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Chapter 1

Introduction

1.1 Globular clusters

Globular clusters are compact stellar systems each containing of order 106

stars that are found in the outskirts of galaxies, most of them on higly ec-
centric orbits. Our Galaxy has about 200 globular clusters and observations
show that almost all galaxies host these systems with giant ellipticals ap-
pearing to have the largest (relative) populations of globular clusters. Stellar
population studies show that the age of globular clusters is around 13 Gyrs
(e.g. Hansen et al. 2002; Chaboyer & Krauss 2002) comparable to the age
of the Universe (e.g. Spergel et al. 2007). Evidently these clusters are very
old and were likely born in the early phases of galaxy formation. Globular
clusters span a range in metallicities. From extragalactic studies it has be-
come clear that there is a bimodality in their colour distribution suggesting
two classes of globular clusters - metal poor and metal rich. Most globular
clusters are nearly spherical and some of them show a central cusp. For a de-
tailed discussion of globular cluster see Spitzer (1987) and Brodie & Strader
(2006).

1.2 Globular clusters and galaxy formation

The metal poor population of globular clusters are extremely interesting
from a cosmological perspective. They are believed to have formed within
∼ 1 billion years of the Big Bang and therefore represent a fossil record of the
earliest epoch of galaxy formation. As such, they are potentially powerful
probes of physical conditions in the high redshift Universe. However, there
is as yet no compelling theory for the formation of globular clusters within
a cosmological framework, and this has important consequences for (a) how
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we interpret the fossil record and (b) the strength of conclusions that we can
draw from it.

The standard paradigm of galaxy formation asserts that galaxies form
when gas cools and forms stars within the deep potential wells of massive
structures of dark matter that are referred to as dark matter halos (cf. White
& Rees 1978). These dark matter halos assemble in a hierarchical manner,
continuously growing via accretion and merging from high redshift to the
present day. The formation and evolution of dark matter halos has been
studied in exhaustive detail using cosmological simulations, and the process
is relatively well understood. This has led to a well developed theory, the Cold
Dark Matter model, and it is within this framework that galaxy formation
is investigated (cf. Springel et al. 2006). However, galaxy formation - and
consequently globular cluster formation - is much more complex, and there
remain many outstanding problems.

There are a number of well developed galaxy formation models now avail-
able, and their key features are summarised in, for example, Baugh (2006).
These models tend to focus on reproducing statistical properties of the galaxy
population at low-to-intermediate redshifts, such as their colours and lumi-
nosities (eg. Bower et al. 2006; Croton et al. 2006). In contrast, relatively
little has been done on modeling globular cluster formation. Kravtsov &
Gnedin (2005) used cosmological simulations of the formation of a disc galaxy
to argue that globular clusters form in massive molecular clouds embedded
in the gas-rich proto-galactic disc. Taniguchi et al. (1999) speculated that
shells of material swept up by outflows driven by the growing central black
hole in the proto-galaxy could fragment into globular clusters. Others have
speculated that mergers between gas-rich discs at high redshifts could result
in globular clusters, analogues of the super-star clusters observed in mergers
in the local Universe.

The nature of the formation site could have a profound effect on the
structural and orbital properties of the globular cluster that forms. For
example, the chemical composition of material in the disc will likely differ
from that of material in a swept-up shell; this will affect the rate at which
gas absorbs and radiates energy and therefore could impact on the initial
mass function of cluster stars and consequently mass segregation within the
cluster. However, independent of precisely how and where globular clusters
form, they subsequently evolve orbiting a galaxy embedded in a dark matter
halo. The central question of this work is to ask how the structure of the

dark matter halo affects the time evolution of the globular cluster.
Over its lifetime, a globular cluster loses mass. This mass loss will depend

on processes within the cluster (e.g. core collapse, binary formation, stellar
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evolution), but it will also be sensitive to the external potential within which
it orbits. This problem has been studied in detail for a particular set of
galactic potentials (e.g. Giersz & Heggie 1997; Hurley et al. 2007). However
not only are these galactic models very simplistic describing the galaxy as
a point source, they do not address dark matter halos at all. Mashchenko
& Sills (2005) do address dark halos but they look at the effect of the dark
matter in the globular cluster itself. In this study I wish to investigate the
problem using potentials motivated by a cosmological framework. This is
significant in that it may contribute to answer the following outstanding
questions.

Can we use the present day metal poor population to deduce the effi-
ciency of globular cluster formation - and more generally star formation - at
high redshifts? A census of metal poor globular clusters around a particular
galaxy could in principle reveal this information, provided we understood
how many globular clusters were disrupted over the lifetime of the galaxy. If
the rate of disruption is strongly dependent on the nature of the dark matter
potential, then it is conceivable that the population we observe today might
just be the “tip of the iceberg” (the initial iceberg at least). Interestingly, if
globular clusters are too efficiently disrupted in particular kinds of potential
to be consistent with observation, given even the most optimistic formation
efficiencies, one could rule out these potentials.

Debris from disrupted globular clusters could be an important contribu-
tion to the stellar halos of galaxies. Such halos would have steep density
profiles, because the disruption of the progenitor clusters happened early in
the galaxy’s assembly history, and we might expect them to be relatively
metal poor, reflecting the nature of their origin. This may help explain re-
cent results from projects such as GHOSTS, an HST legacy survey, which is
exploring the structural properties of 14 nearby disc galaxies. Initial results
indicate that the typical stellar halo is too steep to be explained by satellite
accretions. Could the disruption of a subset of the initial globular cluster
population produce a stellar halo consistent with observation?

It is generally assumed that globular clusters do not contain dark matter.
Dark matter would provide dynamical stability over the cluster’s lifetime,
especially in the presence of an external potential, and could prevent their
disruption. If the rate of disruption is too great in cosmologically motivated
dark matter potentials, might this be remedied if globular clusters formed
and evolved initially in their own dark matter halos?
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1.3 Dark matter halos

Dark matter halos that form in cosmological simulations are relatively com-
plex structures - they are generally aspherical (e.g. Bailin & Steinmetz 2005)
and asymmetric (e.g. Gao & White 2006) with no simple boundary (e.g.
Prada et al. 2006), and they contain a wealth of small scale structure (Gao
et al. 2004). Despite this complexity, it is conventional to identify a halo as
a spherical volume enclosing a mean overdensity that is some multiple of the
background density of the Universe. The mass enclosed within this spherical
volume defines the virial mass of the halo,

Mvir =
4π

3
∆virρcritr

3
vir. (1.1)

Here ρcrit = 3H2/8πG is the critical density of the Universe and rvir is the
virial radius, which defines the radial extent of the halo. ∆vir, the virial
overdensity criterion, is some multiple of the background density, and corre-
sponds to the mean overdensity at the time of virialisation in the spherical
collapse model, the simplest analytic model of halo formation (cf. Eke et al.
1996). Depending on redshift and cosmological parameters, ∆vir varies be-
tween ∼ 100 and ∼ 200.

The mass profiles of dark matter halos forming in cosmological N -body
simulations have been studied in exhaustive detail since the mid 1990s (e.g.
Navarro, Frenk & White 1995, 1996; Moore et al. 1998; Navarro et al.
2004; Diemand et al. 2005). The mass profile measures the variation of the
spherically averaged local density with respect to distance from the centre of
the dark matter halo. A common feature of all dark matter models is that
the local dark matter density increases with decreasing radius and continues
to diverge at small radii, down to the resolution limit of the simulations. The
Navarro, Frenk & White (1996, 1997) mass profile is a good approximation
to the mass profile of cosmological dark matter halos. I describe it briefly in
the following subsections.

1.3.1 The Navarro, Frenk & White density profile

The spherically averaged mass profile proposed by Navarro, Frenk & White
(1996, 1997) can be written as

ρ(r) =
ρcritδc

r/rs (1 + r/rs)2
, (1.2)

where ρcrit is the critical density of the Universe, rs is the scale radius and
δc is the characteristic overdensity. The Navarro, Frenk & White (hereafter
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NFW) functional form provides a good approximation to the mass profiles
of dark matter halos in dynamical equilibrium that form in cosmological
simulations. The key characteristic of the NFW profile is that the density
diverges at small radii as r−1, resulting in a central density cusp.

The scale radius rs and the characteristic overdensity δc are related, and
equation 1.2 can be rewritten in terms of a single parameter, the concentra-
tion c = rvir/rs, such that for a fixed concentration, the local density depends
only on the normalised radius r/rvir. Cosmological simulations have shown
that virial mass Mvir and concentration c are correlated, such that the con-
centration increases as the virial mass decreases (e.g. Bullock et al. 2001,
Eke et al. 2001, Neto et al. 2007). Further information on the NFW profile
can be found in Chapter 6.

The characteristic feature of the NFW profile is its central logarithmic
asymptotic slope of -1. However, it is interesting to rewrite equation 1.2 in
the form

ρ(r) =
ρcritδc

(r/rs)α (1 + r/rs)3−α
, (1.3)

such that the central logarithmic asymptotic slope α can vary in principle
between 0 and −3, while the outer logarithmic slope continues to asymptote
to −3 at large radii. More details will be given in Chapter 7

1.4 Key aims of this thesis

It is expected that under the influence of the external tidal field globular
clusters lose mass and may even disrupt. I want to study this disruption by
applying various tidal fields to the cluster with an emphasis on the effects of
a dark matter halo. I use the NFW profile to probe the impact of halo mass
and degree of concentration and use its generalised form to investigate the
effect of the inner slope.

In Chapter 2 I introduce the fundamental elements of the N -body pro-
gram used to model star cluster evolution and show a few results for a very
simple model. In Chapter 3 I discuss the physical processes that a star clus-
ter is subject to over its lifetime. Chapter 4 is a short introduction to a more
extensive N -body code, nbody6, which I will use to follow the long-term evo-
lution of star clusters. I then go on to discuss results for the evolution of a
star cluster using exising options in nbody6 in Chapter 5. Results for sim-
ulations run with an added option for a NFW profile and generalised NFW
profile are discussed in Chapters 6 and 7 respectively.
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Chapter 2

The basics of N-body

programming and a sample

simulation

2.1 Sample N-body program

To build some intuition about N -body programming and for the physical
processes involved in the evolution of globular clusters I ran a test simulation
using Aarseth’s Standard N -Body Program nbody1 obtained from Binney &
Tremaine (1987). It was written by S.J. Aarseth, whose programs have set
the industry standard in this area for many years. The program computes
the time evolution of N point masses under the influence of their mutual self-
gravity. The acceleration of each mass is computed by the direct summation
of the forces arising from the other N − 1 bodies, so the computation time
per crossing time grows roughly as N2. A key strategy of the program is that
each particle is followed with its own time-step - an essential feature in view
of the wide range of orbital times in a typical stellar system.

The direct integration scheme used is the traditional polynomial method
with individual time-steps which makes use of Newton’s divided differences
as explained in this section following Aarseth (1994).

2.1.1 Divided differences

The equation of motion for each particle i is:

r̈i = −G

N
∑

j=1
j 6=i

mj(ri − rj)

((|ri − rj |)2 + ǫ2)3/2
, (2.1)
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where mj is the mass of each particle (j = 1, N). The softening parameter ǫ
prevents a force singularity as the distance rij between two particles i and j
with positions ri and rj goes to zero. Using scaled units (see Section 2.2) the
gravitational constant G is set to one. Defining the left hand side of equation
2.1 as the force per unit mass F on particle i (omitting the subscript), the
fourth-order fitting polynomial from Newton’s divided difference method at
time t is written as1

Ft = (((D4(t − t3) + D3)(t − t2) + D2)(t − t1) + D1)(t − t0) + D0, (2.2)

provided the forces are known at the four successive past epochs t3, t2, t1, and
t0, with t0 being the most recent. The divided differences Dk are defined by:

Dk[t0, tk] =
Dk−1[t0, tk−1] − Dk−1[t1, tk]

t0 − tk
; (k = 1, 2, 3), (2.3)

where D0 ≡ F. At the start of an integration step the fourth difference, D4,
is not yet known. This has to be deduced from the force at time t which will
be computed during the integration so that the term D4 is added at the end
of an integration step in a process called ’semi-iteration’. The calculation of
D4 will be explained at the end of this section.

Initially there are no known past epochs. In order to find values for the
initial differences the force polynomial (equation 2.2) is expanded in a Taylor
series around t = t0 to yield the force derivatives:

F(1) = ((D4(t0 − t3) + D3)(t0 − t2) + D2)(t0 − t1) + D1

F(2) = 2! (D4((t0 − t1)(t0 − t2) + (t0 − t2)(t0 − t3) + (t0 − t1)(t0 − t3))

+ D3((t0 − t1) + (t0 − t2)) + D2)

F(3) = 3! (D4((t0 − t1) + (t0 − t2) + (t0 − t3)) + D3)

F(4) = 4! D4.

(2.4)

These equations can be inverted to third order (since the fourth difference is
still unknown) to create starting values for the divided differences:

D1 = (
1

6
F(3)(t0 − t1) −

1

2
F(2))(t0 − t1) + F(1)

D2 = − 1

6
F(3)((t0 − t1)(t0 − t2)) +

1

2
F(2)

D3 =
1

6
F(3),

(2.5)

1For a detailed description of the divided differences see e.g. chapter 3.2 of Burden &
Faires (2001)
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where t1 and t2 are set to be two past epochs equally spaced in time. Denoting
R = ri − rj (including softening) and V = vi − vj , the velocity difference
between two particles, for each pair i, j the force (per unit mass) and its
derivatives from equation 2.1 are (still using scaled units)

Fij = −mjR

R3

F
(1)
ij = −mjV

R3
− 3aFij

F
(2)
ij = −mj(Fi − Fj)

R3
− 6aF

(1)
ij − 3bFij

F
(3)
ij = −

mj(F
(1)
i − F

(1)
j )

R3
− 9aF

(2)
ij − 9bF

(1)
ij − 3cFij,

(2.6)

with

a =
R · V
R2

b =

(

V

R

)2

+
R · (Fi − Fj)

R2
+ a2

c =
3V · (Fi − Fj)

R2
+

R · (F(1)
i − F

(1)
j )

R2
+ a(3b − 4a2).

Here Fi is the total force on particle i. The second and third derivatives use
the total force and total force derivative respectively and they thus have to
be calculated in an additional loop. These values can then be used to find
the initial differences from equation 2.5.

2.1.2 Integration

After the initial difference values have been set the integration starts. The
basic integration cycle consists of the following steps:

1. Find the next body i to be advanced and set new global time t;

2. Predict positions of all bodies to order F(1);

3. Form F(2) and F(3) from divided differences for body i;

4. Determine position and velocity for body i to order F(3);

5. Find new total force on body i;
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6. Update times tk and differences Dk;

7. Apply fourth order correction D4; and,

8. Set new time step ∆ti.

Time step

A typical stellar system is characterized by a range in density which gives
rise to different time scales for significant changes of the orbital parameters.
It is thus efficient to assign each particle i its own time step related to its
orbital time scale which is determined by

∆ti =

(

η
F

F (2)

)1/2

, (2.7)

where η is an accuracy parameter, typically set to about 0.02. The particle
that needs to be updated next is the one that has the smallest t = ti + ∆ti
where ti is the time it was last updated and the time t is now called the
global time.

Coordinate prediction

Each particle is affected by all other particles and thus a temporary coordi-
nate prediction for all particles is needed at the global time t to determine the
current force on the particle to be advanced. High precision is not ordinarily
required so this prediction is done to order F(1) to save computing time:

rt = ((
1

3!
F(1)(t − t0) +

1

2!
F)(t − t0) + v0)(t − t0) + r0, (2.8)

where t0 for each particle is the time it was last updated.

For the particle to be advanced the position and velocity are determined
more accurately to third order in force:

rt = ((((
1

5!
F(3)(t−t0)+

1

4!
F(2))(t−t0)+

1

3!
F(1))(t−t0)+

1

2!
F)(t−t0)+v0)(t−t0)+r0

(2.9)

vt = (((
1

4!
F(3))(t−t0)+

1

3!
F(2))(t−t0)+

1

2!
F(1))(t−t0)+F)(t−t0)+v0, (2.10)

where the forces and force derivatives have been determined from equation
2.4 to third order since the forces at time t are still unknown.
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Find force and update times and differences

From the predicted positions the total current force on the body of interest
can be determined (equation 2.1). Then the times for body i can be updated:

t2 → t3, t1 → t2, t0 → t1, t → t0,

and the new differences determined from equation 2.3. At this time the force
is known at the present epoch and four successive past epochs. Thus the
fourth difference can now be determined and used to obtain more accuracy
on the position and velocity of body i:

D4[t, t3] =
D3[t, t2] − D3[t0, t3]

t − t3
, (2.11)

with

Dk[t, tk−1] =
Dk−1[t, tk−2] − Dk−1[t0, tk−1]

t − tk−1
. (2.12)

Finally the new time step for body i is determined by equation 2.7.

2.1.3 Initial conditions

To start the N -body simulation a starting model is needed which provides
the mass, initial position and velocity for each star. The code to generate this
model was adapted from algorithms in nbody6 (see Chapter 4). The input
parameters are the number of bodies N , the initial mass function (IMF),
density model (such as the Plummer model, see Section 2.3) and half-mass
radius. It generates a file containing mass, position and velocity for each
body in either N -body or physical units.

2.2 N-body units

To scale the output of a simulation there are three free parameters (mass,
length, time) to define the units. There is no official standard but a widely
used scheme for computer simulations in stellar dynamics is setting

G = M = rV = 1,

where G, M and rV , are the gravitational constant, total mass of the system
and the virial radius respectively (Aarseth 2003). The virial radius is defined
such that

M2

rV
=
∑

i

∑

j
j 6=i

mimj

|ri − rj |
. (2.13)
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These are generally referred to as ’standard units’ (Heggie & Mathieu 1986)
or sometimes ’Heggie units’.

The fourth ’Heggie unit’ is the total energy which can be derived from
the other three. Apart from a minus sign equation 2.13 is twice the potential
energy of the N -body system with G = 1 since all pairs are doubly counted.
So the potential energy of the N -body system can be written as:

W = −G
∑

i<j

mimj

|ri − rj|
= −1

2

GM2

rV
. (2.14)

The scalar virial theorem (2K + W = 0) gives

Etot =
1

2
W = −1

4

GM2

rV

. (2.15)

Using the first three Heggie units this results in an N -body total energy of
-0.25.

2.2.1 Conversion to physical units

To compare the results of an N -body simulation with other models or ob-
servations, the computed quantities should be scaled to meaningful astro-
physical quantities. The scaling of mass and distance is straightforward. In
N -body units the total mass M and the virial radius rV are equal to 1. If
the total physical mass of the system is M̃ and the physical virial radius is
r̃V then mass(m̃) and distance (r̃) in physical units are obtained from the
N -body units by

m̃ = M̃m (2.16)

and

r̃ = r̃V r. (2.17)

For globular clusters a natural mass scale is the solar mass (M⊙) and a
natural length scale is the parsec (pc). Their SI-values are listed in Table
2.1. The user chooses a physical total mass and virial radius for the cluster
and together with the known value for G this determines the conversion
factors for all other parameters. The conversion of the time and the velocity
units is a bit more complicated. A dimensional analysis yields for the time
([t̃])and velocity ([ṽ]) physical units

[t̃] =

(

[r̃]3

G[m̃]

)1/2

(2.18)
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Astrophysical unit Value in SI-units
M⊙ 1.99892 × 1030 kg
pc 3.08568 × 1016 m
G 6.67 × 10−11 m3 kg−1 s−2

Table 2.1: Values of useful astrophysical quantities.

[ṽ] =

(

G[m̃]

[r̃]

)1/2

. (2.19)

Using the relations from equations 2.16 and 2.17 with units M⊙ and rV this
results in

[t̃] =

(

r̃3
V

M̃

)1/2(
pc3

GM⊙

)1/2

= 14.94

(

r̃3
V

M̃

)1/2

Myr (2.20)

[ṽ] =

(

M̃

r̃V

)1/2
(

GM⊙

pc

)1/2

= 0.06557

(

M̃

r̃V

)1/2

km/s. (2.21)

2.3 The Plummer model

To fit observations of globular clusters Plummer (1911) used the following
potential-density pair:

Φ(r) = − GM√
r2 + b2

(2.22)

ρ(r) =

(

3M

4πb3

)(

1 +
r2

b2

)− 5

2

, (2.23)

where b is the scale length of the system. The total potential energy of a
system is the sum of the energies that each particle feels with respect to the
other particles divided by two because of double counting. So this becomes

W =
1

2

∫ ∞

0

Φ(r)ρ(r)4πr2dr = −3π

32

GM2

b
. (2.24)

This can then be related to the potential energy from equation 2.14 to find
an expression for the scale length in N -body units

b = 0.59.
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Another quantity often used to describe the scale of a system is the half-mass
radius. It is defined as the radius containing half the mass:

∫ rh

0

ρ(r)r2dr =

∫ ∞

rh

ρ(r)r2dr. (2.25)

This can be computed using Poisson’s equation for spherical symmetry:

d2Φ

dr2
+

2

r

dΦ

dr
= 4πGρ(r), (2.26)

after some algebra resulting in

2r2
h

dΦ(rh)

dr
= lim

r→∞
r2dΦ(r)

dr
. (2.27)

Using the Plummer potential from equation 2.22 this gives

rh ≈ 1.30b.

In N -body units

rh = 0.77

for the Plummer model (Aarseth & Fall 1980).

This model is commonly used as the density model for generating N -body
initial conditions, primarily because of its mathematical simplicity. Other
models exist, such as the King model (King 1966) which have been shown
to better represent the profiles of observed globular clusters. However, an
initial distribution based on the Plummer model will over time dynamically
evolve to represent a King model (Hurley & Shara 2003).

2.4 Test simulation with 1000 equal mass par-

ticles

Here I show the results of a sample simulation using 1000 solar mass stars
which are initial distributed based on the Plummer model and have a virial
radius of 3 parsec. This means that a N -body time unit is equivalent to
2.45 Myr (c.f. equation 2.18). The typical age of a globular cluster is of the
order of 10 Gyr. Thus the integration is done over roughly 4000 N -body
time units.
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Figure 2.1: The evolution of the projected spatial distribution of the stars in
the cluster. As the cluster evolves a few stars move outside the boxes shown
in these figures extending as far out as 7000 pc at 10 Gyr but they are not
drawn here for reasons of resolution.

2.4.1 Spatial distribution

Figure 2.1 shows the evolution of the spatial stellar distribution projected
onto the xy-plane over a period of 10 Gyr. It is clear that the system as a
whole expands. Zooming in on the centre in Figure 2.2, however, shows that
the core collapses inwards. Thus a distinct core-halo structure is established
where a diffuse halo surrounds a high-density core.

This behaviour of core collapse and expansion of the outer envelope is
also evident from Figure 2.3 where the radius containing a certain fraction
of the mass is plotted versus time. We see clearly that over time the outer
regions move outwards while the inner regions move inwards. This process
will be further discussed in Section 3.2.

2.4.2 Radial velocities

The evolution of the radial velocities versus radius is shown in Figure 2.4.
Stars in the outer regions have positive radial velocities, thus moving further
away from the cluster. The velocity dispersion is small. In the core the
average velocity is small but the dispersion is large. This is due to the fact
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Figure 2.2: The evolution of the projected spatial distribution of the stars in
the central 3 pc of the cluster.

Figure 2.3: Radius containing (from top to bottom) 75%, 50%, 25% and 10%
of the mass fraction evolving over time.
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Figure 2.4: The evolution of the radial velocity distribution. The small dots
represent the individual stars and the solid diamonds represent the binned
data with 1σ errorbars shown.

that stars in the core still interact heavily with each other while stars in the
outer regions start seeing the rest of the cluster more and more as a point
source as they move further out. In this figure the core-halo structure can
be seen to develop as well.

2.4.3 Density distribution

In Figure 2.5 the evolution of the radial density distribution is shown. From
an initial Plummer model stars in the centre start moving inward (core col-
lapse), heightening the density and the envelope expands much further out,
lowering the density in the outer regions. As the cluster evolves a Plummer
model no longer represents the data well. More elaborate models such as the
earlier mentioned King model are needed.
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Figure 2.5: Radial density distribution evolution. The dots are the densities
determined from the binned data. The solid line is the least square fitted
Plummer model to the data with values of b listed in the top right hand
corner. Also shown is the initial theoretical Plummer model with b = 0.59
as a dashed line.
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Chapter 3

The physics of stellar systems

In Chapter 2 I showed the results of a sample simulation using Aarseth’s
standard N -body program. In that model I saw the effects of a collapsing core
and an expanding halo but I did not comment on the physical background
for these processes. In this chapter I introduce some basic concepts that help
define the underlying physics. I then discuss the main physical processes
that play a role in the evolution of spherical systems. Looking ahead, this
framework will facilitate the explanation of results of more elaborate models
obtained using the nbody6 (see Chapters 4 and 5) program

3.1 Physical parameters

In this section I introduce physical concepts needed to understand the evo-
lution of a star cluster. Unless stated otherwise the background material for
this chapter is taken from Binney & Tremaine (1987).

3.1.1 Relaxation time

The relaxation time in a stellar system is a measure of the time it takes for
an object in that system to be significantly perturbed by the other stars.
It is then said to have ”lost its memory” about its original state. On this
timescale only weak encounters play a role. Stars are only influenced by the
mean potential resulting from all the other stars. The relaxation time tr is
defined as the number of crossings needed to change the velocity squared
by of order itself multiplied by the crossing time tc = R/v, where R is the
typical size of the system and v the typical speed of a star in that system.
Consider a system of N stars of equal mass m. The change in velocity a test
star experiences when it is gravitationally perturbed by another star (a field
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Figure 3.1: The test star approaches a field star at speed v and impact param-
eter b. The resulting impulse to the test star is estimated by approximating
its trajectory as a straight line (Binney & Tremaine 1987).

star) can be envisaged as in Figure 3.1. The shortest distance between the
two stars is the impact parameter b. Assume that the change in velocity v is
small (i.e. |δv|/v ≪ 1) so the trajectory of the star can be approximated by
a straight line. The perpendicular velocity component δv⊥ can by obtained
by integrating the perpendicular force per mass m

F⊥ =
Gm

b2 + x2
cos θ =

Gmb

(b2 + x2)
3

2

≃ Gm

b2

[

1 +

(

vt

b

)2
]− 3

2

. (3.1)

Integrating this expression yields

|δv⊥| ≃
Gm

b2

∫ ∞

−∞

(

1 +

(

vt

b

)2
)− 3

2

dt =
2Gm

bv
. (3.2)

The surface density of stars is of order N/πR2 with R the galaxy’s charac-
teristic radius. Per crossing of the galaxy the star thus suffers

δn =
N

πR2
2πbdb =

2N

R2
bdb (3.3)

encounters in the range b to b + db. Each of these encounters induces a
perturbation in the test star but because the perturbations caused by the
individual encounters are randomly oriented their mean value is zero. Instead
the squares of the velocities are added:

δv2
⊥ ≃

(

2Gm

bv

)2
2N

R2
bdb. (3.4)
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To find the total change in v2
⊥ this expression is integrated over all possi-

ble impact parameters. The largest possible value (bmax) is the size of the
system R and the smallest possible value (bmin) occurs when the straight-
line approximation breaks down (when |δv| ≃ v). We can thus define the
minimum impact parameter bmin ≡ Gm/v2. This leads to

∆v2
⊥ ≡

∫ bmax

bmin

δv2
⊥ ≃ 8N

(

Gm

Rv

)2

ln Λ, (3.5)

with ln Λ ≡ ln (bmax/bmin). This is known as the Coulomb logarithm. The
typical velocity scale v of a star can be shown to be

v2 ≡ GNm

R
, (3.6)

from the virial equations (see Section 3.1.5). This gives

∆v2
⊥

v2
=

8 lnΛ

N
(3.7)

per crossing. The number of crossings required to change v2
⊥ by order of itself

is thus

nr =
N

8 lnΛ
. (3.8)

Now using the expressions for Λ, bmin and v2 one finds Λ ≡ N . The relaxation
time is defined as

tr = nr × tc. (3.9)

Thus systems with ages less than order 0.1N/ lnN crossing times old can be
considered collisionless, for example galaxies, otherwise they are collisional,
for example star clusters. When a system is collisional it is desirable to avoid
softening as close encounters become important.

A more detailed analysis using the Fokker-Planck approximation of Ki-
netic Theory can be found in chapter 8 of Binney & Tremaine (1987) and
gives

tr =
0.34σ3

G2mρ ln Λ
=

1.8 × 1010yr

ln Λ

(

σ

10km/s

)3(
M⊙

m

)(

103M⊙pc−3

ρ

)

,

(3.10)
where σ is the velocity dispersion and ρ the density. In further discussions
this is the relaxation time that I have assumed.
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3.1.2 Half-mass relaxation time

The relaxation time usually varies between regions in a stellar system. To
characterise a system by a single relaxation time which is independent of the
density profile, the half-mass relaxation time is useful. This is defined as
(Spitzer 1987)

trh = 0.138

(

Nr3
h

Gm

)1/2
1

ln(γN)
, (3.11)

where rh is the half-mass radius and Λ = γN is again the argument of the
Coulomb logarithm. Historically the value for γ is 0.4 (Spitzer 1987) and
this is the value I will use in my analysis.

3.1.3 Core radius

An important global quantity of a stellar system is its core radius. Obser-
vationally this is defined as the radius at which the surface brightness drops
to half its central value (King 1962). In theoretical work the core radius
refers to the natural length-scale of the system, for example King (1966).
Casertano & Hut (1985) propose an operational definition of the core radius,
rc. This has been slightly modified by Aarseth (2001) to obtain a convergent
result using a smaller central sample (n ≃ N/2),

rc =

(∑n
i=1 |ri − rd|2ρ2

i
∑

ρ2
i

)1/2

, (3.12)

where ri are the positions of the individual stars and rd are the coordinates
of the density centre,

rd =

∑N
i=1 ρiri
∑N

i=1 ρi

. (3.13)

The density estimator ρiis a measure of the local density around a star with
at position ri obtained by including the sixth nearest neigbours giving

ρi =

5
∑

j=1

mj/r
3
6, (3.14)

where r6 is the distance to the the sixth nearest neighbour (Casertano &
Hut 1985; Aarseth 2001). This is thus fundamentally different from the core
radius used by observers and theoretecians. In the rest of the thesis this
operational or density weighted definition is the core radius that is being
referred to.
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3.1.4 Tidal radius

The tidal radius is the outer limit of the cluster. Observationally it is defined
as the radius at which the surface brightness reaches zero. It is an extrap-
olation of the density profile and thus depends on the model used to fit the
data.

Theoretically the tidal cut-off radius rt is associated with an external
gravitational tidal field. If a star moves beyond some critical distance form
the cluster centre it is possible for this star to escape the cluster. In a simple
approximation where the galaxy is regarded as a point mass and galactic and
cluster centres are fixed relative to each other, a star on the line joining the
centres of the galaxy and the cluster experiences a tidal force per unit mass

Ft =
2rGMG

R3
G

, (3.15)

where r is the distance of the star from the cluster centre, MG is the mass of
the galaxy and RG is the distance between the galactic centre and the centre
of the cluster. This will be equal and opposite to the gravitational force from
the centre of the cluster at r = rt, giving

r3
t =

MC

2MG

R3
G, (3.16)

with MC the cluster mass (von Hoerner 1957). A star moving radially along
the line joining the centres can escape the system if it reaches a distance
greater than rt. Or equivalently when its energy exceeds φ(rt).

A more elaborate analysis assuming that the cluster is in a circular orbit
around the galaxy yields

r3
t =

1

3

MC

MG

R3
G, (3.17)

reducing the tidal radius by a factor 0.87 times the value obtained in equation
3.16 (Spitzer 1987). This result is only exact for stars on the line joining the
centres of the cluster and the galaxy. In any other direction the tidal radius
is smaller than this. With a value of 2/3 times that of equation 3.17 it is
smallest in the direction perpendicular to the joining line.

An approximation for eccentric orbits is the King tidal radius (King 1962).

r3
t =

1

3 + e

MC

MG

R3
P , (3.18)

with e the eccentricity of the cluster orbit and RP its distance at perigalac-
ticon. The potential is now time-dependent which prevents an exact deter-
mination. Setting e = 0 and RP = RG this is in agreement with equation
??.
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3.1.5 Collisionless systems and the virial theorem

In a collisionless system at any time t the full description of its state is
given by the distribution function f(x,v, t)d3xd3v. It specifies the number
of stars having positions in the volume d3x centred on x with velocities in
d3v centred on v. It has the characteristic that its flow through phase-space
is incompressible. This is described by the collisionless Boltzmann equation

df

dt
=

∂f

∂t
+ v · ∇f −∇Φ · ∂f

∂v
= 0. (3.19)

From the collisionless Boltzmann equation the scalar viral theorem can
be obtained. (For a full derivations see Binney & Tremaine (1987).

2K + W = 0, (3.20)

leading to

〈v2〉 =
|W |
M

(3.21)

3.1.6 Heat capacity in self-gravitating systems and the

gravothermal catastrophe

The temperature of a self-gravitating system can in analogy with the ideal
gas be defined as

1

2
mv2 =

3

2
kBT, (3.22)

where m is the stellar mass and kB Boltzmann’s constant. The temperature
and rms velocity generally depend on position and thus

T =

∫

ρ(x)Tdx
∫

ρxdx
. (3.23)

The total kinetic energy

K =
3

2
NkBT (3.24)

and from the virial theorem (see Section 3.1.5) this is related to the total
energy

E = −K. (3.25)

The heat capacity is

C ≡ dE

dT
= −3

2
NkB (3.26)

and is negative. This means that by adding energy to the system it cools.
This might be counter-intuitive but is nevertheless true for all systems that
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are dominated by gravitational forces. This means that once a system that is
in contact with a heat bath transfers a little amount of heat to the heat bath,
it will heat up and more heat will flow into the heat bath and consequently the
system will heat up even more. This cycle will continue and the temperature
will rise without limit. Similarly, if heat is added to the system, it will cool
till the temperature reaches zero. Thus systems with negative heat capacities
are unstable. This is called the gravothermal catastrophe.

3.2 Evolution trends in spherical systems

The relaxation time is inversely proportional to the density (equation 3.10).
Thus relaxation effects happen first in the core of the cluster where the den-
sity is highest. In the halo encounters have little effect, but over time the
halo is augmented by stars that were originally in the core but have gained
energies close to the escape energy owing to encounters. After a few core re-
laxation times these stars will overwhelm original halo members. There are a
number of physical processes that influence the evolution of a globular clus-
ter. They are individually described below. But they occur simultaneously
and it might be hard to distinguish between different processes in practice.

3.2.1 Evaporation and Ejection

There are two distinctly different ways in which stars can escape from a clus-
ter. The first is called ejection and refers to a process where a star is removed
by a single close encounter with another star in which one star gains enough
velocity to exceed the local escape speed. The second is called evaporation
and this is escape of a star resulting from a series of more distant encounters,
gradually increasing its energy. This process is more complicated. A series
of weak encounters cause a star to random-walk through phase-space. Ener-
getic stars with highly elongated orbits will experience a significant number
of encounters when they pass through the core and they might wander into a
portion of phase-space associated with unbound orbits. Galactic tidal forces
can substantially increase the evaporation rate. The ejection and evaporation
time are defined as

tej = 1.1 × 103 ln(0.4N)trh, (3.27)

tev = 300trh. (3.28)

In most cases tej ≫ tevap so ejection can mostly be neglected compared to
evaporation.
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3.2.2 Core collapse

As could be seen in figure 2.3 the radius containing 90% of the mass fraction
expands with time while the radius containing 10% of the mass decreases.
This process is known as core collapse. It is a two-stage process. Encounters
in the core drive stars out to the halo (evaporation) and by energy conserva-
tion laws the core must shrink. In the second stage the rate of core collapse
appears to accelerate. This is suspected to be the result of the gravothermal
catastrophe described in section 3.1.6. The inner parts of the system have
negative heat capacity. Thus the loss of energy results in heating the sys-
tem. There is thus a negative temperature (i.e. velocity dispersion) gradient
outward, causing the centre to continually lose energy, shrink, and heat up.

If these results are extrapolated one would eventually expect a singularity
to occur in the centre. However before this happens binary formation kicks in
which prevents this singularity from forming. This process will be described
in section 3.2.4.

3.2.3 Equipartition

In a (more realistic) system that contains stars of different masses encounters
tend to establish equipartition of kinetic energy. More massive stars lose their
energy and sink to the centre while lighter stars tend to gain energy and
their orbits expand. This is called mass segregation. Equipartition appears
to occur on time scales comparable to the trh.

For a system containing two populations of stellar masses m1 and m2, with
m2 ≫ m1, it can be shown (Binney & Tremaine 1987) that the criterion for
equipartition is

M2

ρc1r3
c1

. 4

(

m1

m2

)3/2

(3.29)

where M2 is the total mass of the heavy stars, ρc1 and rc1 are the central
density and King radius (cf. Equation 3.18) of the light population. If the
total mass of the heavy stars is too large they form an independent self-
gravitating system. Encounters cause the heavy stars to lose energy to the
light stars, increasing their own velocity dispersion, losing energy, shrinking,
heating up and thus moving away from equipartition. This is called the
equipartition instability.

3.2.4 Binary formation

When a system is no longer collisionless close encounters between stars can
raise tides that dissipate their relative orbital kinetic energy. This loss may
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be so large that the stars form a binary. Two types of binaries can be distin-
guished. Those with a small binding energy are called soft and those with a
large binding energy are called hard. Soft binaries are generally short lived
and unimportant in the evolution of a stellar system. However hard binaries
have a profound effect on core collapse (Ostriker 1985). When hard binaries
encounter another field star they interact in an extremely complex manner
in which the field star can become bound to the system temporarily forming
a triple system. Finally one of the three stars will be ejected from the system
with a higher speed than the orinally incoming star. From conservation of
energy is thus follows that the potential energy of the binary system (which
is negative) decreases and it will thus become more tightly bound. 1. Energy
released by the binary will be shared with other cluster members through en-
counters. The binary thus acts as an energy source in the core thus halting
core collapse.

1This phenomenon is half of Heggie’s law: hard binaries get harder and soft binaries

get softer
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Chapter 4

nbody6

The basic code used in Chapter 2 is generally known as nbody1. Since then
the code has developed and I will briefly discuss the main extensions and
improvements that have lead to nbody6. The descriptions in the next three
sections borrow heavily from Aarseth (2003)

4.1 Hermite integration

As technology advanced over the years special purpose hardware was deve-
loped to produce very fast force and force derivative calculations which were
subsequently returned to the main program. A new integration scheme was
introduced replacing the standard polynomial scheme described in Section
2.1. It increased the accuracy of the integration by using the explicit val-
ues for the force and its derivative to include a high order corrector. This
is achieved by expanding the force and its first derivative in a Taylor series
about the reference time t as

F = F0 + F
(1)
0 t +

1

2
F

(2)
0 t2 +

1

6
F

(3)
0 t3, (4.1)

F(1) = F
(1)
0 + F

(2)
0 t +

1

2
F

(3)
0 t2. (4.2)

From this F
(3)
0 and F

(2)
0 can be written as

F
(3)
0 =

(

2 (F0 − F) +
(

F
(1)
0 + F(1)

)

t
) 6

t3
, (4.3)

F
(2)
0 =

(

−3 (F0 − F) −
(

2F
(1)
0 + F(1)

)

t
) 2

t2
. (4.4)
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These can now be used to apply a third order corrector to the position and
velocity coordinates

∆ri =
1

24
F

(2)
0 ∆t4 +

1

120
F

(3)
0 ∆t5, (4.5)

∆vi =
1

6
F

(2)
0 ∆t3 +

1

24
F

(3)
0 ∆t4. (4.6)

4.2 Time-steps

4.2.1 Improved time-step criterion

The time-step described by Equation 2.7 is redefined (Aarseth 1985) as

∆ti =

(

η(|F||F(2)| + |F(1)|2)
(|F(1)||F(3)| + |F(2)|2)

)1/2

. (4.7)

Now all force derivatives play a role and it is also well-defined for special
cases, for example when one of the components tends to zero.

4.2.2 Block time-steps

The prediction overhead introduced by the Hermite scheme can be reduced
by grouping particles and advancing them simultaneously. Hierarchical levels
are defined (in standard units) as

∆tn =
1

2n−1
. (4.8)

The time-step is now selected to be the nearest truncated value of the nat-
ural time-step defined in Equation 4.7. The time-steps initially defined by
Equation 4.8 may be reduced or increased by a factor 2 every now and then
if subsequent time-steps start to differ too much.

An advantage of the Hermite scheme is that it is self-starting. No initial
time-steps have to be specified. Also the polynomials do not require evalution
of the second and third order force derivative as in Equation 2.6 making the
corrector significantly faster.

4.3 Other important additions

4.3.1 Binary formation and hierarchical systems

In a real stellar system close encounters occur and this can lead to binary for-
mation. In early versions of N -body programs this problem was circumvened
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by introducing a softening paremeter to prevent such close encounters. How-
ever binaries have a profound effect on the evolution of a cluster as described
in Section 3.2.4. When two particles get close together time-steps become
very small resulting in large computation times. Methods have been deve-
loped for dealing with this and nbody6 has the Kustaanheimo-Stiefel (called
KS-regularization, Kustaanheimo & Stiefel 1965) method implemented. If
two particles get very close together they are treated by integrating their
centre of mass as a single particle together with its relative motion. This
is generally more efficient than integrating the two particles seperately. For
a complete description of the method and its implementation see Aarseth
(2003).

Sometimes higher order systems form when binaries interact with other
stars or even other binaries. This is treated in a similar way where the
system is treated as two or more simultaneous KS regularisations. For a
detailed description see Aarseth & Zare (1974)

4.3.2 Neighbour scheme

In order to increase efficiency the evaluation of the force contributions from
distant particles is reduced by splitting the total force on a particle into an
irregular and a regular component. The force summation is now only carried
out over the nearest particles while the contribution from the more distant
particles is predicted assuming it is smoothly varying. This is called the
Ahmad and Cohen or AC neighbour scheme (Ahmad & Cohen 1973).

4.3.3 Stellar evolution

In a real stellar cluster stars evolve over their lifetime and consequently lose
mass. This effects the relative forces between particles and should thus be
taken into consideration. In nbody6 stellar evolution is treated based on
fast look-up functions which provide information on the stellar type, radius
and mass for a given initial mass, age and metallicity (Tout et al. 1997;
Hurley et al. 2000). Mass loss correction can thus be accounted for. Neutron
stars resulting from a supernova are assigned a kick velocity and generally
disappear from the cluster.

4.3.4 External tidal fields

There are options in nbody6 to include an external galactic tidal field. The
first option defines the standard case based on the local Oort constants and
is thus special for our own position in the Milky Way at 8.5 kpc from the
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galactic centre. Another option lets you specify the orbital distance of the
cluster and the galactic mass which is then treated as a central point source.
A more realistic case can be treated with the third option which consists of
three components: a bulge (again a point mass), a disk, and a logarithmic
potential. The disk is treated as a Miyomoto-Nagai disk (Miyamoto & Nagai
1975) and is governed by three parameters: its mass and its horizontal and
verical scale lengths. The logarithmic potential describes the halo.

4.4 Hardware

Simulations were carried out on the supercomputer at Swinburne called ”The
Green Machine” (due to its increased performance-per-Watt over previous
processors). It comprises 145 Dell Power Edge 1950 nodes each with 2 quad-
core Clovertown processors at 2.33 GHz. Each processor is 64-bit low-volt
Intel Xeon 5138. The nodes have 16 GB of RAM and two 500 GB drives
each.

The N -body problem goes as N3. There are N2 force calculations and a
cluster’s life time increases roughly linearly with the cluster size (cf. eq. 3.11).
Hence increasing the system size will increase the CPU time dramatically.
In order to keep computing times low the stellar systems I have studied are
not full size globular clusters but systems with N = 1000.

As mentioned before in recent years special purpose computers have been
developed to carry out the force and its derivative calculations. nbody4

was developed for the HARP computer (Hermite AcceleratoR Pipe) and was
subsequently adjusted for workstations and supercomputers as nbody6 thus
employing the Hermite scheme but still calculating the force and derivative
internally.

4.5 Input file and user options

The code expects an input file in which the user should specify input parame-
ters and options. After a line of nbody6 control parameters there are six lines
starting with two defining the cluster properties (e.g. N , maximum neigbour
number, total mass, virial radius) and accuracy and decision-making param-
eters (e.g. time-steps, energy tolerance, output intervals). These lines are
followed by 40 options. These control a variety of parameters, the most im-
portant ones I have described in the sections above. Then there is a line
controlling the KS regularization followed by one specifying the IMF pa-
rameters. The last line is the virial theorem scaling. Most of the accuracy
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parameters do not need any adjustment. The most important options for
me are the cluster properties, stellar evolution scheme and external field.
When specifying a none-standard tidal field, an extra line needs to be added,
specifying the different components (i.e. mass, scale lengths).

4.6 Other methods

There are alternative ways in which one can model the evolution of stellar
systems. For example there is the Fokker-Planck method which is based on
the collisionless Boltzmann equation described in Section 3.1.5. However as
the name suggests this formulation breaks down after the system becomes
relaxed and is no longer collisionless.
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Chapter 5

Results using existing options

5.1 Simulations with nbody6

I first ran a set of models to study the effects of IMF, stellar evolution and
the addition of the standard tidal field on the evolution of the cluster. They
are listed in table 5.1. All models start with 1000 single stars distributed
according to the Plummer model (see Section 2.3) and no primordial binaries.
One of the differences between them is the mass spectrum used. In a model
either all stars have the same mass (1M⊙) or they are distributed according
to a Salpeter IMF (n(M) ∝ M−2.3) with a minimum and maximum stellar
mass mmin = 0.3M⊙ and mmax = 30M⊙ respectively. The total stellar mass is
1000M⊙. Also a model has either no stellar evolution at all or stellar evolution
according to the mass loss scheme by Hurley et al. (2000) explained in section
4.3.3. The third difference is the presence of an external tidal field. A cluster
is either isolated in space or experiences a standard external Galactic tidal

Model IMF Stellar Tidal
nr. evolution field

1 · · ·
2 + · ·
3 + + ·
4 · · +
5 + · +
6 + + +

Table 5.1: Overview of the models used in my simulations. All models have
N = 1000.
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Figure 5.1: Projected spatial distribution: Model 1. Black dots are single
stars. Red dots are binaries.

field which is represented by a point mass 8.5 kpc away (the distance from
our sun to the Galactic centre). Model 1 is the most basic model: an isolated
cluster of equal mass stars that undergo no stellar evolution. It is the same as
the model used in Chapter 2. Subsequent models introduce a mass spectrum,
stellar evolution and a standard tidal field.

5.1.1 Results using nbody6

The first model is chosen to resemble the model from the sample simulation
with nbody1 from Chapter 2. Its spatial evolution is shown in figure 5.1 and
5.2. Comparing these to the sample simulation (Figures 2.1 and 2.2) the
same general expansion can be seen. In nbody6 the cluster size is limited by
a tidal radius. For an isolated cluster this means that evaporating stars that
have moved too far away are no longer considered part of the cluster. The
tidal radius is set to be 10 times the scale length rs which is defined as

rs =
1

2

M2
tot

Φ
(5.1)

with Mtot the total cluster mass and Φ the potential energy. The collapsing
core that was evident in the sample simulation is not so obvious in this
model. One of the main differences between the sample code and nbody6 is
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Figure 5.2: Projected spatial distribution in the core: Model 1. Labels as in
figure 5.1

the ability to deal with close encounters. This problem was avoided before
by introducing a softening parameter. In nbody6 binaries can form and the
energy gain that caused the core to collapse in the sample simulation is
now stored in the binding energy of the binary systems that formed in the
core as a result of close encounters (see Section 3.2.4). In this model the
first binary formed after roughly 450 Myrs and at the time the simulation
ended (after 10 Gyrs) it has 6 hard binaries. The evolution of the density
distribution is shown in Figure 5.3 and can be compared to Figure 2.5. The
same behaviour is visible. Again starting from a Plummer model the density
in the core initially increases but decreases later as binaries form.

Model 2 introduces the mass spectrum. The effects of this on the total
mass loss can be seen in Figure 5.4. While in model 1 the rate of star loss
is roughly continuous, introduction fo a mass spectrum causes the system
to lose more stars early on. This can be contributed to mass segregation.
Lighter stars gain kinetic energy through equipartition during encounters
with heavy stars in the core and are more likely to escape. In this particular
run there is a sudden loss of mass at about 3.4 Gyr. This is due to an escaping
hierarchical system consisting of massive stars. Also shown is Model 3 which
adds stellar evolution leading to the loss of even more stars in the early
stages. Heavy stars evolve fast and hence lose mass quickly. Neutron stars
that form from a supernova will get a velocity kick and generally disappear
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Figure 5.3: The density distribution evolution for Model 1. The data is
binned in ten equally sized bins.
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Figure 5.4: The evolution of the total mass of the cluster for Model 1 (solid),
Model 2 (dashed), Model 3 (dotted) and Model 4 (dash-dotted)

Figure 5.5: The ratio of core radius to half mass radius for models 1, 2 and
3. The curves are smoothed by averaging over three time bins. Labels as in
Fig 5.4

.
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Figure 5.6: Projected spatial distribution: model 4

from the system.

Figure 5.5 also shows core collapse. The ratio of core radius to half mass
radius decreases over time for all three models. When introducing an IMF a
rapid (but noisy) core collapse is visible initially owing to mass segregation.
When stellar evolution is added as well the core initially expands due to the
heaviest stars losing mass quickly and the ejection of neutron stars. The
overall collapse is also shallower because of the expansion of the system as a
whole due to mass loss.

Models 4, 5 and 6 correspond to Models 1, 2 and 3 respectively but this
time the external tidal field is turned on. This field will strip stars of the
cluster and simulations are stopped when the cluster has only 25 or less
stars left. For Model 4 this is after about 3 Gyr. Figure 5.6 shows the
spatial evolution of the cluster over its lifetime. How much influence the
tidal field has on the mass loss can be seen by comparing it to the evolution
of the mass of Model 1 (Figure 5.4). An almost constant very high mass
loss rate dissolves the cluster quickly in the presence of a tidal field. Also
the density distribution is shown in Figure 5.7. Compared to Model 1 the
overall density decreases faster. More so in the outer regions where most
stars will be stripped off. Because the tidal radius is actually defined here as
the King tidal radius (cf. Equation 3.17) it is a lot smaller than the the tidal
radius used for Model 1 as can be seen in the figure as well. Towards the
end of the life time of the cluster this data becomes noisy because there are
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Figure 5.7: The density distribution evolution of Model 4. For comparison
Model 1 is plotted as the small dots.
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only a few data points left in each bin. Figure 5.8 compares core collapse for
Model 1 and 4. As can be seen the addition of a tidal field does not influence
core collapse. At later stages the tidal field keeps stripping stars of the outer
regions thus decreasing the half-mass radius. This is consistent with results
from Giersz & Heggie (1997) who show that core collapse is almost unaffected
by the tide.

Figure 5.9 shows the density distribution for Model 6 until its disruption
at 1.25 Gyrs. Compared to Model 4 (in Figure 5.7) the initial core density
drops fast owing to stellar evolution and mass segregation while in the outer
regions the same behaviour is seen. Overall the cluster disrupts faster because
both stellar evolution and the tidal field lead to increased mass loss. Core
collapse behaves very differently for Models 4, 5 and 6 as is shown in Figure
5.10. As already shown in Figure 5.8 the addition of just a tidal field doen
not have an influence on core collapse. However adding an IMF drives early
core collapse (as in Model 2) but combined with the addition of the tidal field
this results in a fast decrease of the half-mass radius and earlier dissolution.
Adding stellar evolution again delays core collapse. For an isolated cluster
the half-mass relaxation time generally increases with time. Almost no stars
are lost from the cluster so the half-mass relaxation time only depends on
the half-mass radius (cf. Equation 3.11) which slowly increases with time.
Adding a tidal field means reducing N dramatically which will also reduce
trh. Adding an IMF however means mass segragation and earlier collapse
driving out the half-mass radius, thus increasing the relaxation time initially
and then rapidly decreasing as N drops. Adding stellar evolution shows a
similar trend but less extreme due to the delay in core collapse.
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Figure 5.8: The core radius to half mass radius for Model 1 (solid) and 4
(dash-dotted). This time the data has not been smoothed.
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Figure 5.9: The density distribution evolution of Model 6. For comparison
Model 1 is plotted as the small dots.
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Figure 5.10: The core radius to half mass radius for Model 4 (dashed-dotted),
5 (dashed) and 6 (dotted) smoothed over three data bins.

Figure 5.11: The half-mass relaxation time for Models 4, 5 and 6. Legend as
in Figure 5.10. Also shown is Model 1 (solid).
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Chapter 6

Including a nfw dark matter

halo

6.1 The Navarro, Frenk and White density

profile

N -body simulations of dark matter halos show that they can be described
by the same scaled density profile over a large range in mass from galaxies
to galaxy clusters (Navarro et al. 1996)

ρ(r)

ρcrit
=

δc

r/rs(1 + r/rs)2
, (6.1)

where ρcrit is the critical density 3H2/8πG at redshift z = 0 required for a
flat universe. In this H is the Hubble parameter and δc the characteristic
overdensity related to the concentration parameter c through

δc =
∆vir

3

c3

ln(1 + c) − c/(1 + c)
. (6.2)

and normalises the profile so that the integration over the volume of the halo
gives the virial mass

Mvir =
4π

3
∆virρcritr

3
vir; (6.3)

The concentration parameter c relates to the scale radius rs to the virial
radius rvir as c = rvir/rs. The virial radius is defined as the radius within
which the average density is ∆vir × ρcrit where ∆vir is the virial overdensity
criterion defining the average density as some multiple of the background
density. This density profile (generally known as the NFW-profile) behaves
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as r−2 around the scale radius thus representing an isothermal sphere but
flattens out in the centre toward a r−1 profile. In the outer parts, away from
the scale radius it gradually steepens toward a r−3 profile.

6.2 Addition of NFW halo to nbody6

To add the posibility of a NFW halo to the code I need the force and the
time derivative of the force resulting from this halo. The force is calculated
by taking the negative gradient of the potential (F = −∇Φ). The potential
associated with the NFW density profile is (Cole & Lacey 1996)

Φ(r) = −V 2
vir

g(c)

ln(1 + r/rs)

r/rs
, (6.4)

with

g(c) =
ln(1 + c)

c
− 1

1 + c
(6.5)

and V 2
vir = GMvir/rvir is the virial velocity of the halo.

Making the substitution

s = r/rs, ds = dr/rs,

this becomes

Φ(r) = −V 2
vir

g(c)

[

ln (1 + s)

s
− 1

1 + c

]

giving the force

F (r) = −dΦ

dr
= −dΦ

ds

ds

dr

=
1

rs

V 2
vir

g(c)

[

s/(1 + s) − ln(1 + s)

s2

]

=
V 2

vir

g(c)rs

[

1

s(1 + s)
− ln(1 + s)

s2

]

. (6.6)

(6.7)

It is sperically symmetric so the θ and φ components of the gradient are zero.
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Now for the time derivative of this force

dF (r)

dt
=

dF

ds

ds

dt

=
V 2

vir

g(c)rs

[

− 1

s(1 + s)2
− 1

s2(1 + s)
− s2/(1 + s) − 2s ln(1 + s)

s4

]

ṡ

= − V 2
vir

g(c)rs

[

2 + 3s

s2(1 + s)2
− 2 ln(1 + s)

s3

]

ṡ (6.8)

6.3 Cartesian coordinates

To incorporate this into the code Cartesian coordinates are needed. If I
consider the x component it follows that

F (x) = −dΦ

dx
= −dΦ

dr

dr

dx
=

x

r
F (r)

=
V 2

vir

g(c)r2
s

[

1

s2(1 + s)
− ln(1 + s)

s3

]

x. (6.9)

The force derivative is a bit more tedious because the force is now a function
of s and r and so time derivatives with respect to both coordinates are needed:

dF (x)

dt
=

d

dt

(x

r
F (r)

)

=
F (r)

r

dx

dt
− xF (r)

r2

dr

dt
+

x

r

dF (r)

dt

=
V 2

vir

g(c)r2
s

[

1

s2(1 + s)
− ln(1 + s)

s3

]

dx

dt

− V 2
vir

g(c)r3
s

[

1

s3(1 + s)
− ln(1 + s)

s4

]

x
dr

dt

− V 2
vir

g(c)r2
s

[

2 + 3s

s3(1 + s)2
− 2 ln(1 + s)

s4

]

x
ds

dt

=
V 2

vir

g(c)r2
s

[

1

s2(1 + s)
− ln(1 + s)

s3

]

dx

dt

− V 2
vir

g(c)r4
s

[

3 + 4s

s4(1 + s)2
− 3 ln(1 + s)

s5

]

xr · vr, (6.10)

where I have used

dr

dt
=

1

r

(

x
dx

dt
+ y

dy

dt
+ z

dz

dt

)

=
r · vr

r
.

Similar expressions hold for the y and z components of the force.
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Model Point mass Disk NFW halo
I · + ·
II + + ·
III · · +
IV + + +
V + · +

Table 6.1: Overview of the models used in my simulations. All models have
N = 1000.

6.4 Addition to the code

I have written a subroutine fnfw that calculates the force and force deriva-
tives resulting from the halo as described in the previous section. This is now
incorporated into the code as another galactic component which are mainly
managed from the subroutine xtrnl0. It needs three input parameters which
are the virial mass of the halo, the concentration of the halo and the virial
overdensity criterion. The result of this inclusion of the option of a NFW
halo is that the input file format has slightly changed. Option (#14) is set
to three to define a full galactic model. The input line for the parameters for
the galactic field is expanded so the user can specify the desired virial mass,
concentration and overdensity criterion for the NFW halo.

6.5 Experiments

In chapter 5 I showed the influence of a standard galactic tidal field to the
evolution of a 1000 star cluster. In this chapter I use the option to ’build-up’
my own galaxy that nbody6 offers. I use three different components: the disk,
the bulge and the halo. I have run a set of models for various combinations
of these components shown in table 6.1.

6.5.1 Adding the disk + bulge

The first thing I did was adding a background galaxy (no dark matter) to the
models starting out with just a disk (Model I). I then went on to add a bulge
to this as well (Model II). The disk is modeled as a Miyamoto-Nagai disk
(Miyamoto & Nagai 1975) and the bulge is just a point mass in the centre
of the galaxy. I use a mass of 5 × 1010M⊙ for the disk and 1.5 × 1010M⊙ for
the bulge as suggested by Xue et al. (2008).

51



Figure 6.1: The total mass evolution of the cluster in different external condi-
tions. The solid line is when a standard galactic tidal field based on the Oort
constants is applied (Model 6 from Chapter 5). The dashed line is when the
galaxy is represented by just a Miyamoto-Nagai disk (Model I). The dotted
line is a full galactic model including the Miyamoto-Nagai disk and a bulge
(Model II).

I adopt a tidal radius rougly equal to King radius (see Equation 3.17) of
16 pc for all the models at an orbital distance of 8.5 kpc (the distance from
our sun to the galactic centre. This was kept the same when I put the cluster
on different orbits or added a dark matter halo.

Figure 6.1 shows the evolution of the cluster mass for different external
tidal fields. My galactic model does not produce a tidal field as strong as the
standard field. This already shows that there is a problem with the way the
galaxy is modeled with just disk and bulge.

6.5.2 The evolution of the cluster in a pure NFW halo

Here I present the results for a set of models in a pure NFW dark matter
halo (Model III) using a overdensity criterion ∆vir = 200. The halos are then
defined by two free parameters. I use a model grid of 6 different halo virial
masses (109M⊙,1010M⊙,1011M⊙,1.5 × 1012M⊙,1013M⊙ and 1014M⊙) and 3
concentrations (5, 10 and 15) thus 18 models in total I put the cluster on a
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Figure 6.2: The total mass evolution of a cluster of 1000 stars at an orbital
distance of 8.5 kpc from the halo centre. I am showing three different virial
masses - 109M⊙ (green), 1.5 × 1012M⊙ (blue) and 1014M⊙ (red) - each with
three different concentrations c = rvir/rs - 5 (solid), 10 (dashed) and 15
(dotted).

Figure 6.3: The total mass evolution of a cluster of 1000 stars at an orbital
distance of 4.5 kpc from the halo centre. Labels as in figure 6.2.
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circular orbit at a distance of 8.5 kpc from the centre of the halo. This is
achieved by giving the cluster an initial velocity equal to the halo velocity at
that distance Vc =

√

(GM(< r)/r). All subsequent simulations start with
1000 stars with a Salpeter IMF in the mass range 0.1 − 10.0M⊙ and total
mass of 1000M⊙. Figure 6.2 shows the evolution of the mass of the cluster
with time for 9 of the models. The mass loss is initially the same for all
models since in this stage it is dominated by stellar evolution of the heaviest
stars. After about 100 Myr clusters in the heaviest halos keep losing mass at
a faster pace than the clusters in the lighter halos. In these heavier halos the
effect of concentration is also clearly visible. A higher concentration means
a faster disruption. More of the mass is concentrated in the centre resulting
in a greater tidal force on the cluster. For the least massive halos the effects
of concentration become negligible. Remarkable also is the fact that for low
concentrations the mass loss is the same for low and intermediate mass halos.

These simulations were repeated with the cluster at an orbital distance
of 4.5 kpc. Their mass loss is shown in Figure 6.3. The same relative trends
are visible. For more massive halos putting the cluster on a smaller orbital
distance results in a faster mass loss.

To quantify the disruption of a cluster I have defined the disruption time
scale as the time it takes for the cluster to lose half of its mass. This is shown
in Figure 6.4. Generally more massive halos dirupt faster than lighter halos.
In massive halos the concentration has large effect on the disruption time
while in the lower mass ranges the disruption is independent of mass and
concentration. Variations in this regime are dominated by statistical effects
(each simulation is only done once, see Appendix A for a discussion). Figure
6.5 shows the results for the models at an orbital distance of 4.5 kpc. For
high mass halos the disruption time scale drops when the cluster is but on
this smaller orbital distance. For intermediate mass halos it drops at high
concentrations while for the lowest mass halo there is no significant difference.

The model with virial halo mass of 1.5×1012M⊙ and concentration c = 10
resembles closest a model for our galactic halo and from now on I will call
it the standard model. Figures 6.6 and 6.7 show the mass evolution and
the disruption time scale for this standard model at four different orbital
distances. A closer orbit means a faster disruption.

The half mass relaxation time scales for different models are shown in
figures 6.8, ?? and 6.9. More massive halos result in a shorter relaxation
time for the cluster. For the more massive halos also a higher concentration
means faster relaxation. Owing to a faster loss of stars the half mass radius
decreases faster in clusters in massive halos resulting in a shorter relaxation
time (c.f. Equation 3.11). A shorter orbital distance results in a faster
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Figure 6.4: The disruption time as a function of orbital distance of scale
length for all models at orbital distance of 8.5 kpc. Coloured lines connect
models with equal virial mass - 109M⊙ (green), 1010M⊙ (cyan), 1011M⊙ (light
blue), 1.5×1012M⊙ (blue), 1013M⊙ (magenta) and 1014M⊙ (red) - and black
lines connect models with equal concentration - 5 (solid), 10 (dashed) and
15 (dotted).

Figure 6.5: The disruption time as a function of orbital distance of scale
length for all models at orbital distance of 4.5 kpc. Labels as in figure 6.4.
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Figure 6.6: The mass loss for the standard model (Mvir = 1.5 × 1012M⊙,
c = 10) at different orbital distances - 4.5 kpc (solid), 8.5 kpc (dashed), 17.0
kpc (dashed-dotted) and 34.0 kpc (dotted).

Figure 6.7: The disruption time for the standard model (Mvir = 1.5×1012M⊙,
c = 10) at different orbital distances - 4.5 kpc, 8.5 kpc, 17.0 kpc and 34.0
kpc.
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Figure 6.8: The half mass relaxation time scale for models on a orbital dis-
tance of 8.5 kpc. Labels as in figure 6.4.

Figure 6.9: The half mass relaxation time scale for the standard model at
different orbital distances. Labels as in figure 6.7.
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evolution of the relaxation time. The peak half mass relaxation time is also
a bit smaller at shorter orbital distances.

I also looked at the influence of the halo on the evolution of the core radius
over half-mass radius. As we have already seen in Chapter 5 an external tidal
field does not have a large influence on core collapse and that is what I found
again when including a dark matter halo. However including a very heavy
halo results in fast disruption even before the core has time to collapse.

6.5.3 Putting the galaxy in the halo

Here I have included the modelII galaxy described in Section 6.5.1 to a subset
of the models at orbital distance 8.5 kpc described above (Model IV). Fig-
ures 6.10, 6.11 and 6.12 show the mass, disruption time and relaxation time
respectively for these models. Adding the galaxy results in a faster mass loss
and thus shorter disruption time and relaxation time for the cluster. This is
to be expected because this is just an addition of mass. The relative effect is
greatest on the lowest mass halos because the size of the galaxy is relatively
larger compared to their halo size than for larger halos.

Finally I ran a simulation for the standard model with all the galactic
mass in the bulge (Model V). This results in an ever faster disruption. The
mass loss for Model III, Model IV and Model V are shown in figure 6.13.
All my models are on orbits in the disc. However I did run a model with an
orbit perpendicular to the disc which resulted in earlier disruption owing to
”disk shocking”: the cluster experiences a sudden change in the potential as
it goes through the disk resulting in faster mass loss.
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Figure 6.10: The total mass evolution for a cluster at an orbital distance of
8.5 kpc including a full galactic model. Labels as in figure 6.2

Figure 6.11: The disruption times for clusters at an orbital distance of 8.5
kpc including a full galactic model. Labels as in figure 6.4
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Figure 6.12: Half mass relaxation time for a cluster at an orbital distance of
8.5 kpc including a full galactic model. Labels as in figure 6.2

Figure 6.13: The total mass evolution for the standard model. The solid line
is the cluster in a pure NFW halo (Model III), the dashed line in a NFW
halo with a full galactic model added (Model IV) and the dotted line a NFW
halo with all the galactic mass in the bulge (Model V).
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Chapter 7

The generalized NFW profile

7.1 Generalized NFW profile

The generalised NFW profile is, as the name would suggest, a more general
form of the NFW dark matter halo mass profile in which the inner logarithmic
slope α is free to vary between 0 ≤ α < 3, rather than α=1 as is the case
for the NFW profile, while the outer logarithmic slope asymptotes to −3 at
large radii. Formally this is written as

ρ(r) =
ρcritδc

(r/rs)α(1 + r/rs)3−α
, (7.1)

where again rs is the scale radius, ρcrit the critical density of the Universe at
z = 0 and δc the characteristic overdensity.
Equation 7.1 is then integrated over the volume enclosed within the virial
radius, which gives

Mvir = 4πδcρcritr
3
s

∫ c

0

u2−α

(1 + u)3−α
du. (7.2)

where c = rvir/rs is the concentration parameter. This is equivalent to
Equation 6.3. The integral in equation 7.2 is a representation of the hyper-
geometric function (cf. equation 3.194.1 of Gradshteyn & Ryzhik, 1994)

∫ u

0

xµ−1

(1 + β xν)
dx =

uν

µ
2F1(ν, µ; 1 + µ;−β u) (7.3)

where µ = 3 − α, ν = 3 − α, β = 1 and u = rvir/rs = cvir. Substituting this
into equation 7.2 gives

Mvir =
4π

3 − α
δcρcritr

3
sc

3−α
vir 2F1(3 − α, 3 − α; 4 − α;−cvir) (7.4)
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Figure 7.1: This figure shows how the enclosed mass varies with radius in
the α = 0.5 (dotted), α = 1.0 (solid) and α = 1.5 (dashed) halo models. Mv

is the virial halo mass and rv is the virial radius of the halo.

This can be compared with equation 6.3 to give

δc = ∆vir
(3 − α)

3
cα
vir

1

2F1(3 − α, 3 − α; 4 − α;−cvir)
. (7.5)

Once δc is known, it is straightforward to compute the mass enclosed within
a radius r,

M(r) =
4π

3 − α
δcρcritr

3
s(r/rs)

3−α
2F1(3 − α, 3 − α; 4 − α;−r/rs) (7.6)

Figure 7.1 illustrates the dependence of the enclosed mass on the value of
α for a 1012M⊙ halo with concentration c = 10. As one expects, increasing
α results in more mass enclosed with a given radius.

The Gravitational Potential and Acceleration

The gravitational potential can be determined by calculating

Φ(r) = −4πG

(

1

r

∫ r

0

ρ(r)r2dr +

∫ ∞

r

ρ(r)rdr

)

(7.7)
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The first of these integrals (
∫ r

0
ρ(r)r2dr) should be familiar from equation 7.2;

the second (
∫∞

r
ρ(r)rdr) requires again use of the hypergeometric function

(cf. equation 3.194.1 of Gradshteyn & Ryzhik, 1994)

∫ ∞

u

xµ−1

(1 + β x)ν
dx =

uµ−ν

βµ(ν − µ)
2F1(ν, ν − µ; ν − µ + 1;−1/β u) (7.8)

which gives

∫ ∞

r

ρ(r)rdr =
1

r/rs
2F1(3 − α, 1; 2;− 1

r/rs
). (7.9)

Therefore the gravitational potential Φ(r) at radius r is given by

Φ(r) = −4πGδcρcritr
2
s

r/rs

[

1

3 − α

(

r

rs

)3−α

2F1 + 2F
′
1

]

. (7.10)

where 2F
′
1 represents 2F1(3 − α, 1; 2; −1/r/rs) and 2F1 represents 2F1(3 −

α, 3 − α; 4 − α;−r/rs).
Figure 7.1 illustrates the dependence of the escape velocity, which is a

useful measure of the local potential (vesc =
√

2|Φ|) on α for a 1012M⊙ halo
with concentration c = 10. The velocity a test particle requires to escape
from a given radius increases as the inner slope increases at small radii.

The gravitational acceleration is more straightforward to compute;

~a(~r) = −∂Φ
∂r

êr

= −G M(r)
r2 êr

(7.11)

where êr = ~r/r is the unit vector in the radial direction. The gradient in
the acceleration (which is required for calculating the time derivative of the
acceleration) is

~∇ · ~a =
∂a

∂r
= −G

r2

(

dM

dr
− 2M(r)

r

)

, (7.12)

which gives

4πGρcritδc

(

(r/rs)
−α

(1 + r/rs)3−α
− 2

(

r

rs

)−α
2F1

(3 − α)

)

(7.13)

where again 2F1 represents 2F1(3 − α, 3 − α; 4 − α;−r/rs) for compactness.
Figure 7.3 shows how the acceleration depends on α for our fiducial

1012M⊙ halo with a concentration c = 10.
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Figure 7.2: The escape velocity vesc represents the minimum speed a test
particle requires to climb out of the halo potential and escape to infinity. It
provides a convenient measure of the gravitational potential at a particular
radius – vesc =

√

2|Φ|. This figure shows how the escape velocity varies with
radius in the α = 0.5 (dotted), α = 1.0 (solid) and α = 1.5 (dashed) halo
models.

Figure 7.3: This figure shows how the gravitational acceleration varies with
radius in the α = 0.5 (dotted), α = 1.0 (solid) and α = 1.5 (dashed) halo
models.

64



Figure 7.4: This figure shows the mass evolution for the standard model
defined in the previous chapter using the gnfw subroutine (solid) and the
fnfw subroutine (dashed).

7.2 Addition to nbody6

To add the possibility of a halo with a generalised NFW profile I have writ-
ten a subroutine gnfw that reads in the force and force derivatives from an
existing table. The values in these tables are computed beforehand using
a routine that includes a numerical evaluation of the hypergeometric func-
tion 7.3. This is now incorporated into the code in the same way as fnfw

described in Section 6.4. nbody6 is manipulated to use this subroutine by
giving the virial mass a negative value. All the other input required for the
halo is then read in from the table. Figure 7.4 shows the mass loss for the
standard model (Mvir = 1.5 × M⊙, c = 10) with α = 1.0 (standard NFW
profile) using the new subroutine gnfw together with the mass loss for the
same model using fnfw. The two have the same mass loss history so I can
be confident that the new routine works properly.

7.3 Results

Here I show the results using the generalized NFW profile. All models have
the same halo mass (1.5 × 1012M⊙). Again I used three different concentra-
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tions c (5, 10 and 15) and seven different values of α ranging from 0 to 1.5
in steps of 0.25 resulting in 21 models in total. In all models the cluster is
at a circular orbit at a distance of 8.5 kpc from the galactic centre. Figures
7.5, 7.6 and 7.7 each show the evolution of the total mass for the seven dif-
ferent values of α at a given concentration. For the highest concentration
halo (c=15) there is a clear trend of increasing mass loss with increasing α.
However moving to lower concentrations this effect starts to turn around at
the least cuspy halos. This also clearly seen in the disruption plot. There is
maximum in the disruption time for the c=5 case at alpha = 0.50. So in a
halo with a low concentration parameter, an extreme decrease of alpha leads
to faster disruption.
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Figure 7.5: This plot shows the evolution of the total mass for different
values of α - 0.0 (orange), 0.25 (red), 0.50 (magenta), 0.75 (purple), 1.0
(blue), 1.25 (cyan) and 1.5 (green) - for a halo with virial mass 1.5×1012M⊙

and concentration parameter c = 5. To see the effect of the external tidal
field the mass evolution for an isolated cluster is shown (black) where stellar
evolution is the only mechanism by which the cluster can lose mass.

Figure 7.6: This plot shows the evolution of the total mass for different values
of α for a halo with virial mass 1.5 × 1012M⊙ and concentration parameter
c = 10. Labels as in Figure 7.5
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Figure 7.7: This plot shows the evolution of the total mass for different values
of α for halo with virial mass 1.5 × 1012M⊙ and concentration parameter
c = 15. Labels as in Figure 7.5

Figure 7.8: The disruption time for different values of α (colours as in Figure
7.5 and c - 5 (solid), 10 (dashed) and 15 (dotted) - for a halo with virial mass
1.5 × 1012M⊙.
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Chapter 8

Conclusions

From this study I can conclude that an underlying dark matter halo is impor-
tant for globular cluster evolution. Moreover the structure of the halo has a
significant effect on the disruption rate. This is interesting from a theoretical
perspective, and is an important confirmation for those who are interested in
globular cluster evolution. However, it may also be significant in a broader
context. The favoured cosmological model predicts that galaxies should live
in cuspy dark matter halos. Previous studies of globular cluster evolution
have been of clusters that evolve in non-cuspy potentials. Inferences have
been drawn from these simulations of general processes such as core-collapse
and mass-segregation and observations of globular clusters, which the sim-
ulations seem to do a good job of reproducing. We do not appear to need
cuspy dark matter halos to produce these these trends in simulated globular
clusters that are consistent with observational data, so does this imply that
cuspy dark matter halos are not needed at all? This is not straightforward
to answer, because it is not understood how the assembly of the galaxy has
affected its dark matter halo, and whether this has effectively wiped out the
cusp (as would appear necessary from rotation curve studies of dark mat-
ter dominated galaxies). However, if cusps are robust in the presence of
the growing galaxy, then it may have implications for our understanding of
globular cluster evolution.

More speculatively, the enhanced rate of disruption of clusters in cuspy
halos has interesting implications for their use as probes of galaxy formation.
Understanding how efficiently globular clusters form should provide us with
insight into the efficiency of galaxy formation at high redshifts. The number
of old globular clusters today could tell us how plentiful the sites of globular
cluster formation were in the past, which in turn tells us about the efficiency
with which gas cooled and formed molecular clouds. These sites may be
regulated by the location (in the discs of gas-rich proto-galaxies, in mergers
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between gas-rich proto-galaxies) or the ambient radiation field (cosmological
reionisation). If globular clusters are disrupted more efficiently in cuspy
halos, then we could be missing a large fraction of globular clusters thus
misinterpreting observations and drawing even more uncertain conclusions.

As to the questions posed in the introduction I can say that the presence
of a dark matter halo and its internal structure have an effect on all of
the issues addressed. However at this stage it is too early to make any
quantitative statements. But the results presented in this thesis show that
the disruption of globular cluster in the presence of a dark matter halo has
an important contribution and should be investigated further.

8.1 Future work

The halos that I have treated here are highly simplified with respect to what
is known about their structure. The NFW profile is spherical and smooth.
Also the halos used in my simulations do not evolve over time. However
cosmological simulations show that dark matter halos are aspherical and
asymmetric and evolve over time. As far as analytic halos are concerned
there evolution over time can be modeled as a sequence of models treated in
this thesis (accreting material thus becoming heavier and less concentrated).
The next step is to actually link cosmological simulations to star cluster
simulations. Values for a simulated halo can be tabulated and read into
nbody6 in the same manner as described for the generalised profile taking
this study to the next level of more realistic halos.

Also it should be interesting to expand the cluster size to a full sized
globular cluster. I ran an N = 16000 star cluster simulation for the standard
model. The disruption is of course slower due to the larger number of stars
but scaling by the relaxation time gives similar results. This gives confidence
that my results will hold for larger systems as well.

In this study I have looked at clusters on circular orbits. Real globular
clusters are generally on eccentric orbits. Varying the orbital distance and
eccentricity of the orbit and also orientation with respect to the galactic disk
(if present) is certainly interesting.
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Appendix A

Comparison of identical models

with different random number

seeds

All data presented in this thesis are the result of one realisation of every
model. Each input file takes a random number seed which is used to generate
the initial distribution of the stars in the system. The following figures show
that variations between different realisations of the same model are small
and do not have an effect on the general conclusions drawn. However for
the lightest halo in Model III (Mvir = 109M⊙) the disruption times of the
two simulations are of order 100 Myrs apart as can be seen in Figure A.1.
For all other models the differences are only a few Myrs with the exception
of the heaviest halo where the difference is of order 40 Myrs. Hence results
discussed in Chapter 6 and 7 are indeed influenced by statistical noise but
overall observed trends hold.
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Figure A.1: The evolution of the total mass of two different realisations of
the Model III with Mvir = 109M⊙ and c = 10.

Figure A.2: The evolution of the total mass of two different realisations of
the Model III with Mvir = 1.5 × 1012M⊙ and c = 5.
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Figure A.3: The evolution of the total mass of two different realisations of
the Model III with Mvir = 1.5 × 1012M⊙ and c = 10.

Figure A.4: The evolution of the total mass of two different realisations of
the Model III with Mvir = 1.5 × 1012M⊙ and c = 15.
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Figure A.5: The evolution of the total mass of two different realisations of
the Model III with Mvir = 1014M⊙ and c = 10.

Figure A.6: The evolution of the total mass of two different realisations of
the Model IV with Mvir = 1.5 × 1012M⊙ and c = 10.
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Figure A.7: The evolution of the total mass of two different realisations of
the Model V with Mvir = 1.5 × 1012M⊙ and c = 10.
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