunay triangulation must be refined until every triangle has all its angles above
20.2°, and all triangles that intersect f~1(0) have at most one bad edge.

4.2.2 Quadtrees

Because we defined the bad edge concept for triangles, a conversion step to create a triangulation is
added in the quadtree method. To fulfill requirement 1 of section 1.4, this triangulation should have
no bad or skinny triangles. Because the angles of a quadtree node are all 90° and the quadtree is
balanced, skinny angles do not occur anyway (see section 5.1.2). Again, a precondition is put on the
refinement step (when the mesh still is a quadtree).

Precondition 2 The initial quadtree mesh does not have any square that contains a singular point
and intersects f~1(0) as well.

We define the converted triangulation as the result of conversion of the refined quadtree to a Delaunay
triangulation. The refinement method for the quadtree mesh has to make sure that this converted
triangulation does not contain any skinny and bad triangles.

Criterion 2 The quadtree mesh must be refined until every triangle (of the converted triangulation)
intersecting f=1(0) has at most one bad edge.

The removal of bad or skinny faces is performed by face splitting. For quadtrees, this boils down to
insertion of the midpoint of a node, resulting in four new child nodes. For Delaunay triangulations,
face splitting is described in section 3.2.
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4.3 Interval Arithmetic
The preconditions and criteria mentioned in the previous sections, describe some predicates for which
a check should be available on edges and faces. These checks are (faces can be both triangles and
squares):

1. Whether an edge is good or bad

2. Whether an edge intersects f~2(0)

3. Whether a face contains a singular point

4. Whether a face intersects f~1(0)

These four checks are implemented using interval arithmetic. An interval is a range of reals. For
example, the intervals of £ and y-coordinates over the bounding box of an edge or face are

I. = {t]zmin <t< Zmas}and
o= {t| ymin <t < ymaz}v

where Zpin is the smallest z-coordinate on of the bounding box (Zmaz, Ymin, 3and Ymaz are analogous).
Operations can be performed on these intervals. The operation is performed for all elements of the
cartesian product and all outcomes are contained in the resulting interval. Addition, for example, of
[=2,2] and [1,4] results in [—1,6]. Multiplication works analogously: [-2,2] x [1,4] = [~8,8]. A
special case of operation is the square of an interval, which always is positive: [—5,5]? = [0,25]. The
interval of the function value of a function f(z,y) over both the z and y interval is defined as

fle, 1) ={f(s,t) | (s,t) € I x I,} = f(Ip x I,,).

This is illustrated in figure 4.4 for a function f with only an z-parameter.

1(x)

o

Figure 4.4: Given an interval of z-coordinates, the interval of the function value f(z) can be computed.

All four needed interval checks examine whether zero is contained in one or two intervals. These
intervals are the ranges of the value of a certain function over a given line segment or face. All checks
can be implemented in the same fashion:

1 - Compute the interval of a function value over the bounding box of the line segment or face

2 - Check whether zero is contained in this interval. If it is not, return this as the result. If it is:

3 - Split the box and do the check again for its subboxes

4 - If the box is split some maximal number of times and the computed interval still contains
zero, return that zero is contained in the interval
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1(x)|

'v(x

i = x
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Figure 4.5: An interval can give a false positive for zero-containment when it has spacious bounds. In
this figure, zero is contained in the computed interval I5(z), but not in the actual interval f(I).

The subdivision of the bounding box if zero is contained in the computed interval is necessary because
of possible spacious interval bounds. These spacious bounds can be the result of the implementation
of the interval operations. This problem is illustrated in figure 4.5.

For the interval computations, we use the C++ library £i1ib++ [14]. This library provides a variety of
interval arithmetic operations, from simple addition and substraction to the more complicated arcsin
and sinh, as well as set theoretic and relational operations. To get any use out of this library, we have
to implement the interval variant of the function f and its first-order derivatives. It should be possible
to use various test curves, therefore we introduce a function identifier £id that is a parameter to the
routine that computes f and its derivatives. The implementation of all test curves' functions is placed
in these routines and based on fid, the correct function is evaluated.

Interval flnterval(int fid, Interval x, Interval y);
Interval fxInterval(int fid, Interval x, Interval y);
Interval fyInterval(int fid, Interval x, Interval y);

The second and fourth checks, whether an edge or face intersects the curve, both examine whether
zero is contained in an interval of f over I; and I,. The third check essentially does the same for both
fz and f, over the intervals I, and I,. The bad edge check is a bit different than the other three. It
checks whether the gradient of this function is perpendicular to the given line segment. If two vectors
are perpendicular, their dot product is zero. We define Az = z, — 24, Ay = yp — Ya,

{t|0<t< Az}, and
{t|0<t< Ay}

IA::

Iay

To check whether an edge e is bad, the dot product Iy, = (Az, Ay).(fz(z,), fy(z,v)) is computed
over the bounding box of e. If the gradient and edge are perpendicular in some point on the edge, I ot
contains zero. The four different interval checks are listed in table 4.1.

The interval checks for f and its derivatives all compute the interval of the function value over a
rectangular bounding box, also when the interval of f is needed merely over a line segment or a
triangle. The line segment {or edge) checks differ from the face checks in the way the bounding box
is subdivided and the check is made for the subboxes {because of the possible spacious bounds). For
both checks, the bounding box is split into four equal subboxes, but for an edge, only two of these are
checked (the two intersected by the line segment). In the face check, all four subboxes are checked.
This results in the following methods:
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Check Interval Check(s)

Good/bad edge 0 € (Inz,Iny) (f2(Iz, 1), fy(Iz, 1))
Intersected edge 0€ f(I:, 1)

Singular point in face | 0 € fz(I,I,) and 0 € f,(I,1)
intersected face 0€ f(Iz, 1)

Table 4.1: Four different checks on intervals.

bool segmentIsBad(int fid, Point p0O, Point pl, int Nsteps);

bool segmentContainsZero(int fid, Point pO, Point p1, int Nsteps);
bool boxContainsSP(int fid, Point nw, Point se, int Nsteps);

bool boxContainsZero(int fid, Point nw, Point se, int Nsteps);

oW N -

where fid is the function identifier, p0 and p1 are the endpoints of the checked line segment, nw and se
are the north-west and south-east corner of the checked bounding box, and Nsteps is the maximal num-
ber of subdivisions of the bounding box. Note that for good edges, the method segmentContainsZero
can immediately return true if the sign of f in the two end point is different, because f is monotonous
in a good edge.

4.4 Linear Interpolation

After the mesh is refined, the approximation of the implicit curve can be determined from definition
2. We only compute the intersections of good edges with f~1(0), to avoid inefficient operations like
interval-Newton. A good edge has the nice property that it only intersects f~!(0) once. Therefore,
we do not compute this intersection exactly, but approximate it with linear interpolation. Note that
the approximation then remains topologically correct, because there still is a homeomorphism between
the intersection of the cell with f~1(0) and the approximation.

Linear interpolation uses the parameterization of an edge and the function value in its two vertices,
to approximate the point on this edge where the function value is zero. The edge between the two
vertices p, = (Za,¥ya) and pp = (Zs, Y») can be parameterized in s as follows:

(Tsyys) = (1= 35)(Ta,Ya) + 5(z6, p)

If on a good edge the sign of f(p,) and f(py) is different, somewhere between sg = 0 and 57 = 1,
f(s) = f(zs,ys) must be zero. The point where f(s) is zero, the root s*, can be approximated by:

s _f(Pa)
f(pb) - f(pa).

The approximation of an intersection of ~1(0) with an edge is illustrated in figure 4.6.

fis)

.“sl)

fs0) @

Figure 4.6: Approximation of the intersection point of the implicit curve with a good edge by linear
interpolation.
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Chapter 5

Approximating an Implicit Curve

In this chapter, the two algorithms for approximating implicit curves are described step by step. Using
the four preconditions and criteria discussed in section 4.2, the three main steps of the algorithms are
discussed: initial mesh generation, mesh refinement and curve approximation.

o As described in the section 4.2, an initial mesh must be constructed that isolates singular points
from the curve to be approximated. This means that no grid cell of the initial mesh intersects
the curve and contains one or more singular points at the same time. Note that this is possible
because the implicit curves we work with are regular and thus are not self-intersecting.

o After the initial mesh is generated by isolating the singular points from the curve, we refine the
mesh to remove all skinny and bad faces. In the end, the mesh will have a unique, topologically
correct approximation of the implicit curve, because requirement 1 of section 1.4 is fulfilled.

e When all faces of the mesh are good, all topological ambiguities have been removed from the
mesh and the polygonal approximation of the curve can be determined from definition 2. We
discuss the implementation of computing the approximation for both (refined) meshes. Linear
interpolation, described in section 4.4, is used for approximating intersections of good edges with

f710).

For illustration purposes, we show the (intermediate) results for the function f of equation (5.1), also
displayed in figure 5.1 (with the ImplicitPlot-package of Mathematica). This curve has singular
points in (—21/2,0), (0,0) and (1/2,0) and a bounding box with north-west and south-east corner
points (—2,2) and (2, —2) respectively, is used.

flz,y) =2 (1 —z)(1 + 2) — y*> +0.01 = 2% — z* — y* + 0.01 (5.1)

N
\%

Figure 5.1: Function f inside its chosen bounding box.
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5.1 Quadtree Method
5.1.1 Initial Mesh Generation

In the quadtree method, we generate a balanced quadtree as the initial mesh. The midpoints of leaf
nodes in a quadtree are the only new vertices that can be inserted to refine the mesh. We start with
an empty quadtree that is just a root node, with the corresponding square being the user-defined
bounding box. Next, we isolate the singular points by recursively subdividing the quadtree nodes that
contain at least one singular point an intersect the curve, using the interval checks mentioned in section
4.3. This subdivision is repeated until all quadtree nodes that contain one or more singular points,
do not intersect the implicit curve f~1(0) and the singular points are thus separated from the curve.
Meanwhile, we keep the quadtree balanced, so we do not need a separate method to do this afterwards.

Data structure

Before we can generate the initial quadtree mesh, we have to implement the data structure to save the
quadtree in. This data structure is implemented in the file quadtree.h. The design of section 2.2.2
is followed closely. The header file of the class Quadtree is constructed as:

class Quadtree {
private:
Point nw,se;
Quadtree * parent;
Quadtree * child[4];
int subdiv;
int pardir;
int consin;
int level;
public:

}

The flag indicating whether a node is allowed to be subdivided is consin, short for 'contains singular
point’; faces in the initial mesh that contain at least one singular point but not intersect the curve, are
already good and do not need to be subdivided any further (not even to keep the quadtree balanced).
The data structure is now ready to be extended with some extra functionality (besides the obvious get
and set methods).

Operations

The operations that have to be implemented are described in section 2.2.3. Most of these methods
are very straightforward. The definition of these operations is placed in quadtree.h and the imple-
mentation in quadtree.C.

class Quadtree {
private:

pubii;:
6Q;dtree(0uadtree *pn, Point p1, Point p2, int pd, int 1);
QAid subDivide();
;;id isolateSingularPoints();

Quadtree* getNorthNeighbour();
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CSegment getNorthSegment();

F;

For the isolation of the singular points in the method isolateSingularPoints(), the subdivision
method subDivide() and interval checks boxContainsSP() and boxContainsZero() are used to
subdivide the nodes that contain one or more singular points until these containing nodes do not in-
tersect the implicit curve. The implementation of the balance restriction and the neighbour-finding
method is taken from the algorithms in [16]. For displaying the quadnode in CGAL, the methods
getNorthSegment () and its analogous routines are implemented. These operations are employed in
the mesh generation method as follows:

generateInitialQTMesh(fid,xmin,xmax,ymin, ymax):

INPUT - Function identifier £id and corner points of bounding box xmin, xmax, ymin, and ymax
OUTPUT - Initial quadtree mesh (root) that isolates the singular points from the implicit curve
1 - Quadtree root = createRootNode(xmin,xmax,xmin,xmax);

2 - isolateSingularPoints(int fid):

3 - Create a list L of all leaf nodes, and for every element of this list, compute bfO = boxContainsZero
and bsp = boxContainsSP

4 - If b0 and bsp are both true, subdivide node and add new child nodes to L.
If only bsp is true, set consin of this node to true.

5 - If the node has been subdivided, restore the balance restriction.

Figure 5.2 displays the outcome of this method for the function f of equation (5.1):

«'Q)x

Figure 5.2: Initial quadtree that isolates the singular points (—%\/5, 0). (0,0) and (%\/5, 0). The
quadtree nodes containing a singular point are displayed with thick borders.
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5.1.2 Mesh Refinement

In section 4 the refinement criterion for the quadtree mesh is defined; criterion 4.2.2 implies that a
quadtree node is labelled bad if one of the triangles it consists of (in the converted triangulation) is
bad. We now describe how this converted triangulation is constructed. The conversion of a quadtree
node to triangles is based on which sides of a node, and thus which neighbours, are split. In a balanced
quadtree, each side is split at most once. This leads to the five conversion situations shown in figure 5.3.

Figure 5.3: The five situations of converting a quadtree node to triangles.

Note that the minimal angle created in this way is 26.6°, which is automatically the minimal angle of
the entire triangulation. Hence, there will be no skinny triangles in the resulting triangulation at all.
The quadtree refinement aigorithm, described in section 2.3, can be implemented almost directly using
criterion 4.2.2.

We need a data structure to keep a list of all quadtree nodes that still have to be checked for refine-
ment. We choose a binary search tree (BST) because of the efficient average insertion, deletion and
query running time. Every quadtree node has a unique identifying key, which is used for ordering in
the binary search tree. The refineTree()-method in quadtree.C now is constructed:

refineQTMesh(fid,qt):

INPUT - Integer fid identifying the function f and the initial quadtree qt
OUTPUT - Refined quadtree mesh qt without bad faces
1 - Create a binary search tree leaflist containing all leaf nodes of qt

2 - while(! leaflist—isEmpty())

3 - Pop next leaf node ¢ from leaflist
4 - Compute the interval of the function value fi over c
5-if (('c—containsSing()) && (fi.contains(0)))

6 - toBeSplit = check if node should be split to maintain balance restriction

7 - if not toBeSplit, then toBeSplit = check, based on split edges, if the conversion
of this node to a triangulation will contain a bad triangle

8 - if toBeSplit then subdivide ¢ and add its new children to leaflist

In figure 5.4, two meshes are shown: the initial quadtree created by generateInitialQTMesh() and
a refined quadtree, which is the result of refineQTMesh(fid). The quadtree is not symmetrical (as
the function f of equation 5.1 is) because the refinement is based on the asymmetrical conversion of
figure 5.3.
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Figure 5.4: An example of an initial quadtree mesh (top left) that has been refined (top right).

5.1.3 Computing the Approximation

Before we start approximating the intersection of the implicit curve with the mesh, the quadtree is
converted to a Delaunay triangulation. To do this, we create an empty constrained Delaunay triangu-
lation and force all quadtree edges to be present in the resulting triangulation:

convert(TtoDT(qt):

INPUT - Refined quadtree qt

OUTPUT - Constrained Delaunay triangulation cdt

1 - Initialize cdt as an empty constrained Delaunay triangulation
2 - Create a list L of all leaf nodes of the quadtree qt

3 - For every element in L:

4 - Insert the edges that the triangulation of this node has, according to figure 5.3 as constraints
into cdt

The result of this conversion is a triangulation in which all triangles are good, see figure 5.5 for an
example.

I
|

Figure 55: An example of a refined quadtree mesh (left) that has been converted to a constrained
Delaunay triangulation. The squares containing a singular point are constrained and displayed with
thick borders.
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We now compute the intersection of f~(0) with a triangulation with only good triangles. A good
triangle that intersect the implicit curve f~2(0), has zero or one bad edges. A good triangle without
a bad edge has an intersection with f~1(0) that is empty, a point or a segment. If a triangle has one
bad edge, it shares this bad edge with the neighbour along that edge. Therefore, these two triangles
together form a quadrangle which again has an intersection with f£71(0) that is empty, a point or a
segment (see chapter 4).

We first look at the case when a triangle is on the boundary of the mesh. If this triangle has a bad edge
on the boundary, the neighbouring face along this bad edge is the infinite face. Only the intersections
of the two good edges of that particular triangle have to be checked. If there are two intersections,
these points can be connected with a straight line segment. If there had been a neighbouring triangle
on the bad edge side, the quadrangle that these two triangles would form intersected f~1(0) at most
in a topological segment. Because this straight line segment already is contained in the first triangle,
the neighbouring triangle would not be intersected by the curve (see the left of figure 5.6). If there is
one intersection, we neglect it. It should have been connected with an intersection point on an edge
of the neighbouring triangle sharing the bad edge. But because this neighbour is the infinite face and
we do not want to compute the intersection of the curve with any bad edge, this one intersection is
an end point of the approximation (see the right of figure 5.6).
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Figure 5.6: Approximation of the intersection of f~2(0) with a boundary mesh cell.

Now we look at the case when a triangle is in the interior of the triangulation. We just have to
approximate the intersections of the good edges of each triangle with f~1(0), using linear interpolation.
The action that has to be taken next, depends on the number of intersections that the edges of this
face have with the implicit curve.

Figure 5.7: The six different situations for the intersection of a (two) triangle(s) with the implicit curve
in a constrained Delaunay triangulation.
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No more work has to be done when there are no intersections, see the left part of figure 5.7.

If there is one intersection, it can be ignored, because it can only be one of the corners of the triangle
and that intersection will also be found in another triangle, see the middle part of figure 5.7. It is
important to see that this intersection cannot be a tangent point of the curve in the interior of one of
the edges. If an edge contains a tangent point of the curve, the gradient is perpendicular to that edge
and thus the edge is bad. But if the edge is bad, we would not have been computing its intersection
with the curve in the first place. Because a tangent point cannot occur if a single intersection is found,
this has to be a corner point of the face.

If two intersections are found, these two can be connected, see the right part of figure 5.7. In figure
5.8 the approximation of function f of equation (5.1) is shown.

computeApproximation(fid,cdt):

INPUT - Function identifier £id and constrained Delaunay triangulation cdt
OUTPUT - Piecewise linear approximation A of the implicit curve over the mesh cdt
1 - Initialize two (empty) lists of straight line segments L, and A.

2 - For every triangle in cdt:

3 - If the bounding box of the triangle contains the function value zero:

4 - If there is no bad edge, approximate the intersections of f~1(0) of the three good
edges using linear interpolation. If two intersections (pg and p;) are found, add the
segment (po,p;) to L.

5 - If there is a bad edge, approximate the intersections of f~1(0) of the two good edges
of this triangle and the two edges of the neighbouring triangle along the bad edge
using linear interpolation. If two intersections (po and p;) are found, add the segment
(PO,PI) to Ls-

6 - Re-organize the line segments in L, to form a piecewise linear approximation, assign this sorted
list to A and display A on the screen.
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Figure 5.8: Example of a refined quadtree mesh and the computed approximation of an implicit curve,
using this mesh. The squares containing a singular point are constrained and displayed with thick
borders.
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5.2 Delaunay Triangulation Method
5.2.1 Initial Mesh Generation

As mentioned in section 3.3, CGAL already has a constrained Delaunay triangulation data structure,
which use in our implementation. We create an empty triangulation and insert the boundary segments
of the bounding box as constrained edges. To prevent inserted points from lying outside the bounding
box later, we create a nine times bigger bounding box (the original bounding box is copied eight times,
surrounding itself) [22]. For clarity, only the original bounding box is displayed in figures throughout
this thesis.

For the isolation of singular points, we create an imaginary rectangular mesh over the (original) bounding
box. This rectangle can be split into two smaller rectangles, either in horizontal or vertical direction.
This splitting is performed as long as a subrectangle both intersects the implicit curve and contains at
least one singular point (these checks are performed with the interval checks from section 4.3). This
process is illustrated in figure 5.9. The boundaries of all rectangles that (after subdivision) contain
one or more singular points but do not intersect the implicit curve, are inserted as constraints in the
triangulation. This ensures that these particular rectangles remain present in the triangulation, which
prevents rearrangement of that area (analogous to the flag indicating whether a node is allowed to be
refined in the quadtree method).

b=t |

L |

Figure 5.9: An imaginary rectangular mesh is recursively split until the rectangle in which (at least)
one singular point lies, is no longer intersected by the implicit curve.

This imaginary rectangular mesh is stored in a list containing all rectangles that still need to be checked
for subdivision, because they possibly both intersect the implicit curve and contain at least one singular
point. Like in section 5.1.2, we use a binary search tree to store this list.

In the BST, every (internal or leaf) node contains the coordinates of two points, corresponding to the
north-west and south-east corner points of the rectangle. The ordering in the BST is lexicographic.
The comparison of two nodes (representing rectangles) is performed in two steps. First, the north-west
corners are compared lexicographically (these are lexicographically ‘smaller’ than the corresponding
south-east corners). If the north-west corners are equal, the south-east corners are compared, which
are different in any case.

Initially, this BST only contains the rectangle that is the bounding box. As long as there are elements
in the tree, a new rectangle is popped. This rectangle is checked for intersection with f~!(0) and
containment of one or more singular point. If both checks evaluate to true, the rectangle is split and
both new rectangles are added to the BST. If both evaluate to false, no more action has to be taken. If
the rectangle contains at least one singular point but does not intersect the implicit curve, we achieved
our goal: the singular point(s) is/are isolated from the curve in this rectangle.

The interval checking, and possible subdivision, is performed until the BST is empty. Eventually, the
boundaries of all rectangles that do contain one or more singular point but do not intersect f~1(0),
are inserted as constraints in the initial triangulation. The following algorithm is now constructed:
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generateInitialCDTMesh(fid,xmin,xmax,ymin, ymax):

INPUT - Function identifier £id, corner points of bounding box xmin, xmax, ymin and ymax

OUTPUT - Initial constrained Delaunay mesh cdt that isolates the singular points from the implicit
curve

1 - Insert boundaries of the (nine times bigger and the original) bounding box as constrained edges
of the triangulation dt to create a CDT

2 - Initialize the list L of rectangles to be subdivided with the single rectangle with coordinates
(xmin,ymax) and (xmax,ymin)

3 - while L is not empty, repeat:

4 - Pop a rectangle from L and compute bfO = boxContainsZero and bsp = boxContainsSP

5 - If bO and bsp are both true, subdivide rectangle and add two new rectangles to L. If only
bsp is true, insert its boundary segments as constrained edges in cdt.

This gives the result of figure 5.10 for the same function f of equation (5.1) as was used in the quadtree
examples.

Figure 5.10: Initial triangulation that isolates the singular points (—%\/5, 0}, (0,0) and (%\/ﬁ, 0). The
rectangles containing a singular point and the boundary of the original bounding box, are constrained
edges and are displayed with thick borders.

5.2.2 Mesh Refinement

The implementation of the refining method for the Delaunay triangulated mesh follows the outlines of
the algorithm described in chapter 3. First though, we discuss the termination of the algorithm and
the implementation of the check for encroachment when a new vertex is inserted.

Termination

A triangle is skinny if it has an angle smaller than 20.2 degrees. By refining the mesh with Ruppert’s
algorithm, the minimum angle in the triangulation increases and in the end, no skinny triangles are
left. This particular bound is necessary to ensure a circumradius-to-shortest edge ratio smaller than or
equal to /2 for all triangles, which in turn is needed for termination of Ruppert’s refinement algorithm
{19].

When a triangle’s area is very small and the angles between its edges are not too small, the gradient
will not differ very much between the three edges. This implies that if the triangle is small enough
and the angles are large enough, the gradient will not be perpendicular to two different edges. So,
if our variant of Ruppert’s refinement algorithm is performed, eventually no two adjacent edges will
be bad anymore and the list of bad triangles will be empty. This is the reason for termination of our
refinement algorithm [21].
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Encroachment

In section 3.2, the encroachment principle was explained. A vertex, which is inserted in an existing
triangulation, can encroach upon a constrained edge. Constrained edges are either boundary edges of
the original, or nine times bigger, bounding box, or boundary edges of a rectangie that isolates one or
more singular points from the implicit curve.

CGAL regrettably does not have an easy way to access all constrained edges of a triangulation. Therefore,
to check for encroachment during the refinement method, we create a BST of constrained edges. The
nodes in this BST all contain the coordinates of two points, representing the begin and end point of the
constrained edge that is stored in that node. The same lexicographical ordering as in section 5.2.1 is
used to compare nodes, although one adjustment is made. Because in this case there is no north-west
or south-east points, the two points of one node are ordered lexicographicaliy first, and then compared
with the other points in that order. The function

handleInsertion(Delaunay &dt, BinarySTree* constr, TPoint tp)

performs insertion of a point tp in triangulation dt. The BST constr is the list containing all con-
strained edges of the triangulation as described above. This method handles the insertion according
to the rules of section 3.2, dealing with encroachment. Thus, it tries to insert the point tp, but if it
encroaches upon a constrained edge in constr, it subdivides this encroached edge into two subedges
and constr is updated accordingly.

Algorithm

Because the refinement criterion consists of having no skinny as well as no bad triangles, the algorithm
keeps two sets of triangles. We create two BST's, one of skinny triangles and one of bad ones.

In these two BST's, each node contains the coordinates of three points, corresponding to the triangle
these three points form. The lexicographical ordering of section 5.2.1 can be extended and used for
ordering nodes of three points as well. The algorithm handles triangies from the skinny list first, until
that list is empty and then continues with the bad list, and updates both along the way. This update
is done by checking all triangles that are incident to the new vertex (which is either the circumcircle of
the split triangle or the midpoint of an encroached constrained edge). These incident faces are exactly
those triangles of the triangulation that have been created when the vertex was inserted [22]. If such
an incident triangle is skinny, it is inserted in the skinny-BST and if it is bad, in the bad-BST.

refineCDTMesh(fid,cdt,constr,xmin,xmax,ymin, ymax):

INPUT - Integer fid identifying the function f, the constrained Delaunay mesh cdt, a set of
constrained edges constr and the corner points of the bounding box xmin, xmax, ymin and
ymax

OUTPUT - Refined constrained Delaunay mesh cdt without bad or skinny faces

1 - Create two binary search trees, bad and skinny, containing all faces (identified by its three
vertices) that have to be refined

2 - while either skinny or bad is not empty:

3 - Get next three vertices (describing a face) from skinny, or it it is empty, from bad
4 - If these vertices still form a face in the triangulation

5 - Compute circumcenter cc of current face, do handleInsertion(cdt,bound,cc);
6 - For all incident faces of the new vertex
7 - Check if it is bad or skinny and add it to the corresponding binary search tree

In figure 5.11, an example of a result of refineCDTMesh(. . .) is shown, together with an initial mesh
generated by generateInitialCDTMesh(...).
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Figure 5.11: An example of an initial constrained Delaunay mesh (left) that has been refined (right).
The rectangles containing a singular point and the boundary of the original bounding box are constrained
edges and are displayed with thick borders.

5.2.3 Computing the Approximation

Essentially, the computation of the approximation in the Delaunay method is the same as in the
quadtree method (after the conversion step), described in section 5.1.3. The result of the refinement
step is again a triangulation in which all triangles are good. Thus, the approximation of f=1(0) is
uniquely defined on this mesh. Therefore, the same approximation method can be used, with one
tiny adjustment. In the quadtree method, a face that shares a bad (boundary) edge can be infinite.
Because of the nine times bigger bounding box surrounding the original bounding box in the Delaunay
method, this does not happen. Instead, a check is made whether the neighbouring triangle lies inside
the original bounding box. If a neighbour lies outside the bounding box, it is treated in the same way
as the infinite face is in the quadtree method. For an example result, see figure 5.12.
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Figure 5.12: Example of a refined Delaunay mesh and the computed approximation using this mesh.
The rectangles containing a singular point and the boundary of the original bounding box, are con-
strained edges and displayed with thick borders.
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Chapter 6

Results

In this chapter, we present the results of both the quadtree method and the Delaunay triangulation
method, evaluate the results and compare the two methods based on several characteristics and bench-
mark results.

6.1 Quadtree Method

Below are some results for various implicit curves from a test set. On the left is the output Mathematica
gave using the command ImplicitPlot, on the right is the output of our program. For more results
of the quadtree method, see figure A-2 in appendix A.
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Figure 6.1: The results for two example implicit curves: f(x,y) = (1 — 3:)5+a:+y2(1 —y)+0.1=0
and f(z,y) = —0.14(7+4z - 5y)(-2 -3z + y)(1 + 2+ y)(0.5 + z + 2y) =
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6.2 Delaunay Triangulation Method

Below are some examples of approximations, computed with the Delaunay method. For more results
of the Delaunay method, see figure A-3 in appendix A.
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Figure 6.2: The results for two example implicit curves: f(z,y) = (1 - z)(1 +z))* — y*(1 —y)(1 +
y) —0.0001 = 0 and f(z,y) = z*(1 —z)(1 + z) — y*(1 —y)(1 +y) — 0.01 = 0.

6.3 Evaluation and Problems

If we compare the results of some input curves with the result Mathematica gave for the same curve,
the difference that guaranteeing topological correctness makes, becomes clear. In the figure below,
for two curves from the test set, number 10 and 12, the output of both the quadtree algorithm and
Mathematica is shown (the result of the Delaunay method is topologically the same as the result of the
quadtree method). For test curve 10, a small area of the Mathematica output is enlarged (see figure
6.3). In this area, the approximation of Mathematica is not topologically correct. Our two algorithms
do not make this mistake.
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Figure 6.3: Comparison of the result of the quadtree algorithm with Mathematica.
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A more severe error in the Mathematica approximation occurs with curve 12. During its computations,
Mathematica gives the following warning:

Solve::"ifun": "Inverse functions are being used by Solve, so some solutions
may not be found."

As can be seen in figure 6.4, there is only one connected component in the output. When the same
curve is displayed using the quadtree algorithm, the implicit curve proves to be quite different, which
could be expected from the periodical nature of the equation f(z,y) = cos(z)+sin(y)+0.01. The only
connected component Mathematica's computations resulted in, is not even a connected component of
the real implicit curve.
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Figure 6.4: Comparison of the result of the quadtree algorithm with Mathematica.

So the results look rather good. Unfortunately, there are three implementation issues we would like to
address here.

The first issue concerns the update of the two BST's (for skinny and bad triangles) that are maintained
in the Delaunay refinement algorithm. When a new vertex is inserted in the (constrained Delaunay)
triangulation, a number of new faces is created. In our implementation, we assume that all of these new
faces are incident to the new vertex. But sometimes, a few skinny and bad triangles remain after the
refinement step, which is an indication that our assumption may not be valid. We consider this highly
improbable and suppose this is a yet undiscovered error in the implementation. We solved this issue for
the time being by running the refinement repeatedly, until the number of vertices in the triangulation
does not change anymore. This does not increase the execution time dramatically, because the number
of bad and skinny triangles rapidly decreases.

Secondly, a similar problem occurs in the quadtree method. In the refinement algorithm, each quadtree
node is either subdivided or remains undivided. This decision is based on whether or not one of the
triangles it would consist of if it were converted to a CDT, is bad. This conversion to triangles depends
on which of the sides of the node are split. A problem arises when a quadtree node is labelled to be
good, therefore is not subdivided, but one of it's neighbours is subdivided later on in the refinement
process. Because of the subdivision of its neighbour, the conversion to triangles changes and it could:
well be that one of the triangles the first node now will consist of is bad. This quadtree node should
be subdivided, but because it already had its turn in the refinement process, it will remain undivided.
Again, we solve this issue by running the refinement repeatedly, until the number of nodes in the
quadtree remains the same.

Finally, for some particular combinations of a curve and a bounding box, the program crashes due to a
CGAL_precondition_violation. This violation of a precondition occurs in an internal CGAL method
and a long investigation of the constrained Delaunay triangulation data structure did not yield a proper
way to solve this problem. By choosing a different bounding box, the implicit curve concerned can be
displayed without problems.
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6.4 Comparison of Methods

The results of the two methods are visually very similar. Of course, comparing the two methods on
several other key points is interesting. We choose the following properties to compare the quadtree
and Delaunay triangulation methods on:

1. Efficiency of computation (execution time)
2. Mesh size (number of mesh elements)

3. Simplicity of implementation

4. Extendability to 3D

Some benchmark results are shown first, which assist us in making the comparison on execution times
and mesh sizes.

6.4.1 Benchmark Results

In table 6.1 below, for each of the twelve test curves from our test set (see figure A-1 in appendix A),
the benchmark results are shown. For each curve, a suitable bounding box has been chosen and the
mesh size and average execution time (in seconds) of both the quadtree and the Delaunay method are
shown over ten executions of the entire algorithm. The number of singular points is computed with
Mathematica.

Function I #Singular points | Bounding Box Quadtree Delaunay

#Elements | Ex. time | #Elements | Ex. time
1 3 9 258 0.0458 109 0.0964
2 4 9 312 0.0526 161 0.2352
3 2 400 217 0.0342 94 0.0985
4 1 9 64 0.0064 44 0.0267
5 4 16 1288 2.2140 542 5.4983
6 9 16 1088 0.2518 547 0.7589
7 3 16 1199 1.231 481 0.5362
8 9 36 2706 0.4786 1261 1.7468
9 3 1 1099 0.1988 406 0.4372
10 9 16 2389 0.9575 1172 3.2996
11 9 16 1841 0.7725 765 1.8857
12 6 36 77 0.0501 125 0.3830

Table 6.1: Benchmark results for eleven test curves.

For two bounding boxes, we visualize these benchmark results in a total of four charts, see figure 6.5. In
these charts, the z-axis represents the test set of curves and the y-axis the execution time in seconds or
the number of mesh elements respectively. Data for both the quadtree and Delaunay method are shown.

6.4.2 Running Times and Mesh Size

From these charts, we make the immediate observation that averagely, the mesh size with the quadtree
mesh has a size that is three times as big as the Delaunay mesh. This was expected because of the
higher degree of freedom in vertex insertion in the Delaunay method, which results in faster termination
of the refinement algorithm. A new vertex can be inserted at the circumcenter of a triangle, as well as
at the midpoint of an encroached edge, as opposed to just at the center of a quadtree node. Further-
more, the balance restriction is maintained in the quadtree, which results in more mesh elements than
strictly necessary.
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Figure 6.5: Charts of benchmark results for the 3x3 and 8x8 bounding boxes.

However, the quadtree method is averagely two times as fast as the Delaunay method. In the first
place, this is due to the overhead in updating the constrained Delaunay triangulation when a vertex is
inserted. Edge flipping is then performed to restore the constrained Delaunay property. Of course, this
does not happen in the quadtree structure. But another implementation issue of the Delaunay method
influences the higher execution time and is not a factor in the quadtree method.

We use a binary search tree that contains all constrained edges of the triangulation, which is used
for the encroachment check. For every point that has to be inserted in the refinement process, the
function handleInsertion(..) traverses this entire tree, which of course is very inefficient. A faster
way to check for encroachment is therefore welcome. We discuss some thoughts on this.

The key to optimization is the fact that all constrained edges are axisymmetrical. A point that should
be inserted can only encroach upon an edge that is intersected by either the horizontal or vertical line
through this point. By restricting the encroachment check to be performed only on segments that
cover the = or y-coordinate of the insertion point, the number of edges for which the circumcircle
containment check is computed is significantly reduced. If this restriction is emitted from the program,
the running time of the Delaunay algorithm aggravates with an average factor of 1.3 to 1.5, so it
obviously is of reasonable influence on the execution time.
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Figure 6.6: The circumcenter of the triangle the point for which insertion is attempted. This point
can only encroach upon an edge that is intersected by either the horizontal or vertical line through this
point.

The axisymmetry of the constrained edges can be used by keeping all constrained edges in an interval
tree, described by [16], instead of in a binary search tree. This tree can retrieve all containing inter-
vals for a certain point (in our case, horizontal or vertical line segments) with O(n log n) building
time and O(log n) query time, using O(n) storage. A binary search tree also uses O(n) storage with
O(log n) query time, but finding the possibly encroached edges requires traversal of the entire tree,
thus O(n log n) time.
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Also noteworthy is the long execution time of test curve 5. While the mesh that is used for approximat-
ing this curve does not have a considerably large number of elements, the execution time is substantially
longer than with curves that produce meshes with about the same size. The equation describing this
curve is

flz,y)=zQ -z’ +z+ y*(1 - y) + 0.1 =0,

which becomes
f(z,y)=014z+z* -52°+102°5 - 102" + 52 -2 +y* —y* =0

after expansion. The long execution time can now be explained by the high powers of z in this equa-
tion. This equation is the only in the test set that has a ninth power of z or y in it and therefore the
computation of f and its derivatives (especially in the interval checks) becomes very costly.

Another property of test curve 5 that can be of influence here, is the minimum distance of any singular
point to the curve. Because the initial mesh is generated to isolate the singular points from the curve,
this minimum distance greatly influences the execution time of the initial mesh generation. Further-
more, if this distance is very small, more tiny mesh cells are created in the neighbourhood of the curve
than if the distance was bigger. The total amount of mesh elements may be equal, but the execu-
tion time can increase dramatically in the refinement step, because there are more cells intersected by
£71(0) and consequently, more mesh cells will be bad and more computation is needed. Because this
is due to the nature of the bad edge concept, there is no real solution for this.

6.4.3 Implementation

The implementation of the quadtree method is simpler to produce and understand than the Defaunay,
not in the last place because the latter uses the CGAL library extensively. In the implementation and
understanding process, the programmer has to put a lot of research into the CGAL implementation of
triangulations. However, there is no standard implementation available for the quadtree data structure.
To produce the quadtree method, extra thought goes to designing and implementing this structure.
Because of the axisymmetry of the quadtree elements, a lot of geometric operations or queries are easy
and efficient. The encroachment check and the computation of the circumcenter of a triangle in the
Delaunay method both are much more complicated geometric primitives than any of those used in the
quadtree method. The quadtree and Delaunay method have 2500 and 2100 lines of code, respectively,
with 1000 lines of shared code.

6.4.4 Extendability to 3D

Both methods use a data structure that is extendable to three dimensions; quadtrees can be extended
to octrees and a constrained Delaunay triangulation to a constrained Delaunay tetrahedrization (the
term triangulation is also used in 3D). Examples of these structures are shown in figure 6.7. Mesh
refinement is possible for both methods as well. Octree refinement inserts the midpoint of a cube, to
subdivide it into eight new child nodes. A three-dimensional Delaunay refinement algorithm, based on
Ruppert's algorithm in 2D, is proposed by Shewchuk [20] and an implementation is discussed in {23].
Like in 2D, mesh cells are split by inserting the circumcenter (the right of figure 6.7). There are some
issues regarding this refinement. For example, slivers, tetrahedra with a low circumradius-to-shortest
edge ratio, can have arbitrarily small dihedral angles. In the refinement process, they often are not split,
because their small circumradii limit the likelihood that other vértices are inside their circumspheres
{17]. However, respectable results have been achieved with 3D Delaunay refinement methods. Many
researchers are working on this at the moment and we are positive that tetrahedral mesh refinement
will be a common thing in the future.

Because the octree refinement would be based on whether the tetrahedra it consists of are bad, there
should be a decomposition of a cube into tetrahedra available. Analogous to the decomposition of a
square into triangles, this decomposition is based on whether the sides of the cube (square) are split.
In figure 6.8 a possible decomposition is shown for the cases where zero, one or two neighbours are
subdivided. For the first case, this is the Coxeter-Freudenthal decomposition {24],[25].
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Figure 6.7: Left: an octree, middle: a tetrahedral mesh, right: the circumsphere and circumcenter of
a tetrahedron.

In the other cases, one of the midpoints is connected with the four corners of the face opposite to it,
and the midpoints of the split faces are all connected with each other. The faces of the cube are all
triangulated into two triangles (if not split) or four (if split). The cases of three to six split faces are
analogous, but rather complicated to visualize clearly in 2D.
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Figure 6.8: A possible decomposition of a cube, with zero, one, or two split neighbours, into tetrahedra.
With zero or one neighbour, there is only one possible configuration. With two split neighbours, there
are two, which by rotation and mirroring cover all possible configurations.

What we have accomplished so far, is that both algorithms have a tetrahedral mesh at its disposal,
aithough in the octree case, this is an imaginary one (the tetrahedral mesh after conversion). This
tetrahedral mesh has to fulfill the following requirement for topological correctness, which is analogous
to requirement 1 of section 1.4 for the two-dimensional algorithm.

Requirement 2 For each element (cell) ¢ of the mesh, the intersection f~1(0) () c of the curve with
the cell is either empty or a topological face (note that a point and a segment are a degenerate cases
of a topological face).

If a tetrahedral mesh satisfies requirement 2, the approximation of the implicit curve on this mesh can
be defined:
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Definition 6 The approximation of f~1(0) is defined as the piecewise linear surface that connects the
points f~1(0) N 8c of each cell ¢ of the mesh.

The goal of the algorithm, for both methods, is to refine the 3D mesh until requirement 2 holds
(in the octree case, after conversion to a tetrahedrization). The refinement criterion is again that a
tetrahedron should be refined if it is skinny or bad. A cube should be subdivided if one of the tetrahedra
it consists of is bad. The decomposition is chosen in a way to ensure that no resulting tetrahedron is
skinny. When a tetrahedron is bad must still be defined, but has the same intuitive meaning as a bad
triangle. To be able to define this precisely, the basis of the algorithm - the bad edge concept - has to
be extended to 3D as well. We try to accomplish this in section 7.2.
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Chapter 7

Conclusion and Future Work

7.1 Future Work

Our implementation now consists of six programs: for both the quadtree and the Delaunay method,
there is a fully functional, interactive program, a demo program and a benchmarking program. The
fully functional program allows the user to adjust two program parameters, describing the function
f and the bounding box. Also, some visual parameters can be switched on or off; the grid, curve
and the faces isolating the singular points can all be shown or hidden. The demo program performs
the quadtree or Delaunay algorithm on a single function step by step, and the benchmarking program
performs the algorithm many times (on different bounding boxes and for all test set curves) to compute
average execution times.

Although these programs already give the user a lot of flexibility and the execution time is near optimal,
it would be nice to add the following functionality to the program in the future.

1. Use of red-black trees or splay trees instead of binary search trees for optimal refinement running
times;

2. Symbolic evaluation of the function f and its derivatives instead of hard coding them in the
implementation, which does not allow for an easy way to add new test functions;

3. Extension of the combination of triangles along bad edges, which forms polygons (instead of just
quadrangies), which have only good edges on the outside and do not contain any singular points
(see figure 7.1).

Because the symbolic evaluation of f and its derivatives (and thus parsing of text input) is too elaborate
for this thesis, but the current way of adding a curve is very unfriendly, we included a Mathematica
notebook to orderly determine the code that should be added to the implementation for a new implicit
curve.

Of course, the main extension we are interested in, is the approximation of implicit surfaces. We
kept this extension to 3D in mind throughout this thesis. In the next section, we will investigate the
possibilities to extend both algorithms to 3D, as announced in section 6.4.4.

g
)
e

Figure 7.1: Combining more triangles around a bad triangle reduces the number of mesh elements
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7.2 Extension to 3D

In section 6.4.4, we compared the quadtree and Delaunay methods on their extendability to 3D.
The data structures and refinement algorithms for both methods proved to be extendable to 3D. We
formulated requirement 2 in section 1.4, that has to be fulfilled by the mesh after refinement.

To be able to extend this approximation algorithm to 3D, we need to discuss the following issues:

e The bad edge concept: definitions of bad triangles, tetrahedra, and cubes
¢ Definition of the mesh refinement preconditions and criteria
e Definition of the curve's approximation after refinement

7.2.1 Bad Edge Concept

We start our extension attempt by defining bad edges and faces in the same way as in 2D. We are now
using a C? function f(z,y, z) with gradient Vf = (gﬁ, %5, %E).
Definition 7 An edge e of the mesh is called bad if there is a point p in relint{e) such that ¥V f(p)Le.

The definition of a good face in 3D is exactly the same as in 2D: definition 4. Now we extend this
definition to the third dimension:

Definition 8 A volume v is said to be good if one of the following conditions hold:
1. v does not intersect f~1(0)

2. v intersects f~1(0), contains no singular point, and does not have two adjacent bad faces.

7.2.2 Preconditions and Refinement Criteria

The definitions from the previous section guide the preconditions and refinement criteria for the mesh
refinement of both Delaunay tetrahedrizations and octrees. First, the Delaunay method is considered.

Precondition 3 The initial Delaunay tetrahedral mesh does not have any tetrahedron that contains a
singular point and intersects f~1(0) as well.

The refinement criterion for the Delaunay tetrahedral mesh method now can be stated:

Criterion 3 The Delaunay tetrahedral mesh must be refined until every tetrahedron intersecting f~*(0)
has at most one bad face and no angles smaller than 20.2°.

The precondition and criterion for the octree can be adapted in the same way.

Precondition 4 The initial octree mesh does not have any cube that contains a singular point and
intersects f~1(0) as well.

We define the converted tetrahedral mesh as the result of conversion of the octree to a Delaunay
tetrahedral mesh after refinement. The refinement method for the octree mesh has to ensure that this
converted tetrahedral mesh does not contain any skinny and bad tetrahedra.

Criterion 4 The octree mesh must be refined until every tetrahedron (of the converted tetrahedral
mesh) intersecting f~1(0) has at most one bad face and no angles below 20.2°.
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7.2.3 Approximation of the Implicit Surface

With the preconditions and criteria for the mesh refinement available, we can construct a tetrahedral
mesh in which all tetrahedra are good; they do not intersect the surface, or if they do, no singular point
lies inside and they do not have two bad faces. On such a mesh, how can we define the approximation
of f~1(0)? This depends on its faces and edges being good or bad.

If the tetrahedron t has no bad faces or edges, this approximation is straightforward. Because of
requirement 2 of section 1.4, the intersection of f~1(0) with ¢t is either empty or a topological face.
The approximation of the intersection of the implicit curve with t is then defined as the face with
vertices f~1(0) [N Ot (see figure 7.2).

Figure 7.2: The approximation of an implicit surface within a tetrahedron in which all faces are good.

If t has a bad face (figure 7.3), it can be connected with its neighbour along that face (s) to form a larger
volume with only good faces on the outside. The combined volume may be concave. The intersection
of £~1(0) with this larger volume is then normally defined as the face with vertices f~1(0)(d(t(s)-
Note though, that not necessarily all edges on the outside of this volume are good and we do not
compute the intersections with bad edges. Therefore, the approximation of the intersection of this
tetrahedron with the implicit surface will not necessarily be a face that splits the tetrahedron in two,
see the cross-section in figure 7.3. If several tetrahedra with this problem are adjacent and their
approximations are joined, holes will appear in the surface.
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Figure 7.3: The approximation of an implicit surface within the union of two tetrahedra sharing a bad
face (a cross-section of this face is shown as well).

If t has one or more bad edges, this face has to be connected with all the other tetrahedra sharing
that bad edge, forming a larger volume with only good edges on the outside. In figure 7.4, this is
illustrated by the union of three tetrahedra sharing an edge. Unfortunately, there can be arbitrarily
many tetrahedra sharing the bad edge and the combination of these tetrahedra may become extremely
complicated. Because we do not want to use interval Newton's method to compute the intersections
of a bad edge with f~!(0), the combination of tetrahedra along bad edges is necessary. On the other
hand, we want to keep this approximation algorithm as simple as possible. Therefore, we have to
conclude that this leads to difficulties, and thus the bad edge concept, as proposed in this thesis, is
not suitable for extension to 3D.

Figure 7.4: The approximation of an implicit surface within the union of three tetrahedra sharing a
bad edge.

Of course, other criteria for mesh refinement, which are applicable in 3D, are conceivable. These could
(and should) be the subject of future research.
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Appendix A

Result Figures

1 | f(z,y)=2z*(1 —z)(1+z) —y° +0.01

2 | flz,y=z(1—-z)(1+z)+y(1-y)(1+y)+0.1

3 [ flz,y)=2>+3zy+y°—25

4 | flz,y)=z"+y° -1

5 | flz,y)=2* A -z’ +z+y°(1-y)+0.1

6 | flz,y)=2'(1-2)(1+z)—y>(1-y)(1+y)—001

7 | flz,y) ==%(1 — z)(1 + z) — y? — 0.0001

8 | f(z,y) = (1 —2)(1 +2))* — y*(1 — y)(1+y) — 0.0001

9 | f(z,y) =z% — zy+ v* + 0.0001

10 | f(z,y)=—-01+4+(-2-3z+y)(1+z+y)(2z+y)(0.5+z + 2y)
11 | f(z,y)=—-01+(7T+4x-5y)(-2 -3z + y)(1+z + y)(0.5+ z + 2y)
12 | f(z,y) = cos(z) + sin(y) + 0.01

~Y |
RS

Figure A-1: The test set of functions of which the implicit curve, corresponding with f(z,y) = 0, will
be approximated.
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A Resuh Fogures

Figure A-2: Results of the quadtree method
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Figure A-3: Resuits of the Delaunay method
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