
Analysis of Robust Soft Learning Vector
Quantization

J.J.G. de Vries
J. J.G.de.Vriescstudent.rug.nl

Institute of Mathematics and Computing Science,

University of Gromngen.

Abstract. One of the popular methods for multiclass classification is
Learning Vector Quantization (LVQ). There have been developed sev-
eral variants of LVQ lately, among which Robust Soft Learning Vector
Quantization, or RSLVQ for short. An introductory study showed that
RSLVQ performs better than other LVQ algorithms, even very close to
the optimal linear classifier, within a controlled environment. In order to
study its performance in detail, we performed a mathematical analysis of
the algorithm, in the form of a system of coupled Ordinary Differential
Equations (ODE's), which might also help development of an optimal
LVQ algorithm. Following from our analysis, we compare the potential
performance of RSLVQ in relation to other LVQ variants and present a
guideline for settings of the control parameter, i.e. the softness parame-
ter.

1 Introduction

Learning Vector Quantization (LVQ), originally posed by Kohonen [4,3] and
known by the name LVQ 1, is a method of online supervised competitive learning.
Many variations on the basic scheme of LVQ1 have been suggested, among which
LVQ2.l and LVQ3 [3,51, GLVQ [7] and RSLVQ [8,9] with the aim of obtaining
better generalization behavior.

During learning, data samples and their class labels are presented sequen-
tially, or so called 'on-line'. From a set of prototype vectors, defined in the same

(potentially high dimensional) space as the data, the closest (set of) prototype(s)

is determined and updated such that if the class label coincides with the class
label of the data sample, the prototype is attracted to the data, otherwise re-
pelled. The data, carrying labels of different classes, is assumed to be distributed
around a specified number of prototypes. Note that there can be more than one
prototype per class, enabling a good fit of prototypes to data that contains
highly complex class boundaries. Hopefully the prototypes represent the data
well after they have settled and training is finished. Classification now can be
done by determining the closest of all prototypes and returning the class label
corresponding to this winning prototype. Therefore the decision boundaries be-
tween the prototypes can also be seen as the Voronoi tessellation of the feature

space.

There are a lot of variations of LVQ-algorithms, which mainly differ in which
specific prototypes are updated (for example only the closest conflicting proto-
types or the closest prototype with corresponding and closest with conflicting
label) and how these prototypes are updated. The generic structure of an LVQ
algorithm can be expressed in the following way:

= Wj1 + Wj14,
= + f({w l}IhaI)(— wz1) (1)

with 1,i = 1 ...c,p = 1,2,...

Where w is prototype w at time step p, is the so-called learning rate, N
is the dimensionality of the system. The specific form of f is determined by
the algorithm used to perform LVQ. The softness of RSLVQ determines the ex-
tent to which correctly classified example data (i.e. the closest prototype has
a coinciding class label) causes an update of the prototypes. The hard or crisp
variant of RSLVQ, in which the softness is taken in the limit to 0, called Learn-
ing From Mistakes (LFM) has been analyzed mathematically by Biehl, (]hosh
and Hammer [1,2] in a controlled environment. The study described in this pa-
per is an extension of their study and analyzes truly RSLVQ using the same
modelled environment and forms the mathematical background of findings in an
introductory study on the performance of RSLVQ [10].

This document is organized as follows: section 2 describes the model in which
RSLVQ is analyzed, after which section 3 provides a detailed description of
the RSLVQ algorithm. Section 4 describes the analysis globally and section 5
shows the experiments and results of the analysis. Finally section 6 concludes the
paper and section 7 gives an overview of future work. The detailed mathematical
analysis is attached in appendices A and B.

2 Model

To be able to analyze RSLVQ, we need to restrict the model in which we observe
RSLVQ. Biehl et al. [11 defined the following model consisting of high dimensional
data originating from a mixture of two overlapping Gaussian clusters, of two
classes. We assume that data vectors E R' of class o E {±} are drawn
independently, with probability P(), according to the following distribution:

P() = p0P(Ic) (2)
o=± 1

with

P(Io) = (21tVa)/2
exp (_(— AB0)2) (3)

2

The Gaussian clusters are centered around AB0 with variances v0. The prior
probabilities Pc of both classes (a E {+1, —1} or {+, —} for short) satisfy P+ +

= 1. The vectors B0 are chosen to be orthonormal, i.e. B = B = 1 and
B . B_ = 0, so A specifies the distance (i.e. Av') between the cluster centers.
Note that, since A is chosen such that the clusters overlap, the classification task
is clearly not linearly separable. The data points {, a} are now presented
sequentially so that at each time step p = 1,2,... a new uncorrelated vector, along with its label a1, independently drawn according to the density (3),
is presented.

1'here will be fit two prototypes to these clusters, each representing one of
the two classes, i.e.:

w ERN with SE {±i},p= 1,2,... (4)

2.1 Characteristic Quantities

A set of suitable order parameters or characteristic quantities that describe the
system has been found by Biehl et al. [1] to be the following:

— pSaWS c
— 4• P'ST — WS W

with a,S,TE {±i},p= 1,2,...

The self-overlaps Q - and the symmetric cross-overlap Q_ = +
relate to the lengths and relative angle between the prototype vectors. The quan-
tities R÷0 and R specify the projections of the prototype vectors into the plane
spanned by the vectors B0. These characteristic quantities have also been found
to express the generalization error in the following way:

= P-i-+ + p_(
— — — 2A(R00 — R_00)\

(6)0 — 2/i5/Q+ — 2Q÷_ + Q-- '
1 exp(—x2/2)

with (z) = dxJ-
Note that for all time steps p = 1,2,... these quantities can be determined,

resulting in the learning curve or the typical generalization error (o) after
on-line training with p = cN random examples.

Details of the calculation can be found, as well as more information on the
characteristic quantities, in appendix A.

3

3 Robust Soft Learning Vector Quantization

As proposed by Seo and Obermayer [9] RSLVQ is a generic algorithm in which
different assumptions on the distribution of the data can be made. Note that the
assumption about the data distribution to train the prototypes within the LVQ
algorithm might differ from the true data distribution used in thodel, just
as with real world applications in which the true data distribution mostly is not
known beforehand. RSLVQ is defined by the following extension of the general
update step (1):

W1L = wr' +

—1 - I (P1(iI) — P(iI))81 ' jf I =
= + 7) ôf(w) (7)

—P(IE) if I

where Pj(iIE) and P(iIE) are assignment probabilities:

(1) = p(1) exp (f(, v4))

a—CM p(I) exp (f(, wv))

P(iI4) = p(l) exp (f(, wv))
(8)

p(1) exp (f(, wy))

P1 (i[) describes the posterior probability that the data sample {,a} is
assigned to prototype w1 of class I, given that the data sample was generated by
the correct class. P(iI) describes the posterior probability that the data sample
is assigned to prototype w1 of all prototypes of all classes. f(, w) describes
the assumed distribution of the data around the prototypes in such a way that
K(I)exp(f(, t4)) gives the probability that the data vector E is assigned to
prototype w1. -

In our settings we assume a Gaussian distribution, i.e. K(I) = (2irv1)'I2 and

f(, w) = —(— wr)2/2v1, implying = _fL, and the prototypes ws
all have the same width and strength, i.e. the variances and priors are equal:
'c'S:: vs = v801t,p(S) =

With these assumptions the update rule (7) becomes:

= + f (P1(i) — P(iIE))(— w') jf I = U
(9)

V30ft —P(I[E)(— w) if' I &

where

(E
— exp (—

(— w)2/2v8oft)
l

— >I1c7 exp (— (— w')2/2vSOft)

4

P
— exp (— (— w')2/2v80j)

10
— >jexp (- (- w)2/2v8oft)

Since in our model only two prototypes, each representing a different class,
are used, equation (10) can be written as:

P (1 •)
— exp (— (— wr)2/2vsoit)

— 1
— —exp (— (— w1) /2v80j)

P(1I) — exp (— (— whi)2/2v)
— exp (— (— w÷)2/2v30jg) + exp (— (— wP)2/2vf)

1
(11)

1 + exp (((c — wP)2 (— wl)2)/2v8Oft)

Putting this back into equation (9) yields:

= + ——(ö1.
— d—d'

)(P — w1t_l) (12)
Vooft 1+exp(l -I)

2V.0jj

with d = (— wr)2

It is however more convenient to rescale the learning rate with the dimen-
sionality of the data (N), so we rewrite:

' (—Q1)(E—wj'') (13)
Nv80j

Where is the Kronecker delta and

A?1 = (14)
1 + exp(

However, in the form of equation (12), the update function cannot be inte-
grated analytically, as we would like in the further analysis. As an alternative
route we approximate the update (12) by an LVQ variant which facilitates fur-
ther analytic treatment. We use the observation that 1+ep(z) is very similar to
(). where c E R is a constant which controls the slope of the -function and
we rewrite:

(öj,)(JLwi4l) (15)
Nv80j

Where

(d_I_di)
(16)

.z e_x2/2(z)= / dx (17)j,,, 2ir
5

To obtain the value of c let us set equal the slope at x = 0, therefore observe
the derivative of both activation functions:

d 1 eX

dxl+ex (1+e2)2
2

d —x e
=

(18)

Now set these derivatives equal and plug in x = 0:

e0 e
(1+e°)2

1 1

4 cE
4c=7= (19)

4 Analysis

The mathematical analysis of RSLVQ consists of the following steps:

— Describe development of the characteristic quantities in terms of recurrence
relations

— Turning of recurrence relations into differential equations
— Performing averages on the differential equations

These three steps are described in appendix B and give us mathematical
descriptions of the development of the system with learning time. There are
multiple variants of the differential equations. First of all there are two variants
of HSLVQ: original (equation (13)) and with '-approximation (equation(15)),
both in the limit j —, 0. In this limit it is possible to analytically determine the
ODE's for -approximated RSLVQ while the ODE's for original RSLVQ contain
numerical integrations.

The most interesting results are the stationary states of the system of coupled
ODE's. These states can be obtained using large learning times or, more reliably,
by searching for zeros of the right hand sides of the ODE's. To search for zeros of
a seven-dimensional non-linear system is, however, difficult, therefore we search
for zeros in the sum of squared right hand side terms, with the restriction that the
solution is physical, i.e. the covariance matrix Ck, see equation (34), should be
positive semi-definite, which is the case when all its eigenvalues are non-negative.

For determining optimal settings of the control parameter V801j we interpret
the generalization error in the stationary states as a function of This func-
tion can then be used to find the optimal setting by searching for the minimum.

6

5 Experiments and Results

Several experiments have been conducted, some of them containing a comparison
of simulations and differential equations. Note that the differential equations are
determined in the limit N —' cc. The simulations were performed with N = 100,

which is obviously sufficient to match the theory for N —' cx, see [1] for a
discussion of finite N corrections.

5.1 Simulations versus ODE

First we will show that the ODE's indeed describe the system by comparison of
the development of the characteristic quantities of simulated training with those
of the ODE's.

Original RSLVQ As one can see from figure 1, the ODE's match the sim-
ulations exactly, for original RSLVQ. Note that the learning rate of i = 0.05
already is small enough for the simulations to match the ODE's which are valid
in the limit , — 0. The softness v8oft is chosen such that it is not too small
and not too large because it has a similar effect as the learning rate: too large
makes the system taking too big steps resulting in poor convergence and too
small causes the system to converge very slowly and besides that it shows the
limiting behavior of LFM, i.e. poor performance and instability issues.

a
so a a a a a so a a

C

a--
—

a-—0.
—

a--
a.—

—
—a——

a-—
a.—

—

Fig. 1. Development of the characteristic quantities with the learning time a of the
original RSLVQ for both simulations (thick lines) and ODE's (thinner lines that lay on
top of the thick lines) for different systems. Top left: p = = 0.5, v = v_. = 0.5;
top right: p = = 0.5, v = 0.25, v_ = 0.81; bottom left: p = 0.7, v = V... = 1;
bottom right: p = 0.7, v = 0.25, v_ = 0.81. The softness v.oft has been set to 1 and
the learning rate used in the simulations is 17 = 0.05.

8

a.

a..-
a.—

3-'-
3.—

_251 ,
so a a c

a

RSLVQ with 4Lapproximation The same experiment has also been con-
ducted with RSLVQ with -approximation for both simulations and ODE's.

'I-

,o

Fig. 2. Development of the characteristic quantities with the learning time of RSLVQ
with f-approximation for both simulations (thick lines) and ODE's (thinner lines that
lay on top of the thick lines) for different systems. Top (bottom): (un)equal prior
and left (right): (un)equal data variances; See figure 1 for detailed information on the
settings.

As one can see from figure 2, the ODE's match the simulations exactly, for
-approximated RSLVQ as well.

5.2 Comparison

Let us now compare the original with the -approximated version of RSLVQ:
As one can see from figure 3, the -approximation does influence the de-

velopment of the characteristic quantities, i.e. the ODE's (and therefore the
simulations) differ from original RSLVQ and -approximated RSLVQ, however
the tendency of each of the quantities is the same and deviations are not too

9

—

0
I II a a a N N II N N S

a

(=::

—-----—-—---—-—-—----——-----------—-

4. , . .. —

n

— —

: :

Fig. 3. Comparison of the characteristic quantities with the learning time a of RSLVQ
with (dotted) and without (solid) 4-approximation for different systems. Top (bottom):
(un)equal prior and left (right): (un)equal data variances; See figure 1 for detailed
information on the settings.

10

large. Moreover the generalization ability is not affected as can be seen in fig-
ure 4, which shows a perfect match of the developement of the generalization
error during learning for original and -approximated RSLVQ. Since the gener-
alization ability is the main target of our study, we conclude that the ODE's for
-approximated RSLVQ describe the training process of the original RSLVQ al-
gorithm well and can be used to study the algorithms performance. Note however
that these ODE's are only valid for small i, i.e. in the limit i —p 0.

I—

00 II 20 • N S N N N S

• S — 5 20 5 5 0 5 5 5
a

Fig. 4. Comparison of the generalization error (E9) with the learning time a of RSLVQ
with (small red) and without (thick black) f-approximation for different systems. Top
(bottom): (un)equal prior and left (right): (un)equal data variances; See figure 1 for
detailed information on the settings. The insets show a close up of the first part of the
graphs, i.e. & � 0.5.

5.3 Asymptotic Performance

The performance of the LVQ algorithms is measured in terms of the general-
ization error in the stationary states. These states correspond to zeros in the

11

I..

oP

S.

• 20 20 20 00 5 N N 5 N ON

derivatives of the ODE's. Because it is difficult to search for the zeros of 7 cou-
pled ODE's, we search for the zeros of the sum of quadratic right hand side
terms of the ODE's. The optimal generalization error can be determined for all
settings of priors per setting of the data variances.

Fig. 5. Asymptotic performance, i.e. the generalization error in the stationary states, of
RSLVQ in comparison with other LVQ algorithms. The dashed (lowest) line marks the
best linear classifier, the continuous black line marks LVQ1, LFM is marked with the
chained line and the red line represents RSLVQ, with the optimal or close to optimal
choices of the softness parameter for left: v = = 1 and right: v = 0.25, v_ = 0.81.

As figure 5 shows, RSLVQ with optimal or close to optimal choices of the
softness parameter performs well beyond other LVQ algorithms, even optimal
for equal data variances and very close to optimal for unequal data variances.
Perhaps this last bit of performance can be gained by using multiple softness
parameters, i.e. one per class or per prototype, to enable the system to fit fully
to data with unequal data variances.

5.4 Optimal softness

One can write the limiting performance (generalization error) as a function of the
softness parameter (Vofj) and use this function to numerically find the minimuni
and therefore the optimal setting of the softness parameter. This has been done
for several settings, of which table 1 gives an overview.

As one can see from table 1, the optima found by numerical search are close
to the maximum of data variances (max(v+, v_)). However, to interpret these
numbers correctly, let us look at how the function behaves in the surrounding
area

As one can see from figure 6, there is a large flat region in the generalization
error for small values of V.0ft for both equal and unequal priors. There is pre-
sumably a single optimal value, but the true minimum is apparently very flat,
yielding very robust algorithm with respect to misestimation of the softness.

12

I)

Is
2

—.—

•5-

I,.

I1=I—I

0 II tO 03 04 01 4• • tO 00 I IS SO II IS ST tO to

= 0,25 v = 0,5 v = 1 v = 0,25
t'_ =0,25v_ =0,5 v_ = 1 v = 0,81

= 0,5 0,3125 0,51094 1,0625 0,78722
= 0,7 0,25156 0,51328 0,98145 0,83025

Table 1. Optimal settings of vaoft, found by numerical search for minima of the gen-
eralization error.

It is however possible that for some settings of the softness parameter the
(close to) optimal generalization error is reached earlier during training than
for others. Either a too small or too large value of V3oft results in slow or poor
convergence. Furthermore a too small softness (in the limit Vjj — 0) will reach
the limiting behavior of LF\I. which has stability issues.

or.

o IS.

Fig. 6. Dependence of the generalization error for largeon v801 with left: p+ =0.5
and right: p÷ = 0.7, v = v.. = 1, showing robustness with respect to settings of the
softness parameter. The red star marks the generalization error for LFM, however with
finite because for LFM the limit q — 0 causes instability.

Note that different settings of the data variances showed similar graphs,
however for smaller data variances the extension of the close to optimal range
of softness decreases. Taking this into consideration, the expectation is that a
setting of 1 v801 t � 2 will give good performance within reasonable training
time for most applications.

6 Discussion

We showed that we can mathematically describe the learning behavior of RSLVQ
by using a system of 7 coupled ordinary differential equations. In the limit i —, 0

we can even calculate them analytically for RSLVQ with f-approximation. With-
out -approximation we encounter numerical integrations. The ODE's describe

13

the system well since they fit the to the simulations, for both original and -
approximated RSLVQ. The i-approximation does influence the behavior of the
system, however the quantity of most interest, the generalization error, is not
affected by the approximation.

The performance of RSLVQ is well beyond other LVQ algorithms, confirm-
ing the findings of the introductory study that was based on simulations only,
and even optimal for equal data variances and close to optimal for unequal data
variances. Finally we saw that there is presumably a single optimal setting of
the softness parameter, but there is also a flat region of close to optimal soft-
ness, enabling an easy choice for setting this control parameter for practical
applications.

7 Future work

We were able to describe the learning behavior of RSLVQ mathematically in the
limit t' — o. ODE's for finite t' contain large numerical integrations, causing large
time needed for solving the ODE's. It would however be interesting to compare
the results for finite , with the results we found. Perhaps some simplifying
assumptions enable to get rid of some numerical integrations in the ODE's for
finite i.

RSLVQ turned out to perform slightly less then optimal for unequal data
variances. Perhaps this last bit of performance can be gained by using multiple
softness parameters, for example one per class or one per prototype (this coin-
cides in our model). This could well lead to the optimal LVQ algorithm, at least
for the data model we used.

Finally it might be interesting to extend the analysis to more than two pro-
totypes since RSLVQ cannot show its full potential in our model yet, because of
the choice for using only two prototypes. By using more than two prototypes per
class, the algorithm is able to fit to nonlinear decision boundaries. This however
would imply an elaborate extension of the calculations because our analysis is
based on using two prototypes.

Acknowledgements

First and foremost I would like to thank my supervisor, and leader of the LVQ
research group, Michael Biehl for his guidance throughout my master thesis
project. He was always available to answer my questions. I am also very grateful
to Anarta Chosh, who has helped me a lot with the calculations.

I would like to thank Aree Witoelar, member of the LVQ research group,
for his help on debugging the calculations and code for solving the differential
equations. The biweekly meetings of the LVQ research group have also provided
me more insight in various problems and worked as inspiration for my project.

Finally I would like to express my gratitude for the support from my family
during the project.

14

References

1. M. Biehl, A. Ghosh and B. Hammer, Dynamics and generalization ability of LVQ
algorithms, in Journal of Machine Learning Research 8 (Feb):323-360, 2007.

2. A. Chosh, M. Biehl and B. Hammer, Dynamical analysis of LVQ type learning
rules, Workshop on the Self-Organizing-Map, WSOM'05, 2005.

3. T. Kohonen, Improved versions of learning vector quantization, Procedings of the
International Joint conference on Neural Networks (Sand Diego, 1990), 1:545-550,
1990.

4. T. Kohonen, Learning vector quantization, M. Arbib, editor, The handbook of
brain theory and neural networks, 537-540, MIT Press, Cambridge, MA, 1995.

5. T. Kohonen, Self-Organizing Maps, Springer, Berlin, 1997.
6. C. Reents and IL Urbanczik, Self-Averaging and On-Line Learning, Physical

review letters. Vol. 80. No. 24, pp. 5445-5448, 1998.
7. A.S. Sato and K. Yaniada, Generalized learning vector quantization, In C. Tesauro,

D. Touretzky and T. Leen, editors, Advances in Neural Information Processing
Systems, volume 7, 423-429, 1995.

8. S. Seo, M. Bode and K. Obermayer, Soft nearest prototype classification, IEEE
Transactions on Neural Networks, 13(2):390-398, 2003.

9. S. Seo and K. Obermayer, Soft learning vector quantization, Neural computation,
15: 1589-1603, 2003.

10. J.J.C. de Vries, The behaviour of RSLVQ in a controlled environment, Rijksuni-
versiteit Groningen, internal document, 2006.

15

A Statistics of the model

A.1 Notations

Let us first introduce the following notations:
For any x E Ri", 2 x . denotes scalar product. < . > denotes the

average (expectation) over p() and can be expressed in the following form:

(20)
= ± 1

Where < . >, is the conditional average for class a.

A.2 Statistics of the data

From equation (3) follows that the components are statistically independent,
Gaussian distributed, quantities with variance v0 and mean < >=)(B.
Furthermore, note that for a statistical quantity X N(ji, a) it holds that
a2 =< X2> — <X >2, so >=< X >2 +a2. It follows that:

= <2>

= (v+ <j >2)

= (Va + (A(Ba)j)2)

= vN + 2

=VaN+A2 (21)

Note that in the last step it is used that Ii(Bg) = 1.

Thus we obtain:

<•>= pc,<2>c
=p+i(Nvi +A2)+p_j(Nv_j +A2)
= N(p1v1 + p_1v_j) + A2

N(p+iv+i +p_1v_1)

[..N>>A] (22)

16

A.3 Order Parameters and Projections

Define the order parameters (Rim, Qim) and the projections (b,, hi) as follows:

Rim = Wi Bm
Qim = Wj Wm

b1 = . B1
(23)

Define,

x= (h1,h_1,b1,b_1) (24)

A.4 Statistics of the Projections

Given that each training vector is independent of all previous ones, the statistical
properties of the projections are well defined for large N. The central limit
theorem yields that their joint density, p(h+i, h_1, b÷1, b_1) = p(x), is normally
distributed and fully specified by the corresponding conditional averages and
covariances.

First Order Statistics of h:

<h1 >k = <WI >k

= Wj < >k

= WI

= ARIk (25)

First Order Statistics of b:

<b1 >k = <B1 >k

= B1. < >k
= B1 ABk
— fAifl=k, note B? = 1

— l0if17k, note B1 •Bk =0

= '1k (26)

Where Ik is the Kronecker delta. Hence the conditional means of x for two
classes can be expressed in the following way:

(1÷1) and = (Ri_1) (27)

17

Second Order Statistics of h: <hjhm >k — <h1 >k< hm >krj compute the conditional variance let us first look at the average,

<hihm >k = < (to1) >k

=

= <(>k > (Wi)i(Wm)j <()i()j >k
i=1 j=1

Wi)i(Wm)i [vk + A2(Bk)i(Bk)i]

+ j (Wl)i(Wm)jA2(Bk)i(Bk)j
i=1

components of have variance vk, also see equation (21),
and are independent

= Vk + 2

i: (Wl)j(Wm)j(Bk)i(Bk)j
1=1 j=1,ji

= VkWI U' + (Wl)i(Wm)j(Bk)i(Bk)j
j=1 j=1

= VkWI torn +)t2(W1 Bk)(Wm Bk)
= VkQim + A2RlkRrnk (28)

Hence we have,

<hi,hm >k — <h, >k< Jim >k = VkQim + A2RjkRmk — \2R1kRmk

= VkQim (29)

Second Order Statistics of b: Similar to equation (28) we get the second
order statistics for b as follows:

<bibm >k = < (B,)(Bm) >k

= (((Bi)()) ((Bm)i)i))

= >(Bi)i(Bm)i <(>k + (Bi)i(Bm)j <()() >k
21 i=1

18

= >(Bi)(Bm) [Vk + A2(Bk)1(Bk)i]

+ (BL)i(Bm)j2(Bk)i(Bk)j
1=1

components of have variance vk, also see equation (21),
and are independent

= Vk >(Bi)i(Bm)i + A2

+A2 (BZ)i(Bm)j(Bk)i(Bk)j
1=1

VkBI Bm + A2 >2(BZ)(Bm)j(Bk)i(Bk)j
i=1 j=1

= VkBL Bm + A2(B1 Bk)(Bm Bk)
= UimVk + A °Lk°mk

Ii if I = k
B1 Bk =

10 1 1k
= ölm(vk + A2öjk) (30)

Hence we have,

<bibm >k — <b1 >k< bm >k = 51m(Vk + A2ö,k) — A1k5mk

=ôlmVk (31)

Covariance of h and b: To compute the conditional variance, <hlbm >k —
h1 >k< bm >k, let us first look at the average,

<hibm >k = < (Wj)(Bm) >k

=
((Bm)i()i))

= Wi)i(Bm)i()i(Ejt + (Wi)i(Bm)j()i()j
\ i=i s=i i=i,Ji I k

= (Wi)i(Bm)i < ()i()i >k

+ (Wi)i(Bm)j <()() >k
j=1 j=1,j5éi

19

= >(Wi)i(Bm)i [vk + A2(Bk)i(Bk)i]

+ (Wi)s(Bm)jA2(Bk)i(Bk)j
1=1

VkWZ Bm + A2>(Wi)i(Bm)j(Bk)(Bk))
i=1 j=1

= VkWI Bm + A2(wz Bk)(Bm Bk)

11 if m = kBmBk=1Oifk
= VkRim + A2RIk&nk (32)

Hence we have,

<hi,bm >k — <h1 >k< bm >k = 'kRim + A2 Rikc5mk — ARlkAt5mk

= VkRim (33)

The conditional density of x for class k is N(zk, Ck), where, zk is the conditional
mean vector for class k and Ck is the conditional covariance matrix for class k.
In oi.ir model the conditional density of x is a 4-dimensional Gaussian. Following
from equations (29, 31, 33), the covariance matrix by Ck and can be expressed
as follows:

Q+i,+i Q+i,-i R+i,+j R+ii
Q+i,-i Q—i,—i R1,÷1 R_1,_1Ck=Vk T DI+1,+1 IL_1,+1
R1,_1 R_1,_1 0 1

B Detailed derivation of system of coupled ODE's

Because each training sample that is presented is independent of its predeces-
sors we can conceptually think of training as a stochastic process, to be precise a
Markov process (i.e. the future states do depend on the current state but are in-
dependent of previous states). If the underlying distribution of the training data
is simple enough, the whole dynamics of the system can he analyzed using a few
characteristic quantities {R, Qim }. These order parameters are self-averaging
[6] in the thermodynamic limit (N —i x). allowing to analyze the stochastic
evolution of the system in terms of deterministic evolution of the characteristic
quantities. The evolution of characteristic quantities is described by a system of
coupled differential equations.

20

B.1 Recurrence relation for the characteristic quantities

Recurrence relation for R: From equation (15) follows:

Rh =wr.Bm

= (wr' + B)m
= + jjIA B
= Nv801g

(ö1 — — w1) Bm

= Nv80j ('' — —

+1w1'') B
= Nv301

— 610MR1 — 'Pb + gR1) (35)

Recurrence relation for Q:

Q=w.w
= (1_i + (wm' + 1wTn)

= Wj' Wm1 + Wj'1 1WM + LWI' Wm'1 + WL

(
T

= + Wj'
N (6 — m)(E? —

V601j)

1(
17+Wfl

Nv801
(olM_l)(P_wl_1))

+ (N (ôma — m)(— Wm_1))
Vsoft

(ô, — — w1))
V801

1 1 Wj1L_I (ôma — 6mypWm1 — + (PmWmI_1)= + Nv8j
+ 11• (öu — — +Nv801

+(N
2

(omay — ömasWm1 — + mwm_1)
V801) \

•

— — +

— p—i

— Qm +
Nv80j (mcriazr — —

21

+ - öQ1 - 1h + P1Q1)

+
(

7)
)2(

— —
Nv801t

+óncy' W lçpJ4 — 6mc' Wm + lo mai W1 1Wm1
+ömWm'j — ömW1Wm — m(')2
+1Wj1m + im()2 —

+jWm1Pm — 1Wm1m —

+Wi 1yP_1j)

= + Nv0ft (m + — öma —

+ h '1 (ömcu — + h ' (Lcu —
Nv80ft Nv901j

+ (L)2 (()2(5a — — icy'm +

+P&7W (Qm — h, urn) + 6m,Jg (h11 + hml — Qm)
+c5 (htm + hmm — Qmm) + im (Qsm — h1 - tim))

= + N QT' (m + i — —

+ h (6ma — m) + h '1 (öza —Nv80j Nv301

+
2

(5i5mp — '5mai — j7P m +
Vaoft

+6juômp (Qm — h1 — urn) + (5rnci (ti11 + hm —

+öici (him + hmm - Qmm) + m (Qim —h1 — hm))

+
Nv8012

m(m1 ömtTu

+ h (mo — m) + h (r —
Nv801t Nv301t

+ (
)()2 (öi '5mcs' —ömøP — ôjc,uPrn + i(Pm) (36)

Nv801t

In the last step we neglect the terms of 0(r) in (36), note that (Ih)2 is in the
order of 0(N), see equation (22), so this term remains.

22

B.2 Differential equations

From equation (35) and (36) follows:

Rrm — R1
= — - + (37)

1/N
I-.p f)p_1

— 1 p—i
I?.T — Qim m +IömØ 6Ia'1iv V,01j

+h_('öma _m) +h I)j
V,oft \ V,oft \

+ L)2 2((ö ômcpPi 6laPm +im)38)
N v,01g

We are interested in the mean values of these characteristic quantities, there-
fore performing averages over the sequence of data. Since the data samples are
independent of all previous data samples, the system, including Rim and Qim,
is independent of data sample '. Besides this we define:

= /N (39)

When considering the thermodynamic limit (N —* x). ci can be considered as
a continuous variable with zlci = 1/N. Using equation (39) and exploiting the
independence we get:

= (<óiabm> — <öi, > Rjm <Pibm > + <Pi > Rim)
do ii, 1

1.. <(5ici> _=±1PC<öh7>aPl
<6iubm > = >7±i Pa < öjubm >a= P1 <bm >1= PiöimA

= - (Pi(5imA - Rim) <ibm > + <Pj > Rim) (40)
V801

= _JL_Qim(< m > + <i > — <ömø > — <öla >)
dcx V,oft

+ himc > — <him > + <hmöig > — <hmi>)
V,oft

+ <öiaôma> — <óma> — <iam2 > + <PlPm2>)
N V,oft

<X2> >a=±iPa <<2 >o X >o= Fa=±iPataN <X >a
muX>a=±iPu<5maX>aPm<X>m

and see equations (22, 27)

<m > + <i> Pm PZ)
vsoft

+ (pm>tRzm <hjm > +P1ARm1 <hmi>
V,oft \

23

+
(2

(NPIVIoITfl — PmVmN < l >mN vsoft

—pjv,N < m >1 + pvN <1m >)
=± 1

= —Qirn(< m > + <j > Pm —P1
Vaoft \

+ —!--- (pmARim_ <h,Pm > +pj\Rmi < hmQj>
v801t \

+ (_?_)2((Pcva <1m >c)+5imPivi_PmVm <j >m —PIVI <m >)

—Qm(<m > +<i > PmPi
V801j \

+ — (pm.>tRzm_ <him > +piARmi <hmi > (41)
Vsoft ' /

In the final step we neglect the terms of 0(712), which is correct in the limit
— 0. To compute the remaining averages in the differential equations above

(40,41) let us look at the function ,.

= — do
2cv801t

1 (()2()2))
2cv80j

1 (2222))
2cv80j

=
1

(2k, — 2h_ + Q—a_a — QcTu))2cvj
= ((1 , —1 ,o,o) (h+a,h_,b+g,b_c) +

—

Qcci) (42)8oft CV8oft 2CVsoft

Hence we have,

(43)

Where, Og = and 13a =
_(Q;)•

Following from equation (20), we can calculate < ti(c, x — /3g) > wid
<(x)tP(c •x — flu) >, where (z) is the th component of x; n e {1,2,3,4},
see equation (24), from their conditional averages < ...

B.3 Averaging

As can be seen in equation (43), we encounter -functions of the following generic
form:

24

= (a x — 3)

2

with (x) = I —dz (44)J- '/
Now consider averages < (x),8 >k and <8 >k:

1 [(x)(a8 x — /3)<(x)cP8 >k =
(2r)(det(Ck)) JR4

exp
(— (x — IAk)TCkl(x —

1

f (x'+k)(a8.x'+a8pk—138)
= (27r)2(det(Ck)) JR4

exp (
— (45)

with x' = x — Ik• Note that this shift does not change the integral since the lim-
its are — and oo in all R4 dimensions. Now decompose Ck into Ck =
This is possible since Ck is a covariance matrix and therefore positive semidefini-
tive, hence C exists. Now let x' = Cy, resulting in dx' = det(C)dy =
(det(Ck)) dy:

1 'I l 1<(x)3 >k = (Cy + Lk)(Q.Cy + 8 Ik —138)
(27r)2(det(Ck)) R4

/ 1
exp —

1 f
= ()2 JR4k + Lk)(Q8Cy + o —138)

exp (— ly2)dyj

= ()2 j (Cky)l,lP(aSCky + 8 — 138) exp (— 1y2)dy

+ (2)2 j (IAk)n(a8 . Cy + a8. l-'k — f38)exp (
— ly2)dy

= I + [(Izk)n(a8 X + Q3 lk —/38)
JR

exp (— (CxF)2)(detCk)_dx
1 .

—)+08pk—/38)(a8 (2' Ik(2)2(detCk) 1R4

25

exp (— (x — 1k)Ck — IAk))dX

= I + (I)n
(2ir)2(det Ck) JR (a8 X — $8)

exp
(

— — I.Lk)Ck2(X — ILk))dX

= I + (j)fl <'a >k (46)

Where

= ()2 j (Cy)q'i(a8Cy + a8 I-ak — $8)exp (
— !y2)dy

= J + a8 — /38)exp (_

= : (j(cJ)(y)jcxi(a8cy + a8 — /38)exp (—

(47)

Now define, for j E {1,2,3,4}:

I) = j(C)ni(Y)içIi(as Cy + a8 — $8)exp (— (y))d(y) (48)

So one can write:

=

Now apply partial integration to I. The rule of partial integration says:
f f(x)g'(x)dx = f(x)g(x) — f g(x)f'(x)dx. Applied to I, this gives:

f((y)) = cb(a8Cy + a8 —

g'((y),) = (C,)(y)3exp(— (y))
g((y),) = —(C), exp (—

f'((y)) = (a8Cy+a8 Pk $8) (50)
(y),

Applying the partial integration yields:

Ij [_(CbniexP(_ (y))cP(a8Cy+a8 Ik _$)]

26

+ J (C), exp (— (y)) f-5—cXi(a8C y + a — /38)d(y)3

= f(C)j exp (- (y)) (USCy + 8 - 8)d(v) (51)

Filling this in into equation (49) gives:

'= (j(c,)n, exp (— 18Cy + U ILk —

= (cb1)j ((a5cy + a — exp
(

— .y2)dy

(52)

Now consider:

=cb(UBCky+as.ILk —138)

= + ::. k — 13s)

(53)

Where (x) = r is the standard normal probability density function
and in the last step is used that for the components (y)j with i j the derivative
to (y)3 is zero, resulting in: = >1(a8)(c)2. Hence,

' (c8)2(C)1)

1 2

J Ø(U$Cy+Qs.ILk_/3a)exP(—y)dy

= 2(Ckas)flf (a8Cy + Qs ILk — 8)exp
(

— !y2)dy (54)

Note that in the last equation it is used that ((ci),j 1(a8), (C)) =

(Cka8)fl, which is true for symmetrical matrices C. Since Ck is a covariance
matrix hence it is symmetrical, see equation (34), and positive definite, there
exists at least one decomposition into also being symmetrical.

Note also that exp(—y2)dy is a measure which is invariant under rotation
of the coordinate axes. Now rotate the system in such a way that one of the axes,
say , is aligned with the vector CQ8. Using that — fRexp(—z2)dz = 1, the
remaining three coordinates can be integrated over, yielding:

27

i = f (ICsII + a8 Ik — 13)exp (— '2)d (55)

Now define:

= IICc8II = /a8Cka8 and 11a,k s Pk — 138 (56)

and rename z = so d = to obtain:

= (Ca8)1, j q5(&, + fisk) exp (—

— (Cka8) [(z+ l(Z)2d
— V's.k JR ,k)exp (— a8,k

— (Cka8) f
1 — (z + 138,k) 1 Z)2'\dexp(

— /cs,k RV' 2)exP(_(Bk
— (Ck8) f exp (

— z2(1 + ——) — Z/3 — f38,k)dz
— '/s,k JR V'
— (Cka8) 1 2

' 1

I —exp
— V'X8,k

exp(—/38,k) (—
z2(i + — ZIs,k)dz (57)

a8k

Now use that f _exp(—ax2 +bx) =-_

(Ck08)fl
2138k)

1

1= exp(—— exp(
V'8,k ' /- 2(1+)

— (CkQ8) 1 exp — 1

) (58)
— V8,k /l++ 2(1+àk)

Summarizing equations (47) to (58) gives, from equation (45):

(CkQ8) 1 1 /38,k< (x)8 >k =

exp1 + (2(1 + a,k)) + (k)n <8 >k

(59)

Next consider the average < >k. Similar calculations as for < (x), >k
give:

1 [(a8.x—fl8)>k =
(2ir)(det(Ck)) JR

exp (— (x — Ak)TCkl(X — lAk))dX

28

1

J (a3•x'+c8•Izk—/38)= (27r)2(det(Ck)) R

exp (— xlTc1xF)dx
1 1

— (21r)2(det(Ck))'
I (Q8C$ + — /38)JR

exp (—

1

f (asCy+c8.I.Lk_/3s)exp(_y2)dy
(2ir)2 R4

=

= = j + /3s,k) exp (— (60)

00 +i \Now apply f - exp(—ax2 + bx)(cx + d) = exp

which holds for (a > 0):

<8 >k =
13s,k

) (61)

v/
i + 8k

Hence the required averages are as follows:

<48>k='P(/3s,k

)v/i + CXsk

< (x),8 >k = (CkQ8) 1 1 fl8,kexp
v/1+t ((1+ak))

138,k "

+ (lAk)nlP(v/l+&2) (62)

Where,

= VsCkas and /38,k = l-'k — 138 (63)

29

B.4 Final form of the differential equations

Filling in the conditional averages of equation (62) into equations (40) and(41),
yields the following system of coupled differential equations:

dRim 2_(Pi(öimA_Rim)_ p <bmq(ax—i3)>ud — Vsoft

+Rjm p <'P(cj — i3) >)

= —p--— (i(zm — Rim)
V3ofg \

[

pI(CX1)i= 1

)\']
+Rim p,4(/3ia+) (64)

— p <(am x - i) > + p x — $) > Pm — Pi)—Qzrn(dc — V80jg

+jpmARim p<hui(mI3m)>cV8o1t

+piRmi Po<hm('i2'_I3i)>a)
o=±1

17 / 13m,o \

= Qzm () + Pu) — Pm — P1
V801 t i o±i

+ pmARim+piPmi
V80ft \.

— [

i 1

m,0 'St1
exp(_

(1 +a,0)) + (a)nL(
+a=±1 '•\ ¶/Xm,a Vh1+T 2

—[

pf(CifXl)t 1 1 /3z, '\1'
exp

(— —

+ 2(1 + a?0))
+ (i a)nm(i

+ a?0)j)
(65)

Where,

3 if k = 1flbk{4fk_l
1 if k = 1

flhk {2ifk_1

30

8,k = \/cr8Cka8 , I3s,k = a8 — 138

Q—,,—',—Qo,'I o• —g

= CVaoft —--,o,o) , = —(2CV,oft) (66)

In equations (64) and (65) one can see that the ODE's are linear in ij. The
learning rate?) is therefore, in the limit 1) —* 0, no more than a scaling factor,
which can be taken out by rescaling a to = a?):

dRim — dRim

= L ('pi(öimA — Rim)
V801j \..

—[

((Caj), 1 1
exp (—

a=+1 V/l 2(1+&))

+(ILC)flbm(
'°

))] +Rim) (67)'/1 + u=±1 V/i +)

dQim - dQim
dà dcxii

= lQ(13m,u

) +
"

))PmPI
V8oft "a=±1 V/i +ãg V/i +g

+ I"pm\Rim + P1ARm1
Vsoft \.

— F
((Cgam)fl1 1 1 Irn,g / 13m,g \1

exp(- 2(1 +à,)) hlV/i+a))]V/i +

—[((cgai)n_
1 1 /l,a

exp (—

_______ ______

V/i +
2(1 +?g)) + (a)nhm(V/ +))j)

(68)

B.5 Original RSLVQ

Now let us look at the original definition of RSLVQ by Obermayer and Seo. 'F he
recurrence relations are the same, except we need to replace , by

1+exp(')
or (1 for shorthand.

Recurrence relation for R: From equation (35) follows:

R'4 = R' + (6icib, — 5zaiRrrn — hh1n + Q1R') (69)Em Em Nv801

31

Recurrence relation for Q: From equation (36) follows:

+
7' Q' (Qm + Q - ômcp —

V,oft

+ h 7' (öma, — Qm) + h, 7'
(oz0M —Nv80ft Nv301t

+ (
7')2()2(öim — 5mcr'JIi — (Ic,MQm + (70)

Nv801

Differential equations: From equation (69) and (70) follows, similar to equa-
tions (40) and (41):

_(Pi(mA_Rim)<Qibm>+<Qi >R1m) (71)dc v301j

+ <il1 > Pm —P1)dc V80 j

+ —!?— (pmARj_ <hjQm > +P1ARmI <hmQi>
V301j \

+ (-__)2((>Pcvc(< Q1Qm >g +öim)) PmVm < Q >m PZVI <urn >i)

-Qjrn(< rn > + < > Pm —P1
V8oft \

+ (prnARz <hiQm > +piARrn <hmQi > (72)
V801j \. /

Note again that in the final step we neglect the terms of O(,2), which is correct
in the limit i - 0. Similar to equation (42) we can generalize (1g.

1

1 + exp (d;_d)

1+ exp (((- - (- w)2))

1 + exp (-L_(2 — 2 . w + w —

1 + exp (..i(2h_ — 2h + Q0 — Q_a_a))

1 + exp ((-- -i--, 0,0) (h+a, h_a, b+, b_i,) +
= 1

(73)1 + exp (z . x + i34

32

Where, = (_1,__,O,O) and 13a = — 2v01,)•Voft V.011

Now consider the averages < (x)j18 >k and <08 >k:

(x)<(z)Q8 >k
= (2(det(Ck)) f4 1 +exp(8 .x+/38)

exp(_ (x — Ik)TCkt(Z — ILk))dX

1

1 J
(x'+Izk)

— (27r)2(det(Ck)) R4 1 + exp (cr8 x' + — i3)

exp (— 'xTC_1xl)dxl

1

1 J
(Cy+k)

— (27r)2(det(Ck))s R4 1 + exp (a8Cy + — /38)

1

exp (— (Cy)TC1Cy) (det(Ck))dy

exp(_.y2)dy
R4 1--exp(a8Cy--Q8.&k—/38)

(Ik)n exp(_.y2)dy
R4 1+exp(a8Cy+a8.pk—/38)

= I+(/Lk) <08 >k (74)

Where

(Cy)
exp (— ly2)dy12L4 1+exp(8Cy+a8.k—/38)

1 (C,)(y) 1exp(_(y)j= (L i +exp(Q8Cy+a8 ILk —/3)
2)d(Y)3)

4
1

(75)
j=1

With

1
= f (C)(y)3

exp (— (y))d(y)j (76)
R i+exp(a8Cy+a8.,zk—/38)

33

Now apply partial integration to I. The rule of partial integration says:
f f(x)g'(x)dx = f(x)g(x) — f g(x)f'(x)dx. Applied to I, this gives:

1

f((y)j) = 1

1+exp(c3Cy+a8.jLk —fl8)

g'((y),) = (C,)3(y) exp (—

g((y)3) = —(C)3 exp (—

0 1
f'((y)j) = (77)

(Y) 1+exp(c8Cy+Q8.k—fl8)

Applying the partial integration yields:

1

=
(C) exp(—

1 + exp (a8Cy + fl8)1

=0
f 1 3 1

+ / (Cflnjexp(_ (y))— d(y)3
JR - 1 + exp (c8Cy + a l-4k —

1 1 3 1

= / (C)exp(— (y)) d(v)3
JR - 0(Y) 1 + exp (a8Cy + 08 lAk — /38)

(78)

Filling this in into equation (75) gives:

I=(2)2(1(Ck)nJexP(—(Y)J) 8
JR 0(Y) 1 +exp (a8Cy+a8 Pk

)(V)J)

4
1

= (C3) L 0(Y)i (1+ exp (a3C —

exp
(—

y2)dy
3='

(79)

Now consider:

0
l+exp (ccy+aik—) — — exp (a8Cy + 08 — fl) 0 (a8Cy)(93

— (i +exp(a8Cy+a, Ik _138))°(Y)i

(asCy+a8.Mk—fl8)exp
= —(a8)2(C)

1 2

(i + exp (cx8Cy + 8 —

(80)

34

= Cka8)n [exp(a8Cy+a8 I-ak — 3)
JR

1 Cka8) J
exp (jICa8 + a I-k — /3)

—
R (i + exp (IICa8 + a.

-))2 exp (_

1 C) [exp (à,kü + 138,k)
2 exp (— 12)d (81)—

Filling this in into equation (74) gives:

<(z)Q8 >k = ——1—(Cka3) f exp (a,k + 138,k)
2 exp (— '2)d + (Ik)n <118 >k

R (i + exp (&8,k + 138,k))

(82)

Next consider the average < Q >k:

(2)4(det(Ck)) L 1+exp(a8.x+8)

exp (— (x — IIk)TCk1(x — Pk))dx

1J 1

= (27r)2(det(Ck)) R4 1 + exp (a8 X + a8 ILk — /3)
1

exp (— xlTC1xF)dx
1 'I l

= (21r)2(det(Ck)) R4 1 +exp(a8Cy+a8 1k—fl.,)
/ 1

exp — (Cy)TC1Cy) (det(Ck))dy
1 f 1 ,cp(_y2)dy= i 1 +exp (a.,Cy + a.,• ILk 13.,)

e

1 1 1 (_2)dexp
= VJR 1 --exp(IIa.,CII--a.,.ILk _I3)

1I• 1

= JR 1 + exp (s,k + 13s,k) exp (— 2)d (83)

where the remaining integration has to be performed numerically.

