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Abstract - Daily life scenes are often recorded on video, for future analysis or to be watched
at real-time. What makes those scenes of interest to the people who record them, are the ob-
jects moving around in them. Information gained from tracks travelled by the objects can be
used in numerous application fields, amongst which are video compression, analysis of animal
behavior, and, in the real-time case, video surveillance and traffic monitoring.

Tracking an object in a scene is an easy task for a human being. With the least of effort we
follow the object around, even when its appearance or shape changes, or when it is temporarily
out of sight. Amongst other problems, object occlusion is one of the hardest problems faced by
an automated object tracking system. A lot of work is done on methods able to track objects
through occlusions at real-time.

This Master's Thesis concentrates on object tracking in presence of occlusion. A promising
method from the class of trackers using a layered image representation was selected and im-
plemented, to be compared to a fast multi-rolution graph-based method developed at the
University of Salerno. Comparison is done using a specially developed database of artificial
test sets, which tests both trackers on specific basic and advanced events possibly occurring in
daily life scenes. A well-known real-world test set is also used. Based on the outcome of the
tests, suggestions are done for further research in the field of real-time trackers with occlusion
handling.

Keywords - object tracking, layered image representation, real-time, occlusion, image segmentation,
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1 Introduction

When a human being looks at a scene, the human visual system does not present a fiat image
but an arranged collection of objects. Our visual system provides us with such a segmentation
in a very efficient way, that we are not even aware of it happening. We can easily assign meaning
to the segmented objects we see and thus reason about one object being in front of another and
the direction in which an object is moving. When an object disappears for a while and shows
up again, we know that we are dealing with the same object without hesitation, and if the
appearance of an object is different due to changing lighting conditions we still recognize it as
the same object we have just seen in another light. The same holds for objects changing shape
due to movement in the three dimensional world we see.

Although easy for human beings, presenting a computer with the task of object tracking in a
scene over time, is all but trivial. Amongst other problems, occlusion is one of the hardest to
cope with. When object A moves (partly) in front of object B, object B gets occluded. Human
beings can easily conclude that the now partly visible B, is the same B that was completely
visible before the occlusion. Computers have considerable more problems with making this
association.

This Thesis will focus on object tracking in case of occlusion, using a layered image representa-
tion. A state-of-the-art tracking algorithm was selected and implemented, to be compared to a
tracking method developed at the University of Salerno, Italy.

Object tracking will be introduced in section 1.1, section 1.2 will give a brief overview of the
application fields in which object tracking and image segmentation play an important role, sec-
tion 1.3 is about research previously done on the subject, in section 1.4 two promising tracking
methods are compared and in section 1.5 the research goals of this Master Thesis are elaborated.

1.1 Image Analysis

Object tracking is part of the image analysis field. An object tracking system is generally made
up of three independent layers, illustrated in figure 1.1. The first layer detects objects of interest
present in a single frame and segments them from the background. The second layer performs
the tracking of the objects, by establishing associations between them over a number of frames.
The third layer uses the tracking results in a way useful to the application that the tracking
scheme is part of. This last layer is highly dependent on the application at hand, and will be
left out of consideration. The focus in this Thesis will be on the second layer, the first one
will be regarded to a lesser extent. Techniques tend to have vague borders between the layers,
especially the detection and tracking steps are often intertwined. Each layer will be briefly
introduced below.
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Figure 1.1: An object tracking system generally contains three independent layers.

1.1.1 Segmentation

Image segmentation is the partitioning of an image into a set of regions covering it. A goal of im-
age segmentation is to identify meaningful parts of a scene and group theirpixels. For example
the segmentation of a soccer match image in which players are segmented from the grass on
which they play. Once the parts are identified they can be processed in different ways, depend-
ing on the application at hand. In the soccer match example the segmented players could be
input to object recognition software, that uses either their faces, shirt numbers or other features
to identify them. Another goal of image segmentation can be to change the representation of an
image. By organizing pixels into higher-level units a more efficient or meaningful representa-
tion can be acquired. Saving an image in a more efficient representation leads to a reduction of
the image file size, while the more meaningful representation is needed to make further analysis
possible. An example of a segmented image can be found in figure 1.2.

(b) 8egmenaiaton

Figure 1.2: Example of an image segmentation. (b) is a possible segmentation of (a) in which the
background, the table, Garfield, and John are each seen as a separate region. Image
(a) and characters are ©Jim Davis.

Image segmentation is an ill-posed problem: there is not always a solution and if there is one,
the solution does not necessarily need to be unique. What is a correct segmentation depends
on the application at hand. Given an image of an outdoor scene, a group of cars parked next to
each other may be regarded as one object, but each car could also be seen as a separate object.
Or, in even more detail, the license plate and windshield of a car maybe the targets to segment.
This way of increasing the amount of detail to be segmented is applicable on many images and

(a) Original
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illustrates the ill-posedness of image segmentation.

Segmentation of an image can be done in various ways. Thresholding and edge finding are among
the most popular. The meaningful parts that need to be segmented are called frregmund objects,
the rest of the image is referred to as background. Thresholding uses either a fixed threshold
or one based on the image histogram. All pixels with a brightness or color higher than the
threshold are marked as foreground, the rest is background. Groups of foreground pixels can
be regarded as separate objects. Techniques based on edge finding try to identify the contours
of foreground objects using ifiters. A survey of a large number of techniques can be found in
[l-1S85, SK941.

In case of a video sequence, multiple images are available in which a (stationary) background
is present on which objects take up different positions from frame to frame. This presents the
possibility to segment foreground objects by using their motion. To detect motion, that is, find
groups of pixels moving together over multiple frames, three approaches exist (CFGO4]. In
temporal dfferencing techniques a pixels belongs to the foreground if its difference in color or
intensity between two consecutive frames is greater than some threshold. An obvious problem
with this technique is that an object that stops moving becomes invisible. Slow moving objects
with a uniform appearance also form a problem. Because of the overlap the object has with
itself in the previous frame, this approach might not be able to detect all pixels belonging to
the object. An advantage of temporal differencing is that it is insensitive for gradual changes in
lighting conditions since those are negligible in consecutive frames.

Background subtraction techniques also use differences between pixels to detect objects. In this
case it is not the previous frame that is used as a reference, but a frame in which no object are
present. Such a frame is called a background frame and is often the first frame of an image se-
quence. Because objects are not present in the background frame, they will even be detected if
they are moving at low speeds or if they are not moving at all. Gradual changes in lighting con-
ditions can form a problem because of the substantial difference in time between the moment
the background was captured and the current frame. Adaptive background update methods
are developed to overcome this problem.

Previous techniques only establish that pixels are moving, what the actual motion is remains
unknown. The optical flow group contains techniques that do estimate the velocity or optical
flow of an object. To this end, a 2D motion field of the intensity pattern of an object is computed.
An advantage of the optical flow approach is that foreground objects can also be detected in case
of a moving camera. A performance comparison of different optical flow methods can be found
in [BFBB94J.

Over the years many segmentation techniques have been developed. Most of them apply to
one specific application domain, a general method that works for all problems is yet to be dis-
covered. When implementing an application which makes use of image segmentation, domain
knowledge has to be used to choose the most optimal methods available.

1.1.2 Motion Analysis

After the segmentation is done, the motion of the objects found is analyzed. The motion analysis
step is responsible for the actual tracking of objects throughout the video sequence.

Object tracking uses motion or temporal information to keep track of objects. As will become
dear in section 1.3, using only temporal information is often not enough for reliable tracking.
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Information found in the spatial domain is used to make tracking more robust. For example
shape and/or appearance information of an object can be incorporated in the tracking scheme.

Difficulties arising when analyzing motions of objects in outdoor scenes, are formed by local
lighting conditions like shadows and reflections, and global lighting conditions dictated by
douds covering and uncovering the sun. Those sudden changes in lighting conditions result in
an incorrect detection of moving objects (e.g. its shadow is seen as part of the object), thereby
influencing the tracking of those object over time. Another class of problems is formed by parts
of the background that cause a false foreground object detection, like opening doors and waving
trees. Solutions exist, but fall outside the scope of this Thesis.

The goal of the tracking step is to establishing correspondences between (parts of) objects over
multiple consecutive frames. This can be done in different ways which will be briefly explored
in section 1.3. The biggest problem in tracking is formed by ocdusions among objects, either
partly or complete. In case of an occlusion two (or more) objects known to be separate by the
tracker are suddenly merged into one, while possibly having two (or more) different motions.
The tracker has to establish a connection between the separate objects from the previous frame
and the new object formed by the occlusion in the current frame.

1.1.3 Behavior Analysis

Once the tracks of objects are determined by the tracker, they can be analyzed. The behav-
ior analysis step can be used to perform many different tasks, varying from very simple data
processing like counting the number of unique objects present over time and determine the
distances they travelled, to complex learning or classification jobs.

1.2 Application Fields

Information gamed from the tracking of objects and the image segmentation this is build upon,
is useful in many different fields. A brief explanation of some of the possibilities is given. This
overview is by no means extensive.

For a good user experience, video broadcasting over the internet demands high quality video
at a low bit rate. Motion segmentation provides compression techniques with the possibility to
apply different coding strategies to different elements in a scene. For example, relevant (fore-
ground) objects can be coded at a higher bit rate than a non-changing background. An other
possibility is to describe a sequence by only using the segmentation of the first frame and de-
scribe the rest of the sequence frames with motion vectors applied on those segments.

Fast access to video databases is of growing importance for professional and personal tasks.
Video indexing or annotation is the process of attaching content based labels to video sequences,
making it possible to retrieve video based on its content. Video indexing is performed in three
steps [GB98]. The first step segments the sequence into shots, the second step uses motion-based
segmentation to identify foreground objects, and the third step involves the tracking of those
objects. The second steps makes it possible to analyze and classify background and foreground
objects separately.

Various applications of video surr'eülance are made possible by a real-time object tracking system.
Behavior of animals could be monitored without collars or tags, traffic observation could be
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done without magnetic loops embedded in the highway and burglars could be caught and
followed on camera while wandering around the premises. This field is relatively new, since
it is only recent that inexpensive hardware has the minimal computing power needed for real-
time tracking.

1.3 Previous Research

Though independent, the image segmentation and object tracking layers of a tracking scheme
build very strong upon each other. The border between where segmentation stops and tracking
begins, and if tracking is done based on segmentation or the other way around, differs from
method to method. In the upcoming overview on previous research in the object tracking field,
segmentation refers to both the segmentation and tracking layers.

The first segmentation methods where based on dense optical flow. Optical flow considers
motion in a visual representation by letting a vector originate from, or point to a pixel in a
digital image sequence. Dense optical flow means that each pixel has a vector describing its
motion. The idea of segmenting an image into multiple overlapping layers was introduced by
Wang and Adelson [WA93J. Their method represents each object in a layer that describes the
object's motion, texture pattern, shape and opacity. The parameters of the motion model are fit
to optical flow estimates over small initial regions of an image, which are subsequently merged
using k-means dustering.

To be able to segment images based on motion, optical flow algorithms assume that the motion
is modeled by a low dimensional parametrization. The most used models are the six parameter
affine model and the eight parameter projective model, both corresponding to rigid motion in
the plane. The affine model bandies motion in an orthographic projection, a parallel projection
of a 3D scene onto the perpendicular plane, and the projective model handles motion in per-
spective projections. The problem with using a parametrization is that if the dimension is low,
the model will be too restrictive to handle more complex motions, and if the dimension is high,
the model estimation is unstable. Weiss [Wei97] developed further upon [WA93] and presented
a nonparametric model which uses a motion smoothness favoring prior for each layer.

The known difficulty with optical flow based methods is their limited ability to handle a large
motion between frames and objects with overlapping motion fields [WABO6]. Coarse-to-fine
methods are developed to overcome the large motion problem and they manage to do so to
some extent. The largest manageable movement between two frames is about 15% of the frame
dimensions [1A991.

The techniques mentioned above try to segment an image by exdusively using motion infor-
mation and belong to the group of motion-based methods. However, there is more information
to be found in an image. For example in the intensity or color of a pixel and the here from
originating image regions. The group of spatio-temporal techniques makes use of those features.
Those techniques use the same motion estimation schemes as the motion based ones, but use
spatial information to guide this estimation.

Classification of image segmentation techniques is inconsistent and varies from author to au-
thor. Zhang and Lu [ZLO1J suggest the two previously mentioned groups of techniques: motion-
based and spatio-temporal. Motion-based techniques are split into two subgroups: 2D models
and 3D models, based on the motion model used. It is also possible to classify motion based
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techniques on their actual segmentation criteria. However, motion models play a more impor-
tant role in this class and are generally what the design of an algorithm is built upon. austethg
criteria are used to distinguish techniques in the 2D and 3D subgroups.

The group of spatio-temporal segmentation techniques is relatively new compared to the motion-
based group. They are grouped according to the temporal and spatial methods used. The
temporal subgroup is similar to the classification of the motion-based techniques. The spatial
subgroup can be divided into region-based and contour-based methods. A brief explanation of
different methods along with a comparison is given in IZLOIJ. An introduction on image seg-
mentation can be found in ISSOII.

1.4 Two Promising Methods Compared

The first part of the research for this Thesis consisted of a suitability comparison between the
Bayesian estimation method of Tao et a!. [TSKO2I and the edge tracking method of Smith et at.
[SDCO4I. Both methods use a layered image representation and were suggested by Donatello
Conte, currently working on his Ph.D. Thesis at the MIVIA department (section 1.5). The goal
was to select the method best capable of tracking objects in real-time in low-resolution video
sequences.

The Bayesian method continuously estimates a dynamic representation of the layers, based on
the representation of the previous time instant and the current sequence frame. The represen-
tation consists of three parameters; a motion model, a segmentation prior, and the appearance
of each layer. The motion model assumes objects to have a simple 2D rigid transformation and
uses a constant velocity model. The uncertainty in motion is modeled by a Gaussian distri-
bution. The segmentation prior represents shapes of foreground layers with a Gaussian dis-
tribution. The background layer has a constant prior. The segmentation prior distribution is
normalized over all layers. The appearance model of a layer holds color information of the
object it represents. The appearance model is dynamically updated over time.

Expectation Maximization [DLR77] is used to improve the representation estimates. Each turn
one of them is improved with the other two fixed. Change blobs (color differences between
consecutive frames) are used to detect moving objects. Those change blobs together with the
layered image representation are input to a state machine that determines the state of each
object.

The positive aspects of the Bayesian method are, according to Tao, its speed and confident
tracking of multiple objects in complex scenes. The method is able of handling two objects at a
ten frames per second rate, and four objects at five frames per second. Negative aspects are the
inability of handling camera zoom, its optimization for bird-view use, the simple representation
of objects, the absence of depth ordering, and the fact that the author used dedicated hardware
for his tests.

The edge tracking method estimates motion of objects based on the movement of their edges.
Smith explains his method based on a two frames, two motions case. Next this basic case is
extended to multiple frames and multiple motions. The method first finds the edges in a frame
by using Canny edge detection [Can86J and subsequently groups them into chains. Next, the
motion of each edge is determined at sample points in the direction of the edge normal. The
motion is modeled by a 2D affine transformation and uses constant velocity model.
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Prior to the Expectation Maximization, edges are randomly divided into two groups. The mo-
tion of each group is determined based on the motions of their respective edges. The expec-
tation step relabels edges according to how well they fit each of the two group motions. The
maximization step determines the new group motions, based on the new edge labeling. After
determining the edge labeling, the frame is divided in regions of similar color, using the edges
as hard barriers. A motion label is determined for each regions based on the edges belonging to
it. The region labeling is optimized using simulated annealing [KGV83I.

Using multiple frames can resolve ambiguities that maybe present in between two frames and
result in a more robust labeling, since the initial motion and edge labeling can be based on
the previous frame. The extension of the edge labeling method to three or more motions is
nontrivial. The more motions edges can be assigned to, the less information is available with
which to estimate each motion and the less certain the assignment of an edge to a motion. The
expectation maximization has many local maxima when using multiple motions, making an
accurate initialization is necessary The solution Smith suggest requires multiple EM runs, e.g.
seven runs for fitting three motions.

Positive aspects of the method are that motions of regions can solely be determined from edge
motions and its capability of tracking complex shapes. The downside is that the algorithm
requires eight seconds per frame in case of two motions and three minutes in case of three
motions. Furthermore textures and reflections form a problem and the provided layer ordering
is unreliable.

For the task of real-time object tracking in low resolution video the Bayesian method seems the
best choice, because it appears to be suitable for real-time tracking and it appears to be capable
of confidently tracking multiple objects. The coarse object representation used by the method is
of no problem, because the resolution of the video is very low and thus object are not displayed
in great detail. The Edge method is unsuitable for the task at hand because is appears to be to
slow for real-time application and cannot confidently track more than two object. Its capability
of determining the exact shape of an object makes this method most useful in for example video
compression.

1.5 Research and Trajectory

The method with the highest real-time tracking potential, the Bayesian method of Toa ef al.,
was to be implemented for comparison with the graph-based method of Conte [CFJVO5]. The
former was developed for the Sarnoff Corporation, for one of its commercial aerial tracking
products. The latter is developed within the Gruppo di Ricerca su Macchine Infelligenti per ii
riconoscimento di Video, Immagini e Audio, the research group of Intelligent Machine recognition
of Video, Image and Audio (MIVIA), at the University of Salerno, Italy, where the research for
this Master's Thesis was also conducted. The main comparison focus was on the occlusion
handling capabilities of both methods.

During the course of implementation of the Bayesian method significant details seemed to be
omitted from the paper and the promised real-time tracking was not met by far. Several speed
optimizations were incorporated along the way. Due to the large amount of time spent on the
implementation part, unfortunately no effort could be directed to ocdusion handling improve-
ment.

This Thesis describes the theory of the implemented method in chapter 2, theory needed for
the implementation but not discussed by Tao is to be found in chapter 3, chapter 4 will go into
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implementation details, test sets used for the comparison and the result of the conducted tests
ai elaborated in chapter 5, chapter 6 presents a short discussion and chapter 7 will conclude
and suggest impmvements on the implemented method.



2 Bayesian Method

The main idea of layer-based motion analysis is to estimate both the motion and segmenta-
tion of independent moving objects simultaneously, based on motion coherency across images.
Each layer possesses a coherent two-dimensional motion that can be modeled in different ways.
Starting from an initial solution, the motion and the segmentation are iteratively estimated.
From the estimated segmentation the motion is refined and from the estimated motion a better
segmentation is computed.

Object Tracking with Bayesian Estimation of Dynamic Layer Representations of Tao et a!. [TSKO2I
introduces a complete dynamic layer representation in which spatial and temporal constraints
on shape, motion, and layer appearance are modeled and estimated in a maximum a posteriori
framework using the generalized Expectation Maximization algorithm. This representation is
continuously estimated and updated over time.

The combination of temporal coherency of motion layers and the domain constraints on shapes
have not been exploited before. The main new ideas presented by Tao et a!. are:

• Global shape constraint - A new global shape constraint is used that incorporates a priori
knowledge about the shapes of objects in the estimation process. The constraint consists of
a two parameter shape prior which main purpose is to prevent shapes from transforming
into arbitrary shapes. Due to the use of only two parameters to represent shape, compu-
tational complexity is limited.

• Tracking with complete representation - Tracking is done with a complete layer repre-
sentation, taking appearance, motion, shape and segmentation into account.

• Expectation Maximization - The use of a generalized Expectation Maximization algo-
rithm to estimate and update the dynamic layer representation over time.

The methods and models used for the Bayesian method will be explained in section 2.1, sec-
tion 2.2 will deal with initialization questions and the determination of object states, and sec-
tion 2.3 will briefly describe the tests conducted by the author.

2.1 Methods and Models

In this section the methods and models used by Tao will be elaborated. Methods necessary for
the implementation of the algorithm but not explained by Tao, will be dealt with in chapter 3.

2.1.1 Dynamic Layer Representation

A dynamic layer representation at any time instant t is proposed as A = e, As), where (it
is the shape prior, 0t is the motion model, and A is the layer appearance. This representation
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is continuously estimated based on its value A_1 at the previous time instant and the current
image observation I. The dynamic layer estimation problem is defined as finding the maximum
posterior probability (MAP)

maxargP(AI,. . ,Io,A_i,. . ,Ao). (2.1)

By using the Markovian assumption and Bayes' rule, this can be simplified to

maxargP(AIg,...,Io,At_i,...,Ao)
A,

= maxargP(AeIt,It_j,At_i)
A,

= maxargP(IA, It_i, A_1)P(AtI_, A_), (2.2)
A,

where P(ItIAt,It_i,At_i) is the likelihood function and P(AtIIt_1, A_1) is the dynamic model
of the state A. The Markovian assumption states that state A1 depends on all of the previous
states, but because of how the probabilities tend to zero, it relies most heavily on the most recent
state A1_1. Hence probability P can be found leaving It—2,... , 1o and A1_2, .. . , Ao out.

A BC - P(AIC)P(BIAC)P(
I )- P(BIC)

(2.3)

Bayes' rule (equation 2.3) says that if A is one of several explanations for the new observa-
tion B and C summarizes all prior assumptions and experience, the probability of A in case
of C should be adapted to A in case of B and C. Explanation A needs to be in such a way
that together with the prior assumptions and experience C it fixes P(BIAC). In the light of
dynamic layer representation prior probability P(AIC) is P(A1 I.. i,At_i) and posterior prob-
ability P(BJAC) is P(ItIAt,It_i,At_i). P(BIC) serves solely as a normalization factor and is
therefore not mentioned in equation 2.2.

Thus the maximum is sought of the posterior probability of the current image observation I
given the current layered image representation A1 and previous knowledge, multiplied by the
posterior probability of current representation A1 given the previous knowledge. A solution to
equation 2.2 can be found using Expectation Maximization, as explained in section 2.15.

With the proposed dynamic layer representation scenes as found in motion video can com-
pletely be described. The complete description of a scene can be analytically formulated and
dynamically estimated. Details will be discussed in sections 2.1.2 to 2.1.9.

2.1.2 Motion Model

The motion model of a layer describes its coherent motion. Several motion models exist, each
with a specific set of parameters to deal with different kinds of situations.

• Translation - A two-parameter model capable of handling x and y translation in the 2D
plane.

• Rigid - A three-parameter model which uses the translation along the x and y axes and
the rotation angle.
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• Rigid and Scale - A four-parameter model which makes use of a 2D translation vector,
rotation angle, and a scaling factor.

• Affine - A six-parameter model describing rotation about the optical axis, zoom, transla-
tion and shear.

• Proj ective - An eight-parameter model which extends the affine motion model with pan
and tilt angles.

Object tracking in aerial videos involves two kinds of motions. Tao models the ground plane
motion with a projective motion. The motion of foreground layer j on time instant t is mod-
eled by a 2D rigid motion, using displacement vector = Ix,y]T and rotation w. The rigid
motion model is derived from the more complex affine model and is with its three parameters
conveniently compact.

The motion parameters for layer j are denoted by = [ji',w,]T. To model the dynamic
behavior of a layer over time, a 2D constant velocity model is used. Usage of such a model is
possible in the case of traffic monitoring, because vehicles tend to move at constant speeds.
Given the motion at the previous time instant the current motion of layer j is described
by a Gaussian distribution

P(e,,e_) = N(e : e_j,diagE4a,]), (2.4)

where and c, in covariance matrix diag represent the model uncertainty in translation and
rotation. The variances in diag are on the diagonal of the matrix, with the other cells being 0:

p200
diagI,cj,] = 0 j12 0

0 0 a
N(x : m, 2) denotes a normal distribution for a random variable x with mean m and variance
2 (s being the standard deviation):

1 [ (x_.m)2
f(x)=—=exp[— 2s2

2.1.3 Dynamic Segmentation Prior

A dynamic Gaussian segmentation prior is proposed which encodes the domain knowledge that
foreground objects have compact shapes. The dynamic prior is modeled such that gradual
changes over time are allowed. Tao motivates the use of such a global shape assumption in two
ways. In the first place, because the prior prefers Gaussian like shapes, it prevents foreground
objects from evolving into arbitrary shapes in the course of tracking and thus it prevents the
tracker for working with ambiguous or cluttered measurements. Secondly, because only the
compact parametric form of the shape prior needs to be estimated, efficient computation is

possible.

The parametric representation of the segmentation is only used as a compact way to represent
shapes in motion. The actual segmentation at each time instant is provided by the layer owner-
ship which combines the segmentation prior with an observation model (section 2.1.4). Layer
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y

Figure 2.1: Motion model with translation i and rotation w. p is the center of the distribution,
5 the angle the distribution makes with the image coordinate system, and 1, s are
parameters of the shape prior as explamded in section 2.13. Note that distribution
center p is placed in the center of the image coordinate system for explaining pur-
poses only. p is the center of the distribution as it appears in the image.

ownership will be discussed in section 2.1.6. As a result only the shape prior parameters have
to be carried over time for each foreground layer to represent its shape.

When dealing with vehicle tracking from airborne platforms, the dominant region in the scene
is the ground. Its motion can either be modeled with a projective motion, or, in case of a sta-
tionary camera, motion of the background is 0. The segmentation prior function for each pixel
belonging to the ground layer is a constant value j3. Moving objects are foreground layers and
their segmentation prior function is modeled as a Gaussian distribution.

Suppose current image I has g motion layers with layer 0 being the background, then the
segmentation prior function for pixel p belonging to layer j is defined as

L .(r) = f -y + exp [—(pi — Pt (p — pt,3)/2] j = 1,.. .,g-1 (23
/3 =0

where - is the uncertainty of the layer shape, pt is the center of the segmentation prior distri-
bution (as it appears in the coordinate system of I) and Es,, is the covariance matrix defining
the span of the distribution. E, is defined as

= RT(_5,j)djag[i,3, s]R(—St,), (2.6)

where li,, and are proportional to the lengths of the major and minor axis of the distribu-
tion's iso-probability contour and thus describe the shape of each foreground layer. ö,, is the
angle of the distribution's major axis with respect to the coordinate system of I. Figure 2.1
shows these parameters. E denotes the inverse of E and is calculated as

—
E2,2 —E1,2

— IEI I. —E2,1 E1,1
(2.7)

Ii

S

'
w
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Since a matrix only has an inverse if its determinant is not zero, I and s must both be greater
than zero. R is the rotation matrix which is defined for vector-rotation as

R(ô) = COS 6 - sn
1 (2.8)

smö cosö j

with RT(t5) = R(-J). The shape prior parameter for layer j at time instant t is denoted as
=

Figure 2.2 shows a cross-section of function 2.6 applied on the background layer and a sin-
gle foreground layer. A consequence of the simple Gaussian shape model is that pixels with
larger distances to any foreground layer center will have a higher prior of belonging to the
background. This is compensated for with constant value y, which allows pixels to belong to a
foreground layer even though they are far away from an foreground layer center. Uncertainty
of shape 'y is important because the shape of an object is seldom perfectly elliptic and may also
change over time.

The normalized prior distribution is calculated as

St,,(p) = (2.9)
>j=O L,,(p)

To describe the dynamic behaviour of the shape prior constancy of shape is used. Shapes of
objects stay fairly constant over time, because the airborne platform changes its altitude slowly
and only a small amount of camera zoom is used. The constancy of shape over time is modeled
as a Gaussian distribution

P(4',3 14't— ) = It1,j, diagIo, o]), (2.10)

where c is the uncertainty of the model.

lrv

Figure 2.2: L,3 (equation 2.6) for a background layer and one single foreground layer. 13 is the
constant prior for the ground layer, y represents the uncertainty of the layer shape.

2.1.4 Image Observation Model and Dynamic Layer Appearance Model

The appearance of layer j at time instant t is denoted as A,1. The appearance image of a layer
is defined in its own local coordinate system by the center and axis of the segmentation prior
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distribution. The relation between pixel p1 in layer j of original image I and its equivalent q in
appearance model As,, is defined as

= R(—ö)(p1 — pi), (2.11)

with p, being the center of the segmentation prior and 63 the angle the segmentation prior
makes with the coordinate system of I (figure 2.3). For any pixel p in the original image, the
obseroation model for layer j is

P(It(p1)IAt,,(q)) = N(I(p) : At,(q), o), (2.12)

where variance a accounts for the noise in image intensity. Basically, the observation model
says how well the appearance model of layer j fits on current image I, based on the intensities
of p and q. To this end, the appearance model is warped from its local coordinate system to
that of the current image, using distribution center p and distribution angle 6. The observation
model gives the probability that Pt given qj for each pixel p in layer j. The lower o, the better
the appearance model needs to fit on the current frame to give high output.

Warp

Figure 2.3: Appearance model As,, is defined in its own local coordinate system. The appear-
ance model is warped onto the original image It using distribution center p and
distribution angle 5.

The appearance model is a representation of a layer in its own coordinate system. Since moving
objects do not take up the whole image, a layer is likely to consist of a subset of pixels from the
original image. An observation model of a layer is constructed using all pixel coordinates of the
original image, even tough there are pixels which do not belong to the layer. Which values can
best be used in this situation will be discussed in section 3.2.

Appearance of the background layer and foreground layers can change over time. The dynamic
layer appearance model copes with this a priori knowledge. By letting the intensity of a pixel
belonging to layer j be a Gaussian distribution, the model is defined as

P(A,3(q2)At_j,,(q)) = N(At,(q1) : Ae_i,,(q1), c), (2.13)

where ti is the appearance model uncertainty variance that accounts for layer appearance
changes over time.

p1

It
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2.1.5 Expectation Maximization

The goal of the algorithm is to find the dynamic layer representation A for each time instant
t, thereby fulfilling the dynamic layer estimation problem that was defined in equation 2.2.
At each time instant t a new segmentation has to be estimated and layer parameters have to
be updated. So the algorithm has to establish the correspondence between pixels and layers
(segmentation) and compute the optimal parameters for each layer. Expectation Maximization
(EM) [DLR77] can be used to achieve both goals.

EM provides an iterative scheme for obtaining maximum likelihood estimates by replacing a
hard to solve problem by a series of smaller, simpler problems. The algorithm is useful in cases
where missing or hidden data is involved. Each iteration of the EM algorithm consists of two
steps. In the E-step (expectation step) hidden data are estimated based on the observed data
and the current estimate of the model parameters. This is achieved using conditional expectation:
estimate one parameter, with the other parameters fixed. In the M-step (maximization step) the
likelihood function is maximized under the assumption that the hidden data are known. The
estimate of the hidden data from the E-step are used in stead of the actual missing data.

At evely iteration of the EM process, the estimated model parameters provide an increase in the
likelihood function. The process will continue until a local maximum is reached, at which the
likelihood function cannot increase further, but will not decrease either. There is no guarantee
that the found maximum is also the global maximum. For likelihood functions with multiple
maxima, EM will converge to a local maximum depending on its starting point. Since EM is
guaranteed to increase the likelihood estimates at each iteration, convergence is assured. For
more details on convergence of the EM algorithm see [MK96.

Denved from the EM algorithm is the generalized EM algorithm (GEM). The main difference is
that the goal of generalized EM is to simply increase and not necessarily maximize the likeli-
hood estimates. GEM is useful in situations where maximization is difficult.

In Tao's algorithm, the actual layer segmentation is the hidden data EM makes use of. Us-
ing GEM, a local maximum likelihood estimate can be achieved by iteratively optimizing with
respect to A

Q = E[logP(.tt,ztjAt, As_i, I—i)II, A,Ae_i,I_i] + logP(AIAt_i,Ig_i), (2.14)

where hidden variable Zt is the layer segmentation that associates each pixel to one of the layers
and A is the result of the previous iteration. Prove that the dynamic layer estimation problem
(equation 2.2) can be written as Q can be found in [TSKO2].

Let n be the number of pixels and g the number of layers (with g = 0 being the background
layer), then

n—i g—i

he,, { log S,(p) + log P(It(p)IAt(q)) }+ (equation 2.9, equation 2.12)
i=O j=O

g—l

{ log 4e— j,j,diagLo?a, c))+ (shape: equation 2.10)

j=i
log N(e,, : e_1,,, diag[4 o, o])+ (motion: equation 2.4)

logN(A,j(q) : At_i,(q1),c) } (appearance: equation 2.13)

(2.15)
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where h is the layer ownership, the posterior probability of pixel p belonging to layer j given
A. Note that shape, motion and appearance are only estimates for foreground U > 0) layers.
Prove that Q is equivalent to equation 2.15 can be found in [TSKO2J. The actual segmentation of
image I at time instant t can be derived from h by assigning each pixel to the layer for which
its ownership value is maximal. During computation, this actual segmentation is not used.

It is difficult to optimize shape 4, motion e and appearance A from equation 2.15 simulta-
neously. Therefore each of them is improved in turn with the other two fixed, as the general
approach of Expectation Maximization suggests. A graphical representation of the EM process
can be found in figure 2.4. Motion parameters are estimated first, followed by the shape prior
and appearance model. After re-estimation of each of the parameters of A, ownership h is
updated. The EM process can consist of multiple iterations. Initial input to the EM process is
the layered image representation at the previous time instant A_1 and current image I. Output
is the layered image representation at the current time instant A.

# I,

,
L7date

ownershiJ [Udate ownership Update ownership

L 4motio

Figure 2.4: The Expectation Maximization process to estimate layered image representation A.
Input for EM on time instant t are the estimates of the previous time instant A_1
and current image I.
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2.1.6 Layer Ownership

Layer ownership h is the posterior probability of pixel p5 belonging to layer j conditioned on
A and can be derived using Bayes' rule in a similar manner as in section 2.1.1:

h = P(zg(pj)=jIIt,A,At_i,It_i)
— P(Itlzj(p5) = j, A, A_1, It_i)P(zg(p) = jIA, A_1, I_)
— P(ItIA,At_j,Ig_i)
= P(It(p,)IA,(q)) S,,(p5)

(2.16)

The normalization Bayes' rule introduces is carried out by Z, so that J h = 1. The first
term is the observation model (equation 2.12) that measures how well current image h fits the
appearance of layer j. The second term is the segmentation prior (equation 2.9) that describes
the prior probability of pixel p belonging to layer j. Ownership is thus influenced by both
appearance and shape of layer j.

2.1.7 Motion Estimation

If shape prior 4 and appearance A are known, motion parameter e can be estimated. Given
ownership h, current image I with g layers, n pixels and for each foreground layer j an

appearance model A and a shape prior t, motion estimation finds the e that improves

g—1

logN(O : et_i,,diag[c,o,o1)+
(2.17)

log St(p) + log P(It(p)IAt,,(q)) }.
i=O j=1

Note that this function leaves out the background layer, its motion is handled outside the EM
process. The motion estimation for each individual foreground layer is derived from equa-
tion 2.17 as

minarg (it.i ——i + iw., —

(218)

2h5,3{ logSt,,(p5)} + h (I(p) — A,(q5))2/a.

The first term is the logarithm of the motion prior. The second term is the correlation between
the layer ownership and the segmentation prior. The third term is the weighted sum of the
differences between the current image and the appearance model of layer j under motion 9t,j
Variances and c, represent the uncertainty in translation and rotation, variance i represents
the uncertainty in intensity between appearance of layer j and current image I.

With respect to the previous time instant t — 1, the first term favours no change in motion.
Penalties given by the other two terms are lowest when the correct motion from t - 1 to t is

estimated, even though this means that rotation and/or translation have changed. If a change
in translation and/or rotation with respect to the previous time instant t — 1 is necessary, the
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penalty given by the first term must be compensated for by the other two. Since the logarithm
is taken of values < 1, the second turn produces a sum <0. Hence the subtraction of the second
term.

To estimate the translation and rotation for time instant t, values from the space of translation
and rotation are used. Which values can best be used depends on the application at hand and
the frame rate at which the tracking camera produces images. A higher frame rate means a
lower per frame movement / rotation.

2.1.8 Shape Estimation

The fourth step in the EM process is to re-estimate the shape prior for each foreground layer. The
background layer does not have a shape prior. The prior function (equation 2.5) has constant
value (3 for each pixel belonging to the background. Shape prior tFt for all foreground layers j
is estimated as

g—1

maxargf = logN(jIe_ij,diag[u?,,a?,])+
(2.19)

h,, log St,,(p),
i=O j=O

where the first term is the logarithm of the constancy of shape (equation 2.10) and the second
term the correlation between layer ownership and the logarithm of the segmentation prior. The
ownership h1,, is calculated in the third EM step, S1,(p) is recalculated with the new shape
prior estimates.

The constancy of shape bivariate normal distribution evaluates to

— 1 [
— .1_1,)Tdiag_T (41,j —

1(x)
— (2,r)2/2 2

— 1 (1,, — 11_i,,)2/of, + (St,, —— 2i 2

= —i.__
exp [

(l — 1_i,,)2 +(St,, — st_i)2
]

(2.20)
ira1,

Conjugate gradient descent (section 3.4) is used to optimize equation 2.19. The derivatives of
equation 2.19 needed for gradient descent are

Of
— hj,,(D(p) — L1,(,p)) (L1,3(p) — v)w,1 — It,, — lt_i,,

81 — L •' •D' •' a2
. )

t,j =o tu" J'iI i,j 18

and
of — '' h(D(p1) — L1,,(p)) (L1,,(,p) — — SI,, — 222

— . L1,(p)D(,p) 8$3j a?,
. )

where D(p) = Lg,,(p1), the sum of all layer priors for pixel p,, and [y,,', 1,,,11]T =

R(-ö)(p - p,). The lower uncertainty of shape variance or?,, the more the shape is preserved.
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2.1.9 Appearance Estimation

The last step is to update the appearance model of each layer with motion e and shape prior
4 fixed. The appearance model of each layer is updated according to

maxarg{ log(N(At,,(q1) :At_i(q1),a))+ (223)
As,, i=o

hi,, log P(It(p)IAt,(q))

where the first term is the logarithm of the dynamic layer appearance model (equation 2.23)
and the second term is the correlation between the layer ownership and the observation model
(equation 2.13). By taking the derivative of equation 2.24 with respect to the appearance model
pixel intensity and setting the gradient toO, As,, (q*) can be computed directly as

A
— 224
— (1/a+h1,/)

The appearance model for layer j at time instant t is the weighted average between the ap-
pearance model for this layer at t — 1 and current image I. The weight is controlled by the
ownership, uncertainty in appearance variance a and uncertainty in image intensity variance
c. The larger the ownership value for pixel p in combination with layer j, the more certain it
is that pixel p, really belongs to this layer j. Therefore this p contributes more to the update of
the appearance model for layer j. The lower o, the more the appearance model of the previous
time instant is preserved. In case of a high cr, more weight is carried by the state of p in current
image I. The denominator normalizes the update for each pixel to make sure the new intensity
values do not rise out of the intensity range.

2.2 Initialization and Status Determination

The core component of the layered image representation tracking system is called the layer
tracker. This component consists of the EM algorithm as explained in section 2.1.1. Initializa-
tion, addition and removal of foreground layers and object status determination are handled in
a separate module. This module is driven by a state machine, thathandles the tasks mentioned
based on change blobs and the current image representation A_1. A change blob is a group of
connected pixels which indicate an intensity difference between consecutive frames. An exam-
ple of change blobs found for a certain video frame can be seen in figure 2.5. Details about
change blob detection are elaborated in section 3.1.

The state machine knows of five different states in which an object can be: a new object appears,
an object disappears, an object moves, an object is stationary or an object is occluded. The states
are linked by directed edges which represent the state transitions. The schematics of the state
machine can be found in figure 2.6, the states will be elaborated below.

New object - A new object has entered the image frame when a change blob is detected far
away from any existing objects. The new object (the new layer) is initialized with a zero
velocity, its shape priors and shape angle are estimated using principle component analysis
(section 3.3) and it's appearance model is build from the current image using the pixel
coordinates that belong to the change blob.
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I
(a) Original frame

Figure 2.5: (b) is the change blob image of frame (a). Frame (a) is taken from an artificial test set.

Moving objects - During their life span in the layer tracker, objects are in the moving state
most of the time. The state of an object is transferred to moving if it is within the image
boundaries and has an associated change blob. If an object was stationary or occluded, its
state will become moving again if an associated change blob reappears and its appearance
model can be matched with the current image.

• Object disappearance - An object is deleted from the layered image representation if it
moves outside of the image boundaries. If an object is stationary and it's appearance
models does not fit on the current image or if an object is occluded and no change blob is
detected around it for a long period of time, the object is also deleted.

• Stationary object - A moving object becomes stationary if it has no associated change blob,
its estimated velocity is zero and its appearance model fits good on the current image.

• Occluded object - A moving object becomes occluded if it has no associated motion blob
and it does not fit on the current image.

2.3 Tests Conducted by the Author

Although initially developed for a real-time airborne tracking platform, the dynamic layered
image representation algorithm is also capable of tracking objects in ground based surveillance
systems. The difference between tracking vehides in a top-down view and people and vehicles
in a pan-tilt view could be overcome with the fine-tuning of the variance parameters.

Tao used a system in which the video stream from an airborne platform was sent into a ded-
icated hardware ground station throug1 a wireless connection. The ground station consisted
of a Sarnoff Video Front End processor (VFE, a real-time system for video processing) and a
Silicon Graphics Octane workstation on which the layer tracker resided. The VFE handled the
ground plane motion estimation. Those estimation parameters along with the original video
stream were fed into the workstation, that besides object tracking, also calculated a per frame

(b) change blob image
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&- and
I - or
I- negation

GM— good appearance match
08— out of scope
LT.= NM for a long time
ZM— zero motion estimation

NB — new blob, no object covenng blob
NM— no motion blob covering object
DM - degraded appearance match

Figure 2.6: State machine which handles state transitions of the objects for the dynamic layer
tracker. Conditions for the transitions are marked along the edges and explained
below the diagram.

low resolution change blob image. The size of the objects in the 320 x 240 video varied from
10 x 10 to 40 x 40 pixels.

The main bottleneck in the computation process is the motion estimation. This estimation ac-
counts for about 95% of the time needed to process of a frame. Although multiple iteration
could be used for the EM process, a single iteration proved to be sufficient in practice. The sys-
tem Tao used was able of handling two moving objects at a speed of ten frames per second and
four moving objects at five frames per second.

The layer tracker was compared to a correlation-based tracker and a change-based tracker, both
trackers developed by the author. A correlation-based tracker computes the motion of an object
by correlating its appearance model with the current images. Once a motion is computed, the
appearance model is modified by linearly combining the old model with the information from
the current image. An important difference between the layer tracker and the correlation tracker
is that the former takes the ownership of individual pixel into account in the correlation and
update stages, while the later handles all pixels equally. As a result, the correlation tracker is
easily confused by background clutter or other objects that are nearby.

The change-base based tracker completely relies on information gathered from change blobs.
When a change blob disappears, this tracker is unable to determine if the assodated object has
become stationary or occluded. When moving objects pass each other at dose range, the possi-
bility that their change blobs merge exists. When the merged blob splits after the passing, the
change-based tracker is only able to assign the right change blob to the right object based on
their motions. When a merge lasts for a longer period of time, this measure alone can be unre-
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liable. Besides motion, the layer tracker has appearance and shape information at its disposal
and is thus able to do a better job at this situation.

The experunents with the ground-based video include a non-moving background. Objects to
be tracked are between 5 x 5 and 40 x 40 pixels in size. The main problem that arises when using
the layer tracker in a 3D environment (pan-til camera), is that the objects undergo 3D motions
violating the 2D rigid motion model. In practice the layer tracker works reasonably well when
objects are at distance. Although the body of a (walking) human being with its arms, legs and a
head is hardly compact, if the distance to the camera is large enough it can be regarded as such.
The shape prior still applies. Even when a human body is visible in more detail, the tracker
is able to follow the person because the largest part of the human body (head and torso) does
have a rigid motion. A last reason for the tracker to work reasonably well is that walking people
move relatively slow compared to the frame rate.

Parameters of the layered motion representation have to be altered in order to cope with ground-
based tracking. To compensate for appearance changes due to 3D rotation, the uncertainty in
constant appearance variance a should be increased. This means that the current image will
carry a larger weight and thus has a larger influence on the appearance model in the appearance
estimation stage. Also due to the 3D nature of the scene, changes in size of the foreground ob-
jects can be of a greater magnitude than encountered in areal tracking. The uncertainty of shape
variance a?9 should be raised accordingly. Since the layer tracker was developed originally for
areal tracking, Tao does not go into much detail about the result gained with ground-based
tracking.



3 Methods and Models Needed for the
Implementation

This chapter will elaborate the methods needed for the implementation of the Bayesian method
as presented by Tao et a!. in [TSKO2J, but which are not explained or mentioned by the author
in his paper.

3.1 Change Blobs

If an image 4 is subtracted from an image I, the resulting image Jr will contain pixels with an
intensity greater than zero only if the absolute intensity difference between those pixels in 4
and I is greater than zero. This is defined as

Ir(X,Y) = II(x,y) — 4(x,y)I. (3.1)

Let I be the current image in a video sequence and 4 the background image, the image of the
scene with no foreground objects present. Than the subtraction of 4 from Ic will result in an J
showing where the foreground objects in the current frame are situated. To be able to control
the sensitivity with which pixels are selected to be foreground object or not, a minimal absolute
intensity difference is used as threshold.

A group of connected pixels in i. is called a change blob, indicating the group consists of pixels
that changed with respect to 'b• The actual value of the pixels in Jr is not of interest. Because
the techniques used to post process the change blob image require a binary image as input, Jr
is thresholded so that pixels belonging to a change blob will be white (or 1) and black (or 0)
otherwise.

Tao uses consecutive frames to calculate the change blobs. The advantage of doing so is that
changes in lighting conditions between consecutive frames are minimal, whereas the difference
in lighting over time can be a problem when using a background image to detect change blobs.
A disadvantage is that if an object has a simple texture (like most cars do), the change blob will
only cover the parts which actually differ. This can result in two separate blobs for one object.
This is illustrated in figure 3.1. Although this situation is simplified to a great extent, a similar
result is gained with real-world frames.

To overcome the problem of changing lighting conditions, the background image must be up-
dated according to the current frame. If the background image is regarded as appearance model
of the background layer, it is possible to update the background in a similar way as the fore-
ground layers by using equation 2.24. Because the ownership value of pixels belonging to fore-
ground objects is low for the background layer, the background will mainly be updated with
intensity values of pixels actually belonging to the background.

When working with real-world video, a change blob image is likely to contain noise and back-
ground artifacts. Background artifacts can for example be a door or window that is opened or a



waving tree in the wind. Changes caused by such events are of a small magnitude, delivering
small blobs. An example of a change blob image from a real-world video sequence can be found
in figure 3.3. Noise removal has to be done in order to only use blobs which actually cover a
moving foreground object. In order to be able to delete noise blobs easily, a connected components
labeling is done first. Both connected components labeling and noise removal will be explained
next.

3.1.1 Connected Components Labeling

To be able to perform operations, for example deletion, on change blobs found, it is necessary
to know which pixels belong to which blobs. If each blob has an unique identifier, its pixels can
be given this identifier accordingly thus making it easy to tell if a pixel in a frame belongs to
the blob sought after. Connected components labeling can be used to label each pixel with the
identifier of the blob it is part of.

Let B be a binary image and B(x,y] = BIz',yl have a value v where v = 0 (white) or v = 1

(black). Pixel (x,y] is said te be connected to [x',y'] with respect to v if there exists a sequence
of pixels (z, ii] = Exo, Yo],... , (x,, y,] = ix', y') in which B(x1, y] = v with I = 0,. . . , n and
[x1, y] and [x,_i, y,_ ] are neighbors for each i = 0,. . . , n. Sequence Exo, j], . . . , (xc, yn] forms
a connected path from [x, y] to (x', y']. In [SSOI] a connected component of value v is defined as a
set of pixels C, each having v, and each pair of pixels in C are connected with respect to v. Next
a connected components labeling of B can be defined as a labeled image LB in which the value
of each pixel is the label of its connected component. Each connected component has an unique
label. An example of connected components labeling can be found in figure 3.2.

A number of different algorithms for performing a connected components labeling are devel-
oped over the years. Among those are recursive algorithms that label one component at a time
and iterative methods working on two image lines at a time. The former is useful in situa-
tions where the image fits entirely in memory, the latter when this is not the case. The iterative
method available from the framework (section 4.1 used, is based on the mw-by-mw algorithm
described by Rosenfeld and Pfalz [RP66].

The algorithm makes two passes over the image. The first pass is used to record equivalences
and assign temporary labels. The second pass is used to replace each temporary label by the
label of its equivalence class. In between the two passes the recorded equivalences, which are
binary relations, are processed two determine the equivalence classes. During the first pass, for

30 Methods and Models Needed for the Implementation

(a)t (b)t+1 (c) change blobs

Figure 3.1: Change blob detection using two consecutive frames.
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(b) LB

Figure 3.2: Connected components labeling LB of binary image B. Five connected components
are present.

every pixel p its left and top neighbors are regarded. If both left and top neighbors have the
same label, assign this label top, if only one of them has a label assign this label top, and if both
neighbors have different labels assign one of the labels top and record the equivalence between
the two.

3.1.2 Noise Removal by Opening, Gap Filling by Closing

Morphological operators are used to understand the structure of an image. Morphological op-
erators are usually applied on binary images, but can be extended to grey-scale. Since the
connected components image is binary of nature, operations on grey-scale image will not be
elaborated.

Binary operators have a binary image B as input, as well as a structuring element S. This struc-
turing element is a binary image itself, representing a shape much smaller than B. S serves as a
kernel that moves over B, with one pixel designated as the origin. While the kernel moves over
the image, it is checked if the shape of S fits in the region under inspection of B. Accordingly
an action can be triggered, for example the region can be enlarged with the shape.

Two important primary morphological operators are dilation and erosion. The former enlarges a
region, the latter makes it smaller. The definitions for both operators are found in [SSO1J. The
dilation of binary image B by structuring element S is denoted as B Sand defined by

BS=USb. (32)
bEB

Structuring element S is swept over B and every time the origin of S encounters a binary 1-
pixel (or black pixel) the translated shape of S is OR'ed to the output image. The output image
is initialized with 0-pixels (or white pixels). While sweeping, it can happen that pixels of S fall
outside of image B. Those are ignored. The erosion of image B by structuring element S is
denoted as B S and defined as

BeS={blb+sEBV8ES}. (3.3)

S is swept over B as seen with the dilation, but this time at each position where every 1-pixel
of S covers a 1-pixel in B the origin pixel of S is OR'ed to the output image. See figure 3.3 for
an illustration of both the dilation and erosion operations.

(a) B
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+
(b)S (d)ErosionBeS

Figure 3.3: Dilation (c) and erosion (d) of binary image B (a) with structuring element S (b).

The application of an erosion directly followed by a dilation with the same structuring element
is called an opening. The opening of a binary image B with structuring element S is denoted by
B o S and defined by

BoS=(BeS)S (3.4)

The operation thanks its name to the fact that it tends to open small gaps or spaces between
objects that are connected trough a thin line. After an opening objects in an image are better
isolated, making it easier to detect them. Besides the isolating property an opening also is able
to remove noise from an image. The erosion of an image in which clusters of pixel are present
along with isolated pictures in random locations, will remove the isolated pixels and the bound-
aries of the dusters. The dilation of the eroded image will restore (most of the) boundaries of
the clusters.

Closing means that an image is dilated, immediately followed by a erosion with the same struc-
turing element. The closing of binary image B with structuring element S is denoted as B • S
and defined as

B.S=(BEBS)eS (3.5)

The closing of an image will do the opposite of an opening: small gaps are filled. This is useful
in case of change blobs detection because holes in blobs can be closed this way.

It is possible to do z erosions, followed by z dilations with the same structuring element. This
will create an opening with a depth of z. An opening with a 4-connected structuring element
and a depth of z = 2 will remove all objects smaller than or equal to 4 x y or z x 4 pixels in size.

A side effect of the opening operator is that it is not guaranteed that objects dilate back to
their original shape after the erosion steps. To overcome this problem the conditional dilation is
defined. The conditional dilation operator makes sure that a cluster of pixels cannot grow back
beyond its original set of pixels. Given an original binary image B, a processed image C and a
structuring elementS, let C0 = C and C, = (C_1 e 5) n B, the conditional dilation of C by S
with respect to B is defined as

C(DIBS=Cm, (3.6)

where in index m is the smallest index that satisfies Cm = Cm1. Eq. 3.6 says that set Co is
repeatedly dilated by 5, while after each step being reduced to the subset of pixels that where
present in B. The noise and background clutter ifitering used in the Layered Image Repre-
sentation algorithm makes use of opening with the conditional dilation instead of the dilation
defined in equation 3.2.

(a) B (c) Dilation B S
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Using an opening to remove noise and background dutter from an image can be tricky in situa-
tions where the objects to be detected are very small. For example, a person can be represented
by 2 x 10 pixels in real-world video frames, being just as big as artifacts due to changes in light-
ing conditions. In those cases, noise and artifacts removal with opening is not possible. An
example of a such a difficult situation can be found in figure 3.4. Here the person is removed,
while a window in the building is preserved. Applying the opening operator with z =3 would
remove the window and only keep the car.

Figure 3.4: (b) shows the change blobs detected by subtracting the background frame (b) from
current frame (a). (d) is the result of noise removal with the opening operator.

3.2 Appearance Model

A Layered Image Representation of frame I from a video sequence, segments the objects present
in the image from the background. An object is an entity which is part of a scene for a certain
amount of time, thus not being part of the background. An object moves around in the scene
most of the time while present. Background and objects are each put in their own layer, with
the background being layer 0. A segmentation example is given in figure 3.5. A layer has the
same dimensions as I.

(c) Detected change blobs (d) After opening with z =2



Figure 3.5: Frame (a) is part of a video in which an oval and a polygon move in opposite di-
rections over a road. (b) is the segmentation in different layers of this frame. In this
case, the white inside a layer indicates that those pixels are not part of the layer.

Every layerj in the Layered Image Representation of a frame at time instant t has an appearance
model A; a model which reflects the current visual state of its layer. The appearance model is
defined in its own local coordinate system and used during the construction of the observation
model (equation 2.12), motion estimation (equation 2.18), and its own updating process (equa-
tion 2.24). To be able to use the appearance model, it has to be warped from its own coordinate
system to that of current frame I (figure 2.3). This is accomplished by translating the model
according to estimate z, the center of the object, and rotating it according to estimate 6, the angle
the object makes with the coordinate system of I.

Since it is unlikely that an object takes up all pixels in a frame, the layer which represents the
object will contain pixels that cannot be assigned an intensity value. Those pixels can be re-
garded as transparent and they belong either to the background or to another object. To be able
to recognize them as such, pixels in a layer that do not belonging to it are set to —1.

When a new object enters the scene a new layer is initialized, as well as its appearance model.
Pixels under the change blob that triggered the initialization (section 2.2) are taken from the
current frame and put in the center of the new appearance model coordinate system. The ap-
pearance model center coincides with the center of the frame.

Rotation Tao defined the appearance model in such a way that the major axis of the segmen-
tation prior distribution is situated on its x-axis. This means the appearance model has to be
rotated with 6, the angle the major axis makes with the coordinate system of I, to be able to
map it on the current image. In case of an appearance model update, the model is first warped
onto I, updated and than warped back, involving two rotations. Rotating with angles other
than multiples of 900 results in a loss of quality and should therefore be minimized. Since the
appearance model is needed in its rotated form in all cases during Expectation Maximization,

Methods and Models Needed for the Implementation

(a) Frame (b) Segmentation
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it is better to keep it that way instead of aligning its major and minor axis with the coordinate
system of It.

Rotation is not completely unavoidable of course. Objects can turn and their appearance models
have to turn with them accordingly. During motion estimation the appearance model is rotated
with various angles w to see if there was a rotation between time instant t - 1 and t. To rotate
the appearance model a basic point rotation is used, defined by

R(w) =
[COSW - SflW

1. (3.7)
[ S1flW COSW j

Due to rounding of coordinates, multiple pixels are sometimes rotated to the same destination
pixel, resulting in holes in the rotated image. Those holes are eliminated by sweeping a 4-
connected kernel over the rotated image. In case all four neighbors of a pixels are filled (do not
have value —1) and the center pixel of the kernel is not, the average intensity of the neighbors
is written to the kernel center pixel.

A rotation scheme which makes use of anti-aliasing was implemented first, unfortunately not
giving the desired results. Anti-aliasing smooths the rotated result image by finding the four
source pixels a destination pixel partially covers, assigning the area-weighted average intensity
of those four source pixels to the destination pixel (figure 3.6). Although this scheme produced a
smoothed rotated appearance model without holes, the intensities of the rotated pixels differed
too much from their originals. While estimating the motion parameters, matching a non rotated
appearance model on I gave a lower error rate than matching the correctly rotated one, due to
this intensity difference. The basic rotation scheme of equation 3.7 in combination with the hole
filling, yielded better results.

4 source pixels

destination pixel

Figure 3.6: A pixel is rotated to its exact destination coordinates. The intensity of the destination
pixel is based on the overlap area it has with the the four source pixels it falls on.

Transparency To construct the observation model, any pixel p from i is compared to its
equivalent q2 in A,. Every pixel in I has an intensity, but that does not hold for At,,. To
overcome this problem, the background intensity value is used for a pixel when it is transparent
in layer j. This results in an observation model for layer j with high probability values for pixels
belonging either to the background or the layer itself. Pixels belonging to other layers have a
low probability. The fact that also background pixels have a good score in the observation
model is not a problem when calculating the layer ownership (equation 2.16). The normalized
segmentation prior for a layer is low for pixels outside the distribution forming the shape of an
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object and those are exactly the pixels that belong to the background in the observation model.
High scores for background values are thus neglected when calculating the ownership for a
layer. An example of a normalized prior distribution, observation mask and ownership mask
for a certain video frame can be found in figure 3.7.

In the motion estimation step a same sort of situation is encountered, since the third term of
equation 2.18 requires that As,, is subtracted from It. By taking the sum of the intensity differ-
ence times the ownership value for each pixel, a matching score is obtained. The lower the score,
the better the match. By involving the ownership in the matching score intensity differences for
pixels belonging to the object or very dose to the object carry a larger weight.

During motion estimation a range of possible translations and rotations is tried to find the best
matching motion parameters from t —1 to t. The appearance model is warped onto It according
to the parameters that are tested each step. To be able to do the subtraction, the background
intensity value is used in case a A,3 pixel has value —1. Note that if the background would
be used in the appearance model instead of transparent pixels, the background would also be
warped each motion estimation step. Although intensity differences for pixels belonging to the
object are most important, the matching score would be negatively influenced by the warped
background.

Over time an object can shrink or grow, can have a change in shape or can change of appearance.
During the appearance estimation step the appearance model of each layer is updated with new
information. Eq. 2.24 makes use of all pixels in frame I to accomplish the update. In this case,
transparent pixels cannot be substituted by their background equivalents since the background
does not contain information on the object to be updated. Current frame It contains the object
in its current shape and appearance and is therefor the source which has to be used in case a
—1 pixel is encountered in As,,. It is desired to only update pixels that belong to the object and
leave or make the others transparent. Because equation 2.24 works on all pixels it results in an
appearance model for which all pixel contain an intensity value, although faint due to the useof
the ownership mask. it is this ownership mask that can be used to indicate which pixels belong
to the layer that is updated, by deriving the actual segmentation from it.

The actual layer segmentation can be derived from the ownership mask by assigning the own-
ership value to a layer pixel in case this pixel has the highest ownership value and zero other-
wise. A layer can be updated with this mask by applying equation 2.24 to all pixels for which
the ownership is greater than zero. If the ownership is greater than zero but the pixel in is
transparent, than it is substituted with the intensity of the equivalent pixel from It. Pixels with
an ownership of zero are set to transparent. This way an appearance model grows and slinks
according to the shape prior that works on the ownership mask.

3.3 Initialization of Shape Priors and Distribution Angle

When at time instant t a new foreground object j is detected by the layer tracker, a shape prior
= (It.,, se,,] has to be initialized, as well as the angle (5 the segmentation prior distribution

makes with the axis of the coordinate system of current image I (figure 2.1). To this end, prm-
ci pal component analysis (PCA) is used. PCA provides a covariance matrix which contains the
information needed to initialize all three parameters. This information is obtained by calculat-
ing the eigenvalues and eigenvectors with the QL algorithm.
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Principal Component Analysis Principal component analysis is used to simplify a data set
it is a linear transformation that chooses a new coordinate system in such a way that the greatest
variance of the data set comes to lie on the first axis, the second greatest variance on the second
axis and so on. The first axis is called the first principal component, the second axis the second
principal component, etc.

In the case of initializing the shape prior, the data set is a two dimensional image Jam and hence
two principal components are used. The analysis is performed on the appearance model after its
initialization as described in section 3.2, taking into account the pixel for which Iam[X,Y] —1.

The result of PCA in the two dimensional case is a covariance matrix

= cov(x, x) cov(x, (3.8)
cov(y,x) cov(y,y)

where the covariance cov(a, b) indicates how much the dimensions a and b vary from the mean
with respect to each other. The covariance for a dimension against itself is the variance (spread
of the distribution) for that dimension. PCA needs a zero empirical mean, thus the center of the
distribution needs to be subtracted from its pixel coordinates. Covariance cov(a, b) is defined as

cov(a,b) = >.o'(ai—ã)(b, — (3.9)

where n is the number of sample points in the data set. In this case, the mean needs not to be
calculated, because it is known the appearance model is situated at the frame center coordinates
[Xamc, YamcJ

In case a data set consists of pure data points, the above will deliver the desired covariance
matrix. In case the data points are pixels, the nature of those little squares has to be taken into
account. A pixel is not just a point, it is a tiny area. Consider for example an object (data set)
consisting of two horizontally adjacent pixels, as displayed in figure 3.8. When subtracting the
z-coordinate of object center c from the x-coordinate of pixel p. the resulting distance will be
0.5, although the actual x-distance from c to the farthest border of p is I. Since c and the centers
of pixels p and q are laying on one line, the y-distance is zero. This also is incorrect, since the
height of the object is 1. A distance correction is thus necessary to get the correct covariance
matrix.

Since the distances in the x-direction and y-direction are handled separately (it is not the eu-
didean distance between an object center and a pixel that is calculated!), a rather simple correc-
tion can be used. When the difference aj — a in any of the directions is positive, a correction of
+0.5 is added. If the difference is negative, the added correction is —0.5. In case the difference
is zero, meaning the center of the object and the pixel lay on a line parallel to one of the axis
(depending if it is the x or y distance that is calculated), a correctional value of +1 is added. An
example of the the distance correction can be seen in figure 3.9.

The covariance matrix holds important information about the object. From the eigenvalues of
this matrix the I and s can be derived. The eigenvalues are the variances of both principal
components. Since I and s are used as standard deviations, the square root of the eigenvalues
has to be taken. The square root of the largest eigenvalue gives 1 whereas the square root of the
smallest gives a. The two perpendicular eigenvectors give the angles of I and a with respect to
the normal coordinate system.

Due to the matrix inverse (equation 2.7) that is used for calculation of the segmentation prior,
it is of importance that both 1 and a ar greater than zero. Since objects in a video frame always
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have a width and height, it is highly unlikely 1 or 8 will be zero. If the width:height ratio of
an object approaches zero problems due to rounding can occur. Luckily, most objects in nature
have a ratio of 1:Phi.

Both eigenvalues and eigenvectors are calculated with the QL algorithm, as explained in section

11.3 of [PTVFO2].

3.4 Conjugate Gradient Descent

Gradient descent is used to optimize the shape estimation function (equation 2.19), by search-
ing for maximum argument 9 that satisfies it. Gradient descent is often explained under the
assumption that it is a minimum that is sought after, that manner will be followed here as well.

Let 1(x) be the function for which the minimum is sought and x the unknown variables. The
optimization procedure starts by choosing a starting point a0; the initial guess for the unknown
parameters of f(x). Once Zo is chosen, two decisions need to be made before the next point can
be evaluated. First, the direction along which the next point is to be chosen has to be picked.
Second, the step size in the chosen direction has te be set. That gives the following iteration

Zk+1 = Xk + Akdk, (3.10)

where k = 0,1,2, . . ., is the direction, and is the step size. Different classes of techniques

exists, presenting different choices for A, and d.

The method of steepest descent (also called gradient descent method) finds the nearest minimum of

a function f(x), by using the gradient of that function. It starts at x0 and moves as many times
as needed from xk to xk+1 by minimizing along the line extending from Xk in the direction of
the local downhill gradient: -Vf(xk). This is the direction in which / decreases most quickly.

Taking the next step in the direction of the negative gradient at each point, results in a zig-zag
pattern search, as illustrated in figure 3.10.

The method of steepest descent has a fast iteration cycle and is guaranteed to find the minimum
if there exists one, but generally has slow convergence (see section 10.6 of [PTVFO2I for details).
The conjugate grad lent method often is a better choice. The method of steepest descent converges
slowly because it has to take a right angle turn after every search step, continuing its search in
the same direction as previous steps. The conjugate gradient method uses conjugate directions

for going downhill, letting each search direction be dependant on all other directions already
searched to locate the minimum. 1ff is n-dimensional, the conjugate gradient methods needs n
line searches (n2 in worst-case) to reach the minimum.

The conjugate gradient descent method as explained in section 10.6 of [FFVFO2J is used to opti-

mize the shape estimation function.

3.5 Image Scaling with a Bartlett Filter

The speed of the Bayesian method is related to the dimensions of a video frame (section 4.2.3).
Scaling down the frames before they are used for change blobs detection and object tracking,
results in a speed up.
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The down scaling of an image causes groups of pixels to collapse into one. A smoothing ifiter is
necessary to minimize aliasing problems in the down scaled image. For this purpose a Bartlett
ifiter can be used. After the image is smoothed, a convolution mask is used to select which
pixels are kept.

Given a scale factor f, a Bartlett ifiter is constructed by taking the dot product of a row vector
and a column vector. Both contain 2 x I — 1 elements, counting up from ltof and then down
to 1 again. The sum of the elements in the Bartlett filter is always f2 greater than the desired
intensity hence the dot product is multiplied by 1/12 in order to maintain the average intensity
level for the result pixels. Because the image is scaled down, another factor of 1/12 is introduced
in order to make the average intensity of the result image equal to that of the original. An
example Bartlett ifiter used to smooth an image that is going to be scaled down with / = 2 is

ifiustrated in figure 3.11.

What the Bartlett filter actually does is weighing pixels closer to the center more heavily than
those further away. It can be seen as placing a cone on top of the kernel that sweeps over the
image, and using the height of the cone at each location to determme that position's relative
weight. After the smoothing ifiter is applied, a kernel is swept over the image to calculate the
intensity of the pixels in the result image. Given scale factor f, a f x f kernel k is used, where

the value of the resulting pixel is 1/12

The obvious down side to frame down scaling is that small object become even smaller (and
thus more difficult to track) or may even disappear. Depending on the situation at hand, image
scaling may be used or not.
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(g) OBS Backgmund (h) OBSLayer1 (i) OBSLayer2

Figure 3.7: The layered image representation of frame (a) has appearance models (b) and (c).
The appearance model of the background (not displayed) consists of the green slabs
with the sandy road. The normalized prior distribution for the three layers is shown
in (d), (e) and (f). Priors are mapped to grey levels, from black being the lowest prior
to white being the highest. The observation model for the layers is seen in (g), (h) and
(i). Values are mapped to grey levels, likewise as the normalized prior distribution.
The observation model values for a layer are high for the object the layer represents
and the background. The ownership mask can be found in (j), (k) and (I), with the
same grey level mapping as the normalized prior distribution. Since background
pixels for a foreground layer have a low prior, their high observation model value is
of little influence to the ownership mask.

(d) NPD background (e) NPD Layer 1 (f) NPDLayer2

$j)OMBackground (k)OMLayerI (I)OMLayer2



Figure 3.8: A two pixel object with object center c. The distance from c to p in the horizontal
direction is 1 in stead of 05.

Figure 3.9: When measuring the x or y-distance from object center c to a pixel, a correction is in
order. A correctional value in the different cases is indicated by a + sign.

3.5 Image Scaling with a Bartlett_Filter 41

0.5()
to.s
$0.5

1

y

I
1 +0.5

( x)
= t+0.5

—x
( )

+1



42 Methods and Models Needed for the Implementation

y

Figure 3.10: The method of steepest descent approaches the minimum of a function in a zig-zag
manner, where the new search direction is orthogonal to the previous.
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Figure 3.11: A Bartlett filter used to smooth an image that is going to be scaled down with a
factor of 2.
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This chapter presents issues regarding the implementation of the Bayesian object tracking method
developed by Tao et al. [TSKO2J. The algorithm is implemented in a framework developed at
the MIVIA research group at the University of Salerno.

4.1 MIVIA Framework and Global Code Outline

At MIVIA a framework is developed for implementing and testing various object tracking
methods. The framework is built using a combination of Java and C++, communicating via
the Java Native Interface. The Java part is responsible for the reading of JPEG frames or MPEG
video sequences, while the C++ part handles the processing of the frames and thus the actual
tracking. The framework was initially developed in cooperation with a company that already
had an image processing library available in Java, explaining the reason to involve the some-
what slow Java programming language.

A frame of a video sequence is represented in a Frame structure, featuring information like
frame width and height, and parameters regarding the organization of the pixel data. The pixel
data is kept in an array, per pixel a red, green and blue band value are present.

The implementation of the Bayesian method was build from ground up, using only the video
sequence input reading, frame representation, ground truth system, and connected components
detection provided by the framework. Its main data structure is the vector containing the back-
ground and foreground objects, defined in the Object class. This dass represents a layer in
the layered image representation A (section 2.1.1), with its motion, shape and appearance pa-
rameters. Also present is information about layer with and height, state, and the bounding box
around the object represented. The background layer forms a special part of the vector. This
layer is always present at vector position 0, has no motion parameters, has a constant shape
prior j3, and its appearance model is made up from the scene without any object present.

Files part of the implementation are briefly explained below.

• shape_blob Contains the Blob dass which represent a change blob. Information about
the blob center, its size, and its state is available. A blob can have two states; it either is
located on or within the frame border. Each blob has an unique id, assigned to it during
the determination of all change blobs.

• shape_con jugateGradient Contains the conjugate gradient method found and ex-
plained in Numerical Recipes [PTVFO2] section 10.6. The conjugate gradient method is
used within the Expectation Maximization step to estimate the shape prior.

• shape_display Contains functions to display on screen the current frame, appearance
models, background frame, normalized prior distributions, observation models, and own-
ership masks. This ifie makes use of the open source CImg Library (http: / /cimg.sourceforge.net/)
developed by David Tschumperle.
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• shape_eigen Contains the QL algorithm found and explained in Numerical Recipes
[PTVFO2J, section 11.3. This algorithm is used to compute the eigenvalues and eigen-
vectors from the covariance matrix derived from the appearance model during principal
components analysis (section 3.3).

• shape_em Contains functions needed for the Expectation Maximization step, among
which functions to estimate motion, shape, and appearance parameters. EM parameters
are also set in this file.

• shape_morph Contains functions to perform an opening or dosing (section 3.1.2) on a
frame containing connected components labeled change blobs.

• shape_object Contains the Object class which represents a layer in the layered image
representation. The dass holds information about the estimated object center in the cur-
rent frame, the state of the object, its estimated motion and shape, its appearance model,
the angle 6 the prior distribution makes with the coordinate system of the current frame
(figure 2.1), the bounding box that encloses the object, the appearance match of the object,
and the change in appearance match with respect to the previous frame. The appearance
match indicates how well the appearance model fits on the current frame and is deter-
mined during motion estimation. The appearance match and its delta are used by the
state machine to determine if an object is occluded.

• shape_print Contains functions to print frames, normalized prior distributions, obser-
vation masks, and ownership masks to standard output.

• shape_statemachine Contains the state machine (figure 2.6) that determines the state
of each object. Here new objects are added to or delete from the objects vector.

• track_shape Contains the layer tracker, which is invoked by the Java part and handles
the tracking of the objects. The objects vector is a global parameter that exists over time,
during the processing of a video sequence. Opening, dosing, and frame scale factors are
set in this file, as well as the change blobs threshold.

• tracking_MotionTracking_shape Contains the interface between JAVA and C++.
The video sequence that is used as input is set in this file.

4.2 Layer Tracker

The layer tracker is the central part of the implementation. Each time the Java frame reader
invokes the tracker, change blobs are determined, the objects vector is updated, and Expectation
Maximization is performed to estimate the motion, shape and appearance parameters for the
current frame. The schematics of the layer tracker can be found in figure 4.1.

The layer tracker is also used for the initialization of the objects vector with the background
layer. The first frame that is passed on to the tracker is assumed to be the background frame
and is used to initialize the background layer's appearance model. Other parameters a layer
normally has, are not of any interest regarding the background layer and are not used in the
tracking process.

A ground truth system (chapter 5) is used to quantitatively measure the performance of the
method. The ground truth is a per frame list of bounding boxes, one for each object present.
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Figure 4.1: Layer tracker schematics.

This list is defined by a human being and assumed to be error free. The layer tracker outputs
the bounding boxes of each object it currently tracks. This output list is compared to the ground
truth list.

The layer tracker provides the option to scale frames (section 3.5) before processing them, re-
sulting in a speed up. When scaling is used, the option to use ground truth initialized change
blobs disappears. Scaling ground truth boxes was not implemented because performance test-
ing was to be done on full scale frames. The obvious problem with using scaled frames is that
small objects get as small as noise or disappear completely, and that an amount of detail is lost.
Both male object tracking more difficult. Motion estimation translation parameters should be
adjusted according to the amount of scaling used, since scaling influences the speed in pixels
per frame of foreground objects.

Each step of the layer tracker will be briefly elaborated below.

4.2.1 Change Blobs Detection

Given the current frame It and the background frame, present in the objects vector as the ap-
pearance model of the background layer, the change blobs (section 3.1) for time instant t can be
derived. If the difference in color between I and the background frame is larger than a certain
threshold, a white pixel is written to the change blobs frame, otherwise a black one. The use
of a background frame for change blobs detection differs with the approach taken by Tao, who
uses consecutive frames.

Change blobs can be detected with or without using ground truth. When ground truth is used,
changes between I, and the background frame are only sought after within the boundaries of
each ground truth bounding box, that is, objects are sought in the areas of the current frame

#1,

I

Layer Tracker
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where objects are actually present. This option is provided to be able to test only the tracking
capabilities of the method without the problems arising in the object detection phase.

Connected components labeling is applied to the detected change blobs to be able to identify
every blob easily. To get rid of noise and small image artifacts, an opening ifiter is applied to
the labeled blob frame. Next, to fill up gaps in the change blobs, a dosing ifiter is applied. With
the resulting frame, the actual change blobs for time instant t are initialized.

During change blobs initialization, the size and center of the blobs is calculated and the label
given to the blob during connected components labeling is used as id. Depending on the blob
being on the frame border or completely in the frame, the state of the blob is set. With this state,
an object can be re-initialized by the state machine (see next section for details). Change blobs
are saved into a Blob vector. Besides this vector, the filtered connected components are passed
along to the state machine.

The appearance model of the background layer is updated along with the appearance models
of the foreground layers, during Expectation Maximization. If the ownership mask indicates
that a pixels belongs to the background, the background appearance model is updated at this
location with information from I. This way the background frame is dynamically updated to
cope with for example gradual changes in lighting conditions.

4.2.2 State Machine

The state machine updates the objects vector with information gained from the change blobs.
To this end, two types of associations are established. The first type is blob -' object, the as-
sociation of a blob to the object closest to it, thereby regarding a minimal distance threshold.
This thresholds assures that a blob is not associated if it is far away from all currently existing
objects. A not associated blob indicates a new object. An object can be associated to multiple
blobs.

The second type is object —' blob, the association of an object to the blob dosest to it, with the
same distance threshold used for the other type. A blob can be associated to multiple objects.
it is not always true that blob -÷ object, the object dosest to a blob does not necessarily have to
have this blob as closest blob in return. In case of an ocdusion two blobs that were previously
separate, are merged to one. The two objects under this blob will have it associated, while the
blob is only associated to one of the objects.

After establishing blob —' object for all blobs present and object — blob for all objects present,
the associations are processed. The blob —i object associations are only used to initialize new
objects, that is when an unassociated blob is encountered. The appearance model of a new
object is initialized with pixel values from I found under the blob, its state is new, its center
is equal to that of the blob, motion is zero, and the initial shape prior and angle 6 are derived
using principal component analysis (section 33).

The processing of the object —i blob associations is done using the state machine as seen in fig-
ure 2.6. Here object states are updated and objects are removed if they are not present anymore
(out of scope). The fact that a background is used to determine change blobs means that station-
ary objects also produce a blob. This requires changes in state transition rules since the NB (No
motion Blob covering the object) condition cannot be used to determine if an object has become
stationary. Instead, an object is marked as stationary if it has a zero motion and no degraded
appearance match.
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Tao also uses the absence of a change blob, in combination with a degraded appearance match,
to determine if an object is occluded. When objects A and B are involved in an occlusion, the
motion blob covering both objects is assigned to both A and B, because the blob center is closest
to both object centres. Even if the blob would be assigned to only one of the objects, it could not
be concluded that the object without blob is occluded by the one with blob. Thus marking an
object as occluded is based solely on its degraded appearance match.

When the associated blob of an object touches the frame border, the appearance model of the
object is reinitialized and principal components analysis is run again. Translation parameters
are derived from the current and previous object centres. Reinitialization is done to be able
to cope with objects entering or leaving the scene. While not completely in the frame, those
objects have a radically changing shape and appearance, making correct estimation difficult.
An incorrect shape prior and appearance model result in faulty motion estimation, causing
faulty tracking. If an object A is occluded, it should not be reinitialized because the object in
front of A will the be wrongly incorporated in A's appearance model. It is therefor assumed to
occlusions do not take place on frame borders.

Changes and additions with respect to Tao's state machine are summarized below.

• New - Object reinitialization when associated blob touches frame border.

• Moving - Object reinitialization when associated blob touches frame border. The transi-
tion to stationary is based on an appearance match that is not degraded and a zero motion.
The transition to occluded is solely based on a degraded appearance match.

• Stationary - Object reinitialization when associated blob touches frame border.

The state machine outputs the updated objects vector to the expectation maximization step.

4.2.3 Expectation Maximization

Expectation maximization (EM) is used to estimate the model parameters for all layers, based
on the previous parameters found in the objects vector, and current frame I. Besides implemen-
tation remarks, a time complexity analysis wifi be done for the distinctive EM steps (figure 2.4).
D stands for the x x y frame dimension, L for the number of layers and B for the number of
bands used.
Tao uses one parameter o-, that is used during the construction of the observation model, mo-
tion estimation, and appearance estimation. In practice it seemed necessary to able to set the
value of aj separately for all three parts, and therefore it is split into a cI,06. for the observation
model, a J,mot for the motion estimation, and a for the appearance model.

Ownership The ownership (OWN) is calculated from the normalized prior distribution (NPD)
and the observation model (OB), where

NPD = D x L, (4.1)

OBS = L x 2 x D x B, (4.2)

OWN = NPD+OBS+DxL
= 2xDxLx(B+l)
= 8xDxL
= DxL. (43)
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OBS involves an initialization step and warp/value calculation step for all layers L. In most
cases B =3, making the OWN time complexity dependent on frame dimension and number of
layers.

As discussed in section 3.2, the calculation of the observation model requires an appearance
model with values for all pixels, while the appearance model due to its nature contains trans-
parent pixels. This problem is solved by using the corresponding background value whenever
a transparent pixels is encountered during calculation.

Motion Estimation To estimate the motion of a foreground object from time instant t — 1 to
t, the appearance model of the object is warped (WARP) several times, using different trans-
lation and rotation , combinations. Each time, the warped model is compared to I and an
appearance match value is calculated. The warp yielding the best match value is chosen as es-
timate for the object. Warping consists of initialization, applying the translation and rotation to
the appearance model, and the filling of holes. This result in a time complexity of

WARP = 3xDxB
= D. (4.4)

Let MUX be the possible translation in the a-direction, MUY the possible translation in the
y-direction, and OMEGA the possible rotations, then the time complexity of the motion esti-
mation (MOT) step is

MOT = OMEGAxMUYxMUXx(L+NPD+Lx(WARP+DxB))
= OMEGAxMUYxMUXx(L+DxL+Lx(4xDxB))
= OMEGAxMUYxMUXxLx(l+D+4xDxB)
= OMEGAxMUYxMUXxLx(1+l3xD)
= OMEGA x MUY x MUX x L x D. (4.5)

An optimization is gained by using the bounding box of an object as region in which the trans-
lations and rotations are tried. To make sure the appearance model fits in this region after
translation and rotation are applied, the bounding box is enlarged by a number of pixels in
every direction. Using a region instead of the whole frame hardly influences the match score,
since the ownership value of pixels further away from the object is very low.

The tested translation and rotation parameters are fixed. A typical set consists of five x, y and
w values (two positive, two negative and the neutral value), resulting in 125 motion estimation
steps for each layer. Each of the three parts of equation 2.18 is normalized. The logarithm of the
motion prior is situated in the range of 10,2] (both translation and rotation are situated in the
[0,1] range), the correlation between the layer ownership and the segmentation prior is [0,1], as
is the weighted sum of the squared differences between the image and the appearance of layer
under motion Theta. On top of these normalized values, variances a, a, and a are applied.

For each foreground layer, the match score accompanying the chosen motion parameters is
saved along with the difference with respect to the match score of the previous time instant.
This information is used by the state machine to establish if the appearance match for the object
is good or degraded.

After motion estimation, the estimated translations and rotations are applied to the respective
foreground layers. This way the ownership mask, shape estimation, and appearance estima-
tion directly benefit from an appearance model and prior distribution that better resemble the
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actual situation in the current frame. That is, compared to the situation in which the motion
parameters would be applied by the state machine.

Shape Estimation The conjugate gradient method (section 3.4) is used to optimize equa-
tion 2.19 (FUNC) by using its gradient as calculated by equations 2.21 and 2.22 (both DFUNC).
The time complexity of both functions is

FUNC = L + D x 2 x (4.6)

DFUNC = 2xL+Dx2xL. (4.7)

Conjugate gradient uses L line minimization's [PTVFO2] (worst case L2). Every line minimiza-
tion requires one DFUNC evaluations and afe'w FUNC evaluations. Most FUNC evaluations
are made during the bracketing of the function minimum. In practice around 35 FUNC eval-
uations are made for every line minimization, giving an estimated time complexity for shape
estimation:

SHAPE Lx(DFUNC+35xFUNC)
= 37xL2+72xDxL2. (4.8)

Appearance Estimation The appearance model of an object is defined in its own coordinate
system, as shown in figure 2.3. As explained in section 3.2, in practice the appearance model is
not rotated according to angle 6.

The appearance models of the foreground layers are updated using the actual image segmen-
tation s derived from the ownership mask. The appearance model of layer j is updated in four
steps:

1. Initialize new appearance model.

2. Translate old appearance model onto It.

3. Loop over all pixels. If a pixel belongs to j according to 8, update it according to equa-
tion 2.24 if the pixel already belonged to the appearance model. Otherwise use its value
in I. If a pixel does not belong to j, give it a —1 value to indicate its transparent. During
this process, the new object bounding box is defined.

4. Use the center of the new bounding box to translate the updated appearance model onto
the center of the new appearance model.

The background appearance model is updated in a similar fashion, but without the two trans-
lation steps. The time complexity of the appearance estimation (APP) of the foreground layers
is:

APP = Lx4xDxB
= l2xLxD
= LxD. (4.9)



Implementation

Overall Complexity As shown in the previous paragraphs, the motion estimation step and
the shape estimation step require most computation. During Expectation Maximization, the
Bayesian method loops a rough 200 times the number of layers over the dimensions of the
image, for every frame. A great deal of speed can be gained from using an other ways to
estimation both motion and shape. Suggestions will be proposed in chapter 6.
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This chapter describes the tests performed to compare the Bayesian method of Tao eta!. [TSKO2]

with the graph-based method of Conte [CFJVO5I. The method of comparison will be elaborated
in section 5.1, the basic and advanced test sets will be described in sections 5.2 and 53, a short
description of the graph-based method is presented in section 5.4, test results are to be found in
sections 5.5 and 5.6, and the comparison between both methods is done in section 5.7.

5.1 Method of Comparison

The goal of both algorithms is to detect and track objects in motion video. Events occurring
over time can be be divided into two dasses. Events in which objects have motion, pass one
another at dose range, rotate, have slight changes in appearance / shape, become stationary
and accelerate are regarded as basic. Occlusion is regarded as advanced, whether this is due to
objects moving in front of one another or to objects moving behind parts of the background.
Splitting objects, aggressive changes in appearance, fast changes of shape and objects entering
or leaving the scene also belong in the advanced category Descriptions of all events can be
found in sections 5.2 (basic) and 5.3 (advanced).

The algorithms will be assessed on several features, which are briefly introduced below. The
quality of detection is left out, since the same method for object detection can be used in both
algorithms. The main focus lies on the tracking qualities and speed of the methods.

Quality of Tracking - Indicates how dose the tracker can stay with the actual objects, how
well the estimated object track fits the real one. Quality of tracking can also be expressed
in terms of how well the internal representation of an object matches the actual situation.

Computational Effectiveness - Indicates how fast a tracker can process frames.

Ground Truth To be able to quantitatively measure the performance of both algorithms, ground
truth is used [SHTO1]. The algorithms output a per frame list of bounding boxes, one for each
object currently being tracked. The bounding box of an object is the smallest rectangle around the
object, completely enclosing its pixels (figure 5.1). The output or result list is compared to the
user generated ground truth list, also containing a bounding box for each object being present
each frame. Human beings make use of a superior tracking mechanism, being able to segment
scenes and keeping track of multiple objects in complex ocdusion cases, with the least of effort.
Although there is a reasonable chance human beings make mistakes during the ground truth
generation process (one gets tired of determining bounding box coordinates for thousands of
frames), ground truth is assumed to be error free. To be noted is the subjective aspect of ground
truth generation. Human judgement may differ when determining which pixels belong to an
object, especially when dealing with objects consisting of only a few.
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The track of an object is the path it travels while present in the scene. Given a ground truth track
and a result track, the quantitative error measures (performance metrics) mentioned below are
defined in the same manner as in [SHTOl].

Object Centroid Position Error - Objects in the ground truth are represented by bounding
boxes. The object centroid position error E is approximated by the distances between
the centers of the bounding boxes in ground truth and the centers of the associated objects
in the tracking results. This error measure is useful to determine how close the tracker
is to the actual position of the object. For a video sequence, E is the average over all
frames over all tracks.

Object Area Error - The object area is approximated by the area of the bounding box.
Although an object seldom fits perfectly in a bounding box, using the bounding box to
determine the size of an object is considered a good approximation. Labeling the exact
boundary of an object is a tedious and time consuming piece of work for thousands of
frames and therefore not considered an option. The object area error E measures how
well the object bounding box found by the tracker fits the ground truth bounding box
for this object (assumed that is exists in the ground truth). For a video sequence, E
is the average over all frames over all tracks. A negative outcome of E indicates that
the output bounding boxes are generally smaller than the ground truth ones. The E is
illustrated in figure 5.2.

• False Positive - A false positive Aj is a tracker result not present in the ground truth.

• False Negative - A false negative A1 is a result not found by the tracker that is present in
the ground truth.

• Track Incompleteness Factor - The track incompleteness factor F1 measures how well the
track of an object as determined by the tracker fits the ground truth track of this object:

— #Aj + #A,
F2

T•
(5.1)

where #Aj is the false positive frame count, #Aj is the false negative frame count, and
T, is the number of frames present in both result and ground truth. The smaller the factor,
the better the result.

• False Positive Rate - The false positive rate R1 tells something about the amount of non-
existing object tracks found by the tracker, normalized with the total number of truly
existing tracks in the ground truth. It is defined as

R — output tracks which are not present in the ground truth
(52)-

— total number of ground truth tracks

• False Negative Rate - The false negative rate R1 tells something about the amount of
ground truth tracks not found by the tracker, normalized with total number of truly exist-
ing tracks in the ground truth. it is defined as

R
— ground truth without corresponding output track

53fn
— total number of ground truth tracks

The computational effectiveness wifi be expressed in Cm,,,1, the number of milliseconds needed
top one frame, and C1,,,, the equivalent number of frames per second a method is able
to handle.
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Figure 5.1: A bounding box (dotted line) of an object is the smallest rectangle enclosing all pixels
belonging to that object.

40

40

I I

*
33

Figure 5.2: The 40 x 40 dotted rectangle is the ground truth bounding box, the 30 x 33 dotted rect-
angle is the bounding box encapsulating the object as tracked by the object tracker.
The object area error for this situation is E = —610.
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Test Sets Two types of test sets are used. The hand made, artificial sets are created to test
the algorithms on specific events. The level of detail is very low, they contain either uniformly
faced backgrounds or backgrounds with simple scener and the foreground objects have basic
shapes. The scenes are viewed top-down, and motion and rotation are limited to the 2D plane.
The reason to incorporate artificial sets in both basic and advanced events testing, is that it is
important to know how the algorithms perform on abstract representations of the real-world.
If the performance on artificial basic and advanced events is satisfactory those same events can
be tested with all problems and difficulties that come with real-world test sets.

The real-world test sets are taken from the PETS '01 database [PETOI]. The 2001 Second IEEE
International Workshop on Performance Evaluation of Tracking and Surueillance used this set to test
the participating tracking algorithms. Since the workshop was held, the test set is widely used
by authors to compare performance of their new tracking techniques. The PETS '01 set contains
a scene with depth, with motion and rotation occurring in 3D. To be able to test the methods on
the different events present in the PETS '01 set separately, the set is divided into four subsets.
The frame numbering for each set is altered such that it starts at frame 1.

The dimensions of the artificial test sets are 380 x 285 pixels, the PETS '01 set is 384 x 288 pixels.
Those are typical dimensions of frames produced by inexpensive surveillance hardware. A
brief description of the test sets used can be found in table 5.1. A more detailed explanation of
the various events in the basic and advanced test sets can be found in sections 5.2 and 5.3.

Test Environment The Bayesian method and the graph-based method are tested on a 2.6 GHz
Intel Pentium IV system with 512 Mb RAM. The operating system was version 3 of the Fedora
Core Linux distribution.

5.2 Basic Test Sets

Various basic events are tested with the basic test sets. Each set contains a subset of events
possible to occur, to be able to test how well the tracker handles each event separately. Each test
set is briefly described in words and on a per frame basis. Various sample frames from each test
set are also present.

5.2.1 Description of Events

Basic events are described below.

• Motion-Anobjectcanhaveamotionii= [x,y],withatleastx Oory 0. Motionin
the test sets used is either in the x-direction, y-direction or a combination of both, between
-3 and 3 pixels per frame.

• Rotation! Turning - An object can rotate with an angle w. In the test sets used, the rotation
in either direction is never greater than 50 per frame. A rotating object forms a challenge
because its appearance model is based on the object before rotation and thus its obser-
vation model can not fit as good on the current frame situation as without rotation. The
same holds for the shape priors: the normalized prior distribution is based on the angle 5
of the object before rotation.
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• Passing - if objects pass one another at close range, a tracker might not be able to correctly
associate the objects to their corresponding change blobs.

• Stationary - A stationary object has a motion ji = [0,01. If two consecutive frames are used
for change blob determination, stationary objects do not have a change blob and are thus
not trivial to be handled.

• Accelerate - Stationary objects can start moving again after a certain period of time. Track-
err have to associate an already existing object with a change (new) blob.

• Gradual Change of Shape - The shape of an object can change over time. This is likely to
go very gradually and can for example occur due to rotation in a 3D scene. Nevertheless
must the tracker be able to update internal representations of the objects and the frame.
The more frames per second a camera produces, the more gradual changes will take place.

• Gradual Change of Appearance - Due to lighting conditions that differ over time in out-
door scenes the appearance of an object can change. This is likely to go gradually. Again
must the tracker be able to handle this situation and again a higher frame rate is prefer-
able.

5.2.2 Description of Test Sets

Cars Artificial test set Cars contains two rectangular objects with a slight gradient from back
to front. Both the blue car and the red car start completely within the frame. The blue car has
a dimension of 51 x 26 pixels, the red one takes up 90 x 26 pixels. The events in this test set
include motion by 1, 2 or 3 pixels per frame in either the (positive or negative) x-direction,
(positive or negative) y-direction or a combination of those two, rotation with an angle of 3°
per frame, becoming stationary, accelerating and objects passing each other at dose range. The
background resembles a sandy road with slaps of green on both sides. Additive Gaussian noise
with a a of 3 is applied to the background, to mimic distortion normal seen in frames produced
by cheap surveillance cameras. A per frame description can be found in table 5.2, example
frames from the test set can be seen in figure 5.3. The test set is a simplification of a real-world
traffic monitoring scene which tests the tracker on handling the basic events mentioned.

Splash Artificial test set Splash contains one object with a complex shape and a slight gradient.
The splash like, or oil stain like, object starts completely within the frame and moves around
with a speed of 1,2 or 3 pixels per frame, in the same manner as the objects in the Cars test set.
The splash also rotates with a maximum of 3° per frame. Like the Cars set, additive Gaussian
noise with a a of 3 is applied to the background. The events occurring in the test set can be
found in table 5.3, an example frame can be found in figure 5.4. The main purpose of this set is
to see how the tracker handles a complex shape, that is, a shape that does not fit nicely in the
shape representation proposed by Tao (section 2.1.3).

Trailer Artificial test set Trailer contains one object, consisting of two independently moving
but connected parts. The object resembles a trailer (61 x 21 pixels) with truck (20 x 22 pixels),
both having a white to red gradient. The truck moves with a speed of 1,2 or 3 pixels in the same
manner as the objects in the Cars test set. When making a turn, the 3° rotation initiated by the
truck is followed by the trailer in a fairly natural way. The combination becomes stationary for
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Id Name Kind Frames Characteristics

T
2.

3.

Cars Artificial, basic 107 Two objects, rotation, motion,
stationary, acceleration.

Splash Artificial, basic 98 One object, oil stain shaped, ro-
tation, motion.

Trailer Artificial, basic 60 One object resembling a truck,
rotation, motion, shape change.

4.

5.

Morph Artificial, basic 120 One object, both shape and ap-
pearance change.

Dawn Artificial, advanced 104 One object, motion, rotation,
dramatic scene intensity change.

6. Set I PETS '01, basic 358(90 - 448) One object.
7. Set 2 PETS '01, basic 106(445 - 512) Two objects.

8. Set 3 PETS '01, advanced 224(538 - 762) Simple occlusion.
9. Set 4 PETS '01, advanced 430 (670 - 1100) Complex occlusion.

Table 5.1: Short description of the test sets used to compare the Bayesian method and the graph-
based method. The numbers between brackets indicate the original PETS '01 frame
numbers.

Frames Events
1 -3 Only the background is visible.

3-21 Cars emerge and drive towards each other, with a slight diagonal
motion.

22-47 Red car is stationary, blue car takes evasive action by turning left,
followed by a right turn.

48-110 Red car accelerates and continues its way in a straight diagonal
line, blue car continues its right turn and passes the rear of the
red car. The cars are dose to each other during those events.

Table 5.2: Events occurring in the Cars test set.

0
8

(a) Frame 35 (b) Frame 70 (c) Frame 102

Figure 5.3: Three sample frames from the Cars test set. (a) Blue car is turning, red car is station-
ar In (b) and (c) the blue car moves around the red one, which moves a little to the
left (seen from the driving direction).
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a little while halfway the sequence. Like the Cars set, additive Gaussian noisewith a a of 3 is
applied to the background. For a detailed sequence description see table 5.4, sample frames can
be seen in figure 5.5. The intention of this artificial set is to test the trackers on their handling of
objects of which the shape of a moving object changes gradually over time.

Morph Artificial test set Moiph contains one object. While stationary, its shape first grows into
the x-direction, followed by growth in the y-direction. This resembles a car turning in a 3D
volume from front (or back) view to side view. Next, the appearance of the object changes. The
objects fades to grey, resembling the occurrence of shade in a scene. Like the Cars set, additive
Gaussian noise with a a of is applied to the background. A detailed video frame analysis can
be found in table 5.5, sample frames are displayed in figure 5.6. The intention of this test set is
to test the tracker for gradual changes in both appearance and shape of a stationary object.

Set 1 Real-world PETS '01 test set contains a scene with a t-junction, a parking lot, a range of
parked cars, slabs of grass, several two or three story buildings, and a lamppost. Set 1 is a subset
of the PETS '01 sequence. In Set I a person enters the scene and moves in a rather straight line
towards the bottom-right corner. The person takes up approximately 6 x 16 pixels on entry and
evolves slowly up to 11 x 24. A sample frame from Set I can be found in figure 5.7. Set 1 is used
to test the methods on their capability of tracking one object.

Set 2 Real-world Set 2 test set continues where Set I stopped. A blue car enters the scene
from the left, and moves towards the person. The car has dimensions of approximately 70 x 40
pixels. While moving towards the right screen border, the person gets occluded by the lamp-
post. Although occlusion by a background object belongs in the advanced category. it was more
convenient to make it part of this test set than of Set 3. Sample frames from Set 2 can be found
in figure 5.8. This set intends to test the trackers on handling two objects and occlusion by a
background object.

5.3 Advanced Test Sets

Advanced test sets are used to test the methods on their capability of handling advanced events.
The events dassified as advanced are described, as well as the test sets containing those events.

5.3.1 Description of Events

Advanced events are described below.

• Enter! Disappear - The shape and appearance of an object change dramatically when it
enters a scene or disappears from it. The tracker must be able to recognize an object over
multiple frames while entering or leaving the frame.

• Aggressive Change of Shape - When an object has a fast rotation in a three dimen-
sional scene, its shape can change rapidly. This can also happen when an object moves at
high speed, especially in any direction other than perpendicular to the camera viewpoint.
When using low frame rate camera equipment, changes over time in shape are also more
likely to be aggressive.
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Frames Events
1-3 Only the background is visible.

3-64 Splash moves from bottom right to the center of the frame by
making a wide turn.

65-70 Splash becomes stationary.
71 -81 Splash moves straight down under a slight rotation.
82-99 Splash moves straight right, comes to a stop and moves back in

the same line.

Table 5.3: Events occurring in the Splash test set.

Figure 5.4: One sample frame from the Splash test set.

Frames Events
1 -3 Only the background is visible.
3-6 Truck and trailer move in a straight line to the right.
6-40 Truck initiates a turn, followed by the trailer.

41 -47 Truck and trailer are stationary.
48-60 Track and trailer move in a straight diagonal line in the direction

of the top-right frame corner.

Table 5.4: Events occurring in the Trailer test set.

(a) Frame 11 (b) Frame 25 (c) Frame 40

Figure 5.5: Three sample frames from the Trailer test set. In (a) the truck just started its turn,
the trailer is not yet turning. (b) shows both truck and trailer in the middle of a turn.
Figure (c) shows the combination with a straight line motion.
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Piiies Events
1 -3 Only the background is visible.
3-25 49 x 44 pixels object is stationary in center of frame.

26-40 Object grows mainly in x-direction to 77 x 46 pixels.
41 -48 Object is stationary
49-63 Object grows in the y-direction to 77 x 72 pixels.
64-120 Appearance of object flows from blue to grey.

Figure 5.6: Three sample frames from the Morph test set. In (a) the initial object is shown. (b)

shows the object after growth in both x and y-direction. Figure (c) shows the object
after its appearance changed.

Figure 5.7: Frame t =50 from the Set1 test set. The person is hardly visible, but can be seen on
the road a little to the right of the left image border.

Table 5.5: Events occurring in the Morph test set.

(b) Frame63 (c) Frame 120(a) Frame4
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• Aggressive Change of Appearance - When an object moves into a shaded area of an out-
door scene, its appearance will change dramatically. The full object appearance is likely
to change in several steps depending on speed and frame rate. The possibility exists that
the front of the object leaves the shaded area before its rear enters. In all cases, the tracker
must be able to cope with fast, temporal changes in appearance.

• Occlusion with Background - A foreground object is wholly or partly occluded behind
an object that is part of the background. Because this object belongs to the background, it
cannot be segmented and is therefore not seen as an object by the tracker. The occluded
foreground object will be split in to two parts, become partly visible or completely dis-
appear for a certain period of time. Since the occluding part of the background is not an
object, the tracker cannot classify the state of the ocduded foreground object as ocduded.
This type of occlusion will most likely appear in scenes with depth.

• Simple Occlusion Among Objects - Two foreground objects pass each other, during
which one object moves partly in front of the other. During the passing, motion is not
changed and a good part of the occluded object is still visible.

• Complex Occlusion Among Objects - There can be more than two foreground objects
involved, thus occluded objects can occlude other objects and objects can occlude more
than one other object. Also change in motion or rotation can be involved.

• Splitting of an Object - If a group of people is walking closely together, they are most
likely to be recognized as one object. Not only the group formation can change, but also
people can walk away from the group. A similar sort of event occurs when a car is parked
and its driver steps out and walks away. In both situations new objects appear. In case of
the walking group both shape and appearance of the initial object change drastically.

5.3.2 Description of Test Sets

Dawn Artificial test set Dawn contains one rectangular (86 x 49 pixels) object with a blue gra-
dient from back to front. The background resembles a crossing with houses along a horizontal
road. Of interest in this sequence is the intensity change of the whole scene. An early sunrise
is simulated, where the scene turns from fairly dark to bright white. The object moves like the
blue car in the Cars test set and rotates with steps of 50 A full sequence analysis can be found
in table 5.6, samples from the sequence are on display in figure 5.9. This test set is qualified
as advanced because of the high speed with which the intensity rises, not only transforming
the appearance of the objects but of the background as well. If the tracker lacks a good way of
coping with intensity changes it will not only be unable to track the object over time, but also
fail in doing useful change blob detection. That can lead to the situation in which the whole
background is seen as a change blob.

Set 3 Real-world test set Set 3 picks up where Set 2 left off. The person continues his (or her)
way and passes behind the blue car, which itself continues its movement towards a parking
spot in the center of the frame. After passing behind the lamppost, the blue car comes to a
full stop on the parking spot. After the person has left the scene on the right, a white mini-
van (34 x 24 pixels) enters from the left and moves towards the parked cat Sample frames are
shown in figure 5.10. A per frame sequence analysis can be found in table 5.7. Set 3 is used to
test the methods on tracking three objects in a real-world scene, of which two of them form an
occlusion.
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Figure 5.8: Two sample frames from the Set 2 test set. (b) shows the ocdusion of the person by
a part (the lamppost) of the background.

Frames { Events
1 -3 Only the background is visible.

3- 104 Scene intensity (background and object) goes from dark to light
in equal steps.

3-32 Object moves straight right.
33-35 Object makes a small turn.
36-63 Object moves in a diagonal line towards the top-right corner.
64-79 Object turns further, till it faces straight up.
80-104 Object moves straight up.

Table 5.6: Events occurring in the Dawn test set.

—II
(b) Frame 50

I

(c) Frame 100

Figure 5.9: Three sample frames from the Dawn test set. (a) shows the darkest frame of the
sequence, (b)is the neutral situation and (c) shows the brightest frame.

(a) Frame 38 (b) Frame 79

(a) Frame 4
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Frames Events
1 -3 Only the background is visible.

4-20 Car and person move towards each other.
21-48 Person is partly ocduded by car, both continue along their previ-

otis paths.
49- 114 Ocdusion of person by car is over. Car is partly ocduded by part

of the background (lamppost). Car turns slowly in 3D towards
parking spot.

115 - 135 Person leaves the scene on the right. Car slows down.
136 - 224 Car becomes stafionar White mini-van appears from the left

and drives towards t-junction.

Table 5.7: Events occurring in the Set 3 test set.

Figure 5.10: Three sample frames from the Set 3 test set. (a) shows the partly occluded person
by the blue car, (b) the partly occluded car by a part of the background, and (c) the
white minivan.

(a) Frame 37 (b) Frame 69

(c) Frame 200
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Set 4 Real-world test set Set 4 contains various complex events and starts at the point where
the white mini-van enters the scene (and thus has some overlap with Set 3). The white mini-
van continues its way towards the parked car and passes in front of it. Meanwhile a group of
three persons enters the scene on the right, followed by a single person entering the scene in
the lower left corner. While the group walks in the direction of the three story building, the
mini-van drives to the right scene side to become stationary while only partly in the scene. The
single person moves over the slab of grass in a perpendicular line, to eventually pass in front of
the car. A fifth person appears, while stepping out of the parked car. An analysis of all events
occurring can be found in table 5.8. Sample frames are presented in figure 5.11. This set tests the
methods on various basic and advanced events, among which a simple occlusion (parked blue
car by the white mini-van, and white mini-van by the grass person), the tracking of three objects
moving close together (group of three persons), a complex occlusion (group of three persons
by the white mini-van), objects entering and leaving the scene, object becoming stationary and
accelerating, splitting of objects (person that appears from the parked car), occlusion with a part
of the background (mini-van by the lamppost), and gradual changes in shape and appearance
due to movement in a 3D scene.

5.4 Graph-Based Multi-Resolution Method

Most object tracking approaches work on a pixel-by-pixel basis, making them virtually un-
suitable for real-time application. Conte [CFJVO5] presents a tracking method that exploits the
wealth of information gained from spatial coherence between pixels, using a graph-based multi-
resolution representation of moving regions in a video sequence.

A bounding box provides the simplest representation of a moving region (change blob). It
contains enough information to track objects over time in case there are no occlusions present.
The graph-based method features a more complex representation based on a graph pyramid,
which maintains the simplicity of a bounding box in case occlusions are absent, but offers more
accurate matching possibilities otherwise. Each moving region is represented at different reso-
lution levels, using a graph for each level. At the top level of the pyramid, the graph consists
of one node and contains information about the bounding box and average color of the repre-
sented region, at the lowest level the graph nodes present single pixels of the region and the
edges encode the connectivity relation. Intermediate levels are obtained using bottom up clas-
sical decimation-grouping, in which node merging is guided by color similarity. An example
pyramid is illustrated in figure 5.12.

During the tracking process each pyramid node receives a label associating the (sub)region to
the object it belongs to (an object can consist of multiple regions and a region can contain mul-
tiple objects). When a (sub)region contains multiple objects, the corresponding node receives
a multilabel label indicating that the separate objects can be reconstructed using lower pyramid
levels.

Given the labeled representation of frames Iti and current frame I, the graph-based method
should find a representation for I featuring a labeling consistent with the identities of the ob-
jects present. Therefore it compares the topmost levels of the pyramids (every moving region
has its own graph pyramid) of with the topmost levels of the pyramids in I. The pyra-
mids in I contain only a top-level, that is, only the bounding boxes of the moving regions are
known. if the outcome of the comparison is sufficient (above threshold T3) to assign a label to
each node, the lower level of the pyramids of I_ are propagated to their corresponding pyra-
mids in I. If the comparison outcome between pyramid m in Is_i and pyramid n in i is not
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Frames Events
1 -3 Only background is visible.
4-83 Blue car becomes stationary (parks). White mini-van enters scene

on the right, moves along the road to the center of the scene.
84-150 White mini-van continues along the road. Group of three people

enters from the right.
151 -219 White mini-van and group of people continue there ways. Per-

son enters the scene from bottom right and walk right on the
grass. Mini-van is occluded by the lamppost for a period of time.

220 - 243 White mini-van occludes group of people, grass person contin-
ues.

244 - 350 White mini-van occludes group of people, which is underway to
the buildings. White mini-van becomes stationary with its nose
outside of the frame. Person steps out of the previously parked
blue car. Grass person walks towards stationary white mini-van,
being occluded by the lamppost for a short period of time.

351 - 430 Person who stepped out of the car begins to move towards mini-
van (lamppost ocdusion). Group of three people is occluded by
lamppost for several frames, while continuing towards the build-
ing. Grass person partly occludes white mini-van and leaves the
screen.

Table 5.8: Events occurring in the Set 4 test set.

Figure 5.11: Two sample frames from the Set 4 test set. (a) shows a white mini-van, a group
of people closely walking together and a person walking on the grass. (b) show
the occlusion of the white mini-van by the person previously walking on the grass.
The group is now situated between the cars on the parking lot. The driver of the
stationary blue car just got out. The difference in size of the people in the scene
illustrates the 3D character of the set.

(a) Frame 202 (b) Frame4l5
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sufficient (below T1) but still promising (above 7'2), the complete graph pyramid for n is con-
structed and comparison at lower levels of m and n is performed. If the comparison outcome is
less than promising, the pyramid is regarded as a new object and initialized as such. In case of
an ocdusion, the comparison outcome falls between T1 and T2.

5.5 Bayesian Method Results

Results from the Bayesian method on the basic and advanced test sets are described below. The
artificial sets are processed without using the ground truth bounding boxes to initialize objects,
while the PETS '01 sets are processed with the ground truth boxes. This is because the PETS '01
sets contain small objects which were eliminated during noise removal. Although the focus of
comparison is not on the detection step, using the detection mechanism of the Bayesian method
is preferred over using the ground truth bounding boxes. This is to give a complete view on
the abilities of the method. Furthermore, the computational time needed by the detection step
is negligible with respect to the time needed by the tracking step.

Parameters What values should be used for the segmentation prior parameters explained in
section 2.1.3? The lower constant background prior 3, the higher the normalized priors in the
prior distributions of the foreground layers will be (figure 2.2). Uncertainty of layer shape -y is
a percentage of f3, allowing pixels with a high observation model value (image likelihood) to
belong to a foreground layer even though they are far away from its center. A high -y (in the
range [0, fi]) results in large appearance models, since pixels may be very far away from their
respective layer centers. A /3 of 0.5 yields good results, with a 'y of 20%. Lower f3's convert the
appearance models to much into ovals, as is the result of using higher y's.

Standard deviation a1, (used to construct the observation model) accounts for image noise.
The lower o,,, the harder a pixel mismatch will be punished. A j,0o. that can accommodate
for a per band color difference of 10 is used.

Motion parameters tried during motion estimation for the artificial sets are a and py from
the set {—2, —1,0,1, 2} pixels, and an w from the set {—2°,0, 2°}. Standard deviation aj,o is
chosen in such a way that the third term of equation 2.18 carries most weight, but can still be in-
fluenced by the normalized first two terms. The enlargement of the bounding box (section 4.2.3)
is set to 10 pixels. For the PETS '01 test sets the same translation set is used. The use of a rotation
set proved not useful. Chances are small that objects in a 3D scene rotate in such a way that it
can be caught by the simple 2D rotation used during motion estimation. Letting a faster update
of the appearance model handle 3D rotations seemed more useful.

Standard deviation c18 is chosen very low, to prevent the shape prior from growing to enthu-
siastic. Giving the shape estimation too much space results in faulty motion estimation due
to appearance models in which too much of the background is present. This problem is also
related to the choices of j3 and -y.

The appearance estimation of the background layer is done separately from the foreground
layers, allowing different standard deviation parameters (7J,app and CA for each type. In both
cases oj,0 is set to 1, regulating the update behaviour with 0A• In case of the artificial test sets,
a low CA suffices since the appearance of the objects hardly changes. That is not the case for the
PETS '01 sets, so there a higher parameter value is used. A 0A of 0.5 gave good results. For both
test set types the background CA is 0.1.
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Slightly different parameter settings where used for each test test. If radical changes were made
to the settings described above, this is noted. Parameter settings for the opening depth, dos-
ing depth, change blob threshold, and minimal distance threshold (used by the state machine
to determine if an objects is new) are of less importance. Typically, a ifiter depth of 2, and a
threshold of 20 (compared to the sum of the color differences for all bands) are used. A good
rule of thumb for the distance threshold is the longest side of the largest object present in the
video sequence.

5.5.1 Basic Test Sets

Cars Test results are summarized in table 5.9. All object tracks present in the ground truth
are recognized by the method (Rj = 0/2) and no false positives are generated. resulting in a
flawless track completeness. The E is 4.8 pixels on average, indicating the tracker estimated
the motions, and thus locations of the objects, rather precisely over time. The tracker produced
a per frame E of about —418, indicating that the objects as represented in A in general were
slightly smaller than they actually are. With an average processing speed of 85 seconds per
frame, the method is not able to track the two object at real-time. Figure 5.13 shows the tracking
situation on t = 73.

Splash Test results are summarized in table 5.10. Tracking results are similar to those of the
Cars set. Since there is one object present in Splash, the average per frame processing time is
cut in half with respect to the Cars Cms,,j results. The object centroid position error is slightly
bigger, meaning the tracking path deviated more from the ground truth path. Figure 5.14 shows
the tracking situation on t = 80. Clearly visible is the effect of the simple shape prior on the
complex shape, regarding the appearance model.

Trailer Test results are summarized in table 5.11. The trailer results follow the line of the pre-
vious two result, only the E is larger negative. This is caused by the fact that truck and trailer
are one object, but move independently. When the truck deviates from its original line with
the trailer, the ground truth bounding box gets larger. It takes a few frames for the appearance
model, and thus the size of the output bounding box, to catch up with the actual situation.
Figure 5.15 shows the tracking situation on t = 30.

Morph Test results are summarized in table 5.12. While stationaly and growing, the motion
estimation step occasionally estimates a motion, moving the object to the right. The appearance
model is smaller than the object it represents because the appearance estimation needs a couple
of frames to adapt to the new size, after the shape estimation step has let the appearance model
grow. After the object has stopped growing, the shape estimation step continues to estimate a
larger 1 and s until the whole object fits in the appearance model. Due to the motion estimation,
the estimated object center does not coincide with the actual center making a slap of the back-
ground part of the appearance model. Figure 5.16 shows the tracking situations on t = 48 (after
growing in the x-direction and t = 120 (after appearance change).

A problem discovered while performing tests on sets in which objects shrink, is that the shape
estimation step does not adapt to such an event. If an object starts shrinking, its I and 8 do not
change, while its appearance model does update itself. After shrinking, the object is correctly
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(b)

Figure 5.12: Graph pyramid hierarchical structure (b) of a moving region (a).

Figure 5.13: Bayesian method test result on Cars set at t = 71. Bounding boxes of the objects
that are being tracked are projected on the current frame (a). They are based on the
appearance models (AM) of object I (b) and object 2(c), and their respective motion
estimates from A71. (d)-(f) show the tree layers of the ownership mask (OM).

n

I
(a) Bounding boxes

(d) OM Background (e)OMLayerl (f)OMLayer2
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visible in an appearance model that is too large, e.g. it contains too much background pixels. An
appearance model in which a part of the background is present negatively influences motion
estimation, since this background is also warped on to the current frame while it is supposed to
be static. The reason that the shape estimation does not react to a shrinking object represented
by layer j, is that prior distribution of j still has a good correlation with the ownership h,.
The latter has not only high values for pixels actually belonging to the object, but also for the
background pixels that now belong to j, causing the good correlation.

One might expect that this shrinking problem is solved when an object moves over a textured
background, since its observation model will have low values for the background pixels present
in the appearance model because they differ from the actual background. Though in practice
this does not seem to hold. The appearance model, either updated fast or slow, in combination
with the normalized prior distribution still gives an ownership mask that correlates too good
during shape estimation.

Set 1 Test results are sunimarized in table 5.13. During the change blob detection phase,
one of the windows of the building showed up as blob (due to reflection it differs much from
the background frame). This window being even bigger than the person around t = 4, was
impossible to filter without also eliminating the person. The use of the ground truth bounding
boxes to initialize objects was necessary Other than that, this real world set was processed
without complications. Figure 5.17 shows the tracking situation on t = 343.

Set 2 Test results are summarized in table 5.14. The two objects are tracked with a very low
Both objects are represented slightly bigger than they actually are, as can be seen in fig-

ure 5.18 (tracking situation on t = 76) and derived from the The partly occlusion of the
person with the lamppost does not trouble the Bayesian method. With respect to the tracking
of one object in Set 1, the frame processing time for Set 2 almost doubled.

5.5.2 Advanced Test Sets

Dawn Test results are summarized in table 5.15. To accommodate for the fast intensity build
up, a high 0A for the background appearance model is needed. Due to this high value, parts
of the object falling outside of the area the appearance model occupies, are also incorporated
in the update process. As can be seen in figure 5.19 the top left and bottom left corners of the
blue car are not part of the appearance model, causing the blurry stripe on the background
appearance model. Of course this stripe disappears gradually when the object is not located
above it anymore. Because of the 5° turns the object makes, the rotation set used is {—5°, 0, 5°}.
Tracking is done as expected after previous tests. The only remark can be made on the high E.

Set 3 Test results are summarized in table 5.16. The Bayesian method handles the occlusion
well; the person is tracked correctly while passing partly behind the car. As can be seen in fig-
ure 5.20 (tracking situation on t = 40), the bottom of the appearance model of the person (layer
1) adopts a few blue car pixels. After the car parked and the person left the scene, a white mini-
van enters the scene, accounting for the third track found. The positive track incompleteness
score is caused by the fact that after the person leaves the scene, it is not deleted for several
frames. While leaving, the appearance model of the person incorporates the grass and thus
does not move out of bounds.
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(a) Bounding box

Figure 5.14: Bayesian method test result on Splash set at t = 80.

(a) Bounding box

Figure 5.15: Bayesian method test result on Trailer set at t = 30.

Figure 5.16: Bayesian method test result on Morph set. (a), (b) and (c) show the bounding box
imposed on the current frame, the appearance model and ownership mask at t =
30. (c), (d) and (e) show those at t = 120.

(b) AMLayerl (c) OMLayeri

(b) AM Layer I (c) OM Layer I

(d) Bounding box (e) AM Layer 1 (0 OMLayerl
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Figure 5.17: Bayesian method test result on Set 1 set. (a) shows the bounding box imposed on
the current frame (t = 343), (b) is the layer 1 appearance model (zoomed in), and
(c) the ownership for layer 1.

Figure 5.18: Bayesian method test result on Set 2 set. (a) shows the bounding boxes imposed on
the current frame (t = 76), (b) is the layer I appearance model (zoomed in), and (c)
the appearance model of layer 2 (zoomed in).

aII# I

(a) Bounding box

—II
(c) AM L.ayerO

I

Figure 5.19: Bayesian method test result on Dawn set. (a) shows the bounding box imposed
on the current frame (t = 70), (b) is the layer 1 appearance model, and (c) the
background appearance model.

(a) Bounding box (b) AM Layer I (c) OM Layer I

(a) Bounding box (b) AM Layer I (c) AM Layer 2

(b) AM Layer I
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Set 4 Test results are summarized in table 5.17. Not all objects in this set are successfully
tracked. The tracking of the white mini-van is successful up to the point it occludes the parked
blue car (figure 5.21(a)). The mini-van is recognized as new object just before it gets stationary
on the frame border (figure 5.21(b)). This does not happen earlier due to the fact that its change
blob is too close to existing objects. As explained in [SHT01J, each ground truth track can be
assigned to one or more result tracks, to accommodate for fragmented tracks. Thus both tracks
produced by the objects initialized due to the movement of the mini-van, correspond to the
mini-van ground truth track.

When the group of three people enters the scene, the first two people overlap and are thus seen
as one change blob, initializing one object. Subsequently, the third person who enters right after
the other two is too close to the existing objects to be seen as new object and is thus ignored
(figure 5.21(a)). This failure causes a = 2/7.

The person walking on the grass is not tracked correctly right from the moment he enters the
scene (figure 5.21(a)). His contrast with the grass slab is too low for the motion estimation
step, causing a better appearance match (the lower the match value the better) for the incorrect
motion. The third term of equation 2.18 for the correct motion is actually lower than that of the
estimated motion, but not low enough to compensate for the first two terms. After a period of
time, the person is far away from existing objects (induding its own) and thus initialized again.
Again tracking fails right from the start, the new object moves down and out of the scene. The
two objects initialized for the grass person do not cause higher false positive or false negative
rates, because they both are situated dose to the ground truth track of this person.

When the white mini-van occludes the group of people, the motion estimation temporarily fails,
but restores itself after the occlusion is over. This is possible because the appearance model still
resembles the two persons in such a way that a good appearance match can be made after the
occlusion.

The person stepping out of the car (figure 5.21(b), visible within the yellow bounding box of the
parked car object) is not initialized as an object because it is too close to already existing objects.
This causes an = 1/7, setting the total to Rj = 3/7. The rather high F1 of 2.40 is caused by
the false positives generated by objects drifting off of their ground truth tracks (mini-van, grass
person), and the false negatives generated by the absence of objects on their expected ground
truth locations (mini-van, grass person, two of the people in the group, the person that steps
out of the parked car).

The ground truth does not contain bounding boxes for objects that are stationary for a period
longer than n frames. However, the Bayesian method keeps regarding a stationary object as
object as long it is present in the scene, hereby causing two occlusion events more than intended
by the ground truth. If the method would have eliminated both stationary objects, the occlusion
of the parked car with the mini-van, and the occlusion of the mini-van by the grass person
would not have taken place. Because the background is used to fill in transparent pixels in
the appearance model of an object in several of the estimation steps, it would in this case be
important that the background updated itself rapidly with the stationary objects. The absence
of ground truth bounding boxes for stationary objects also causes false positives weighing in
the Ff1.

The E is higher than in previous tests, because of the faulty tracking of the mini-van and the
grass person. The E is in line with previous results.
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Figure 5.20: Bayesian method test result on Set 3 set. (a) shows the bounding boxes imposed on
the current frame (t = 40), (b) is the layer 1 appearance model (zoomed in), and (c)
the appearance model of layer 2 (zoomed in).

Figure 5.21: Bayesian method test result on Set 4 set. (a) shows the failing tracking of the mini-
van and the grass person. Two of the persons belong to the group are regarded
as one objed, while the third is ignored. (b) shows that the mini-van is again ini-
tialized, while the grass person is not. The appearance model of the group has
incorporated the third person.

(a) Boundingbox (b) AMLayerl (c) AMLayerO

(a)t=195 (b)t=330
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5.6 Graph-Based Method Results

Results from the graph-based method on the basic and advanced test sets are summarized be-
low. For all tests, ground truth bounding boxes are used to detect objects present in a frame. The
graph-based method currently not includes a detection mechanism of its own. Parameter set-
tings for the thresholds are taken from the author; T1 = 0.95 and T2 = 0.65. Pictures darifying
the way the method handles the tracking internally, are not available.

5.6.1 Basic Test Sets

Cars Test results are summarized in table 5.9. This set does not form any problem for the
graph-based method. The two objects are processed (bounding boxes on t and t —2 are associ-
ated) at a speed of 4 frames per second, with high tracking precision.

Splash Test results are summarized in table 5.10. With respect to the Cars set the frames per
second rate more than doubles to almost 11, since the Splash only contains one object. The oil
stain-like shape of the object causes a slight E.

Trailer Test results are summarized in table 5.11. Tracking of the Trailer set is done in the line
of the previous two sets. A slightly negative E indicates objects were represented smaller then
they actually are.

Morph Test results are summarized in table 5.11. The frame rate at which the Morph set is
processed is a surprising 2 frames per seconds. Comparing bounding boxes of different sizes or
comparing bounding boxes in which the object changed of appearance, apparently consumes
more processing time.

Set 1 Test results are summarized in table 5.13. The frame rate at which the Set 1 set is pro-
cessed is again surprising: 52 frames per second. This is caused by the fact that the object
tracked consists of a merely 10 x 20 pixels on average. The very low E, and E indicate
tracking is done precisely.

Set 2 Test results are summarized in table 5.14. Tracking results on the Set 2 set are in the line
of previous tests, except for the high A0. Visual tracking output (figure 5.22) shows a bounding
box problem, including the person in the bounding box of the car several frames. Those errors
boost the Aae. The occlusion of the person with the background lamppost does not trouble the
tracker.

5.6.2 Advanced Test Sets

Dawn Test results are summarized in table 5.15. The graph-based method handles this set
perfectly, with only a small E. The change in appearance of the whole scene results in a
performance rate of 1.7 frames per second. This is in line with the frame rate at which the
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morph set was processed. Rapid changes in appearance do not seem to form a problem for the
graph-based method, though its frame per second rate is lower than in cases the appearance
stays the same.

Set 3 Test results are summarized in table 5.16. The occlusions present in Set 3 trouble the
graph-method. As shown in figure 5.23, during the occlusion the tracking of the object repre-
senting the person (white bounding box) fails. A new object (red bounding box) is initialized
for this person, while the other object previously representing him (or her) floats with the car.
The problems with the person and car ocdusion result in the Rj of 1/3.

The car passing behind the lamppost is troublesome when the occlusion just started; the car is
split in two parts, where the front part is regarded as new object (green bounding box). The
association of the back part (blue bounding box) with the previous car objects is made. When
the car is halfway behind the lammpost, it is recognized as one object again. The tracking of the
white minivan is without problems.

Set 4 Test results are summarized in table 5.17. With a Rj and R, of both zero, and a low
Ff1, the results look good. There is a catch here though, illustrated in figure 5.24. Every person
in the group entering from the right is tracked as single object, recognizable by a red, green,
and yellow bounding box (figure 5.24(a)). Next, the group is occluded by the mini-van. At
this point the tracker loses track of all group members (figure 5.24(b)). After the occlusion each
group member is seen as new object, this time recognizable by a light blue, dark blue, and white
bounding box (figure 5.24(c)). Since multiple result tracks can be assigned to one ground truth
track, the two object tracks belonging to one person in the group are taken as one track.

The F, of 0.60 is a result of the false negatives caused by the absence of result bounding boxes
for the group members during their occlusion with the van. The tracking of all objects present
is done fast (14 frames per second on average) en precise (R and R are both low) by the
graph-based method. Even the person stepping out of the car is tracked correctly (figure 5.24(d),
red bounding box). The remark here is that the objects are detected based on their ground truth
bounding boxes, but still the tracker associates them correctly over time. The big down side
here is that the graph-based method does not handle the occlusion at all. The tracker is not able
to tell that the group is occluded, and does not associate the individual group members before
the occlusion to the same members after the occlusion.

Since the object detection is based on ground truth and ground truth does not contain bound-
ing boxes for objects stationary for a longer period of time, the tracker does not attempt to track
stationary objects as long as they are present in the frame. This result in the absence of two oc-
dusions that would be present otherwise. The encounter between the mini-van and the parked
car (figure 5.24(a)) is not an occlusion, as holds for the encounter between the grass person and
the mini-van (figure 5.24(d)).

5.7 Comparison

The conclusion that can be drawn from the test results is rather straight forward. Quality of
tracking is similar for both methods on artificial sets, while the computational effectiveness of
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Figure 5.22: Graph-based method test result on Set 2 set (a) shows the bounding boxes im-
posed on the current frame (t = 50), (b) shows the detected change blobs within the
ground truth boxes.

Figure 5.23: Graph-based method test result on Set 3 set. Bounding boxes as determined by the
tracker are imposed on the scene at (a) t = 31, and (b) t = 56.

(a) Bounding boxes (b) Blob detection

(a)t=31 (b)t=56
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Figure 5.24: Graph-based method test result on Set 4 set.

(a)t=189 (b)t=241

(c)t=285 (d)t=402
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the graph-based method is much better than that of the Bayesian method for this class. Real-
time tracking is impossible with the Bayesian method, while the graph-based method can han-
dle multiple frames per second.

Real-world test sets form a challenge for the Bayesian method when contrast between objects
and background is low. When able to track the objects, the Bayesian method performs good on
simple occlusions. The graph-based method has no problems with real-world tracking, except
when occlusions are present. In the latter case this method gets confused and loses track of the
objects involved in the occlusion.

Chapter 6 will present a discussion, and improvements on the Bayesian method will be sug-
gested.

5.7.1 Basic Test Sets

Both the Bayesian method and the graph-based method show a good quality of tracking. TheE is low and almost equal for both methods. The (absolute) E is generally larger for the
Bayesian method, but still within acceptable limits (see figure 5.2 to get an idea of how the E
builds up). No false positive or false negative tracks are detected. The major advantage of the
graph-based method is its computational effectiveness. All basic sets are processed with more
than one frame per second, making it suitable for real-time tracking. With a rough 50 seconds
per object per frame, the Bayesian method is far from being able to track in real-time.

5.7.2 Advanced Test Sets

While not perfect, the Bayesian method does a better job at handling occlusions than the graph-
based method. The latter has not enough information to establish the correct correspondences
between the objects just before, during and after the occlusion. It did only handle the occlusion
with a part of the background correctly, while failing on the other cases.

In the real-world sets, the graph-based method beats the Bayesian method on the quality of
tracking when no occlusions are present. A lack of enough contrast between the objects and the
background, as well as blurry appearance models, do not help the Bayesian method's motion
estimation to determine the correct movement of an object. Once the motion of an object is esti-
mated incorrectly, its appearance model is updated with background pixels making subsequent
correct tracking more unlikely.

In principle, the Bayesian method has enough information to handle partly occlusions, primary
in the form of the appearance model. Nevertheless does this method has difficulties with oc-
clusions as well. Lacking a good system of labeling objects as occluded or occluding (using the
degraded appearance match alone is not sufficient), in combination with the absence of special
measures (do not update the appearance model of an occluded object, try to match a part of
the appearance model of an occluded object on the current frame) makes the tracking of ob-
jects through occlusions error prone. Tests done on artificial sets containing partly occlusions
(not included), were handled correctly. The artificial sets had high contrast (grey background,
red rectangle partly occluded by a blue one) between objects and background, making correct
motion estimation more likely. Occlusions can be handled by the Bayesian method, but im-
provements have to be made to make it successful in real-world sequences.
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Measure Bayesian Graph-basedE 4.80 2.00E -418.02 0.00
F1 0.00 0.00
Rj,, 0/2 0/2
Rj 0/2 0/2
Cmspj 85189.5238 240.9434
C1,5 0.0117 4.1504

Table 5.9: Test results on the Cars test set (107 frames).

Measure Bayesian Graph-based]E 5.10 6.70E -267.38 33.32
F1 0.00 0.00
R19 0/1 0/1
Rj 0/1 0/1
Cmapj 47337.9167 91.1340
Cjpa 0.0211 10.9728

Table 5.10: Test results on the Splash test set (98 frames).

Measure Bayesian Graph-basedE 4.10 2.70E -955.30 -59.95
F, 0.00 0.00
Rj 0/1 0/1
Rj 0/1 0/1
Cmspi 48418.4483 106.9492
C1 0.0207 9.3502

Table 5.11: Test results on the Trailer test set (60 frames).

Measure Bayesian Graph-basedE 19.00 2.0000E 1588.23 0.0000
F. 0.0000 0.0000
R1 0/1 0/1
Rj 0/1 0/1
Cmapj 43009.6610 523.8655
C18 0.0233 1.9088

Table 5.12: Test results on the Morph test set (120 frames).
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Including rotation in the motion estimation step, is not useful in case of 3D scenes. It is unlikely
an object turns exactly in the 2D plane perpendicular to the camera. Other rotations are too com-
plex to be fathomed by the simple rotation estimation. Letting a fast appearance model update
cope with appearance and shape changes seems useful, but enlarges the chance of background
pixels becoming part of the appearance model and thus incorrect motion estimation.

The graph-based method beats the Bayesian method also on speed, for both artificial and real-
world sequences. The artificial set containing aggressive changes in appearance was handled at
a rate just above one frame per second, while both real-world sets were processed at 14 frames
per second on average. The Bayesian method has a rate well below one frame per second for
both types of sets.
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Measure Bayesian
[

Graph-basedE 2.70 2.70E -18.39 -0.65
F1 0.00 0.00
Rfp 0/1 0/1
Rj 0/1 0/1
Cmapj 51206.7135 19.1877
C11,6 0.0195 52.1168

Table 5.13: Test results on the Set 1 test set (358 frames).

Measure Bayesian Graph-basedE 4.00 10.20E 191.76 3290.31
F, 0.00 0.00
R19 0/2 0/2
Rj 0/2 0/2
Cm,pj 90416.9231 104.5714
C193 0.0110 9.5628

Table 5.14: Test results on the Set 2 test set (106 frames).

Measure Bayesian Graph-basedE 6.00 2.00E 8301.72 0.00
F1 0.00 0.00
R19 0/1 0/1
R1 0/1 0/1
Cmspj 47954.0196 563.3981
C193 0.0209 1.7749

Table 5.15: Test results on the Dawn test set (104 frames).

Measure Bayesian Graph-based]E 7.40 8.10E 175.78 45.61
F1 0.33 0.40
R19 0/3 1/3
R1 0/3 0/3
Cmspf 117989.5045 68.8991
C193 0.0085 14.5140

Table 5.16: Test results on the Set 3 test set (224 frames).
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Measure Bayesian Graph-basedE 61.50 2.90E 27.28 114.19
F1, 2.40 0.60
Rj 0/7 0/7
Rj 3/7 0/7
Cmspj 87536.02323 68.5417
Cj 0.01 14 14.5897

Table 5.17: Test results on the Set 4 test set (432 frames).



6 Discussion and Improvements

To compare the tracking performance of the Bayesian method of Tao eta!. with the graph-based
method developed by Conte, the former needed to be implemented. Test results showed that
the Bayesian method handles ocdusions better than the graph-based method, but does not al-
ways satisfactorily track single objects in real-world video sequences. This chapter will present
a discussion trying to clarify why the Bayesian method fails in this situation. Furthermore sug-
gestions are proposed to increase the computational effidenc which is far from real-time, and
tracking capability of the method.

Discussion As seen in the test results, the Bayesian method is not always able to track objects
in real-world test sets. Objects in real-world sets have complex appearances and do not move
with whole pixels at at the time, as is the case in artificial sets. The Bayesian method tries to track
an object based on the internal representation it has of that object, in the form of the appearance
model. This appearance model is updated every frame, to keep it dose to the actual appearance
of the object. The shape of the object (segmentation prior) is used in combination with how well
its appearance model fits on the current frame (observation model) to form an ownership mask,
which indicates which pixels belong to which objects. This ownership mask steers the shape of
the appearance model, by indicating which pixels should be updated.

The appearance model is used during motion estimation and the construction of the observation
model, thus playing an important role. Motion estimation is likely to fail when the appearance
model is not resembling the current appearance enough. When motion estimation is incorrect,
the ownership mask will contain high values for the wrong pixels, causing an update of the
appearance model with pixels not belonging to the object. Here a circle emerges, pulling the
estimation in the wrong direction further and further.

The appearance model is the weakness, but directly also the strength of the method. If the
appearance model is good, the motion estimation will be correct. In case of an occlusion, the
method has knowledge about the appearance and motion of the object before it was occluded.
Those two pieces of information are valuable and can help the method to detect if an object
is ocduded and track it through the occlusion. Since the Bayesian method was developed for
an aerial tracking system, its occlusion handling capabilities are not utilized completely. Even
tough, results of the method on simple occlusion events were promising. Efforts in extending
the occlusion capabilities of the Bayesian method will most likely be rewarding.

The author of the Bayesian method was able to reach tracking rates of ten frames per seconds
for two objects and five frames per second with four. Test results do not come even close to
those numbers, indicating a rate much lower than one frame per second for all test cases. This
difference is most likely caused by the specialized hardware used by the author, but can also
be caused by aspects of the implementation. To be able to use the method on cheap hardware
platforms, improvements on its efficiency are essential. Suggestions for improvements are made
at the end of this chapter.
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The graph-based method is fast. With a good change blob detection layer it is able to do ac-
curate, real-time tracking of objects in case they are not taking part in an occlusion. Objects
close to each other do not form problems and also small objects are tracked correctly. The fast
pyramid comparison technique to associate objects over time, fails in case of an occlusion. The
tracker does not have enough information to be able to associate objects just before, during,
and just after tracking. To be able to handle occlusions, the graph-based method needs a more
sophisticated internal representation containing more information on the objects it is tracking.

Improvements While implementing and testing the Bayesian method, ideas for improvement
were born. Unfortunately the amount of time available for the research did not permit to test
and implement them all. Ideas are listed below.

Skip Frames - To gain speed, a fixed number of frames can be skipped every n-th frame,
thereby effectively lowering the frame rate. When the input video sequence has a high
frame rate, objects tend to move and change at a low pace. Skipping frames will not affect
the ability of a method to track objects, as long as the resulting average object motion (in
pixels per frame) is in line with the motion estimation parameters. Appearance and shape
estimation parameters have to be adjusted to accommodate for faster changes as well.

• Limit Motion Search Area - During motion estimation, the appearance model of an object
is warped on to its currently known location p (thus at t —1) on the current frame and sub-
sequently different combinations of translation and rotation are tried to determine how
the object moved from the previous frame to the current. For every parameter combina-
tion, all pixels are regarded to form an appearance match value. This value is constructed
by multiplying the ownership of a pixel with its difference in color in the appearance
model and the current frame. Since the ownership value for pixels far away from the ob-
ject center is very low, differences in color far away from the object center will not add
significantly to the match value. Therefore a search window can be defined, which has
to include the area for which the ownership values for the layer under review are high.
For the object at p. this is exactly its bounding box. Motion estimation will translate and
rotate the object with p as starting point, which makes an enlargement of the bounding
box necessary. When the maximal translation is three pixels and the maximal rotation is
two degrees, a bounding box enlarged by ten pixels in every direction can accommodate
for all combinations. This improvement has been implemented.

• Reinitialize Object on Border - When an object enters or leaves the scene, its shape and
appearance change rapidly. Motion estimation with an appearance model that does not
resemble the appearance of its object in the current frame is likely to fail, causing a wrong
appearance model update and wrong shape estimation, making future tracking even more
unlikely to succeed successfully. To help the tracker under these circumstances, the ap-
pea rance model, object center, and shape parameters are reinitialized when the change
blob associated to the object is situated on the frame border. Once the object is fully visi-
ble in the frame, the tracker should be able to track it. Problems arise when an occlusion
takes place on the frame border, since objects then will be reinitialized with a change blob
containing all objects participating in the occlusion. This improvement has been imple-
mented.

• Steer Motion Estimation with Change Blob - When an object is not participating in an
occlusion, its change blob could be used to steer its motion estimation. The center of the
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change blob associated to an object indicates the new center of that object in the current
frame. The translation from t — 1 to t can be derived directly from the currently known
object center (that is at t — 1) and the center of its associated change blob. By performing
principal components analysis on the change blobs, the rotation of the object can also be
derived. Because a change blob is situated over multiple objects in case of an occlusion, it
cannot be used to steer motion estimation in this case.

• Steer Shape Estimation with Change Blob - As mentioned in chapter 5, the shape estima-
tion step cannot cope with shrinking objects. When an object gets smaller, its appearance
model is updated accordingly, while the surrounding pixels within the normalized prior
distribution still have a high ownership value and are still seen as part of the object. The
appearance model containing the smaller object surrounded by background, still has a
high appearance match, so the shape prior does not shrink. In case an object is not oc-
cluded, its associated change blob can be used to reinitialize its shape parameters. This
will result in a correct segmentation distribution and thus an ownership mask which will
only contain high values for the correct pixels. The ownership mask will then let the
appearance model shrink to its correct shape.

• Occlusion Determination - The Bayesian method features as weak occlusion detection
mechanism, based solely on the appearance match of an object. If an object has a de-
graded appearance match, it is regarded as occluded. A stronger detection mechanism
should be devised, using the knowledge that in case of an occlusion multiple objects are
assigned to one change blob, and trying to identify which parts of the blob belong to
which objects. Motion and appearance estimation can subsequently be done using only
the part of the object that is visible, while maintaining its hidden part. This of course can
only be done in case of a partly occlusion. Dealing with complete occlusion can be done
by freezing the appearance model of an object that completely disappeared (there is no
part of the to the object associated change blob, that can be assigned to the object), and
zeroing its current motion. The association of change blobs to objects that are known to
be occluded completely, should not only be based on the distance of their centers, but also
(or completely) on the appearance match. This would cause an completely occluded ob-
ject to be associated to the correct change blob again, as soon it is not part of the ocdusion
anymore. Even if it changed motion.

• Downscale Frames - The computational performance of the Bayesian method is directly
related to the dimensions of a frame (section 4.2.3). When input frames are scaled down
before being fed to the change blobs detection and Expectation Maximization steps, a
speed up is gained. The down side of frame scaling is that objects might become too small
to track, or even disappear. The objects of interest in traffic surveillance applications often
are large enough to make down scaling a good possibility. This improvement has been
implemented.

• Motion Blobs - The Bayesian method makes use of change blobs, detected by comparing
the current frame to a background frame without any objects present. If change blobs
are detected using multiple consecutive frames (section 3.1), stationary objects will not
have such a motion blob. An advantage of this system is that objects lacking an associated
motion blob do not need to participate in the motion estimation step. When their motion
blob returns, their motion can be estimated again. When using change blobs, simply
determining that an object is stationary and then leaving it out of motion estimation will
not work. If no motion estimation is done for a stationary object, it will not be detected
when it starts moving again.
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• Reinitialize Appearance - A good appearance model is essential for correct motion es-
timation, which is essential for correct appearance and shape estimation. If an object is
not occluded, its appearance model can be reinitialized every n-th frame, based on its
associated change blob.

• Pixel Comparison - Pixels are compared using the average of their Red, Green, and Blue
components. Although widely used, using the RGB color space for comparison has the
disadvantage that its three color components can have one average value while represent-
ing visually different colors. The HSV (Hue Saturation Value) color space is fundamen-
tally different from the RGB color space since it separates out the intensity (luminance)
and shade variations from the color information (chromaticity). Using the color compo-
nent from the HSV color space as dominant comparison factor, could yield better results.
Normalized RGB also decouples intensity and color, thus could also be an alternative. The
conversion of RGB to Normalized RGB is simpler that that of RGB to HSV.

• Stationary Objects - Let the appearance update of the background layer also update the
background behind objects, but at a lower rate than the visible parts. This would cause
stationary objects to eventually lose their change blobs, indicating they can be removed
from the estimation process. Objects staying stationary for a long period of time, are
unlikely to continue with moving around. Currently objects are kept till they leave the
scene, meaning stationary objects are taking unnecessary computational time.



7 Conclusion and Future Work

This Master's Thesis described the three parts of the research project conducted at the MIVIA
department, University of Salerno, Italy. The main goal was to compare the graph-based method,
developed at the MIVIA department by Donatello Conte, to a promising object tracking method
featuring a layered image representation, on their ability to track through an occlusion.

During the first part in which a layered image representation method had to be selected, the
Bayesian method of Tao et a!. [TSKO2] seemed promising. It was able to process video se-
quences at real-time, and its dynamic layer representation offered tracking possibilities in case
of occlusions.

The implementation part took, as can be expected, more time than initially reserved. The es-
timation of motion, shape, and appearance raised questions about the initialization of objects,
the right moment to invoke the state machine, and the best way to implement the appearance
model. Different approaches were tried, not always with the expected results.

For the testing part a database with artificial test sets was developed, to be able to test both
methods on a specific basic and advanced events in a controlled environment. Also a real-
world test set was used. Test results showed the Bayesian method indeed has promising track-
ing through occlusion possibilities, but is not able to handle the task in more complex situations.
The computational performance of the method is not real-time. Improvements have been im-
plemented to speed the method up, and suggestions have been made for further improvements.
The graph-based method can process sequences above real-time, but cannot handle occlusions.

Future research should be focused on a hybrid solution, with the graph-based method as basis.
To be able to handle occlusions, features of the Bayesian method can be used. As long as there
is no occlusion present, the graph-based method in its current form is sufficient to accurately
track objects at real-time. Besides the multi-resolution pyramid used to represent an object, its
appearance model should be saved internally, like it is with the Bayesian method. This appear-
ance model can be sampled every n-th frame and is based on the change blob associated to an
object. As soon as an occlusion is detected, the shape prior for the occluded object can be de-
rived from its appearance model, and object center and motion can be derived from the track
laid by the object up to the last sampled situation before ocdusion. Estimation of motion and
appearance, as seen in the Bayesian method, is done using only the visible part of the object in
the current frame and the equivalent part of its appearance model. Since more computational
time is needed to perform those estimations, camera frames should be buffered during the oc-
clusion. The graph-based method is fast enough to eliminate the gap with the real-time current
frame once the occlusion is over.

An other option to invest future time in, is to optimize the detection of an object being occluded.
Once the Bayesian method state machine can give this state to objects with certainty, motion es-
timation can be done in a faster way. In case object A is not occluded, translation estimation is
done by directly calculating the difference between the center of the change blob associated to A
and the center of A, its angle can be derived from the change blob as well (with principal com-
ponent analysis). In case an association between an object and a change blob is not sufficiently
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certain, the appearance model of the object can be used to find the correct blob. In case of an
occlusion, the Bayesian method could try to estimate the motion and a part of the appearance,
in the same manner suggested in the previous paragraph. The shape estimation step should be
removed. It is a lot faster to calculate the shape parameters every frame from the change blob
associated to an object, in case it is not participating in an occlusion. In case the assignment
of the 'occluded' state to an occluded object fails, tracking goes wrong. Appearance models of
occluded objects will be updates using the blob covering all objects taking part in the occlusion,
making motion estimation using only the visible part of the object impossible.
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