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Summary

The Rijksuniversiteit Groningen has a number of string models of discri-
minant surfaces. In this thesis we study these discriminant surfaces and
identify the models. We begin by defining the discriminant for arbitrary
polynomials and we recall some of its properties.

Next, we study the family of tangent planes to such discriminant surfaces. A
result is proved that expresses them in terms of the polynomial that defines
the discriminant surface itself. This results in a ruling for discriminant
surfaces corresponding to a certain family of polynomials. For the surfaces
depicted by the string models, it turns out that the ruling is the set of
tangent lines to one singular curve in the surface.

Finally, we identify the rulings and each of these singular curves in each of
the string models.
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Chapter 1

Introduction

In the new RUG building, the Bernoulliborg, one can find on the third floor
a display case containing iron frames in which thin thread has been strung.
The thread forms surfaces in the frame. The frames are quite old, some of
them have even have broken strings and aren’t recognizable at all anymore.
Most are in good condition, though, due to professor M. van der put, who
restored many of the string models. Thanks to the work of Irene Polo-Blanco
[9], we know a lot about them. However, for three of the models the work
in [9] does not show conclusively what surface they represent (compare [9,
p. 105]).

Many are also mentioned in old catalogs, such as the set published by one
Martin Schilling and the one published by Walther Dyck [3]. These books
also contain descriptions of what the models represent. These are somewhat
terse, but they contain some interesting statements about the models, or
rather, about the surfaces the models represent.

Our goal is to understand and identify the remaining three models in the
RUG collection. We will first elaborate a bit on their history, and brush up
on the concept of a discriminant. Then, we will investigate a claim in one
of Schilling’s descriptions of a model. Lastly, we will try to match each of
the models with the surface it represents.

1.1 Background

On May 27, 1893, during a meeting of the Dutch Royal Academy of Sci-
ences (Koninklijke Akademie van Wetenschappen, KNAW), the Groningen
geometry professor P. H. Schoute presented three string models of surfaces.
The minutes (in Dutch) of this meeting also contain a description of their
properties: the models represent the discriminant of third, fourth or sixth
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degree polynomials, and divide space in two, three and four connected parts,
respectively. These parts correspond to the number of real zeroes of the cor-
responding polynomials [8]. Schoute also wrote a quite clear description in
German of the models for Walther Dyck’s catalog [3, Nachtrag, Abt.I, pp.
25-28].1

A second catalog, this one by Martin Schilling,2also describes string models
representing the discriminant of a polynomial [12, 11]. One of them shows
a fifth-degree polynomial’s discriminant—the degree omitted by Schoute—
and was made by Mary Emily Sinclair as part of her Master’s thesis [14, 13].
She was directed to made it for the Mathematical Seminar of the University
of Chicago [11] by Oscar Bolza, and would later become the first woman to
receive a Ph.D in mathematics from the University of Chicago.

Schilling’s catalog also contained two models derived from fourth-degree
polynomials. They were made by Roderich Hartenstein, who designed the
models in Göttingen under the direction of Felix Klein [4, 7]. Hartenstein has
also written a text for Schilling describing the models and their properties
in greater detail [5].

Strangely, Schillings catalog makes no mention of Schoute’s models, even
though Klein and Hartenstein were most likely well aware of their existence.
This may be because Schoute left out a part of the discriminant’s zero set
in his model (as we will see in section 3.2), or because some of his models
seem to be slightly skewed (as is visible in figure 3.3).

1.2 The discriminant

Definition. The discriminant of a polynomial is an expression in its coef-
ficients which gives information about the zeroes of the polynomial. More
specifically, it vanishes if the polynomial has a multiple zero. For a monic
polynomial f(x) with zeroes ri counted with multiplicity (so that f(x) =

1The dates of publication for these catalogues are somewhat confusing. For example,
the text about Sinclair’s model in Schilling’s catalog [11] mentions it was published in
1908, while the catalog itself was published in 1904, according to the front cover. The
same goes for the text on Hartenstein’s models, which was published in 1909 in the same
catalog.

Dyck’s catalog [3] has the same peculiarity: while the catalog is dated 1892, it contains a
text about a fifth-degree polynomial’s discriminant by G. Kerschensteiner, who mentions
that Schoute has presented his models in the 1893 KNAW meeting.

2The version of Schilling’s two works in the Groningen library is actually one book at
the time of writing: the second part [11] is simply appended to the first part [12], and not
separately referenced in the library system.
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∏
(x− ri) holds), we can define the discriminant as

∆f =
∏
i<j

(ri − rj)2.

In this chapter, some useful properties of the discriminant will be discussed,
as well as how to compute it.

1.2.1 Properties

When considering a polynomial f(ai)i(x) = xn+an−1x
n−1 + · · ·+a0, the set

of points (a0, . . . , an−1) for which ∆f = 0 forms a hypersurface in n-space.

It is important to remember that the zero set of ∆f can also be described as

the image of {(x, a0, . . . , an) : f = df
dx = 0} under the projection (x, a0, . . . ,

an) 7→ (a0, . . . , an).

If f(ai)i has a zero of higher order than two, or multiple double zeroes, then
(a0, . . . , an−1) is a singular point of {∆f = 0}, and in fact, these are the
only singular points [1]. Studying these singularities can tell us a lot about
the polynomial used to generate it, and most models of surfaces depict the
singularities. We will further study this matter in chapter 3.

1.2.2 Calculation

Since the discriminant is often used to get information about the zeroes of
a polynomial, it makes sense to try and find a way to compute it without
using the actual zeroes. To accomplish this, the concept of a resultant will
be useful.

The resultant of a pair of polynomials is an expression much like the discri-
minant. It vanishes precisely when the two polynomials used to compute it
share a zero. In fact, up to a constant factor it is just the product of squares
of differences of zeroes. We can use this notion, since if a certain polynomial
has a multiple zero, its derivative will have this zero as well.

The benefit of this resultant is that it can also be much more pleasantly
computed as the determinant of the Sylvester matrix—on which we will
elaborate in a moment—of the two polynomials. If f(x) = anx

n+· · ·+a0 and
g(x) = bmx

m+· · ·+b0, the Sylvester matrix S(f, g) has size (m+n)×(m+n),
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and

S(f, g) :=



an an−1 · · · a0 0 · · · 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 · · · 0 an · · · a1 a0
bm bm−1 · · · b0 0 · · · 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 · · · 0 bm · · · b1 b0


,

R(f, g) := detS(f, g).

The discriminant of a monic polynomal f of degree n satisfies [2, p. 118]

∆f = (−1)n(n−1)/2R(f, f ′).

A corollary of this is that ∆f is a polynomial in the coefficients of f . Addi-
tionally, we have obtained a definition for the discriminant of a non-monic
polynomial.

This is also one of the methods used by computer algebra systems to calcu-
late the discriminant.

Example. The polynomial f(x) = x2 + bx+ c has derivative 2x+ b, so

R(f, f ′) = det

 1 b c
2 b 0
0 2 b

 = 1 · b2 − 2 · (b2 − 2c) = 4c− b2.

From this we see that ∆f = b2 − 4c.

Alternatively, write x2 + bx+ c = (x− r1)(x− r2). Then r1 + r2 = −b and
r1r2 = c, so (r1 − r2)2 = (r1 + r2)

2 − 4r1r2 = b2 − 4c.

1.3 On the Sylvester matrix

To illustrate the way the Sylvester matrix is a suitable tool when trying to
calculate a discriminant, we will elaborate on it briefly.

Suppose f and g are polynomials over a field K, with

f = anx
n + · · ·+ a0,

g = bmx
m + · · ·+ b0,

an 6= 0 6= bm, and let

P<m ⊕ P<n = {(a, b) : a, b ∈ K[x],deg(a) < m,deg(b) < n},
P<n+m = {a ∈ K[x] : deg(a) < n+m}
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be two vector spaces, each of dimension n+m.

Now, consider the map φ : P<m ⊕ P<n → P<n+m, with φ(a, b) = af + bg.
This map is linear, and therefore we can express it as a matrix with respect
to the bases

{(xm−1, 0), . . . , (1, 0), (0, xn−1), . . . , (0, 1)} for P<m ⊕ P<n, and

{xn+m−1, . . . , 1} for P<n+m :

[φ] =



an
. . . 0 bm

. . . 0

an−1
. . .

... bm−1
. . .

...
...

. . . 0
...

. . . 0

a0
. . . an b0

. . . bm

0
. . . an−1 0

. . . bm−1
...

. . .
...

...
. . .

...

0
. . . a0 0

. . . b0


= S(f, g)T .

This means that det[φ] = detS(f, g).

Now, to find out when φ is invertible (i.e. when det[φ] 6= 0), we consider its
kernel. Suppose (a, b) ∈ kerφ, i.e. af + bg = 0. If ggd(f, g) = 1, then g|a
and f |b, and a = b = 0 because otherwise, their degrees would be too high.
If ggd(f, g) = d and deg(d) > 0, then

g

d
f − f

d
g = 0, so

(
g

d
,−f

d

)
∈ kerφ.

In other words, det[φ] = 0 if and only if ggd(f, g) 6= 1, which happens
precisely when f and g share a zero.

While this does not show that the discriminant and the determinant of
S(f, f ′) are the same, it does show that they both vanish if f has a double
zero. As we will see in the next chapter, this is the property we are most
interested in.
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Chapter 2

Tangent hyperplanes to
(∆ = 0)

In the text in the Catalog of mathematical models [12], string models dis-
playing the discriminant surface of several polynomials are described:

Models nr. 2 and 3. The general equation of fourth degree
allows itself by a simple transformation to be put in the form:

f(t) = t4 + 6a2t
2 + 4a3t+ a4 = 0.

If we interpret a2, a3, a4 as Cartesian space coordinates x, y, z,
this equation represents a family of planes with parameter t.
The envelope of this family of planes is a developable surface of
degree five, the ‘discriminant surface of the equation’.

Translation by me, [11, section xxxiii], see figure 2.1

The same section also contains a description of two other models: one of the
same surface as the first, but displaying two elements of the aforementioned
family of planes as well; and one of a discriminant surface corresponding to
a polynomial of degree five instead of four.

This suggests that for polynomials f(t) = tn +xn−1t
n−1 + · · ·+x0 of degree

n ≥ 2, the (hyper)planes formed by fixing t to fixed values and considering
the equation f = 0 of degree one in the variables xn−1, . . . , x0, are tangent
to the discriminant (hyper)surface ∆f = 0.

Before we dive into this, we should try to understand what this statement
means. To accomplish that, we will first verify it for a simpler case.
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Figure 2.1: Text from [11, section xxxiii]
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2.1 An introductory example

Our example concerns f = t2 + xt+ y ∈ Z[x, y, t] (in which we think of x, y
and t as real variables). Regarded as a polynomial in t, its discriminant, as
we know by now, is x2 − 4y. The discriminant ‘hypersurface’ is the set of
points where the discriminant is zero, which is just the parabola y = 1

4x
2.

The family of surfaces we would like, if you will, to be tangent to this
parabola is {Vt} = {{(x, y) : t2 + xt+ y = 0}}, parametrized by t.

Let us start by describing a tangent line to the parabola in a point (x0, y0):

y =
dy

dx
(x0) · (x− x0) + y0

=
1

2
x0x−

1

4
x20.

This doesn’t yet look like much until we rewrite the equation for Vt:

y = −xt− t2

If we replace x0 by −2t in the equation for the tangent lines, we indeed
obtain the equation for Vt. In other words, for any t, Vt is a tangent line to
the discriminant curve at the point (−2t, t2).

Proving a more general result will be harder, since calculating the discri-
minant explicitly for polynomials of arbitrary degree is quite unpleasant.
Fortunately, there is a way around that.

-5 5
x

-10

-5

5

10

y

Figure 2.2: For every x0, a t exists such that t2 + xt + y describes a line
tangent to the discriminant curve in x0.
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2.2 A family of tangent hyperplanes

Theorem 1. Suppose n ≥ 2 and let

f(x0, . . . , xn−1, t) = tn + xn−1t
n−1 + · · ·+ x0 ∈ C[x0, . . . , xn−1, t],

and let ∆(x0, . . . , xn−1) be the discriminant of f considered as a (monic)
polynomial in t. For every t ∈ C, the hyperplane defined by

Vt = {p ∈ Cn : f(p, t) = 0}

is either a tangent hyperplane to the hypersurface

W = {p ∈ Cn : ∆(p) = 0}

or is contained in such a tangent plane.

Since calculating the discriminant directly for polynomials of any order gre-
ater than three can become quite time-consuming, we will use another way
to identify the values of xi that lead to multiple zeroes.

Lemma 2 (Projection from Cn+1). The zero set W of the discriminant can
also be described in terms of

W ∗ = {(p, t0) ∈ Cn+1 : f(p, t0) = f ′(p, t0) = 0},

where f ′ denotes the derivative of f with respect to t. More precisely, W =
{p ∈ Cn : ∃t0 : f(p, t0) = f ′(p, t0) = 0} is the image of W ∗ under the
projection (p, t) 7→ p.

Proof. The discriminant of f is zero if and only if f has a zero with mul-
tiplicity larger than 1. For any zero t0 with multiplicity k, write f(t) =
(t − t0)kg(t) for a polynomial g such that g(t0) 6= 0. Then f ′(t) = k(t −
t0)

k−1g(t) + (t− t0)kg′(t) = k(t− t0)k−1g(t), and f ′(t0) = 0⇔ k > 1.

This projection allows us to re-interpret the tangent plane to the discrimi-
nant surface as well.

Definitions. The variety corresponding to an ideal a in C[x0, . . . , xn−1] is
the intersection of the zero sets of all polynomials in a, and is denoted V (a).
It is a subset of Cn.

The ideal I(V ) of a variety V is the ideal formed by all polynomials that
vanish on V .

The radical of an ideal a in a commutative ring R is the ideal
√
a = {x ∈ R : xn ∈ a for some n ∈ Z>0}.

In the case of R = C[x0, . . . , xn],
√
a = I(V (a)) [10, Nullstellensatz].
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Example. To better understand these notions, consider a polynomial u(x, y)
= x2. It generates an ideal (x2) ∈ C[x, y], which in turn leads to a variety
V = {(x, y) : x2 = 0}. This variety may also be expressed as {(x, y) : x =
0}, which is a more helpful description since precisely all multiples of the
polynomial v(x, y) = x vanish on V . Therefore, I(V ) =

√
(x2) = (x).

Lemma 3 (Notation for tangent hyperplanes). The space tangent to W ∗ at
a point q = (ξ0, . . . , ξn−1, τ) can be expressed as

TqW
∗ = {q + r : f(q + λr), f ′(q + λr) ∈ λ2C[λ]}.

Proof. Let f = (f, f ′), the ideal in C[x0, . . . , t] generated by f and f ′. By
definition,

TqW
∗ = {q + r : ∀g ∈ I(W ∗), g(q + λr) ∈ λ2C[λ]}.

By the Nullstellensatz (explained nicely in [10, §5.6]), we know that I(W ∗) =√
f. We will now show that

√
f = f, for if that is the case, the lemma follows.

Every point in V (f) may be written as (x0, x1, x2, . . . , t), with uniquely de-
termined x0 and x1 for all choices of x2, . . . , t. Therefore, every polynomial
g ∈
√
f has the property that for any x2, . . . , t and x0 and x1 chosen such

that f = f ′ = 0, g(x0, . . . , t) = 0.

Divide g by f with respect to x0 to obtain q1 and r1 such that g = q1f + r1
and degx0(r1) = 0. Divide r1 by f ′ with respect to x1 to get g = q1f+q2f

′+
r2, where degx1(r2) = 0, i.e. r2 ∈ C[x2, . . . , t]. Because g = f = f ′ = 0 for
any choice of x2, . . . , t and corresponding x1 and x0, r2 must also be zero for
all these choices, therefore it is the zero polynomial. This means that g ∈ f,
so
√
f ⊆ f, which completes the proof since

√
f ⊇ f by definition.

Proof of theorem 1. We claim that, given a fixed t and a hyperplane Vt ∈ Cn,
Vt ⊆ TpW for any p ∈ Cn for which t is a double zero of f(p).

If p is a singular point of W , TpW = Cn and the claim is trivial. If not,
our claim is reduced to Vt = TpW , because both are linear and have the
same dimension. In particular, all points p ∈W corresponding to the same
double zero t have the same Vt as, or in, their tangent hyperspace.

To prove this claim, we will consider TqW
∗ and project it back to W as

TpW , and show that each Vt is exactly equal to a TpW .

For any q = (ξ0, . . . , ξn−1, τ) ∈ W ∗, we know from lemma 3 that points
q + r ∈ TqW ∗ are described by the two conditions f(q + λr), f ′(q + λr) ∈
λ2C[λ]. Expanding a Taylor series for both of these functions gives us

f(q + λr) ≡ f(q) + λ grad(f)(q) · r mod λ2C[λ],

f ′(q + λr) ≡ f ′(q) + λ grad(f ′)(q) · r mod λ2C[λ].
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Since f(q) = f ′(q) = 0 and using r = (r0, . . . , rn−1, rn), our constraint
reduces to

0 =

n−1∑
i=0

τ iri,

rn =
1

f ′′(q)

n−2∑
i=0

(i+ 1)τ iri+1.

Here we assume q is a nonsingular point on W ∗, which implies f ′′(q) 6= 0
(as we remarked in §1.2.1).

We can now consider the projection of TqW
∗ to Cn, TpW , which we obtain

by leaving out the last coordinate. This is still a tangent space to W , and
it is given by

TpW =

{
p + r ∈ Cn : p ∈W ∧ ∃ τ double zero of f(p),

n−1∑
i=0

τ iri = 0

}

Consider Vt for a fixed t = τ :

Vτ = {π ∈ Cn : f(π, τ) = 0}

Let p be any point such that f(p) has a double zero in τ . Express any point
π in Cn relative to p by setting r = π − p such that π = p + r. For fixed
τ , p is fixed as well.

Vτ = {p + r : f(p + r, τ) = 0} = {p + r : f(p, τ) +
n−1∑
i=0

τ iri = 0}

Since f(p) = 0, this is exactly the definition of TpW .

2.3 Ruled discriminant surfaces

If the polynomial f is of the form tn + xkt
k + x1t+ x0 with n > k > 1, the

possible choices for p (the coefficient vector that results in a double zero at
a certain fixed t) are limited. Because f(p, t) = f ′(p, t) = 0,

x1 = −(ntn−1 + xkkt
k−1), and

x0 = −(tn + xkt
k + x1t) = (n− 1)tn + xk(k − 1)tk.

(2.1)

This describes a family of lines lt on W , given by

lt =


 0
−ntn−1

(n− 1)tn

+ λ

 1
−ktk−1

(k − 1)tk

 ;λ ∈ C
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and for a given t, Vt is tangent to W in each point on lt. Also, since W
is nonsingular almost everywhere (this is a general property of algebraic
varieties [6, chapter 1, theorem 5.3]), we can find for every point on it an
lt ⊂ W that passes through this point. Therefore, W is a ruled surface in
this case.

In fact, this can be extended to any case where x2, . . . , xn−1 are all linearly
dependent on some new variable. If f has more independent coefficients but
does contain x1t + x0, we obtain a ‘ruling’ with (hyper)planes instead of
lines.

This property is quite useful when one wants to model the surface using
strings in a frame. Conversely, the configuration of the lines in a string
model may tell us a lot about the surface it represents.

For certain choices of f , the surface contains a curve of points corresponding
to a polynomial with a triple zero. The tangent lines to smooth points on
this curve are also precisely the lines in W corresponding to a constant
double zero, which are again the rules of the surface. We will discuss this in
depth for the surfaces modeled by Schoute in the next chapter.
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Figure 2.3: A ruling of part of the discriminant’s zero set for f = t3 +x2t
2 +

x1t + x0. The blue plane x2 = 0 displays for every t the ‘start’ of the line
parametrized by (2.1).
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Identifying string models

With the material from the previous chapter, we can identify and describe
existing models of discriminant surfaces from the collection of the RUG.

Schoute describes three string models of discriminant surfaces [3, 8]. All
three of them match a string model in the RUG collection. From this we
conclude that the Groningen collection contains the original models presen-
ted by Schoute at the KNAW-meeting on May 27, 1893. We will discuss
them individually.

While we do not have the model Sinclair describes in her Master’s thesis
[14], her discription gives us a fairly good idea of what it must have looked
like, so we will discuss it as well.

3.1 Schoute’s first model

According to Schoute’s description, this model depicts the discriminant
surface belonging to f(t) = t3 + 3xt2 + 3yt + z and divides the space in
two parts. The strings in the model are rules of the surface. As explained
in section 2.3, the rule belonging to the real number t is parametrized by

x(s) = s, y(s) = −t2 − 2st, z(s) = 2t3 + 3st2, s ∈ R. (3.1)

At every point that corresponds to a triple zero of f , the surface is singular.
This can be seen as a ridge in the surface. The model depicts this area quite
well, as can be seen in figure 3.1.

It is also interesting to consider the singularity corresponding to a triple
zero. It can be parametrized by solving f(t) = (t− s)3 for x, y and z:

x(s) = −s, y(s) = s2, z(s) = −s3, s ∈ R. (3.2)
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Interestingly, this curve also provides a ruling for the surface: the rules are
the curve’s tangent lines almost everywhere. This property also holds for
Schoute’s other two models, but we will prove the result here to benefit
from the relatively simple parametrizations. The proof for the other models
is analogous.

Proof. We already have the ruling in (3.1). For a fixed t, we may reparame-
trize the line belonging to t by substituting −s− t for s:

x(s) = −t− s, y(s) = t2 + 2st, z(s) = −t3 − 3st2, s ∈ R,

which is the tangent line to the curve in (3.2) at the point (−t, t2,−t3).

A remark about this property is in order. If f is not of the form · · ·+x1t+x0,
the rules may not all be tangent to the curve. For example, consider f(t) =
t4 + xt3 + yt2 + z. Here, z = 0 does belong to the discriminant surface, but
its rules are not tangent lines to the curve of points for which f has a triple
zero. Another example is f(t) = t5 + xt3 + yt2 + z. Here, a curve of points
with a triple zero exists, but the line (x, 0, 0) also corresponds to a triple
zero.

Schoute remarks that this model is the easiest to depict when the planes
x = ±10 are chosen as boundaries. However, because the singular curve
(3.2) in the surface is perfectly vertical at the origin while the ridge in the
model is not, I suspect that this model displays the surface as rotated by an
angle of about π

8 radians.

(a) The real model (b) Plot of the ruled surface

Figure 3.1: The first string model mentioned by Schoute. The singularity
corresponding to a triple zero is marked in red.
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3.2 Schoute’s second model

The second model is much like the first in terms of the formulae involved,
but divides the space in three partitions instead of two, as was Schoute’s
intent.

Schoute normalizes his polynomial as f(t) = t4 + 6xt2 + 4yt+ z. This leads
to the following ruling:

x(s) = s, y(s) = −t3 − 3st, z(s) = 3t4 + 6st2, s ∈ R.

At every point that corresponds to a triple zero of f , as well as every point
that corresponds to two double zeroes, the surface is singular. The former
case can be identified as a ridge along a cuspidal curve in the surface. The
latter corresponds to all points in the surface in which two rules intersect;
this set of points forms one half of a parabola. The model depicts these
areas quite well, as can be seen in figure 3.2.

We can parametrize the two singularities as

x(s) = −s2, y(s) = 2s3, z(s) = −3s4, s ∈ R

for the ridge corresponding to a triple zero, and

x(s) = −1

3
s2, y(s) = 0, z(s) = s4, s ∈ R

(a) The real model (b) Plot of the ruled surface

Figure 3.2: Schoute’s second string model. Singularities are marked by a red
line for the points corresponding a triple zero, and a purple line for points
corresponding to two double zeroes.
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for the half of a parabola corresponding to two double zeroes. These pa-
rametrizations can be obtained by solving f(t) = (t − s)3(t − a) resp.
f(t) = (t − s)2(t − a)2 for x, y and z; a is eliminated by the constraint
on the coefficient of t3.

The other half of this parabola, obtained for s ∈ iR, also results in real
values for x, y and z and is this part of the set of points where ∆ = 0.
Schoute has not made this visible in the model; he does discuss it, but
since it corresponds to imaginary zeroes, he does not consider it part of the
discriminant surface [3, Nachtrag, Abt. I, p. 26]. Klein [7] and Hartenstein
[5] do mention this curve as part of the discriminant surface.

The first singularity (corresponding to a triple zero) acts like the one in
model 1, in that the rules are tangent to it, and thus, that the surface is
equal to the set of tangent lines to this one curve. The proof is analogous,
but this time there is one exception: the tangent line to the singular curve
at the origin does not exist, and the line (x, y, z) = (s, 0, 0) is not strictly
tangent to the curve. This is easily solved by taking the closure of the surface
to get the missing rule, and by taking the limit from either end to get the
missing tangent line.

3.3 Schoute’s third model

According to Schoute, the last model shows a sixth-degree discriminant
surface. It corresponds to the polynomial f(t) = t6− 15t4 + 15xt2 + 6yt+ z.
As explained in section 2.3, the rules now satisfy

x(s) = s, y(s) = −t5 + 10t3 − 5st, z(s) = 5t6 − 45t4 + 15st2, s ∈ R.
(3.3)

Singular curves occur in those coordinates corresponding to polynomials
with triple zeroes or two pairs of double zeroes. The triple zeroes are again
on a set of ridges, indicated in red in figure 3.3(b). One may obtain a
parametrization in much the same way as with the second model:

x(s) = −s2(s2 − 6), y(s) = 4s3(s2 − 5), z(s) = 45s4 − 10s6, s ∈ R.

The pairs of zeroes lie on this curve, indicated in purple,

x(s) = −1/5s2(−10 + s2), y(s) = 0, z(s) = s4(−15 + 2s2), s ∈ R ∪ iR
(3.4)

(of which only the part for s ∈ R lies inside the surface), as well as on the
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curves that satisfy the following system, indicated in blue:

x =
1

5
(u4 + v4) +

4

5
uv(u2 + v2 − 5)− u2 − v2 + u2v2

y = −uv(u+ v)(u2 + v2 + uv − 5),

z = u2v2(u2 + 3uv + v2),

15 = 2u2 + 2v2 + uv and x, y, z ∈ R.

This curve also has parts outside of the surface. These are, as with the
second model, points on rules for complex zeroes of f that happen to be
real themselves. A parametrization for these may be obtained by allowing t

(a) The real model (b) Plot of the ruled surface

(c) Close-up from above (d) Close-up from side

Figure 3.3: Schoute’s third string model. Singularities are marked by red
curves for triple zeroes and blue and purple curves for two pairs of double
zeroes.
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in (3.3) to be complex, while restricting x, y and z to R. This results in the
following values for t:

t = ±
√

3

8

√
3 +
√
−11 + 4s+ i

√
1

8

√
−25 + 5

√
−11 + 4s, s ∈ R.

The string model by Schoute shows neither these curves nor the continuation
of (3.4) for s ∈ iR. The choice of edges of the model makes it difficult to see
that the curves are not entirely part of the surface, suggesting again that
Schoute was not aware of their existence or disregarded them entirely.

Once again, it is the singularity corresponding to a triple zero that all rules
are tangent to, and it is again possible to define the surface as the union of
the tangent lines to this curve. This time, there are three singular points to
contend with.

3.4 Sinclair’s model

After Schoute had constructed three models for polynomials of degrees 3,
4 and 6, it seems natural to also build a model depicting the discriminant
surface of a fifth-degree polynomial. This is exactly what professor O. Bolza
asked Mary Sinclair to do for her Master’s thesis [14].

(a) Sinclair’s sketch of the surface, taken
from her thesis [14]

(b) Plot of the ruled surface, boundaries as
detailed in [14]

Figure 3.4: Sinclair’s string model. Singularities are marked by red and
orange lines for the points corresponding a triple zero, and purple and blue
lines for points corresponding to two double zeroes.
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Sinclair used f(t) = t5+10xt3+5yt+z, which also results in a ruled surface.
The rules are given by

x(s) = s, y(s) = −t4 − 6st2, z(s) = 4t5 + 20st3, s ∈ R.

Also, points corresponding to the imaginary t = i
√

5s result in a polynomial
with real coefficients and a double zero and form one half of a parabola, as
we will see in a moment.

Triple zeroes are found on the entire line (x, 0, 0) and on the curve

x(s) = −1

3
s2, y(s) = s4, z(s) = −8

3
s5, s ∈ R.

Two pairs of double zeroes are found on three curves. The first, correspon-
ding to the zeroes s (double), −s (double) and 0, is the parabola

x(s) = −1

5
s2, y(s) =

1

5
s4, z(s) = 0, s ∈ R ∪ iR,

where imaginary values of s also yield polynomials with real coefficients;
however, the rules of the surface only intersect the half of the parabola for
which s ∈ R. The second and third curves look a lot like each other, and
correspond to the zeroes s (double), 1

2s(±
√

5− 3) (double) and s(1∓
√

5):

x(s) =
1

4
(−3 +

√
5)s2, y(s) = −1

2
(−7 + 3

√
5)s4, z(s) = (−11 + 5

√
5)s5,

x(s) = −1

4
(3 +

√
5)s2, y(s) =

1

2
(7 + 3

√
5)s4, z(s) = −(11 + 5

√
5)s5.

For both curves, the domain of s is R.
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Chapter 4

Discussion

We have seen in chapter 2 that if one considers the set of points where the
discriminant of a polynomial f vanishes as a surface, the tangent planes to
this surface are the planes described by f(t) = 0 for fixed t. For certain
choices of f , we have concluded that for any given tangent plane, a line of
points in the surface exists in all of which the tangent plane is tangent to
the surface. This means that in these situations, the surface is a ruled one.

We have studied three models in current possession of the RUG, which are
almost certainly the original ones documented by Schoute in the minutes of
the 1893 KNAW meeting and in Walther Dyck’s catalog of mathematical
of physical models. The models were intended to use the discriminantal
surface of polynomials of third, fourth and sixth degree to divide space into
two, three or four connected parts. Sinclair has later constructed a model of
the ‘missing’ discriminantal surface belonging to a fifth-degree polynomial.

While Klein and Hartenstein most likely knew about the models constructed
by Schoute, Schilling used new models constructed and documented by Har-
tenstein. Perhaps they were unsatisfied with the fact that two of Schoute’s
models did not contain the singular curves that were not otherwise part of
the ruled surface, or unhappy with the builder’s workmanship (the sixth-
degree model, for example, seems to be slightly skewed).

Each of the models contained a singular curve to which all rules were tan-
gent, and we have seen that these discriminant surfaces can be defined in
terms of tangent lines to these singular curves. It is probable that this pro-
perty extends beyond the models we discussed, and that for any choice or for
certain choices of f , the entire discriminant (hyper)surface is composed of
(hyper)planes tangent to a certain singular subset of the hypersurface. Be-
cause of the way the proofs work, I have a feeling that it works for a broader
spectrum of polynomials than we have considered thus far, but more ab-
straction or better notation is required to prove a more general result than
we already have.
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Appendix A

Mathematica-code for plots

To generate the plots used in the various figures in this paper, one might
use the following Mathematica-code.

The code is certainly not the most graceful Mathematica ever written, but it
can be used as a starting point or as a way to understand how the language
can be used to generate images like those used in this paper. The code is
written for version 6 of the program.

For figure 2.3

1 Show [
2 {
3 ContourPlot3D [ Discr iminant [ t ˆ3 + x t ˆ2 + y t + z , t ] == 0 ,

{x , −5, 5} , {y , −5, 5} , {z , −5, 5} , Mesh −> None, Axes
−> None, ContourStyle −> {Opacity [ 0 . 1 ] , Green} ] ,

4 ContourPlot3D [ x == 0 , {x , −5, 5} , {y , −5, 5} , {z , −5, 5} ,
ContourStyle −> {Blue , Opacity [ 0 . 5 ] , BoundaryStyle −>
None} , Mesh −> None ] ,

5 ParametricPlot3D [{0 , −3 s ˆ2 , 2 s ˆ3} , { s , −5, 5} , PlotStyle
−> {Thick , Red} ]

6 }˜Join ˜(
7 ParametricPlot3D [{ s , −3 #ˆ2 − 2 s #, 2 #ˆ3 + s #ˆ2} , { s ,

−5, 5} , PlotStyle −> RGBColor [ 0 , 0 . 8 , 0 ] ]& /@ Range[−5 ,
5 , 0 . 0 4 ]

8 )
9 ]

For figure 3.1(b)

1 R = RotationMatrix [−Pi/8 , {0 , 1 , 0 } ] ;
2 K = R.{{u} , {v} , {w}} ;
3 Show [
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4 {
5 ContourPlot3D [ 0 , {u , −1, 1} , {v , −1.4 , 1 . 4} , {w, −1/2,

1/2} , Axes −> None ] ,
6 ContourPlot3D [ ( Discr iminant [ t ˆ3 + x t ˆ2 + y t + z , t ]

/ .Thread [Rule [{ x , y , z } , Flatten [K ] ] ] / . v −> ( v − 1) )
== 0 , {u , −1, 1} , {v , −1.4 , 1 . 4} , {w, −1/2, 1/2} , Mesh
−> None, ContourStyle −> {None} , MaxRecursion −> 5 ]

7 }
8 ˜Join˜
9 (ParametricPlot3D [ Inverse [R ] . { s , −3 #ˆ2 − 2 s #, 2 #ˆ3 + s

#ˆ2} + {0 , 1 , 0} , { s , −2, 2} , PlotStyle −> RGBColor [ 0 , . 8 ,
0 ] ] & /@ Range[−2 , 2 , . 0 3 ] )

10 ˜Join˜
11 {ParametricPlot3D [ Inverse [R].{−3 s , 3 s ˆ2 , −s ˆ3} + {0 , 1 , 0} ,

{ s , −2, 2} , PlotStyle −> {Thickness [ 0 . 0 1 ] , Red} ]}
12 ]

For figure 3.2(b)

1 g = 50 ;
2 R = RotationMatrix [Pi , {0 , 1 , 0 } ] ;
3 K = R.{{u} , {v} , {w}} ;
4 Show [
5 {
6 ContourPlot3D [ 0 , {u , −.5 , 1} , {v , −4, 4} , {w, −15, 5} , Mesh

−> None, Axes −> None, ContourStyle −> {Opacity [ 0 . 1 ] ,
Green} ] ,

7 ContourPlot3D [ ( Discr iminant [ t ˆ4 + 6 x t ˆ2 + 4 y t + z , t ]
/ . Thread [Rule [{ x , y , z } , Flatten [K ] ] ] ) == 0 , {u , −.5 ,
1} , {v , −4, 4} , {w, −15, 5} , Mesh −> None, ContourStyle
−> {None} , MaxRecursion −> 5 ] ,

8 ParametricPlot3D [ Inverse [R].{ −1/12 (u) , 0 , 1/16 (u) ˆ2} , {u ,
−g , g } , PlotStyle −> {Thickness [ 0 . 0 0 5 ] , Purple } ] ,

9 ParametricPlot3D [ Inverse [R].{ −3/48 (u) ˆ2 , 1/32 (u) ˆ3 ,
−3/256 (u) ˆ4} , {u , −g , g } , PlotStyle −>
{Thickness [ 0 . 0 0 5 ] , Red} ]

10 }
11 ˜Join˜
12 (ParametricPlot3D [ Inverse [R ] . { ( s ) , −#ˆ3 − 3 s #, (3 #ˆ4 + 6

s #ˆ2)} , { s , −g , g } , PlotStyle −> RGBColor [ 0 , 0 . 8 , 0 ] ] &
/@ Range[−5 , 5 , . 1 ] )

13 ]

For figure 3.3(b)

1 Module [{ v , K = {u , v , w} , b , t } ,
2 range = ((5 Sign [#] Sqrt [Abs [ # ] ] ) & /@ Range[−3.5 , 3 . 5 ,

. 0 1 ] ) ˜Join˜{− .2 , . 2 } ;
3 Show [
4 {
5 ContourPlot3D [ 0 , {x , −10, 2} , {y , −90, 90} , {z , −750,

750} , Mesh −> None, Axes −> None ] ,
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6 ParametricPlot3D[−{−s ˆ2 ( s ˆ2 − 6) , 4 s ˆ3 ( s ˆ2 − 5) , 45
s ˆ4 − 10 s ˆ6} , { s , −10, 10} , PlotStyle −> {Red,
Thickness [ 0 . 0 0 5 ] } , PlotPoints −> 100 ] ,

7 ParametricPlot3D[−{−1/5 s (−10 + s ) , 0 , s ˆ2 (−15 + 2 s ) } ,
{ s , −100, 100} , PlotStyle −> {Purple ,
Thickness [ 0 . 0 0 5 ] } , PlotPoints −> 100 ] ,

8 ParametricPlot3D [ v = .25 (−u − Sqrt [ 15 (8 − uˆ2) ] ) ;
−{−uˆ2 + . 2 uˆ4 − 4 u v + . 8 uˆ3 v − vˆ2 + uˆ2 vˆ2 +
. 8 u vˆ3 + . 2 v ˆ4 , 5 uˆ2 v − uˆ4 v + 5 u vˆ2 − 2 uˆ3
vˆ2 − 2 uˆ2 vˆ3 − u v ˆ4 , −15 uˆ2 vˆ2 + 3 uˆ4 vˆ2 + 4
uˆ3 vˆ3 + 3 uˆ2 v ˆ4} , {u , −20, 20} , PlotStyle −>
{Blue , Thickness [ 0 . 0 0 5 ] } ] ,

9 ParametricPlot3D [ v = .25 (−u + Sqrt [ 15 (8 − uˆ2) ] ) ;
−{−uˆ2 + . 2 uˆ4 − 4 u v + . 8 uˆ3 v − vˆ2 + uˆ2 vˆ2 +
. 8 u vˆ3 + . 2 v ˆ4 , 5 uˆ2 v − uˆ4 v + 5 u vˆ2 − 2 uˆ3
vˆ2 − 2 uˆ2 vˆ3 − u v ˆ4 , −15 uˆ2 vˆ2 + 3 uˆ4 vˆ2 + 4
uˆ3 vˆ3 + 3 uˆ2 v ˆ4} , {u , −20, 20} , PlotStyle −>
{Blue , Thickness [ 0 . 0 0 5 ] } ] ,

10 ParametricPlot3D [ b := Sqrt [−25/8 + 5/8 Sqrt [ 4 s − 1 1 ] ] ; t
:= Sqrt [ 3 + 3 b ˆ2/5 ] + b I ; Chop[−{s , −t ˆ5 + 10 t ˆ3 −
5 s t , 5 t ˆ6 − 45 t ˆ4 + 15 s t ˆ2} ] , { s , 9 , 10} ,
PlotStyle −> {Blue , Thickness [ 0 . 0 0 5 ] } ] ,

11 ParametricPlot3D [ b := Sqrt [−25/8 + 5/8 Sqrt [ 4 s − 1 1 ] ] ; t
:= − Sqrt [ 3 + 3 b ˆ2/5 ] + b I ; Chop[−{s , −t ˆ5 + 10 t ˆ3
− 5 s t , 5 t ˆ6 − 45 t ˆ4 + 15 s t ˆ2} ] , { s , 9 , 10} ,
PlotStyle −> {Blue , Thickness [ 0 . 0 0 5 ] } ]

12 }
13 ˜Join˜
14 (ParametricPlot3D[−{s , 10 #ˆ3 − #ˆ5 − 5 # s , 5 (−9 #ˆ4 +

#ˆ6 + 3 #ˆ2 s ) } , { s , −2, 10} , PlotStyle −> RGBColor [ 0 ,
. 8 , 0 ] ] & /@ range )

15 ]
16 ]

For figure 3.4(b)

1 Module [{ range } ,
2 range = ((#ˆ3/25) & /@ Range[−5 , 5 , . 1 ] ) ˜Join˜{− .2 , . 2 } ;
3 Show [
4 {
5 ContourPlot3D [ 0 , {x , −15, 15} , {y , −125, 125} , {z ,

−156.25 , 156 .25} , Mesh −> None, Axes −> None ] ,
6 ContourPlot3D [ ( Discr iminant [ t ˆ5 + 10 u t ˆ3 + 5 v t + w,

t ] ) == 0 , {u , −15, 15} , {v , −125, 125} , {w, −160,
160} , Mesh −> None, ContourStyle −> {None} ,
MaxRecursion −> 6 ] ,

7 ParametricPlot3D [{−1/3 s ˆ2 , s ˆ4 , −8/3 s ˆ5} , { s , −25, 25} ,
PlotStyle −> {Red, Thickness [ 0 . 0 0 5 ] } ] ,

8 ParametricPlot3D [{ s , 0 , 0} , { s , −125, 125} , PlotStyle −>
{Orange , Thickness [ 0 . 0 0 5 ] } ] ,

9 ParametricPlot3D [{−1/5 s , 1/5 s ˆ2 , 0} , { s , −625, 625} ,
PlotStyle −> {Purple , Thickness [ 0 . 0 0 5 ] } ] ,
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10 ParametricPlot3D [{1/4 (−3 + Sqrt [ 5 ] ) s ˆ2 , −1/2 (−7 + 3
Sqrt [ 5 ] ) s ˆ4 , (−11 + 5 Sqrt [ 5 ] ) s ˆ5} , { s , −5, 5} ,
PlotStyle −> {Blue , Thickness [ 0 . 0 0 5 ] } ] ,

11 ParametricPlot3D [{−1/4 (3 + Sqrt [ 5 ] ) s ˆ2 , 1/2 (7 + 3
Sqrt [ 5 ] ) s ˆ4 , −(11 + 5 Sqrt [ 5 ] ) s ˆ5} , { s , −5, 5} ,
PlotStyle −> {Blue , Thickness [ 0 . 0 0 5 ] } ]

12 }
13 ˜Join˜
14 (ParametricPlot3D [{ s , −#ˆ4 − 6 s #ˆ2, 4 #ˆ5 + 20 s #ˆ3} ,

{ s , −125, 125} , PlotStyle −> RGBColor [ 0 , . 8 , 0 ] ] & /@
range )

15 ]
16 ]
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