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Abstract

This thesis deals with the development and implementation
of a system for mobile robot navigation using a camera and a 3-
dimensional map of the environment. In this project, a method
to compare camera images to images from the virtual environ-
ment was developed. This makes accurate control of the position
of a mobile robot possible, without specialized constructions like
stereo-vision.

To compare the camera images to the images from the virtual
environment, a distance transform of the camera image is used.
Then, a range of possible virtual images is put over this trans-
formed image, and the minimized values under the lines of the
virtual image are looked up.

This method seems to perform well, but it still needs some re-
finement. In experiments with the robot, the performance is not
robust enough yet. Some suggestions about how to realise these
improvements are given.
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1 Introduction

In this thesis my graduation research project, conducted at TNO TPD
in Deift, is described. The project's aim was to create software for a
mobile wheeled robot. This robot should be able to navigate reliably in
an indoor office environment, guided by input from its visual system. To
achieve this goal, we wanted to use a 3-dimensional environment map
of the office.

The use of vision for robot navigation is an important research field
within Artificial Intelligence. Humans and animals are able to use their
visual system for navigation, obstacle detection and recognition of ob-
jects, places and people. So far, the performance of artificial agents has
not yet approached the performance by biological agents. Most systems
still require some kind of modelling (creation of a map of the environ-
ment for example) or are only able to perform very small tasks.

Nevertheless, the advantages of a visually guided system are great,
even when it is not performing at a human level. Visual input could
perform well without artificial markers (for instance transponders in
the road) that can be costly and sometimes difficult to put on certain
places. It is also a very useful addition to other sensors that are used
in robotics, for instance odometry (information from the wheels of the
robot).

An indoor robot that is able to use visual information for reliable nav-
igation, can be used for various tasks. It could for instance be used as
a guard which drives through a building, as a guide to bring people to
specific locations or as an aiding device for elderly or disabled people.

The research question that was formulated in the research proposal is:

In what way can a mobile robot use its camera to refine a visual map of
its environment, and use this map to navigate in a robust and reliable
way?

Other aspects related to this question are:

• measuring in images

• navigating using a map

• refining the map from the images (from 2 dimensions to 3 dimen-
sions)

• data processing in a robust way



1. Introduction 2

During the research project, the focus changed more to navigation and
localization with the environment map, instead of updating the map.
This was mainly due to lack of time and was done after advice from my
advisors, because otherwise the project would become too big.

The outline of this thesis is as following: Chapter 2 gives a theoretical
background on robotics and navigation with or without an internal map.
Then, chapter 3 describes previous work on this subject. In chapter 4,
the model and the hardware and software that is used in this particular
project are explained. Chapter 5 describes the experiments conducted
with the robot and the software. Finally, chapter 6 discusses the results
and chapter 7 lists the conclusions and suggestions for future work.
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2 Theoretical background

To operate reliably and successfully in a real-world environment, a robot
(or other form of autonomous agent) has to be able to have and gain
knowledge about its environment. This knowledge can have the form of
some kind of map, but it is also possible to create a system which does
not use a complete representation of its environment (see 2.3 for more
details on this subject).

A very important task for an agent is to navigate. Navigation includes
aspects as finding clear paths, avoiding obstacles and calculating the
agent's current velocity and orientation [1]. We will refer to this last
aspect as localization.

In order to complete this navigation task, a robot has to have good per-
ception of the environment. There are numerous types of sensors which
can be used for this perception. This project deals with the development
and testing of the use of visual information as the primary source for
the perception.

In this chapter, some of the common terms in robotics and computer
vision will be explained and the problems associated with them will be
described.

2.1 Odometry

Odometry is navigation based on the motion of the wheels of the robot,
and is probably the most widely used method for navigation in mobile
robotics[2]. The reason for this is, that it is rather accurate in short dis-
tances and is easy to implement (many robots even have onboard hard-
ware which keeps track of the odometry). The main problem with odom-
etry is however, that it gets very inaccurate after some time, because for
instance the wheels of the robot may slip: the wheel encoder registers
rotation of the wheels, but the linear displacement of the robot doesn't
correspond with this rotation. Conseqequently, the position where the
robot 'thinks' it is, differs from the actual position. It is rather obvious
that this is a rather serious problem when the robot has to fulfill vari-
ous tasks, because it will not be able to navigate reliably or bump into
obstacles.

Errors in odometry can be divided into two groups: systematic and non-
systematic errors. Systematic errors are errors caused by unequal wheel
diameters, misalignment of the wheels, finite resolution of the wheel
encoders et cetera. Non-systematic errors are caused by uneven floors,
unexpected objects on the floor or slippage of the wheels due to various
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causes. The obvious difference between these errors, is that systematic
errors accumulate constantly, while non-systematic errors can appear
unexpectedly. Thus, on clean surfaces, systematic errors have a great
influence on odometry, while on more rough terrain the non-systematic
errors will have more impact.

In the office environment which is dealt with in this project, systematic
errors will probably give the largest problems. In [21 the authors de-
scribe a method to quantify these errors, which is used in this project.
This method, called Bidirectional Square-Path experiment, requires the
robot to drive a square path in two directions. After completing each
square, the distance from the starting point is measured. This distance
gives a measure for the systematic error in the odometry. The test has
to be performed in two directions, because otherwise two mutually com-
pensating odometry errors can compensate each other and thus give the
incorrect impression that the odometry is performing good.

In 5.1, the results of this experiment are described.

2.2 Computer vision

In [3], the goal of computer vision is defined as: to make useful decisions
about real physical objects and scenes based on sensed images. Often
it is necessary to create a sort of model or representation of the object
from the image, to be able to make decisions about these objects.

Computer vision can be divided into the following aspects:

• sensing: The process of obtaining images from the real world

• encoded information: The information from the 3-dimensional world
that is encoded in the images (such as geometry, texture, motion,
et cetera)

• representations: How should the descriptions of objects and their
relationships be represented in the system?

• algorithms: The methods used to process the images and to con-
struct the descriptions of the world

This project will deal with all these aspects, but the focus will be on the
last three aspects. This will hopefully become more clear in the next
chapters.
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2.3 Map representation

In [4], indoor mobile robotics with vision-based navigation is divided
into three groups:

• map-based navigation: these robots rely on user-created models of
their environment

• map-building-based navigation: these robots use sensors to con-
struct a model of the environment, and afterwards use this model
for their navigation

• mapless navigation: these robots have no representation of their
environment

Although the navigation methods without any knowledge about the en-
vironment (for instance behaviour based robotics [5]) have been quite
successful, many authors think that some kind of a priori knowledge
will be necessary to complete more complex tasks [1], because even a
simple task like finding a target and bringing it back to the starting
point requires some internal representation of the environment, which
is very similar to the map in the so-called 'classical Al'.

This project deals with the first category: map-based navigation. The
map can be represented in several ways. The earliest models used so-
called occupancy maps, 2-dimensional projections of objects (in the hor-
izontal plane, much like an ordinary map of a room looks like).

Other approaches keep track of uncertainties of the position of objects,
to deal with errors in the measurement of their coordinates. In all ap-
proaches, the general procedure in vision-based localization consists of
the following four steps:

• acquire sensor information: acquire the images from the camera

• detect landmarks: this usually means filtering actions like edge
detection, smoothing, segmenting regions

• establish matches between observation and expectation: this step
tries to compare the observed landmarks to the map stored in the
database

• calculate position: if a match is found, the information from the
database is used to calculate the actual position of the robotdsf

The third step is - not surprisingly - often considered the most difficult
one [4, 6]. This step requires some kind of search algorithm, which
hopefully can be limited by a priori knowledge or by other criteria.
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2.4 Absolute and global localization

One thing most practical implementations of navigation have in com-
mon, is that they rely on some form of localization: the ability to have
or gain knowledge of the agent's current position.

Localization can be divided into three subgroups: absolute localization,
relative localization and localization derived from landmark tracking
[4]. In absolute localization the initial position of the robot is unknown.
The opposite, relative localization, assumes that the initial position of
the robot is known (approximately). In this way, the robot only has to
keep track of the movements from the beginning. This can for instance
be done by knowledge about the uncertainty in movement, as is done by
the FINALE system [7J, which will be described in more detail in the
section on previous work.

In localization derived from landmark tracking, natural or artificial
landmarks (visually striking objects in the environment) in the cam-
era images are used to find the position of the robot. Examples of this
method are systems which keep track of the movement of these land-
marks in consecutive camera images, and deduce the movements of the
robot from these movements.

This project uses relative localization: the robot starts (approximately)
at a specified position and keeps track of its movements. This approach
is chosen, because it greatly limits the search space. The prerequisite
that the robot has to start on a known position, is one that is not con-
sidered a problem in the tasks the robot has to fulifil.

The project uses also some aspects from landmark tracking-based meth-
ods, because the robot searches for natural landmarks in the environ-
ment (which are compared to the landmarks in the model). This will
become more clear in chapter 4.
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3 Previous work on vision-based localization

Vision is often considered one of the most challenging subjects in robotics
and Artificial Intelligence. The development of a system that can sense
its environment by looking at it, just as humans and animals do, is often
considered a necessary step towards a real intelligent agent. The hard-
ware used (cameras, computers et cetera) has greatly improved over the
last decades, but the results in computer vision show that just adding
more processing power or a better camera are not the only way to a good
solution.

In this chapter, some other projects on vision-based localization or nav-
igation will be discussed. There are many different approaches to this
problem. This chapter shows some projects which use a (partly) simi-
lar approach to our approach, but will start with a few that handle the
problem differently (both in hardware and software).

In the next chapters our approach will be described. It will become clear,
that various aspects of these projects are used in this project.

3.1 Omni-directional vision

In [8], the authors use an omni-directional camera (a vertically oriented
camera with a hyperbolic mirror mounted in front of the lens) on their
mobile robot. They transform the images from the camera to 360 de-
grees panoramic images, and then extract features from these images
to reduce the dimensions of these images. The images are then mapped
to the appropriate locations. To match new images, they use Principal
Component Analysis and a supervised projection method. According to
the authors, the localization error is about 40 cm if 15 features are used
and the environment is represented with 300 training samples. The
authors have experimented with data from the MEMORABLE robot
database, a database of about 8000 robot positions with associated mea-
surements from sonars, infrared sensors and omni-directional camera
images, but they have also used images from their own office environ-
ment.

An advantage of this approach is, that the robot doesn't need any a
priori knowledge about the environment. On the other hand, it has to
be trained when it is in a new environment, which could take quite some
time and sometimes gives unexpected results.
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3.2 Visual landmark learning

Another approach is to look for landmarks in the camera image. Such
a project is described in [9], where the authors try to use biologically
inspired methods to learn visual landmarks. The robot tries to decide
which landmarks are useful and reliable as navigation aids. These land-
marks are templates which are uniquely identifiable in their neighbour-
hoods.

The authors conclude that inspiration from biology can be useful in
landmark learning, but that it needs to be well formalized for an effi-
cient implementation in artificial agents. They state that a definition
for landmark reliability has to be developed and that a measure for the
quality of the learning phase has to be introduced.

The use of a biologically inspired method seems to be a useful approach,
but these approaches aren't very scalable to more difficult tasks (as the
authors also conclude).

3.3 FINALE and its successors

The FINALE system [7] is an example of a map-based localization sys-
tem. The system uses relative localization, so the robot's starting po-
sition is always known. The system uses a geometrical representation
of the environment, and a statistical model of the uncertainty in the
position of the robot.

The robot starts to move from a known position, and the uncertainty
in position is updated by an empirically constructed model. When the
robot starts to determine its position, this uncertainty is projected into
the camera image. Then the model of the hallway is used to determine
which position fits to the actual camera image. The search space is
limited by the uncertainty in the robot's position, so the system doesn't
have to check all the possibilities. When a match is found, the position
of the robot is updated.

To determine the match between the camera image and the model of
the environment, the lines are represented in Hough space. Then, the
landmarks (lines) are matched with the help of a Kalman filter.

The purpose of a Kalman filter is, to estimate the state of a system from
measurements which contain random errors. This is done by minimiz-
ing the mean of the squared error.The filter is very powerful in several
aspects: it supports estimations of past, present, and even future states,
and it can do so even when the precise nature of the modeled system is
unknown [10].
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According to the authors in [4], the system navigates at an average
speed of 17m/min on ordinary PC-based hardware (Pentium 11450 MHz)
and the self-localization routine checks an image in less than 400 ms.

The same authors revised their methods in [11], which discusses a sys-
tem that is capable of continous self-localization. This revised system is
also capable of obstacle-avoidance by its visual system.

This method requires the development of an a priori map, but can then
be used 'out of the box' (so there is no long and sometimes unpredictable
training period required). The good results which the authors claim are
interesting.

3.4 Visual-sensor model

In [12, 6], Fichtner develops a probabilistic sensor model for camera-
pose estimation in office environments. He claims the model is very
suitable for use in sensor fusion approaches. He uses a wireframe rep-
resentation of the hallway and tries to find a suitable error function to
determine the best match between the camera image and the model.

He has compared several methods for this error function, for instance
centred match count, grid length match and nearest neighbour. These
methods are tested on artificially created images of the office and later
on real images. Finally, the methods are tested on a real robot setup.

This project gives a good overview of some methods to compare an envi-
ronment map to the real world.

3.5 VERONA

In [13], the authors describe the Virtual Environment for Robot Naviga-
tion (VERONA). This environment consists of a 3D environment model,
used to facilitate control of mobile robots. The environment offers a
3-dimensional view on the scenery from any viewpoint necessary (for
instance bird's eye view or side views). The system is also capable of
generating its own maps. The walls are constructed by ultrasound mea-
suring. Later, snapshots from the camera are used to apply appropiate
texture on them.

The map can also be used for vision-based self-localization of the robot,
because it is possible to compare the camera view with the virtual view.
To compare these images, vertical lines are used. These lines are de-
tected by Hough transformation, the matches are then computed by
cross correlation or minimization of absolute differences.
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This project is interesting for its use of VRML as a method to control
the robot and for its automatic texturing of walls. The approach which
is used to compare the model to the camera image is quite similar to the
method used in [12, 6].

3.6 Overview

The above articles list some very different approaches to navigation and
localization in robotics. A few conclusions can be drawn from them:

• advanced tasks require some kind of modelling of the environment

• there are multiple ways to compare the model to the actual envi-
ronment

• most approaches integrate or use the results from multiple sensors

• a 3-dimensional model (like VRML, used by VERONA) gives some
interesting possibilities

These are a few of the conclusions and thoughts which have been con-
sidered in the design process. The next chapter will show how these
prerequisites have led to design choices and implementation.
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4 Why it is necessary to use a 3D map of the en-
vironment in robot navigation

4.1 Introduction

As concluded in chapter 3, advanced navigation by vision requires some
kind of knowledge about the environment. An agent needs to have some
kind of environment map as a basis for its reasoning about the acquired
sensoric data. Systems without a kind of map give promising results on
easy tasks, but to make them scalable to more complex tasks, the agent
needs to have some kind of representation of the environment [1].

A system that can perform reliably in a real world environment needs
to be robust and flexible, because the real world is a very demanding
environment. In [1], the five properties of the real world are defined as
follows:

• inaccessible: the agent has to deal with imperfect sensors and can
only perceive stimuli that are near the agent

• nondeterministic (from the agent's viewpoint): the wheels of the
robot can slip, the batteries run down, et cetera. So it is never
sure if an intended action is going to have the desired effect.

• nonepisodic: the effects of an action change over time

• dynamic: the robot has for example to know when it is useful to
act immediately or to wait and calculate other possibilities

• continuous: this makes it impossible to enumerate a finite set of
possible actions

Considering these conclusions, we came to the following demands for
our system:

• the system had to use an environment map for reliable and accu-
rate localization

• the system needed a structure which made fast reactions to changes
in the world possible (so not all navigation could be done on the
static map, because there will be (moving) objects which are not
on the map).

• the system should not require some kind of artificial markers on
the environment



4.2 Design issues and choices 12

The promising results of some of the research projects described in chap-
ter 3, as well as research wishes at TNO TPD, led to the use of a 3-
dimensional model of the environment as a basis for our system. A
3-dimensional model gives the possibility to model natural landmarks
and to compare the sensoric data (from the real world) directly to the
model. A 3-dimensional model also gives some extra advantages, which
we will review in the next sections and in the future work section.

4.2 Design issues and choices

In this part some choices we made will be highlighted. The next sections
will give more detailed descriptions on the hardware and software we
have used and developed.

4.2.1 Environment model

Using the prerequisites defined in 4.1, the possibilities of 3-dimensional
modelling were researched. We decided to use the Virtual Reality Mod-
elling Language the WEB 3D consortium [141 (VRML) files for our en-
vironment map. VRML is at this moment the standard for modelling
3-dimensional worlds for all kinds of occasions, for instance building
virtual worlds or presenting buildings or devices.

In VRML, it is possible to define geometry, transformations, attributes,
lighting, shading and texture of objects. Objects can be defined using
simple geometric shapes (cubes, cylinders, et cetera) or by connecting
coordinates. These objects can then be transformed and rotated in any
direction. It is also possible to set the visible properties of objects, such
as colors or textures. And finally, a virtual world can be completed by
placing lights on various positions.

Another aspect of VRML is the possibility to 'walk' through a virtual
environment with the mouse or keyboard. This really completes the
sense of a virtual world where a user can walk and look around. Another
possibility is to define a viewpoint on a certain position. This is the
option which will be used in this project, as will be explained later.

4.2.2 Comparing model to camera image

The method used for localization in this project, is based on the assump-
tion that it should be possible to compare images from the real RGB-
camera on the robot with images taken by the 'virtual' camera in the
VRML-model. This approach makes it possible to use the image from
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Figure 1: Picture of the Nomad Scout robot

the VRML-model as a kind of template of features, which have to be
found in the real image.

4.3 Hardware setup

The robot that is used is a Nomad Scout [15] from Nomadic Technologies
(see figure 1). This is a 2 degrees of freedom differential drive robot
controlled by a 68332 controller board and an onboard PC. The robot
is equipped with a range of 16 ultrasonic sensors and a touch-sensitive
bumper. The diameter of the robot is 41 cm and its height is about 35
cm (without camera).

The PC setup is modified to be more compliant with today's standards.
The robot now uses a Pentium III processor running on 1,3 GHz and has
512 MB of RAM onboard. It is also equipped with a PCI-framegrabber,
which connects the PC to the RGB-camera mounted on top of the robot.
The PC is connected to the controller board by the serial port.

To provide a connection to the network, the robot has a wireless net-
work card (10 Mb speed). As it has an onboard PC, the robot can drive
autonomously, but the network connection is useful to review results
and enter commands from another PC.
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4.4 Software setup

4.4.1 Operating system

The operating system used is Microsoft Windows 2000. This operat-
ing system was chosen, because the software toolkit used for the image
analysis is based on DirectShow [16], which is only available for Win-
dows. By using Windows, some of the possibilities of (Real Time) Linux
can't be used, but as our application doesn't need very much computa-
tional resources, this is not considered a disadvantage. The Argos-SDK
gives some other advantages which will be discussed in 4.4.2.

Because the software from Nomadic Technologies for the Nomad Scout
is Linux based, a new interface to the robot had to be written.

4.4.2 Image analysis framework (Argos-SDK)

The image analysis framework (called Argos-SDK) offers a connection
between DirectShow and Matlab [17] (an advanced tool for doing nu-
merical computations with matrices and vectors with its own scripting
language). The framework grabs images or movies in a very fast way
using DirectShow. Filtering can be done by DirectShow, but it is also
possible to transfer the image to Matlab to perform advanced process-
ing on them. While Matlab is busy analysing the images or controlling
the robot, the grabbing of images in DirectShow continues (because this
part runs in a separate thread and thus is not influenced by Matlab).

The framework allows rapid prototyping and development, because it
is very easy to change the image processing graph (see figure 2 for an
example of such a graph) and to try some algorithms in Matlab. As
mentioned in 4.4.1, the combination of platform and operating system
is not the best possible in terms of (real time) performance, but this is
not considered a problem at this project.

4.4.3 YRML framework (Visserver)

To be able to use VRML-files (which we use as our 3-dimensional en-
vironment map), we use Open Inventor [18]. This is an object-oriented
toolkit for developing interactive, 3D graphics applications. A Matlab
toolbox to access Open Inventor (and thus control VRML files from Mat-
lab), called the Visserver, has already been developed by TNO TPD.
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Figure 2: Example of an image processing graph in the Argos-SDK.
Each block represents a DirectShow-fllter.

4.4.4 Robot control

As mentioned in 4.4.1, a new interface to the robot had to be developed,
because the original software is Linux based. Because all image analy-
sis had to be done in Matlab, the decision was made to control the robot
from Matlab too. To achieve this, so-called Matlab Executable (or MEX)
files are used. These files can contain C-code (or other language, but in
this case C was used) and can after compilation be executed from Mat-
lab as ordinary Matlab-files or functions (see [191 for more information
about MEX-files).

Already available Nomad software for Windows [20] was used as a ba-
sis for these MEX-files. Using this software, most of the functions where
transcribed to Matlab functions. Thus the robot's motors and the ultra-
sonic sensors as well as the touch sensor can be controlled from Mat-
lab. All these rather simple functions (like 'move forward with a certain
speed') can be combined in a Matlab script, to make the robot fulfill a
certain task. An example of such a script is listed (in pseudocode) in
algorithm 1.

These scripts can also contain functions to control the image-processing
toolbox (Argos-SDK) and the VRML toolbox. Thus the entire behaviour
of the robot and all sensors can be controlled from Matlab.

This architecture gives the possibility to develop certain behaviour in
a fast way by putting the desired behaviour in a script. More complex
behaviour can be achieved by combining scripts. It is of course also
possible to control the robot by typing in the functions at the Matlab
prompt.

4.5 Our method

The method used for localization in this project, is based on the assump-
tion that it should be possible to compare images from the real RGB-
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Algorithm 1 Pseudo-code example for very simple obstacle avoidance
% Note: in Matlab, commentlines start with a %

% like this line

% continue until bumper is pressed

while ( rbgetBumper == 0

% read sonar values

sonars = rbgetSonars;
if ( sonars > 50

% obstacle at a certain distance: then we

% move forward

rbMove(50,50)

else

% otherwise move backwards

rbMove(-20,-20);

end;

end;

camera on the robot with images taken by the 'virtual' camera in the
VRML-model. The features in the model are used as landmarks which
have to be found in the real image.

The process of our approach is shown in figure 3. The wheel encoders
(odometry) of the robot are used as an initial guess for the position of
the robot. Then the viewpoint (the 'virtual camera') is placed in the
VRML model on that estimated position and angle. If the guess is good
enough, the view from the virtual camera will be nearly identical to the
view from the real camera on top of the robot.

First, some image-processing steps conducted on the camera images will
be discussed. Then the comparison between the virtual and the real
image will be explained.

4.5.1 Image processing

The RGB-camera and the framegrabber on the robot are able to deliver
32-bit RGB images at a framerate of 30 frames per second. This is a
far higher framerate than is necessary for our purposes. Therefore, the
framerate is set to 5 frames per second (which is still a bit higher than
needed, though) at a resolution of 320 by 240 pixels.

Most image-processing is done in a Directshow graph (see figure 2 for an
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example) and thus keeps on running in a thread separate from Matlab.
The following transformations in Directshow on the images from the
camera are used:

• Camera calibration: This first step is required to remove any dis-
tortion caused by the camera lens. The virtual camera in the
VRML model is 'ideal', which means that for example all straight
lines really look straight. In our real camera, such lines are often
distorted (especially when they are on the side of the image). To
compensate for this effect, we have to calculate a so-called camera-
calibration matrix. This is a transformation which corrects this
effect. This filter was already present in the Argos-SDK, we only
had to calibrate it for our specific camera. This calibration is done
by moving a chessboard with a known size in front of the camera.
The calibration filter is able to calculate the distortion (because
the size of the chessboard is known), and the calculated calibra-
tion matrix can be used to correct this distortion.

• Transformation from RGB to grayscale image: This is the conver-
sion of a Red-Green-Blue image (so a color-image) to an image with
only levels of grey. This is necessary because the edge filter we use
(see the next step) only handles grayscale images.

• Canny-edge detection: This ifiter (see [3] for a detailed descrip-
tion of this algorithm) transforms the grayscale image to a binary
(black and white) image which only shows the edges of objects.
Figure 4 shows an example of an image of our hallway that is
transformed using this algorithm. The Canny-edge method is of-
ten considered the optimal edge detector, mainly because it has
a very low error rate (few edges are missed and few false edges
are detected). It works in a multiple steps: First the image is
smoothed by Gaussian convolution. Then gradient magnitude and
direction are computed for each pixel. The direction of the gradi-
ent is used to suppress pixel responses that are not higher than
the two neighboring pixels on either side of it (non-maximal sup-
pression). The two neighbours of a pixel that have to be compared
are found by rounding off the computed gradient direction to yield
one neighbour on each side of the center pixel. Then, the high mag-
nitude contours are tracked. The tracking process is controlled by
two thresholds (Ti and T2): Tracking can only begin at a point
on a ridge higher than Ti. Tracking then continues in both direc-
tions out from that point until the height of the ridge falls below
T2. This procedure helps to ensure that noisy edges are not broken
up into multiple edge fragments.
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Figure 4: Example of edge-detection on a picture of our hallway. The left
picture shows the normal camera image. The right picture shows the
same picture, after the Canny edge detection algorithm was performed
on it.

After this step, the image is transferred to Matlab. In Matlab, another
transformation is done:

• Distance transform: This transformation calculates for each posi-
tion the distance to the nearest pixel that is 'on' (it is normally only
applied to binary images). So the positions where lines are found
get value 0, the pixels next to the lines get value 1, et cetera. In
figure 5, an example of the distance-transform of a simple shape is
shown. In our application, the Euclidean distance is used. The Eu-
clidean distance transform between two points (xl,yl) and (x2,y2)
is defined as follows:

d = X2)2 + (yi — Y2) (1)

Using the standard Matlab implementation (bwdist), this value is
calculated for each point to the nearest nonzero pixel. The calcula-
tion for each point is not really necessary (because only the pixels
where we expect to find edges are used), but this is done due to
implementation issues (a partial distance transform is not easily
implemented in Matlab).

The steps mentioned above are all processed on the image from the
RGB-camera, but some transformations are also done on the image from
the virtual camera.

• Rendering of image: This step is the actual 'taking' of the picture
from the VRML model. When the virtual camera is on the de-
sired position, a snapshot of the view is taken and this image is
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Figure 5: Example of distance-transform of a simple shape. The left pic-
ture shows a binary image (black pixels have a value of 1, white pixels
have a value of 0). The right picture shows the distance-transform of
the image: each position shows the distance to the nearest black pixel.

transferred to Matlab. This is done using the Visserver applica-
tion, which we have mentioned earlier.

Transformation from RGB to grayscale image: Same step as done
with the real camera image. Necessary for the edge-detection.

• Canny-edge detection: The edges of our virtual image have to be
used, so the Canny edge algorithm is applied to this image as well.

At this point, two images are available: one binary image of the edges
of the VRML model, and one distance-transformed image of the edges
of the real world. These two images now have to be compared and a
measure representing their match has to be found.

4.5.2 Image matching

To define the match between the two images, the following approach
is used. The virtual image is used as a template, because this view
is the expected view on the robot's current position. So for each pixel
that is part of a line (each pixel that has the value of 1, because we are
using a binary image), the value on that same location in the distance-
transformed real image is checked.

If the two images are equal, these values should be low (because the dis-
tance to the nearest pixels is low on these locations, which means there
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are pixels on approximately the same locations). In [21], this distance
between the template image T and the original image I is referred to as
the chamfer distance, which is defined in:

Dchamfer(T, I) dj(t) (2)
I ItT

where
I
T

I

denotes the number of features (in our approach: pixels) in T
and d1 (t) denotes the distance between feature t and the nearest feature
in I.

To get an usable measure for these match, the mean of all pixels (so of
the whole image) is used. If this match-value is below a certain thresh-
old, the two images are considered to be good matches:

D(T,I) <8 (3)

The exact value of this threshold 0 has to be found experimentally. We
will explain these experiments in 5.2.

When two images are being compared, both images are also saved to
disk. The computed match-value and the current location are also logged
to a file. These files can be used to review the performance of the system
afterwards.

4.5.3 Searching through the virtual environment

If the calculated match value on a certain position doesn't exceed the
specified threshold 0, the robot is apparantly not on the location where
it thinks it is. A search through our virtual environment then has to
be conducted (so the virtual camera has to be moved), until a location
where the images do match is found. Because the robot's position is
checked every 1,5m and the starting position is known (see the part
on incremental localization), this search space hopefully doesn't have
to be very large. The search is in fact a minimalisation of the function
described in 4.5.2, because we want the result of this function to be as
low as possible.

The search is based on the heuristic that our hallway is a rather simple
geometric environment. In our first experiments, the model was only
used in one direction (the width of the hallway). To find the best match
in that direction, the virtual camera only had to be moved from right to
left in the width of the hallway. When this method was later extended
to the other direction and to the angle, these directions were simply
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added. So the camera first moves from left to right to find the best
match in ydirection, then forward to backward to find the best match
in x direction, and finally the virtual camera is rotated to check the
robot's angle (see figure 6 to get a better understanding of the x and y
directions). This method seemed to get quite accurate results and is a
rather fast way to search through our 3-dimensional search space (x, y,
and angle). As will be described in the sections on the experiments and
the conclusion, sometimes some problems in the x direction occur due to
repetitive elements in the hallway.

Something that has to be noted, is that we conduct a 1-dimensional
search for 3 times, instead of a true 3-dimensional search (x, y and angle
all simultaneously). While doing the minimisation search, the robot
could get stuck in a local minimum and thus propose a less optimal
position.

4.6 The environment map

As a basis for the model, an ordinary map from our office is used (see fig-
ure 6). This map already gives 2 dimensions of the model, so after mod-
elling this map only the walls have to be 'raised' to complete the model.
The final result can be seen in the screenshot of the review utility in
figuroe 7. Because only the edges will be used, realistic textures on the
walls aren't necessary. They would only decrease the performance and
are of course useless when only edges are used.

The only aspects that are modelled, are the squares on the floor and
the doors. These objects are modelled using standard colors and shapes,
and thus don't have any realistic textures on them.

4.7 Navigation

The robot keeps track of its own position (x and y) and angle. A simple
algorithm to use coordinates from this coordinate system as a target to
drive to was developed.

The algorithm is listed in pseudocode in algorithm 2.

This is of course a very simple algorith, but it is useful so far in the
current environment. Another algorithm can be easily implemented,
because this only involves replacing one Matlab script. Not mentioned
in this example is the detection of obstacles and the use of the camera
and the VRML model. Something about the cooperation between all
parts will be explained in the next section.
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Algorithm 2 Pseudo-code example of our navigation algorithm
while ( distance > 5

if ( distance > 100
% move pretty fast

rbmove(90,90)

else

% otherwise: move slower (we are getting near)
rbmove(30,30)

end;

[curX,curYj = rbgetpos; % get current position

% check distance to goal

distance = sqrt((targetX-curX)"2 + (targetY-curY)"2);

if ( —exist( 'tempdistance'

% help variable

tempdistance = distance;
end;

if ( distance > 50

% we aren't near our goal yet

if ( abs(tempdistance - distance) > 150
% if we have driven 150 cm's, we check
% our angle

% turn to target again

rbturnto(targetx, targetY);

% reset distance

tempafstand = afstand;
end;

else

% we are getting close

if ( abs(tempdistance - distance) > 10
% if we are really close: correct angle

% more often (every 10 cm's)

rbturnto(targetx, targetY);

tempdistance = distance;
end;

end;

end;



Figure 6: Map of our office that was used to create the VRML model.
The x andy directions are marked.

4.8 Self-localization

When the robot has driven about 150 cm, the navigation algorithm
checks if the robot is still facing the right direction (see also algorithm
2). On this position, the current camera image is also checked against
the VRML model. If this match is not satisfying, the virtual camera is
moved and the system tries to find a better match. If multiple matches
which are below the threshold 6 are found, the minimum is chosen.

After this process, the location of the virtual camera on the best match's
position is used as the new location for the robot. If no suitable matches
are found at all, the robot continues using the old values from the odom-
etry This can sometimes happen when for instance someone is blocking
the camera view. When the robot has driven another 150 cm's it will
start another check and hopefully get a match by then.

4.9 Modular design

Because all parts of robot control are in separate Matlab files, it is pos-
sible to combine these basic elements into more complex behaviour. A
somewhat hierarchical structure in priority, which is inspired by the
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subsumption architecture [5] is used. This architecture breaks the pro-
cessing of information into several modules, which act more or less in-
dependently from eachother on both input and output. The low-level
behaviour is implemented in a rather easy and very direct way; more
intelligent functions are performed in a higher layer and don't interfere
with the other layers.

The following priority in behaviour is defined:

1. avoid obstacles

2. navigate towards a goal

3. localise yourself with the camera

Thus, if for some reason the localization fails, the robot continues to
drive to its goal (although the errors in odometry will accumulate). And
if navigation is not possible, the robot will still avoid obstacles, as this
is the most low-level behaviour.

Because of this architecture, it is also possible to implement new be-
haviour rather easy. A new Matlab script could easily be written and
placed somewhere in this hierarchy.

4.10 Other tools

Some other tools for the robot, some of which are useful for analysing
the results, some of them for other purposes, have been developed.

4.10.1 Review utility

To be able to review the results of the robot, a script with which it is
possible to review the results of the localization module was developed.
A single snapshot can be watched, but it is also possible to generate a
movie from all snapshots. In a single window all relevant images are
shown: the real camera image, the VRML camera image, the VRML
model viewed from above (to see where the robot is localised), the com-
bined view of the real and VRML image and the match value at that
position (see figure 7).

4.10.2 Webserver

Some of the scripts are integrated with a webserver. There is not much
functionality yet, but this can be easily extended. The robot's webserver
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Figure 7: Screenshot of the review utility. Upper left is the real image,
the upper middle image shows the view from the virtual camera. Upper
right is the view of the model from above. Below left is the combined
view of the real and VRML image and the graph on the lower right
shows the match value for this position.
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shows the last snapshot that was taken, and allows viewers to take a
new snapshot. In the future it could be possible to give more specific
commands by this web interface.

4.10.3 Interaction with environment

The robot is also able to have some (very basic) interaction with the
environment, by using its onboard speakers. A few sentences and words
have been sampled. The robot uses these to announce its location and
the direction where it is going. It can also be used to warn people who
are in the way to step aside.

4.10.4 Net viewer

The webserver already gives the possibility to look over the robot's shoul-
der while it's driving, but this doesn't refresh very fast. With a com-
ponent from the Argos-SDK, the images from the RGB-camera can be
streamed directly over the network. This is very useful when controlling
the robot from another computer.
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5 Experiments

5.1 Odometry tests

To get some grip on the errors in odometry the Bidirectional Square-
Path experiment, described in [2] has been conducted. This test requires
the robot to drive in a square path in two directions (both clockwise and
counter-clockwise). After each square, the distance from the starting
point is measured. This distance gives a measure for the systematic er-
ror in odometry The test is performed in two directions, because other-
wise two mutually compensating odometry errors can compensate each
other.

After a number of repeats of the test, the error in odometry is expressed
in a single numeric value. This value is computed by first calculating
the center of gravity of the errors in both directions, and finally taking
the largest value of these 2 numbers. The test doesn't use the mean of
both directions, because in practical applications one has to deal with
the largest possible error, and using a lower value would thus give un-
desirable results.

In the experiments, this test was conducted by driving a im by im
square for 5 times in both directions. These tests return an error value
of 3 cm. The mean systematic error in odometry is thus about 0,75%.

In A, all results of these experiments can be found. The systematic error
that was found, has been used for defining the size of the movements of
the virtual camera, when it is searching through the model.

5.2 Match threshold

In 4.5.2 the method to get a match value (DejjamIr) between the real
and virtual image is explained. To find an accurate threshold (9) for the
match value, some tests were performed.

This threshold is mostly useful for rejecting images that do not match
the templates from the virtual image. The search always returns the
minimal distance found (and thus the image that most closely matches
the current template), but the threshold defines if this match is consid-
ered useful or not.

To gain a thorough knowledge of this value, we have conducted some
experiments with images taken on known positions. By moving the vir-
tual camera around this known positions, the change of the match value
was found. After these experiments, images with a match value lower
than 3 were considered to be equal (and thus taken on the same position



5.3 Complete search 29

in both the virtual and the real world). The goal was, to be able to match
images with a maximum error of 2 cm. As mentioned, the threshold will
probably not influence this accuracy very much, because it is only used
for rejecting images.

Match values higher than 3 resulted in too much false positive matches
(the match value indicates the template and image represent the same
location, but in fact they do not). The change in match value when the
virtual camera is moved (in another experiment) can be seen in figure
8. This figure shows, that a threshold of 3 will reject the images taken
at a greater distance than 2 cm from the actual position.

5.3 Complete search

In the initial stage of the project, some exhaustive searches on fixed po-
sitions have been performed. The robot used a snapshot from some lo-
cation and then put the virtual camera on all possible positions around
this position (so not by moving first in x-direction, then in y-direction
and then the angle, but by putting the virtual camera on every possible
position). This is an obviously very expensive search (in terms of com-
putational costs), but it was very useful to get a better understanding of
the variations in match values on several positions.

This experiment clearly showed the possibility of getting in a local min-
imum, when searching in 3 directions consecutively Nevertheless, it is
impossible to do such a search every time, so we tried to minimise this
problem by choosing the best performing search order. This order was
determined by varying the possible search order and reviewing the re-
sults. Our initial guess, that the best option would be to start with a
search in the y-direction, turned out to be correct.

A (simplified) graph showing the results of this experiment is in figures
8 and 9. Our original figure showed both x, y and the angle, but this is
impossible to show in a meaningful way on paper. Especially figure 9
showed, that the match value can be (incorrectly) low when the virtual
camera is moved to the left or the right, and looking under a certain an-
gle. Figure 10 shows an (exaggerated) example of such positions which
could incorrectly return a similar match value (which was not expected,
because the viewing angle is quite different). As mentioned, by choosing
a specific search order, this problem is hopefully minimised.

5.4 Localization experiment I

Tests with and without the use of our model have been conducted (re-
garding the design described in 4.9: level 3 has simply been left out.



Figure 8: Simulation of match value (Dthamfer) on several x andy posi-
tions. X andy are in cm.
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Figure 9: Simulation of match value (Dchamfer) on several x and angle
position. X is in cm, angle in degrees.

5.4 Localization experiment I 30

match value (ChaiTder dsnce)

match



5.4 Localization experiment I 31

Figure 10: Example of two positions that could (incorrectly) return a
similar match (Dcjzamer) value. The robot is represented by the circles,
the angle the camera is facing is represented by the arrows.

This doesn't influence total behaviour except that localization is not
done). In the first experiments, the VRML-model was only used to po-
sition the robot in the width of the hallway (which corresponds to the
y direction). This gave some promising results: the robot was able to
position itself very accurately in this direction (the camera image was
matched with an average error of about 2 cm). This is of course due to
the rather clear landmarks in this direction, namely both walls.

In a latter experiment, the robot had to go to a specified location (the
end of the hallway, about 11 metres from the starting point) for a few
times, and afterwards return to its starting position. Ideally, it would go
to the same location each time. Unfortunately, these results where not
as satisfying as hoped (at these experiments, the model was used for all
3 dimensions: x, y and the angle), as the results below show.

In figure 11 these results are displayed. The distance between the tar-
get position and the actual position of the robot was measured or derived
from the logfiles and is also listed in appendix B.

As figure 11 shows, the odometry seems to perform worse in the y-
direction, which corresponds to the width of the hallway. The local-
ization module (the correction by the \TRMLmodeI) gives more errors
in the length of the hallway (x), when the robot drives to the end of the
hallway. The mean error without model is 1,4 cm (x) and 4,6 cm y) with
standard deviations of 1,9 cm (x) and 5,8 cm (y). When the model is used,
the mean error is 11,8 cm (x) and 3,1 cm (y), with standard deviations
11,4 cm (x) and 4,1 cm (y).

When the robot drives back to its starting point, the odometry performs

/.
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better than the VRML-model in both directions. The mean error with-
out model is 4,5 cm (x) and 7,8 cm (y) with standard deviations of 4,4 cm
(x) and 4,6 cm (y). When the model is used, the mean error is 8,9 cm (x)
and 1,6 cm (y), with standard deviations 36,6 cm (x) and 14,6 cm (y).

Generally, the system is less capable to reach its target point with the
VRML-model than without the model. In the next chapter, we will ex-
plain this behaviour.

5.5 Localization experiment II

To check if the match threshold 9 is maybe still too high (and see if
the system has to reject possible matches more often), the data from
experiments described in 5.4 was analyzed with a lower threshold. This
was done on the movies and log files from experiment I, so it was not
possible to see the complete effect of this parameter change (because it
is of course not possible to change the location of the robot afterwards).

This experiment shows that the errors in the results are not caused by
a threshold that is too high. When the threshold is for example set at
2 (original value was 3), the incorrect results at experiment I will still
occur (at all runs). In other words: all errors that were made with a
threshold of 3, would also occur when the threshold is 2, and the robot
would not perform better or worse.

Due to the repetitive elements in the hallway, some images return a
match value below 2; even when their position differs more than 10 cm
from the actual position of the robot.

5.6 Localization experiment III

A final small experiment that has been done, is another analysis of the
log files and videos created by the robot during its tasks. Seventeen runs
have been compared at specified distances from the starting point. At
these points, we checked if the system was searching the correct area
of the model (so the area that covers the actual position of the robot).
Correct runs have been marked with a 1, runs were the system was
searching the wrong area (the failures) were marked a 0. The results
are listed in figure 12 and also in appendix C. The search algorithm
searches 20 cm around the estimated position (in steps of 2 cm), so the
estimated position is more than 10 cm different from the actual position
if a 0 is listed in the table.

As the figure shows, the robot succeeds in 15 out of 17 runs, when we
compare the results after 3 m. Nevertheless, this success rate drops
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Figure 11: Results of localization experiment I. The target position is
on (0,0), the marks show the positions where the robot actually went.
The upper graph shows the results of the robot driving to the end of the
hallway. The lower graph shows the results of the robot returning to its
starting position.
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when the robot has driven a greater distance (this is also shown by the
results of experiment I, where the robot is sometimes more than 30 cm
from its target point). After 7,5 m, the success rate has dropped to 10
out of 17 and after 9 m the success rate is 4 out of 17.
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6 Discussion

Although the approach seems to give promising results, the performance
is not robust enough yet. When the robot has to go to a specified location,
it performs better without our module running (so by using only infor-
mation from the odometry). The matching algorithm is not performing
good enough in the length of the hallway, probably because some ele-
ments repeat themselves in the hallway (doors, elements on the floor).
The performance in the other direction is also below the level of the
odometry.

The results are nevertheless promising, because the method of match-
ing the camera data with the model seems a good one. A simple hard-
ware setup can be used to perform localization, it is for example not
necessary to use stereo vision. We have some ideas about how to im-
prove the performance listed below.

A very obvious improvement that we have overlooked is to do a less
strict update of the position. In the current approach, when a match
between model and camera image is found, the current position of the
robot is overwritten with the position derived from the model. A better
approach would be to integrate these values: Both the initial guess from
the odometry as well as the suggested improvement from the model
are available. The system then uses a weighed mean between these
values as the new position. The use of a Kalman filter is a very common
approach for this problem.

Experiment II shows, that tuning the threshold parameter 0 does not
give any improvement. The errors in the system are not caused by false
matches that could have been rejected by using a lower threshold value.
The choice of the minimal value seems to be a good approach, but when
the starting point for the search is not accurate (due to the lack of a
Kalman filter or similar module), the system is unable to find a good
match.

Something that could be tried is to make a slightly more detailed model.
In the current setup, some errors are also caused because the door at the
end of the hallway is not modelled very accurately (it is a glass door, but
it is modelled as an ordinary door with no glass in it). The analysis
of the videos and log files done in experiment III seem to point to this
conclusion: after a relatively small distance, the robot still performs
reasonable, but when it has driven more (and thus reached the end of
the hallway), more errors rise. This also points to the need to use a
better method to update the current position (for example by using a
Kalman filter), because the matching algorithm is able to detect good
matches, but is sometimes searching the wrong area of the model due
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to incorrect position updating.

An obvious disadvantage of this approach is the need to develop a VRML
model first. We think, that these models will be developed more and
more these days, because it is a very useful way to show a new build-
ing. Thus, there are already models available before buildings are even
built (because the architect uses VRML to show what the building will
look like). When such a model is not available, a skilled person could
probably create one in less than a day (when a normal map like the one
in figure 6 is present).

Something that has to be tested, is the performance of this approach in
other buildings or rooms. If, for example, the walls of a room are not
totally visible (because of furniture or plants), the robot will probably
not find any matches. The system will continue (as described in 4.9),
but will only use the information from the odometry. Other aspects,
such as a building with less square forms, will probably not have any
negative influence on the behaviour, because not the complete lines, but
only the individual pixels of edges are detected and compared. Other
methods, which are for example based on Hough transformation, rely
more on straight lines.

This method is probably not very useful in outdoor conditions: the en-
vironment outside is very likely to be too difficult to model and changes
too often. For such an environment, a system without a map is probably
more suitable.
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7 Conclusion and future work

This final chapter lists the conclusions from the theory and the experi-
ments, and lists suggestions for further research.

7.1 Conclusion

The approach has showed some promising results. This use of VRML
gives a rather useful way of localization with a very simple hardware
setup. Without stereo-vision it is possible to check if the robot is on a
certain position. If a model is available, the robot can be used without
any training sessions which sometimes give very unexpected results.
The localization by direct comparision between the camera image and
the image from the model, seems useful.

The choice of using VRML also offers some extra advantages and possi-
bilities, as described in the section on future work.

Unfortunately, the system doesn't work as robust as expected yet. The
matching algorithm is not performing good enough in the length of the
hallway, probably because some elements repeat themselves in the hall-
way (doors, elements on the floor). Besides this, the correction of the
robot's position and angle by the system could be done in a more ad-
vanced way, for example by using a Kalman filter. Such a filter would
give a better prediction of the location from which the model has to be
searched. When such a filter is used, we expect the system to perform
much better.

Another thing that could be tried is to make a slightly more detailed
model. The current model is quite simple (which saves of course time
when creating it), but more detail could add some extra reliability.

More experiments are also needed, to get a better understanding of the
(errors in the) results. Also, tests in other environments have to be done.

An obvious disadvantage of a map-based approach is the need to develop
a model first. We think that VRML models (or in the future maybe
other, comparable models) will be developed more and more these days,
because it is a very useful way to show a new building. Thus, there are
already models available before buildings are even built (because the
architect uses VRML to show what the building will look like).

Overall, the system seems to be a very usable start in experimenting
with 3D-map based navigation. The chosen method definitely needs to
be improved, but the global setup and the software can be used as a
basis for new research. In the next section, some suggestions for future
work are given.
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7.2 Future work

Some other things that we think can be useful in the future are the
following.

7.2.1 VRML and sensor fusion

It can be useful to use more information from the VRML model. In the
Visserver toolbox, it is possible to find the distance to objects, just like
the robot does with its sonars. If this information is used and compared
to the real sonars on the robot, input from another sensor is available
to check the location of the robot. In this approach, sensor-fusion could
be used to gain more reliability.

7.2.2 VRML and staircases

Modelling the staircases in the VRML model will also give some advan-
tages. In the described experiments, the robot was kept away from the
staircases, to prevent it from falling down. With the current sensors
(sonars, camera) it is hard to detect a 'missing' floor before the robot.
When these missing floors are modelled in the VRML model, a script
which checks if there is a floor on the location where the robot is going
to could be used.

7.2.3 VRML and locations

Another improvement could be to read the locations of targets (for in-
stance of a room to go to) directly from the VRML file. In the current
scripts, the translation between a coordinate and for instance a room
number is made by hand. It would probably be possible to make this
translation automatically when for instance someone clicks on a loca-
tion in the model. This would also give the possibility to develop a very
intuitive way of controlling the robot, like in [131.

7.2.4 Navigation algorithm

As already mentioned, the algorithm used to drive to location is rather
simple. If this approach is going to be tested in a more complex envi-
ronment, an algorithm which can also handle corners and doorways is
definitely needed. Fortunately, such a change can probably be imple-
mented rather easily.
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7.2.5 Ambient intelligence

The possibility to move the virtual camera in a VRML model to every
location also opens some doors to ambient intelligence. If there is for
instance a camera in the hallway (for guarding purposes), the system
could compare the image from this camera with the model as well (be-
cause the virtual camera in the VRML model can easily switch from the
robot to the position of the guarding camera).



A. Results of odometry tests 40

A Results of odometry tests

Below are the results of the bidirectional square-path experiment. All
values are in cm.

Task: driving a im by im square in two directions. The distance from
the starting point is listed in the table.

Clockwise difference X difference YJ
#1 2 3

#2 2 2

#3 1 3

#4 2 2

#5 1 2

, 1.6 2.4
r 2.88

Counterclockwise difference X difference Y
#1 1 2

#2 4 2

#3 0 3

#4 1 3

#5 3 3

Ii 1.8 2.4
r 3
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B Results of localization experiment I

Below are the results of the comparison between the robot driving with
only odometry and the robot driving with both odometry and the VRML
model. All values are in cm.

Task: driving to end of hallway (urn from starting point). The distance
from the destination point is listed in the table:

# difference X difference Y # difference X difference Y
without model with model

1 0 1 28 3

2 3 18 2 2 4
3 2 -1 3 2 6
4 0 6 4 17 -4
-- 4 -3 5 16 10
6 3 5 6 -8 5

7 -2 4 7 13 3

8 1 4 8 24 -2

[7 1,4 4,6 p 11,8 3,1
1,9 5,8 a 11,4 4,1

Task: returning to starting point (urn again):

[TJ difference X difference Y [ T difference X difference Y

I without model with model
I

1 10 12 1 58 -19
2 8 12 2 -12 -18
3 6 12 3 -62 2

4 0 10 4 38 14
5 -4 6 5 24 5

6 6 4 6 18 13
7 2 -2 7 -25 -8
8 8 8 8 32 24

4,5 7,8 p 8,9 1,6
0 4,4 4,6 a 36,6 14,6
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C Results of localization experiment III

Below are the results of the analysis of the logfiles and videos after the
robot has driven certain distances from the starting point. A 1 denotes
that the robot is still searching the model in the correct area (so the
area that covers the actual robot position), a 0 denotes a failure: the
robot has somehow lost track of the correct position and is searching an
area where it will not find its actual position.

Task: driving to various target points. All tasks are compared after sev-
eral distances.
run #] 1,5m 3m 6m 7,5m 9m

1 1 1 1 1 0

2 1 1 0 0 0
3 1 1 1 1 0
4 1 1 0 0 0
5 1 1 0 0 0
6 1 1 1 0 0

7 1 1 0 0 0
8 1 1 1 1 0
9 1 1 1 1 0

10 1 1 1 1 0

11 1 1 1 1 1

12 0 0 0 0 0

13 1 1 1 1 1

14 1 1 1 1 1

15 1 1 1 1 1

16 0 0 0 0 0
17 1 1 1 1 0
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D List of implemented robot control commands

Below is a list of commands that are implemented in Matlab

Robot programmes

rbauoid - start the obstacle avoid programme

rbkeyboard - move the robot by keyboard control

rbmouse - move the robot by mouse (from another pc)

rbfollow - let the robot follow moving objects (using the sonars)

Utilities
rbdisplaysonars - show the sonar values

rbshowmap - show the map created by RBMAP

rbshownewmap - create the VRML map created by RBNEWMAP

rbreviewpath - review the results of the matching process (see figure 7
for a screenshot of this utility)

rbmaakavi - make a AVI-file (video) of the matching process

rbnetview - view the robot's camera image (from another pc)

rbsay - make the robot 'talk'

rbremote - start the server to control the robot from another pc

Scripts for virtual and real camera
rbinitcam - initialise the VRML-world

rbdxstart - start the DirectShow graph for the camera

rbmovecam - move the virtual camera to a specified position

rbmouetopcam - move the virtual camera to a specified position (top
view)

rbcompare - compare the camera image with the VRML model (partly
replaced by rbreviewpath)

rbfindmatch - try to match the camera image against the VRML model
(by moving the virtual camera)

Robot low-level functions

rbmove - move the robot

rbget bumper - get the bumper status

rbgetsonars - get the sonar values

rbgetpos - get the robot position from the odometry
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rbgetangle - get the angle from the odometry

rbreset - reset the robot's odometry to zero or to another position

rbstartsonars - start the sonars

rbstopsonars - stop the sonars

rbgetobstacle - check if there is an obstacle near the robot

rbmap - create a pixel map of the robot path

rbnewmap - improved version of RBMAP which creates a VRML map
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