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Abstract

When two or more agents have to perform an interaction that is part of a
business process instance (BPI) they can either follow an established protocol,
or use their own experience and judgment. In the second case, there is no
protocol enacted, or if it is, it does not cover special circumstances that occur in
this particular instance. In this case, the agents have to use their own experience,
acquired in previous and similar kind of interactions. Before the interaction, the
agents will build an intended behavior (their own course of action) and also will
presume what the other agents are doing (expected behavior). The intended
behaviors of the agents interacting are not always matching, in this case the
interaction will not be completed successfully. The process of collaboratively
changing behavior for successful matching is called alignment.

In this thesis, a formalism will be presented to define agents' behaviors (as
exhibited in agent to agent interactions), by an extension of Petri Nets. Sec-
ondly, it will be shown how behaviors of different agents can be aligned using
specific alignment policies. A mechanism using a neural network is proposed for
automatic choosing of an alignment policy by the agent. Furthermore, a method
how agents can overcome their lack of experience by escaping is described. This
research will make the system more reliable, and to reduce the necessary human
intervention. Possible future directions of research are also pointed out.
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"Every single man or woman who has stood their ground, everyone who has
fought an agent has died. But where they have failed, you will succeed." -

Morpheus (The Matrix)
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Chapter 1

Introduction

In The Agent Laboratory (TAL) 1291 research is focused on modeling, simulat-
ing and deploying agents to support business processes. Furthermore, TAL is
investigating novel architectures for building Multi-Agent Systems. The mod-
eling language TALL (Ihe agent kab anguage) is used for modeling business
processes with agents. This language is originally proposed by De Snoo [261,
but is recently extended by Stuit 1271. For simulating and deploying, the AGE
(Agent Growing Environment) framework is currently developed (24].

1.1 The need for alignment
\\rhen two or more agents have to perform an interaction that is part of a
business process instance (BPI) they can either follow an established protocol,
or use their own experience and judgment.

In the first case, the agents should learn or be instructed about the protocol
beforehand. They should be able to perform all the tasks that are imposed by
the use of the protocol (in other words: have the necessary skills to play that
particular role in that particular interaction). The protocol should be clear, cap-
tured in some (semi)formal way on paper and easy to explain to everybody that
has the chance to use it. The protocol should be based on previous experience,
success rates, quality standards, etc.

In the second case, there is no protocol enacted, or if it is, it does not cover
special circumstances that occur in this particular instance. In this case, the
agents have to use their own experience, acquired in previous similar kinds of
interaction. The agents will build before the interaction an intended behavior
(their own course of action) and also will presume what the other agents are
doing (expected behavior). These beliefs will form together a mental state what
we call the intended interaction or interaction belief of the agent in that situation
(before the interaction is started).

Imagine that there are two agents ready to start the interaction. They
can proceed immediately or they can exchange the intended behavior, if the

9



10 CHAPTER 1. INTRODUCTION

interaction is between two "dumb" software agents, it is possible that the two
behaviors will result in an interaction that will block, and it will not achieve its
goal.

For two humans, the deadlock can be solved somehow. If both agents realize
alter the interaction started that there is a mismatch in their beliefs about how
the interaction will go, they can roll-back and change in a collaborative way
their behavior in a way that promises success in ending the whole interaction. In
successive steps of trial and error, they usually manage to finish the interaction.
If exactly the same agents are interacting again in the future, they can use the
final behavior (which they memorize) that led to success. Of course, this will
not insure success again, because the circumstances (the environment factors)
can be different.

The process of collaboratively changing behaviors will be called alignment.

1.2 The alignment process
Typically, between humans, this alignment happens on the fly, during the in-
teraction. The behavior the agent has presumed of the other agent (expected
behavior) changes by the messages received of the other agent, if the messages
are different than expected. The agent can try to adapt his own behavior, so
the interaction can still succeed, despite the different messages. This way of
alignment can be in most situations very effective. However, because the inter-
action can still fail, the trial and error takes time and effort, and when a final
solution is built, it can be one which is very poor in terms of efficiency and/or
quality.

Two or more behaviors that have been aligned successfully are named match-
ing behaviors. The behaviors defined by a protocol have to be always matching.

if the agents do not manage to align their behavior on the fly, their complete
behaviors have to be compared. Because agents do not know each other behav-
iors, an agent standing above them who can access both behaviors is the most
suitable to align these behaviors. This agent can also be a software agent, but
can also be human. This is called escape mode, if one of the agents is calling
for a higher level agent to align the behaviors. A higher level agent can also
intervene in the interaction process a priori or during the interaction, to align
the agents intended behaviors. In both cases, the Deus ex machina adapts the
behavior of the agents 1241.

A third possibility which also happens in real life could be to align their
behavior a priori, by exchanging each own local behavior and analyze and dis-
cuss beforehand. Analysis can reveal potential deadlock and mismatches. The
interacting agents can align their behaviors before the interaction starts. Of
course, this will not ensure success, but it provides the interaction instance with
a matching set of behaviors. But for agents (in the AGE-framework) this can
be a difficult approach. Two agents could have a meta-level interaction before
the real interaction about this real interaction, and try to align their behaviors
a priori the real interaction in this way. But there is no way to ensure this
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meta-level interaction is aligned, and that this interaction will reach its goal of
two aligned behaviors for the real interaction. It could work if a protocol is
defined for this task, but of course this still will not ensure success. Without a
protocol, the best negotiator will probably get what he wants.

if we consider simulation, on-the-fly alignment caii be used for a priori align-
ment. The agents can simulate first a trial and error alignment session, and come
with a solution that is satisfactory in terms of matching and performance.

So the total problem of alignment for this thesis boils down to two problems:

• (automatically or manually) alignment of the agents own intended behav-
ior on the fly.

• (automatically or manually) alignment of intended behaviors of multiple
agents by an agent at a higher level (e.g. Deus ex machina).

A third possibility would be to align the intended behaviors by the agents them-
selves a priori the interaction. This happens in real life, but is probably to
difficult for this thesis.

1.3 Alignment as a way to match behaviors
In organizations where protocols and previous experience is scarce, the agents
who are interacting within the business processes are forced to do alignment all
the time. if experience is building up, the agents will exhibit more and more
often matching behavior, making the business processes to run more smoothly.
Also, the business processes will settle themselves in patterns that can be eas-
ily identifiable from a central perspective and make them explicitly supported
by workif ow enactment systems. Finally, we may end with a global protocol
imposed by the workflow description. We have poured the concrete over our
organization and this is now solid. This solution is useful for very strict orga-
nizations, like the military, the tax-office, safety critical environments (railways
control), etc.

However, environment, agent structure, organizational structure (roles), are
continuously changing. That will change behaviors and process structure, lead-
ing to necessary alignments. Most of the business organizations encounter high
rate of change. For these organizations, workflow and protocol based solutions
are not effective. They have to find ways to make alignment natural, easy and
efficient.

Most important, we should always assume that intended behaviors are never
matched. Each interaction instance (i.e. business process) is unique, and any
previous experience, however extensive, will not ensure success. Room and
means for alignment should be integral part of any agent system that serves a
highly changing environment. Even if protocols are enacted, it is not sure that
they can assure success in unforeseen circumstances.
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1.4 Related work
This research is based on two different research fields. On one hand, it is based
on workfiow research, which applies Petri Nets for modeling business processes
(See for example 181). The research of Van der Aalst on this subject also investi-
gates modeling inter-organizational workfiows (1, which is dose to the concept
of agent interaction. However, this approach is based on a central perspective,
where the behaviors of the two organizations is modeled from a central point of
view. He also describes when an inter-organizational workflow is sound [2,3,51.
This can however only be done when there is a overall perspective.

On the other hand, this research is based on agents. When two agents
are communicating, the global behavior is not central represented, because the
agents are executing their behavior distributed. They however have an (implicit)
representation of the expected behavior of the other agent, on which her own
behavior is based. This approach is inspired by anticipatory systems by Ekdahl
1111:

"Anticipation means that a system is able to make predictions about
what will happen when faced with a special situation and act in
accordance with this prediction. This implies that an anticipatory
systems will take into consideration future possible events in deciding
what to do in the present situation. Thus an effect is not explained
completely by a cause but by expectations. (...) More sophisticated
anticipatory systems are those which also contain its own model, are
able to change model and to maintain several models, which imply
that such systems are able to make hypotheses and also that they
can comprehend what is good and bad."

Looking at this description of anticipatory systems, our agents can be called an-
ticipatory. The intended behavior of an agent is based on the expected behavior
(which is the future behavior) of the agent interacting with. Furthermore, an
agent can maintain several models of her own behavior, and is able to change
its own model if needed. This is actually one of the main subjects of this master
thesis.

As far as we know, this is the first approach where research of those two fields
are combined, where workfiow techniques are used for modeling and verifying
agent behavior.

1.5 Structure of report
This report is structured as follows. Section 2 will discuss Behavior Nets, as an
extension of Petri Nets, which will be used for modeling agent behaviors. In
chapter 3 the three layer approach of behaviors will be explained. Chapter 4
operations are introduced on how Behavior Nets can be modified. Chapter 5
will discuss the interaction concept, Interaction Belief cycle and examples of not
aligned interactions are given. Chapter 6 and 7 will give methods for aligning
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two different behaviors, from a local and a global perspective. This reports
ends with a description of the created software in section 8 and a conclusion
and discussion in section 9 and 10.



Chapter 2

Behavior Nets, an extension
of Petri Nets

Petri Nets are a class of modeling tools, which originate from the work of Petri
1211. Petri Nets have a well defined mathematical foundation, but also a well
understandable graphical notation [25]. Because of the graphical notation, Petri
Nets are powerful design tools, which can be used for communication between
the people who are engaged in the design process. On the other hand, because
of the mathematical foundation, mathematical models of the behavior of the
system can be set up. The mathematical formalism also allows validation of the
Petri Net by various analysis techniques.

In this chapter, the definition of the classical Petri Nets will first be discussed.
Secondly, the workflow nets by Van der Aalst will be discussed, including some
properties and analysis techniques proposed by him. This chapter will end with
the definition of Behavior Nets, which will be used throughout this paper to
model agents behavior.

2.1 Classical Petri Nets
The classical Petri Net is a bipartite graph, with two kind of nodes, places
and transitions, and connections between these nodes called arcs. A connection
between two nodes of the same type is not allowed.

Definition of Petri Net A Petri Net is a tuple PN = (P, T, F, Mo)

- Pisafinite set of places

- T is a finite set of transitions

- F C (P x T) U (T x P) is a set of directed arcs

- M0 P — N is the initial marking

14
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A place p is an input piace for a transition t if there is a directed arc from p to
t. A place p is an output place for a transition t if there is a directed arc from t
to p. The notation .t is used to denote the set of all input places for transition
t, and t. is the set of all output places for this transition. The same can be done
for places, p. is the set of all transitions which have p as input, .p is the set of
all transitions having p as output.

A marking M = (M(pi), M(p2) M(p1pp)) represents a state of the mod-
eled system, which is the distribution of tokens over the set of places. Starting
from an initial marking M0 a new marking M is reachable if it can be reached
by means of a change to the state of the system. A transition t is enabled, if
every input node contains at least one token, so Vp E .t : M(p) � 1. An en-
abled transition may fire, which will change the current marking M1 into a new
marking M2. The effect of firing a transition t can be expressed as M1 tM2.
Firing a transition t will consume one token from each of its input places, and
produce one token in each of its output places. In this thesis, I will use the term
marking and state interchangeably.

In the remainder of this section, I will give the definitions of some properties
of Petri Nets 151•

Live A Petri Net PN with marking M is live, if for every reachable state M1
and every transition t there is a state M2 reachable from M1 which enables t.

Bounded A Petri Net PN with marking M is bounded if for every reachable
state and every place p the number of tokens in p is bounded.

Strongly connected A Petri Net is strongly connected if for every pair of
nodes x and y, there is a directed path leading from x toy.

Free-choice A Petri Net is a free-choice Petri Net lIT for every two places pi
and p2 either (p • flp2.) = 0 or Pi• = p..

2.2 Workflow nets
Workflow nets are a specific subclass of Petri Nets. The objective of a workflow
net is the modeling of how a specific case must be processed. The definition of
a workflow net is the following 13, 5J:

Definition of workflow net A Petri Net PN = (P, T, F, M0) is a WF-net
(Workflow net) if and only if:

- There is one source place i E P such that .i = 0.

- There is one sink place o E P such that o. = 0.

- Every nodexE PUTison apathfrom i too.
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A workflow handles cases. A WF-net has one input and one output place,
because any case handled by the WF-net is created when the process starts,
and deleted when the process is completely handled, i.e., the WF-net specifies
the life cycle of the case. The third requirement is to avoid dangling tasks and
conditions, i.e., tasks and conditions which do not contribute to the processing
of cases. For a more extensive discussion about WF-nets, the reader is referred
to [3, 5j.

One of the most important properties for WF-nets given by Van der Aalst is
soundness [31. Note that symbol i is used to denote both place i and the state
with only one token in place i.

Definition of soundness A WF-net PN = (P, T, F, Mo) is sound if and only
if:

- For every state M reachable from state i, there exists a firing sequence leading
from state M to state o. Formally:

VM(i —' M) = (M — o)

- State o is the only reachable state from state i with at least one token in place
o. Formally:

VM(2— MAM �o)=(M=o)
- There are no dead transitions in PN with state i. Formally:

VtETMI ,M21 ' M1 —+ M2

The first requirement states that starting from the initial state i, it is always
possible to reach the state with one token in place o. The second requirement
states that the moment a token is put in place o, all the other places should be
empty. Also the term proper termination can be used to describe the first two
requirements. The last requirement states that there are no dead transitions in
the initial state i.

Inheritance Inheritance is well defined for objects in Object-Oriented pro-
gramming languages. One class is a subclass of another class if and only if
it can do what the other classes can do. Moreover, it will typically add new
functionality. But for workflows and behaviors modeled as Petri Nets, this is
not so straightforward. For this problem, Van der Aalst has identified four
different notions of inheritance (6]: protocol inheritance, projection inheritance,
protocol/projection inheritance and life-cycle inheritance. The two important
for this thesis are discussed next.

Projection inheritance is based on abstraction. If it is not possible to distin-
guish x and y when arbitrary tasks of x are executed, but when only the effects
of tasks that are also present in y are considered, then x is a subclass of y with
respect to projection inheritance. In other words, when every task in x which
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Figure 2.1: Examples of projection inheritance

A A

(a) Superclass (b) Subclass 1 (c) Subclass 2 (d) Subclass 3

is not in y is replaced by an "empty" and not observable task, and afterward x
and y are not distinguishable, then x is a subclass of y.

Examples of projection inheritance are shown in figure 2.1. Workflow (b),
(c) and (d) are all three subclasses of workflow (a) with respect to projection
inheritance. When hiding task X in (b), the workflow is equivalent to (a). The
same is true for (b), if the detour of task X is hidden, the observable behavior
is the same as (a). If in (d) the parallel execution of X is hidden, this workflow
is also equivalent to (a), and thus a subclass. Note that none of the subclasses
shown in figure 2.2 on the next page are subclasses according to the notion of
projection inheritance, except (b). Workflow (c) of that figure is not a subclass
of (a) by projection inheritance, hiding task X would give the possibility to skip
task B, and would thus yield in a different behavior.

Protocol inheritance is based on encapsulation. If it is not possible to dis-
tinguish x and y when only tasks of x that are also present in y are executed,
then x is a subclass of y. In other words, if all tasks in x which are not in y are
blocked, and thus not executed, then when x and y are not distinguishable, x
is a subclass of y.

Examples of protocol inheritance are shown in figure 2.2 on page 18. Work-
flow (b) and (c) are both subclasses of workflow (a) with respect to protocol
inheritance. In both examples, blocking task X yields into the same workflow
as (a). Note that none of the subclasses shown in figure 2.1 are subclasses ac-
cording to the notion of protocol inheritance, except (b). Workflow (c) and (d)
of that figure are not a subclass of (a) by protocol inheritance, because both
workflows would deadlock when blocking task X.
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4

(a) Superclas8

Figure 2.2: Examples of protocol inheritance

2.3 Colored Petri Nets
In classical Petri Nets, there is only one type of tokens, the "black" indistin-
guishable tokens. In contrast to that, in Colored Petri Nets (or CP-nets), there
are different type of tokens, and thus can tokens be distinguished from each
other, hence they are called colored. A token in a CP-net can have all kind of
variables attached to it, numbers, strings, lists, etc..

Because of the variables of the tokens, guards can be added to the net, to
ensure a token has certain content, otherwise a transition may not consume the
token. Furthennore, CF-nets have expressions and bindings, which can alter
the content of the tokens. More information about Colored Petri Nets can be
found in (181.

2.4 Behavior Nets
In the following, I give the formal definition of Behavior Nets, which is partially
based on and an extension of Workflow nets, Self-Adaptive Recovery Nets (see
[161) and Colored Petri Nets. An example of such a Behavior Net can be seen
in figure 2.3 on page 20.

Definition of Behavior Net A Behavior Net is a tuple BN =
(E, P, Pm, T, Fi, Fo, i,o, L, D, C, B) where:

- E is a set of data types, also called color sets

- Pisafinitesetofplaces

—I

(b) SubclaaB 1 (c) SubcIa 2
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- Pm is a finite set of message places

- Tisaflnitesetoftransitions(suchthat PflPm=PflT=PmflT=O)
- Fi ç ((Pu Pm) x T) is a finite set of directed incoming arcs

- Fo ç (T x (Pu Pm)) is a finite set of directed outgoing arcs such that:

Vp E Pm: .p = 0 Vp. = 0

- i is the input place of the behavior with . = 0 and i E P

- o is the output place of the behavior with o. = 0 and o E P

- L: (P u Pm U T) —p A is the labeling function where A is a set of labels

- D : Pm —+ E denotes which data type the message place may contain

- G is a guard function which is defined from Fi into expressions which must
evaluate to a Boolean value such that:

Vf E Fi: [Type(G(f)) = bool A Type(Var(G(f))) ç E]

- B is a binding function defined from T into a set of bindings b, which binds
values (or colors) to the variables of the tokens such that:

Vt E T: [Type(B(t)) E E A Vv E Var(B(t)) : [b(v) E Type(v)1J

The set of types E defines the data types tokens can be, and which can be used
in guard and binding functions. A data type can be arbitrarily complex, it can
be for example a string or a integer, but it can also be a list of integers, or
combinations of variable types.

The places P and Pm and the transitions T are the nodes of the Behavior
Net. All these three sets should be finite. The extension of classical Petri Nets is
the addition of the set Pm which are nodes for sending and receiving messages
during an interaction. Such a message place is either a place for receiving or for
sending messages, it cannot be both.

Fi and Fo are sets of directed arcs, connecting the nodes. An arc can only
be from a place to a transition, or from a transition to a place. By requiring the
sets of arcs to be finite, technical problems are avoided, such as the possibility
of having a infinite number of arcs between two nodes.

Execution a behavior is part of an interaction process, an instance of the
behavior is created when the interaction starts, and deleted when the interaction
is completed. For this reason, the Behavior Net also has to have one input and
one output node, like with WF-nets.

With function L, a label can be assigned to every node. This has no math-
ematical or formal purpose, but makes the Behavior Net better understandable
in the graphical representation.
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Figure 2.3: Example of a Behavior Net
lrut place I --> 0

T pro.ict <-- ciatatype

() <-- messageplece

tr&isltlon --> ..pwduct

fr.cc.i4 R*ct <-- label

place-->

Pavi':.ns

Ibac

output place o -->

Function D denotes what data type a message place may contain. This is use-
ful for determining on which message place an incoming message will be placed.
Because the two (or more) behaviors in an interaction are distributively exe-
cuted, message places of both behaviors cannot be connected directly with each
other, the behaviors do not have to be aligned. However, TALL uses currently
interaction belief diagrams where message places are connected to transitions
of the expected behavior. In this thesis, the supplementary information of the
expected behavior is not used.

Function G is the guard function, which expresses what the content of a token
has to be, to let the transition consume the token from the place. Function G
is only defined for Fi, becanse it makes no sense to put constraints on outgoing
edges of transitions.

Transitions can change the content of a token. Binding function B defines
per transition, what the content of the tokens produced by the transition will be.
Bindings are often written as for example: (Ti, < x = p, i = 2 >), which means
that transition Ti will bind value p to x and value 2 to i. The values assigned
to the variables of the token (which data type must be in E) can be constants,
but can also be values of the incoming token, or values from the knowledge or
belief base of the agent.

Visualization Figure 2.3 shows how a Behavior Net can be graphically no-
tated. This figure shows most the the Behavior Net constructs. The figure
illustrates the behavior of a buyer, who will receive a product, and either ac-
cepts the product and pays the money, or reject the product and sends the it
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back.

Verification Verification of Behavior Nets can be done using workflow veri-
fication techniques of Van der Aalst 15, 3J. First, it can be checked if there is
only one input place and only one output place. Secondly, the soundness of
the behavior can be checked. For this purpose, the message places Pm have
to be removed from the behavior, and the functions C and B can be ignored.
Because only the behavior of one agent without the interaction components is
verified, this is referred to as local soundness. When the Behavior Nets of the
agents participating in the interaction are combined into one Petri Net, i.e. the
message places of the different behaviors are mapped on each other, the global
soundness of the interaction can be verified. More details about local and global
soundness can be found in [1J.



Chapter 3

Three layered behavior
models

As a modeled behavior cannot be executed immediately, a three layer approach
is proposed in this chapter. These three layers, and the relations between them
are shown in figure 3.1. The behaviors in all three layers are based on Petri Net
extensions. This three-layer approach is based on the play-in/play-out approach
of Hare! and Marelly [17J. When the behavior is executed in the compiled layer,
as discussed later on in this chapter, it is still possible to see the progress of this
execution in the TALL-layer, which is used for the modeling of the behavior.

3.1 TALL-layer

The top layer of the three layers is called the TALL-layer. The TALL-layer is
the layer used by humans to model the agent's behavior, and is the visualization
used when the behavior is executed, i.e. when running an interaction. For this
layer a reduced version of the process diagrams of the modeling language TALL
(The Agent Lab Language) is used. All model constructs which can be used are
shown in figure 3.2 on page 23 and discussed below.

Place A place in TALL is just like a place in Petri Nets, it is a state where a
token can be.

Start place A start place is just like a place, but it typically has no incoming
edges from other nodes.

End place A end place is just like a place, but it typically has no outgoing
edges to other nodes.
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Figure 3.1: Three layers behavior
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Message place A message place is used for sending and receiving messages
to other agents in the interaction. It always is a virtual place; it is not part of
the behavior of the agent itself, it only states that a message should be sent or
received.

Activity An activity is always connected with one or more places by incoming
edges, and one or more places by outgoing edges. It is just like an transition in
Petri Nets, and it can have a set of actions, which it executes when consuming
the tokens from the incoming edges. Such an action can for example be changing
the content of the token.

Compound activity A compound activity is a TALL process diagram in
itself. In this way, a multi-level behavior can be modeled, to abstract away
from certain details. The diagram in the compound activity should have as
many start- and end places as the number of incoming and outgoing edges the
compound activity itself has.

Arc The arc is used to connect a place with an activity or compound activity,
to define how the tokens should flow.

A typical example of a diagram in this layer is shown in figure 3.3, where
in the first activity, a message product should be received, and afterward the
product will be accepted or rejected, which will result in paying the money or
sending the product back.

Design time As said, the TALL-layer can be used by humans to model the
agent's behavior. The other two layers can automatically be created using the
behavior model of the TALL-layer by operations called Petri-fy and compile.
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Figure 3.3: example
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Figure 3.4: Example behavior layer

Product

zrj P:r product

Run time During run time, the places of this layer will be filled with tokens,
according to the current marking of the compiled behavior. In this way, a human
can follow the execution of the behavior of the agent in the original TALL layer,
while the behavior is actually executed at the compiled behavior layer.

Align time When the agent has automatically changed his behavior, the
model at the TALL-layer has to be rebuild, to allow the human to still follow
the execution of the behavior of the agent at the TALL-Layer.

A better understanding of this mechanism should be achieved after reading
the complete chapter.

3.2 Behavior layer
The second layer is the behavior layer. The behavior layer is the layer used by
agents for executing and dynamically changing their behavior. The diagrams
used in this layer are Behavior Nets as defined in chapter 2.4. A typical example
of such a diagram is shown in figure 3.4 on page 25.

Design time The diagram shown in figure 3.4 is actually equivalent to the
diagram shown in figure 3.3 on page 24, but the compound activities are "ex-
ploded" to activities on one level. Also, all typical TALL-constructs are reduced
to Behavior Net constructs. For this reason, the operation of converting a be-
havior diagram of the TALL-layer to a behavior diagram for the behavior layer
is called Petri-fying, as the TALL diagram is reduced to an extension of Petri
Nets.
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Table 3.1: TALL constructs and their Behavior Net equivalents
TALL model construct Behavior Net equivalent

Place Place in P
Start place Place in P, and i
End place Place in P, and o

Message place Place in Pm
Activity Transition in T

Token road Arc in Fi or Fo
Message road Arc in Fi or Fo

Table 3.1 shows how all the TALL model constructs are reduced to get a
valid Behavior Net. In TALL, there are no formal definitions of data types,
guard expressions, and binding functions. For this reason, we presume that the
TALL-model that we want to reduce to a Behavior Net is modeled with the
same definitions of data types, guard expressions and binding functions as used
in Behavior Nets.

Run time During run time, the places of this layer will be filled with tokens,
according to the current marking (or state) of the compiled behavior.

Align time During align time, the agent will adapt her behavior, as will be
discussed later on in this report. After dynamically adapting her behavior, the
compiled layer explained in the next section has to be recreated by compiling,
and the tokens which are currently in the behavior layer will be used to fill the
places of the compiled layer with tokens again.

3.3 Compiled behavior layer
The actual layer which will be executed by the engine is the compiled behavior
layer. Diagrams used for this layer are Behavior Nets just like with the behavior
layer.

Debug and align time When the behavior layer is changed, the compiled
behavior layer has to be rebuild, by compiling the behavior layer. Compiling
adds extra nodes and edges for message handling and error detection. An exam-
ple of such a diagram is shown in figure 3.5 on page 27. The colored nodes are
the original diagram, as shown in figure 3.4 on page 25. Extra nodes are added
to the diagram, with the purpose of collecting data if there is no progress in the
execution of the data, and to handle the incoming and outgoing messages. The
following extra nodes are added:

• An extra place on which incoming messages will be placed by the engine.
This node is called incomingMsg.
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Figure 3.5: Example compiled layer
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• An extra place on which outgoing messages will be placed, and which will
be read by the engine, to check for messages to send to other participants
in the interaction. This node is called outgoingPlsg.

• A place called error, for collecting error tokens, an transition align, in
which a dynamic change of the behavior can be initiated, and a place
called sink in which all error tokens will end up.

• For every place in the behavior, expect the places error and sink, an
extra transition e will be added, which will consume the token on that
place when the token is not moving for some amount of time (in the
example 20). This transition will immediately put back the same token
on this place, and sends a token to the error place. In this way, the
information about the problem can be collected, by putting content in the
error tokens telling where the tokens are not moving. The align transition
can take some appropriate action, based on the content of the tokens it
receives.

• For every original incoming message place an extra transition m will be
added, which connects the new place incomingNsg with the original mes-
sage place. The label of the original message place is added as a constraint
to the edge, to ensure the received message will go to the appropriate mes-
sage place. When an unknown and/or unexpected message type message
is received, an error token telling this will be send to the error place, by
the previously added transition e.

• A new start node is added (not shown in the picture), connected with
a transition to the original start node, to maintain the property that a
Behavior Net has one start node, which has no incoming edges.

Run time During run time, the marking (or state) of this layer will be used
to fill the places of the behavior layer and the TALL-layer.



Chapter 4

Modifying Behavior Nets

As most people see the reactivity for external events as the main problem of
workflows (and thus for Behavior Nets; received messages can be compared to
external events) 114, 15J, it is of importance to investigate how Behavior Nets
can be modified, to suit them for reactive adapting for e.g. unexpected received
messages. In this chapter will be discussed how Behavior Nets can be modified,
as in chapter 6 and 7 these techniques will be applied for automatically adapting
Behavior Nets.

4.1 Operations preserving global soundness
In [6J, Van der Aalst describes inheritance preserving transformation operations
for private workflows in inter-organizational workfiows. When such a operation
is applied to a private workflow, this will not disturb the public process. These
operations can be applied in the same way for behaviors in interactions as for
workflows. Applying the operation will not disturb the interaction, for exam-
pie by creating deadlocks. This is because the new behavior are subclasses of
the old behavior (by projection inheritance, see [6]), and thus will this trans-
formation have no effect on the interaction. The three inheritance preserving
transformation operations according to Van der Aalst can be seen in figure 4.1
on the following page.

Transformation operation PP Adding a subnet to a place, which tem-
porarily removes the token from the original place, as seen figure 4.1(a). This
preserves soundness, as long as the new subnet itself is also sound, i.e. when it
returns a token top, there should be no "orphan" tokens left in the new subnet.

Transformation operation PJ Adding a subnet between a transition and a
place (see figure 4.1 (b)). This preserves projection inheritance, because when
we abstract away from the added subnet, the behaviors are identical.

29
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Figure 4.1: Transformation operations preserving inheritance
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Transformation operation PJ3 Adding a subnet between two transitions
(see figure 4.1 (c)). This preserves inheritance for the same reason as with
transformation operation PJ.

4.2 Operations preserving local soundness
in 1101 Chrzastowski-Wachtel et al. give operations for building dynamic work-
flows top down. They give five refinement operations (sequential place split,
sequential transition split, OR-split, AND-split and loop) which preserve local
soundness, and can be used for top-down model development. The inverse of
those operations are not given, but it is obvious that they also can be used in
bottom-up modeling. Also non-refinement operations are given, for communi-
cation and synchronization, which preserve soundness when they are applied
under certain conditions. Van der Aalst gives in 151 a set of soundness pre-
serving transformation operations similar to the refinement operations given by
Chrzastowski-Wachtel et al.. He gives five pairs of basic transformation oper-
ations, each time a operation with its inverse. Below I will briefly discuss the
relevant operations for adapting behavior.

Division/aggregation Splitting a transition into two sequential transitions.
This is what Chrzastowski-Wachtel et al. call sequential transition spilt. The
inverse is called aggregation. This can be seen in figure 4.2 (a).

Specialization/generalization Dividing a transition into two specializations.
Chrzastowski-Wachtel et al. call this an OR-split. The inverse is called gener-
alization. This can be seen in figure 4.2 (b).

Parallelization/sequentialization Two sequential transitions will be exe-
cuted in parallel. This same effect can be reached with the AND-split and
the sequential place split of Chrzastowski-Wachtel et al. The inverse is called
sequentialization. This can be seen in figure 4.2 (c).

Iteration A transition is replaced by an iteration over another transition.
This is similar to the loop of Chrzastowski-Wachtel et al. This can be seen in
figure 4.2 (d). Also the inverse of the iteration can be applied, albeit it does not
have a name.

Communication A message place is added to or deleted from a transition,
for receiving and sending messages. These operations are a addition to the one
mentioned by Van der Aalst and Chrzastowski-Wachtel, because Behavior Nets
are used for modeling interactions from an agent perspective. These operations
can be seen figure 4.2 (e) and (f).

The proof of the soundness preserving properties of these operations can be
found in 15, 101
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Figure 4.2: Tiansformation operations preserving soundness
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Table 4.1: Primitive operations
Operation Effect

CreatePlace(p) A place p is added to P
DeletePlace(p) A place p is removed from P
CreateMessagePlace(p) A message place p is added to Pm
DeleteMessageP].ace(p) A message place p is removed

from Pm
CreateTransition(t) A transition t is added to T
DeleteTranaition(t) A transition t is removed from T
CreateArc(x E (Pu Pm),y E T) Add an arc to Fi connecting

place x with transition y
CreateArc(x E T,y E (P U Pm)) Add an arc to Fo connecting

transition x with place y
DeleteArc(x E (Pu Pm),y E T) Removes an arc from Fi connecting

place z with transition y
DeleteArc(x E T,y e (Pu Pm)) Removes an arc from Fo connecting

transition x with place y
SetLabe].(x E (Pu Pm U T),l) Sets the label of x to I
SetDataType(x E Pm,y E E) Sets the data type x may contain to y
CreateGuard(x E Fi,g) Adds guard g to arc x
DeleteGuard(x E Fi,g) Deletes guard g from arc x
CreateBinding(t,b) Adds binding b to list of bindings of t
DeleteBinding(t,b) Removes binding b from list of

bindings of t
CreateToken(p E P,t) Adds token t to place p
DeleteToken(p E P,t) Deletes token t from place p

4.3 Primitive operations
Based on [161, in Behavior Nets, there are some primitive operations for mod-
ifying the net structure. A complete list of these operations is shown in table
4.1. Several of these primitive operations can be combined in order to create
a more advanced operation. Applying primitive operation has no guarantee at
all to preserve local or global soundness. However, combining them in a way
defined in the next section will ensure local soundness.

4.4 Advanced operations
Some of the operations mentioned under operations preserving local soundness
are equal to the operations preserving global soundness. However using op-
erations which preserve the global soundness (of which the agent changing its
behavior does not know if it exists) are the most safe rules to use. More specif-
ically, if after using a set of rules for adapting the behavior, the new behavior
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still is a subclass of the old behavior, this has the least chance to mess up the
interaction. In addition to the primitive operations, as mentioned above, the
advanced operations of table 4.2 on page 35 can also be used to modify the
net structure of a Behavior Net, but have the advantage that local soundness
is preserved. Note that all these operations can be made by combining a set of
primitive operations.

For some of the operations, marked with , is it not always clear how they
can be applied on-the-fly, because of the dynamic change problem (6, 4]. For
example, the sequentialization, as mentioned above, cannot be applied for every
token-configuration, as it is not always clear where on which place the tokens
from the old behavior should be placed. For modeling the change schemes the
approach of Ellis et al. [13] is used. By modeling an workflow change as a
workflow, it can be exactly defined how to migrate the tokens from the old
behavior to the new behavior. This can also be described using the primitive
operations shown in table 4.1 on the previous page. For the receiveNessage,
notReceiveMessage, sendMessage and notSendMessage, nothing needs to be
done for the migration, as there is no change in the places, except for the message
place, which initially will not have a token. In figure 4.3 on page 36 (a) can be
seen how the migration for the operation parallelization can be modeled. Figure
4.3 (b) shows how the same can be formalized using primitive operations.
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Table 4.2: Advanced operations
Operation Effect

Division(t,t,t) Divides a transition t into two
sequential transitions t'1 and t'2

Aggregat ion(t1 ,t2 ,t') * Aggregates two sequential transitions
t1 and t2 into one transition t'

Specia1ization(t,t,t) Specializes transition t into two
specializations t'1 and t, chosen by
an OR-split

Generalization(t1,t2,t') Generalizes two transitions t1 and t2
into one generalization t'

Parallelization(ti,t2) Puts two sequential transitions t1 and t2
into parallel

Sequentialization(ti,t2)* Puts two parallel transitions t1 and t2
into sequential

Iteration(t,t') Replaces transition t by an iteration
over transition t'

Nolteration(t,t') Replaces an iteration over transition t
by a transition t'

ReceiveMessage(t,m E ) Add an incoming message place with
an arc connected to t, which receives
a message of type m

NotReceiveMessage(t,m E E) Deletes an incoming message place
connected to t, which receives
a message of type m

SendNessage(t,m E E) Add an outgoing message place with
an arc connected to t, which sends
a message of type m

NotSendMessage(t,m E ) Deletes an outgoing message place
connected to t, which sends
a message of type m
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Figure 4.3: Migration of old to new behavior
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Chapter 5

Interactions

When two agents are performing an interaction, they both choose a behavior
to execute, which is based on a certain expectation of what the other agent
is going to do. Both agents' behaviors will be executed distributively, and
the environment will handle the sending and receiving of messages. The agent
behavior and its belief of the behavior of the others together form the Interaction
Belief. This chapter will discuss the Interaction Belief cycle, and will give some
examples of not aligned behaviors.

5.1 The Interaction Belief cycle
The Interaction Belief cycle defines how an agent manages Interaction Beliefs,
which consist of the agent's intended behavior, combined which the expected
behavior of the other agent interacting with. The cycle consists of selecting
a behavior for an interaction, recording interaction logs, and learning new be-
haviors. Figure 5.1 illustrates the Interaction Belief (IB) cycle. The cycle is

Figure 5.1: The behavior cycle
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initiated when the agent will participate in an interaction. The complete cycle
consists of the following steps:

1. The agent selects a generic interaction from her belief base of Interaction
Beliefs, which she finds the most appropriate for the interaction to be
performed.

2. This generic interaction defines the intended behavior the agent herself is
going to execute, and the e.ipected behavior of the agent with which the
agent is going to interact.

3. After the interaction is executed, the interaction as it was executed in-
cluding the interaction results will be recorded in the interaction logs.

4. New Interaction Beliefs can be learned from the database of interaction
logs.

Two different types of change of the intended behavior and interaction can occur
during this cycle, momentary changes and evolutionary changes 141.

Momentary changes Momentary changes will only affect the current inter-
action, and not the generic known interaction models of the agent. Changes to
the intended behavior can be made by the agent herself (local alignment) or by
an agent superior to both agents participating in the interaction, e.g. the Deus
Ex Machina (global alignment). These two types of alignment will be discussed
in the next chapters.

Evolutionary changes Evolutionary changes are changes to the generic In-
teraction Beliefs, which apply to all future interactions of the agent. From the
interaction logs of all interactions executed by the agent can new interaction
models be derived. A technique which can be used for this is process mining
171, which extracts process models from event logs, such as the interaction logs.
Evolutionary changes of behaviors and generic interactions are outside the scope
of this report.

5.2 Examples of Interactions
In this section, several examples of interactions in which the intended behaviors
of the two agents interaction that are not matching are presented.

5.2.1 Manager and programmer
A typical example is where the manager asks a programmer for a status report
about a certain project, but the programmer interprets this by giving a too
technical document. This example is illustrated in figure 5.2 on page 39, where
the manager expects a short status report, and the programmer gives the change
log of the code.

I
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Figure 5.2: Interactions Beliefs of the manager and programmer
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(a) Interaction Belief of the manager (b) Interaction Belief of the programmer

This problem can be solved in several ways. If the manager is able to un-
derstand the change log, he might be able to subtract the information he needs
from the change log. Another possibility would be to ask a third person to sub-
tract this information from the change log. A third option is to try to change
the behavior of the programmer, to enforce him to give the short status report
the manager is expecting. This last solution is only possible if the manager has
the authority to impose that.

In general, one can say if an agent receives another message than expected,
she has (at least) these three options:

• convert the message yourself

• let someone else convert it for you

• let the agent interacting with send you another message

5.2.2 Buyer and seller

The second example is a more complicated one. A buyer and a seller already
agreed on the product the buyer wants to have. But they have different beliefs
of how the actual transaction will happen. The example is shown in figure 5.3
on the following page, in which the two Interaction Beliefs are shown. The buyer
first expects the product, and if he accepts it, he will send the money, otherwise
he wants to send the product back. The seller however, first expects the money,
and wants to send the product afterward.
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Figure 5.3: Interaction Beliefs of the buyer and seller

S —,
S.ndy

—

p-a

. S • S
(a) Interaction Belief of the buyer (b) Interaction Belief of the seller

This interaction immediately deadlocks. This can be solved, if one of the two
participants is willing to change the order. If they do not want to change order,
a third party (Deus ex machina) is needed to solve the conifict. Furthermore,
the sending back of the product by the buyer is not expected by the seller, so
either the seller should accept a returned product, or the buyer should not send
the product back.



Chapter 6

Local alignment

Before two agents start an interaction, they will both individually choose a
behavior they are going to execute, based on what they are expecting of the
interaction. An interaction however will not successfully terminate, if the be-
haviors of the agents interacting are not matching. To overcome this problem,
agents have to be able to change their behavior on-the-fly, i.e. during the in.
teraction. Alignment policies can be used by agents to change their behavior
on-the-fly.

6.1 Collecting problem information
As discussed in section 3.3, the modeled behavior itself is not executed, but
the compiled version of it. By compiling, extra nodes are added to the original
behavior, for collecting information when there is no progress in the execution
of the behavior. This information can be used for selecting a proper alignment
policy, which is the best for coping with the problem. Figure 6.1 shows what
information can be collected by the extra nodes added when the behavior is
compiled. The colored nodes are the nodes of the original behavior, just as in
figure 3.5 on page 27. The align transition is the transition where all collected
information is gathered, and (if necessary) an alignment policy is chosen and
executed. The original behavior has only one transition act which expects
one incoming message ml. This transition act failed to execute, so all the
gathered information is about transition act , to make the align transition
able to choose an alignment policy which will successfully align the behavior
around the transition act. Despite this simple example, this example shows
all ways of how information used for choosing an alignment policy for aligning
around a certain transition is collected:

• When a token from a place is not moving (place start in this example).
In this example, transition el will send information about this to the align
transition. It will send the following information:
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recloken, short for received token, to inform the align transition
that there is a token on that place in the behavior
transition, the name of the transition for which the recToken is
required to enable it (act in the example)
expMsg, the data type of the message expected by the transition (in
this example the data type of messages ml may contain)

• When a known received message is not moving (place ml in this example).
In this example, transition e2 will send information about this to the align
transition. It will send the following information:

recMsg, the data type of the received message (in this example the
data type which ml may contain, which of course equals the data
type of the message, because otherwise the message would not be on
this place)

— expMsg, the data type of the expected message (also the data type
ml may contain)

— transition, the name of the transition which is connected to the
message place (act in the example)

• When an unknown message is received (the message place in this example).
In this example, transition e3 will send information about this to the align
transition. It will send the following information:

— recMsg, the data type of the received message

This information is collected separately for every transition, where problems
arise.
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Figure 6.1: Information collecting
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Table 6.1: Examples of alignment policies
Policy # Operations

1 parallelization(transition,seqThznsition)
2 notReceiveMessage(tninsition,expMsg)

special izat ion( transition,Receive expMsg, Receive recMsg)
receiveMessage(Receive expMsg,expMsg)
receiveMessage (Receive recMsg,recMsg)

Table 6.2: Variables for defining parameters of operations
Variable Will be replaced with
transition the name of the transition
seqTransition the name of the transition which is sequential

placed after transition
parTtansition the name of the transition which is parallel

with transitions
specTransition the name of the transition which is mutual

exclusive to transition, and originates from the
same specialization

expMsg the data type of the expected message
recMsg the data type of the received message

6.2 Alignment policies

An alignment policy is a set of primitive or advanced operations. In our ap-
proach, an agent has a set of policies in her knowledge-base from which she
can choose when an interaction for example has deadlocked, i.e. when there
is no progression anymore in the execution of the behavior. Table 6.1 shows
some example policies. As can be seen in the table, the two policies are no
more then a ordered set of operations. Policy 1 puts two transitions in par-
allel. Policy 2 makes a specialization of a transition, which expects a certain
message, into two transitions, one that expects the original expected message,
and the other that expects the received message. Instead of giving fixed names
as parameters for the operations, also variables can be used when defining a
policy (or a combination of both). When the policy is actually executed, these
variables will automatically be replaced by the appropriate values for that sit-
uation. The advantage of this is that in this way a more general policy can
be defined, what is not only restricted to a given name of the transition and
message types. Table 6.2 shows the list of variables what can be used when
defining the parameters, and with what they will be replaced.
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6.3 Choosing a policy
With the collected problem information, and other beliefs the agent has, a policy
needs to be chosen, in order to overcome the problem with the interaction. For
selecting a policy, the agent has a base of training examples, which contain the
problem information and the policy which was chosen at that time. A machine
learning technique has to be used to generalize over this data, and to make the
agent able to choose a policy based on experience. How an agent will choose an
alignment policy (or if she will choose one at all) depends on multiple factors.
The factors discussed next are: problem information, beliefs about the agent
interacting with, and the willingness to change its own behavior.

Problem information Most of the time, a problem will occur, when the
agent is not receiving the message she is expecting. It can be that the agent
did not receive a message at all, or received a different type of message than
expected. if she did receive a message, the type of the received message and
other information about the problem can be used as attributes for selecting the
proper alignment policy.

Beliefs about the agent interacting with Beliefs about the other agent can
be of great importance when choosing an alignment policy. When for example
the agent completely trusts the other agent, she might be willing to make more
"sacrifices" in changing her behavior than when she distrusts the other agent.

Willingness to change behavior When an agent has very advanced and
fine-tuned behaviors, it is not smart to radically change the behaviors because
of one exceptional interaction. On the other hand, when the behavior of the
agent is still very primitive, changing it a lot could be a good thing to do. So
when an agent gets "older", and the behaviors are based on more experience, the
willingness to change her behavior will decrease. This approach can be com-
pared with the way humans learn, or with the decreasing of the learning rate
over time when training a neural network.

The total process of local alignment is shown in figure 6.2. As the figure
shows, the decision algorithm (in our case a neural network) will use the collected
problem information and values from the belief base (like trust and willingness)
to choose an alignment policy, when there is a problem with executing the
Behavior Net. It can however be the case that the agent does not have an
appropriate alignment policy for this specific problem. In this case, the agent
can trigger escape mode, and ask a human user to give a policy. After the escape
mode, the decision algorithm needs to be re-trained, because a new situation in
which to apply a certain alignment policy is learned (which is a new training
example for the decision algorithm). A human can also teach the agent a new
alignment policy, in that case the agent learned a new training example and a
new policy. In either way, the agent has learned new ways to overcome her lack
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Figure 6.2: Local alignment
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of experience. More information about the concept of escape mode can be found
in 1241. After the alignment policy is chosen, either by the decision algorithm
or by a human, this policy will be executed to adapt the Behavior Net.

The machine learning technique we will use for choosing an alignment pol-
icy are neural networks 1201. Neural networks have a practical advantage over
decision trees, because not only the selected class (in our case the policy) is
returned, but also the activation levels of all classes. In this way, one can know
the certainty of the choice of the neural network. In our case, we will compare
the activation level of the selected policy with the activation level of the runner-
up (the second-best policy). We require that the activation level of the best
policy is factor x (with x> 1) higher than the runner-up, otherwise, the agent
will go into escape mode. In this way, the agent will not execute an alignment
policy, when it is questionable that it is suitable for the current problem, and
will ask a human for advise. For training the neural network, the open source
Java data mining software WEKA is used 1281. An example of the training data
with which the neural network is trained is shown in table 6.3 on the following
page. Figure 6.3 shows how the neural network for choosing an alignment policy
looks like.
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Table 6.3: Example of training data
Example# 1 2

[

transition Receive money Receive money ...

seqTransition Send product ...

parTransition Send product ...

specTransition ...

recToken yes yes ...

recMsg product ...

expMsg money money ...

Trust 1 1 ...

Willingness 1 1 ...

Policy 1 2 ...

Input layer

Hidden layer

Output layer

Figure 6.3: Neural network
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Figure 6.4: Behaviors of buyer and seller
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6.4 Example

To demonstrate how these alignment policies could work, this section will give
an example, as a proof of concept. In this example, as shown in figure 6.4,
the buyer and the seller already agreed on the product the buyer wants to buy,
but as seen in the figure, they have different ideas of how the delivery and the
payment should go. For the sake of the example, we assume that the behavior of
the buyer is very advanced, and thus has no willingness to change her behavior.
On the other side, the seller is inexperienced and her behavior is still primitive,
so we are looking at the problem how the seller can align her behavior with the
buyer, assuming that the seller has trust in the buyer.

When the interaction starts, it immediately deadlocks; the buyer is waiting
for the product, and the seller is waiting for the money. The seller will collect
the information in the way explained in section 6.1. Besides the name of the
transition, also seqTransition, parlransition and specTransition (as ex-
plained in section 6.2) are looked up. The total collected problem information
is shown in table 6.4.

(a) Buyer
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Table 6.4: Collected problem information (1)
Information Value

transition Receive money
seqTransition Send product
parTransition
specTransition
recToken yes
recMsg
expMsg Money

This information is used by the neural network to select the appropriate
alignment policy (if there is one). For this example, the neural network of
figure 6.3 on page 46 is used. This leads to executing policy 1 of table 6.1 on
page 43. This means that the seller will place her two transitions in parallel,
so she sends the product, and waits for the money in parallel. Hence, by using
this alignment policy the behavior of the seller will change to the behavior as
seen in figure 6.5 (a) on page 49.

Still the two behaviors are not aligned, if the buyer rejects the product, and
sends it back, the seller still does not have the appropriate behavior to handle
this; the seller is only expecting the money. When the buyer sends the product
back, the seller will collect the problem data as shown in table 6.5 on page 48.

Table 6.5: Collected problem information (2)
Information Value

transition Receive money
seqTransition
parTransition Send product
specTransition
recToken yes
recMsg Product
expMsg Money

The neural network for selecting an alignment policy is used again, and
this time policy 2 of table 6.1 on page 43 is chosen. The seller will divide the
transition receive money into two mutual exclusive transitions: receive money
and receive product. This will change the behavior as shown in figure 6.5 (a)
into the behavior as shown in figure 6.5 (b). The behaviors of the buyer (figure
6.4 (a)) and the behavior of the seller (figure 6.5 (b)) are now matching.
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Figure 6.5: Adapted behavior of seller
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Chapter 7

Global alignment

In stead of every agent trying to adapt her own behavior, one agent at a higher
level could try to align the intended behaviors of both agents. This has to be a
higher level agent, because the agent has to have access to the behaviors of both
interacting agents. This way of alignment can be done before the interaction
starts, or when the two agents do not manage to align their behaviors on their
own. This chapter will discuss a method how this could possibly be done, but
will not give a full worked out method as for local alignment. Working out this
method can be seen as possible future work.

7.1 Global soundness
A way to check if two behaviors are aligned is to check if the "global" behavior
is sound. In other words, one has to make one global behavior out of the two
local behaviors, and check if this global behavior is sound. This can be done
in in the way as described by Van der Aalst for inter-organizational workflows
[1J. In order to create one behavior out of the two, the message places of the
two behaviors have to be mapped on each other. F\irthermore, an extra input
place has to be added, which will be connected with a transition to the original
input places of the original behaviors' input places. The same has to be done
with the output places. An example of such a behavior is shown in figure 7.1.
This is the behavior of the buyer of figure 6.4 (a) on page 47 combined with the
behavior of the seller of figure 6.4 (b).

By checking if this behavior (which actually is an interaction) is sound, we
know that it will proper terminate (i.e. with only one token in the output
place), and that it has no dead transitions. As proved by Van der Aalst in
the behavior is sound when the marking of the behavior with only a token in the
input place is live and bounded (for the definitions of live and bounded Petri
Nets, see section 2.1 on page 14). However, for this, we have to add one extra
transition to the behavior, which connects the output node with the input node.
This is required for checking the live property.
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If we would verify the behavior of figure 7.1 on the preceding page, it is
obvious that it is not sound. There is no reachable state which would enable
the transition "Receive product" of the buyer, and the same is true for the
transition "Receive money" of the seller. Of course is the same true for the rest
of the transitions of the buyer and seller, as they require a token which has to
be produced by one of the previous mentioned transitions.

7.2 Aligning the behaviors
The agent aligning both the behaviors can run a simulated interaction with
the two behaviors, just like what humans can do with the interaction simulator
described in chapter 8. When the interaction is stuck, the agent can collect
problem information just as with local alignment, but now the agent gets to
sets of problem information, one for each behavior. The agent aligning the
behaviors has to choose which of the two behaviors it will adapt. This decision
can for example be based on how advanced the behaviors are. The rest of the
process could be the same as with local alignment. With the problem data
of that behavior, an alignment policy can be chosen, and this policy can be
applied on the behavior. After applying the policy, the agent can continue the
simulation. if the agent does not know how to align the two behaviors, it can
go into escape mode, just as with local alignment.

'I

-A



Chapter 8

Software

During this master graduation project, software has been created to test the
Behavior Nets and automatic alignment with policies in interactions. For this
purpose, three different applications are created, the behavior editor, the inter-
action simulator, and the alignment editor. As the names suggest, the behavior
editor can be used for creating a Behavior net for an agent for a specific interac-
tion, the interaction simulator can be used to simulate an interaction between
agents with different behaviors, and the alignment editor is used for learning
the agents new alignment policies and when to use them. The relations between
the applications, and their used components can be seen in figure 8.1 on the
next page. All this will be discussed in more detail in the upcoming sections of
this chapter.

8.1 Software components
This section will describe the major classes as shown in figure 8.1 on the following
page, including their major properties and functionality.

8.1.1 Behavior Model
The class BehaviorModel is in principle not much more then a list of nodes and
a list of edges. The list of nodes consists of objects which are subclasses of the
abstract class Node, and the list of edges consists of objects which are subclasses
of the abstract class Edge. Both Node and Edge are a subclass of ModelEntity,
which only has one property, namely a ModelEntitylD. The class diagram in
figure 8.2 on the next page shows the relations between the classes that are part
of a behavior model. The classes are discussed in more detail in the remainder
of this section. The class BehaviorModel also has the functionality to save the
behavior model as XML, and to reload a saved as XML behavior model. All
classes which are part of a behavior model have their functions, for saving and
reloading that part of the behavior model to XML. This has the advantage that
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new subclasses can easily be added, if you just define in this new class how it
can be converted from and to XML. In this way, custom properties can be added
to every class.

The nodes

There are a variety of different subclasses of Node implemented. They can be
divided in nodes which can be part of a Behavior Net, and nodes which are
part of the TALL language. For Behavior Nets, the following node classes are
implemented:

PlessagePlace
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Figure 8.1: Class diagram of the main components

Figure 8.2: Class diagram of the behavior model
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• Transition

The following node classes for TALL are implemented:

• Activity, which is a subclass of Transition

• Compound.Activity, which contains a BehaviorModel itself, and is a sub-
class of Transition

• DataStore, which is a subclass of Place

• EndPlate, which is a subclass of Place

• Externa].Procesa, which is a subclass of Transition

• MessagePlate, which is a subclass of MessagePlace

• Plate, which is a subclass of Place

• StartPlate, which is a subclass of Place

All nodes which are a subclass of Transition have a list of bindings, which
contains objects which are subclasses of the abstract class Binding. These
bindings are executed after the transition has consumed the tokens, and before
the transition has produced the tokens, as the bindings can alter the content of
the produced tokens. The following bindings are implemented at the moment:

• AlignBinding, which will start the AlignmentModel to modify the be-
havior on-the-fly

• ConstantBinding, which binds a constant value to the tokens which will
be produced

• CopyContentBinding, which binds all values of the consumed tokens to
the tokens which will be produced

• ShowMessageBinding, which pop ups a message which can show some of
the content of the consumed tokens

• TokenContentBinding, which binds one specific value of the consumed
tokens to the tokens which will be produced

The edges

There are a variety of different subclasses of Edge implemented. They can be
divided in edges which can be part of a Behavior Net, and edges which are part of
the TALL language. For Behavior Nets, the following edge class is implemented:

• NormalEdge, which is just an edge to connect two nodes

The following edge classes for TALL are implemented:
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• DataR.oad, which should be used for connecting a transition with a data
store

• MessageRoad, which should be used for connecting a transition with a
message plate

• TokenRoad, which should be used for connecting transitions with the other
places

All edges have a list of guards, which contains objects which are subclasses of
the abstract class Guard. Guards are evaluated before a transition consumes a
token from a place, connected with the edge the guard is attached to. In order
to let the token be consumed by the transition, the guards must evaluate to
true. The following guards are implemented at the moment:

• TimedGuard, which lets the transition wait for a certain time, before it
can consume the token

• TokenContentGuard, which gives a constraint to the content of the token,
before it allows the transition to consume it

8.1.2 Swim lane

A SvimLane object is no more then the set of objects needed to run a behav-
ior and to visualize it. A swim lane has three BehaviorflodelWrappers, as
it can visualize the behavior on all the three layers, as discussed in section 3.
Furthermore, it contains the simulator to control the token flow through the be-
havior. Finally it contains the alignment model needed for automatic on-the-fly
alignment of the behavior model.

8.1.3 Interaction Model

An interaction model is implemented by the class Interact ionModel. An in-
teraction model is no more then a set of swim lanes, containing all the objects
needed for running and visualizing a behavior.

8.1.4 Visualization

The visualization of the behavior model is taken care of by BehaviorModel-
Wrapper. This class uses the class BehaviorModel for getting information
about the nodes and edges. A BehaviorModelWrapper has functions for auto-
arranging the nodes of the behavior model, and for painting them on a panel.
For storing the location where to visualize nodes and edges, the BehaviorModel-
Wrapper has a list of BehaviorNodeWrappers and BehaviorEdgewrappers.

I
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8.1.5 Simulation
The class BehaviorModelSimulator will manage the 3 layers of the behavior
model as discussed in chapter 3. This class will change the marking (the state)
of the behavior models on all the three layers, by running the behavior on the
compiled behavior layer (i.e. managing the consuming and producing of tokens).

The execution of an interaction is managed by the class Interact ionNodel-
Simulator, which uses a set of BehaviorflodelSimulators to run the behaviors
(which it can access through the interaction model, which is the set of swim
lanes), and takes care of the exchanging of messages between the behaviors.

8.1.6 Alignment model
The class AlignmentModel is connected to a database, which contains the
known alignment policies of the agent. Furthermore does the database has
a set of training examples, which tell when to apply a certain policy. The class
AligninentModel will train a neural network with these training examples, and
use this network to choose and execute a specific policy, when the AlignBinding
has informed the alignment model with the needed problem information.

8.2 The process of alignment
Figure 8.3 on the following page shows how the complete process of alignment
works. Not all the function calls are real functions in the software, because from
some details is abstracted away, to keep the figure understandable.

The figure is divided in 3 parts, design time, run time and align time. Each
part will be discussed in more detail below.

8.2.1 Design time
The sequence diagram of figure 8.3 does not show part of the process of creating
the agent behaviors, but only the last part of the design phase, where the behav-
ior and alignment model are loaded, to start running them. A BehaviorModelSimulator
is created, with the behavior model and alignment model as parameters. This
behavior model simulator will create the three layers of behaviors, as discussed
in chapter 3 on page 22. The compiled layer has an align transition, which
needs an alignment model. This is shown in the sequence diagram by the func-
tion setAlignmentModel(...).

8.2.2 Run time
When the behaviors of both agents are loaded, the interaction can start. In the
sequence diagram, this is visualized by a user which operates the interaction
simulator, and calls startExecutionO. As described in chapter 3, the behavior
is executed on the compiled layer level. After each execution step, the behaviors
on the other levels are also updated, the TALL layer for visualization purpose,
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Figure 8.3: Sequence diagram of the process of alignment
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and the behavior layer for the agent (this is the layer on which alignment takes
place). When there is a problem detected in the execution of the behavior, the
execution will be suspended, and the agent will try to align (this is depicted by
the function call problemDetectedO).

8.2.3 Align time
When there is a problem detected, the align transition will call the align()
function of the alignment model. In the sequence diagram of figure 8.3, the case
is handled where the alignment model (which is part of the agent) escapes to the
Deus Ex machina for advice. The Deus Ex machina will return an alignment
policy the agent has to execute. The agent has now learned a new way to handle
this problem type. The alignment model will execute this policy on the behavior
layer, and afterward it will reload respectively compile the TALL layer and the
compiled layer. The execution of the behavior will now continue again.

8.3 Applications
With the use of the components as mentioned above, three main applications
have been created, the behavior editor and the interaction simulator, and the
interaction simulator will use the alignment editor, when the agent escapes.
This application can also be executed stand alone, but this does not make much
sense.

8.3.1 Behavior editor
The behavior editor is, as the name suggests, an editor for Behaviors Nets as
well as for behaviors made of TALL constructs. The editor is shown in figure 8.4
on the following page. By right-clicking on the behavior with the mouse, a pop-
up menu appears for adding and deleting of nodes, edges, bindings and guards.
With the buttons on the right, all soundness preserving operations as explained
in table 4.2 on page 35 can be used. The right panel also has a "New" button,
which does not create an empty Behavior Net, but the smallest Behavior Net
possible. This is the Behavior Net with only one transition, and one input
and one output place. Starting with this Behavior Net, and only applying the
soundness preserving operations of the right panel for creating the complete
behavior will always give a sound Behavior Net.

Furthermore, the editor can load and save behaviors from and to XML files.

8.3.2 Interaction simulator
With the interaction simulator, two or more agents who interact can be simu-
lated. For all the simulated agents, a behavior has to be loaded from a XML-file.
The class InteractionModelSimulator is used for executing the behaviors. A
database which will be used by the alignment model can be attached to every
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Figure 8.4: The behavior editor
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behavior, if a behavior does not have this database, it will not apply any on the
fly alignment. With this application can be simulated how an agent would act
in AGE in a specific interaction. The interaction simulator is shown in figure
8.5 on page 61.

8.3.3 Alignment editor
In the interaction simulator, a database for the alignment model can be attached
to every behavior. When such a database is attached, and a problem is detected
in the execution of the behavior, the alignment model will try to adapt the
behavior on the fly, If it fails, for example because of the lack of experience, the
alignment model will ask for advice of a human, i.e. it will escape. In this case,
the human will see the alignment editor, as shown in figure 8.6 on page 61.

In this editor, the human can choose a suitable existing policy, or can build
a new policy for this problem. In either case, the agent has gained experience
on how to handle a problem like this, and it is less likely that it will escape
again in a situation like this.
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Figure 8.5: The interaction simulator
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Chapter 9

Discussion and Future Work

As far as we know, this research is the first attempt to apply this kind of discrete
mathematics to anticipatory agents. This approach has the potential to appeal
to two research communities: the one oriented towards Business Information
Systems development (who apply Petri Net like modeling to BPM and ERP),
and also to the growing adaptive agent community.

9.1 Limitations of alignment policies
The technique of alignment policies has several limitations, which will be dis-
cussed in this section.

An alignment policy is limited to a certain scope, only the transitions defined
by the problem information can be used as variables for the operations of the
alignment policy when defining an alignment policy. Of course, other transitions
can be used, but these transition names have to be used as constants into the
alignment policy. This has the dig-advantage that the policy is not generic
anymore, and only suitable for the problem it was designed for. That is why
using other transitions than those defined by the problem information is not
recommendable. A human should not make an alignment policy for completely
redesigning an agent's behavior, but only for smaller adjustments which the
agent could later apply themselves in different situations. If a human wants
to completely redesign the agent's behavior, (s)he should redesign the behavior
directly through intervention, and not with the use of alignment policies.

A second limitation of the alignment policies is the fact that the problem
data (what is also used for selecting the alignment policy) can only contain one
of the transitions which are in parallel with the transition where the problem
is. It could however be the case that there are three transitions in parallel.
Using the variable parTransition in defining the alignment policy would give
a non-deterministic execution of the policy. Building behaviors and alignment
policies which give behaviors with three parallel transitions is not recommended
when making a behavior which is suitable for automatic alignment. In this case
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however it is still possible to define alignment policies using constants, but
this again will make the alignment policy not generic applicable anymore. The
same problem arises, when the problem transition has multiple mutual exclusive
transitions of the same generalization (the specTransition variable) or when
the transition has multiple incoming places (in this case the recToken variable
does not say so much, as you still do not know if all incoming places do contain
a token), or when the transition has multiple incoming message places.

9.2 Possible future work
The research as described in this report raises a number of open questions which
could be investigated in future research.

First, the technique of using alignment policies to automatically adapt be-
haviors should be tested a lot more in practice, and if needed be improved, also
to overcome the limitations. F\irthermore, we have used a neural network to
choose an alignment policy when a problem is detected. It could however be
that other machine learning techniques are more suitable for this problem. Fur-
thermore is the neural network not tested with a large set of training examples
and alignment policies. At this point we do not know if the configuration of the
neural network is optimal, or if it is for example over-trained. This all should
be tested in the AGE framework applied in a real life situation.

In this thesis, the concept of global alignment has not been worked out to
the level of detail as local alignment. A technique for global aligmnent has been
proposed, based on the used technique for local alignment. It could however
be that for global alignment more appropriate techniques exist. Furthermore is
there no software implementation for testing global alignment techniques.

Other ways for alignment can also be investigated, like a priori alignment,
which can be realized by a superior agent, or even by the agents themselves
through a special kind of "pre-alignment interaction" that would entail negoti-
ation.

The described way of automated alignment can align two behaviors of two
agents, so that the interaction will complete successfully. This however does not
guarantee that the resulting interaction will be efficient. A next step could be a
mechanism in which agents can antomatically improve an interaction, i.e. make
it more efficient. When an agent has knowledge how a certain process could
be performed in a more efficient way, it is not clear how this knowledge can
be applied to automatically improve an interaction with other agents, because
the other agents have to alter their behavior for this purpose. In other words,
how can an agent pursue innovation? Furthermore, how does an agent acquire
knowledge on how to improve interactions? Can the agent only learn it from
somebody else (for instance the Deus Ex machina), or can an agent invent it
itself, for example by simulation?



Chapter 10

Conclusion

As shown, in this thesis it is possible to describe a policy for alignment that can
be applied when the interaction beliefs of two or more interacting agents are
not matching.We introduced an extension of Petri Nets to capture the intended
interaction of an agent in a formal way. Furthermore, a mechanism based on
a neural network which chooses an appropriate alignment policy with the col-
lected problem information is proposed. When this mechanism fails to choose
an alignment policy, a method based on escape is described to overcome this
problem, what will learn the agent new ways of alignment. This research can
enable predictive agent model execution (agent-based simulation of organiza-
tional models) to be more reliable and necessitate less human intervention in
terms of alignment.
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Abstract In this paper, a formalism will be presented to define agents' be-
haviours (as exhibited in agent to agent interactions), by an extension of Petri
Nets, and will be shown how behaviours of different agents can be aligned using
specific alignment policies. A mechanism is proposed for automatic choosing of
an alignment policy by the agent, in order to make the system more reliable,
and to reduce the necessary human intervention. Due to the preliminary nature
of this work, future directions of research are pointed out.

1 Introduction
When two or more agents have to perform an interaction that is part of a
business process instance (BPI) they can either follow an established protocol,
or use their own experience and judgement. In the first case, the agents should
learn or be instructed about the protocol beforehand. In the second case, there
is no protocol enacted, or if it is, does not cover special circumstances that
occur in this particular instance. In this case, the agents have to use their own
experience, acquired in previous similar kinds of interaction. The agents will
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build before the interaction an intended behaviour (their own course of action)
and also will presume what the other agents are doing (expected behaviour).
These beliefs will form together a mental state what are called the interaction
belief of the agent in that situation (before the interaction is started).

The intended behaviour of an agent is modelled as a Petri Net. Two in-
tended behaviours of two agents are not always matching, in this case the inter-
action will not complete successfully. The process of collaboratively changing
behaviour for successful matching is called alignment. The focus of this paper
will be how behaviour of agents can be formalized, and proposes an alignment
method how an agent can change her behaviour for successful matching.

This paper is organised as follows: Behaviour Nets, with which the be-
haviours of the agent can be formally modelled, will be discussed in section 2.
In section 3 will be explained how agents can change their behaviour on-the-fly
to match their behaviour with the agent interacting with. The paper ends with
a conclusion and discussion.

2 Behaviour Nets
Petri Nets are a class of modeling tools, which originate from the work of Petri
[7]. Petri Nets have a well defined mathematical foundation, but also a well
understandable graphical notation 19]• Because of the graphical notation, Petri
Nets are powerful design tools, which can be used for communication between
the people who are engaged in the design process. On the other hand, because
of the mathematical foundation, mathematical models of the behaviour of the
system can be set up. The mathematical formalism also allows validation of the
Petri Net by various analysis techniques.

The classical Petri Net is a bipartite graph, with two kind of nodes, places
and transitions, and directed connections between these nodes called arts. A
connection between two nodes of the same type is not allowed. A transition is
enabled, if every input place contains at least one token. An enabled transition
may fire, which will change the current marking of the Petri Net into a new
marking. Firing a transition will consume one token from each of its input
places, and produce one token in each of its output places.

2.1 Behaviour net as a Petri net extension
The Behaviour Nets used in this paper are a Petri Net extension, based on
Workflow Nets [1], Self-Adaptive Recovery Nets 151 and Coloured Petri Nets 161.
An example of such a Behaviour Net can be seen figure A.2 (a).

Instead of only places, Behaviour Nets have two types of places, the normal
places and message places. The additional message places are nodes for sending
and receiving messages during an interaction. Such a message place is either
a place for receiving or for sending messages, it cannot be both. Execution
a behaviour is part of an interaction process, the behaviour is created when
the interaction starts, and deleted when the interaction is completed. For this
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reason, the Behaviour Net also has to have one input and one output node,
because the Behaviour Net initially has one token in the input place when the
interaction starts, and can be deleted when there is a token in the output place.
For each message place is denoted which data type it may contain. This is
useful for determining on which message place an incoming message has to be
placed. Because the two (or more) behaviours in an interaction are distributive
executed, messages places of both behaviours cannot be connected directly with
each other, as the behaviours do not have to be aligned. Arcs can have a guard
assigned to them, which expresses what the content of the token has to be, to
let the transition consume the token from the place. Transitions can change the
content of a token. Binding functions defines per transition, what the content
of the tokens produced by the transition will be. Bindings are often written as
for example: (Ti, < x = p,i = 2 >), which means that transition Ti will bind
value p to x and value 2 to i. The values assigned to the variables of the token
can be constants, but can also be values of the incoming token, or values from
the knowledge- or belief-base of the agent.

2.2 Operations
In Behaviour Nets, there are some primitive operations for modifying the net
structure, such as adding and deleting places, transitions, arcs and tokens. Be-
sides the primitive operations, there is a set of more advanced operations, which
also preserve local soundness. By preserving local soundness is meant that al-
ter applying the operation, an execution of the behaviour will still terminate
properly, if the behaviour also terminated properly before the operation. The
message places Pm are not taken into account when determining local sound-
ness. Local soundness refers to a sound behaviour, to make the distinction
with a sound interaction, which will be referred to as global soundness. More
information about soundness can be found in 121. The used set of advanced
operations are:

• division and aggregation*, which divides an transition into two sequen-
tial transitions, and vice versa,

• parallelization and sequentialization, which puts two sequential
transitions in parallel, and vice versa,

• specialization and generalization, which divides an transition into
two mutual exclusive specializations, and vice versa,

• iteration and nolteration, which replaces an transition with an itera-
tion over a transition, and vice versa,

• receiveNessage and notReceiveMessage, which adds or deletes an in-
coming message place,

• sendNessage and notSendJ1essage, which adds or deletes an outgoing
message place.

.
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Figure A.1: Migration of old to new behaviour

For some of the operations, marked with is it not always clear how they
can be applied on-the-fly, because of the dynamic change problem (3]. For
example, sequentialization, as mentioned above, cannot be applied for every
token marking, as it is not always clear on which places the tokens from the old
behaviour should be placed, when migrating to the new behaviour. For modeling
the migrations the approach of Ellis et al. j4J is used. By modeling a behaviour
change as a Petri net, it can be exactly defined how to migrate the tokens
from the old behaviour to the new behaviour. Note that advanced operations
can also be described using the primitive operations. For the receiveNessage,
notReceiveMessage, sendliessage and notSendMessage, nothing needs to be
migrated, as there is no change in the places, except for the message place, which
initially don't contain a token. In figure A.1 can be seen how the migration for
the operation parallelization can be modelled.

3 Aligning Behaviours

Before two agents start an interaction, they will both individually choose a
behaviour they are going to execute, based on what they are expecting of the
interaction. An interaction however will not terminate, if the behaviours of the
agents interacting are not matching. To overcome this problem, agents are able
to change their behaviour on-the-fly, i.e. during the interaction. Alignment
policies are used by agents to change their behaviour on-the-fly.

3.1 Alignment policies
An alignment policy is a set of primitive or advanced operations. In our ap-
proach, an agent has a set of policies in his knowledge-base from which she
can choose when an interaction for example has deadlocked, i.e. when there is
no progression anymore in the execution of the behaviour. How an agent will
choose an alignment policy (or if she will choose one at all) depends on different
factors. The factors discussed next are: kind of problem, beliefs about the agent
interacting with, and the willingness to change it's own behaviour.
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Kind of problem Most of the time, a problem will occur, when the agent
is not receiving the message she is expecting. It can be that the agent did not
receive a message at all, or received a -different type of message than expected.
If she did receive a message, the type of the received message and other factors
of the kind of the problem can be used as attributes for selecting the proper
alignment policy.

Beliefs about the agent interacting with Beliefs about the other agent can
be of great importance when choosing an alignment policy. When for example
the agent completely trusts the other agent, she might be willing to make more
"sacrifices" in changing her behaviour than when she distrusts the other agent.

Willingness to change behaviour When an agent has very advanced and
fine-tuned behaviours, it is not smart to radically change the behaviours because
of one exceptional interaction. On the other hand, when the behaviour of the
agent is still very primitive, changing it a lot could be a good thing to do. So
when an agent gets "older", and the behaviours are based on more experience,
the willingness to change her behaviour will decrease. This approach can be
compared with the way humans learn, or with the decreasing of the learning
rate over time when training a neural network.

As all this still needs research for what is the best way is to make the decision,
a possibility would be to use a decision tree, build on experiences of the use of
the alignment policies in previous interactions. A new agent won't have any
alignment policies, or experience applying them. When an agent does not know
how to handle a certain problem, it can go into escape mode, to learn new ways
to overcome her lack of experience. More information about the concept of
escape mode can be found in [8J.

3.2 Example - Proof of concept
As an example how these alignment policies could work, a small example is
given, as a proof of concept. In this example, as shown in figure A.2, the buyer
and the seller already agreed on the product the buyer wants to buy, but as
seen in the figure, they have different ideas of how the delivery and the payment
should go. For the sake of the example will be assume that the behaviour of the
buyer is very advanced, and thus has no willingness to change her behaviour.
On the other side, the seller's behaviour is still primitive and unexperienced, so
we are looking at the problem how the seller can align her behaviour with the
buyer, assuming that the seller has trust in the buyer.

When the interaction starts, it immediately deadlocks; the buyer is wait-
ing for the product, and the seller is waiting for the money. A way to over-
come this problem would be for the seller to send the product and wait for the
money in parallel. So, by using an alignment policy based on the operation
para].lelization the behaviour of the seller changes to the behaviour as seen
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Figure A.2: Behaviours of buyer and seller

P*. p.o.d

R.,.+. monI

Prod,ct flI

(b) Seller

in figure A.3 (a), and the interaction can continue. However, if the buyer re-
jects the product, and sends it back, the seller still doesn't have the appropriate
behaviour to handle this, because the seller is waiting for the money. In case
the seller receives the product back, but when she is expecting the money, the
seller could use an alignment policy based on the operation specialization to
overcome this problem, which divides the receive money transition into two sep-
arate transitions, receive money and receive product. The resulting behaviour
can be seen in figure A.3 (b). The behaviours of the buyer (figure A.2 (a)) and
the behaviour of the seller (figure A.3 (b)) are now aligned, and thus matching.

4 Discussion and Conclusion
This research is preliminary. Our research team [10] is developing agents via
simulation-games, where the behaviour of the software agents is captured from
the experts players from business organisations. These human experts can de-
scribe their intended behaviour, in terms of activities and local goals, but also
can describe the behaviour they expect from the other agents in the game. Each
time an agent cannot find a local solution for a mismatch during an interaction,
it can defer control to a higher authority (higher level agent, typically a hu-
man). But to minimize the necessary human intervention, the need for better
automatic alignment mechanisms becomes very relevant.

As we have shown, it is possible to describe a policy for alignment that can
be applied when the interaction beliefs of two or more interacting agents are not
matching. We introduced an extension of Petri Nets to capture the interaction

(a) Buyer
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Figure A.3: Adapted behaviour of seller
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(b) Second adaptation

beliefs and also a mechanism to choose the appropriate policy that adapts the
beliefs from one agent perspective. This research can enable predictive agent
model execution (agent-based simulation of organisational models) to be more
reliable and necessitate less human intervention in terms of alignment.
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Abstract In this paper, we present a formalism to define agents' behaviours

(as exhibited in agent to agent interactions), by an extension of Petri Nets, and

show how behaviours of different agents can be aligned using specific alignment
policies. We explain why these agents are anticipatory, and the link between
Business Information Systems and anticipatory systems is elaborated. A mech-
anism is proposed for automatic choosing of an alignment policy by the agent,
in order to make the system more reliable, and to reduce the necessary human
intervention. Due to the preliminary nature of this work, future directions of
research are pointed out.

1 Introduction
In the anticipatory system research community, the agent based computing area

is considered a promising one. However, there is little interest yet in applying the
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anticipatory agent concept in a real setting. Seminal work of Davidsson, Astor
and Ekdahl 141, pointed out that agents can be characterised as agents when their
acting can be described by a social theory. We argue in this paper that business
organisation are in fact anticipatory systems themselves. Especially when these
use an information system (usually called BIS - Business Information System).
Our research group 1141 is investigating novel agent-based architectures and
development frameworks 10]. We recognise the importance of the anticipatory
system concept in this context and position our models of organisations in the
initial definition of Rosen (111], page 339):

"We tentatively defined the concept of an anticipatory system: a
system containing a predictive model of itself and/or of its environ-
ment, which allows it to change state at an instant in accord with
the models prediction to a latter instant."

In this paper, which should be seen as a position paper, presenting preliminary
research, we investigate how the anticipatory ability of a single agent can be
expressed as an interaction belief and also the way this belief can be changed.
We will describe a policy for alignment that can be applied when the interaction
beliefs of two or more interacting agents are not matching. We will introduce an
extension of Petri Nets to capture the interaction beliefs and also a mechanism to
choose the appropriate policy that adapts the beliefs from one agent perspective.
From the anticipatory systems perspective, this research can enable predictive
agent model execution (agent-based simulation of organisational models) to be
more reliable and necessitate less human intervention in terms of alignment.

This paper is organised as follows: the rest of the introduction makes the
link between BIS and anticipatory systems and gives the motivation for this line
of research, section 2 deab with the formalisation of interaction beliefs of agents
as Behaviour Nets, section 3 shows how Behaviour Nets of different agents can
be aligned by using a specific policy. The paper concludes by discussing the
standing issues and questions, pointing towards future research lines.

1.1 Motivation
Business information systems have evolved from a data centric perspective to
a process centric perspective. The role of these systems is to support human
activity in a business organisation. They support at a basic level information
storage and retrieval, information flows and information processing. At a higher
level they support human decision making. Depending on the time horizon, the
decision can be related to operational management (day-to-day activities), tac-
tical planning (week/month projections), strategic decisions (month/year pro-
jections), and even policy implementation (very long term).

The move from data centric to process centric systems did not change the
centralistic nature of these systems. The way the system is designed and used
ascribes to the notion that there exists an external observer that is able to inves-
tigate and understand the processes within the organisation. These processes
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can be identified in a semantic sense and modelled in a syntactic sense, that is,
models of the processes can be described in a (semi) formal language. These
models can be used to implement systems that support the actors that execute
the process in the organisation.

The actors that are executing the organisations' processes have only local,
often conflicting views. if the system is to be designed and implemented by
allowing local and different models of the participating actors, a distributed,
agent-oriented approach is more suitable. Agent-based modelling and agent-
software engineering have been very popular in the last decade and paved new
avenues for the development of the business systems of tomorrow. However,
as correctly pointed out by Ekdahl L51, the lack of a strict definition of an
agent and a clear view about what exactly agent software engineering is, many
development processes tend to be in name agent-oriented, in reality, they can
be just classified as purely reactive systems. He also states:

"More sophisticated anticipatory systems are those which also con-
tain its own model, are able to change model and to maintain several
models, which implies that such systems are able to make hypotheses
and also that they can comprehend what is good and bad."

One can infer from this statement that true agent systems are only those that
have a clear anticipatory ability, both at the level of the individual agents them-
selves, and also at the whole multi-agent system. The ability to reason about a
plan in an organisation is usually realised via humans. if one tries to simulate a
planning organisation, a typical barrier is the evaluation of the plans. Such sim-
ulation tend to become interactive games, where the "players" (i.e. the expert
planners) are becoming decision makers that select the "best" plan. Various
plan selection mechanisms can be enacted, but these are usually just models of
the behaviour of the players. In a monolithic, centralistic ERP system for exam-
ple, this will be implemented as a single utility function that characterises the
whole organisation, which makes explicit the criteria against which a prospec-
tive plan is checked. In reality, many expert players are co-operating with the
system to adjust and decide for the best plan. The overall behaviour of the
organisation (in terms of planning) is just emerging as a combined behaviour of
the experts and the system that supports them.

This observation leads to the natural conclusion that it is better to enact
decision support structures that mimic the distributed nature of this environ-
ment. Attempts to model and implement agent-oriented support for planning
and other business processes are still in their infancy, but even simple implemen-
tations of crude multi-agent architectures show a higher degree of adaptiveness
and flexibility.

1.2 Our approach towards anticipatory agents
Our research team is developing agents via simulation-games 1141, where the be-
haviour of the software agents is captured from the expert players. These human
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experts can describe their intended behaviour, in terms of activities and local
goals, but also can describe the behaviour they expect from the other agents in
the game. These behaviours can be simplified and formally described. From a
local perspective the intended behaviour of self and the expected behaviour of
others can be seen as a specific interaction belief of that agent. The organisa-
tions' processes can be viewed as a set of running interactions. Each interaction
is executed by the agents that play the roles that define the interaction and
the execution depends on the (local) interaction beliefs, if the agents have con-
sistent beliefs, a coherent execution of the interaction will take place. In an
environment where human agents are playing the roles, slight (or even severe)
misalignment of these behaviours can be solved by the capacity of the humans
to adapt to misunderstandings and information mismatch.

Agents (as humans) develop over time a large base of interaction beliefs,
which allow them to cope with a wide range of interaction situations. This is why
the organisational processes can be carried out in most contexts and exceptional
situations. In these, the monolithic and centralistic support of BPM becomes
a problem in itself, needing roll-back procedures and "backdoor" interventions.
When using an agent-oriented approach, in order to solve the exceptions that
occur but have no resolution beliefs implemented in the software agents, a "es-
cape/intervention" [101 mechanism can be used. Each time an agent cannot
find a local solution for a mismatch during an interaction, it can defer control
to a higher authority (higher level agent, typically a human). Therefore, such
a system will never block, supporting the humans up to the levels it has been
programmed to do, but leaving the humans to intervene when the situation is
tco complex for them to solve.

Interaction beliefs are local anticipatory models. These describe future pos-
sible states in a specific interaction from a local perspective of an agent. In an
organisation, an agent can play various roles by using her "experience" (inter-
action beliefs that have proved successful in the past), but can also build new
ones, depending on the context. Continuous enactment of interaction leads to
whole process enactment. In a software multi-agent system, if the captured be-
haviours are not matching in a given context, the agents will revert to humans.
Of course, this can decrease the performance of the system - in terms of support
and/or automation - to unacceptable levels. Software agents should be able also
to adjust their behaviour in an anticipatory way. There are two ways to tackle
behaviour mismatches:

• there is a superior of the two agents that can align and impose a common
interaction behaviour that is sound, by having full access to the interaction
beliefs of the agents. This can happen before the interaction starts

• each agent is trying to align her behaviour on-the-fly, having only local
information

In the next two sections, we describe a method to implement the second choice,
by using a representation of the behaviour in terms of Behaviour Nets and a
mechanism based on "alignment policies". We considered that the first choice
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is "less anticipatory", in the sense that only if viewed from a larger perspective
(the system is formed by the participating agents, plus the superior agent -
we call this a deus ex machina) becomes a system that investigates a potential
scenario for the future. In the "on the fly" mechanism, the anticipatory system
is the individual agent who tries to align its behaviour, based on the limited
information she has about the interaction execution.

2 Behaviour Nets
Petri Nets are a class of modeling tools, which originate from the work of Petri
191. Petri Nets have a well defined mathematical foundation, but also a well
understandable graphical notation [121. Because of the graphical notation, Petri
Nets are powerful design tools, which can be used for communication between
the people who are engaged in the design process. On the other hand, because
of the mathematical foundation, mathematical models of the behaviour of the
system can be set up. The mathematical formalism also allows validation of the
Petri Net by various analysis techniques.

The classical Petri Net is a bipartite graph, with two kind of nodes, places
and transitions, and directed connections between these nodes called arcs. A
connection between two nodes of the same type is not allowed. A transition is
enabled, if every input place contains at least one token. An enabled transition
may fire, which will change the current marking of the Petri Net into a new
marking. Firing a transition will consume one token from each of its input
places, and produce one token in each of its output places.

2.1 Definition of Behaviour Nets
In the following, the formal definition of Behaviour Nets is given, which is a
Petri Net extension, based on Workflow Nets [1J, Self-Adaptive Recovery Nets
171 and Coloured Petri Nets 181. An example of such a Behaviour Net can be
seen figure B.2 (a).

Definition of Behaviour Nets
A Behaviour Net is a tuple BN = (E, P, Pm, T, Fi, Fo, i,o, L, D, G, B) where:

• E is a set of data types, also called colour sets

• Pisafinite set of places

• Pmisafinitesetofmessageplaces(suchthat PflPm=ø)

• T is a finite set of transitions

• Fi C ((Pu Pm) x T) is a finite set of directed incoming arcs

• Fo C (T x (P u Pm)) is a finite set of directed outgoing arcs (such that
FiflFo= 0)

• i is the input place of the behaviour with . == 0 and i E P
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• ols the output placeof the behaviour with o.=øando€P

• L:(PuPmuT)—AisthelabelingfünctionwhereAisasetoflabels

• D: Pm — E denotes which data type the message place may contain

• G is a guard function which is defined from Fi into expressions which
must evaluate to a boolean value

• B is a binding function defined from T into a set of bindings b, which
binds values (or colours) to the variables of the tokens

The set of types E defines the data types tokens can be, and which can be used
in guard and binding functions. A data type can be arbitrarily complex, it can
be for example a string, an integer, a list of integers, or combinations of variable
types.

The places P and Pm and the transitions T are the nodes of the Behaviour
Net. All these three sets should be finite. The extension of classical Petri Nets is
the addition of the set Pm which are nodes for sending and receiving messages
during an interaction. Such a message place is either a place for receiving or for
sending messages, it cannot be both.

Fi and Fo are the sets of directed arcs, connecting the nodes with each
other. An arc can only be from a place to a transition, or from a transition to a
place. By requiring the sets of arcs to be finite, technical problems are avoided,
such as the possibility of having a infinite number of arcs between two nodes.

Execution a behaviour is part of an interaction process, the behaviour is cre-
ated when the interaction starts, and deleted when the interaction is completed.
For this reason, the Behaviour Net also has to have one input and one output
node, because the Behaviour Net initially has one token in the input place when
the interaction starts, and can be deleted when there is a token in the output
place.

With function L, a label can be assigned to every node. This has no mathe-
matical of formal purpose, but makes the Behaviour Net better understandable
in the graphical representation.

Function D denotes which message place may contain which data type. This
is useful for determining which message place an incoming message has to be
placed on. Because the two (or more) behaviours in an interaction are distribu-
tively executed, message places of both behaviours cannot be connected directly
with each other, as the behaviours do not have to be aligned.

Function C is the guard function, which expresses what the content of a token
has to be, to let the transition consume the token from the place. Function G
is only defined for Fi, because it makes no sense to put constraints on outgoing
edges of transitions. In other words, this function defines the preconditions of
the transitions.

Transitions can change the content of a token. Binding function B defines
per transition, what the content of the tokens produced by the transition will be.
Bindings are often written as for example: (Ti, < x = p,i = 2 >), which means
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that transition Ti will bind value p to x and value 2 to i. The values assigned
to the variables of the token (which data type must be in E) can be constants,
but can also be values of the incoming token, or values from the knowledge- or
belief-base of the agent.

2.2 Operations
In Behaviour Nets, there are some primitive operations for modifying the net
structure, such as adding and deleting places, transitions, arcs and tokens. Be-
sides the primitive operations, there is a set of more advanced operations, which
also preserve local soundness. By preserving local soundness we mean that af-
ter applying the operation, an execution of the behaviour will still terminate
properly, if the behaviour also terminated properly before the operation. The
message places Pm are not taken into account when determining local sound-
ness. Local soundness refers to a sound behaviour, to make the distinction
with a sound interaction, which will be referred to as global soundness. More
information about soundness can be found in 121. The used set of advanced
operations are:

• division and aggregation*, which divides one transition into two se-
quential transitions, and vice versa,

• parallelization and sequentialization*, which puts two sequential
transitions in parallel, and vice versa,

• specialization and generalization, which divides one transition into
two mutual exclusive specializations, and vice versa,

• iteration and noIteration, which replaces a transition with an iteration
over a transition, and vice versa,

• receiveMessage and notReceiveMessage, which adds or deletes an in-
coming message place,

• sendMessage and notSendMessage, which adds or deletes an outgoing
message place.

For some of the operations, marked with , is it not always dear how they
can be applied on-the-fly, because of the dynamic change problem 131• For
example, sequentialization, as mentioned above, cannot be applied for every
token marking, as it is not always clear on which places the tokens from the old
behaviour should be placed, when migrating to the new behaviour. For modeling
the migrations the approach of Ellis et al. 161 is used. By modeling a behaviour
change as a Petri net, it can be exactly defined how to migrate the tokens
from the old behaviour to the new behaviour. Note that advanced operations
can also be described using the primitive operations. For the receiveMessage,
notReceiveMessage, sendMessage and notSendMessage, nothing needs to be
migrated, as there is no change in the places, except for the message place, which
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Figure B. 1: Migration of old to new behaviour
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initially don't contain a token. In figure B.1 can be seen how the migration for
the operation paraflelization can be modelled.

3 Aligning Behaviours
Before two agents start an interaction, they will both individually choose a
behaviour they are going to execute, based on what they are expecting of the
interaction. An interaction however will not terminate, if the behaviours of the
agents interacting are not matching. To overcome this problem, agents are able
to change their behaviour on-the-fly, i.e. during the interaction. Alignment
policies are used by agents to change their behaviour on-the-fly.

3.1 Alignment policies
An alignment policy is a set of primitive or advanced operations. In our ap-
proach, an agent has a set of policies in his knowledge-base from which she
can choose when an interaction for example has deadlocked, i.e. when there is
no progression anymore in the execution of the behaviour. How an agent will
choose an alignment policy (or if she will choose one at all) depends on different
factors. The factors discussed next are: kind of problem, beliefs about the agent
interacting with, and the willingness to change it's own behaviour.

Kind of problem Most of the time, a problem will occur, when the agent
is not receiving the message she is expecting. It can be that the agent did not
receive a message at all, or received a different type of message than expected.
If she did receive a message, the type of the received message and other factors
of the kind of the problem can be used as attributes for selecting the proper
alignment policy.

Beliefs about the agent interacting with Beliefs about the other agent can
be of great importance when choosing an alignment policy. When for example
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the agent completely trusts the other agent, she might be willing to make more
"sacrifices" in changing her behaviour than when she distrusts the other agent.

Willingness to change behaviour When an agent has very advanced and
fine-tuned behaviours, it is not smart to radically change the behaviours because
of one exceptional interaction. On the other hand, when the behaviour of the
agent is still very primitive, changing it a lot could be a good thing to do. So
when an agent gets "older", and the behaviours are based on more experience,
the willingness to change her behaviour will decrease. This approach can be
compared with the way humans learn, or with the decreasing of the learning
rate over time when training a neural network.

As all this still needs research for what is the best way is to make the
decision, a possibility would be to use a heuristic (for example machine learning
techniques like a decision tree, neural network or a genetic algorithm), build on
experiences of the use of the alignment policies in previous interactions. A new
agent won't have any alignment policies, or experience applying them. When
an agent does not know how to handle a certain problem, it can go into escape
mode, to learn new ways to overcome her lack of experience. More information
about the concept of escape mode can be found in 1101.

3.2 Example - Proof of concept
As an example how these alignment policies could work, we give a small example,
as a proof of concept. In this example, as shown in figure B.2, the buyer and
the seller already agreed on the product the buyer wants to buy, but as seen in
the figure, they have different ideas of how the delivery and the payment should
go. For the sake of the example, we assume that the behaviour of the buyer is
very advanced, and thus has no willingness to change her behaviour. On the
other side, the seller's behaviour is still primitive and unexperienced, so we are
looking at the problem how the seller can align her behaviour with the buyer,
assuming that the seller has trust in the buyer.

When the interaction starts, it immediately deadlocks; the buyer is wait-
ing for the product, and the seller is waiting for the money. A way to over-
come this problem would be for the seller to send the product and wait for the
money in parallel. So, by using an alignment policy based on the operation
parallelization the behaviour of the seller changes to the behaviour as seen
in figure B.3 (a), and the interaction can continue. However, if the buyer re-
jects the product, and sends it back, the seller still doesn't have the appropriate
behaviour to handle this, because the seller is waiting for the money. In case
the seller receives the product back, but when she is expecting the money, the
seller could use an alignment policy based on the operation specialization to
overcome this problem, which divides the receive money transition into two sep-
arate transitions, receive money and receive product. The resulting behaviour
can be seen in figure B.3 (b). The behaviours of the buyer (figure B.2 (a)) and
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Figure B.2: Behaviours of buyer and seller
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the behaviour of the seller (figure B.3 (b)) are now aligned, and thus matching.

An extension of this example showing a more complex interaction concerning
a typical business situation is shown in 1131.

4 Discussion and Future Work
This research is preliminary. As far as we know, it is the first attempt to ap-
ply this kind of discrete mathematics to anticipatory agents. Although there
are some approaches that apply Petri Nets to model agent interaction, these
are mainly concerned with a centralistic view. However, we are taking a dis-
tributed approach. This approach has the potential to appeal to two research
communities: the one oriented towards Business Information Systems devel-
opment (who apply Petri Net like modelling to BPM and ERP), and also to
the growing anticipatory agent community. Some researchers have pointed out
that the models used for BIS analysis and design are in fact executable mod-
els of the organisation they support. Apparently, the inclusion of a executable
model of the organisation in the organisation itself (seen as a system), makes the
whole an anticipatory system. Obviously, organisations that use a BIS increase
their anticipatory ability. Unfortunately, there is no evidence that the current
development of BISs is done with explicit anticipatory ability in mind.

Our strong belief is that agent-oriented BIS that support the business pro-
cesses of the orgaxusation (in terms of interaction support), due to the antic-
ipatory ability of the individual agents, lead to an emergent behaviour of the
whole system that has a anticipatory nature. Of course, such a statement has

(a) Buyer (b) Seller
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Figure B.3: Adapted behaviour of seller
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(b) Second adaptation

to be proven empirically and theoretically. An intuition is that simulation -
currently intended for development purposes - can have an important role in
the anticipatory architecture of an agent-enabled BIS in an organisation. If the
executable agent-based model of the organisation can perform simulations itself
that start from the present state as perceived in the organisation, this model can
predict future states. The results of these predictive simulations can be used to
influence via an effector sub-system the current state of the organisation.

Currently, the idea about development simulations is that these are in fact
games, where expert players interact with the simulated agents, via the es-
cape/intervention mechanism. An escape is triggered when an agent cannot
perform a certain act, and an intervention is when the human supervisor de-
cides that the course of action is not proper. After the agents are fully developed
and are deployed in the organisation, the predictive simulations that they could
perform should be as automatic as possible (otherwise human intervention would
make this anticipatory mechanism inefficient). This observation makes the need
for better automatic alignment mechanisms very relevant.

Our future research will be directed towards a number of issues. First,
mechanisms for triggering of the escape mode should be investigated, but also
what the human will do after the escape is activated, i.e. how to train the agents.
Other ways for alignment will also be investigated, like a priori alignment, which
can be realised by a superior agent, or even by the agents themselves through
a special kind of "pre-alignment interaction" - that would entail negotiation.
Superior (software and human) agents can also intervene for alignment on-the-
fly (a special kind of escape), and align the behaviour from one agent perspective,

(a) First adaptation
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or impose a central solution from an global interaction perspective.
Second, for successful enactment of the alignment mechanisms, the way

agents can choose an alignment policy has to be investigated. This raises a
number of interesting questions. First of all, is an alignment policy a belief?
Most likely it is not, as an alignment policy does not contain information about
the environment. However, the information used for choosing a policy is based
on beliefs about the environment, thus the decision mechanism is probably a be-
lief. Another question is if agents can exchange alignment policies and how she
chooses beliefs, and in this way learn from each other new ways of alignment.
Such exchanges are regulated in agent societies by trust mechanisms, which
means that an explicit representation of trust is needed. Finally, it is needed to
figure out how agents can adapt their beliefs about the use of alignment policies.

5 Conclusion
As we have shown, it is possible to describe a policy for alignment that can be
applied when the interaction beliefs of two or more interacting agents are not
matching. We introduced an extension of Petri Nets to capture the interaction
beliefs and also a mechanism to choose the appropriate policy that adapts the
beliefs from one agent perspective. From the anticipatory systems perspective,
this research can enable predictive agent model execution (agent-based simula-
tion of organisational models) to be more reliable and necessitate less human
intervention in terms of alignment.

We believe that interdisciplinary work between the BIS research and antici-
patory agent research can yield lots of "cross-fertilisation" and raise the aware-
ness that BIS enabled organisations are in fact anticipatory systems and also
provide test beds for novel anticipatory agent ideas.



Bibliography

1J W.M.P. van der Aalst. Verification of Workflow Nets. In P. Azema and G.
Balbo, editors, Application and Theory of Petri Nets 1997, volume 1248 of
Lecture Notes in Computer Science, pages 407-426. Springer-Verlag, Berlin,
1997

121 W.M.P. van der Aalst, Interorganizational Workflows: An approach based
on Message Sequence Charts and Petri Nets, Systems analysis, modelling,
simulation, vol. 37(3), 335-381, 1999

131 W.M.P. van der Aalst and S. Jablonski, Dealing with workflow change: iden-
tification of issues and solutions, Computer systems science and engineering,
vol 5, 267-276, 2000

141 P. Davidsson, E. Astor and B. Ekdahl, A Framework for Autonomous Agents
Based on the Concept of Anticipatory Systems, Proc. of Cybernetics and
Systems 1994, pp. 1427-1431, World Scientific, 1994

151 B. Ekdahl, Agents as Anticipatory Systems, World Multiconference on
Systemics, Proc. of Cybernetics and Informatics (SCI'2000) and the 6th
International Conference on Information Systems Analysis and Synthesis
(ISAS'2000), Orlando, USA, July 23-26, 2000

161 C.A. Ellis and K. Keddara, A Workflow Change is a Workflow, Lecture notes
in Computer Science, vol 1806, 201-217, 2000

[7] R. Hamadi and B. Benatallah, Recovery Nets: Towards Self-Adaptive Work-
flow Systems, Lecture notes in computer science, vol 3306, pp. 439-453, 2004

[8] K. Jensen. An Introduction to the Theoretical Aspects of Coloured Petri
Nets. In J.W. de Bakker and W.-P. de Roever, editors, A Decade of Concur-
rency, Reflections and Perspectives, volume 803 of Lecture Notes in Com-
puter Science. Springer-Verlag, 1993

191 C.A. Petri. Kommunikation mit Automaten. PhD thesis, Institut fur instru-
mentelle Mathematik, Bonn, 1962

1101 Gijs B. Roest, Nick B. Szirbik, Intervention and Escape Mode, Proc. of
AOSE workshop, AAMAS'Oo Conference, Hakodate, Japan, to be published
in LNCS, http://tbkl5.fwn.rug.nh/tal/downloadflle.php?id=31

88



BIBLIOGRAPHY 89

11j R. Rosen, Anticipatory Systems. New York: Pergamon, 1985

1121 K. Salimifard and M. Wright, Petri net-based modelling of workflow sys-
tems: An overview, European journal of operational research, vol 134(3),
664-678, 2001, Salimifardto appear, 2006

(131 Cees de Snoo, Marco Stuit, Nick Szirbik, Interaction beliefs: a
way to understand emergent organisational behaviour, to be published,
http://tbkl5.fwn.rug.nl/tal/downloadfile.php?id=54

[141 http://tbkl5.fwn.rug.nh/


