
Local- G reysca le Vector-Attribute Filters
J.F. de Boer

Department of Mathematics and Computer Science,
Rijks Universiteit Groningen.

Supervisor: M.H.F. Wilkinson
Second reader: S. Achterop

Wordt
NIET

uitgeleend
-A

Rijksunwersitejt Groningen

Bibliotheek FWN
Nijenborgh 9

9747 AG Groningen

Abstract

In this paper we will introduce the concept of local greyscale vector attribute filters. Local greyscale
vector attribute filters are a variety of vector attribute filters which use greyscale attributes to
describe objects, instead of binary attributes used in regular vector attribute filters. An attribute
filter is a filter that removes or retains an object based upon that object's properties. A vector
attribute ifiter contains not one attribute but a vector of attributes. A vector attribute filter
removes or retains an object based upon the vector attribute (or feature vector) describing that
object. We will show how to create local greyscale vector attributes from binary vector attributes
and we will test this filter upon a set of images containing traffic signs. The results will be displayed
as ROC curves which plots the percentage of detected false positives against the percentage of
detected true positives.

Contents

1 Introduction 2

3

3

Attribute Filter Theory 5

Vector Attribute Filters 6

Local Greyscale Vector Attribute 7

Max-tree
Max-tree construction example . 7

Local Greyscale Attributes . . . 9

Max-tree filtering 9

3 Moments
3.1 Introduction
3.2 Introduction to moments
3.3 Geometric Moments
3.4 Centralised Geometric Moments
3.5 Scaled Centralised Moments
3.6 Hu's moment invariants

4 Implementation and Design
4.1 Introduction
4.2 Layernodes
4.3 Bidirectionality
4.4 Windowsize
4.5 Filter

5 Experiments and Results
5.1 Introduction
5.2 Data set
5.3 Set-up
5.4 Template and True Positive Nodes
5.5 Validation
5.6 Results

6 Conclusions and Future Work
6.1 Introduction
6.2 Conclusions
6.3 Future Work 32

2 Attribute Filters
2.1 Introduction
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

Filters

12
12
12

12

13
14
15

17
17
17
20
20
20

21
21
21
22
22
23
24

31
31
31

1

Chapter 1

Introduction

In the modern world everything is digitized, from photographs to paintings to newspapers. This
leads to a branch of image analysis, namely shape detection and enhancement. The practical uses
of this research include medical applications (e.g. detecting bone structures on X-ray images),
commercial applications (e.g. Object Character Recognition software) and government applica-
tions (e.g. detecting licence plates on photographs taken by speed cameras). But as the computers
become faster and more complex, new paths to research are opened in the image analysis sector.
In the past Breen and Jones in [1] describe how a filter can remove or retain objects based upon
object attributes. Take for example the attribute area. An attribute filter can remove or retain
objects based upon the area attribute, for instance remove all those connected components with
an area smaller than a certain value. This is more thoroughly discussed in [2, 19, 18]. Urbach et al.
used this concept in [16] to introduce vector-attribute filters. Vector-attribute filters are attribute
filters, which use a vector as an attribute instead of a scalar. These vectors contain multiple
attributes of the region they describe. Filtering in vector-attribute filters is done by means of a
dissimilarity measure, which describes the difference between two vectors of attributes in a single
number. In chapter 2 we will discuss the original attribute filters described by Breen and Jones [1)
and Urbach et al. vector-attribute fIlters [16). In chapter 2 we will also introduce our expansion on
vector attributes, local-greyscale vector-attributes. Also a data structure described by Salembier
et al. [12] will be discussed, which was used by Urbach et al.[16] and will again be used in this
paper. This should give the reader enough information on attribute filters in general and local
greyscale vector attribute filters in particular.In chapter 3 we will discuss moments. Moments are
used to describe objects or images using mathematical formulas. We will describe how moment
invariants (e.g. moment scale invariants, which are moments that are invariant to scale) can be
build from geometric moments.In chapter 4 we will describe design and implementation issues
which needed resolving during the creation of the filter.Chapter 5 will descirbe how we will test
the filter and show the results in an ROC curve. And finally chapter 6 will give our conclusions
and recommendations for future research into local greyscale vector attribute filters.

2

Chapter 2

Attribute Filters

2.1 Introduction
In this chapter we will give a brief introduction into mathematical morphology and morphological
operators. Then we will discuss the concept of attribute filters and vector attribute filters. We will
introduce the concept of local greyscale vector attribute filters and local greyscale vector attributes
and we will discuss the max-tree data structure. which is used to process the images.

2.2 Mathematical Morphology
Using the same introductory structure as used by Sonka et al.[14] we will introduce the concept
of mathematical morhpology.

Mathematical morphology, which made its entrance in the field of image analysis during the
late 1960s, is a separate part of the image analysis field. Mathematical morphology is based upon
non-linear operations operating on object shape. In many ways it yields better results than the
linear algebra system of convolution. Mathematical morphology can perform many different tasks,
for instance pre-processing, segmentation using object shape and object quantification, which it
does better and faster than the standard approaches.

The first people to work in this field were Matheron [8] and Serra [13], whose work was very
mathematical in essence. More recent books for example by Heijmans [4J are written in the same
spirit. More reference works for mathematical morphology are written by Maragos and Schafer
[7] and Roerdink and Heijmans [11].

Mathematical morphology uses point sets, their connectivity and shape, and tools based upon
non-linear algebra to simplify images and to preserve and quantify the main shape characteristics
of objects. Mathematical morphology works on the initial assumption that real images can be
modeled using point sets of any dimension (e.g. N-dimensional Eucidian space), in which the
cases of N = 2 and N = 3 are of particular interest as they represent the images and volumes
respectively. The system of subsets inherent to the 2D Eucidian space is a natural domain for
planar shape description. The understanding of inclusion (C, 3), intersection (fl), union (U), the
empty set 0 and set complement (C) is assumed. The set difference is defined as

X\Y=XnYC (2.1)

In computer vision real images are discretisized so binary images are represented by a subset
of Z2 and greyscale images by a subset of Z3. A point set X of an binary image contains the
coordinates of pixels that have a value other than zero.

Definition 1 A morphological transformation '4' is given by the relation of the image (point set
X) with another small point set B called a structuring element. B is expressed with respect to a
local origin 0 (called the representative point).

3

Figure 2.1: Example structuring element. The grey pixel is the representative point

Figure 2.2: Original image (left), dilation (middle) and opening (right)

However this is just one class of many in the field of mathematical morphology. To apply
the morphological transformation 11(X) to the image X means that the structuring element B
is moved systematically across the entire image. Assume that the B is positioned somewhere in
the image. The pixel corresponding to the representative point 0 of the structuring element is
called the current pixel. The result of the relation (which can be either zero or one) between the
image X and the structuring element B in the current position is stored in the output image in
the current image pixel position.

Two of the most commonly used morphological transformations are the Dilation and Erosion.

Definition 2 Dilation X 0 B of binary image X by structuring element B is defined as

XOB={pEe2:p=x+b,XEXAbEB} (2.2)

Definition 3 Erosion X e B of binary image X by structurinf element B is defined as

XOB={pEc2:p-I-bEX,VbEB} (2.3)

Dilation states that if the representative point is a pixel with a value other than zero, then all
pixels covered by the structuring element's pixels will be set to one. Erosion states that if all the
pixels of the structuring element cover pixels with value one in the image, the pixel corresponding
to the origin 0 of the structuring element will be set to one.

Erosion and dilation are used to create morphological transformations called opening and
closing.

Definition 4 An opening is define as

XoB=(XOB)OB (2.4)

Definition 5 A closing is defined as

X.B=(XeB)eB (2.5)

The opening is a dilation followed by an erosion. If the image is unaltered after performing an
opening the image X is called open with respect to B. The same goes for the closing. If an image
X is unaltered after a closing that image is called closed with respect to B.

Example 1 Figures 2.2 and 2.3 show the opening and closing respectively. For these operations
the structuring element in figure 2.1 was used. As can be seen in figure 2.2 the dilation operation
thickens the object in the x direction and the erosion removes the thickening again. As the original
image and the opening are the same the original image is open with respect to the structuring
element in figure 2.1.
The image however is not closed with respect to the structuring element in figure 2.1. As can be
seen in figure 2.3 the erosion removes pixels that are not returned by the subsequent dilation.

Now that the basics of mathematical morphology have been discussed it is time to discuss
another morphological transformation.

4

Figure 2.3: Original image (left), erosion (middle) and closing (right)

Figure 2.4: Two connected sets

2.3 Attribute Filter Theory
Attribute filters as described in [1] use a criterion to remove or retain connected components (or
flat-zones for the greyscale variety) based on their attributes. The concept of trivial thinnings is
used. Using a non-increasing criterion it is decided whether a connected component is retained or
removed.

Definition 6 A connected component or connected set is a set of pixels which are connected to
each other and all have the same value. Connectivity can be defined by using for example 4-,6- or
8-connectivity as used in image processing

Definition 7 A Flat-zone is a set of connected components of the same greyscale value

Definition 8 A Peak Component is the set of flat zones which connect to each other and all have
a greyscale value between two arbitrary values.

Definition 9 The trivial thinning T of a connected set C with criterion T is just the set C if C
satisfies T and empty otherwise. Furthermore 4T(O) = 0.

Example 2 Look at figure 2.4. There are two connected sets within this image. One with size 6
and the other with size 24. We will use the area as the attribute of the connected sets and as a
criterion we use 'Area must be bigger than 10'. Now if we use the trivial thinnging definition 9
we see that the connected set with area 6 is removed as it does not statisfy our criterion. If the
criterion were 'Area bigger than 5' both connected sets would have been retained.

Definition 10 A criterion T is increasing if the fact that C satisfies T implies that D satisfies T
for all D j C.

This means that if the set C satisfies T, then all sets D which contain C must also satisfy T.
The criterion has to be non-increasing because we want every connected component to be mea-
sured on its own merit and do not want to decide removal because its neighbour did not satisfy a
criterion. As discussed by Urbach and Wilkinson in [17] scale invariance is not necessarily increas-
ing. For example look at figure 2.4. You can see a set of two connected sets. If we were to use
an increasing criterion to remove one of the two connected components, that would automatically
mean that we remove the entire set as the connected set is a subset of the set containing the two
connected sets.

5

The binary connected opening F(X) of set X at point x E M returns the connected component
of X which contains x if x E X and 0 otherwise. Or in other words, r retains the connected
component to which x belongs and removes all others.

Definition 11 The binary attribute thinning T of set X with criterion T is given by

= U T(r(x)) (2.6)
xEX

This formula states that every connected component in the set X is evaluated according to the
criterion T and those that are accepted are put into the set 4T(X). It can be shown that this is
a thinning because it is idempotent and anti-extensive [1]. If T were increasing, that would mean
that the entire filter would be increasing, therefore it is necessary that T in non-increasing..

2.4 Vector Attribute Filters
Vector attribute filters as described by Urbach et al. in [16] are a continuation of the attribute ifiter
theory described in [1]. Urbach et al. describe how a single attribute can be replaced by a vector
of attributes. Normal attribute filters work with trivial thinnings see definition 9 but Urbach et al.
expanded that thinning to a vector-attribute thinning. By using a multi-variate attribute thinning
{T}(X) with scalar attributes {r} and corresponding criteria {T2} with 1 <i <N they can
preserve connected components if they satisfy at least one of the criteria T r2(C) �;. This
multi-variate attribute thinning is defined as

= U4T*(x) (2.7)

They then argue that the set of scalar attributes can also be seen as one vector-attribute =
{r1, 'r2,.. . , TN } in which case the vector-attribute thinning becomes

(2.8)

This vector-attribute thinning will still preserve those connected components that satisfy at least
one criterion. Next they introduce a dissimilarity measure d which computes the difference between
two n dimensional vectors from the space T E R'. The dissimilarity measure d must satisfy
d: T x T —' R, which means that it translates the difference between the two vectors to a number,
or in other words it quatifies the difference between two vectors. Using this dissimilarity measure
they define the vector-attribute thinning with respect to a reference vector as

Definition 12 The vector-attribute thinning 4 of X with respect to a reference vector i and
using vector-attribute and scalar value e is given by

= {x E XI7(r(X))} (2.9)

This vector-attribute thinning willpreserve all the connected components that have a dissimilarity
value smaller than the scalar €. In essence They have translated the difference between two vectors
to one scalar, which can be used as a criterion in conjunction with a reference vector. The simplest
dissimilarity measure mentioned is the Eucidian distance d(ii, i) = — ii and this measure will
be used in this paper.

Using this type of filter is particularly useful for shape-based filtering as a shape has to be
described by attributes and the more attributes the better a shape can be described.

6

2.5 Local Greyscale Vector Attribute Filters
In this paper we will expand on the vector-attribute filters as described by Urbach et a!. in [16].
Urbach et al. use vector-attributes to store attributes of a connected set. We will use vector-
attributes to store attributes of peak components. So in essence the attribute describes the shape
of the combined connected sets in the peak component. The principle of the vector-attribute filters
remains the same, we will still use a criterion to determine retention or deletion and we still will
use the dissimilarity measure used by Urbach et al. in [16] to determine the difference between
two vectors. The vector-attributes which will be combined to form the new attribute vector are
the attributes of connected sets which have a greyscale level around that of the connected set with
the lowest greyscale value in the peak component. When the filter is used it is specified how big
the difference in greyscale level can be with respect to the combination of attribute vectors to form
a new attribute vector. By combining attribute vectors into a single new attribute vector, that
new attribute vector has in fact become an attribute vector that describes multiple connected sets
and their difference in greyscale level and thus becomes a local-greyscale vector-attribute. The
local part means that the connected set to which the attribute vector is bound is the equivalent
of greyscale level 0. All the other attribute vectors combined into that attribute vector are scaled
according to that greyscale level. In the next section we will discuss a data structure to store
connected sets and which is ideal for using attribute filters.

2.6 Max-tree
The Max-tree data structure as described in [12] is a tree data structure in which nodes with the
same value are stored at the same level. When using images the value of a node is the greyscale
value of the connected component (or flat zone for the greyscale variety). This means that all
connected components (or flatzones) of the same greyscale value will be stored in the tree at the
same level. As attribute filters remove or retain connected components (or flatzones) this means
that this data structure is ideal for such filters as it stores connected components (or flatzones)
based upon their greyscale value.

To create a Max-tree it is necessary to find the pixel with the lowest greyscale value. All
connected components which satisfy 'Greyscale value equals lowest value' will be combined to
found the rootnode. As can be seen the root node can contain multiple connected components
and represents the background of the image. Now the children of the rootnode are defined as
the connected components whose greyscale value is strictly higher than the greyscale value of the
rootnode. Increase the current greyscale value by one and repeat the following steps on each of
the children.

• Determine the connected components with greyscale value equal to the current greyscale
value. These connected components wifi remain in this node.

• Determine the connected components with greyscale value strictly greater than the current
greyscale value. These will become the child nodes to the current node.

• Increase the current greyscale value by one and repeat these steps with the child nodes as
input. Or if the greyscale value equals 255 stop.

2.7 Max-tree construction example
Consider the image as shown in figure 2.5. It contains seven connected components labeled from
A to G. The number next to the label is the greyscale value. As can be seen, this image has 3
greyscale values, 0,1 and 2.

First we need to find the connected component with the lowest greyscale value. In this case
A0. This connected component will be the root for our Max-tree.

7

(a) Tree for levels

[0,1]

Figure 2.5: Original image

(G) (C) (E)\D
(b) Tree for levels

[0,2)

(C) Final tree

Figure 2.6: Construction of the Max-tree. Example after Salembier et al. [12]

Next the connected components with a greyscale value strictly higher than 0 are determined.
As can be seen there will be two connected components strictly higher than 0, BCDEF and G.
These wifi be the children of the rootnode. The result can be seen in 2.6(a).

Now the greyscale value is increased by one to 1 and the same algorithm is applied to the
children. Thus for both the connected components strictly higher than 1 are determined. In the
case of G it is the entire connected component G. In the case of BCDEF the result will be two
connected components, C and E. All those connected components will become the children of the
current node, resulting in the tree as shown in figure 2.6(b).

The final step is to remove dummy nodes, the nodes which do not have a connected component
tied to them. In this case there is only one. The final tree is shown in figure 2.6(c).

Algorithm 1 shows a flood algorithm which will create a max-tree. A flood algorithm is an
algorithm that starts at a single point or instance and then will expands by going into a recursion
step for every other point or instance not previously visited.

Explanation of the functions and variables used in algorithm 1

. hqueue-add(h,p) Add the pixel p (of greylevel h) in the queue of priority h

. hqueue-first(h) Extract the first available pixel of queue of priority h

. hqueue-empty(h) Return 'TRUE' if queue of priority h is empty

. number-nodes(h) This defines the number of nodes C at level h. Initial value is 0

8

(G) Q(BCD

(G) (C) (E)

• ORI(p) This denotes the original grey level value of pixel p

• STATUS(p) This stores the information of the pixel status: the pixel can be

— 'Not-analyzed'

— 'In-the-queue'

- assigned to node C in which case STATUS(p) == k

Algorithm 1 works as follows:

• Get a pixel p from the hqueue.(line 4 in algorithm 1)

• Check every neighbour q of p check if it has been analysed. (line 7)

• If not add it to the hqueue. (lines 8-9)

• If q is not analysed check if its value is higher than p's. If so run the flood algorithm on level
q. (lines 11-16)

• After all flooding is done the parent pointers are set.(lines 22-33)

As can be seen in the pseudo code the dummy nodes mentioned in the theory are automatically
skipped in the actual algorithm. For simplicity attribute management is not shown in algorithm
1.

2.8 Local Greyscale Attributes
The max-tree contains connected sets of specific greyscale values. The attributes stored in the
max-nodes are binary attributes, which only apply to the connected set stored in the max-node.
To create a local greyscale attribute it is necessary to combine the binary attributes of max-nodes
with consecutive greyscale values and are parent and child. Unfortunately not all max-nodes that
are parent and child have a greyscale value difference of 1, therefore it is necessary to introduce
layernodes. These layernodes will form a chain between a parent and child max-node with a
greyscale value difference greater than 1. Layernodes wifi have the same vector attribute as the
max-node with the highest greyscale value (the child max-node). Once the layernodes have been
added the vector attributes of parent and child nodes can be combined to form greyscale vector
attributes. Essentially we re-invent the dummy nodes.

By combining the vector attributes of a parent and child max-node a local greyscale vector
attribute is created in the parent max-node. This local greyscale vector attribute represents the
shape of the parent node combined with the shape of the child nodes up to a predetermined level
h. This level h is the maximum difference between the greyscale value of the parent max-node
and the children of that parent which will be used in the creation of the new max-node.

2.9 Max-tree filtering
During the creation of the Max-tree it is possible to store more than just the connected component
in a node. Relevant data of the connected component can also be stored in the node. This data
is called an attribute of the connected component. The attributes are used in attribute filters
to determine whether a node should be retained or removed. There are multiple node removal
schemes, some of these are discussed in [12, 17]. These schemes are

Mm A node Cj is removed if T(C) is false, or if one of its ancestors is removed.

Max A node C is removed if T(C) is false and all its descendants are removed as well.

9

D E

A

C BQN,,,,P CDE

E

'
(a) (b) (c)

Figure 2.7: Example of the Direct filter rule. (a) Original max-tree. (b) Nodes D and E removed.
(c) Node B removed

Viterbi The removal or retainal of a node is considered to be an optimization problem. For each
leaf in the tree the path with the lowest cost to the root is taken, where cost is assigned to
each transition. For details see [12].

Direct A node C is removed if T(C) is false; its pixels are lowered in greylevel to the highest
ancestor which meets T, its descendants are unaffected.

Substract As above, but the descendants are lowered by rhe same amount as C itself.

Using a criterion and a removal scheme one traverses the Max-tree and per node determines
whether it should be retained or removed. Once every node has been analysed the resulting Max-
tree represents the filtered image. Now one only has to recreate the image, which is nothing more
than writing back the connected components with their new greyscale value.

For example take a look at figure 2.7(a). This shows a max-tree with 5 nodes. Node A is the
root node and nodes B through E are normal max-nodes. Figure 2.7(b) shows the max-tree after
it has been filtered with the direct filter rule. Nodes D and E did not meet the criterion, nodes
B and C did however. Thus according to the direct filter rule the nodes D and E are lowered in
greylevel to the highest ancestor which did meet the criterion. In this case node C. Thus node C
now contains the connected components of nodes C,D and E. Another example in figure 2.7(c) we
see the max-tree after another filter run. Here node B was the only node that did not meet the
criterion. As per the direct filter rule node B's greylevel was lowered to the highest ancestor, in
this case node A, the root node. So node A now contains the nodes A and B, but as node A was
the root node, node B is now part of the background.

Algorithm 2 shows the algorithm for the direct filter rule. The following variables are used:

• NUMLEVELS, this is a constant which equals the number of greyscale levels in an 8 bit
greyscale image, this is 256.

• NumNodesAtLevel, this is an array which contains the number of max-nodes at a certain
greylevel.

• nodes, this is a 2 dimensional array containing the max-tree. The first index is the greyscale
value of the nodes and the second index is the n-th node at that greyscale level.

• criterion, this is a procedure with a max-node as input. It will return true if the criterion
is met and false if not.

As can be seen in this algorithm every node is evaluated and its greyscale value changed
accordingly. The node however is not moved from its place in the array. And because we work
from the root upward in the greylevels the parent of any node being evaluated has already been
evaluated, thus if a node's parent was rejected and the current node is rejected, the current node's
greylevel will be adjusted to the parent's adjusted greyscale value.

10

1 flood(h)
2
3 while not hqueue—>empty(h)

4 p := hqueue-first(h)
5 STATUS(p) : nuniber-nodes(h)
6 for every neighbour q of p

7 if STATUS(q) == "Not-analyzed"
8 hqueue-add(ORI(q) ,q)
9 STATUS(q) := "In-the-queue"

10 node-at-level(ORI(p)) : true
11 if (ORI(q) > ORI(p))
12 m := ORI(q)
13 repeat
14 m flood(m)
15 untilm==h
16 end
17 end
18 end
19 end
20 nuniber—nodes(h) := number—nodes(h) + 1

21

22 m:=h—1
23 while m >= 0 and node—at—level(m) == false
24 m:=m-1
25 end

26

27 ifm>=0
28 i := number-nodes(h) - 1

29 j := number—nodes(m)
30 father of Ci...h :— Ci_m
31 else
32 Ci...h has no father (Ci.h is root node)

33 end

34

35 node—at—level(h) : false
36 return m

37 end
Algorithm 1: Flood algorithm for the creation of a max-tree

1 for i=0;i<NUMLEVELS;i++
2 for j=0;j<NumNodesAtLevel[i];j++
3 node = nodes[i)[j;
4 parent = node->parent;
5 if (node != parent AND criterion(node))

6 node->NewLevel = node->Level;
7 else
8 node—>NewLevel = parent—>NewLevel;
9 end

10 end

11 end
Algorithm 2: Pseudo code for the direct filter rule

11

Chapter 3

Moments

3.1 Introduction
In this chapter we will describe what moments are and how to create them. We will also show
how to create moment mvariants and finally discuss Hu's moment invariants [5). Hu's moment
invariants will be contained within the vector attributes described in the previous chapter.

3.2 Introduction to moments
An image can be interpreted as a 2D function f(x, y), where x and y are the coordinates of the
pixel within the image. This function returns a certain value ([0,1] for binary images, [0,255] for
greyscale images), which is the value of pixel (x, y). There are other ways to represent an image,
one of those is the frequency domain, which is the result of a Fourier Transform. The frequency
domain represents the image as a 1D function g(w), in which w represents a frequency ({0, 1}
for binary images and {0,. . . , 255} for greyscale images) and returns the intensity of that specific
frequency in the image. In this section yet another representation will be described and why it is
of particular use within this thesis.

3.3 Geometric Moments
The most basic of the different moments available are the geometric moments. They are in fact
bases for the creation of the other moments. The mathematical formula for a geometric moment
in a digitised greyscale image is shown below.

Definition 13 The geometric moment m can be created using the following formula.

m f(x,y) (3.1)

In which f(x, y) is as described above.

Which basically means that for every pixel you multiply the x and y coordinates (to a certain
power, depending on which moment you are looking for) with the greyscale value of the pixel. Thus
in the end you get a number which represents the region you summed over. A special moment is
moo, which represents the area of the region the moment represents in a binary image. Why are
moments so useful? That is because if you have two different objects within an image they will
both have their own geometric moment. But the useful part is that if you want to calculate the
moment of the two objects combined you can just add the two separate moments together to form
the moment describing the two objects. As the moment invariants described in this chapter are

12

Figure 3.1: Example images for moments

all created from the geometric moments this ability holds true for the moment invariants too.

As the geometric moments form the basis for all other moments we store the geometric mo-
ments in our attribute vectors and in the filtering step we compute the desired moments from the
geometric moments.

Looking at the formula for geometric moments it is clear that the value of the moment is sensitive
to where the region of interest is within an image. If in an image the top left corner is the origin
and the bottom right corner (Xmas, Ymax) then the further the region of interest is placed near the
bottom right corner, the higher the moment will become. This is not very useful when detecting
shapes within images as the shapes can be all over the image and the geometric moments of those
shapes will vary greatly even if the shapes are the same, yet not in the same place.

Example 3 In figure 3.1 (left) 2 crosses are drawn. One near the origin and the other further to
the right. The origin is in the lower left pixel. The cross near the origin consists of the pixels

((0, 1), (1,0), (1, 1),(1,2), (2,1)) and the other cross consists of the pixels{(5,4),(6,3),(6,4),(6,5),
(7,4) }. If we now calculate the geometric moments for both these crosses we see that the result

for the cross near the origin is m11 5 and that for the other cross is m11 = 110.

Seeing the difference between those two values it is clear that geometric moments are very sensitive
to the location of the shape within an image. Seeing this it is clear that some improvement is
needed before moments are useful in this paper.

3.4 Centralised Geometric Moments
The first improvement is to make the geometric moments translation invariant, because this allows
us to describe objects anywhere in an image. The result of a translation invariant moment will be
the same regardless of where the object is located in the image. Translation invariance is obtained
by translating the center of mass for every region of interest to the origin before calculatin its
moment. Which results in the following moments

Definition 14 Centralised moments are described by the following mathematical formula

= (x — Xc)"(y — y) . f(x, y) (3.2)

In which x, y are the coordinates for the center of mass for the region of interest and can be

calculated using the following equations

m10= — (3.3)
m00

m01
Yc = — (3.4)

13

By translating the center of mass for the region of interest to the origin it no longer matters
where in an image the region is located. Thus a shape somewhere in an image is first translated
to the origin and then its geometric moment is computed, which means that wherever the shape
is it will result in the same centralised moment if it has the same orientation and size.

Example 4 Looking once again to figure 3.1 (left) we can calculate that for the cross near the
Ifwe

now calculate /AjI for both crosses we get for the cross near the origin = 0 and the other cross
= 0. As can be seen the centralised geometric moment is the same for both crosses, thus the

geometric centralised moments are indeed translation invariant.

Looking at the notation in definition 14 it is clear that two passes have to be made to calculate the
centralised moments for a certain image. For efficiency it is possible to calculate the centralised
moments of an image in one pass, this is done by rewriting the definition. As an example of how
this is done we will rewrite the definition for /2o and ji2.

/L20 = (x_x)2(y_y)0 (35)
#x #11

= (x — x)2 (3.6)
#1

= (x2 — 2xx + x) (3.7)
#z

= x2_2xx+#xx (3.8)
#z #x

2m0 m0
= m20 - + m00—- (3.9)

moo m
= m2o-— (3.10)

For 1s32 this is exactly the same, only this time x = y and x = Yc, which will result in

P02 = m02 — (3.11)

As these notations do only contain geometric moments, the centralised moments can be instantly
derived using these equations.

If we were to make a shape bigger the centralised moment of that shape will get bigger too,
which leads to yet another improvement which is needed.

3.5 Scaled Centralised Moments
If two shapes within an image are the same but unequal in size their centralised moments will
never equal eachother. Thus it is necessary to introduce scale-invariance.

Definition 15 Scale invariance can be found within scaled centralised moments (scale change
= cxx,y' = y).

?7pq = ('yr (3.12)

(3.13)

14

pq 314— p+q+2)
and normalised centraltsed moments v

=! (3.15)

In which it states that an increase in the size of the image does not affect its moment as the
normalised centralised moments are still computed by dividing by JzoO, which has increased as
much as

Example 5 Look at figure 3.1 (middle). Two shapes can be seen, one twice as big as the other. The
pixels of the small shape are{(0,2),(1,0),(1,1),(1,2),(1,3),(2,1)}. The pixels of the big shape are
{(2,6), (2,7), (3,6), (3,7), (4,2), (4,3), (4,4), (4,5), (4,6), (4,7), (4,8), (4,9), (5,2), (5,3), (5,4), (5,5),
(5,6),(5,7),(5,8),(5,9),(6,4),(6,5),(7,4),(7,5)}. For both shapes the y for P11 will be the same.

= J4.! + 1 = 2. Now we have to determine the values of pu for both shapes, to do that we
need to determine x, and Yc For the smaller shape x = = 1 and Yc = = 1. Now that
we have calculated these values we only have to insert them into the formula for Centralised Ge-
ometric moments. Which leads to the following value for p = —1. With this we can calculate

= = . For the big shape these values can be calculated m10 = 108, in01 = 132, moo = 24.

Which leads to x = = 4 and , = = 5. Now we can calculate pi = —16, which Leads to
= —16 = j, which equals the values of vii for the small shape. So we have established

that size does not matter in these moments as both the small and big shape give the same result.

Now that we've negated the increased size, using these normalised centralised moments. We
have shown that location and size do not matter anymore, the only thing that still matters is
orientation.

3.6 Hu's moment invariants
We cannot assume that a shape will have the same orientation within an image as it has in
the reference image. Therefore rotation invariance has to be added to the normalised un-scaled
centralised moments. Using these properties Hu introduced his seven moment invariants in [5] in
which he showed after lots of complicated calculations that those moment invariants are invariant
to scale, rotation and translation which makes them extremely useful for shape detection within
images. Hu's moment invariants are listed below.

Definition 16

4)1 = Vo+t) (3.16)

4)2 = (v20 — v02)2 + 4v1 (3.17)

= (vo — 3v12)2 + (3v21 — i,03)2 (3.18)

= (vo + v12)2 + (v21 + V03)2 (3.19)

= (v3o — 3v12)(v30 + vl2)[(v30 + v12)2 — 3(v21 + v03)2] (3.20)

+(3v21 — vo3)(v21 + v03)[3(v30 + V12)2 — (v21 + V03)2] (3.21)

4)6 = (v20 — v02)[(v30 + V12)2 — (v21 + v03)2] + 4v11(v30 + v12)(v2l + v03) (3.22)

= (3v21 — v03)(v30 + v12)[(v3o + v12)2 — 3(v21 + v03)2] (3.23)

—(v30 — 3V12)(V21 + vo3)[3(v30 + v12)2 — (v21 + v03)2] (3.24)

In which Vpq is as described above.

Example 6 Now take a look at figure 3.1 (right) which shows two identical shapes, only one is
turned 90 degrees clockwise. The left shape contains the pixels {(0, 2), (1,0), (1, 1), (1,2), (1,3), (2, 1)}

15

0.208333 0.208333 0.229167

4 0.012539 0.012539 0.012539
0 0 0
0 0 0

0 0 0

6 0 0 0
0 0 0

Figure 3.2: Some binary images and Hu's moment invariants

the shape on the right contains the pixels {(4, 2), (5, 1), (5,2), (6,2), (6,3), (7, 4)}. x and Yc for the
left shape have already been given in the previous example. They are x = = 1 and y, = = 1
Now to calculate the first of Hu s moment invariants we need to calculate Vjj and V02. For both
these normali.sed central moments the -y will be -y = +1 =2. Which leads to the following values

for v20 and v02. v20 = = and vyj = = = = so the first of Hu 's moment
invariants for the left shape will be 4j = v20 + v02 = + = + 4 =

Now to calculate the same moment invariant for the right shape. First we need to determine x and

Which results in the following moment invariant for this shape = v20 + v02 = + =
4 + = . As can be seen the moment invariant 4'i for both shapes is the same, therefore this
moment invariant is rotation invariant.

Since Hu's first article much research has been done in moment invariants and other moment
invariants were introduced. We will now list a few.

• Krawtchouk moment invariants [21]

• Zernike and Chebychev moment invariants [6, 9]

• Afline and blur moment invariants [3, 15]

In table 3.2 some images and Hu's moment invariants corresponding to those images can be
found. The only anomaly I can discern is that for one image & should be the same as the others,
yet it is not. Wilkinson and Westenberg describe in [20] how the moment invariants described by
Hu work fine for the continuous case, but for the discretisation a correction has to be added to q5.
In this paper we will not elaborate on that, but it explains the discrepancy found in figure 3.2.

16

Chapter 4

Implementation and Design

4.1 Introduction
In this chapter we will discuss the design and implementation issues that arose whilst creating
the filter. First we will discuss how to add layernodes to the data structure used by Urbach [16]
as the flood algorithm 1 does not add the dummy nodes described in the max-tree theory in
chapter 2. Next we will motivate why we have made the max-tree bidirectional instead of the
uni-directionality described in algorithm 1. After that we will discuss our implementation for
testing the filter by means of a template. Then we will describe the new parameter vindowsize
which is an intergral part of the filter and finally we will discuss the filtering procedure.

4.2 Layernodes
The vector-attribute filter program as used in [16] has a memory saving datastructure. The max-
tree was stored in an array with size equal to the image width times the image height. Or in other
words the array had a size equal to the number of pixels in the image. This has a reason as the
worst case scenario for the max-tree is that every pixel in an image is a non-dummy node in the
max-tree, thus in this case there would be a number of connected components equal to the number
of pixels in the image. So there is no possibility that there can be more connected components
than there are pixels in the image.

While the max-tree is created the area of the connected components is stored in the max-
nodes. Using this area an indexing scheme can be derived for determining where in the array the
next max-node should be entered. As the Max-tree is created by increasing the pixel value the
number of pixels below a certain level equals the area of all max-nodes with level lower than the
current pixel value. This fact is used to determine the offset index for max-nodes at a certain
level. So to access max-node C we first have to determine the offset for level h which is equal
to NwnPixelsBelowLeve]. [h) and next we have to determine the k-th max-node, which is just
adding k to the offset.

In figure 4.1 is an example max-tree. It contains 4 max-nodes (A, B, C, D). max-node A is

[Al [B[rcr1
Figure 4.1: Example of the datastructure

17

[i121 In]
a) OiginaI dazaaucture

[I I••
b) Rejed souticn #1 1cr adding Iayeanodes.

Figure 4.2: Rejected solutions to the layernode addition problem

the rootnode of the Max-tree, it has 1 child B. max-node B has two children (C, D). To access
max-node B we first have to determine the offset for level B, which is Area(A) and as max-node
B is the only max-node of its level the offset already points to it.
If we want to acces max-node D, we first have to determine the offset for level D, which is equal
to level C. Which equals Area(A) + Area(B). As max-node D is the second node of its level we
need to add 1 to the offset to point to the correct max-node.

For the filter described in this paper it is necessary to add so-called 'layernodes' to the max-
tree. These layernodes are the dummy nodes, which were mentioned in [12], but were not present
in the flood algorithm described in chapter 2. By creating layernodes we fill up the difference
in greyscale value between a parent and child node. Each layernode represents a greyscale level
between the parent and child node.

Look at figure 4.3. The left figure shows a cross-setion of figure 2.5 and it can be seen that
node G has a greyscale value 2, whereas its parent has greyscale value 0, which means that the
difference is greater than 1 so a layernode has to be added. In the right figure the added layernode
X can be seen. By adding layernode X the greylevel difference between parents and children is
reduced to one.

When the layernodes are added it is easy to combine the vector attributes of the current node
with those of n greyscale levels higher. For example if we pick n = 1 and figure 4.3(right) the
result of combining will be that node A will contain the combined vector attributes of node A,X
and BDF. Node BDF will contain the combined vector attributes of node BDF,C and E. Node X
will contain the combined vector attributes of node X and node G. Nodes C,E and C will remain
unaltered as they have no children. After this combining of vector attributes the current max-node

18

C) Rejacted Soluncm 121cr add)ng Iayauodes.

Ic [1
D Fl

A

A

G

contains a local greyscale vector attribute of level n.

To add the layernodes to the existing data structure several possibilities were reviewed.The first
possibility reviewed was extending the array containing the max-tree by pasting the layernodes
behind the existing max-tree. This was to be done on a max-node by max-node basis. As can be
seen in figure 4.2(b) this leads to chaos as the layernodes are not directly accessable as they are
not part of the indexing scheme.

The second possibility reviewed was to create a list of max-nodes inside the current max-nodes
which would represent the layernodes between the max-node and its parent. This is shown in
figure 4.2(c). This is still not a viable option as the layernodes are still not directly accessible.

Therefore we opted for a complete overhaul of the data structure. Instead of a one-dimensional
array it was decided to use a two-dimensional array in which the first index corresponds to the
level of the max-node and the second index to the node number at that level. This datastructure
is less memory efficient, but is more flexible to additions. This data structure is shown in figure
4.4. Using the data structure as shown in figure 4.4 all max-nodes and layernodes are directly

id [1
XlB D Ft

FT
j

Figure 4.3: Cross-section of figure 2.5 without layernode (top) and with layernode (bottom)

0

255

j

Figure 4.4: Overhauled data structure

19

accessible.

4.3 Bidirectionality
Another change is making the Max-tree a bi-directional tree, instead of the former uni-directional
tree. This means that in the original program the max-nodes only knew their parents, not their
children. In our program we added pointers to the children as well, thus making searching or
traversing the tree much easier. This is necessary as adding a number of nodes together is best
done by traversing the tree with a recursive algorithm starting at the root.

4.4 Windowsize
A new parameter was added to the program. This parameter called windowsize reprents the
number of layers to combine to form a new max-node. A windowsize of 0 means that no layers
will be combined and thus results in the original vector attribute program by Urbach et al. This
parameter also determines the scalar with which the binary reference attribute vector is multiplied
to create a greyscale attribute vector of the same local greyscale as the local greyscale vector
attributes in the max-nodes. The scalar used for this multiplication is windowsize+1, this as
windowsize=O means that no max-nodes will be combined, therefore the reference attribute vector
should be multiplied with 1.

4.5 Filter
The filtering procedure used in [16] uses the direct filter rule described in Chapter 2 section 8.
As we now have to consider multiple nodes while filtering, the filter algorithm has been slightly
altered.

1 for i=0;i<NUMLEVELS;i++
2 for j=0;j<NumNodesAtLevel[i;j++
3 node = nodes[i][j];
4 parent = node->parent;
5 if (node != parent AND criterion(node))

6 node—>NewLevel = node—>Level;
7 SetChildren(node,windowsize);

8 else

9 node->NewLevel = parent—>NewLevel;
10 end

11 end

12 end
Algorithm 3:Pseudocode for the direct filter rule with local greyscale attributes

Algorithm 3 describes the direct filter rule for local greyscale attributes. The variables and
procedures used are the same as in algorithm 2 except for

SetChildren, this is a procedure with as parameters a max-node and windowsize. It wifi set
the greyscale levels for all children of the max-node uptil a depth of windowsize.

What this altered filtering procedure does is check every node against the criterion and if the
node matches the criterion, it will set all greyscale values of that node and its children upto depth
windowsize. This is because the node being examined contains the attributes of its children upto
depth windowsize, thus all nodes contributing to the retention should also be retained. Because
all the nodes that contributed to a retention are retained as well the filter becomes a ifiter in
mathematical morphological sense as this implies idempotence.

20

Chapter 5

Experiments and Results

5.1 Introduction
In this chapter we will discuss the data set used to run our experiments on, how the experiments
are set up and how we will validate the results. The results themselves are also be part of this
chapter.

5.2 Data set
The filter will be tested on a data set comprising of real-life images of traffic signs. The specific
traffic signs are shown in figure 5.1 on the top. The bottom consists of the reference shape on
which the filter will try to detect the traffic sign in an image. As can be seen this reference shape
consists of only one connected component, and is therefore suitable as a reference shape.

The images for the test-set were acquired by walking through the city of Groningen and the
town of Drachten, both in The Netherlands, with a Sony Cybershot DSC-S50 2.1 Megapixel digital
camera.

An example of an input image is shown in figure 5.2 together with the template for determining
'True Positive' nodes.

The reference images were acquired from the following site: http: //proto . thinkquest . ni/
'kibO 19/borden. htm which shows the Dutch traffic signs by category and which are synthetic,
thus devoid of any noise. As these images are noiseless they are excellent to construct reference
images, just by using an imaging program like The Giinp or Adobe Photoshop.

This data set has been chosen as traffic signs are bound by law to be the same all over the
country and as such are uniform. Furthermore traffic signs have to be easily viewable by drivers.
The only problem with detecting traffic signs using a filter is that usually you don't see them from
right upfront, but more from side angles. Also lighting plays a crucial role in shape distortion
when applied to traffic signs. This is because traffic signs are coated in a special coating which
reflects light to facilitate night visibility. And the most common problem is scale, as you can view
traffic signs from different distances there has to be scale invariance.

21

5.3 Set-up

Figure 5.1: Traffic signs and their reference shapes

For the experiments to run parameters have to be defined. The most important parameter to
be defined is the error parameter (€). We will run the filter on the data set with a range of
error parameters as to create enough data points to make a plot. We will be using Hu's moment
invariants as attributes for this experiment as they are scale, translation and rotation invariant.
All these invariances are needed, because the traffic signs in the data set will not all be in the
same place in the image, nor will they be shot from the same distance in every image and finally
there can be a slight shift in the angle from which the photograph has been taken which results
in a slight rotation. So that means that translation, scale and rotation invariance is needed. We
will be running the same test on the data set for different values of the parameter windowsize.
The paramter windowsize will be in the range 0 <n 9 : n E N.

5.4 Template and True Positive Nodes
A new command-line parameter was added, the parameter template. This parameter is an image
of equal size as the input image. This image contains mostly black pixels. Only the pixels that

22

Figure 5.2: Sample input image (left) and template (right)

(a) I

correspond to the object to be detected in the corresponding input image are set to white. While
flooding the max-tree every pixels is scanned and if a pixel corresponds to a white pixel in the
template then a counter, which counts 'groundtruth pixels' or pixels that are white in the template,
is increased by one. This counter will be used to determine if a node should be labeled a 'True
Positive' node. A 'True Positive' node is a node from whose pixels at least 66.67% is a groundtruth
pixel. Thus a 'True Positive' node is a node that should be retained as it contains (part of) the
shape that is to be detected.

5.5 Validation
For each value of vindowsize we will make a ROC curve. An ROC curve is a graph which shows
the percentage of false positives detected against the percentage of true positives detected. A few
examples of ROC curves can be seen in figure 5.3.

Example (a) in figure 5.3 shows a good to very good filter. As can be seen in the first 10%
of false positives the percentage of true positives shoots towards 90-95%. Which implies that for
a 10% of false positives, 90-95% of true positives are gained. At about 20% of false positives the
filter has 99% true positive detection. The last 1% of true positives is gained with the remaining
40% of false positives. Example (b) in figure 5.3 shows a bad-average filter. It gains somewhat
more true positives than false positives, but not that many. Example (c) in figure 5.3 Shows the
random choice. This is what occurs when just randomly chosing nodes to retain. The amount of
true positives gained is equal to the amount of false positives gained.

As described in the previous section some max-nodes in the max-tree have been labeled 'True
Positive'. After the max-tree has been filtered, the max-tree is again traversed and the following
counters are used:

• Number of nodes. After the traversal of the max-tree this counter will return the total
number of max-nodes in the max-tree.

• Number of True Positive nodes After the complete traversal of the max-tree this counter
will return the total number of nodes that have been labeled 'True Positive'.

• Number of True Positive nodes detected When the max-tree has been traversed this counter
will return the number of nodes that have been labeled 'True Positive' and are retained by
the filter.

• Number of False Positive nodes detected. When the tree has been traversed this counter
returns the number of max-nodes that has been retained by the filter, but is not labeled
'True Positive'.

With these counters it is easy to determine the percentage of true and false positives. The
percentage of true positives can be calculated by dividing Number of True Positve nodes detected
by Number of True Positive nodes. This will give a value between 0 and 1, if you want the actual

23

Figure 5.3: Sample ROC curves

Windowsize 0 Windowsize 1

0.1!
0.5 1

05
1

Windowsize 2 Windowsize 3

[]

Windowsize 4 Windowsize 5

Windowsize 6 Windowsize 7

Windowsize 8 Windowsize 9

Figure 5.4: ROC curves for windowsizes 1 through 9 for the entire data set

percentage you have to multiply this value with 100%, but for plotting graphs that is not necessary.
The percentage false positives is calculated by dividing Number of False Positive nodes detected
by (Number of Nodes - Number of Tne Positive nodes), which will also give a value between 0
and 1. But as the number of false positive nodes by far outnumbers the number of true positive
nodes it is exceptionally hard to find only true positive nodes in the abundance of false positive
nodes. It is literally searching for a needle in a haystack.

5.6 Results
Now that we've discussed the setup and validation of experiments it's time to run some exper-
iments. We will create an ROC curve for the windowsizes 0 through 9. To do this we need to
apply the filter to our data set multiple times per windowsize value. Eacu of these applications of
the filter will have a different value for (Error margin or dissimilarity between two vectors based
upon Euclidian distance as described in [16)). For these experiments the ifiter will be applied to
the data set for the values of 0.001 through 0.040 with increments of 0.001. This will result in 40
lines as a result of the filter per windowsize value. These lines contain the total amount of nodes
in the max-tree, the amount of true positive nodes to be detected in the max-tree, the amount of
true positive nodes detected and the number of false positive nodes detected. As described in the
previous section we can create a point in R2 using these lines. Thus in fact we get 40 points in
R2, which when plotted will result in an ROC curve. Figure 5.4 shows the ROC curves for the
entire data set. The top left reprents windowsize 0 and the bottom right windowsize 9. As can be

24

seen, the higher the windowsize the worse the filter will become. In figures 5.5 and 5.6 are some
examples of what result images look like.

One of the reasons for the poor performance is that Hu's moment mvariants are not scaled.
By this we mean that one of Hu's moment invariants can have a value between 0 and 1, whereas
another moment invarient's value will be in the order of magnitude of 106. Thus if we add the
vector attributes of different nodes together, the latter moment invariant will increase by a value
near 106 and the former moment invariant by a value of about 1. When calculating the Euclidian
distance the moment invariant of 106 will have considerable more influence than the moment
invariant of 1. Thus we only calculate the dissimilarity between the moment invariant of size 106,
because its sheer magnitude makes the other moment invariant negligible small. By combining
vector attributes which contain Hu's moment invariants we make the bigger moment invariants
bigger and we keep the smaller moment invariants small. So when calculating the dissimilarity by
means of Eucidian distance only the bigger moment invariants will be of consequence, whereas
they in no way describe the entire shape. Thus this will result in more false positive detections
and less true positive detections as shown in figure 5.4.
Another reason could be that we are using a binary reference image which we interpret as a
greyscale reference image instead of using real greyscale reference images. Yet another reason may
be that we are using an artificial perfect reference image instead of a couple of real-life images
which we could use as references. Maybe Hu's moment invariants are not the ideal attribute for
this kind of filter, and some other moment invariants might be better. All in all there may be
many reasons for the poor performance of the filter for windowsize greater than 0.

Of course the type of traffic sign can also influence results, therefore figures 5.7, 5.8 and 5.9
show the ROC curves for the separate traffic signs. Please bear in mind that figure 5.8 represents
three traffic signs, but due to their similarity we have counted them as one set. A peculiar point
of note would be that for windowsize 1 in figure 5.7 the filter seems to do better.

25

Figure 5.5: Original image (top), filter results with windowsize 0 and (middle) and windowsize 5
(bottom). For the left column 0.013 was used and for the right column = 0.001

26

Figure 5.6: Original image (top), filter resuith with windowsize 0 (middle) and windowsize 5
(bottom). Here f = 0.002

27

1

0.5

0

1

0.5

'I

1

0.5

1

0.5
n 0.5

Figure 5.7: ROC curves with windowsizes 0 through 9 for the traffic sign shown in figure 5.1(Ieft)

28

Windowsize 0 Wundowsize 1

10.5
Windowsize 2

0 0.5
Windowsize 4

1

Windowsize 6

1

0.5

0
0 0.5 1

Windowsize 30.51
Windowsize 5

Windowsize 7

0IIIE1
1

0.5 1 '0 0.5
Windowsize 8 Windowsize 90.5fl

1

0.5
Windowsize 2

0.5
Windowsize 6

0.5 1

Windowsize 3

Windowsize 5o.5F
1

0.5
Windowsize 70.5j

Al

1

0.5
Windowsize 9

Figure 5.8: ROC curves with windowsizes 0 through 9 for the traffic sign shown in figure 5.1(middle
three)

29

o.51
Windowsize 0 Windowsize 1

0

1

010.5f
Windowsize 4

1

0

1

0.5

0
0

1

0.5

0
0

1

'I
0

1

0.5
A

0.5 1 0
Windowsize 8

Windowsize 0 Windowsize 1

0:5 1

Windowsize 2 Windowsize 3

Windowsize 4 Windowsize 5

000.5
1

O.5
i

Windowsize 6 Windowsize 7

Windowsize 8 Windowsize 90.5F1
Figure 5.9: ROC curves with windowsizes 0 through 9 for the traflic sign shown in figure 5.1(right)

30

Chapter 6

Conclusions and Future Work

6.1 Introduction
In this chapter we will give our conclusions with regard to the experiments run and discuss options
for future research.

6.2 Conclusions
Seeing the results it can be concluded that using a vector attribute containing Hu's moment
invariants on this data set using the current reference images in local-greyscale vector-attribute
filters leads to worse results if the number of greyscale levels is increased. The best results are
acquired using windowsize 0 which means using binary vector atrributes. As discussed in the
previous chapter the following reasons can result in the poor performance:

• The use of Hu's moment invariants as the separate moment invariants do not have the same
range.

• The use of a binary reference image and interpreting it as a greyscale reference image. By
doing this we take the perfect binary reference image and multiply its attribute vector with
the scalar windowsize which leads to the perfect greyscale reference image. As no object
in real life will be as perfect as the reference image in the binary case, it deftnitely will not
be in the greyscale case. We only increase the error found and thus more false positives will
occur before we detect a true positive.

• The use of Eucidian distance as a dissimilarity measure. You might not want to give all the
attributes in a vector attribute the same weight, therefore you might want to use another
dissimilarity measure.

Hu's moment invariants are, as stated, translation-, scale- and rotation invariant. But do we
actually want to have rotation invariance? We would argue we need limited rotation invariance,
but no total rotation invariance because the orientation of a traffic sign does indeed matter. Look
for example at figure 5.1(right). If that sign was turned 180 degrees it would look very similar
to figure 5.1 (middle three), though they have distinctly different meanings. So we would argue
that total rotation invariance is not needed. Instead it is better to use moment invariants with
limited rotation invariance as to compensate for camera skew. Another option would be to use
afline moment invariants [1 which are invariant to rotation in the third dimension, instead of the
two displayed in an image. This might increase performance as you hardly ever look straight at
a traffic sign, mstead you look at it from an angle. The affine moment invariants compensate
for this angle. Yet another option would be blur invariant moments [15] as they compensate for
blur. Real-life images almost always contain some degree of blur, these moment invariants will
compensate for that and could lead to better results. Using other dissimilarity measures instead

31

of Euclidian distance to measure the difference between two vectors may lead to better results e.g.
nearest neighbour, support vector machines or neural networks. measure for instance. A nearest
neighbour scheme checks the input vector versus a set of reference vectors and classifies the input
as belonging to the category to which it is nearest. A support vector machine is a supervised
learning method. When used it creates a hyperplane which separates the data into two classes
'yes' and 'no'. The decision for classification is made by training the SVM by giving it examples
and their answers. After training the machine it will calculate the closest distance between an
example and the input and then determine 'yes' or 'no'. A Neural Network is a combination of
elementary processing units (neurons). Each of these neurons has a number of input and generates
one output. Each input has a weight attached to it and the output is generated by a function of
the inputs and their weights.

The use of real-life reference images could lead to better results as no image will contain the
perfect reference image, but most images may contain one of the offered real-life reference images.
Thus you will decrease the error found.

Another conclusion is that the current filter uses a staggering amount of memory. This is due
to the fact that we do not dynamically allocate memory, we allocate the theoretical maximum of
memory the filter might use.

6.3 Future Work
As mentioned in the conclusions the following items can be considered for future research:

• Other attributes, for instance affine and blur moment invariants.

• Real-life reference images instead of one perfect artificial reference image.

• Other dissimilarity measures for example nearest neighbour, neural networks or support
vector machines.

• Dynamic memory allocation as to reduce the amount of memory the filter uses and thus
making it more useful for commercial applications.

• Different notions of connectivity can be used to increase the robustness of the filter. For
example what Ouzounis and Wilkinson describe in [10]

32

Bibliography

[1] E. J. Breen and R. Jones. Attribute openings, thinnings and granulometries. Comp. Vis.
Image Understand., 64(3):377—389, 1996.

[2] F. Cheng and A. N. Venetsanopoulos. An adaptive morphological filter for image processing.
IEEE Thins. Image Proc., 1:533—539, 1992.

[3] J. Flusser and T. Suk. Pattern recognition by affine moment invariants. Pattern Recognition,
26:167—174, 1993.

[4] H.J.A.M. Heijmans. Morphological Image Operators. Academic Press, Boston, 1994.

[5] M. K. Hu. Visual pattern recognition by moment invariants. IRE Transactions on Information
Theorp, IT-8:179—187, 1962.

[6] A. Khotanzad. Invariant image recognition using Zernike moments. IEEE Thins. Pattern
Anal. Mach. Intell., 12:489—497, 1990.

[7] P. Maragos and RW. Schafer. Morphological filters part i and ii. IEEE Transactions on
Acoustics, Speech and Signal Processing, 35:1153—1184, 1987.

[8] G. Matheron. Elements pour une Théore des Milieus Porevx. Masson, Paris, 1967.

[9] R. Mukundan, S. H. Ong, and P. A. Lee. Image analysis by Tchebichef moments. IEEE
Trans. Image Proc., 10:1357—1364, 2001.

[10] G. K. Ouzounis and M. H. F. Wilkinson. Countering oversegmentation in partitioning-based
connectivities. In Proc. mt. Conf. Image Proc. 2005, pages 844—847, Genova, Italy, September
11—14 2005.

[11] J.B.T.M. Roerding and H.J.A.M. Heijmans. Mathematical morphology for structures without
translation symmetry. Signal Processing, 15:271—277, 1988.

[12] P. Salembier, A. Oliveras, and L. Garrido. Anti-extensive connected operators for image and
sequence processing. IEEE Thins. Image Proc., 7:555—570, 1998.

[13] J. Serra. Image Analysis and Mathematical Morphology, volume 1. Academic Press, New
York, 2 edition, 1982.

[14] M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis, and Machine Vision. PWS
Publishing, 1999.

[15] T. Suk and J. Flusser. Blur and affine moment invariants. In Proc. 16th mt. Conf. Pattern
Rec., volume 4, page 40339, 2002.

[16] E. R. Urbach, N. J. Boersma, and M. H. F. Wilkinson. Vector-attribute ifiters. In Mathe-
matical Morphology: 40 Years On, Proc. mt. Symp. Math. Morphology (ISMM) 2005, pages
95—104, Paris, 18-20 April 2005.

33

[17] E. R. Urbach and M. H. F. Wilkinson. Shape-only granulometries and grey-scale shape filters.
In Proc. mt. Symp. Math. Morphology (ISMM) 2002, pages 305—314, 2002.

[18] L. Vincent. Grayscale area openings and closings, their efficient implementation and appli-
cations. In Proc. EURA SIP Workshop on Mathematical Morphology and its Application to
Signal Processing, pages 22—27, Barcelona, Spain, 1993.

[19] L. Vincent. Morphological area openings and closings for grey-scale images. In Y.-L. 0,
A. Toet, D. Foster, H. 3. A. M. Heijmans, and P. Meer, editors, Shape in Picture: Mathemat-
ical Description of Shape in Grey-level Images, pages 197—208. NATO, 1993.

[20] M. H. F. Wilkinson and M. A. Westenberg. Shape preserving filament enhancement filtering.
In W. J. Niessen and M. A. Viergever, editors, Proc. MICCAI'2001, volume 2208 of Lecture
Notes in Computer Science, pages 770—777, 2001.

[21] P. T. Yap, R. Paramesran, and S. H. Ong. Image analysis by Krawtchouk moments. IEEE
Thans. Image Proc., 12:1367—1377, 2003.

34

