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Abstract

For navigation, many animals are known to use their visual system in combination
with a process called dead reckoning, in which the animal knows its position through
egomotion, for learning landmarks in an unknown environment. In robotics, previous
research has been done using such an approach. The goal was to learn salient
perceptual features in the environment using an unsupervised neural networ, and
learn their relative locations using odometry on the robot. The resulting map showed
that the information was there, but it was too approximate. The main problem was
that a general sense of direction was missing and landmark representations were
ambiguous.

The present study aims at using biologically inspired behaviors to yield a better
encoding of the perceptual landmarks. Behaviors of this type used by animals are for
example the head-scanning of rats for the detection of configurations of landmarks.
These could be modeled on the robot by moving the camera in three directions,
detecting three landmarks in one perceptive movement. The hypothesis is that this
triple-view approach results in coupling landmarks more strictly to the environment
and to each other since (1) the triple-landmark view is a less ambiguous percept
than a single-landmark view, and (2) the triple-view is unique for a given direction.

Furthermore, the learning of perceptual landmarks is done on the basis of an
adaptive unsupervised neural network. New items are added to the set of landmarks
incrementally when needed, where the number of nodes will depend on the visual
complexity of the environment.

A neural-network approach for incremental learning landmarks is proposed and
tested in the first phase of the study. In the second phase, experiments were done
to test the main hypothesis.
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Chapter 1

Introduction

This graduation thesis is about autonomous robot navigation. In particular, the
ability for an autonomous robot to learn its environment in such a way that it
is able to navigate in it in the sense of being able to plan routes from any point
to any given location. In order to achieve this, a robot must have some internal
representation of the world. This representation should tell the agent where it is
and where other locations are with respect to that. The need for such an internal
navigation system becomes clear for example in the Nasa missions where robots are
sent to Mars. There are no GPS satellites orbiting Mars, at least not yet. But
also closer to home, there are examples of applications where it is not desirable to
rely on external systems for positioning and navigation. Robots assisting in house
holding,for example, should be flexible to use in different rooms and different houses,
without needing to install equipment throughout the buildings first.

As the title of this thesis indicates, this study focuses on biological strategies
to obtain an internal representation for navigation. Biological research in this area
have brought many interesting navigation mechanisms to light. These biological
strategies have proven to be successful and it is therefore only logical to try to
incorporate these in our artificial systems.

This paper will start with an overview of some of the most important mechanisms
found in animals, followed by a theoretical framework for learning an environment
by an autonomous robot, based on biological strategies. Then, an specific outline is
given about the design of the navigation strategy and implementation on a mobile
robot. At the artificial intelligence department of the university of Groningen (RuG),
where this study has taken place, a robotics lab is located where the necessary
experiments with the robot have been done.



1.1 Theoretical background

1.1.1 Animal navigation
Definition

Navigating animals have some ability to reach locations that are of interest to them.
In its simplest form, navigation could be defined as the process of reaching a goal
location from the current location. In this simple form, the only requirement is that
the animal is able to recognize its goal when it has reached it. To be more effective,
the animal must have some means of identifying where its goal location is with
respect to its current location, and even better, ’knows’ what path or route must
be taken to get there and is able to maintain that route. The methods used for
navigation differ greatly. A hierarchy of navigation techniques taken from Mallot
and Franz (2000) describes the most important navigational methods known to exist
in animals. It is given below.

Random search

Not particularly interesting but nonetheless a method of goal-reaching is random
search. The animal will walk around in a random fashion until the goal has been
reached. The only requirement for this to succeed is for the animal to be able
to identify the goal when it has reached it. Insects, though equipped with more
advanced navigation techniques often use this method as a backup strategy once
other methods have failed. For example, when ants were displaced when walking
towards their nest. The ants started walking randomly at the point where their
trajectory would have reached the nest, were they not displaced (Collett & Collett,
2000).

Path integration

It is important for animals to be able to remember the location of a point of interest,
for example a food source. A way of doing this is by remembering what distance
and in what direction has been traveled when first finding the location with respect
to another known location. The animal updates its current position relative to the
point of departure by processing signals of locomotion. This intrinsic memory for
travel is known as dead reckoning or path integration. The process where dead reck-
oning is used to navigate along a path connecting several waypoints is called vector
navigation. The animal needs to have recorded the state of its accumulator, i.e. the
dead-reckoned position, of the waypoints. Essentially, the animal performs vector-
substraction in comparing the current state of its path-integrator with the recorded
states, at each way-point (Collett & Collett, 2000).

Since the method is based on idiothetic clues (based on an internal reference)
it is highly subjective to error. For example, in the experiment described above,



where ants were displaced when walking to their nest, the displacement caused the
animals to miss their goal. The animals would continue to walk the same course,
switching to random search when they did not find their goal. Furthermore, errors
in path-integration will accumulate when not reset by another system. Working
around these problems, the path integration system can be supported by the visual
system. When an animal arrives at a location previously visited, and confirms this
visually, it is able to reset the accumulator state, diminishing any errors due to path
integration (Judd & Collett, 1998). When other, more advanced methods of navi-
gation fail, path-integration often serves as a backup strategy.

Beacon navigation

Path integration is solely based on idiothetic cues, i.e., based on internal reference
(Mallot & Franz, 2000). As argued, it is therefore subject to (accumulating) errors.
A method of navigation which is based on external reference, or allothetic cues, is
beacon navigation. Beacon navigation is also called aiming. When the goal location
is marked by a salient feature, i.e. a visual, auditory, or other stimulus, the agent
can reach the goal by maintaining a course towards that feature. In contrast to path
integration, the goal can be reached from whatever point, as long as the beacon is
visible (most of the time) during the trip.

Landmark-based navigation

Beacon navigation is perhaps the simplest form of landmark-based navigation, but
nevertheless described separately since the other landmark-based navigation meth-
ods are more complex. A landmark is defined as a salient perceptual pattern, some
object or visual pattern that stands out in its environment . There are several ways
in which landmarks can aid in navigation and way-finding!. Experiments on bees
have illustrated that visual cues of landmarks near found food sources are used to
relocate the food sources: on displacement of the landmarks the bees searched for
the food at the new location of the landmarks (Cartwright & Collet, 1983). Also,
a route can be learned by remembering landmarks along the route, a process also
called homing or guidance. This route-following behavior is observed for example
in insects. Ants and bees, for example, are known to learn routes from the nest to
locations of newly discovered food sources by periodically turning back to look at
the food source, while walking or flying back home from it (Cartwright & Collet,
1983; Wehner et al. , 1996; Judd & Collett, 1998). Later, the routes are followed by
comparing the current visual input to stored perceptual patterns of the landmarks.

Y Way-finding involves the recognition of several places, and the ability to reach places outside
the range of perception.



Figure 1.1: The Morris water maze. A platform is placed in the pool just below the
water surface. The water in the pool is opaque, making the platform itself invisible.
Distal landmarks outside the pool are visible at all times. In the training phase, the
proximal landmark (the little square in the figure) is placed, which is removed at
the test phase.

Also, multiple landmarks can be used to find a particular place that is not marked
by a salient perceptual beacon. The angles between the landmarks as viewed from
the goal-location define the location of interest. This means of encoding a loca-
tion is for example seen in bees (Cartwright & Collet, 1983), and in rats and mice
(Hamilton et al. , 2004).An experimental setup known as the Morris water maze has
been the stage for many experiments with rats (and mice), in different navigational
tasks (see figure 1.1). The setup consists of a circular pool containing a opaque
(non-toxic) liquid contains an escape platform, just hidden below the water surface.
Rats were learned to swim to a visible escape platform, with numerous visual distal
landmarks outside the pool. After removal of the visual cue at the platform, the
rats switched from the beacon-navigation method to a navigation method based on
the configuration of the distal landmarks (Save & Poucet, 2000; Hamilton et al. ,
2004).

Topological mapping

While insects rely mostly on path-integration, beacon-navigation and elementary
landmark-based navigation for orientation and navigation, rodents seem to have a
more complex knowledge of spatial layout. Tolman has shown in experiments with
rats (Tolman, 1948), that even when a learned, complex route towards a food source
was blocked, the rats were still able to find the food through an alternative route.
The rats were given the choice of a number of alleys all leading in a different di-



rection, instead of only one as in the learning condition. Furthermore, the route
towards the food which was known to the rats was blocked, so they had to choose
an alternative one. Most rats now chose an alley which headed (in absolute sense)
towards the food. Tolman assumed that the rats had not merely a strip-map of the
maze, but, rather, a wider comprehensive map of the environment, which he later
termed a cognitive map. These maps encode distances and angles between locations
as well as sense relation (left-versus-right) in a vectorial way, see (Poucet, 1993) for
a review. It is different in its representation to Cartesian grid maps, in which each
known landmark is given an absolute position in a 2-dimensional coordinate frame.
The use Cartesian grid maps is however not thought to exist in animals such as rats
or ’lower’ animals. In the formation of a cognitive map, dead reckoning is believed
to play a crucial role (McNaughton et al. , 1996).

1.1.2 Previous research in robot navigation

There have been a number of studies in which snapshots of the environment are taken
using a omni-directional camera, or a monocular camera pointed upwards toward a
conical mirror, such as done by Franz et al (1997) . At various points snapshots are
taken and compared to previously taken snapshots, analogues to the snapshot-based
navigation techniques seen in insects (see section 1.1.1. The displacement of visual
features on a 360° field of view obtained by a omni-directional camera is used to
infer the robots location and bearing. The method proved to be successful in homing
over short distances.

In recent work, Schomaker and Fehrmann have proposed a landmark-exploration
model to construct an approximate 2-D map of the environment (Fehrmann, 2002;
Schomaker & Fehrmann, 2003). The goal was to let an autonomous robot form a
cognitive map of the environment, for which dead reckoning formed the basis.

A Kohonen self-organized map was learned from both snapshots of the envi-
ronment robot and sonar readings taken by the robot. At locations where sonar
readings indicated close proximity to an object, a prozimity event was said to occur.
The detected obstacle in front is possibly a perceptual salient part of the room.
At a proximity event, snapshots where collected and coded in Hue and Saturation
(HS). These simplified images, consisting of 30x40 pixels each having HS values,
together with the sonar readings, formed input vectors for learning a 5x5 Kohonen
Self-Organizing Map (Kohonen, 1990).

After training, they used this landmark map to recognize the perceptual land-
marks during a live run. A matrix containing the distances between the perceptual
landmarks was created by keeping track of the relative distances of the perceptual
landmarks, measured by odometry, i.e., dead reckoning on the robot. Principal
component analysis was performed on the distance matrix, to yield the two largest



Eigenvectors. Using these as the main axes, an approximate map of the environ-
ment was formed. On the resulting map the most prominent landmarks were placed
correctly. For example, the blue and yellow goal of the robocup soccer field where
the experiments took place were correctly placed at each end of the X-axis. How-
ever, the map should be scaled and rotated somewhat. In general, the map was too
approximate to be a useful representation of the room.

The main problem is that when the robot is only looking in one direction, per-
ceptual landmarks that are recognized are not coupled to other visual features in the
environment. Given a distance matrix, without knowledge of relative angles, there
exist multiple possible configurations of landmarks. An overall sense of direction
would help couple the landmarks in the environment more strictly. Since dead reck-
oning forms an important basis of creating a cognitive map, angular information
between landmarks is crucial. However, only with knowledge of absolute bearing
the relative locations of landmarks can be measured reliably, since the angular com-
ponent of a vector is dependent on the direction in which the agent or animal was
facing in the first place. Such an overall sense of bearing is obtained by animals in a
variety of ways, including looking at the position of the sun, a sensing of the earth’s
magnetic field and the polarization of light (Wehner, 1984; Shen et al. , 1998; Mallot
& Franz, 2000).

A second problem in the approach is that some of the nodes are a very general
representation of a rather large part of the room. In other words, there is an amount
of ambiguity involved in the recognition of landmarks in the first place.

The study of Schomaker & Fehrmann (2003) has formed the basis for the present
study. The present study also aims at creating an internal representation of an en-
vironment for which path integration and visual perception form the basis. The
two components are learning perceptual salience information in the environment,
i.e. learning perceptual landmarks, and learning their relative locations in the en-
vironment. The main topic is how to couple the landmarks more strictly to the
environment, requiring a general sense of direction when dead reckoning is used
to learn the relative landmark locations in a vectorial way. A monocular camera
setup will be used for this. Although omni-directional camera would allow for much
better encoding of the robot’s bearing, we believe that this is biologically not very
plausible.

1.1.3 Active perception

Active perception® denotes the use of behaviors specifically aimed at perceiving cer-
tain information about the environment or other animals/agents. It is used for
exploration, in the form of scanning the surroundings and landmarks or for fixating

2In robotics, the use of a moving camera for tracking stationary or moving objects, for scanning
or other purposes is often called active vision



stationary objects, or tracking moving objects (Land & Collet, 1997) such as prey.
Behaviors supporting the acquisition of visual cues about a place of interest are
seen for example in honeybees, which make structured flights when departing from
a food source. When the bees departed from a newly discovered food-location after
feeding, they performed 180 degree turns to view the entrance and its surroundings,
swaying back and forth as if arriving at the food-source. This behavior, termed turn
back and look behavior is assumed to help the bee to identify the food source for
later visits (Lehrer, 1993). It allows for a better imprinting of the location, but it
also helps the bee to learn the distances and angles of the food source to nearby
landmarks (Cartwright & Collet, 1983).

Similarly, rats and mice have typical behaviors when exploring. When placed in a
novel environment, rats and mice alternate between progression and stopping. Each
time they stop, they perform scanning movements with their heads and whole-body
movements, which allows them to investigate a particular location and its surround-
ings (Drai et al. , 2001; Drai & Golani, 2001).

Rats are known to be able to learn a particular location not only by its proxi-
mal cues, but also by learning its spatial relation to other more distant objects. In
an experiment using the Morris water maze, rats where learned the location of a
escape platform by marking it with a visible object. The pool was also surrounded
by various distal landmarks. At a later time the proximal landmark was removed
from the platform. When the rats entered the pool, they immediately switched to
a different behavior. A short distance from the release point, they made horizontal
scanning movements with their head, after which they would quickly swim to the
escape point. The scanning movements are assumed to reflect attempts to sample
visible stimuli, i.e., the distal landmarks (Hamilton et al. , 2004).

Specific behaviors such as described above are used to acquire the information
needed by the animal. It is assumed that the use of active perception will also
aid in the acquisition of spatial relationships of landmarks in the problem of learn-
ing an environment by an autonomous robot. Such a behavior could be making
structured horizontal scanning movements with the camera upon detection of a ob-
ject, sampling not only visual stimuli at close range right in front of the robot,
but also more distant objects sideways. The scanning movements could be modeled
by taking snapshots in three different directions: left, right and in front of the robot.

The advantages of this behavior are the following. First, as seen in the panoramic-
view setups such as omni-directional camera equipped robots, the visual field as seen
from one location is much bigger. With the horizontal scanning behavior each lo-
cation in the field is characterized by a set of three views instead of only one. This
combined view similarly results in a much bigger total view of the surroundings.
This in turn makes the perceptual field at each location much more unique. At the
detection of a landmark in front, the combination of three landmark views is a much
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Figure 1.2: The location the robot is at, as well as the direction it is facing is
captured by the a characteristic set of three landmarks seen from that pose. Also,
when trying to create a map of the environment, cases where overlap takes place
between the landmark sets of two stops give information about the spatial ordering
of the sets of landmarks.

less ambiguous percept.

Second, the combination of three snapshots may help in determining the direc-
tion the robot is facing. A proximity event triggers a behavioral response in the
robot: to look at a possible proximal landmark in front. This response is now ex-
tended by looking sideways at possible distal landmarks. The characteristic set of
three views, one proximal and two distal landmark perceptions, is relatively unique
for a given direction.

Finally, in the process of learning a cognitive map of an environment, cases where
there is overlap between sets of landmarks give a left-to-right ordering of the land-
marks involved, as figure 1.2 indicates. In the possible configurations of landmarks
which follows from a table of distances between (sets of) landmarks, this ordering
could serve as an extra constraint.

1.1.4 Unsupervised landmark learning

When learning the locations of landmarks in an unknown environment, the first
phase is to learn to recognize perceptual salient features. We will be doing this
using an unsupervised neural network. Given an input space, e.g., a collection of
images taken during a run with the robot, the problem is to find a number of units
which represent this input space best. This process of finding a low-dimensional
subspace of an input space is called dimensionality reduction.
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In the research of Schomaker and Fehrmann this learning of perceptual land-
marks was done using an unsupervised Kohonen network. The problem with this
approach is that in Kohonen networks the dimensionality of the network needs to
be set in advance. This is a problem since it weakens the autonomy of the model
and since the perceptual complexity of the environment is not known in advance.
A very large room is likely to have more unique perceptual patterns than a smaller
one. This approach is therefore both not desirable and not biologically very plausi-
ble. A more plausible method would be to have a learning scheme which allows for
incrementally adding new items when needed.

1.2 Research goals and research question

The general goal of the research stream in which this study participates is to let an
autonomous agent learn an internal map, either Cartesian or cognitive map-like, of
an environment while exploring. This representation must be stable and robust in
the sense that it needs to hold in a dynamical world where for example also other
agents may be present and is usable in such dynamical conditions for navigation.
Ultimately, we would like robots to be able to do this the way in which humans are
capable of obtaining a representation of any environment. To reach this ultimate
goal, we believe that much can be learned by studying biological systems, as well as
testing them in artificial models.

As in the study of Schomaker and Fehrmann, the present study aims at creating
an internal representation of an environment for which path integration and visual
perception form the basis. There is a distinction between animals or autonomous
agents that navigate on an internal map that they actually have, and those who
don’t, but behave as if they had. The difference is in their representation internally
rather than the behavior outside. However, in real life it is the behavior that counts.
Generally speaking, an agent may show highly intelligent behavior which is actually
based on mechanisms that are far less complicated than would appear from the
outside.

We already pointed out in the previous chapter that animals have very effective
behaviors for learning an environment and navigation. We will be looking at the
question of how such behaviors could improve perception and learning of landmarks
in an unknown environment, for obtaining an internal representation of an unknown
environment. The research goals are as follows.

1. For the automatic learning of perceptual landmarks, to have a learning scheme
which allows for incrementally adding new items depending on the complexity
of the perceptual space, as opposed to the Kohonen network, in which the
dimensionality needs to be set in advance.

2. To couple the perceptual landmarks more strictly to the environment using
active perceptive behavior.

12



The main research question of this study is:

What types of behaviors, supporting active perception, are needed to
couple learned landmark representations more strictly to the
environment?

Based on active exploration strategies such as the scanning movements of rats
(Drai et al. , 2001; Hamilton et al. , 2004) and the turn-back-and-look behavior of
bees (Lehrer, 1993) discussed in the previous chapter, we hypothesize that making
structured head scanning movements, modeled by taking snapshots left and right as
well as in front of the robot, will result in a more unique encoding of the landmarks.
In the Morris water maze experiments, when the proximal visual stimuli had been
removed, the rats switched to looking at distal landmarks. The rats inferred the
correct heading by looking sideways at the constellation of the distal landmarks.
Following this, the sampling of visual stimuli in three directions, modeling the scan-
ning behavior of rats, is hypothesized to be a more informative perceptual behavior,
as pointed out below.

e Three views form a more unique perceptual pattern than only one.
e The combination of the three snapshots is unique for that bearing only.

e Sense relations, i.e. a left-to-right ordering, of the landmarks are captured
when overlapping of landmark sets occur.

To address the second research goal, a more plausible method of landmark learn-
ing is given in section 2.1.

An open question is how to integrate the learned landmark configurations in
order to develop an internal (idiothetic) map. This issue will only be superficially
addressed in this study. The current study will rather concentrate on learning an in-
ternal representation of the environment which is sufficient for the robot to navigate
as if having an internal map.

13



Chapter 2

A method for incremental
learning triple-landmark views

The two research goals reflect the two main phases in the study. First, a new method
for the incremental learning of triple-landmark views is presented. This method
addresses the learning of salient features in the environment using an adaptive neural
network approach. The model is discussed in section 2.1. In the second part the
main hypothesis is tested. To this extend, an experiment is designed, aimed at
obtaining the spatial relations between sets of landmarks. These sets of landmarks
consist of three perceptual landmarks which are detected by the robot at a proximity
event, in each of the three directions. The method is explained in more detail in
section 2.4.

2.1 Growing neural gas

As an unsupervised learning scheme, a model is proposed that has the ability to
grow when required in the form of a neural network called Growing Neural Gas
(Fritzke, 1995). The main idea of the method is to successively add new units to an
initially small network by evaluating local statistical measures gathered during pre-
vious adaptation steps. Those parts of the input space that are covered to sparsely
by the nodes in the network will lead to large errors in that part of the network. The
nodes are drawn towards those sections in the input space, but also new nodes are
inserted in those areas. Figure 2.1 shows how a 2- and 3-dimensional input space is
covered by the nodes in the network over time. The nodes in the network spread in
a gas-like manner, hence its name.
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Figure 2.1: An input space is covered by the neural-gas network in a gas-like manner.

The model is described by Fritzke as follows.

Given an n-dimensional input space R, the network consists of

e a set A of nodes (initially two). Each node ¢ € A has an associated reference
vector w € R™. These reference vectors can be regarded as positions in the
input space of the corresponding units.

e a set N of connections, or edges, between pairs of nodes. The term topological
neighbor denotes nodes, or units which are topological neighbors in the graph
(not units within a small Euclidean distance of each other in the input space).

Moreover, there is a (possible infinite) number of n-dimensional input signals & obey-
ing some unknown probability density function P(£).

The following is done repeatedly, until some stopping criterion is met:
0. Start with two units ¢ and b at random positions w, and w, in R™.
1. Sample an input signal £ according to P(§).
2. Find the nearest node s; and the second-nearest node sy to &.

3. Increment the age of all edges emanating from s;.

15



4. Add the squared distance between the input signal and the nearest node in
the input space to a local state variable of node s;:

Aerror(st) = |lws, — €| (2.1)
error(sy) = error(sy) + Aerror(sy) (2.2)

5. Move s1 and its direct topological neighbors towards &, in R, by fractions ¢,
and €,, respectively, of the total distance:

Awg, = (£ — ws,) (2.3)
and
Aws, = €,(§ —ws,) (2.4)

for all direct neighbors n of s;

6. If 51 and sy are connected by an edge, set the age of this edge to zero. If such
an edge does not exist, create it.

7. Remove edges with an age larger than a,4,. If this results in nodes having
no emanating edges, remove them as well. This is not desirable in the present
study, however. This is discussed in the next section.

8. If the number of input signals generated so far is an integer multiple of a
parameter A, insert a new unit as follows.
e Determine the unit ¢ with the maximum accumulated error:

e Insert a new unit 7 halfway between ¢ and its topological neighbor fwith
the largest error variable:

wy = 0.5(wq + wy) (2.5)

e Insert edges connecting the new unit r with units ¢ and f, and remove the
original edge between ¢ and f.

e Decrease the error variables of g and fby multiplying them with a constant
«. Initialize the error variable of r with the new value of the error variable
of ¢.

9. Decrease all error variables by multiplying them with a constant d < 1.

10. If a stopping criterion is not yet fulfilled go to step 1. The stopping criterion
is discussed in section 2.2.

16



The adaptation step (5) leads to a general movement of the nearest unit and its
topological neighbors towards the input signal. The accumulation of squared dis-
tances (4) helps to identify those areas in the input space where the mapping from
signals to units causes much error. It is in those areas where a new node is inserted
each A" iteration. This process is illustrated in figure 2.2. The uncovered part of
the input space in the first part of the figure lead to a large error in that part of
the network. A new node is inserted between the node with the largest accumulated
error, ¢ and its topological neighbor with the largest accumulated error, f. After
a number of iterations, nodes have converged towards the uncovered areas in the

input space.

g @ /_/_. \\\\ // - ‘ \\
- \ /! \
yd J \ / ) % \
/ y AN S \ / ) /N . \

Figure 2.2: (a) The open space in the input space is not yet covered well by the
network.This area will generate much error. (b) A new node r is inserted between
the node with the largest accumulated error, ¢, and its topological neighbor with the
largest accumulated error, f. (c) After number of iterations, nodes have converged
towards the uncovered areas.
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2.2 Learning perceptual input using the neural-gas al-
gorithm

In the first (learning) phase, the robot will be taking snapshots and storing these to
the robot’s hard disk as PPM images. The PPM images are resized to 80x60 pix-
els. This is refined enough for the current learning scheme: the assumption is that
most of the salience of perceptual features in the room is given by color-information
rather than rather than texture information. Larger images would only be a bigger
computational load. Taken together, the images form an input set which is used as
input for the neural-gas algorithm. A single input vector of the set consists of 14400
features: 80x60 pixels each having a R, G and B value. A color transformation is
done on the raw RGB values, which is discussed in section 2.3.

Although we ultimately want a robot that is capable of learning a new environ-
ment online and incrementally, the first phase, learning of perceptual input features,
is done offline. Testing with the neural-gas algorithm is needed to tune parameters
and doing this online is very time consuming. A separate C++ program implement-
ing the neural-gas algorithm has been written. Its input is a perceptual-features
file, containing the data gathered in a live robot run in the form of subsequent RGB
values of the snapshots taken.

Since one of the criteria for the learning scheme was that no fixed network size is
set in advance, some performance criterion has to be used as stopping criterion.
The goal of learning is the minimization of errors. A logical choice for a stopping
criterion would be the amount of error the network has with respect to the input
space, or how well the input space is covered by the nodes in the network. The
error each unit in the network has accumulated is a measure of distance of that unit
towards the input space. The average accumulated error of all nodes will serve as a
distance measure of the entire network towards to input space:

L errory,

erroTmean = —t———* (2.6)
n

where A is the total set of nodes and n the size of A.

When errormean has dropped below the error threshold set in advance, learning
stops. At that point, an output file is generated, which contains the nodes of the
network. This file is used in recognition runs on the robot where perceptual input
is compared to the learned set of nodes.

2.3 Color transformation

The robotics lab has one windowed side. Especially at sunny days, the differences
in illumination are enormous because of this. The biological eye and visual system
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may have very sophisticated methods of compensating for such differences in inten-
sity. Although the camera on the robot does perform normalization on the image
to account for large differences in intensity, additional normalization needs to be
done. The upper row in figure 2.3 shows an typical example of the influence of the
lighting conditions in the room. On a sunny day such as the day the test run was
made, images are much darker when the robot faces one of the windows. And when
looking in other directions, lighting from the windows illuminates some parts much
more than others. The blue goal is illuminated in some parts and seems almost
black to the human eye in other snapshots. The snapshots taken with the camera
directed towards the windows also appear very dark.

-l
L

Figure 2.3: Large differences in brightness in the snapshots as a result from illumi-
nation from the window side. Below the same images after color conversion.

EI
L3

Without any preprocessing on the images, learning may result in an unnecessary
complex network and misclassifications in recognition during a recognition run. Tests
with the neural-gas network taken without any preprocessing on the images show
that images are misclassified. It is assumed, that the salience in the environment
will be based on color information, rather than texture information. Therefore,
the proposed transformation will normalize the images by making the brightness
constant.

This process is done as follows. First, the images are transformed to HSV, space.
Then, they are normalized by setting the brightness (value) to maximum. Finally,
they are transformed back to RGB space to make them understandable again for
us. The transformation causes the images to be represented in the upper plane of
the HSV cone only (see figure 2.4).
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Brightness

Figure 2.4: The H(ue)S(aturation)V(alue) cone. By setting the intensity to 100%,
images are represented using the upper plane of the HSV cone only. The intensity
or brightness of the images is made constant.

2.4 Learning the spatial layout of perceptual landmark
triples

It was argued that the triple-view approach lead to a less ambiguous perception and
code direction as well. The dataset contains all transitions made from one landmark
triple to another. The average dead reckoned distances and angles of the transitions
between two sets of landmarks could be used to generate a path to a given goal
location. The resulting behavior would be a form of ’recognition triggered response
navigation’, in which the recognition of a set of landmarks triggers a behavioral
respons: turn and move towards a desired location.

At a proximity event, the robot will stop and take snapshots in three directions, i.e.,
in front, left and right, at an angle of approximately 40° at each side. The images are
then identified by the neural-gas agent by finding the closest nodes of a previously
learned network. The combination of the perceptual-landmark IDs form a triple:
the ID of the proximal landmark in front, which triggered the proximity event, and
the IDs of the two distal landmarks left and right. This perceptual-landmark triple
is considered a single percept.

During a run, the robot will be storing the recognized perceptual-landmark
triples in a datafile. Furthermore, the distance and direction traveled by the robot
relative to the last proximity event are stored as (Ax,Ay) pairs. From this, a table of
transitions between landmark triples is created, illustrated below, where landmark
triples are given an arbitrary name to indicate that the three perceptual landmarks
combined form a single percept:
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RW3 ... (2.3,4.5) ... PQ5
PR5 ... (-1.5,3.0) ... GB1
GB1 ... (2.3,-1.2) ... RT2

From the dataset obtained by the robot in the recognition phase, a table of
transitions (or a sparsely filled transition matrix) is created where each transition
consists of a triple representing the start of the traject and a triple representing
the end. Through vector addition, it would also be possible to generate a bearing
towards a goal location directly. However, this traject could be blocked obstacles.
Furthermore, the path between the two locations given by a transition is assumed
to be a straight line. At a proximity event, the current percept will be used
to calculate the most likely path towards the goal. Since the combination of three
perceptual landmarks is hypothesized to be unique for the position as well as the di-
rection (see section 1.1.3), the average dead reckoned direction given by the (Ax,Ay)
pairs of a transition between two triples should be approximately correct. The main
idea is to calculate a path towards a given goal location and determine the direction
towards the first subgoal of the route, illustrated by the following.

e A transition is defined as a straight path between two landmark triples, start
and end.

e Since the center landmark is defined as the proximal landmark, let the goal
location be defined as any landmark triple which has the goal ID as center
percept. Any such triple is a goal triple.

e A path is defined as a number of transitions in which the first transition starts
at the current triple, i.e., the robots current percept, and the end triple is a
goal triple.

When following a route, the robot is said to on track when the detected center land-
mark at a proximity event is the same as the expected center landmark at a given
stop.

At a proximity event, determine the next action to be taken as follows:

1. Find the first transition in the table of transitions for which the end triple is
a goal triple.

2. Find in the table all paths starting at the current triple leading to the goal
triple.

3. When no path is found, start random search behavior, i.e. obstacle avoidance.
At the next proximity event, proceed with step 2.
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4. When one or more paths are found, calculate for every path a measure of being
successful. Let N be the number of times a single transition, 77}, of the route
has been driven before. FE is the number of times the robot has driven any
transition starting at the start triple of 75. [ is the length of the path, i.e.,
the number of transitions in the path. The probability p of the path being
successful is given by

l
N:
Ppath = § El (27)
i=1 """

5. Chose the path for which pp,, is largest. This is the path that is most likely
to be successful.

6. Find the dead reckoned distance and angle of the first transition of that path,
relative to the current position.

7. Calculate the bearing towards that location, turn accordingly and start driving
in that direction.

8. At the next proximity event, check whether you are still on track by checking
whether the center-ID of the current triple is the center-ID of any triple along
the path. If so, go to step 6. If not, go to step 1.

2.5 Agent design

2.5.1 Proximity agent

The proximity agent is responsible for the default driving behavior of the robot.
Essentially, it is a basic obstacle avoidance agent, but with an added behavior. In
presence of an object the robot now needs to take three snapshots, for which the
robot needs to stop. The proximity-agent is designed as follows.

e The default behavior is to drive forward.

e When sonars detect an obstacle in front (in a range of approximately 60°)
within one meter, a proximity event is said to occur. The robot then stops the
robot for the purpose of scanning the surroundings. A stop is not made when
less then one meter has been driven since the last stop.

e Obstacle avoidance behavior steers away from obstacles, when less than one
meter has been driven since the last stop.
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2.5.2 Active-vision agent

The active-vision agent implements the scanning behavior. When a proximity event
occurs, the robot is stopped by the proximity agent to give the active-vision agent
time to look around. It will take a snapshot in three different directions, in front
and at an angle of 40° at each side. These snapshots are stored on the robot’s hard
disk as PPM images.

For the purpose of the following experiments, there are three different modes
implemented: learning, recognizing and planning. The learning mode is used to
create a dataset for the learning phase of the research. The snapshots are stored on
the robot’s hard disk to form an input set for the neural network. In recognition
mode, the robot will be matching its visual input with nodes in the learned neural-
gas network. At every stop, the perceptual landmarks that are detected as well as
the robot’s position relative to the previous stop (Ax,Ay) are stored in a datafile.
The perceptual landmarks are stored as IDs as given by the neural-gas agent. This
information is used by the path-planning agent for navigation. The path-planning
agent is described in section 2.5.4.

2.5.3 Neural-gas agent

The neural-gas agent is basically a stripped-down online version of the neural-gas
program used offline learning as described in 2.2, which is used to recognize pre-
viously learned landmarks. The output file generated in the first learning phase is
read when the agent comes online. At each stop, the active-vision agent passes the
image to the neural-gas Kohonen self-organized map was learned from both snap-
shots of the environment robot and sonar readings taken by the robot. At locations
where sonar readings indicated close proximity to an object, a prorimity event was
said to occur. The detected obstacle in front is possibly a perceptual salient part of
the room. At a proximity event, snapshots where collected and coded in Hue and
Saturation (HS). These simplified images, consisting of 30x40 pixels each having HS
values, together with the sonar readings, formed input vectors for learning a 5x5
Kohonen Self-Organizing Map (Kohonen, 1990).

agent, which calculates the nearest neighbor of the image in the network using the
distance measure (eq. 2.1).

2.5.4 Path-planning agent

The Pathplanning agent is used in the last experiment (section 3.5) to generate
the best path from the current position to the goal location. Given a dataset of
transitions taken during a previous run and the IDs of the landmarks recognized at
each direction, the path planner calculates the relative X and Y position of the first
subgoal of the most likely path, based on previous travels between the same sets of
landmarks.
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Chapter 3

Experiments and results

3.1 Experimental setup

The robot used in this research is a Pioneer II DX type mobile robot, which is
basically a Pentium class computer at 266 Mhz running linux. Its perceptual system
consists of an array of 16 sonars, and a monocular CCD camera. The sonars are
capable of detecting objects in a range of about 10 cm to about 5 meters or more.
The camera is mounted on top of the robot. It has an effective resolution of 752
H x 585 V pixels and is able to move both horizontally and vertically at a range
of about 200° H (pan) and about 50° V (tilt). For path integration purposes, the
Pioneer robot measures each wheel’s traveled distance independently.

The robotics lab of the University of Groningen consists of a robocup soccer
field, situated in a room having windows at one side and a wall at the opposite side.
Part of the walls is colored orange. The robocup soccer field consists of a green floor,
white boardings of about 40 c¢m high, and two goals of about 1 meter high colored
blue and yellow respectively. Part of the walls in the room are colored orange. This
environment for the research and no extra artificial landmarks will be added to the
room. Since the boarding of the soccer field is quite high, the camera is tilted
5° upwards to enable the robot to see more of the surroundings instead of white
boarding for most of camera view.

3.2 Obtaining a dataset for training

Before training of the neural network can take place a set of snapshots is needed
as a dataset. For this a run with the robot is made in which snapshots are taken
in all three directions at each proximity event. This run was made on two different
days with slightly different weather conditions, but with both the curtains open and
closed. At each day, the robot drove for about four hours resulting in a dataset of
approximately 2100 snapshots. This means that with a network of 21 nodes, each
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Figure 3.1: The robotics lab. Part of the walls is colored orange and at one side
the room has windows. Around the soccer field (in the middle) there are computer
terminals and red chairs.

node will have had an average of 100 examples.

3.3 Training the Neural Gas network

In order to get reasonable results after learning we performed some testing on the
parameters of the Neural Gas network. A list of the parameters used in the network is
given below. A file containing these parameters is loaded by the neural gas program
at execution.

e MAX NODES (2 - o0) Defines the maximum number of nodes.

¢ MAX_ERR (0 - co) The maximum error. Learning stops if the mean error
of all nodes drops below this value.

e LAMBDA (1 - c0) Each A iteration, the network inserts a new node in the
network in the area containing the largest error with respect to the input (step
8 of the algorithm).
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e ALPHA (0 - 1) The parameter « determines the error decay for insertion.
When, at step 8 the network inserts a new node in the network, the error of
the units with the largest- and second-largest error ¢ and f respectively, is
lowered by multiplication with a.

e AGE_.MAX (1 - oco) This parameter defines the maximum age of an edge
before it is removed.

e EPSILON_B (0 - 1) The winner node for a particular input vector ¢ is moved
towards £ with fraction ¢,. that in

e EPSILON_N (0 - 1) All topological neighbors of the winning unit are moved
towards the input vector with fraction €.

¢ ERROR_DECAY (0 - 1) In step 9 of the algorithm, the error variables of
all units are lowered by multiplying them with error decay (. This will keep
the errors of growing out of proportion and will increase the influence of the
error of younger nodes.

Since A determines the number of cycles after which a new node is inserted, when
A is set to a high value learning may take very long. When set to a low value, nodes
are moved around a lot without moving towards a certain region in the input space.

When the age of an edge exceeds threshold AGE_MAX, the edge is removed,
possibly deleting a node in the process. Thus, when a certain unit or its neighbor
hasn’t been winner node for some time it has become obsolete. However, in the case
of landmark learning it is not desirable that a potential landmark is deleted from the
network because input features supporting it haven’t been presented to the network
in a long time. The parameter AGE_MAX must be set so that no, or few nodes
are deleted in the learning process, but restrain the amount of edges to keep the
network from becoming globally interconnected, in which case all landmarks would
be affected at each iteration.

26



(a) Nodes in the network after learning with ¢, = 04, o =
0.4 and 6 = 0.90. With these settings the original images are
shown too clearly: the network is not generalized enough. Also,
multiple parts of the room are shown in single nodes, which
makes the locations represented by those nodes ambiguous.

(b) Nodes in the network after training with learning parame-
ters ¢, = 0.08, €, = 0.007, insertion parameter A = 130 and a
maximum error of 5000 on a dataset of 2100 features.

Figure 3.2: Two networks after training. The arrows indicate each node’s parent:
the node with the largest accumulated error at the time of insertion of the child

node.
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€, and €, are the parameters for the learning rate. When ¢, is set to a high
value, the winner node at each iteration moves towards the present input vector
faster. The topological neighbors of the winning node are also moved towards the
input vector, but with the much smaller €,. Generally speaking, the network stops
learning sooner when ¢, is set to a high value. Setting the values too low will lead
to slow and ineffective learning. Setting them too high will result nodes moving to-
wards the input vectors too quickly. With smaller values of the error-after-insertion
parameter «, and error decay (3, learning stops too early, too. The effect of this is
that the resulting network will be unstable and generalized insufficiently.

In some experiments, these settings clearly made the stopping criterion being
met too soon, when only a small part of the input set had been presented to the net.
Figure 3.3(a) shows that with these kind of settings, the nodes in the network after
learning start showing original images from the dataset too clearly. These nodes are
then representing a rather small set of the input space, while other parts of the input
space are not covered enough. This amount of nodes seems too little to map onto
the entire input space well. A number of nodes in the figure are showing different
parts of the room, which will make perception by the robot ambiguous.

To ensure that each node would have had enough examples from the training set,
a criterion was that at least the entire dataset should have been presented to the
network after training. The learning rate must therefore not be set to high, and the
insertion parameter not to low. With the dataset of approximately 2100 features a
network of 22 nodes was obtained with the parameters for learning ¢, = 0.08 and
€n, = 0.007 and the insertion parameter A = 130. The accumulated errors of the
individual nodes are given in table 5.1.
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Node ID | erroryms | Node ID | erroryms
0 3118 11 5756
1 3894 12 1719
2 11293 13 10364
3 6611 14 5252
4 2754 15 352
5 491 16 2865
6 4890 17 6376
7 5501 18 5119
8 7535 19 1250
9 9024 20 42
10 4595 21 1693

Mean 4568
St. Dev. 3083

Table 3.1: The accumulated rms error per individual node of the network after
training.

This amount of nodes seems to capture the most important visual characteristics
of the room, without creating too much overlap between nodes (see figure 3.3(b)).
The blue goal emerges most clearly, since this is the only large blue object in the
room. Most other nodes are colored yellow since part of the walls of the robot lab is
colored orange and the artificial-light (TL-lighting) emits yellowish light also. The
yellow goal is therefore somewhat more hidden but is nevertheless there in a number
nodes. There seems to be one or two general nodes for the non-window side of the
room, but they are difficult to locate in the real room.

In the recognition experiment described in the next section, it is tested how stable
the trained networks are over different days, with different lighting conditions. Also,
it is tested what the effect of different network sizes yielded by different parameter
settings is on the error in recognition (see figure 3.4).

3.4 Recognition of landmarks

In this phase the robot is taking snapshots in the three directions at proximity
events, but now uses the learned set of landmarks and the neural-gas algorithm to
compare the taken images to the learned landmarks. At each proximity event the
identity of the landmark recognized in each direction is written in a log file, along
with the dead reckoned distance between the current stop and the previous stop. To
test whether the proposed model is able to recognize landmarks well enough, a test
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run was made with the robot. During this run, the robot’s behavior is similar to
the learning phase except that it now not only stores snapshots, but also classifies
each taken snapshot as one of the learned landmarks, following equation 2.1. This,
together with the dead reckoned distance from the last stop to the current position
is stored in a data file. The robot was run for a period of 8 hours on two different
days, which resulted in a datafile containing the snapshots and distances traveled of
583 stops.

original
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Figure 3.3: Some examples of mapping of snapshots onto nodes during a typical
recognition run with the robot.

Judging the performance of the model in a recognition run is a relatively subjec-
tive task. The nodes as learned by the network are not all easily identifiable as exact
locations in the real room. For this reason, the robot sometimes makes a choice for
a node given an snapshot which the human observer would not have made, based on
prior knowledge about the room. The model just calculates the Euclidean distances
between nodes and snapshots, and is therefore always 'right’. To give an impression
of the recognition process during a typical run, figure 3.4 shows a number of exam-
ples snapshots mapping onto nodes. Observing the recognition during the runs
with the robot, the algorithm makes the correct choices in almost all cases where
there is little ambiguity in the nodes themselves such as the blue goal. At the darker
side of the room there is somewhat more ambiguity. The model sometimes chooses
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the same (ambiguous) node at locations relatively far from each other (but at the
correct side of the room). However, the landmarks recognized in the other directions
together still seem to make sure that a set of landmarks represents the view from
that particular location.

A more objective measure of performance is the error made by the network, i.e., the
Euclidean distance between snapshots and nodes (rmse). To this extend, datasets
were created of different runs, each containing approximately 600 to 700 snapshots.
Offline, the neural-gas network was used to calculate the average error of the en-
tire runs with different network sizes. This gives an impression of stability of the
network over time, where lighting conditions may change. Furthermore, it gives an
impression of the performance of networks of different size.

In table 3.4 and figure 3.4 the average distances of different networks are given.
The lighting conditions on the subsequent days differed from sunny to clouded, but
without rain and before sunset (figure 3.4). It is striking to see that the average
distances of the networks in each run differ only by a small margin. As would be
expected, the errors are smaller in the case of the larger network of 36 nodes. How-
ever, the differences are only small, which indicates that the smaller network maps
onto the input space well enough. A network of size 12 gives a much greater error in
mapping. As for stability, the model seems to perform relatively equal on all days,
with a small increase in error on one, clouded, day.

jul 29 Sunny

jul 30 Partly clouded
aug 02 (noon) Sunny

aug 02 (afternoon) | Partly clouded
aug 04 Clouded

sep 27 Sunny

Table 3.2: Lighting conditions on the test days.

31



Network size 12 Network size 22 Network size 36
Date | Mean Dist. | St. Dev. | Mean Dist. | St. Dev. | Mean Dist. | St. Dev.
jul 29 6724 1503 5867 1582 5637 1501
jul 30 6644 1322 5843 1370 5609 1293
aug 02 6693 1448 5884 1568 5718 1484
aug 02 6909 1440 6153 1448 5973 1389
aug 04 6903 1439 6103 1444 5922 1381
sep 27 6587 1418 5830 1477 5643 1388

Table 3.3: Average rmse between snapshots and nodes with different sets of snap-
shots, taken on different days.
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5500

Avrg error per run
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Figure 3.4: Average distances between snapshots and nodes with different datasets
of snapshots, taken on different days.

The previous section described how the visual space becomes unnecessarily com-
plex when the raw RGB values of the snapshots are taken as input for learning.
Learning without preprocessing on the images has been done to test the effect of the
image normalization. The network shown in figure 3.5 resulted from learning with
the same parameters as used in the previous section and on the same set of snap-
shots, only without color conversion on the images. The network has become one
node larger than without preprocessing where a number of nodes represent almost
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the same part of the room. Figure 3.6 indicates the difference in the rms error.

Figure 3.5: The network after learning without preprocessing on the images. This
network was obtained by training with the same parameter settings as those which
yielded the network of size 22 (figure 3.3(b)).
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Figure 3.6: Difference in average rmse in recognition runs between networks with
and without preprocessing on the images. The lower line indicates the average rmse
of the network of size 22, where normalization was done on the images. The upper
line indicates the average rmse of the network obtained by training with the same
parameter settings, but without normalization.

3.5 Path planning

The following experiment has been done to test how well the obtained representation
of the room can be used in reaching a given goal landmark. The method explained
in section 2.4 was used in various runs with the robot, with different goal locations
and different starting positions. At each run, the number of transitions needed to
reach the goal was recorded. The average number of transitions needed to reach a
goal when driving randomly, N,qndom, Was taken as baseline:

Nrandom = = (31)

where Nyqns is the total number of transitions of all runs and Ngy,e the number of
transitions in which the goal ID was encountered at the end of the transition.
Figure 3.7 and table 3.5 show the resulting data.
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Figure 3.7: Average number of transitions to reach a given goal landmark when
using the path-planning algorithm and when driving randomly. Error bars are not
given, since the spread is rather large. See table 3.5 for this information.

Node id | Min | Max | Mean | St dev
0 2 17 6.3 3.6
1 2 12 5.6 2.4
2 2 17 7.1 3.6
3 2 19 7.3 5.0
5 3 47 13.7 13.3
6 3 29 13.9 7.6
9 3 36 10.3 9.4
15 3 19 6.9 4.3

Table 3.4: Average number of transitions needed to reach goal using path planning.
The minimum values, maximum values and the standard deviations of the data are
also given.

The average number of transitions needed to reach the entered goals, compared
to the performance at random drive are shown in figure 3.7. It is clearly shown that
the performance of the path planner is less than at random drive. Also, as indicated
in table 3.5, the spread is large. The smallest number of transitions needed for each
goal location is small, i.e. 2 or 3. However, there number increases to as much as
47 in one trial. The number of transitions needed by the model is almost system-
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atically higher than random search, which is rather strange. It could indicate that
the information is there, but is used in the wrong way. We will further discuss these
results in the next section.
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Chapter 4

Discussion

Starting with the problem of unsupervised learning of perceptual landmarks, an
adaptive learning scheme was proposed. This model has been based on a neural
network structure called Growing Neural Gas (Fritzke, 1995). As the Kohonen net-
work, the GNG network is a method of reducing the dimensionality of an input
space, in our case a collection of snapshots of a room taken by the robot, to a set of
nodes which map onto the input space best. In our implementation, the model suc-
cessively adds new items until the overall error (expressed by the squared distance
of all units to the input features) is considered small enough.

After experimentation on tuning of the parameters, the model was given an input
set of approximately 2100 images After learning the model had created a network
of 22 nodes, which covered the input space well, judging subjectively. In runs with
the robot, testing the performance in recognition, network sizes of 12 and 36 were
also taking into account. The average error (rmse) between snapshots and learned
perceptual landmarks in different runs with the robot indicated that the network
size of 12 resulted in a much larger error and the network of 36 nodes produced only
a slightly smaller error. Furthermore, the performance of the network with different
lighting conditions was relatively constant, with a slight increased in error in recog-
nition when it was (partly) clouded. The results indicate that the representation is
stable.

The second stage of the study was aimed at capturing the relations between the
landmarks in the environment. During the recognition run with the robot, a datafile
with information about the detected landmarks at each stop, and the dead reckoned
distances between subsequent stops was created. From this a distance matrix was
created containing the average x and y position of perceptual-landmark triples rela-
tive to each other. At a proximity event, given the percept of three landmarks, the
most likely path to a given goal location was calculated. The performance of the
algorithm was compared to random-drive behavior, i.e. the number of transitions
driving randomly.
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The experiment had a rather surprising result: the number of transitions needed
to reach the goal was systematically higher than when using path planning. It seems
that the information is there, but is used in the wrong way. Observing the robot’s
behavior in the experiment, two important things were observed.

First, looking at the perceptions of the robot during the test, it was often seen that
the direction the robot traveled in was approximately correct. However, especially
at larger distances a small error in the bearing results in a much larger error at the
end of the traject, leading to a 'miss’. While observing the robots behavior, it could
be seen that there was a number of cases where the expected proximal landmark
was indeed detected, but not at the center location. Examples of this can be seen
in appendix A, where a table is displayed in which the detected and the expected
landmark IDs at each stop in a number of trials is given. Visualization of a run in
figure 4.1 shows an example. Here, the first subgoal generated is not reached, and
the robot is too far off to the left. In stops 3 and 4 however, the robot’s perceptual
fields are not that different from what was expected. Also, the situation sketched
in figure 4.2 indicates the situation where a small displacement causes the model
to detect a different landmark than expected. Perceptually, the two nodes differ
only by a small portion, and the human observer might even consider the nodes as
different representations of the same landmark.

38



actual perception expected perception

Figure 4.1: A given run to find goal ID 0. In first column the perceived landmarks
at each stop, in the second column the landmarks that the robot expected to see at
that stop.
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Figure 4.2: A small displacement causes the model to detect a different landmark
than intended. Perceptually, the two nodes differ only by a small portion. However,
cross correlation on (horizontal strips of) the images would yield information for
corrections in direction.

Second, while observing the behavior of the robot during path planning it was
often seen that the robot took of in approximately the correct direction but changed
course along the way. The Proximity agent makes sure that a certain distance is
traveled before making another stop, to keep the robot from stopping endlessly at
one location. This behavior is correct most of the time, but made the robot change
direction in a number of cases resulting in missing the intended goal.

Third, there are too many cases where no path had been found at all. These cases
arise when the detected set of landmarks has not been seen before, if any path gen-
erated is longer than the maximum allowed size of a path or no path exists at all
in the dataset. The chance of finding a good path would be greater if the amount
of data collected during the recognition run was larger. A rule of thumb would be
to have at least 10 examples for every transition. However, the number of possible
transitions is huge. A network of 22 nodes would lead to a distance matrix of size
223 by 223, which is 10648x10648. Even though the matrix is sparsely filled, it is still
very large. The time needed to gather the amount of data required to have 10 ex-
amples for every transition is very long, which is not desirable, biologically speaking.
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Generally speaking, in the current approach the robot chooses a direction based
on a given percept but after that relies entirely on path integration to reach its goal.
Turning towards some landmark you wish to reach and then starting to walk towards
it with your eyes closed seems not a very wise strategy. As indicated in section 1.1,
when goal locations are marked by a salient beacon, insects aim at this beacon to
reach the location. Also, when following a route landmarks are used stick to a track
and correct disturbances and errors in path integration (Collett, 1996). A form of
beacon navigation during the driving phase could give the robot the necessary in-
formation to make small adjustments in its direction. Comparing the image of the
goal location with the current visual input at different directions would indicate the
direction most likely to be successful.

4.1 Conclusion

The hypothesis of this study was that a modeled form of the scanning behavior of rats
would lead to a better encoding of the perceptual landmarks in the environment,
since the percept of three perceptual landmarks is less ambiguous and since this
percept is unique for one direction. The last experiment, where path planning was
used to reach a given goal location was most important in testing this hypothesis.
The results of this experiment were that using path planning, the robot reached
goal locations less often than when it was driving randomly. However, observations
pointed out that given a perceived landmark triplet, the expected direction of the
next goal calculated by the model was approximately correct. The goal was mainly
missed because of smaller errors in the direction, and changes in direction made
by the obstacle-avoidance agent, when they were not desired. The main problem
would be that during the driving phases between subsequent stops, the robot is
blindly relying on path integration and the obtained information, rather that visually
confirming it is on the right track.

4.2 Future Research

Future research could be directed at implementing a form of beacon navigation to
backup the current strategies. In the driving phase between subsequent proximity
events, perceptions in a number of directions could be used to make small corrections
in direction. It is known that insects, i.e. bees and ants, match the their visual per-
cept to stored percepts of landmarks for guidance and aiming (Cartwright & Collet,
1983; Judd & Collett, 1998). In doing so, they process not the raw retinal images,
but rather a processed version that emphasizes edges (Collett, 1996). If the image
is displaced on the retina with respect to the learned pattern, the animal changes
direction so that it matches again.

Following this, comparing (parts of the) snapshots taken during the driving phase
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to the learned perceptual landmarks, could be done using cross-correlation on small
horizontal parts of the images. The horizontal displacement of images in comparison
to the goal image indicates the amount of error in direction.

As a second point, this study did not have the intention to let an autonomous
robot create a cognitive or Cartesian map of the environment, but rather at a be-
havior in which it would seem that it had. A solid map-like representation of the
environment would however allow for more efficient navigation and path planning,
especially in highly dynamical environments, where routes may have become blocked
and alternative routes must be taken. As indicated in section 1.1.3, the combination
of three landmark percepts at a proximity event not only couples the three per-
ceptual landmarks in the triple, but also those of other triples when triples overlap
(indicated in 1.2). The left-to-right relations between the perceptual landmarks are
an extra constraint in placing the perceptual landmarks on the map.
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Appendix A

Path-planning data of several
trial runs
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transition
nr

actual set of IDs
left-center-right
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left-center-right
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1-1-9
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1-9-15
16 - 3-12
5-0-6

16 - 16 - 12
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2-2-10
19-3-3
2-14-10
16 -15-19
12-0-6
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Table A.1: Data from
various runs in which the
ID 0 was the goal-ID, the
blue goal. For each trial,
the recognized landmark
IDs at the stops are in-
dicated in the second
columnm, and the land-
mark IDs that the robot
expected to see at that
point are given in the
third column. Dashes in-
dicate that the robot did
not find a path at the
previous stop, thus no
landmarks are expected.



Appendix B

Usage of neural-gas program

Growing Neural Gas Network Taken from ’A Growing Neural Gas Network Learns
Topologies’, Bernd Frizke, in Advances in Neural information Processing Systems 7,
1995

To learn a set of feature vectors, a input file is needed containing the following:
On the first line the length of the feature vectors and the minimum- and maximum
value of a feature, seperated by a space. Each following line should be a feature vec-
tor of length provided above, in which features are seperated by spaces. As output,
the network by default writes a file ’output’ to the working directory. This file has
the same makeup as the input-file.

Network parameters are stored in "gng.ini” which is read by the program at ex-
ecution. The network uses two stopping criteria: A maximum number of nodes and
a maximum error. Both should be fairly obvious. Setting the maximum number of
nodes to a high value makes the network use the other as stopping criterion, while
setting the error 0 makes the net grow until maz_nodes is reached.

A topology file is written after learning is complete. This file is made up of two
parts, one containing the set of edges between nodes, and the other each node’s
parent. Each A-th iteration, a node is spawned between the node with the largest
accumulated error and its topological neighbour with the largest accumulated error.
This largest_error_node is the spawned node’s parent.
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Example topology file:

W NP+, P, OO
W PN WN

Hit#
21
31
4 3

* %k
* %

*%
*%
*%

The set of edges between nodes, N.
(node’s and their neighbours)

Each node’s parent. The first and second
node (0 and 1) do not have parents as they
were spawned at initalization.
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