
Calculating the Minkowski sum of convex 3D

polyhedra using a sphere sweep algorithm and

attributed graphs

G. Jorna
Thesis advisor: H. Bekker

Introduction

Let A and B be two convex polyhedra in Euclidean n-dimensional space W1
with flVA and flvB vertices respectively. The Minkowski sum of A and B is
the convex polyhedron

C=AEJ)B={a+bIaEA,bEB}.

In this thesis we are only interested in convex polyhedra in three-dimensional
space 1R3. In the rest of this thesis we will omit the words 'convex' and 'three-
dimensional', so when we say polyhedron we mean convex polyhedron in
three-dimensional space, unless stated otherwise.

Several methods are known to calculate the Minkowski sum. We will men-
tion some of them here.

The first method to calculate the Minkowski sum C of polyhedra A and B
is very trivial, yet highly time consuming.

First all vertex positions of B are added to all vertex positions of A, resulting
in a set of nv x nvB points. Calculating the convex hull of this pointset
gives C.

Other, more efficient methods are based on the use of slope diagrams, that
is, diagrams on the unit sphere S2. The overlay of the slope diagrams SDA
and SDB of A and B is calculated. For every face in the overlay we have
to determine in which faces of SDA and 5DB it is located. This is called
face location.

Bekker and Roerdink[1] proposed a method that is also based on the overlay
of slope diagrams, but avoids face location. A slope diagram SDC of the
still unknown polyhedron C contains nearly all necessary information to
construct polyhedron C. Only the dimensions and the position of C can not
be determined from SDC. Bekker and Roerdink store additional attributes
with SDC. These attributes provide the information needed to construct
C and shift it to the proper position. Face location is no longer necessary.
In this thesis we will present this method and give an implementation and
results of this implementation.

Several methods are known for the calculation of the overlay of two slope
diagrams. A more detailed explanation of slope diagrams will follow later.
For now we only say that a slope diagram is a spherical graph positioned on
the unit sphere.

In his thesis De Raedt [41 presents an algorithm to calculate the overlay of
connected subdivisions on a sphere using a planar overlay algorithm which
runs in O(N log N) time. A similar method was presented by Granados et
al. [7]. These algorithms are based on overlay algorithms in the plane. In
order to calculate the overlay in the plane a switch is to be made from 2

2

to R2 space. They do this by projecting the slope diagrams on a plane and
calculate the overlay in R2 space. Then they project the overlay back on
the unit sphere. Fogel and Halperin [6] also used an overlay algorithm in
the plane. They used a projection of the slope diagram on the unit cube.

We want an algorithm that avoids the switch between S2 to R2 space.
The overlay of the slope diagrams should be calculated directly on the unit
sphere. As a basis for our 3D overlay algorithm we will use a planar overlay
algorithm.

In [2] Berg et al. described the plane sweep algorithm, an algorithm that
computes the intersection points of n segments in the plane in O(n log n)
time. In section 2 we will give a detailed explanation of this algorithm.

We will design our 3D algorithm to work analogue to the plane sweep algo-
rithm, but there are some differences. Working with 3D vertices will force us
to use different orderings on vertices and segments. Intersection of segments
is defined differently. We have to choose another form of sweep line with
another sort of sweep movement.

The reason that we want to develop a new overlay algorithm that computes
the overlay of two slope diagrams is that we want to avoid the hassle of face
location, and we want to store and transfer edge information.

Summarizing, the algorithm we implement and test avoids face location. For
this algorithm two new techniques are used. A sweep algorithm is used to
calculate the overlay of slope diagrams on the unit sphere. Attributed slope
diagrams are used to store positional information.

The objective of our work is to design an efficient algorithm to calculate
the Minkowski sum of two three-dimensional convex polyhedra, implement
the algorithm, and run tests to analyze whether the algorithm works and is
indeed more efficient than existing methods for calculation of the Minkowski
sum.

3

1 Preliminaries

As mentioned in the introduction we can calculate the Minkowski sum of
polyhedra in n-dimensional space R. Later in this thesis we will only speak
about polyhedra in three-dimensional space R3. But first we will give a
simple example of a Minkowski sum of two polygons in two-dimensional
space

1.1 Minkowski sum

Suppose we have a square s (Figure la) and a triangle t (Figure ib), and we
want to draw the Minkowski sum ms of s and t. We do this as follows. We
pick a point p that lies within t. Assume t to be a triangular shaped brush.
To create the Minkowski sum we place t over s so that p lies within the
boundaries of s. Now we start moving t around anywhere we can without
letting p cross the boundaries of s. The brushed area forms the Minkowski
sum ms.

Figure ic shows ms. The Minkowski sum itself is drawn as the thick black
line. The original square and triangle are also displayed, whereas the dashed
lines display the triangle in the positions where p coincides with the vertices
of the square.

As we can see all edges of s and t return in ms. Edge e3,i returns as ems,1,
eS,2 returns as ems,3, and so on. Edge et,1 returns as e,,2, et,2 returns as
e,4, and so on.
Less obvious is what happened to the parallel edges eS,4 and et,3. These
edges added up to an edge e,6 that is parallel as well and has a length
that is the sum of the lengths of e,,4 and et,3.

It can be easily seen that the shape of ms is independent of the point within
t that we choose for p. The position however is dependent of this choice.
We will come back to this later.

v e v4/_\4
V,2

A v(I Aç,/ \e,j T/ \I

e, VN e
ç

V1 e6 V,_

(a) (b) (c)

Figure 1: Example of a Minkowski sum in two-dimensional space R2. (c)
shows the Minkowski sum of a square (a), and a triangle (b).

4

In a more mathematical way, we can explain the Minkowski sum as follows.

We take a triangle t and a square s. We superimpose the vertices oft (Figure
2b) over the vertices of a (Figure 2a).

We take a point p as origin and calculate the vertex positions of the vertices
of both a and t with respect to p. We now add all vertex positions of a to
all vertex positions of t. In Figure 2c the vertex positions of vertices v8,2
and Vt,2 add up to vertex position v. Likewise we can add up the vertex
positions of the other vertices. The result is a set M of at most nv, x flVt
new vertex positions, nv3 is the number vertices is a, flvt the number of
vertices in t. At most, since vertex positions might coincide.

V.I

V,2
Vt.:

v • V. •VU VgS -

Vj V4

(a) (b) (c)

V_;.3 V_t.4 /P\
V, Vj /

S •V9 • . •

v__,.8• •v_.,o •

v

V_.L•! •Vt,

(d) (e) (f)

Figure 2: The Minkowski sum in a more mathematical picture.

In Figure 2d all vertices of M are drawn in black, the vertices and edges of a
en t are drawn in gray. Although we expected 4 x 3 = 12 vertices in M, there
are only 10. This is obviously caused by coinciding vertices. For example,
the vertex positions of vt,1 and V3,3 add up to the same vertex position as
Vt,3 and v3,2.

We get the Minkowski sum of a and t by calculating the convex hull of
M. Imagine the vertices are needles pinned down on a plank. We put an
elastic thread around the needles, so that all needles are positioned inside
the thread (Figure 2e). When the thread is released it will wrap around the
outer most needles (Figure 20.

5

.'

Back to the vertices again. The line around the vertices is the convex hull.
That is, only the vertices that influence the shape of the convex hull are
actually part of it. The vertices that do not touch the line can be deleted
from M. Furthermore, the vertices that are on the line, but can be deleted
without changing the shape of the line, do not belong to the convex hull
either. In Figure 2f we see the same shape as in Figure ic. It is the shape
of the Minkowski sum of s and t.

So far we have only spoken about the shape of the Minkowski sum. Its
position, obviously, is dependent on the positions of s and t. In Figures 1
and 2 we computed the Minkowski sum as if p was the point (0,0) and inside
both s and t.
In Figure 3 we drew the triangle, square, and their Minkowski sum in the
right positions. Vertex positions were computed with respect to the origin
(0,0).

Figure 3: The Minkowski stm of s and t in the right position.

In three-dimensional space R3 the Minkowski sum works analogue to the
previous example.

1.2 Methods to calculate the Minkowski sum

Several methods are known to calculate the Minkowski sum. We will explain
some of them here.

1.2.1 Method 1 — Naive method

The first method to calculate the Minkowski sum is a very naive method. It
is simple, but time consuming. In fact, it is the method we used to explain

6

V,ra4

v—.2

v-.1
V..,

the notion Minkowski sum in section 1.1. Assume we want to calculate the
Minkowski sum of two polyhedra A and B with n vertices each. We add all
n vertex positions of A to all n vertex positions of B. The result is a set of
n2 vertex positions. Of this set we have to calculate the convex hull. The
time complexity of the calculation of the convex hull is O(m 10gm) where m
is the number of vertices. Our set has n2 vertices, so calculating the convex
hull would require O(n2 log n2) time! A very time consuming process indeed.

This method is inefficient, because in general many of the n2 vertices in the
intermediary set are not part of the convex hull, either because they lie in
the interior of the convex hull, or because several vertices coincide.

In order to design a more efficient method to calculate the Minkowski sum
it is important to avoid adding up vertices from A and B that will not
be part of the Minkowski sum. This is possible by using slope diagram
representation of polyhedra. Slope diagrams are based on support functions
en support sets.

Support function In 3D space the support function is defined by

h(A,u)=sup{(a,u)IaEA}, uES2.

Here (a, u) is the inner product of vectors a and u, and S2 denotes the unit
sphere.

We will now explain the support function for a polygon in two-dimensional
space. We define the support function in 2D space as follows.

h(B,u) = sup{(a,u) a E B}, U ES',

where S1 denotes the unit circle.

In words, h(B, u) is the supremum of the set of inner products of u with all
points on polygon B.

In a more graphical way we could describe the support function as follows.
Let B be a square with vertices v = (1, 1), V2 = (1,2), V3 = (2,2), and
v4 (2, 1) (Figure 4a). Let u be the unit vector). Let line I be
a line perpendicular to u and infinitely far away from the origin 0 (Figure
4b). Now we move I closer to 0 in the direction —u until it bounces against
B. This happens when I reaches vertex V3 (Figure 4c).

Since u is the unit vector h(B, u) now is the distance of I to the origin. In
this particular case h(B,u) = (v3,u) = ((2,2),(/,)) = 1 + For any
other point a on B inner product (a, u) < 1 +

The support set F(B, u) of B at u E S1 consists of all points a E B for
which (a,u) = h(B,u).

7

0

V4

(a) Square s. (b) A randomly chosen
unit vector u and
line £ perpendicular
to u.

(c) I bounces against
s. h(B,u) is the
distance between 0
and 1.

Figure 4: The support function in graphics.

8

y y y I

U

xo
u—S

xo x

y y

I

/

0
(d) Another orienta-

tion for u, another
value for h(B,u),
but the same sup-
port set F(B,u).

xXQ
(e) Yet another ori-

entation of u.
F(B,u) are all
points on edge e3.

(f) The slope diagram
of s.

Let us take a look at Table 1. We have computed the inner products of nine
unit vectors u1,. . , U9 with the four vertices of square B, and determined
the support function of each unit vector. It is easy to see that the inner
products of the points on an edge e of B with a unit vector uj are directly
related to the inner products of the endpoints of e with Uj.

i u, (vi,u,) (v2,Uj)
[

(vj,ti,)
[

(V4,U) h(B,u,)

T (1,0) 1 1 2 2 2

2 (v) 1+ v+1 v'+1 'V+4 v+1
3 (v') 1 2 1 2v'
4 (v') '/+ V'+1 v'+1 /3+1
5 (0,1) 1 2 2 1 2

6 (—,v') 'f3— v— v'—1 /—1 v'—4
7 (sJ/) 0 0 -s/
8 (-'/) -v+ -v'+1 -v'+1 -v+ -/+1
9 (—1,0) —1 —1 —2 —2 —1

Table 1: Support functions for nine unit vectors with the vertices of B.

What can we say about the values in the table? For every unit vector Uj
there is exactly one point v E B for which (v, Ui) equals the supremum,
except for the unit vectors that are perpendicular to an edge of B. For
instance, for every Uj in the first quadrant, that is u = (x, y) with x > 0

and y> 0, h(B, Ui) = (Ui, v3). That implies that every unit vector in the
first quadrant has the same support set, namely {v3}. This statement is
supported by Figure 4. No matter which unit vector in the first quadrant
we choose, I will always bounce against vertex v.

For the unit vectors u1, U5, and ug we see that there are multiple points on
B that have the same inner product with Uj. In fact, there are infinitely
many. The fact that (v3,ui) = (V4,u1) = h(B,ui) implies that for every
point v3 on edge e (v3,uj) is equal to h(B,ui). Therefore F(B,ui) is the
set of all points on e. Figure 4e shows the case for u5.

We can conclude that the support set for a unit vector that is the outward
normal vector of an edge of B is a set of points consisting of all points
on The support set for any unit vector non-perpendicular to any edge
of B consist of one point only, one of the vertices of B.

In Figure 4f we schematically display the support sets for B. The circle
represents all unit vectors on S'. The intersection points of the circle with
the axes represent the unit vectors that are the outward normal vectors
of the edges of B. These points are labeled with the edge labels from B
indicating their support set.

9

The circle segments between the intersection points are labeled with the
vertex label of the label from B that forms the support set for all unit
vectors on that particular segment.

We call the representation in Figure 4f the slope diagram of the polygon
in Figure 4a. The points on the circle representing edge e in the square
actually is an indication for the slope of e.

a e,

(c)

ixv4 + v3

44 +

ee

c V14

(a)

x

44

(b)

(d)

y
VQ +

vQ+e,7
VQ+VLJ(

+ v
+ V,j

+
+ v,
+ v

V,j e v4

V6

(e)

41 +

(f)

Figure 5: The summation of the support sets of s and t

For polyhedra in R3-space we can create slope diagrams as well. Clearly,

10

slope diagrams of 3D polyhedra are in S2-space, that is, on the unit sphere.

Slope diagram As mentioned before we will use slope diagram represen-
tation for convex polyhedra. According to this representation faces, edges,
and vertices of polyhedron P are given by points, spherical arcs, and convex
spherical polygons on the unit circle, forming the slope diagram SDP.

To be more precise, SDP is a spherical graph on the unit sphere representing
P as follows.

• Face representation: A face f2 of P which is orthogonal to the unit
vector Uj is represented in SDP as the endpoint of u2. In other words,
the support set of Uj is {v I v E f}.

• Edge representation: An edge e1 of P is represented in SDP by the
minor arc of the great circle connecting the two points in SDP that
represent the two faces adjacent to ej. Let us call this arc esr,p,2.
In other words, the support set for every unit vector on eSDp,z is
{vlveej}

• Vertex representation A vertex v of P is represented in SDP by a
convex spherical polygon ISDP,I. The polygon is bounded by the arcs
in SDP that represent the edges in P that have v2 as an endpoint. In
other words, the support set for every unit vector in ISDP,1 is {v}.

Every convex polyhedron can be represented in the plane or on the surface
of a sphere by a 3-connected planar graph. To be more precise, the structure
of vertices and edges of a convex polyhedron can be spread out in the plane
so that there are no intersections between edges.

Conversely, by a theorem of Steinitz as restated by Grünbaum, every 3-
connected planar graph can be realized as a convex polyhedron [5].

Moreover, given a planar graph C, a dual graph C' can be defined. For
every node, edge, and face in C there is a face, edge, and node in C'. In
fact, this is what we just described. SDP is the dual graph of P, which can
be represented as a planar graph.

By overlaying two slope diagrams a new slope diagram can be created.
An important well known property of the Minkowski sum is that the slope
diagram SDC of Minkowski sum C of polyhedra A and B is identical to the
overlay of the slope diagrams SDA and SDB of A and B respectively [10],
that is

SDC = overlay(SDA, SDB).

The overlay is created by superimposing the slope diagram of one of the
summands over the slope diagram of the other. The positions of the points

11

in SDC consist of (1) the the positions of all points in SDA and SDB and
(2) the positions of the intersection points of arcs of SDA and arcs of 5DB.
The first ones can simply be copied from the slope diagrams SDA and SDB.
The latter ones are obtained during the calculation of the overlay of SDA
and SDB.

The overlay SDC is the slope diagram of C, the Minkowski sum of A and
B we want to calculate. Since SDC is the dual graph of C we know the
structure of C. That is, we know how many vertices C contains, and which
vertices are connected to each other. The vertex positions, however, are
unknown. We have to calculate the positions using information from SDC.

Since slope diagrams are planar graphs, we can draw them in the plane.
Figure 6a shows a fraction of SDA in the plane, and Figure 6b shows a
fraction of 5DB. Figure 6c shows a fraction of the overlay of SDA and
SDB. In Figure 6c we see a face fsDc that is the result of overlaying the
faces ISDA,1 and ISDB,1.

fSDB / /
JSDB.3

SDB

I

JSDB.5 I
SDB.4

(a) (b) (c)

Figure 6: &actions of (a) slope diagram SDA, (b) slope diagram SDB,
and (c) the overlay of SDA and SDB.

Now we go back to the support function and support set. We know that face
fsDc in SDC represents a vertex v in C, but we do not know the position
of v. We do know the positions of the vertices VA,! and VB,1 which are
represented in SDA and SDB by the faces ISDA,1 and fsDB,1, respectively.
In other words, {vA,1} and {vB,1} are the support sets of ISDA,1 and 15DB,!.
Likewise, {vc} is the support set for fsDc.

It is known that [9]:

h(AEJ)B,u)=h(A,u)+h(B,u), UES2,

and that [9]:

F(AB,u)=F(A,u)eF(B,u), uES2.

12

JSDA.2 1SDAJ

JSDA.s
.TSDA.4

Hence, since {vA,1} {vB,1} = {vA,1 + VB,1} = {vc} we can calculate the
position of v by adding the vertex positions of VA,1 and vB,1.

In order to calculate the vertex position of every vertex VC,j we have to deter-
mine in which faces of SDA and SDB fsDc,z is located. This is called face
location. Let fSDC,i be located in the faces ISDAj and fsDB,k of SDA and
SDB, respectively. Then vertex position vc,2 can be calculated as follows.

VC,z = VAj + VB,k,

where VA,J and vB,k are the vertices in A and B represented by the faces
fSDAJ and fsDB,k, respectively.

Using slope diagram representation is obviously the solution to the problem
of redundant vertex positions. Next we will describe two methods for the
calculation of the Minkowski sum of polyhedra using slope diagrams.

1.2.2 Method 2 — Using slope diagrams and planar overlay algo-
rithms

Using slope diagram representation, as we just described it, we can avoid the
calculation of irrelevant vertex positions of a Minkowski sum, that makes
the naive method (section 1.2.1) inefficient. Using the overlay of two slope
diagrams we only calculate vertex positions that are indeed part of the
Minkowski sum.

Given two polyhedra A and B the Minkowski sum C of A and B is cal-
culated as follows. First the slope diagrams SDA and SDB of A and B
respectively are calculated. Then we use the important feature that the
overlay of the slope diagrams of two polyhedra is equal to the slope diagram
of the Minkowski sum of the two polyhedra. Thus calculating the overlay
SDC of SDA and SDB gives us the slope diagram of C, the Minkowski
sum we want to calculate.

Since there is no known efficient algorithm to calculate the overlay of two
slope diagrams a switch is made from S2 space to JR2 space. SDA and SDB
are projected on the plane, giving SDA' and SDB'. Then the planar overlay
is calculated of SDA' and 5DB', resulting in SDC'. This can be done in
O(n log n) time [2], where n is the total number of vertices in SDA and
SDB. The overlay SDC' is then projected on the sphere, having spherical
overlay SDC as a result.

Several methods are used to switch from 52 space to JR2 space. De Raedt [4]
presented a method where a slope diagram is first projected on a tetrahedron
and subsequently projected from the tetrahedron on the plane. Then a
planar overlay is calculated. The planar overlay is projected on a tetrahedron
and finally on the sphere, giving the spherical overlay.

13

Fogel and Halperin [6J presented a similar method, but their method is based
on projection of the slope diagrams on the unit cube. The overlays on the six
separate faces of the cube are calculated. The overlays are then combined
to one overlay and that overlay is then projected back on the sphere.

Once we have SDC we can construct the Minkowski sum C from SDC.
With the nv vertices, ne edges and nf faces of SDC we can construct a
dual graph C with nf vertices and ne edges, since SDC is a planar graph.
However, the position of the nf vertices in C is unknown. Every face ISDC
in SDC corresponds to vertex v in C. But how can we calculate the position
of v?
A face fsDc in SDC is either equal to a face ISDA of SDA, or it is completely
contained in fsDA. Likewise, fsDc is either equal to a face fsDB of SDB,
or it is completely contained in fsDB. We know the vertex positions of the
vertices VA in A and VB in B, that correspond to fSDA and fsDB respectively.
Another feature of the overlay of slope diagrams is that the vertex position
of Vc is the sum of the vertex positions of VA and VB. Using face location
the vertex positions of the vertices in C can be calculated by determining
in which faces of SDA and SDB a face of SDC is contained.

Figure 7 shows an example of two polyhedra A and B ((a) and (b)), their
slope diagram representations SDA and SDB ((c) and (d)), the overlay of
SDA and SDB (e) and the Minkowski sum of A and B (f).

Face location is not very efficient and requires complex and intensive book-
keeping. Therefore we wish for a simpler method to construct the Minkowski
sum from its slope diagram.

1.2.3 Method 3— Using attributed slope diagrams and a spherical
overlay algorithm

Bekker and Roerdink [1] presented a new method to efficiently calculate
the Minkowski sum of two convex 3D polyhedra. Their method is based
on slope diagram representation and a spherical overlay algorithm. More-
over, they use attributed slope diagrams. That is, their slope diagrams
contain additional attributes that provide enough information to construct
the Minkowski sum from its slope diagram, without using face location.

Let A be a polyhedron and SDA be its slope diagram. The idea is to store
an edge attribute with every edge e in A containing the relative position of
the target vertex of e with respect to the source vertex of e.

As we know by now, for every edge e in A there is an edge in SDA repre-
senting e2. When slope diagram SDA is created the edge attribute of every
edge e1 in A is copied to the edge in SDA representing e1.

More precise, given an edge CA in A with source vertex source(eA) and target
vertex target(eA), we store an edge attribute attr(eA) with eA, that contains

14

Figure 7: SDA and SDB, the slope diagram representations of A and B.

Figure 7': SDC, the overlay of SDA and SDB.

15

Figure 7: Polyhedra A and B.

Figure 7: C, the Minkowski sum of A and B, can be calculated from SDC.

the relative position of target (eA} with respect to source(eA).

attr(eA) = position(target (e4) — position(source (eA))

During the creation of slope diagram SDA of A we store the edge attribute
of every edge e in A with edge eSDA,j in SDA that represents eA,.

attr(eSDA,1) = attr(eA,1)

Let us take a look at the situation in Figure 8. Figure 8a shows Figure 6c
again, whereas Figure 8b shows the part of Figure 8a that we are particularly
interested in, we zoomed in on the faces fsDc,1 and fSDC,2 of SDC.

Both fsDc,1 and fsDc,2 are located in the same face of SDA, that is fsDA,1.
Furthermore, fsDc,1 is located in face ISDB,1 of SDB, whereas fsDc,2 is
located in face ISDB,2 of SDB.

N
(a) &action of slope (b) Closer look at Fig-

diagram SDC. ure (a).

Figure 8: &actions of slope diagram SDC.

As we have explained before, we can calculate the vertex positions of the
vertices vc,1 and vc,2 of C, represented by fsDc,1 and fsDc,2, by adding
the vertex positions of the vertices in A and B, represented by the faces in
SDA and SDB that fsDc,1 and fsDc,2 are located in. Hence, the vertex
positions v and vc2 can be calculated as follows.

VC,1 = VA,1 + VB,1, (1)

VC,2 = VA,1 + VB,2. (2)

Clearly, when two faces fsDc,2 and fsDc,j in SDC are located in the same
face of SDA, the difference between the vertex positions of VCj and vcj
is merely determined by the difference between the vertex positions of the
vertices in B that are represented by the two faces in SDB that ISDC,i and
ISDC,.j are located in.

Edge egjy,i coincides with an edge of SDB, say egDB,1. eSDB,1 is adjacent
to the faces fsDB,1 and fsDB,2, and thus represents the edge in B connecting

16

/
JSDB2

I

1SDB.I'

the vertices VB,1 and vB,2. Therefore the edge attribute of eSDB,1 is set to
VB,2 — vB,1. The edge attribute of esDc,1 would be calculated as vc,2 — Vc,i,
if the positions of vc,2 and vc,i were known.

Using equations 1 and 2 we can write

VC,2 — vc, = (VA,! + VB,2) — (VA,! + VB,1) = VB,2 — VB,1.

We can conclude that when an edge esDc solely coincides with an edge eSDA
of SDA we can copy the edge attribute from eSDA to egDc.

Now we know how the edge attribute of an edge in the overlay SDC can be
transferred from the original slope diagrams SDA and SDB in case the edge
in SDC is solely coincides with one edge of either SDA or SDB. However,
it is possible that an overlay contains edges that coincide with edges of both
original slope diagrams. In Figure 9 we see fractions of SDA and SDB,
and their overlay SDC, where an edge of SDC coincides with edges of both
SDA and SDB.

fSoR.2

i'-.. /'SDB\< fs.\ /

(b)

Figure 9: &actions of slope diagrams SDA, SDB, and SDC.

fsDc,1 is located in face ISDA,1 of SDA, whereas fSDC,2 is located in face
fsDA,2 of SDA. Furthermore, fsDc,1 is located in face fsDB,1 of SDB,
whereas fsDc,2 is located in face fsDB,2 of SDB. Vertex positions vc,1 and
vc,2 can be calculated as follows.

VC,1 = VA,! + VB,1,

VC,2 = VA,2 + VB,2.

fsDc,1 and fsDc,2 are adjacent to edge esDc, which coincides with both
eSDA and eSDB. The edge attributes of eSDA and eSDB are set to VA,2 — VA,!

and vB,2 — VB,1, respectively. The edge attribute of ejc would be vc,2 —vc,j.
Using the equations from the previous paragraph, this could be written as

VC,2 — vc,1 = (vA,2 + VB,2) — (VA,! + VB,1) = (VA,2 — VA,!) + (vB,2 VB,1).

17

fSDA.I

(a)
1

(c)

This means that the edge attribute of esc can be calculated as the sum
of the edge attributes of CSDA and esDB, the edges of SDA and SDB that
esDc coincides with.

Let us recapitulate. When the overlay SDC of two slope diagrams SDA and
SDB is calculated each edge in SDC also gets an edge attribute stored with
it. An edge is either (a part of) an edge of only one of the slope diagrams
SDA and SDB, or (a part of) edges of both slope diagrams.

If edge .esDc is solely (part of) an edge CSDA in slope diagram SDA, then
attr(esDc) is set to attr(esD4. If edge esDc is solely (part of) an edge
eSDB in slope diagram SDB, then attr('eSDC) is set to attr(eSDB). If edge
CSDC is both (part of) an edge eSDA in slope diagram SDA, and (part of)
an edge eSDB in slope diagram SDB, then attr(esDc) is set to attr(eSDA)
+ attr(eSDB).

After SDC is calculated we can construct polyhedron C. The first part
works analogue to the construction of C as we described it for method 2.
The calculation of the vertex positions of C, however, is done in a different
way. We do not need to locate the faces of SDC in SDA and SDB anymore.

We can transfer the edge attributes stored with every edge of SDC to the
edges of C. For every edge eSDC,1 in SDC representing edge ec,j in C
attr(ec,2) is set to attr(eSDC).

After all edge attributes are set we can calculate the vertex positions of
C. This is done as follows. Pick a random vertex vC,o in C and set its
vertex position position(v,o) to a randomly chosen position, for example
(0,0,0). For each outgoing edge et from vc,o the vertex position of the
target vertex vC,t of et, position (vc,t), is set to position(vc,o) + attr(et).
Then for every outgoing edge et,g of vertex VC,t we can set the position of
the target vertex to position(vc,t) + attr(et,t). This process is recursively
repeated until every vertex position of C is calculated.

When all vertex positions of C are calculated the Minkowski sum of A and
B is the result. That is, we have calculated the correct shape. The position,
however, has yet to be determined. Since we only stored relative vertex
positions with the slope diagrams, absolute vertex positions were lost in the
process.

It can easily be checked that

Cmax.x = A..rnax.x + B.max..x

should hold, where A.max.x, B.jna.x..x, and Cmax.x are the x-coordinates
of the most extreme points of A, B, and C, respectively, in the positive x-
direction.

C can be shifted to the correct position by three similar operations [1],
one for the x-direction, one for the y-direction, and one for the z-direction.

18

We explain the shift-operation in the s-direction. The other operations are
analogous to this one.

Before the shifting operations are applied C is at a provisional position.
Let provCmax..z be the maximal s-coordinate of all nodes in C at this
provisional position. Then by shifting C over

A..max..x + B..max.x — provCrnaxx

C becomes its right position in the s-direction. By applying similar shifts
in the y- and z-direction C is shifted to its correct position.

The result is the Minkowski sum C of the convex polyhedra A and B.

19

2 Plane sweep algorithm

As mentioned in the preliminaries several algorithms are known for calcu-
lation of the Minkowski sum of convex 3D polyhedra. Some of them use a
planar overlay algorithm such as the plane sweep algorithm, an algorithm
that calculates the overlay of two sets of line segments in an efficient way.
In this section we will discuss this algorithm as described in Computational
Geometry [2]. This will make it easier to understand our 3D algorithm,
that we will describe in the next section, which is based on the plane sweep
algorithm.

2.1 Theory

We define our problem as follows. Given two sets Si and S2 of line segments,
calculate all intersection points between a segment from Si and a segment
from S2.

Before we start we have to define what a line segments is, and furthermore
what we mean by an intersection point. A line segment is closed interval on
a line. Two line segments intersect when they have one or more points in
common. We can distinguish five different types of intersection:

• the intersection point of two line segments is an interior point — that
is, a point that is part of the segments, but not one of their endpoints
— of both line segments (Figure ba);

• the intersection point is an interior point of one of the line segments,
while it is an endpoint of the other line segment (Figure lob);

• the intersection point is an endpoint of both line segments (Figure
lOc);

• the line segments are identical (Figure lOd);

• the line segments are not identical and overlap — either partly (Figures
i0e) or completely (Figures 101). That is, the line segments are parallel
and at least one endpoint of one line segment coincides with an interior
point of the other.

In the last two cases (Figures bOd, i0e, and 101), in fact, there are infinitely
many intersection points. However, we will only report two: either the
point(s) where two endpoints coincide, or the point(s) where the endpoint
of one segment coincides with an interior point of the other.

To make life easier we will combine the sets 51 and S2 by putting all their
segments in one set S. We will have to redefine the problem as follows: given

20

>
(c) Intersection point

is an endpoint
point of both line
segments

Figure 10: Six types of intersection points of two line segments. Closed dots
represent regular endpoints, open dots represent intersection
points

a set S of n line segments in the plane report all intersections between the
segments in S.

The easiest way to find all intersections is to compare every line segment
in S with all the other segments in S. This would cost 0(n2) calculations.
This is very time consuming for large n.

In practice, most of the segments will intersect none or only few of the other
segments. Therefore we wish for an algorithm that has a time complexity
that is dependent not only on the size of the input set, but also on the size
of the output set. Such an algorithm is called an output-sensitive algorithm.
In other words, we wish for an algorithm that is more efficient than 0(n2).

To make the search for intersections more efficient we have to avoid testing
pairs of segments that can not intersect. Therefore we take a look at the
geometry of the problem. Segments can only intersect when they are close to
each other. As long as segments are far apart they can impossibly intersect.

21

—

(a) Intersection
point is an inte-
rior point of both
line segments

(b) Intersection
point is an in-
terior point of
one line segment
and an endpoint
of the other

(d) Segments are
identical

(e) Segments overlap (f) One segment
partly is overlapped

completely

y y y

x x x

(a) (b) (c)

Figure 11: (a) Non-overlapping y-intervals; (b) and (c) overlapping y-
inter,, ojs

So we want to avoid testing pairs of segments that are far apart. An easy
way to this is by comparing the y-intervals. If we project the segments to
compare on the y-axis we can see whether their y-intervals overlap. If this is
not the case, we say that the segments are 'far' apart and do not intersect.
In Figure ha we see two line segments with non-overlapping y-intervals.

In Figure lib we see two segments with overlapping y-intervals, but the seg-
ments do not intersect. In Figure 1 ic the two segments also have overlapping
y-intervals, and they do intersect.

In other words, we can say that two segments can only intersect if a hor-
izontal line exists that intersects both segments. Knowing this, we take a
horizontal line above all segments. We start sweeping this line downward.
During the sweep we keep track of the segments that intersect the sweep
line at any time. We will discuss the details about how this works later.

For obvious reasons this type of algorithm is called a plane sweep algorithm.
The line that is swept downward is called the sweep line and we will call the
set of segments intersecting the sweep line at a certain moment the status
of the sweep line.

The status of the sweep line changes during the sweep. But this does not
happen continuously, it only happens when the sweep line reaches an end-
point of a segment. There are two kinds of endpoints: an endpoint where
a segment starts intersecting the sweep line — let us call this kind an upper
endpoint — and an endpoint where a segment stops intersecting the sweep
line — let us call this kind a lower endpoint.

When an endpoint is reached the status changes. Depending on the kind
of endpoint an event takes place. Therefore we call the upper and lower
endpoints event points.

When an upper endpoint of a segment is reached, the segment is inserted
in the status and is tested against all other segments that were already in

22

the status. When a lower endpoint is reached the segment it belongs to is
removed from the status.

We ignored the special case that the endpoints of a horizontal line are on
the sweep line at the same time. In that case we slightly slant the sweep
line (Figure 13). The point that is reached first is the upper endpoint, while
the other endpoint is the lower endpoint. Later we will give a more detailed
definition of the ordering of points.

This method reduces the amount of calculations in general, but there are
still situations thinkable where the time complexity is 0(n2). For example,
the situation where all segments intersect the x-axis. When we take a look
at the geometry again we can find the cause of this problem in the fact
that segments can still be far apart in the horizontal direction, even if they
intersect the sweep line at the same time.

We can solve this problem by ordering the segments in the status in x-
direction. We then only have to test new segments against the segments

y

I

x x

(a) (b)

Figure 12: The status changes (a) when a new segment is inserted after an
upper endpoint is encountered, or (b) when a segment is deleted
after a lower endpoint is encountered.

y

I

x

(a)

Figure 13: Slanted sweep line.

23

•&*'
x x

(a) (b)

Figure 14: New neighbors (a) after insertion of a new segment, (b) after
switch segments at an intersection point, and (c) after deletion
of a segment.

that are adjacent in the status, that is, their left and right neighbor. We
have to redefine the status: the status is the ordered sequence of segments
intersecting the sweep line.

Again, the status is to be updated when the order of the segments in the
status changes. As we saw in the previous paragraphs this happens when
segments are either inserted in or deleted from the status. But when the
sweep line reaches an intersection point of two segments the order changes
as well. Therefore we introduce the intersection point as a new kind of event
point.

The plane sweep algorithm now works as follows. The sweep line starts above
all line segments and sweeps downward. During the sweep the algorithm
takes the appropriate action when an event point is encountered. The event
points are the endpoints of the segments that are known at the start of the
sweep and the intersection points that are computed on the fly.

As mentioned, the actions taken by the algorithm depend on the kind of
event point it detected. If an upper endpoint is found a new segment is to
be inserted in the status. The new segment is tested for intersection against
the segment that is directly to the left of its upper endpoint, if there is one.
Then it is tested for intersection against the segment that is directly to the
right of its upper endpoint, if there is one.

In Figure 14a segments i and s,. are adjacent segments in the status. Now
segment s is inserted in the status, with its upper endpoint between i and

Sr s,, is then tested for intersections against its left neighbor sj and its right
neighbor Sr. If any intersection points are found they form new event points
that will be handled later when the sweep line reaches them.

If an intersection point is found by the sweep line then the order of the
segments that intersect in that point changes in the status. After the order
is updated the segments that are switched have at most one new neighbor

24

(c)

against which they are tested for intersections.

To illustrate this Figure 14b shows the segments s3, 5k, s1 and 8m inter-
secting the sweep line in this particular horizontal order. Now the sweep
line encountered the intersection point of 8k and s and switches the order
of these two segments in the status. s now is the new left neighbor of i,
while Sm iS the new right neighbor of Sk. The switched segments are tested
against their new neighbors for intersections. These intersection points can
be above or beneath the sweep line. Only intersection points beneath the
sweep line are important here, while the intersection points above the sweep
line have already been detected in an earlier stage of the sweep and have
already been handled.

When a lower endpoint of a segment is reached the segment is removed from
the status. Let 5k, s1, and Sm be three adjacent line segments (Figure 14c).
SI will be removed when its lower endpoint is reached by the sweep line. Its
left and right neighbors 8k and m flOW become adjacent and consequently
have to be tested for intersection. Again, only intersection points beneath
the sweep line are important.

After the sweep is completed - that is, after the last event point has been
handled - all intersection points have been detected.

The invariant that stays true during the sweep is: all intersection points
above the sweep line have been detected.

2.2 Data structures

Before we can discuss this algorithm in more detail we have to describe some
data structures that are needed.

First of all, we need a structure to store and order the event points. We will
call this the event queue and denote it as Q from now on. An operation is
needed to fetch the next event from Q and remove it from Q. The first event
point is the highest event point beneath the sweep line, that is the event
point with the largest y-coordinate. If two points have equal y-coordinates
the one with the smallest x-coordinate is the first event point (remember the
slanted sweep line example). Another operation that we need for is the
insertion of event points, while new event points are computed on the fly.
Since it is possible that two event points coincide we also need an operation
to check whether a certain event point is already present in Q.

It is reasonable to implement Q using a balanced binary search tree with
ordering -<, which is defined as follows. Let p and q be two event points, then
p -< q — that is, ppreeedes q — if and only ifp > q, holds orpy = qAp <q1
holds.

With every event point p a set U is stored, containing the segments that
have p as upper endpoint.

25

Using a balanced binary search tree implies that inserting, searching and
deleting event points costs O(log m) time, where m is the number of event
points in Q.

We also need a data structure for the status to keep track of the segments in
the status. We will call the status T from now on. Main purpose of this data
structure is to determine the neighbors of segments to check for intersection
points. This structure needs to be dynamic, since segments start and stop
intersecting the sweep line. T contains an ordered sequence of segments so,
again, a balanced binary search tree seems a good choice for data structure.

More precise, we store the segments in the leaves of the tree. An internal
node of the tree contains the segment from the right most leaf of its left
subtree, and is only used to determine the search path from the root of the
tree to the leaf containing the requested segment. Suppose we are looking
for the segment that is directly left of a point p. Starting from the root of T
we descend T going left or right in a node depending whether the segment
in the node is left or right from p. Eventually, we will end up in a leaf.
Either the segment in this leaf, or the one in the leaf left from the current
leaf contains the segment we are looking for.

The balanced binary search tree used for the status was implemented using
a red-black tree [3].

2.3 The algorithm

The event queue Q and the status tree T are the only data structures we
need. Now we can write down the global algorithm, as it is given in [2].

Algorithm FINDINTERSECTIONS(S)
Input. A set S of line segments in the plane.
Output. The set of intersection points among the segments in S, with for
each intersection point the segments that contain it.
1. Initialize an empty event queue Q. Next, insert the segment endpoints

into Q; when an upper endpoint is inserted, the corresponding segment
should be stored with it.

2. Initialize an empty status structure T.
3. while is not empty
4. do Determine the next event point p in Q and delete it.
5. HANDLEEVENTPOINT(P)

The procedure HANDLEEvENTPOINT is called for every event point in Q.
We will next give the procedure, which describes how to handle event points
correctly. It also clarifies what happens in cases where more than two seg-
ments intersect in one event point.

26

HANDLEEVENTPOINT(P)
1. Let U(p) be the set of segments whose upper endpoint is p; these seg-

ments are stored with the event point p. (For horizontal segments, the
upper endpoint is by definition the left endpoint.)

2. Search in T for the set S(p) of all segments that contain p; they are
adjacent in T. Let L(p) C 8(p) be the set of segments whose lower
endpoint is p, and let C(p) C S(p) be the set of segments that contain
p in their interior.

3. if L(p) U U(p) U C(p) contains more than one segment
4. then Report p as an intersection, together with L(p), U(p), and C(p).
5. Delete the segments in L(p) U C(p) from T.
6. Insert the segments in U(p) U C(p) into T. The order of the segments

in T should correspond to the order in which they are intersected by a
sweep line just below p. If there is a horizontal segment, it comes last
among all segments containing p.

7. (" Deleting and re-inserting the segments of C(p) reverses their order *)

8. if U(p)UC(p)=O
9. then Let s and s,. be the left and right neighbors of p in T.
10. FINDNEWEVENT(Sz, 5,., p)
11. else Let s' be the leftmost segment of U(p) U C(p) in T.
12. Let sj be the left neighbor of s' in T.
13. FINDNEWEVENT(SI, s', p)
14. Let s" be the rightmost segment of U(p) U C(p) in T.
15. Let s,. be the right neighbor of s" in T.
16. FINDNEWEVENT(S", Br, P)

FINDNEWEVENTS(si, Br, P)
1. if sj and s,. intersect below the sweep line, or on it and to the right of

the current event point p, and the intersection point is not yet present
as an event in Q

2. then Insert the intersection point as an event in Q.

2.4 Implementation

As an exercise we implemented the plane sweep algorithm using C++ and
exact numbers. LEDA — Library of Efficient Data types and Algorithms [8]
- was used. For the visualization of the algorithm openGL was used.

2.5 Results

Now we have implemented the plane sweep algorithm as described by Berg
et al. [2] it is time to run some tests.

The algorithm is expected to run in O(N log N + I log N). We also expect
that the summand I log N is dominant when the number of intersections is

27

Ni I t(s) NlogN IlogN { ci
[

c2 C3

40 193 0.04 213 1,027 3.23E-05 2.50E-05 2.07E-04

50 305 0.07 282 1,721 3.49E-05 2.80E-05 2.30E-04
75 629 0.14 467 3,918 3.19E-05 2.49E-05 2.23E-04

100 1,054 0.26 664 7,003 3.39E-05 2.60E-05 2.47E-04

150 2,471 0.65 1,084 17,862 3.43E-05 2.89E-05 2.63E-04

200 4,130 1.12 1,529 31,569 3.38E-05 2.80E-05 2.71E-04

300 9,757 2.95 2,468 80,288 3.56E-05 3.28E-05 3.02E-04
400 17,278 5.35 3,458 149,349 3.50E-05 3.34E-05 3.1OE-04

500 28,071 8.99 4,483 251,679 3.51E-05 3.60E-05 3.20E-04

1000 113,588 41.73 9,966 1,131,994 3.65E-05 4.17E-05 3.67E-04

2000 458,504 190.48 21,932 5,027,856 3.77E-05 4.76E-05 4.15E-04

Table 2: Results of our implementation of the plane sweep algorithm. N is
the number of segments, I is the number of intersection points, t
is the time the algorithm needed to compute all intersection points.
The constants c1, C2 and c3 are calculated as c1 = (N+J N'
c2 = y, andc3 = f. Comparingc3forN = 40 andN = 2000

having the values 2.30 x iO and 4.15 x iO respectively makes it
reasonable to conclude that c3 is fairly constant.

large. This is obviously the case when the segments are long. On the other
hand, when the segments are short the number of intersections is small and
N log N will be the dominant suminand. Clearly, since we used binary search
trees for the implementation, when we speak about log we actually mean
2log.

We start by running the program with randomly generated segments and
different values of N. The results are shown in Table 2.

N is the number of segments in the input set, I the number of intersection
points found by the algorithm, and t is the time the algorithm needed to
find all intersection points.

The fourth and fifth column contain N log N and I log N, which are com-
bined to determine the time complexity of the algorithm.

The sixth column of the table of results contains c1, computed as c =

(N+I) N Since the algorithm should run in O((N + I) log N) time, we
expect c1 to be constant for every value of N. The seventh column contains
C2, computed as c2 = We would expect c2 to decrease, since N2 grows
compared to O((N + I) log N). But we see something unexpected happen.
c2 is nearly as constant as is Cl, and even increases when N grows large.

Studying the table learns us that this is not as strange as it seems. Taking
randomly chosen endpoints for the segments resulted in large numbers of

28

N I t(s) NlogN IlogN Cl c2 C3

50 80 0.01 282 452 1.36E-05 4.OOE-06 1.25E-04
100 266 0.06 664 1,767 2.47E-05 6.OOE-06 2.26E-04
200 1,036 0.26 1,529 7,919 2.75E-05 6.50E-06 2.51E-04
500 7,364 2.10 4,483 66,024 2.98E-05 8.40E-06 2.85E-04

1000 29,261 9.45 9,966 291,609 3.13E-05 9.45E-06 3.23E-04
2000 117,455 42.75 21,932 1,287,986 3.26E-05 1.07E-05 3.64E-04
3000 268,655 104.97 34,652 3,103,166 3.35E-05 1.17E-05 3.91E-04
4000

5000

470,453

656,696

195.31

283.30

47,863

61,439

5,629,339
8,069,292

3.44E-05
3.48E-05

1.22E-05
1.13E-05

4.15E-04
4.31E-04

Table 3: Results of our implementation of the plane sweep algorithm with
SEGSCALE= 0.5

long segments, which results in a large number of intersections. In fact,
the number of intersections I grows quadratically with N. More precise,
I log N for N = 200.

Clearly, when a segment is enlarged to be twice as long (or in other words,
a segment just as long is added), it will in general intersect twice as many
segments. We added a constant c3 calculated as c3 = . Comparing C3

for N = 40 and N = 2000 having the values 2.30 x iO and 4.15 x i0
respectively makes it reasonable to conclude that c3 is indeed fairly constant.
After all, C3 hardly doubles, whereas N grows a factor 50.

Since the number of intersections is related to the number of segments we
can also say that it is related to the length of the segments. Therefore we
can decrease the number of intersections by scaling the segments by a factor
SEG.SCALE.

The results for SEGSCALE with a value of 0.5 are in Table 3. Table 4 shows
the result for a value of 0.2 for SEG...SCALE. For SEG..SCALE = 0.5 we would
expect I log N for N = 200, which is indeed affirmed in Table 3.
Likewise, Table 4 shows that I log N holds for SEG..SCALE = 0.2.

We see that the summand I log N is indeed less dominant when the length
of the segments decreases. This is interesting, because in slope diagrams
the length and number of edges are directly dependent on the complexity of
the polyhedra they represent. The larger the number of faces of polyhedron
P, the larger the number of edges in slope diagram SDP and the shorter
the edges are. This is different in the tests we did for the plane sweep
algorithm. Using randomly generated line segments implied that the length
of the segments and number of segments are independent, and so are the
number of intersections and the length of the segments.

We can conclude the following. Firstly, the algorithm runs in O((N +

29

U

N I [t(s) NlogN IlogN { ci
[

C2 C3

100 36 0.02 664 239 2.21E-05 2.OOE-06 5.56E-04

200 143 0.06 1,529 1,093 2.29E-05 1.50F,-06 4.20E-04

500 937 0.38 4,483 8,401 2.95E—05 1.52E-06 4.06E-04

1000 3,688 1.64 9,966 36,754 3.51E-05 1.64E-06 4.45E-04

2000 14,670 7.25 21,932 160,868 3.97E-05 1.81E-06 4.94E-04
5000 91,548 53.05 61,439 1,124,915 4.47E-05 2.12E-06 5.79E-04

Table 4: Results of our implementation of the plane sweep algorithm with
SEGSCALE= 0.2

I) log N) time.

Secondly, it takes between 1 x i04 and 5 x iO second per intersection to
calculate the overlay of two sets of line segments.

30

3 Sphere sweep algorithm

In order to efficiently calculate the Minkowski sum of two polyhedra we need
to calculate the overlay of the slope diagrams of the polyhedra, giving the
slope diagram of the desired Minkowski sum.

Since the plane sweep algorithm, as we described it in the previous section, is
an efficient method to calculate the planar overlay of a set of line segments,
we will take it as the basis for our own algorithm.

We define our problem as follows. Given two slope diagrams S1 and S2
calculate the overlay S of S1 and S2.

Switching from line segments in two-dimensional space to spherical arcs in2 is nontrivial. We will have to deal with some difficulties. Firstly, we have
to define how event points and spherical arcs are represented. Secondly, we
have to define an ordering on event points and spherical arcs, and we have to
explain how intersection points between spherical arcs are calculated. And
finally, we have to choose another sweep line representation and another
kind of sweep movement.

3.1 Representation of points and edges of slope diagrams

Let A be a polyhedron and SDA the slope diagram of A. Theoretically,
points of a slope diagram are the endpoints of unit vectors. More precise, a
point P1 of SDA is the endpoint of the unit normal vector tij perpendicular
to a polyhedral face f of A. However, since we will use rational numbers
for exact mathematics, a unit normal vector is, in general, unavailable. This
is not an impassable problem. It is the direction of the unit vector that we
are interested in, after all a point in a slope diagram is an indication for the
slope of a polyhedral face. Therefore, for practical purposes, we can use the
regular normal vector of f1 to represent f1 in SDA. The projection of this
normal vector on the unit sphere is the unit vector p1.

An edge e in SDA is the minor arc of the great circle through two points
P1 and p2. As mentioned Pi and p2 are unit normal vectors of two faces in
A. But in practice we will use the regular normal vectors p and p. e then
is the projection of the line segment between p'1 and p'2 on the unit sphere.
Again, in theory, when we speak about edge e we mean an arc on the unit
sphere, whereas in practice we use the line segment between p and p.

3.2 Sweep line

For obvious reasons we can not use a straight line as sweep line in our
algorithm. We need a curved line on the sphere. But what curve is suitable
for use as sweep line? We will now take some options into consideration.

31

U

Before we start our search for an appropriate sweep line we note that we
call the upper most point of the sphere the north pole, and that we will refer
to the lower most point of the sphere as the south pole as if we deal with a
globe.

Let us take a horizontal plane that moves downward from a position above

the sphere (y > 1) to a position underneath the sphere (y < —1). The
intersection with the sphere is a circle. At the north pole of the sphere it
is a point, that is, a circle with radius 0. From there, as the plane moves
downward, the circle grows until it has a radius 1 when the plane is in the
xz-plane (y = 0). From then on, the radius decreases until the plane reaches
the south pole where the intersection circle has a radius 0 again.

Taking the intersection circle as the sweep line would cause one big prob-
lem. Imagine a circle segment passing the north pole. This segment would
intersect the sweep line twice in case the sweep line was between the north
pole and the highest endpoint of the segment. Therefore this method is not
suitable for our algorithm.

The previous problem is caused by the intersection circle not being a great
circle. Taking a great circle would solve the problem. Imagine a great circle
C on the unit sphere. Now imagine two points P1 and p2 on the unit sphere
- at most one of them on C. Assume that the origin 0 of the unit sphere,
and p' and p are not collinear. The minor arc of the great circle through
p and p2 can not intersect C in more than one point.

Therefore it is evident to take a great circle on the unit sphere as the sweep
line. Let us take the great circle through the north and south pole of the
unit sphere and rotate it around the y-axis. Since the angle between two
endpoints is always less than ir, it is impossible that one segment intersects
the sweep line twice. For the sake of simplicity, we ignore some rare cases
where circle segments indeed intersect the sweep line twice or more.

Unfortunately, this approach causes another problem. Rotating the whole
great circle in fact implies that we keep track of two statuses. Let us explain.
Figure 15a shows the unit sphere from above. The sweep line has been
rotated 35° and the segments Si and 2 have their starting endpoints on the
sweep line. Now we split the sweep line at the north pole and spre&1 it out
to be a straight line segment. The two endpoints of the line are in fact the
same point of the actual sweep line, that is, the north pole. The midpoint
is the actual south pole. Figure 15b shows the straight line representation
of the sweep line and s1 and Conspicuously, sj and 2 have opposite
directions.

We defined the status as the the sequence of segments that intersect the
sweep line at the same time. Moreover, segments that are in the status are
close. More precise, they are close enough to intersect. However, segments
having their starting endpoints on the 'upper half' of the sweep line, and

32

south pole

S2

north poLe

(b)

Figure 15: The sphere viewed from above the north pole.

segments having their starting endpoints on the 'lower half' of the sweep
line obviously can impossibly intersect. Note that for now we ignore the
degenerate cases where segments intersect either the north or the south
pole.

Although the last approach is not suitable for our algorithm, it steers us
in the right direction. That is, we can use a variant on the rotating great
circle. We can sweep half of the great circle around the y-axis. Our sweep
line is a semicircle segment between the north pole and the south pole of
the unit sphere.

As the sweep line rotates it encounters all the points on the sphere. For now
we ignore some nasty cases, like segments starting or ending in one of the
poles, and segments that pass through one of the poles.

Now that we have decided what kind of sweep line we will use, we imme-
diately encounter a new problem. Whereas in the plane we can easily find
a position above all segments, this is not possible when sweeping a slope
diagram. Whatever initial position we choose for the sweep line, it will al-
ways intersect one or more segments of the slope diagram, either in their
endpoints or in interior points.

We can solve this problem by ignoring all segments intersecting the sweep
line in its initial position in another point than their upper endpoint. Their
upper endpoint will be encountered later on during the sweep. Now we will
sweep the sphere twice, which in fact means we process all segments twice.
We will call the second phase of the sweep the encore sweep. When we have
rotated the sweep line 2ir rad around the y-axis it is in its initial position
again and the segments that we ignored earlier are now in the status. So if
we do the sweep again, it will find intersection points, if any, of the segments

33

U

Th10 pole

x-

SI

(a)

in the status with the segments that we already processed.

We can do this without doing harm to the time complexity, while — assuming
our algorithm will run in O(nlogn) - O(2nlog2n) is still O(nlogn).

When we take a closer look at this method we see that, in case a segment
has an upper endpoint that lies before the initial position of the sweep line,
its lower endpoint will be encountered before the sweep line has been rotated
by ir rad. That means that rotating the sweep line by 3ir is enough to find
all intersections.

The invariant from the plane sweep algorithm still holds: all intersection
points above the sweep line have been detected. Of course, only intersection
points between segments that are processed can be detected! That implies
that during the encore sweep we will only find possible intersection points
between segments of which the upper endpoint was found during the first
sweep and any other segments. Therefore we can abort the encore sweep
when we processed the last segment that was in the status after the first
sweep was finished. How this is done will be explained in detail later.

The time complexity of our sphere sweep algorithm is 1l(1 n log 1 n)

3.3 Event points and their ordering

We are already familiar with the representation of points of slope diagrams.
In our sphere sweep algorithm event points are the points of the slope dia-
grams and the intersection points of edges of one slope diagram with edges
of the other slope diagram. Since points in our slope diagrams are in fact
only directions, defining an order of event points is a little more complicated
than for the plane sweep algorithm, where we could just compare x- and y-
coordinates. We have to think of another method to determine the order of
event points.

Recall that in the plane an order —< was defined on event points so that with
two event points p and q we have p -< q if and only if p, > q, holds or
p, = qy A Pr <qx holds. Py > q, determines which point is encountered first
by the sweep line, assuming the points do not have the same height.

We will have to find a way to translate this to our algorithm. In the sphere
sweep algorithm we do not sweep the sweep line from a certain position
downward. Instead the sweep line is rotated around the y—axis. So py > qy,
indicating that p will be handled before q while the sweep line encounters it
first, could be translated to our algorithm by comparing the rotation angle
of the points around the y-axis. To be more precise, we project the points
p and q on the xz-plane and compare the angles of these projections p' and
q' with the initial sweep line position. That is, we compare the angles that
p' and q' make with the point (0,0, 1). (Figure 16a) The point with the

34

smallest angle will be encountered by the sweep line first and thus is the
smaller event point. We will call the angle of p' with (0,0, 1) p.

In the plane p, = qy A Pr <q1 means that both points are on the sweep
line at the same time. The x-coordinate then determines which point is to
be handled first. This is easy to translate to our sphere sweep algorithm.
When two event points are on the sweep line at the same time — they have
equal angles with the initial sweep line position - we simply compare their
y-coordinates.

But wait, did we not use regular normal vectors that are, in general, unequal
to the unit normal vectors? Unfortunately this makes it impossible to simply
compare the y-coordinates. The solution is quite straightforward. Instead
of comparing the y-coordinates of p and q, we compare the angles of p and
q with the xz-plane. We call the angle of point p with the xz-plane p.

We can now define the order of two event points p and q as p -< q if and
only if Pc. <q, holds or p, = q1, A p > q holds.

In theory we can use this order, but in practice we have to overcome some
difficulties. Since we use rational numbers for exact computations some
trigonometric functions — sine and cosine in particular — are unavailable and
thus we can not simply solve this problem by using spherical coordinates.
The tangent is available for use since it can be calculated by dividing two
coordinates. But even though we can calculate the tangent, we still can not
calculate the angle. This however is not a problem. We can just store the
tangent of the angle instead the angle itself. So p(, contains the tangent of
the angle of p' with (0,0,1). Likewise, p contains the tangent of the angle
of p with the xz-plane.

Figure 16a shows the sphere viewed from above. We can calculate the tan-
gent by dividing the z-coordinate by the x-coordinate. In combination with
the sign of the x-coordinate we can determine the rotation angle of p' with
the xy-plane. If —1 P <0 holds the sweep line will encounter p in the
first half of the sweep, if 0 <Pr � 1 holds in the second half. We still have
a problem: the tangent is undefined when Pr = 0, that is, for angles of ir
rad and —ir rad.
We can avoid this problem by splitting the sphere in four quarters (Fig.
16b). Let us call the quarters Qj, Q2, Q, and Qj. In its initial position the
sweep line intersects the xz-plane in point Pinit = (0,0, 1). L is the rotation
angle of the sweep line. The sweep line is in the first quarter if 0 � L, <
holds, in the second quarter if ir 1 < ir holds, in the third quarter if
ir � L < 1ir holds, and in the fourth quarter if 1r La <2ir holds.

For every event point we do not store the tangent of the angle of its projec-
tion on the xz-plane with Pinit, but only the tangent of the angle within its
own quarter. That is, for a point p in Qi p is the tangent of the angle p'
with the positive z-axis, for a point p in Q2 Pa is the tangent of the angle

35

U

x_ x_

(a) Angle a with the initial sweep line (b) In order to avoid division by zero
position. we have to split the xz-plane in

four quarters.

Figure 16: The rotation angle of a point in the slope diagram with the ini-
tial sweep line position.

of p' with the negative x-axis, etc. Therefore 0 arctanp < ir holds for
any event point.

We can now redefine the order -< as follows. With p being the index of
the quarter containing point p, p —< q if and only if p < p holds, or

= p Ap <q holds, or pQ = pQ Ap = q Ap0 > q holds.

In this order we have ignored the fact that event points can be handled a
second time during the encore sweep. After handling an event point for the
first time we want to insert the same event point at the end of the event
queue. We have to change the order - again to make a distinction between
an event point in the first sweep and the same event point in the second
sweep. Therefore we add another property to the event point: the encore
number. An event point has encore number 0 as long as it has not been
handled yet. After an event point is handled its encore number is increased
to 1 and the 'new' event point is inserted in the event queue.

Taking the encore number into account we can give a final definition of the
order -<. With p being the encore number of p we have p -< q if and only
if Penc <p holds, or Penc = Penc A p <pQ holds, or p = p A p =

A p0 <q0 holds, or p = p A p = p A p = q0 A p, > qf3 holds.

3.4 Spherical arcs and intersection points

The most important difference between the plane sweep algorithm and the
sphere sweep algorithm is the way to determine whether segments intersect.

36

z-

z+ ZI.

Whereas it is trivial to calculate the intersection of two segments in the
plane, this is not the case in three dimensional space.

In theory the intersection point of two spherical arcs can be calculated using
trigonometric functions. But in practice this is not possible. Again, for our
algorithm we use exact numbers, and hence trigonometric functions are not
available.

We have to find a method to compute the intersection point of spherical arcs
without using trigonometric functions. Therefore we have to take a closer
look at what the points and arcs of a slope diagram are.

Let SDA be the slope diagram of polyhedron A. Let si be an arc of slope
diagram SDA connecting two noncollinear points p1 and p2. pi is the unit
normal vector of a face Ii in A. In general, the exact position of P1 can not
be determined, since that would require trigonometric functions, which are
unavailable. What we do know is the regular normal vector vi. In fact, Pi
is the intersection point of the straight line through 0 and v with the unit
sphere. Likewise, p2 is the intersection point of a line through 0 and v2 with
the unit sphere, where V2 is the normal vector of a face 12 of A adjacent to
I i.

Plane P1 spanned by the half-lines (iv and Ov2 intersects the unit sphere in
a minor arc of the great circle through P1 and p2. In fact, Si is a projection
of 11, the line segment between v1 and V2 on the unit sphere.

Analogously, let SDB be the slope diagram of polyhedron B. Let 2 be
an arc of SDB, non-parallel to s, with endpoints p and p4. 52 is the
projection on the unit sphere of 12, the line segment between the vectors v3
and V4, the normal vectors of two adjacent faces f and f in B. P2 is the
plane spanned by the half-lines 0v3 and 0v4

Let p2 be the intersection point of si and 82. The half-line 0p intersects
both s and S2 in p2. Since Si and 2 are projections on the unit sphere
of l and 12, Opj intersects these line segments as well. We can use this
information to create a system of equations to determine an equation for
the line I through 0 and p2.

Two arbitrary points p, and Pk on the line segments Ii and 12, respectively,
can be written as follows.

O�Ai1, (3)

Pk—A2P3+(1)2)P4, (4)

The constraint 0 � Ai < 1 indicates that for p, only points between P1 and
P2 are taken into account. Likewise for A2 and p3.

If Si and 2 intersect there exists a half-line I, bound by the origin 0 inter-
secting i and 2 and thus intersecting Li and 12. Then for certain values of

37

A and A2 pj and Pk are the intersection points of 12 with l and 12 respec-

tively. In fact, we could say that p3 and Pk are the same vector, possibly
with different lengths. We can write p3 = A3pk. Using equations 3 and 4 we

can write
A1P1 + (1 — Ai)p2 = A3(A2p3 + (1 — A2)p4). (5)

Equation 5 is in fact a set of 3 linear equations in 3 unknowns,)q, A2, and
A3. Since the vectors p, p, p, and p4 are linearly independent, the system
has a unique solution.

Using equation 5 we will find the values for A1 and A2 for which p3 and
Pk are collinear with 0. However, it is still possible that si and 2 do not
intersect. In case A3 <0 0, p3 and Pk are collinear, but p3 and Pk point in
opposite directions. Therefore only when A3 > 0 holds p, and Pk have the
same direction and thus an intersection point of s1 and 2 is detected.

3.5 Degenerate cases

So far we ignored some nasty cases, which make the sweep algorithm more
complicated. First of all it is possible that a segment has the north pole as its
upper endpoint or the south pole as its lower endpoint. The main problem
in these cases is the fact the north and south pole can not be ordered using
the order -< as we defined it before. The x- and z-coordinates of these points
are both equal to zero and therefore p and p can not be calculated, since
it would imply a division by zero.

Another difficulty is the fact that the upper endpoint of a segment starting
at the north pole always lies on the sweep line and hence the segment always
intersects the sweep line, even after the lower endpoint has been handled.

A similar problem occurs when a segment has the south pole as its lower
endpoint. The segment always intersects the sweep line, even if the upper
endpoint has not been handled yet.

These problems can easily be solved by using the following conventions.

• The north pole is the first event point during a single sweep if at least
one segment has it as its upper endpoint. The property p is set
to 0, so that the event point will be handled before any other event
point having the same encore number. The properties p and pj are
irrelevant and set to 0 to avoid division by zero during the initialization
of the event point.

• The south pole is the last event point during a single sweep if at least
one segment has it as its lower endpoint. The property p is set to 5, so
that the event point will be handled after any other event point having
the same encore number. The properties Pc, and p are irrelevant and

38

set to 0 to avoid division by zero during the initialization of the event
point.

A bigger problem occurs when a segment passes through the north or south
pole. That is, when it has either the north or the south pole as an interior
point. Let s be the segment passing through the north pole with P1 =

/) and (W —/) as its endpoints. Clearly,
P1 is the upper endpoint, since pj, = 1 and P2,Q = 3. But ordering the
endpoints like this makes s invalid. The points on s between the north
pole and pi lie 'above' the sweep line. That means that those points are
encountered by the sweep line before it reaches the upper endpoint. This
goes against the basics of the algorithm.

Reversing the order of the endpoints in these particular cases would not
solve the problem, since it would only postpone the problem to occur when
the sweep line encounters p2.

The only solution to this problem is splitting s at the north pole. Two new
segments are created, both with the north pole as their upper endpoint and
with Pi and p2 as their respective lower endpoints.

Consequently, the north pole is detected as an intersection point. If the
north pole is indeed an intersection point, while at least one other segment
— non-parallel to s — either has the north pole as an endpoint, or passes
through the north pole, the algorithm would run correctly. However, if s
is the only segment passing through the north pole, or a segment from the
other slope diagram has the north pole as an interior point, the north pole
would incorrectly be reported as an intersection point. It can be easily
checked if this situation occurs when the north pole is handled.

The situation, where only one segment or two parallel segments have the
south pole as an interior point is very similar to the one that was just
described. These segments are split in the south pole, creating two new seg-
ments with the south pole as their lower endpoints and the other endpoints
as their respective upper endpoints.

3.6 Data structures

For the implementation of our sweep algorithm we can use the exact same
data structures as for the plane sweep algorithm. That is, we use a status
tree that stores circular segments instead of line segments and an event queue
that stores event points as we defined them in section 3.3. Since using these
data structures made the plane sweep algorithm run in O(n log n), we expect
our algorithm to have this time complexity as well.

What we do have to change are the various comparison functions for event
points and circle segments.

39

3.7 The algorithm

The sphere sweep algorithm works analogously to the plane sweep algorithm.
We can refer section 2.3 for details about the algorithm.

3.8 Constructing the overlay

The result of our sphere sweep algorithm is a set S of event points repre-
senting the points in slope diagram SDC of the Minkowski sum C of A and
B. Furthermore, we have a list L of all edges in slope diagrams SDA and
SDB. With every event point p in S we have stored the sets pj, PL, and
pc of references to the edges in L. PU contains references to the edges in L
that have point p as their upper endpoint. Likewise, PL contains references
to the edges in L that have point p as their lower endpoint, and c contains
references to the edges in L that have point p as an interior point.

With S, L and the sets PU, PL, and p, of every point in S we have enough
information to construct the overlay SDC of SDA and SDB.

We have the points of SDC already, they are all the points in S. All we
have to do to create the correct overlay is determine which points in S are
to be connected.

We know, that every edge in SDC is either (a part of) an edge of SDA, (a
part of) an edge of SDB, or (a part of) an edge of both SDA and SDB.
That means that we can use the information about the edges referenced in
pu, PL, and pc to determine which connections we need to add to SDC.

More precise, when a certain edge CSDA,j is referenced in set PU, it means
that p is the upper endpoint of eSDA,1. Moreover, eSDA,I connects p and
a certain point q in S that is either the other endpoint of eSDA,i, or an
interior point of eSDA,1 being the intersection point of CSDA,j with another
edge. Obviously, in case there are more than one intersection points on
eSDA,j, q is the closest one to p. The case where eSDA,j is referenced in the
set PL is analogue to the previous one.

When eSDA,i is referenced in p, it means that p is an intersection point
of eSDA,i with one or more edges. In this case, p is connected to two other
points qi and q on CSDA,i, which of course are on opposite sides of p. Again,
qi can be either an endpoint of e5DA,i or the closest intersection point of
esDA,i with another edge. Likewise for q.

The same explanation applies to edges of slope diagram SDB. It is possible
that two points p and q are connected by (a part of) an edge of SDA as
well as (a part of) an edge of SDB. Clearly, we only add one connection to
SDC. Nevertheless, it is important to know whether this is the case. Recall,
that we transfer edge attributes from SDA and 5DB to SDC. When p and

40

q are connected by the edges eSDA,i and esDB,j both their edge attributes
are transferred to the edge connecting p and q.

For the construction of the overlay SDC of SDA and SDB we can use a
sweep similar to the one used previously for the calculation of the intersection
points. We order the event points in S the same way as during the sphere
sweep algorithm. Also, after handling a point, the encore number of the
point is increased and the point is reinserted in the set S again.

As mentioned every event point p in S contains three sets pj, PL, and pc.
Each edge referenced in Pu, pc, or PL, has a property lastIP that keeps track
of the last intersection point on the edge that has been handled during the
sweep. Initially, lastIP is set to the null-vector for all edges.

Event point p is handled as follows. If p is an upper endpoint, that is, pjj
contains at least one reference to an edge (IPu I > 0), we have to do only
one thing for the edge(s) referenced in pu. Property lastIP for every edge
referenced in pj is set to the current event point.

If p is an interior point (IPCI > 0), or a lower endpoint (IpLl > 0), for every
edge e referenced in c and PL eztjp is checked. If eitjp equals NULL no
intersection point on e has been handled yet. This is the case if the 'previous
event point' on s lies 'above' the initial sweep line position. We can ignore
this edge for now, it will be handled after the upper endpoint is found later
on during the sweep. p will be handled in the second sweep again. Therefore
the encore number for p is increased and p is reinserted in S.

If e3jp NULL then the part of e starting at e1gJp and ending in p is
an edge of the overlay SDC, and thus it is added here. The reversal edge
of the new edge is added as well.

When the appropriate action is taken for e and p is an interior point of e
ejtjp is set to p. When all edges referenced in pu U pc U PL are handled
the next event point is handled.

For all event points left in S after the first sweep is finished the actions are
repeated, but only for those edges referenced in Pu Upc UPL with lastiP set
to a point that lies 'above' the initial sweep line position.

We now have all the points and edges in SDC. Using LEDA we compute all
faces of SDC.

3.9 Constructing the Minkowski sum from its slope diagram

We now have the slope diagram SDC of the Minkowski sum C from poiy-
hedra A and B. We have all the information we need to construct C from
SDC.

Let us start with a new polyhedron with no points. We already know that
every face in SDC represents a node in C. Therefore we add a node to C

41

for every face in SDC. The positions of the nodes will be computed later
using the edge attributes we have stored earlier.

We also know that if two faces fsDc,i and fsDc, in SDC are adjacent the
nodes in C represented by fsDc,2 and fsDc,j are connected by an edge. For
every face edge e of a face fsd,1 in SDC we find the reversal edge reversal(e)
and the face fsd,2 that is adjacent to it. We then can add an edge to C
connecting the nodes in C that are represented in SDC by the faces fsd,1
and fsd,2

If all necessary connections are added in C we add the reversal edges and
compute the faces of C using LEDA. We now copy all the edge attributes
from SDC and calculate the vertex positions as described in section 1.2.3
on page 18.

The result is the Minkowski sum C of the convex polyhedra A and B.

3.10 Results

We can now test our algorithm using our own implementation. As mentioned
in section 2.5 the (average) length and number of edges in a slope diagram of
a polyhedron is fully dependent on the complexity of the polyhedron. This
is affirmed by - which is fairly constant. Therefore we can only vary the
number of edges in our tests, and hence we only have a single table with
results. In order to keep the results readable we split the table in two.

N j NA NB Ne tnaioe toveriay

0.04

tesa

25 25 25 138 0.02 4.09 4.13
50 49 50 285 0.03 9.14 0.08 9.22

100 97 98 573 0.10 19.37 0.14 19.50
250 232 220 1,344 0.44 44.61 0.28 44.89
500 392 409 2,388 1.38 64.53 0.46 64.99

1000 624 655 3,680 3.43 91.16 0.62 91.78
2000 792 771 4,648 5.14 112.00 0.69 112.68
3000 790 831 4,831 6.18 109.42 0.69 110.11

Table 5: Results of our implementation of the sphere sweep algorithm (part
1). N is the number of vertices generated for evet'j slope diagram,
before the convex hull is calculated. NA and NB are the number of
vertices in slope diagrams SDA and 5DB. N5 is the total number
of edges in SDA and SDB. is the time needed to calculate
the Minkowski slim of polyhedra A and B using the naive method.
t()veriay is the time needed to calculate overlay SDC of SDA and
SDB. t is the time needed to construct polyhedron C from its
slope diagram SDC. t0 = t,,,erjay + tph.

We ran the algorithm three times for every N and averaged the results.

42

N 0 02 03 j .Af& !flL
25 981 448 1,429 2.89E-03 7.OOE-03 4.57E-01 6.56E-01 1.59E-04
50 2,324 1,028 3,352 2.75E-03 8.95E-03 4.42E-01 7.31E-01 2.38E-04

100 5,250 2,181 7,431 2.62E-03 1.03E-03 4.15E-01 8.19E-01 3.22E-04
250 13,967 5,259 19,226 2.33E-03 1.82E-03 3.76E-01 8.87E-01 6.92E-04
500 26,797 9,639 36,436 1.78E-03 2.97E-03 3.60E-01 7.57E-01 1.26E-03

1000 43,591 14,309 57,901 1.59E-03 4.61E-03 3.28E-01 7.60E-01 2.21E-03
2000 56,624 15,947 72,571 1.55E-03 6.20E-03 2.82E-01 8.61E-01 3.44E-03
3000 59,122 16,142 75,264 1.46E-03 7.07E-03 2.73E-01 8.35E-01 4.03E-03

Table 6: ReSULtS of our implementation of the sphere sweep algorsthm (part
2). 0 is calculated as Ne log Ne, 02 = I log Ne, 03 = (Ne +
I) log N.

Every time we noted the time needed to calculate the Minkowski sum using
the naive method (tive), the time needed to calculate the overlay of the
slope diagrams of polyhedra A and B (t,.iay), and the time needed to
construct the Minkowski sum from the overlay (th). tssa is the sum of
toverlay and tph.

What strikes us is the fact that the calculation of the Minkowski sum using
our implementation of the sphere sweep algorithm requires significantly more
time than the calculation of the Minkowski sum using the naive method.
Nevertheless the table shows us that the sphere sweep algorithm runs in
0((N + I) log N) time, as we could have expected.

Our application requires much time because the number of computations
per iteration is quite large. Our implementation could be significantly faster
with a few modifications to the code.

The most important information of the table is in the columns 8 and 9 of
table 6. We compare the time per intersection for the two methods. This
shows us that the sphere sweep algorithm requires constant time per inter-
section, whereas the naive method becomes less efficient when the number
of edges in the slope diagrams grows.

We recollect the objectives of our work, as we stated them in our introduc-
tion. First of all, we wanted to design a new algorithm that calculates the
Minkowski sum of two three-dimensional convex polyhedra. We aimed to
make this algorithm more efficient than any existing method. Based on the
known plane sweep algorithm we designed the sphere sweep algorithm that
runs in 0((N + I) log N), even slightly better.

Second of all, we wanted to make an implementation of our algorithm, so
that we could test and analyze the algorithm. We ran our algorithm on
pairs of randomly generated polyhedra, and compared the results with the
Minkowski sums calculated using the naive method. The Minkowski sums

43

were exactly identical, which experimentally proves our algorithm to be
correct.

Finally, we compared the time complexity of our algorithm with that of the
naive method. Although the absolute running time of the sphere sweep algo-
rithm is significantly worse than that of the naive method, we can conclude
that the sphere sweep algorithm is more efficient. The last two columns
prove us right. The time needed per intersection is linear for the sphere
sweep algorithm, whereas it grows for the naive method.

3.11 Discussion

Although we have designed an algorithm that works correctly we can not
present running times for our implementation that are significantly better
than the running times of the naive method.

Some modifications, however, could give the time complexity of our imple-
mentation a boost.

First of all, our implementation is primarily slowed down by the use of
rational numbers. In order to constrain their bit-length growth rational
numbers are normalized after every calculation. We implemented our own
normalization function, since it is not included in the version of LEDA we
used. Fogel and Halperin [6] encountered a similar problem and noted that
the use of another library like CGa]. might increase performance significantly.

Furthermore, we could gain significantly on the search and insert functions in
the binary tree used for the status. For example, every search for neighbor
segments costs log N time, with N being the number of segments in the
status. This could be done in constant time if we stored references to left
and right neighbors while inserting segments in the status.

Moreover, when we want to calculate the overlay of slope diagrams SDA
and SDB we initialize our implementation by inserting all segments in one
set. During the sweep algorithm segments are checked for intersections,
independent of the original slope diagrams they belong to. A simple test
whether they belong to the same slope diagram would make a check of two
segments redundant.

44

45

Figure 17: Output of our sphere sweep algorithm implementation. Slope
diagrams of a cube (a) and a polyhedron with randomly chosen
vertices (b), and their overlay (c). Generated bj, our implemen-
tation of the sphere sweep algorithm

References

[1] Henk Bekker and J08 B.T.M. Roerdink. An efficient algorithm to cal-
culate the minkowski sum of convex 3d polyhedra. Lecture Notes In
Computer Science, 2073:619 — 628, 2001.

[2] De Berg, Van Kreveld, Overmars, and Schwarzkopf. Computational
Geometry - Algorithms and Applications, pages 20 - 29. Springer-
Verlag, 1997.

[3] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. In-
troduction to Algorithms, pages 263 — 277. MIT Press/McGraw-Hill,
1990.

[4] K. de Raedt. Calculating the overlay of connected subdivisions on a
sphere using a planar overlay algorithm. Master's thesis, Rijksuniver-
siteit Groningen, 2002.

[5] A. J. W. Duijvestijn and P. J. Federico. The number of polyhedral (3-
connected planar) graphs. j-MATH-COMPUT, 37(156):523-532, 1981.

[61 Efi Fogel and Dan Halperin. Exact and efficient construction of
minkowski sums of convex polyhedra with applications. To appear in
Alenex 2006, 2006.

[7] Miguel Granados, Peter Hachenberger, Susan Hert, Lutz Kettner, Kurt
Mehlhorn, and Michael Seel. Boolean operations on 3d selective nef
complexes: Data structure, algorithms, and implementation. In ESA,
pages 654-666, 2003.

[8] Kurt Mehihorn and Stefan Näher. LEDA: a platform for combinatorial
and geometric computing. Cambridge University Press, New York, NY,
USA, 1999.

[9] R. Schneider. Convex Bodies: The Brunn-Minkotuski Theory. Press
Syndicate of the University of Cambridge, Cambridge, MA, 1993.

[10] A. V. Thzikov, J. B. T. M. Roerding, and H. J. A. M. Heijmans. Sim-
ilarity measures for convex polyhedra based on Minkowski addition.
Patteru Recognition, 33:979—995, 2000.

46

