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Abstract

Hardware development is an interesting research area. At first only ASICs (application-specific
integrated circuits), ready-made circuits, were used. As technology advanced, FPGAs (Field
Programmable Gate Arrays) were developed. FPGAs allow to be reconfigured on the fly. This
thesis covers the development of a Runtime Reconfigurable Application. It discusses a global
model of an RTR-application along with its associated problems. As part of the thesis an RTR-
application doing CRC-checks is developed.
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Chapter 1

Introduction

1.1 Introduction

In todays society a lot of hardware is used: in computers, television, cars and microwaves. This
hardware consists mostly of ASICs (application-specific integrated circuits). In, for example, a
computer the processor (CPU) inside is an ASIC. It is a static circuit, it has been produced in
a factory and it will not change functionality; it will not become more or less than it is. In a
microwave the ASIC might be a simple circuit that counts down the time of the timer that sets
how long the food has yet to be prepared. All these circuits will not change functionality.

An FPGA on the other hand is a different kind of circuit. FPGA is the abbreviation for Field
Programmable Gate Array. An FPGA consists of an array of logic cells. Each of these logic cells
can independently take a certain function, for example an OR or AND port. The array is logic
cells is interconnected by a matrix of wires and switches (which control which wires are connected)
to allow for communication or data transfer between the logic cells. In contrast to an ASIC, the
FPGA can change functionality. Depending on the type of FPGA, most or all logic cells can be
(re)configured to change from one function to another. This is what the “Field Programmable”
implies in FPGA: the functionality can be configured by the end user (in the field) and not in the
factory.

The FPGAs available today can roughly be divided into two groups: FPGAs with coarse
grained logic cells and FPGAs with fine grained logic cells. Fine grained FPGAs are made up
mainly of gates or transistors or small macro cells. Coarse grained FPGAs however are made up
of larger macro cells. These large macro cells can be made up of, for example, flip flops and look
up tables (LUTs) which make up for combinatorial logic functions. Macro cells themselves often
also contain switches (also known as multiplezers (MUXs)) which allow for different uses of the
macro cell. The most renown manufacturers of FPGAs are Xilinx (produces mainly coarse grained
FPGAs) and Altera (mainly fine grained FPGAs).

After having explained the basic architecture/functionality of an FPGA, one would wonder
what their main advantages are over ASICs. Why would one want to use an FPGA over an ASIC?
The most common use of FPGAs today is to serve for prototyping of ASICs. First a prototype
of a circuit is produced on an FPGA, should it happen that the current prototype still contains
errors, then the prototype can be debugged and the FPGA be reprogrammed within seconds to
continue testing.

Another advantage is that if an FPGA product is on the market and after a while it appears that
it still contains a bug, then the FPGA product is easily reconfigured to correct the bug, whereas
a product with an ASIC would need its entire ASIC replaced. A third advantage is that FPGAs
have a shorter time-to-market; while a product is still under development, the FPGA itself can
already be produced in a factory and quickly be programmed when the product is ready. With an
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8 CHAPTER 1. INTRODUCTION

ASIC, the entire product needs to be completely developed before it can be produced in a factory,
thus it takes longer to produce. Another advantage of an FPGA is that it can be used to maintain
superiority over competitors. Should a competitor release a superior product, then it is possible to
maintain working on ones own product and release a superior FPGA program in a few days time.
The last advantage will be that with FPGAs it is also possible to radically change a product. For
example it is possible to add a mp3 player to a cell phone.

Having covered what an FPGA is and what its advantages are, it is time to return to the topic
of the thesis. The thesis is about developing a program that makes use of the reconfiguring ability
of the FPGA. But not just that, it is also about the cohesion between software and hardware. The
program should be able to write functions to the FPGA and then run these functions in hardware
on the FPGA. A function that is running in the FPGA can either be removed from the FPGA
while it is running or when it is done executing. If the function is removed from the hardware
while it was executing, then it should be possible to continue executing this function in software.
If the function is removed when it is done éxecuting, its calculation results are returned to the
program and another function will be able to take its place inside the FPGA.

The requirements just mentioned may sound interesting, but what is its purpose? Why or for
what purpose would one need such functionality? An example can be a future cell phone with
MP?3 playing capability. Say you’re listening to an mp3 on your cell phone. To play the mp3, the
cell phone needs to be executing a specific function (also known as codec from now on) to play
the mp3. The cell phone was a cheap one, so it only has very small fast work-memory and a large
slow-memory chip. Say someone decided to call you, when that happens you want your cell to
ring your favorite ringtone. Since the ringtone is not stored in an mp3 format, several things will
happen. First the mp3 stops playing. The cell phone keeps track where the mp3 stopped playing
and writes this data to the slow memory module inside the cell phone. Then it retrieves the codec
that is needed to play your ringtone and put this codec in the fast work-memory where once the
mp3 codec was located. Now the cell phone is able to ring your ringtone. When you answer the
phone, the ringtone stops playing and another, yet again different codec, is loaded to play the
sounds the person is making on the other side of the phone(wireless)line. When the conversation
is finished, the mp3 codec is put back into its place, it retrieves the data it stored where it kept
track of how far it was playing the mp3, and it continues playing the mp3 at the place where it
broke off at the beginning of the phone call.

The above is deals with a theoretical cell phone, but it does show the power of the FPGA. An-
other, more theoretical, application of this system is a computer with an FPGA device attached.
The computer needs to execute three very processor-intensive functions. The FPGA can execute
these functions as well and moreover, it can execute these functions faster since it is using dedicated
hardware (the FPGA). The only problem is that only two functions fit on the FPGA. To handle
this problem, it places the first two functions on the FPGA and runs the third function in software.
At a certain point in.time, the first function, which is running on the FPGA, needs the results of
the third function. A possibility now is to remove the first function from the FPGA (and record
its current status), then replace the first function inside the FPGA by function three. Of course
function three had already done some calculation in software, so these results are also send to the
function three inside the FPGA. Function three continues running in hardware until it is done.
When it is done function three is removed from the FPGA, along with the final result it calculated
and function one is put back into its place which receives its previous status along with the results
of function three. Function one and function two calculate until they’re done calculating and pass
the result back to the main program which decides what to do with it. In this example, the main
advantage of using the FPGA is the extra speed it gives. The FPGA is able to do this because
unlike the host processor in the computer (which is running an OS), it does not have to deal with
cache misses, difficult addressing calculations 6r Operating System overhead. In practise it has
been proven that a low clock-speed FPGA can beat a fast workstation because of these advantages.
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1.2 FPGAs explained

Before diving too deep into the subject of this thesis, it is good to have an understanding of the
way an FPGA works. In this section the FPGA will be examined in greater detail. The FPGA
used for this thesis is a coarse grained FPGA: the Xilinx Virtex. To start it should be said that
there are many different Virtex FPGAs, usually the only main difference is the size in how many
CLBs/IOBs or RAM is added to the FPGA. The following description of the CLBs/IOBs/RAM
however is the same for every Virtex device.

The general layout of the Virtex is as follows:
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Figure 1.1: Overview Virtex FPGA

An array of logic cells (called CLBs or Configurable Logic Block) is surrounded by IOBs
(Input Output Block) and BRAM (Block RAM). In the following subsections these elements will
be explained.

Configurable Logic Block

The array-elements in figure 1.1 are CLBs. The CLBs define the functionality of a design, figure
1.2 contains a schematic of a Virtex CLB.

Figure 1.2: Virtex CLB
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The CLB can be split into two parts (also called slices) by splitting it in the middle. Figure 1.3
shows a single slice.
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Figure 1.3: Detailed overview of a Virtex CLB slice

Figure 1.3 shows two LUTs (Look Up Table or Logic Function) inside a slice. In the figure
each LUT has four input pins. For the G LUT this will be input pins G1 till G4 and for the F
LUT this will be F1 till F4. The LUT is a 16-bit look up table in which one can define a function.
For example, if one wanted to make the following function (F1 and F2 and F3) or F4 one would
have the following functionality table:

F1 | F2 | F3 | F4 | output
0 [0 |0 [0 o
o heo o i1kl
o o J1 o Jo
o jo 1 41 g1
o |1 o jo Ho
o f1 fo f¥ 11
o f1" 11 Joje
o [1 |1 |1 |1
1 fo jo fo jo
1 o o |1 |1
1 {0 |1 ]o |oO
1 {0 |1 {1 |1
1 |1 Jo |o Jo
1 1 fo 41 f1
1 |1 {1 |o |1
1 f1 12 §J1 Ia

Table 1.1: Logic table for the function (F1 and F2 and F3) or F4




1.2. FPGAS EXPLAINED 11

In this instance the LUT would have the following configuration:

The outputs of these LUTs can be used as input for the H LUT.

Each LUT in figure 1.3 is connected to a D-type flipflop (1-bit memory cell). This flipflop can be
set up as a latch (which means it puts through the input value directly) or as a flipflop (means it
will put the value through at the end of each clockcycle). The flipflop uses the SR input wire to
set the flipflop and the BX/BY wire for reset.

Multiplexers

As can be seen in figure 1.3, several multiplexers appear in the figure, indicated by the letters A
till Z. These MUXs configure the CLB. To give an idea what different MUXs do, consider this
one:

e A S0Control.YCarrySelect.Y CarrySelect

— S0Control.YCarrySelect. CARRY
— 80Control.YCarrySelect. LUT_CONTROL

The A MUX, called S0Control. YCarrySelect. Y CarrySelect in the JBits SDK has two different set-
tings, these are SO0Control. YCarrySelect. CARRY and S0Control. YCarrySelect. LUT-CONTROL.
If the MUX is set to the former setting, then it will output the value of the Carry chain. If it’s
set to the latter setting, the MUX will output the value of the LUT output. A complete list of all
possible configurations can be found in the JBits v2.8 documentation.

Input Output Block

The IOB serves as a connection between the FPGA and the board it is plugged into. The IOB
has the following schematic:

Figure 1.4: Schematic of a Virtex IOB

Each IOB has three pins: one input pin from board to FPGA, one output pin from FPGA to
board and a tristate pin. Again there are several MUXs to control the behavior of the IOB.




12 CHAPTER 1. INTRODUCTION

Sample program: 2-bits counter

This section will discuss a small example of a 2-bits counter program using the FPGA hardware.
The counter will have the size of one CLB slice. The YQ and YB wire of a slice of a CLB are used
as output wires. The output should be as follows:

Clockcyele | Y | YQ
0 o o
1 0| 1
2 1] 0
3 1 1

Table 1.2: Value of outputwires for the counter program

Figure 1.5 shows a slice of a Virtex CLB with all the connections drawn between the pins to
construct a 2 bit counter.
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Figure 1.5: Schematic Virtex two-bit counter

The blue lines are connecting pins with each other. How to connect these pins will be covered
later, but for now assume they can be connected. The red lines show which internal lines of the
slice are important; the thin black lines are not used right now. As one can see the red lines come
across a few MUXs. These MUXs must be set to the appropriate value. Following the line coming
from the G LUT, it first runs into the C MUX. The C MUX selects which of the three input lines
it should give as output. For this counter it should be set the output the red line. After the C
MUX the red line also comes across the H MUX. This MUX should also give the value of the
incoming red line as output.As one can see the G LUT is configured with the function: not G1
and the F LUT is the function: not F1 zor F2.
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The graph in figure 1.6 shows what the values the internal pins will have as clockcycles pass by.

Cleck
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Figure 1.6: Behavior of internal pins for a two-bit counter

As can be seen in figure 1.6, the output given by {YQ,XQ} behaves like a counter.
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Chapter 2

Related work

2.1 Introduction

The following sections will discuss relevant papers to this thesis. The first paper: A hardware
genetic algorithm for the Travelling Salesman Problem on Splash 2 shows how an FPGA is used
for executing genetic algorithms. While it only concentrates on compile-time reconfiguration, it
does give a good example of a problem that can also be solved using a Runtime Reconfigurable
Application.

The second paper: Multitasking in hardware-software co-design for reconfigurable computer con-
centrates on developing a model for an RTR-application, though it only remains very abstract
and depends on a High-level Language to generate a hardware and a software version for a certain
task.

The third paper: Dynamic hardware plug-in with Partial Run-Time Reconfiguration shows an
interface in which plugins can be inserted. This paper concentrates purely on the hardware side.
The fourth and last paper: A Java virtual machine for Runtime reconfigurable computing con-
centrates on executing a java program as fast as possible by executing some features of the java
program in software and other features in hardware.

2.2 A hardware genetic algorithm for the Travelling Sales-
man

http://splish.ee.byu.edu/docs/spga.ps

In this article, the authors, Paul Graham and Brent Nelson describe how to implement a
genetic algorithm to solve the travelling salesman problem on a Splash 2 board which contains 30
Xilinx 4010 FPGAs.

Genetic Algorithms

During its operation, the GA algorithm maintains a collection of candidate solutions (also called
population). Each candidate has a fitness associated with it which indicates its measure of quality.
The algorithm selects candidates from the current generation to propagate into the next generation.
This propagation may be to simply copy candidates from the current generation to the next or
to combine pairs of candidates (called crossover). This is comparable to natural mating systems:
characteristics from both parents are used to form a new candidate. The selection for candidates
to copy or crossover is randomized, but biased towards candidates with higher fitnesses so each
new generation is likely to have candidates with higher fitnesses. To prevent converging to local
minima, an operation called mutation randomly perturbs solutions to yield new ones not otherwise
related to existing solutions.

15



16 CHAPTER 2. RELATED WORK

A Genetic Algorithm for the Travelling Salesman Problem

The travelling salesman problem involves finding the shortest path for a salesman through a col-
lection of n cities, visiting each city exactly once and returning to the starting city. Each candidate
solution to this problem consists of an ordered list describing the sequence of the cities visited.
This list is called a tour. To solve a TSP, the object is to find the shortest tour, so the fitness can
be defined as the length of the tour. Crossover is performed by taking 2 tours (tour A and tour
B), cut both tours in two at a random cutpoint. Offspring child number 1 will consist of the head
of tour A with the tail of tour B with cities not contained in the head of tour A. Offspring child
number 2 will consist of the head of tour B with the tail of tour A with cities not contained in
the head of tour B. Mutation is performed by reversing the list of cities visited of a subtour of a
candidate solution. The endpoints of this subtour are chosen randomly.

The above algorithm lends itself to parallelization in at least two ways. Several copies of this
algorithm could be run in parallel and take the best result of these runs. Another cooperate model
could be applied where islands of computation are executed in parallel but periodically exchange
solutions with one another through migration. This way local minima are avoided:

Splash 2

The Splash 2 is a reconfigurable computer hosted on a Sun Sparc and consists of an interface board
and a collection of processor arrays, each processor consists of 4 Xilinx 4010s FPGAs. Spash 2 is
programmed using VHDL.

Basic Algorithm Implementation

Each processor consists of 4 FPGAs and their memories and are arranged in a bidirectional pipeline
as indicated in figure 2.1.

Memory | Memory 2 Memory 3 Memory 4
B I I
T Lcw cw [ Fitness |, o
Back Back Back
Selection Crossover and. Statistics
Tour TDs New Mutation New
FPGA | FPGA 2 ifours FPGA 3 LT FPGA 4

Figure 2.1: A single genetic algorithm processor

The functions of the FPGA are as follows:
e FPGA 1 chooses tour pairs randomly from memory and passes these to FPGA 2

e FPGA 2 has two choices when given a tour pair. It can either copy the tour pair unchanged
to FPGA 3 or perform a crossover and then pass them om. Good results prove to occuf at
crossover chances between 10% and 60%.

e FPGA 3 calculates the new fitness values for tours formed by crossover. It also randomly
selects tours for mutation, mutates them and sends them to FPGA 4.

e FPGA 4 writes the new population to memory and records the best and worst tours for this
generation and the best tour to date.

All candidate tours are processed by this algorithm to form a new generation. This process is
repeated until it has finished a number of generations determined by the user.
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Num of | Pop. Crossover Mutation Ave. Exec. Time | Ave. Exec. Time | Soft /
cities | size | Probability (%) | Probability (%) Hardware Software hard
24 128 10 10 4.38 43.7 9.97
24 256 10 10 11.23 118.7 10.57
120 256 60 10 295 1999.9 6.78

Table 2.1: Comparison of hardware and software Execution times

The above algorithm was run in hardware at a frequency of 11 Mhz. It was also run in software
on a 125 Mhz HP PA-RISC workstation. The results can be seen in the table 2.1.

The hardware and software implementation both earned solutions of equal quality. From the
table can be seen that the hardware implementation is significantly faster. The modest soft-
ware performance is attributed to operating system overhead, TLB and cache misses, complex
addressing calculations and strict sequential thread of control. On the other hand the hardware
implementation uses a custom 4-stage pipeline, archives nearly 100% memory bandwidth utiliza-
tion and incurs no overheard for the operating system, address calculations or cache misses.

Two parallel implementations

In the implementation described only 4 FPGAs were used. Whereas the author of the article has
access to a Splash 2 board with 30 FPGAs. Because of this it is possible to run 7 additional copies
of the program which results in an eight-fold increase in search rate. This model is called the
trivially parallel model.

A more interesting approach is the island model. In this model several searches are conducted
simultaneously with periodic migration of solutions between search islands. Figure 2.2 gives a
diagram of this model.

Hundshahe and Control
f Handshake and Control 1
| Genetic - Genetic
Processor Processor
| 1 2
Dats
} Tra
Croehar Config
X0 Crossbar
1ata
Dals
Genetic Genetic
Processor Processor
3 4
Handshake and Contral 1
1landshake and Control

Figure 2.2: The island parallel model

During the migration, each island broadcasts a subset of its tours to the other islands via the
crossbar. The receiving islands replace random solutions in their own population with the received
migrated tours.
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Performance results

Three computation models were compared, these were the 1-processor design, the 4 and 8-processor
trivially parallel designs and a 4-processor island model. It was shown that more processors is
always better, but marginally so. For long runs (3.5 billion cycles) the 8-processor parallel design
gives an answer about 4% better than answer than the single processor design. The 4-processor
island model performs best and is about 6% better than the single processor design. This model
also finds solutions the fastest. At 400 cycles the 4-processor island has found a solution which
requires 990 million cycles for the 8-processor model and 1.7 billion cycles for the single processor
model.

Conclusions

o Modest hardware resources outperformed a state-of-the-art workstation. The SPGA with its
custom design avoids operating overhead, TLB and cache misses, and complex addressing
calculations. In addition, it makes use of pipelining to achieve parallel execution.

e The individual data objects manipulated by the algorithm are small, mostly 8- or 16-bits
with a few 24-bits values. This is a good match for the computation and storage capabilities
of today’s FPGAs.

e The arithmetic requirements of Splash 2 are modest, consisting of small word additions,
subtractions and comparisons. This is a good match for an FPGA.

e The additional work requires to create parallel implementations of the algorithm is mini-
mal. The parallel versions managed to find 'good’ solutions in far less time then the single
processor version.

e The genetic algorithm keeps searching for better solutions, whereas other search algorithms
usually stop at a specific solution. Hardware describes as herein may be required to take
advantage of this for long execution cycles.
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2.3 Multitasking in hardware-software codesign

In this paper the authors, T. Wiangtong, P.Y.K. Cheung and W. Luk describe a System model
for executing tasks in hardware and software. In this section I present a subtraction of this paper.

http://www.ee.mut.ac.th/research/2003/PS_PPfinal.pdf

Introduction

Most reconfigurable systems contain both hardware and software tasks which must work coopera-
tively with each other. In most previous research work done in hardware-sofware codesigning, a lot
of realistic issues as bus and memory contentions are ignored. Moreover, traditional formulation
of the partitioning and scheduling problem employs a hardware model that is completely different
from that used in software. This is understandable because the hardware tasks are implemented
separately from the software, with different optimalization constraints.

This paper reports a new method of constructing hardware tasks in a codesign system that
makes them more compatible with software tasks while retaining the benefit of concurrence as
found in hardware implementations. At the same time, it exploits the benefits of software: mod-
ularity, cohesion and structured approach. In this paper a previously presented partitioning and
scheduling algorithm is applied to the reconfigurable computer system known as UltraSONIC.

The novel contributions of this paper are: 1) a new way of structuring and modelling hardware
tasks in a codesign system; 2) a partitioning and scheduling algorithm that employs this method; 3)
applying the algorithm to a realistic reconfigurable computer system; 4) evaluation and verification
of the model using the reconfigurable computer.

System model

Figure 2.3 shows the systemn model used in this paper. In this model, a single processor (software)
resource SW capable of multitasking, and a number of concurrent hardware processing elements
(PEO to PEn) which are implemented on FPG As, are used. System constraints as shared resource
conflicts, reconfiguration time of the FPGAs and communication time are taken into account.

Giobsl Communication Channel

Jode
i @E L

SW. ‘PEO PE1

Figure 2.3: Codesign System Modelling

The assumptions in this model are:

e tasks implemented in each hardware PE are coarse grain tasks representing blocks, loops or
functions.
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e local memory is a single port, and only one task can access the local memory at any given
time.

e tasks for a PE can be dynamically swapped in through dynamic reconfiguration.
e each task can fit into a single PE.

e multiple tasks residing in a PE execute sequentially.

e tasks residing across different PEs can execute concurrently.

e a global communication channel is available for the processor and the PE to communicate
with each other.

e local communication channels are available for neighboring PEs to communicate with each
other in a pipeline ring.

e a task manager program in the software processor is used to manage all tasks, software and
hardware.

This system model makes the hardware tasks look very much like software tasks. In this way,
management of task scheduling, task swapping and task allocation can be done in a uniform man-
ner regardless whether it is a software or hardware task. Concurrency is not affected as long as
concurrent tasks are mapped onto separate PEs.

Codedesign environment

Figure 2.4 represents the codesign of the environment of our system. The system to be implemented
is assumed to be described in s suitable high level language which is then mapped to a directed
acyclic graph (DAG). In the DAG, tasks are represented by nodes and communications by edges.
The nodes are then divided into hardware or software tasks by the algorithm described in a
previous paper [4]. After having obtaining this partitioning information, a task manager (TM)
program can be produced (figure 2.5).

High level
language Task |ag— SWiask
manager
program —
Config files

=)

PE

=l Poien
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Figure 2.4: The codesign environment

The Task Manager program is responsible for managing both software and hardware tasks. It
controls the sequencing of all the tasks, transfer of data and the synchronization between them,
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Figure 2.5: The task manager

and the dynamic reconfiguration of the FPGA. As can be seen in figure 2.5, the TM communicates
with a Local Task Controller on each PE to assert control. Each PE has access to a message board
to retrieve/write commands/status from the TM.

The system uses a message-based protocol when running a process. Using this method, the
tasks on each PE are run independently by the TM. Hence the system runs asynchronously at
system level. In task-level however, functions are executed synchronously, thus making execution
time predictable.

Verification in reconfigurable computer

In order to verify the practicality of our model and the effectiveness of the partitioning/scheduling
algorithm, the system described was implemented on the UltraSONIC. UltraSONIC employs PIPE
busses (PIPEO to PIPE15) for global communication between software and hardware.

Results

In order to verify that the implemented system works, the partitioning and scheduling program
was applied to a randomly generated DAG which contained 15 tasks. This is shown in figure 2.6
alongside with the execution time of each task in software and hardware respectively. Numbers
on the edges is the amount of data (KB) transferred between tasks.

As can be seen in figure 2.6, tasks 0,1,3,6,8,9,12 are implemented in PIPE1 and tasks
2,4,7,10,11,14 in PIPEQ. Tasks 5 and 13 are implemented in the host processor.

The DAG is artificially generated and is used to verify the operation of the entire system by
emulating each task with a dummy hardware or software module. Each dummy task module
mimics the exact input and output data transfer and takes the same amount of time to execute
as the actual system.
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Figure 2.6: Implemented DAG after partitioning

2.4 Dynamic hardware plug-in with Partial RTR

In this paper the authors Edson L. Harta, John W. Lockwood, David E. Taylor and David Parlour
describe how to make use of runtime reconfigurability using Dynamic Hardware Plug-in (DHP)
modules to implement this on their Field Programmable Port Extender (FXP) which can be used
in hardware packet processing applications.

http://www.arl.wustl.edu/arl/projects/fpx/references/DAC2002_DHP_24_2.pdf

Introduction

FPGAs can make use of their reconfigurability in two ways: Compile-Time Reconfiguration (CTR)
or Run-Time Reconfiguration (RTR). CTR systems do not change their FPGA-configuration dur-
ing their lifetime. RTR systems can change their configuration using either full reconfiguration or
partial reconfiguration.

The research in this paper focuses on partial RTR in an FPGA for use with hardware packet
processing applications using Dynamic Hardware Plug-in (DHP) modules. A DHP is defined as
a module which can be loaded into or removed from a running FPGA without disturbing other
circuits operating in it. This is particulary useful in packet processing applications where it is not
desirable to suspend operation of a network during reprogramming.

The Field Programmable Port Extender (FPX) is the FPGA-based prototyping platform used in
the Washington University Gigabit Switch.

Partial reconfiguration

Partial reconfiguration allows an FPGA to implement multiple functions and to change those
functions while the system is running. The FPGA is partitioned into a static infrastructure region
and a number of DHP sites. The infrastructure connects each DHP site to shared resources and/or
other DHP sites.

The layout and interface specification for the DHPs depends on the architecture and behavior
of the FPGA. The characteristics of the Xilinx VIRTEX-E family are described below. Following
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this description, the tool used to generate the partial configuration bitfile is presented, along with
the requirements for the interface between the static infrastructure and the DHP sites, and the
methodology to generate the configuration bitfiles used by PARBIT.

Virtex-E architecture

The application presented in this paper targets a device from the Xilinx Virtex-E family. Pro-
grammable Input/Output Blocks (IOBs) around the edge of the array are used to communicate
with off-chip resources. The interior consists of a matrix of Configurable Logic Blocks (CLBs)
containing: lookup tables, flip-flops and programmable interconnect. A number of columns in the
CLB matrix are replaced with Block SelectRAMs.

Virtex-E configuration bits are organized in columns corresponding to a column of the FPGA’s
logic resources.

To configure the VIRTEX-E FPGA, a series of bits, divided into fields of commands and data,
are loaded into the device. Each one of the configuration columns are divided in smaller slices,
called frames. A frame is the smallest part of the configuration memory that can be written or read.

PARBIT

In order to handle the partially reconfiguring a tool called PARBIT has been developed. To execute
a reconfigure command, the tool utilizes the original bitfile and the target bitfile and parameters
given by the user. These parameters include the block coordinates of the logic implemented on
a source FPGA, the coordinates of the area for a partially programmed target FPGA, and the
programming options. The tool reads the original configuration bitfile and copies to the partial
bitfile only the configuration bits related to the area defined by the user. The target bitfile is used
by PARBIT to copy the configuration bits that are inside a column specified by the user, but
outside the partial reconfigurable area. This happens due to the fact that one frame takes all the
rows of a column and the partial reconfigurable area is smaller than a whole column.

PARBIT allows arbitrary block regions of a compiled design to be re-targeted into any similar size
region of an FPGA.

Gasket Interface

DHP modules which are downloaded into the FPX need communication with the infrastructure
logic on the FPGA. This communication is done using interconnection points. These points are
connected by special wires called antennas. Gaskets allow DHP modules to be implemented with
only minor modification to the standard FPGA design flow. When building a DHP, PAR (Place
and Route) is made to only make use of included routes. It may not use excluded routes. Figure
2.7 shows how antennas cross out of the DHP free routing zone.

Generation of bitfiles

In order to generate bitfiles which can be used by PARBIT to create the partial bitfile, it is
necessary to follow a few rules regarding the logical names of the entities that make up the logic
within the FPGA. These rules are applied during the synthesis, routing, and placement of the
FPGAs that hold the infrastructure circuit and the DHP modules.

Synthesis

The infrastructure bitfile contains the fixed logic area in the FPGA, encompassing all of the I/O
pads, signals and flops that interface to the module, and logic that make up the on-chip system.
In the VHDL file, there is one entity, called "INFRA”, that contains the infrastructure, and one or
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Figure 2.7: Gasket antennas

more entities, called ”GASKET”, which contain the flops used to interface with each user module.
Additional VHDL files can be used for generating additional constraints for locking the gasket flops
in fixed: positions inside the FPGA and to reserve space for the DHP modules into the infrastruc-
ture. The bitfile for the DHP contains the description of a module and is generated in a similar way.
The difference is that there is one user module entity, called "DHP”, connected to one GASKET
entity, as shown in Figure 2.8. For the GASKET entity in the design, the constraints are set so
that this GASKET is placed in the same position as the first GASKET of the infrastructure design.

GASK_DHP

™ 5 b s e e e = o [FLTE

Figure 2.8: Logical Design Entities
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DHP implementation on the FPX

Placement

The placement of infrastructure and DHP can be accomplished with conventional FPGA placer
tools, that have the ability to constrain logic to specific regions of the array. It should keep infras-
tructure logic out of the DHP sites, and DHP logic is confined to use the appfropriate rectangular
area.

Routing

To make sure there is no interference between DHPs and infrastructure as new DHPs are being
configured, the nets in a design are sorted into one of three categories and then routed with special
constraints as follows:

e All nets which are internal to the DHPs do not cross the boundary of the DHP site.

e All nets which are completely contained in the infrastructure are routed using any wiring
resource that is not used for use in routing DHPs.

e Nets which cross the the boundaries between the infrastructure and the DHP site are forced
to follow the same path for each DHP. These are the gasket antennas which are identical for
every DHP

The FPX platform

The Field-programmable Port Extender enables the rapid prototype and deployment of hardware
components for modern routers and firewalls. The system allows new packet processing functions
to be quickly prototyped as DHP modules in hardware, then downloaded into reconfigurable
logic over the network. All functions on the FPX are implemented with FPGAs. The core
functionality of the FPX is implemented on the Networking Interface Device (NID) and on part
of the Reprogrammable Application Device (RAD). The NID is a Xilinx XCV600E FPGA that
contains the control logic to reconfigure regions of the RAD. The RAD is a Xilinx XCV2000E
FPGA that holds the DHP modules.
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In order to reprogram a RAD module, the NID implements a reliable protocol to fill the contents
of the an SRAM with configuration data that is sent over the network. A final control cell is sent
to NID to initiate the reprogramming of RAD using the contents of the reprogram memory.

The NID also contains a network switch that forwards individual traffic flows between network
interfaces and DHP modules on the RAD. This combination of partial reconfiguration control
logic and per-flow routing circuits allow the FPX install new DHP modules without affecting the
operation of the rest of the system.

Modular Logic

DHPs are used to implement application-specific functionality on the FPX. Multiple DHPs can
run in parallel on a single FPGA device and data flows may pass through these plug-ins at the
same time. In order to support a broad spectrum of applications, DHPs can access off-chip mem-
ory resources.

The modular interface of an FPX component is shown in Figure 2.9. Data arrives at and departs
from a module over a 32-bit wide Utopia interface. The module provides two interfaces to off-chip
memory. The SRAM interface supports transfer of 36-bit wide data to and from off-chip SRAM.
The Synchronous Dynamic RAM (SDRAM) interface provides a 64-bit wide interface to off-chip
memory.

DHP implementation on the FPX

Figure 2.10 shows the infrastructure of the RAD when viewed by the Xilinx FPGA Editor. As
one can see the infrastructure is put on the left and right of the FPGA; leaving space for two
DHP modules in the middle. Figure 2.11 shows the floorplan for the the FPGA circuit which
implements a DHP. Note that input/output signals are routed to I/O pins so that standard design
flows for synthesis and simulation of the FPGA circuit can be followed.

Current research efforts focus on implementing of enhanced on-chip gasket interfaces that allow
for additional types of signals.
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Figure 2.10: Infrastructure of the RAD (a Xilinx Virtex 2000E FPGA)
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Figure 2.11: DHP floorplan of the RAD
Conclusions

A technique for designing partial RTR systems on an FPGA was demonstrated. The methodology
uses PARBIT to generate the partial bitfiles. The interface between the DHP plug-ins and the
infrastructure, called a gasket, is able to lock fixed interconnection points between infrastructure
logic and dynamically reconfigured regions of an FPGA. The approach demonstrated reduces the
time to implement a new hardware module due to the fact that the modules are pre-compiled and
that the reconfiguration is performed in hardware.
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2.5 A Java virtual machine for RTR computing

In this paper the authors, Brian Greskamp and Ron Sass, describe a new Reconfigurable Com-
puting (RC) platform, the RTR-JVM which makes use of ordinary Java programs and uses online
algorithms to decide whether the feature should be executed in hardware or software.

http://www.nomotive.org/rcc/RC-JVM-profiling.pdf

Introduction

The demand for computational power is growing rapidly. To date, most performance improve-
ments of computational power have stemmed from improvements of the theoretical Von Neumann
Architecture. These designs execute a sequenced stream of instructions from a fixed instruction
set. This paper however, concentrates on architectures which do not have a fixed instruction set
limitation; architectures which are reconfigurable.

RC architectures are of interest because they have been shown to speed up a wide range of ap-
plications. RC architectures are characterized by having a limited amount of programmable logic
in which arbitrary circuits can be executed very fast. However not all algorithms perform well in
hardware. The RC implementation described in this paper aims at handling both cases.

‘The RC system can be considered to consist of a traditional Von Neumann processor (" processor”
for short) and an FPGA as shown in figure 2.12.

Memory Memory

Processor RC logic

Bus

Figure 2.12: A simplified RC system

The program that should be run on the RC system should be partitioned between processor
and RC logic. The smallest parts of the program which may move between software and hardware
are defined as features. A feature may, for example, be a Java class file or a basic block. The set of
features resident in hardware at any given time is called the feature set. All non-resident features
are executed in software.

Background

The main problem with current RC systems is that they are difficult to program. This is caused
by the need for the programmer to design a separate design for software and hardware algorithms.
On top of this, the design methodologies between software and hardware are vastly different in
concept. One way of solving this problem is to have a high level language which is able to generate
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both software and hardware designs. Current tools like Transmogrifier and Handel-C are already
capable of doing this.

Another problem is that the RC system needs to partition the features between hardware and
software. The challenge is to find an optimal feature set which consists of the features which
contribute to the greatest overall speedup of the application. Note that the optimal feature set is
a function of both time and the input to the program. Also notice that due to the limited capacity
of the RC logic it is not possible for the feature set to consist of all features.

Current approaches to solve the partitioning problem usually deal with browsing through the pro-
gram at compile-time to search for hot spots and map these areas to the RC logic or to put all
features in the RC logic. Clearly the latter approach does not work for large programs whereas the
first approach can be difficult and inefficient especially when the control flow is complex. These
problems can be overcome by using a online architecture which makes use of additional informa-
tion gained during program execution to select, synthesize and instantiate hardware features.
The process which constructs and continually updates the feature set is called the feature selection
algorithm. This algorithm must solve an online problem: instructions are revealed one step at a
time and the algorithm must predict future inputs based on the past ones.

Technology primer

This section describes the terminology used in following sections.

The Java Virtual Machine

Java is a popular programming language. When.a computer needs to execute a java program, this
is done in a Java Virtual Machine. There are two kinds of JVMs. The simplest interpretive JVM
fetches one java instruction at a time and executes a series of actual machine instructions for each
one. The other ”Just In Time” (JIT) JVM compiles the VM code to native code before executing
it, which yields a performance increase.

FPGAs

An FPGA contains an array of identical logic units called Combinatorial Logic Blocks (CLBs) as
shown in figure 2.13. Circuits are realized by programming the routing network to connect the
appropriate CLBs in the desired way. This routing network is a two dimensional array of switch
elements. The state of a switch is stored in a configuration RAM cell. To reconfigure an FPGA,
different configuration data is stored in the RAM cells. The data to program the configuration
RAM is called the configuration bitstream.

Figure 2.13: FPGA internal structure

To generate a configuration bitstream from a high-level language, synthesis software is used.
This software first synthesizes a program described in a hardware description language (HDL)
into a netlist which describes the circuit in terms of interconnected components. The next phase,
" place and route”, maps the netlist to a specific FPGA architecture. The synthesis can take up to



30 CHAPTER 2. RELATED WORK

many hours to complete, whereas transferring the resulting bitstream to the FPGA only requires
microseconds.

The RTR-JVM

In order to test the proposed feature selection algorithms, a prototype online RC platform was
developed called the ”Runtime Reconfigurable Java Virtual Machine” (RTR-JVM). An overview of
the RTR-JVM is shown in figure 2.14. As can be seen, all methods are intercepted by the profiler
module which takes care of collecting performance data which can be used by the feature replace-
ment thread to decide which features move in and out of the hardware. The dispatcher takes
care of transferring arguments to and from the hardware. The diagram also shows the feature
set of which it is important to note that it is read-only: no new features are synthesized at runtime.
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Figure 2.14: RTR-JVM block diagram

Limitation and assumptions

The RTR-JVM is based on the Kaffe v.1.0.7 JVM, chosen for its open license and stability on the
Linux platform. The interpretive JVM engine was chosen for ease of implementation. The Forge
Java-to-Verilog synthesis tool from Xilinx was chosen to generate Verilog VHDL files from Java
.class files. This tool does require that all references to objects and arrays inside the java class file
are resolvable in the class constructor. In addition it is not possible to use floating-point variables
and classes must be a leaf in the cell graph: they may not call methods out of their own class.

The Synopsys synthesis tool chain is used to link custom VHDL "glue logic” components which
allow for the host to communicate with the Forge-generated cores and the resulting design is syn-
thesized with XST, the Xilinx Synthesis Tool. The resulting configuration bitstream can be used
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to program the FPGA with. Currently, all instantiable features are pre-generated before JVM
startup.

Feature Selection Algorithm

The goal of the algorithm is to determine H, the optimal feature set. Intuition suggests it is
desirable to select features that:

e use a lot of processor time

e do enough computational work to offset communication overhead (argument passing)
e have a fast hardware implementation

e have a hardware implementation which doesn’t use many resources

The last two items indicate it is necessary to know the resource requirements and throughput of
the hardware component in advance. Resource requirements are expressed in the amount of slots
it takes up. A slot is the smallest allocable RC unit. In the prototype, each slot consists of an
entire FPGA. The amount of slots a feature f takes is referred to as slots(f) and the amount of
time a feature takes to execute in hardware as T}, (f).

In addition to the previously mentioned hardware profiling information, information about the
software-resident classes must be gathered as well so that the hardware implementations can be
compared with the software counterparts. For this purpose, rate(f), the number of invocations
per second incurred by the class and T, (f), the amount of CPU time expended per software
invocation of the class, are recorded. These statistics are updated at each time slice.

Using these statistics it is possible to construct the optimal feature set called H. The prospective
speedup can be expressed as the product of the feature invocation frequency and the per-call time
saved when the feature is run in hardware. This yields S(f) as result. The factor d is necessary
to compensate for the reduction in invocation rate that would occur if all features were in software.

d=1 —+ ZFGH rate(f) * (Taw(f) - Thw(f))

— rate(f)s(Tow (f)=Thw(f))
S(f) - rate ) h

Since only a basis for comparing the relative merits of each feature is needed, a more simpler
version can be constructed which is proportional to the theoretical speedup:

S'(f) = rate(f) * (Touw(f) — Thuw(f))

To get a view on the cost per feature, the pseudo-speedup S’(f) is normalized with respect to the
number of slots required. Finally, to prevent trashing of classes with equal merit, the metric of
the features with are hardware-resident are multiplied with the constant 3.

M(f):%ﬁs{)ﬁ*ﬁiffeh
M(f) = ;I%L(% otherwise

The final metric M has units of 9% After obtaining M for each feature, the new feature set

slot
can be determined according the following steps:

1. Create a temporary structure to hold the new feature set.

2. Create a table of classes sorted in order of decreasing M.
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3. Traverse the table from top to bottom and proceeding until all RC resources have been
exhausted, add classes to the new feature set.

4. Synchronize the new feature set with the hardware, revert expired features to their software
implementations.

This process works fine, even though there are a few things to take into account:

e The T,, value can not be updated while it is running in hardware, instead its value from
the previous time slice is used.

e There is an enforced lockout period at the interpreter startup during which no reconfigurable
hardware may be synthesized or instantiated in order to let the running statistics to stabilize.

e Hardware swap events are allowed only to occur every 100mS to ensure the cost of copying
the configuration bitstream to the FPGA remains negligible.

Communicating with Hardware

Communication from and to the RC resources over a slow bus as the PCI bus proved to be a
challenging task. A traditional approach to group operands, results and configuration data into
packets and take advantage of the DMA proved to be inefficient. This approach works well for
large packet sizes, but not. for transferring small amount of data. An intelligent mechanism to
select which transfer approach to use would be the best, but in meanwhile a temporary will do.
Each instantiable feature has a shared object associated with it which exports stub functions.
These functions are:

e enter_hardware: Called.to load the bitfile into an FPGA and to perform initial configuration
of the hardware. Additional system resources can be mapped at this time.

e leave_hardware: Called when a class leaves hardware. State information is retrieved and
written back into the software object data structures. Resources held by the hardware are
released.

e call_X: Called whenever a hardware-resident feature X is invoked. The appropriate state is
loaded into the hardware, operands are transmitted, and the result is returned.

The state information mentioned above refers to the data associated with a particular feature
instance. Currently the state is only stored in software structures of the JVM and must be syn-
chronized with the hardware after a method is applied to a new object.

Currently the stub methods mentioned above must be hand-coded on a per-class basis, but noth-
ing precludes automatization.

Results

Prototype Hardware Platform

The RTR-JMV platform consists of a ACE2 Reconfigurable Computing card which is installed on
an x86-based Linux PC. The ACE2 card carries two Xilinx 4085 FPGAs for a total of 6200 CLBs.
Since only small data transfers are involved when invoking a feature, the Linux device driver was
modified to do memory mapped transactions (instead of DMA) to gain some extra performance.
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Experiments

To make the RTR-JVM successful, communication overhead between software and RC resources
should be kept to a minimum. Three communication methods were considered: DMA, PIO and
memory-mapping. DMA makes optimal use of the bus bandwidth by transferring the data across
the bus in blocks, but each transfer requires many cycles to prepare. It requires involvement of the
operating system as well (system call) and suffers from high latency. Using PIO mode, each word
of data is across the bus separately, yielding lower bandwidth and also lower latency. A system
call is still required. Memory mapping is a technique that gives an application direct access to
memory so that transfers can be performed without a system call. As in PIO mode, bandwidth is
suboptimal, but latency is minimal. Figure 2.15 shows the relative speeds of each method when
transferring three words of data.
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Figure 2.15: Small packet transfer rate by method

Experiments showed that when the RTR-JVM was run on a Pentium-III benchmarking sys-

tem, the RTR-JVM scored 1.19 on the Scimark2 benchmark whereas the Kaffe-1.0.7 scored 1.17
(higher is better). Clearly the profiling overhead in the RTR-JVM is negligible.
The RTR-JVM was run with only one synthesization feature: an adder class that returns the addi-
tion of two integers. The communication-to-computation overhead ratio is very high. Considering
this, the JVM ran a loop of six million add() calls in 31.8 seconds as opposed to 29.0 seconds using
software.

A non-trivial test kernel

The RC-JVM was tested on a more complex environment as well, This simple test kernel models
the task of securely transferring data over a network as shown in figure 2.16. It consists of four
synthesization features: a DES encrypter, a DES decrypter, a Hamming code generator and a
Hamming code verifier. A test driver generates random data and feeds it to the transmit and
receive paths, with RX% of the generated packets traversing the receive path and the remainder
following the transmit path.
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Figure 2.16: Test kernel with four instantiable features

All four of the synthesization features experienced a speedup in their execution in hardware.
The speedup factors are approx. 40 for the encryption features, 2 for the Hamming code generator
and 3 for the Hamming code verifier. Figure 2.17 shows the time to process eight million bytes
of data for both the RTR-JVM and the unmodified Kaffe interpretive JVM. As can be seen, the
average speedup is about 40, sometimes increasing to 50 if few packets are transmitted or being
received.
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Figure 2.17: Network kernel benchmark execution times

Performance Limitations

In many cases, the limited communication bandwidth will negate the speedup. The connecting bus
is clearly a major limitation in current designs, but new platforms might move the RC resources
closer to the processor so this is not a great concern anymore.

Further work

In this section a number of oversimplifications in the RTR-JVM are redressed.
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Runtime Feature Synthesis

Till this far, it has been assumed that the program features have been synthesized at compile-
time. This approach is time-consuming and impairs portability. Run-time feature synthesis solves
this problem, but synthesis tools need to improve significantly before runtime synthesis becomes
practical.

Memory access from hardware features

Many features take the same input often. For these functions it might be better to write the into
directly into the hardware instead of passing the input to the function.

Non-leaf features

For the RTR-JVM it has been assumed that classes implemented in hardware make no method
calls outside of the class. Obviously, this is an oversimplification. Hardware features should be
able to invoke other features residing in either hardware or software.

JIT compilation

Right now the RTR-JVM is based on the interpretive JVM which is slower than the JIT code
translation. This will speed up the software execution, but decrease the speedup delivery by the
RC hardware.

Partial reconfiguration

The current prototype only supports one feature per FPGA. Newer FPGAs allow to reprogram
only a part of the FPGA, this allows for putting multiple features on a single FPGA.

Constant value propagation

By invoking a profiler callback for each feature invocation, a history of arguments passed to each
feature could be maintained. Analysis might reveal that certain arguments remain constant. For
such features it might be lucrative to write a specialized feature which executes faster.

Conclusions

An RC machine with runtime profiling capabilities can provide both ease of programming and
considerable speedup. Many of the problems encountered during implementation have already
been solved or are actively being researched. The integration of of CPUs and reconfigurable
fabrics on a single chip will eliminate the communication barrier and open RC to a wide range of
bandwidth-intensive applications.

Online algorithms are ideally suited to RC application because they can help maximize the use of
limited hardware resources and eliminates the guesswork associated with static feature assignment.
These advantages come at a very low cost; in the demonstration system, the overhead of the profiler
is unmeasurable. With future work planned to develop a JIT-based machine and improved data
transfer mechanism, the RTR-JVM may soon be able to accelerate a wide range of practical
applications.

2.6 Conclusions

Having discussed these four papers, several conclusions can be drawn about them. The first
paper has shown a good example about a compile-time reconfigurable application. The FPGA
is configured just once and does not change functionality. One can imagine however that this
application can very well be executed in an RTR-environment. Each Genetic Algorithm Island
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can be thought of as a task, which in turn can be executed in either hardware or software. Another
interesting point in this paper is that is proves that a slow FPGA can have a better performance
than a fast workstation.

The second paper covers a model for an RTR-application. The problem with this model is that
it hides behind a high level language which is defined to be able to generate both hardware and
software version of a task. It is not possible to switch tasks in the middle of executing them. The
RTR- application that will be developed during this thesis will overcomeé these limitations.

The third paper discusses a model for a RTR-firewall. It mostly concentrates on the hardware
restrictions and the hardware interface between gasket and DHP module. It shows how powerful
an RTR system can be for processing data and how easy it can be to add extra functionality using
DHP modules. The gasket interface looks interesting, but in the end it was not needed in the final
RTR-application developed in this thesis.

The fourth and last paper shows how to implement an RTR-system in a Java application where
java classes are executed in either hardware or software. An algorithm to select which feature
should be executed on the FPGA is presented along with the results of several communication
protocols between the RTR-application and the FPGA. Again this RTR-application does not
provide for switching tasks while the application is executing them, something that this thesis will
discuss.




Chapter 3

System Model

This chapter concentrates on discussing a generic system model for a Runtime Reconfigurable
application. To develop such a model, first a good look is given to the functionality which RTR-
application needs to contain and which requirements exist on both the hardware and software part
of the RTR-application. An important part of the RTR-application is the ability that allows it to
switch the status of a task between hardware and software versions. A closer look will be taking
at the switching ability and as well at associated problems.

3.1 What problems does the RTR-application need to solve?

What problem does the RTR-application need to solve? Take a situation in which several tasks
need to be executed. Both hardware (FPGA) and software is available to execute these tasks.
The optimal solution would be to execute all these tasks in parallel in hardware since in general
tasks can be executed faster in hardware than in software because hardware has no operating
system overhead or suffer from cache misses. However, hardware has the drawback it is more
expensive than software and therefore only limited capacity is available. Herein lies the problem:
how can optimal use be made of both hardware and software to complete the available tasks in the
minimum amount of time? A scheduling algorithm can make the best choices between executing
tasks in hardware or software. But the scheduling is not what this thesis concentrates on. Instead
it concentrates on how to develop a runtime reconfigurable application in general, discussing the
problems associated with the RTR-application. As a proof-of-concept a RTR-application is devel-
oped in this thesis.

But where does RTR or Runtime Reconfigurable stand for? On an FPGA there are two possible
ways of reconfiguring:

¢ Static Reconfiguring. This means that after a FPGA is produced it is configured with a
program and it will not change functionality again.

o Runtime Reconfiguring. While the application is running, the FPGA is changing function-
ality.
The Runtime Reconfiguring part is used to switch tasks from software to hardware and vice versa.
This makes up for the following requirements:

The program should be able to write tasks to the FPGA and run these tasks in hardware on
the FPGA. The task that is running on the FPGA can either be removed from the FPGA while
it is running or when it is done executing. If the task is removed from the hardware while it was
executing, then it should be possible to continue executing this task in software. If the task is
removed when it is done executing, its calculation results are returned to the program and another
task will be able to take its place inside the FPGA.
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3.2 What are the software and hardware requirements?

It should be obvious that an FPGA is needed, since this is the part that will be able to execute
tasks faster compared to software because the hardware version doesn’t suffer any overhead from
an operating system, does not suffer from cache misses or page faults and does not have complex
memory addressing either. Basically just about any FPGA will do for a RTR application. The
most important aspects about the FPGA are:

e The time required to reconfigure the FPGA should be as low as possible. How fast an FPGA
can be reconfigured is one of the factors to determine how feasible it is to use in an RTR
system.

¢ Some FPGAs (like the Xilinx Virtex) can be divided into parts which makes it possible to
reconfigure just one part, instead of the complete FPGA. This speeds up reconfiguration
time as well.

e It should be possible to obtain the status of the FPGA (the values of its flipflops). Obtaining
the status is important since when the status of the hardware function is known, it is possible
to put this status into the software version of the same function to allow it to continue
execution.

Usually an FPGA resides on a board which can be connected to, for example, a PC or other
hardware device by a parallel cable or serial bus. Therefore a communication interface is required
between hardware and software.

As mentioned before, the RTR application which is run in software which needs to communicate
“with the FPGA. Several possibilities to communicate with the FPGA exist. The most standard
approach is to have the software part of an RTR application to run on a PC, while it communicates
with the FPGA via a parallel cable or via a PCI card in which the FPGA is plugged into.
The software will need to be able to communicate with the FPGA. How this communication takes
place largely depends on way the FPGA is connected with the software (parallel cable or PCI
bus).

3.3 How does the global model look like?

Figure 3.1 gives an overview of the global model designed. There is a clear difference between the
hardware (FPGA) and the software (MainApplication) side. The MainApplication is divided into
two parts: UserProgram and Reconfiglnterface.

Reconfiglnterface is a class which contains a pool of re-usable functions which provide easy access
to the FPGA (for example putting tasks onto the FPGA and removing them). The other part
(called UserProgram) consists of code for the actual application: it takes care of executing the
tasks, switching tasks back to software or hardware. Basically this part contains the program that
needs to be executed, whereas the other part provides for easy means to execute the program.
The main benefit of this structure is that if someone wants to write a new application, he can
reuse the ReconfigInterface and only write a new UserProgram. As well as if another FPGA is
used, only the ReconfigInterface needs to be adjusted, while the UserProgram can stay the same.
In the model a task is characterized by three parts: i

» Software version. This part is the software version of the task.

e Hardware version. This is a hardware version of the task. Most likely (if communication
between UserProgram and the FPGA is needed) it is also accompanied by a class file that
takes care of the communication between the UserProgram and the FPGA.
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Figure 3.1: Global Model RTR Application

o Conversion routines between the tasks’ Hardware and Software status. If the software version
of a task has been running, has been stopped and needs to be continued in hardware, then
the status of the software version has to be put into the hardware version. Vice versa for
hardware to software

The most difficult part here are the conversion routines between hardware and software status.
Special care must be taken to make sure that every variable in the software version can be.put
into the hardware version as well. The next few sections will discuss this in greater detail.

3.4 Switching between hardware and software

As an example on how the switching from hardware to software occurs, this section will discuss
how the switching technique is applied to a 4-bit CRC counter. The UserProgram written is a
4-bit CRC counter of which the algorithm is as follows:

(Zif__'z]gth(army) arrayli]) mod 2*
The CRC algorithm is typically used for integrity-tests. The reason for using this algorithm is
because it is easy to write and it has a clearly definable state. In the UserProgram two versions
of this CRC algorithm exist: one in software and another one in hardware. The software variant
can be represented as follows:

int result = 0;

for (i=index;i<CRCarray.length;i++) {
result = (result + CRCarrayl[il) % 16;
index++;

}

In this piece of code, the CRC value of the elements in the array CRCarray is calculated. The
status can be represented by the result and the indez variables. The result variable indicates the
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CRC value calculated at the index indez in the CRCarray.

iFrom this piece of code it is possible to derive a hardware version of the algorithm. Since the
additions are the heaviest work this algorithm has to execute, let this part to be executed in
hardware. The following algorithm can then be derived:

for (i=index;i<CRCarray.length;i++) {
write(FPGA, CRCarray([il);
index++;

}

Read(FPGA, result)

In this algorithm a value from the CRCarray at index i is sent to the FPGA. The FPGA has to
add the value it receives to the previously sent values. This continues until all the values in the
array are sent to the FPGA and added. In the final step the value is read from the FPGA to
transfer the resulting value back to the UserProgram.

As can be concluded from this piece of code: the FPGA is only responsible for adding the values
it is receiving. A communication thread needs to exist to take care for sending input-values to
the FPGA. Basically this communication thread consists of the for loop mentioned in the piece
of code above and the write and read statement to read and write the values to the FPGA.

A hardware version of a task can be described as a program run in hardware plus a communication
thread run in software. The description of above piece of code is not complete without the actual
hardware program as well. This hardware program is represented in figure figure 3.2.

RTR-Application

LT

CRCArray

index

FPGA

! 1

Adder

3 y
Resutt
Register

je— |

Figure 3.2: Hardware version CRC

The hardware CRC version receives its input values from the RTR-application. These values
are transferred to the FPGA by for example a parallel port. The input-value is added to the
value stored in the register, after which it can add another input value. Since this is a fairly basic
calculation, adding one value can be done in one clockcycle. The status of the hardware version
can be defined by the value of the register and the index variable on the RTR application.

To be able to switch executing tasks from hardware to software and vice versa it it necessary to
be able to switch the status from software to hardware and back. A good conversion function for
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the CRC example mentioned would be able to put the software result variable into the hardware
register and the software indez variable into the communication thread of the hardware version.
This is all that needs to be taken care of to switch the status between hardware and software.

3.5 Switching status in large applications

In the previous section an example was given on how to change the status for a small algorithm.
Though when big applications are written, the tasks will not always be as small as the CRC
algorithm. This section will discuss which problems will occur when the status has to transferred
between large software and hardware versions of a task.

When tasks get larger the more difficult it is likely to be to switch the status. Think of for
example a Fourier transformation algorithm. The first problem occurs when such an algorithm
has to be stopped in software so it can (for example) continue running on the FPGA in hardware.
It is possible to derive a usable status from the Fourier algorithm when it has finished 25% of
it’s calculation? Most likely not. A solution to this would be to raise a stop_algorithm flag which
will be raised when the algorithm needs to stop executing. The algorithm will only check for this
flag when it is in a clearly definable state which can be transferred to hardware. In pseudocode it
looks like this:

function FourierTransformation() {

calculateTill25Percent();
CheckForStopFlag();
calculateTill75Percent();
CheckForStopFlag() ;
CalculateTillAlgorithmDone() ;

ReturnResultValues();
}

Using this technique it is possible to stop the algorithm in a sensible state. This example was
aimed at a software version of an algorithm. But it can apply just as well to a hardware version
where an inputIOB has been set to a high to indicate the hardware version of the algorithm needs
to be stopped.

Another more difficult problem is to actually find a clearly definable state that can be trans-
ferred between hardware and software versions where the CheckForStopFlag function calls can be
put. In this thesis separate hardware and software versions of algorithms are developed so that
both are optimized for performance. The nature of both hardware and software algorithms are
very different from each other so that it might not be possible to find a variable that occurs in
both hardware and software version. To make sure the status is transferrable several solutions
exist. The first solution would be to use a language which can generate both hardware and soft-
ware versions of an algorithm which have a transferrable status. The problem is developing such
language which might be a nice project for another thesis. In this thesis special care is being taken
so that the status is transferrable. This is the responsibility of the programmer who is writing
both hardware and software version of a task.

3.6 Summary
In order to get the best performance out of an FPGA, the reconfiguration time should be kept as

low as possible. Some FPGAs only allow to reconfigure a part instead of the whole which further
lowers reconfiguration time. To be able to transfer a function between software and hardware, it
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should be able to determine its status. On the software side not many requirements exist, except
for the FPGA to be able to communicate with the FPGA through an interface. A global model of
an RTR-application was discussed and a description about the CRC algorithm used in the CRC
RTR application has been given. Special care should be taken so that the status of a software
version of a task can be put into a hardware version of that same task and vice versa. This will
be increasingly difficult as larger tasks are developed.



Chapter 4

Using the Virtex FPGA: JBits

In the previous chapter a global model was discussed along with the requirements of software
and hardware versions of tasks. This chapter will make a start at the development of an RTR-
Application by discussing its most important tool used: JBits v2.8. JBits is a Software Developers
Kit (SDK) which contains a set of APIs to create and modify Xilinx FPGA bitsteams from, java
code. This chapter describes JBits in closer detail, covering its components, its terminology and
how to use it in programming.

4.1 Overview Components JBits
The JBits SDK features the following main components:

e XHWIF (Xilinx Hardware Interface) This interface describes the characteristics for a Virtex
device. This allows tools like BoardScope to use any Virtex of which a XHWIF interface
is defined without any adjustments. The XHWIF describes the layout of an FPGA and
includes methods to read from and write to the FPGA. The main advantage of this layer is
that a software program will be able to run on every hardware device which has a XHWIF
defined.

e XVPI (Xilinx Virtex Portable Interface) This interface is used for reconfiguring the boards.

e JRoute JRoute is a set of java classes which take care of the routing within an FPGA. It
allows for connecting routing resources to each other.

e VirtexDS (Virtex Device Simulator) This is a simulator which provides users to test their
applications without the need of the actual hardware. The Simulator can be used in combi-
nation with BoardScope.

¢ BoardScope BoardScope is a graphical debugger for Virtex devices. It allows the user to
see the internal state (e.g. LUTSs) and output signals of CLB as well as the routing, routing

density and a power graph. The power graph shows how much power a certain CLB is using
at a certain time.

4.2 Setting up a skeleton JBits program
To start with programming in JBits, a small example skeleton program is presented that writes

data to the FPGA and reads the same data back from the FPGA.
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4.2.1 Setting up communication with the FPGA

The most important part of a JBits prezram is the JBits object. The JBits object is a bitstream
which represents a hardware configuration of an FPGA: the configuration of the CLBs/LUTs/IOBs
and the routing configuration.
To write the JBits object to the FPGA, the XHWIF communication interface is needed. This
interface takes care of all reading and writing to the FPGA. The XHWIF interface of a board is
retrieved in the following way:

String boardName ="VirtexDS:xcv50";
XHWIF board =XHWIF.Get(boardName) ;

This example will run a Virtex Device Simulator for the xvc50 FPGA as indicated in the lines
above. In case one actually owns the hardware FPGA, boardName can be X CV50, but if you
lack the hardware and want to use the simulator, then boardName should have VirtezDS : in
front of the actual devicename.

Next thing to do it to make the XHWIF interface connect to the VirtexDS/Hardware. The
XHWIF interface supports connecting to hardware remotely placed on the network. This feature
will not be used in this thesis. Nevertheless it is necessary to connect to the interface as if it were
remotely placed in a network.

/* Get the remote host name */
String remoteHostName = XHWIF.GetRemoteHostName (boardName) ;

/* Get the remote port number */
int port = XHWIF.GetPort(boardName) ;

/* Connect to the hardware */
int result = board.connect(remoteHostName, port);

\

This will establish a connection to the FPGA device.

4.2.2 Modifying the bitstream and writing to the FPGA

Modifying the configuration of the FPGA takes several steps. First the JBits object must be
initialized, then configured and finally written to the FPGA.

It starts with retrieving the JBits object. To retrieve it, pass the deviceType to the JBits con-
structor:

deviceType = Devices.XCV300;
JBits jbits = new JBits(deviceType);

After creating the JBits object it should be initialized with the NULL-bitstream. This means
all CLBs/IOBs/routing will be reset from the bitstream. The JBits package comes with several
null-bitstreams. The null bitstream for the XVC50 is provided with the JBits SDK and is called
nullS0GCLK 1.bit.

String inputFileName = "nullS50GCK1.bit";
jbits.read (inputFileName) ;

Having created a clean bitstream, it is possible to make some changes to the jbits bitstream, for
example:

int row=0;int col=0;

int [] LUTVALUE = Util.InvertIntArray(mew int[) {0,0,0,0, 0,0,0,0, 1,1,1,1, 1,1,1,1});
jbits.set(row, col, LUT.SLICEO_F, LUTVALUE) ;

jbits.set(row, col, SiControl.Y.Y, SiControl.Y.GOUT);
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In this small example the LUT of slice 0 of the CLB at location (0,0) will be given the value
{0,0,0,0,0,0,0, 0,1,1,1,1,1,1,1,1}. As one can see this value is inverted before being writ-
ten using jbits.set to the bitstream. This is an obligatory thing: the value loaded into the
LUT should always be the inverse of what you want. This inverse can be obtained by calling
Util.InvertInt Array.

The second call the jbits.set sets the C-MUX, slice 1 of the CLB at (0,0) (as can be seen in figure
1.3) to put the input from the LUT through as output.

After modifying the jbits object it is time to write this bitstream to the Virtex device. This is
also referred to as reconfiguring the board or just plain reconfig.

public void reconfig() {
byte[] configBitstream = jbits.getPartial();
if (configBitstream == null) {
System.out.println("The bitstream did not change, so not reconfigured”) ;
} else {
System.out.println("Length configBitstream: " + configBitstream.length);
board.setConfiguration(0, configBitstream);
}
}

JBits will determine the changes made between the last configuration sent to the device and the
present configuration in the JBits Object using the getPartial() method. From this difference
it creates a series of configuration-packets as output which are send to the FPGA using the
setCon figuration method.

4.2.3 Reading back the bitstream from the FPGA

To check if the reconfig was successful one can do a readback. A readback is to read the complete
configuration of CLBs/IOBs/routing/etc back into the JBits object. It should be done this way:

byte[] readbackCommand = ReadbackCommand . getClbConfig( deviceType );
board.setConfiguration( 0, readbackCommand ) ;

byte[] readbackData = board.getConfiguration( O, ReadbackCommand.getReadLength() *4) ;
jbits.parsePartial( readbackCommand, readbackData );

First a readbackCommand is created for this specific deviceType, then the command is sent to
the board, which will result in a lot of readbackData. This data is then to be parsed back into a
JBits object using the parsePartial method.

To be sure the LUTV ALUE was set correctly and that it still has the value it was set to before
it was retrieved from the JBits object:

int[] lutvalue =
Util.InvertIntArray(jbits.get (row,col,LUT.SLICEO_F));

4.3 Writing and debugging a counter program

In section 1.2 a hardware layout of a small counter program was provided. This section will
cover on how to configure the FPGA to implement this counter. To make sure the counter is
running perfectly, the results are checked using the BoardScope debugger. The BoardScope de-
bugger is very clear laid out debugger which shows all the information that one needs like the
internal state of a CLB and its routing. Apart from that it has a few extra features like showing
a power graph of how much power a CLB consumes and it features a routing density viewer as well.

To get the counter counting, the actions we need to take according to section 1.2 are:
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e set the G-LUT to NOT G1
o set the F-LUT to NOT(G1 XOR G2)
e set C, H and Q-MUX to output the top-input
o set the P-MUX to output the middle input
o set both flipflops to act as flipflops and not as latches
e connect YQ to Gl
e connect XQ to F1
» connect Y to F2
e connect the clock to the slice for the flipflop
Connecting Pins can be done using the JRoute interface easily by calling:

JRoute jroute = new JRoute(jbits);
jroute.route(new Pin(Pin.CLB, row,col, CenterWires.S1_YQ),
nev Pin(Pin.CLB, row,col, CenterWires.S1_G1));

The JRoute interface however, has been superseded by the JRoute2 interface. The main difference
is that JRoute2 uses a different technique to do the routing and that it now supports IOB/BRAM
routing. The JRoute2 interface does bring a lot of extra work for connecting two simple pins;
instead of being able to connect two pins with one JBits command, one now needs about four.
For now JRoute will be used in this example to keep things simple.

To enable the clock for a certain CLB at (row, col), the following call can be used:
Bitstream.set(row,col,S1Clk.S1C1k,S1Clk.GCLK1);

This will cause Slice 1 of CLB(row,col) to connect to GCLK1. The Virtex has one central clock,
but four points that one can use to connect to the clock, these are GCLKO, GCKL1, GCLK?2 and
GCLK3. Usually GCLK1 is used.

The next objective is to include BoardScope for debugging purposes. To get this working, a
different way to connect to the board is needed. This time a XHWIFWithEvents interface instead
of the usual XHWIF interface is required. The XHWIFWithEvents allows a few more features
and BoardScope is one of them.

XHWIFConnection xc = new XHWIFConnection();
board = xc.getXHWIFWithEvents();

BoardScope boardscope = new BoardScope(xc);
boardscope. show();

xc.connectToBoard( boardName );

When running this program, BoardScope will pop up. Figure 4.1 shows what BoardScope looks
like after passing one clockcycle. The middle-part of BoardScope shows the layout of the FPGA
and its state. When the XQ or YQ pin outputs a high, the color of that part of the CLB will show
up green. To do a clockcycle press button 1. This will do a clockcycle and update the view. By just
pressing button 2, BoardScope will only update the view without doing a clockcycle. In the lower-
right corner is shows the internal details of the CLB. By clicking on one of its inputs or outputs (for
example F1,F2,F3,F4, BY,YQ) it will return its value (1 or 0) and the wires that it is connected to.
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Figure 4.1: Screenshot of boardscope

4.4 Cores and routing

The problem with just setting LUTs and connecting CLBs like in the previous example is that
there is no hierarchy, no architecture. To solve this problem, Cores were introduced into JBits.
Cores, also known as RTPCores (Run-Time Parameterizable Cores) provide means to wrap a
function into a package and to provide the user with ready-made functions. JBits comes with
several Cores. A few examples of these cores are: Adders, Subtractors, Constants, Multiplier,
Register and Decoder.

But what do these cores actually look like? Below one can find a template for a core.

import com.xilinx.JBits.CoreTemplate.*;

public class MyCoreTemplate extends RTPCore {
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public MyCoreTemplate(String name) throws CoreException {
super (name) ;
setHeight (calcHeight());
setWidth(caleWidth());
setHeightGran(calcHeightGran());
setWidthGran(calcWidthGran());

} /* end constructor */

public static int calcHeightGran() {
// return the granualty of the core
return Gran.CLB;

}

public static int calcWidthGran() {
// return the granualty of the core
return Gran.CLB;

}

public static int calcHeight() {
// return the height of the core
return height;

}

public static int calcWidth() {
// return the width of the core
return width;

}

public final void implement() throws CoreException {
// implement core

}

As can be seen in the template above, a core only needs to implement a few basic functions
to define the width and height of the core. The calcWidthGran() and calcHeightGran() func-
tions are used to indicate if the width and height are measured in either CLBs, Slices or Logic
Elements.

The main function of the core is the implement() function. This function should take care of
setting all the appropriate MUXs, LUTs and routing within the core itself. Using this template it
is possible to produce any kind of stand-alone core.

But that is not enough, cores should be able to communicate with each other as well. There are
several structures for communication:

e Port equates a signal (net or bus) that is external to a core with a signal that is internal to
the core. Ports have a direction and width, where the port width is inferred by the width
of the external signal, the width of the internal signal, or the number of internal pins. A
WidthMismatchException is thrown if these width indicators disagree.

e Pin associates one or more physical resources with a port. Primitive cores define internal
pins for their ports, rather than internal signals. An example of a pin is a LUT input.

e Net is a named set of source and sink ports within the scope of a single RTPCore.

e Bus is an indexed multiset of nets that are within the scope of a single RTPCore.
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Figure 4.2 below gives a graphical overview of this structure.
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NET NET
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Figure 4.2: Overview routing structures

A bus contains several nets, each of these nets has a source and a sink port defined. Each
port has a width and a direction property. The width property indicates the number of pins the
port contains and the direction indicated whether the Port should give its value as an input or an
output to the core. A port can either contain an array of pins or it is equal to a signal. A signal
is equal to a Bus or Net.

To show how this should be used in JBits a small example is presented in which a Core (called
the MainCore) has two subcores (SubCorel and SubCore2). SubCorel should have a bus that
outputs to SubCore2 and SubCore2 should have a bus as well that outputs to SubCorel as pre-
sented in figure 4.3.

MainCore

SubCorel

Bus Bus

SubCore 2

Figure 4.3: Structure example program
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The JBits code for implementing this communication Busses can be done in the following way
(only code related to routing the Busses is shown):

public class MainCore extends RTPCore {
public MainCore(String name) throws CoreException { }
public final void implement() throws CoreException {

newBus ("fromito2",4);
newBus ("from2tol" ,4);

Bus fromSubCoreiTo2
Bus fromSubCore2Tol

SubCore subl = new SubCore("SubCorel",fromSubCore2Tol,fromSubCorelTo2);
addChild(subi,Place.LOWER_LEFT);
subi.implement () ;

SubCore subl = new SubCore("SubCore2",fromSubCore2Tol,fromSubCoreiTo2);
addChild(subl,Place.LOWER_LEFT);
subl.implement () ;

Bitstream.connect (fromSubCore2Tol);
Bitstream.connect (fromSubCoreiTo2) ;
}
)y

public class SubCore extends RTPCore {
private Port inport; private Port outport;

public SubCore(String name, Bus inputBus, Bus outputBus) throws
CoreException {

inport = newInputPort("inport", inputBus);

outport = newOutputPort("outport”, outputBus);
g

public final void implement() throws CoreException {
inport.setPin(3,new Pin(Pin.CLB, row,col, CenterWires.S1_G1));
inport.setPin(2,nevw Pin(Pin.CLB, row,col, CenterWires.S1_G2));
inport.setPin(1,new Pin(Pin.CLB, row,col, CenterWires.S1_G3));
inport.setPin(0,new Pin(Pin.CLB, row,col, CenterWires.S1_G4));

outport.setPin(3,new Pin(Pin.CLB, row,col, CenterWires.S1_Y));
outport.setPin(2,new Pin(Pin.CLB, row,col, CenterWires.S1.X));
outport.setPin(i,new Pin(Pin.CLB, row,col, CenterWires.S1_YB));
outport.setPin(0,new Pin(Pin.CLB, row,col, CenterWires.S1_XB));
}
}

As shown in the example, the necessary code involves:

e Create the bus in MainCore which encapsulates the subcores using newBus

e The busses should be passed as parameters to the subcores
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e The subcores should get a Port from these busses using either newInputPort or newQutput-
Port

e In the implement() of the subcores, Pins should. be assigned to the Port

¢ Finally the command to actually make the routing connections should be made in the Main-
Core using Bitstream.connect(Bus).

4.5 The status of a Core

One of the requirements of the RTR application is that it can start running a core on the FPGA,
stop this core, remove it from the FPGA and continue running it at a later point in time. To be
able to do this, the status of a core needs to be defined; identify which flipflops indicate which
variables in the software version of the core.

The status of a core located on the FPGA can be divided into two parts:

e Physical part This part consist of all routing-connections, MUX and LUT settings.
e Volatile part This part consists of all the flipflops and BRAM.

In this thesis the BRAM part of the FPGA is not used, so that only leaves flipflops as the volatile
part.

There are several possibilities to read the status of a core and store it. It is possible to read
the physical part of a core and store all the settings in a data-structure (e.g. array). The negative
aspect of storing the physical part this way is that information about a core is thrown away. A core
usually contains a structure consisting of subcores and identification names, this extra information
is thrown away when only storing the wire/MUX/LUT information. Another, cleaner, approach
is to make use of the java core file already created. The core file already contains all information
needed about the physical part. Every time the physical part of a core is needed again it suffices
to load the java core file onto-the FPGA again.

Putting back the volatile state (flipflops) back into a core is more difficult. JBits itself cannot
set the value of flipflops during the configuration of the FPGA. A work-around is needed to do
this. The RTR-application sets the flipflops in the following way: first the LUTs of the flipflops
that need to be set are configured to output a high. Next the MUXs are set so that the output of
the LUTs cause the flipflops to be set the next clockcycle. After this clockcycle the flipflops have
their original state back. To completely restore a core back to its original state, one can now put
the physical part back as well; the core will continue running from its previous state.

4.6 Summary

This chapter has shown how to use JBits by covering how one can set up a skeleton JBits program
which is able to connect to the FPGA, put a program on the FPGA and read and write to the
bitstream. How to debug an example program was shown as well as important datastructures like
Cores and Routingstructures. A final part of this section covered how the status of a core can be
read from the FPGA and put back onto it.
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Chapter 5

Developing the RTR application

This chapter covers the actual development of a runtime reconfigurable application. The applica-
tion that has been chosen for this thesis is a RTR application that calculates 4-bit CRC values
out of an array. This chapter will cover the development process from looking at the functionality
required again, filling in the details in the global model for an RTR-application as discussed in
chapter 3 which are the ReconfigInterface, CoreStorage, CoreList, WireManager, ReconfigInter-
face internal functions, UserProgram, CommandLine and the switching between hardware and
software status specific to the CRC Application. A few scenarios of how the CRC application
works will be presented along with final conclusions and future recommendations.

5.1 Functionality

The functionality for a generic RTR-application was mentioned in chapter 3. The application
written does limit itself a bit in comparison to the generic model by limiting itself to only two
functions that may be used in the application. In short the functionality of the CRC RTR-
application will be as follows:

o Write two functions to the board using cores
¢ Run these functions on the FPGA until either
— A core is done calculating, it should let the software know it is done and transfer the
results

— A core is not done calculating, but the user decides it needs the space on the FPGA
for another core to put in its place, the possibilities are:

* Stop the core, store it in software and wait till there is enough space to put the
core on the FPGA or

* Stop the core and continue executing it in software

To be able to provide this functionality, the application needs a structure. In chapter 3, a global
model was described in figure 3.1. The model specific for the CRC RTR application is depicted
in figure 5.1

In the current model, the division between UserProgram and ReconfigInterface is maintained.

In the following sections the functionality of the ReconfigInterface will be covered and next the
UserProgram of the RTR application will be discussed.
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MainApplcation
UserProgram Reconfiginterface
.......... Sonware
Corelist
CRCSoftwareThread
e
Hardware
CRCHerdwareThread
CRRCCage CoreStorage

FPGA

Figure 5.1: Detailed model of the CRC RTR Application

5.2 Reconfiglnterface

The purpose of the ReconfigInterface is to provide for easy access to the FPGA and a class to
store any functions that will be re-usable in future projects. The internal classes developed for
this Interface are:

e CoreStorage
e CoreList
e WireManager

These classes will be discussed in the following subsections.

5.2.1 CoreStorage

Eventually a core will be removed from the FPGA and it will have to be stored into the software-
memory. For this purpose the CoreStorage class has been developed. CoreStorage will read the
entire status of a core into a data-structure. This status contains extra information like position of
the core in the FPGA and the name of the core and the className of the core. The CoreStorage
class looks like this:

public class CoreStorage {

int[]{] settings; // array used to store the values of the
// flipflops in for this core

String coreClassName = ""; // classname of the core

String coreName = ""; // name of the core

public void nullCore(JBits jbits)
// This core resets both MUXs, LUTs and routing of the core
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public void nullRouting(JBits jbits, int row, int col)
// This method removes all routing of the CLB at location (row, col)
// in the JBits object

public void nuliCLB{JBits jbits, int row, int col)
// This method resets all MUXs and LUTs of the CLB at location (row, col)
// in the JBits object

public void getSettings(JBits jbits)
// This method retrieves the status of the flipflops and stores this
// status in the settings (][] array.

public void setStatus(JBits jbits, int Prow, int Pcol)
// This method sets the status stored in the settings array back into the
// JBits object at location (Prow, Pcol).

public CoreStorage(RTPCore core)
// This is the CoreStorage comstructor. It takes care of storing the
// class, core, height, width and location of the core.

}

To make use of this class, one should call the CoreStorage constructor with as argument an

implemented Core on the FPGA. In the constructor the classname of the Core, its size and location
will be retrieved and stored in the object. By calling the getSettings method, with as argument a
JBits object, the object will read the volatile status of the flipflops from the bitstream and store
these in the int[|[] settings array. To remove the current core from the bitstream one calls nullCore
to remove the MUX and LUT settings and the internal routing to the core. The Core now has
been completely removed from the JBits object. The FPGA can now be used to run another core
or do something else.
If the stored core needs to be put back onto the FPGA to resume executing it, the first thing to
do will be to put back the status of the flipflops using the setSettings method. Next a recon fig()
to write the bitstream to the board and a clockstep is necessary to let the flipflops assume its
appropriate value. The only thing left is to put the hardware layout of the core back which can
be done by calling the Cores class file again (calling the class with the name className which is
stored in the CoreStorage object).

5.2.2 CorelList

Since multiple cores will be used, running in either software or hardware, it is preferable to include
a datastructure for managing cores. This is the sole purpose of this class. In this class all the
properties of a core are defined, these are:

s coreName The name of the core

o coreClass The class the core belongs to

o rtpcore The RTPCore class associated with this core

e coreStorage If the core has been removed from the FPGA, this is where it is stored.
o inbus The InputBus associated with this core

o outbus The OutputBus associated with this core

o widthInputBus Number of pins in the inbus

o widthOutputBus Number of pins in the outbus
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5.2.3 WireManager

Cores need communication with the outside world (e.g. software) to exchange data. The first idea
was to split the FPGA in several parts: a part (called communication core) that would always'
stay in the FPGA to take care of the communication needs of running cores and a part for the
storage of (running) cores. Whenever a core is added to the FPGA it should be connected to the
communication core. This communication core would, being connected to IOB pins, take care of
sending the cores signals to the software program using the IOB pins. This approach is especially
useful when there are limited IOB pins available, when the output of several cores needs to go
through one single IOB bus.

In the current situation using the Virtex FPGA however, plenty of IOB pins are available on the
FPGA, more than will be used by the RTR application, therefore another approach was chosen.
In the current approach every core can dynamically request IOB pins.

To provide this functionality, the WireManager interface was developed. This interface handles
all IOB related tasks. Using the WireManager it is possible for a core to simply request an
IOB Bus using the getInputBus(int width) or getOutputBus(int width) method. This will
return a bus suitable for either incoming or outgoing signals from the Core. The WireManager
interface keeps an internal list of which IOB pins of the FPGA have been allocated which have
not. Every time a bus is requested, it will return a bus with a certain name. In the event that
the core needs to be removed from the FPGA, one can remove the bus from the FPGA by calling
removeBus(JRoute jroute, Bus rbus).

Another IOB related task the WireManager is performing is to keep track of the values of the
the IOB pins. This functionality was added because the JBits ClientSimulator class (which is
needed to retrieve the values of IOB pins) did not prove to be thread-safe. If multiple threads try
to retrieve the value of a pin, the ClientSimulator would crash. To prevent such problems, the
WireManager contains an array in which it keeps track of the values of the IOB pins. An internal
thread is continually updating these values. If a part of the program wishes. to retrieve the value
of an I0B pin, it can retrieve the latest value from the WireManager internal array.

5.2.4 Reconfiginterface internal functions

The ReconfigInterface also contains a number of internal functions. Below a pseudocode overview
of the ReconfigInterface class is presented.

public class ReconfigInterface

CoreList[] corelList = new CoreList[5];
// reserve space for 5 cores in memory

public void InitializeFPGA() {
// initialize the FPGA

public int probeBusValue(Bus bus)
// return the value on the Bus bus

public void loadBitstream(String inputFileName)
// load a bitfile into the jbits object

public void startUpVirtexDS()
// start up the virtex, part of the initialization process

public void steps(int s)
// do s clockcycles in the simulator

public void reconfig()
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// reconfigure the fpga: write the jbits object to the FPGA

public Bus[] AddCore(String classCore, String coreName, int
widthInputBus, int widthOutputBus,int x, int y)
// Add a core with the class classCore and name coreName with
// the width of the inputbus equal to widthInputBus and the width of
// the outputbus- equal to widthOutputBus and pass an input and
// output bus along as well at location (x,y) of te jbits object

public Bus[] RestoreCore(String coreName, int x, int y)

// Put the core with coreName back in the jbits object at
// location (x,y). Request the input and outputbus from the
// WireManager and update the CoreList structure.

public void RemoveCore(String coreName)
// Remove a core from the jbits object and put it in a
// CoreStorage object. Also fill/update the CoreList item

private int findCoreIndex(String coreName)
// Finds the index of the core with coreName in the CorelList

public void Disconnect()
// Disconnect from the board

public void doReset() throws Exception
// reset the board

public void Step()
// does a clockstep in the simulator

public void readBack() throws Exception
// readback data

As can be seen in the pseudocode, the internal functions provide for easy adding, removing
and restoring (to put a core that was removed from the FPGA, back onto the FPGA) a core along
with functions to initialize and reconfigure the FPGA.

5.3 UserProgram

This section will explain about the actual CRC application developed to make use of the Recon-
fignterface that switches cores onto and from the FPGA.

The UserProgram developed in the CRC RTR Application is a 4-bit CRC counter. In the
UserProgram two arrays filled with 4-bit values are created and for these arrays the CRC value
(result of 4-bit addition) needs to be calculated. The reason for choosing this algorithm is because
it will involve IOB communication, can be run in multiple instances on the FPGA and is relatively
easy to write. Since I want to have full testing capabilities, I decided on a commandline-driven
interface. This allows for easy testing different combinations of switching cores from and to
software/hardware. In this commandline the user is able to give commands on what the program
needs to execute (e.g. remove a core from hardware etc). The commands the user can give will
be covered later in greater detail.
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In short, the UserProgram can be spit up into several parts. First the UserProgram itself is
a commandline parser. It takes care of executing the commands it is fed. Secondly the UserPro-
gram can be divided in a software and a hardware part. The software part consist of a class which
executes the CRC algorithm in software. The hardware part consists of a JBits core file which
is used to put the hardware representation of the algorithm onto the FPGA and of a class which
takes care of the communication between the UserProgram and the Core on the FPGA. Figure
5.2 represents this structure. The following sections will cover these parts in more detail.

i i i CRCCoreHardwareThread f

CRCCore

FPGA

Figure 5.2: Schematic representation UserProgram

\

5.3.1 CRC: Switching between software and hardware

In chapter 3 a global description was given on how the switching between executing a task in
hardware and software takes place. The CRC algorithm, the software version of the CRC algorithm
and the hardware version were discussed. This section will look at how this is implemented in the
CRC RTR Application.

Software

The software version implemented is exactly the same as the version mentioned in chapter 3.

for (i=index;((i<CRCarray.length) and (StopFlag == false));i++) {
result = (result + CRCarrayl[il]) % 16; :
index++;

}

The variable indezr indicates the index in the CRCarray where it needs to start counting. This
small algorithm was made to run in a looping thread called the CRCSoftwareThread until either it
is done calculating or until the UserProgram sets the StopFlag variable to true which would make
the Thread stop as well. The thread will send the index in the array and the result calculated this
far to the UserProgram.

Hardware

The hardware variant of the CRC algorithm is more difficult to write because communication
between software and hardware needs to be taken into account as well. The hardware algorithm
in chapter 3 can be detailed a bit more for the CRC Application:
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for (i=index; ((i<CRCarray.length) and (StopFlag == false));i++) {
write(FPGA, CRCarray(il);
index++;

}

Read(FPGA, result)

In the implementation of this code, the CRCHardwareThread covers sending inputvalues to the
FPGA until either it is done calculating or StopFlag is set to true. When the hardware algorithm-
needs to stop, no more inputvalues are fed to the hardwarecore. This way the hardwarecore will
end up in a clearly definable state which can be transferred to software. The detailed tasks of the
CRCHardwareThread which has been implemented are as follows:

e If the hardware core outputs a 0, then set a new 4-bit values onto the cores input IOBs and
set the Control Pin to 1 and wait till the input IOB changes.

e If the hardware core outputs a 1, then set the Control Pin to 0, this will cause the core to
add the current value on the input IOBs to the current calculated value and wait till the
input IOB changes.

e If this CRCHardwareThread needs to stop calculating, then finish the current calculation
calculation-cycle and return the index in the array and the current result value to the User-
Program.

This sums up the functionality in the CRCHardwareThread. Next the CRCCore itself is covered.
A schematic of this core is represented in figure 5.3.
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Figure 5.3: Hardware layout CRCCore
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As one can see there are five input IOBs and five output IOBs. Four input IOBs (D1 till D4)
are used for the input of new data, and four output IOBs (O1 till O4) are used to communicate
the current CRC value (as indicated by the result variable in the software CRC algorithm) to the
outside world. Qne input IOB (CI) and one output IOB (CO) are connected to a Control Unit.
This Control Unit is necessary to indicate to the CRCHardwareThread whether the core is ready
to be fed another 4-bit value to run its CRC algorithm on. Due to the CRCHardwareThread
setting the input to the Control Unit from 0 to 1 to 0 etc, it can be used like a clock. The Control
Unit is connected to the clock pin of the Calc Unit. Every time on a downward flank (from 1 to
0), the Calc Unit will add the value on the input but to the value stored in its register.

5.3.2 Software to hardware translation and vice versa

Having covered the software and hardware version of the CRC algorithm, it is time to cover how
a running software CRC thread can be stopped and be put to continue running in hardware.
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First consider software to hardware translation first. As mentiohed before the most important
variables of the software version piece of code are: result and indexz. When the software CRC
thread receives a signal to stop, it sends these variables to the UserProgram:. The UserProgram
will store them till either:

e anew CRC software thread is created and needs to continue where the previous CRC software
thread stopped.

e a hardware core is created and these variables need to be put into hardware.

The first of these two cases is the easiest. The stored variables from the first CRC Software thread
can simply be communicated to the new software thread with a few assignments. The second
case is more difficult. The problem resides in identifying the variables found in software in the
hardware core; where are the indez and result variables found in hardware? Having written a
relatively simple CRC Core, these variables are relatively easily found. As mentioned before the
hardware part of the algorithm is divided into a CRCHardwareThread and the CRCCore. The
CRCHardwareThread feeds the CRCCore new input values to run the CRC algorithm on. The
inder variable needs to be transmitted to CRCHardwareThread so that it knows which value to
send next to the core. The core however needs to have a few flipflops adjusted to reflect the result
variable. The flipflops that need to be adjusted in the Calc Unit block are shown in figure 5.3.
The Calc Unit consists of adder and a register unit, the register unit needs to be set to reflect the
result variable. To be able to do this, the exact location of the flipflops used for the register unit
need to be located on the FPGA and then be set accordingly to the value of result. The flipflops
location was easily found since I wrote the core myself, in which I had to specify the exact location
of the register unit. The procedure to set the flipflops as mentioned in section 4.5: The status of
a Core can be used. ,

This covered software to hardware translation. Hardware to software works just about the same.
The difference is that variables like indez and result need to be generated from the status of a
core. Since the location of the register unit is known, its flipflop values can be read out to produce
the register value. The indez value is store in the respective CRCHardwareThread.

Since only a simple CRC Core is used, it is fairly easy to go from software to hardware and vice
versa. If however larger cores will be used and more difficult designs, it will become increasingly
difficult, if not impossible, to identify software variables in a hardware core.

5.3.3 CommandLine

As mentioned before the UserProgram also features a commandline which the user can use to com-
pletely control the program. In the current application, the commandline was only programmed
to know two CRCCores with the names CRC1 and CRC2.

The commandline features the following commands:

¢ "load hardware”. This command will bring up a menu to load a CRCCore onto the FPGA.
The user can specify the name and location of this core on the FPGA.

¢ "start hardware thread”. This command asks the user for the name of a core which it will
start a hardware thread for. In the current example the hardware thread used (CRCHard-
wareThread) will be started for a core specified by the user.

e "set hardware status”. When using this command the user needs to specify a CoréName
and location. At this location, the flipflops will be set so that the temporary calculation
value of the core is represented.

e ”stop hardware”. This command asks for a corename and removes this core from the FPGA.
The core is stored in an CoreStorage object within the CoreList object.
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e "restore hardware”. This command asks for a corename along with location and restores the
hardware configuration of that core at the given location. Mind that this command should
be given AFTER ”set hardware stasus”.

e "start software”. This command starts a software version of thé core CRCCore. Again the
user is allowed to specify the name of the core.

e "stop software”. This command asks for a corename and stops this software thread.

e "help”. Shows a list of the possible command which can be given.

5.4 Scenarios

To illustrate how the CRC RTR-application is working, a few scenarios are presented here. One
can start by starting a software CRC thread using the command ”start software”. This thread
will calculate the full length of the CRC array which results in a value X as answer. Next a CRC
core is put on the FPGA using "start hardware”. A hardware thread ("start hardware thread”) is
started to calculate the results of an entire array, which results in the same value X. This indicates
that both the software version and the hardware version result in the same value X, which is an
indication that the application is working correctly.

Next the more advanced routines of the application are tested to see if software to hardware
translation and vice versa works as well. This is done by ‘starting up a software thread ("start
software”), stopping this thread after one third of the calculation ("stop software”), setting the
flipflops ("set hardware status”) to reflect the status where the software thread stopped, put
the core onto the FPGA (”load hardware”) and starting its hardware thread ("start hardware
thread”). The hardware thread can now continue running for another third of the calculation
process, after that it will be stopped using the command ”stop hardware” and a software thread
can be start up using ”start software” again to continue calculating where the hardware thread
left off. When it is done calculating, the same result value X will be given. The UserProgram was
made to test having multiple cores running, so the same test was repeated with another hardware
core running which resulted in another correct value X.

5.5 Conclusions and future improvements

In this chapter the entire RTR-application was covered: its structure, its classes, the CRC algo-
rithm in both hardware and software and the translation between them. The goal of this thesis
has been met: covering the development of writing a RTR-application. The Virtex proved to be
suitable for the application, however it would have been even more suitable if it allowed to set
flipflop values during a reconfigure which currently is not supported (also see section 4.5: the
status of a core). JBits v2.8 is a perfect interface to have full control over the FPGA. To have
this much control is both a blessing and a curse. The good part is that you can do everything
in the eract way you want it, full control. The bad side is that programming cores using JBits
is difficult since one has to give command on how to program the core at CLB/flipflop/pin level.
Because of this it is easy to lose the overview of how a core is working. This is especially true if
you also need to consider the values of the MUXs in order to know what a core does. A solution
to this problem would be to develop a core in a high level language like VHDL and then be able
to put this VHDL core on the FPGA using JBits. The current problem however is that it is not
possible to use cores created by the Xilinx Foundation tools (used program a core in VHDL) in
JBits. My recommendation for anyone writing a RTR-application would my to use a low level lan-
guage/interface to have full control over the FPGA, while using a high level language like VHDL
to be able to program more complex cores than for example a CRC Core.

The RTR-application is developed to do CRC checks. However the hardware core needs to have
its input values transmitted by the CRCHardwareThread to the FPGA. As was noticed during
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testing, communication between software and the FPGA takes a lot of time. The reasons for this
communication to take such a long amount of time is because there is a thread continually running
to check if the FPGA is outputting new values on its IOB pins using busy waiting. Instead of
busy waiting other faster algorithms can be used, but their executing time will still be slow com-
pared to the input request rate of the FPGA. Therefore to get the best speed out of the FPGA,
communication between FPGA and software should be minimized.

Future improvements

Several improvements can be made to improve the versatility and speed of the RTR-application.
In short I aimed at dividing the RTR application in two parts, one for the actual application
programmer ( UserProgram) and one part for storing re-usable functions (ReconfigInterface). In
order to make the life of the programmer who- is developing the UserProgram as easy as possible,
one can make improvements to ReconfigInterface. Currently it is necessary to specify where a core
needs to be placed. Instead, a placing algorithm can be developed to place the core in the best
suitable location on the FPGA instead so that the UserProgram programmer does not have to
specify the location anymore. This will be especially useful if multiple UserPrograms will be put
on the FPGA by different applications (sharing a single FPGA).

Another improvement can be made in the WireManager class. Currently it only uses IOB pins
from the bottom IOB row to allocate IOBs to requests from cores. This can be expanded to have
all IOBs allocatable, but not only that, the algorithm can also consider which pins are closest to
which cores and allocate them accordingly.

Currently the RTR-application depends on the user (which enters commands in the commandline)
to tell when a core needs to be removed from the FPGA and whether it will run in hardware or
software or not. Instead of letting a user decide this, it can be preferable to use a scheduling
algorithm to make these decisions. However a scheduling algorithm brings its own problems along
because: how can a scheduling algorithm predict how long a core will need to execute before it
is done? Usually this is not possible unless the core has been tested on its running time. The
prediction algorithm will need to guess whether it is feasible to execute a task in hardware or
software.

The previous mentioned improvements for the RTR-application are not going to be a very big
problem to implement. A more difficult part will be the software to-hardware translation and vice
versa (as pointed out in section 5.3.2). This will especially hold true if a core is developed using a
high level language because this way the user will not know where important registers/variables
in the core are located or in which flipflops these values can be found. This is considering the
case that the software variables also exist in some way in the hardware version of the algorithm.
However since software and hardware differ fundamentally variables in software do not have to
occur in hardware. This problem can cover a thesis by itself.

Another difficult problem to solve is whether it is more feasible to run an algorithm in hardware or
software, or run maybe a tiny part of a software algorithm in hardware instead of it whole. Which
parts of an algorithm perform well in software and which part performs better in hardware? Again
these questions can cover an entire thesis.
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