
955
2006

003

Pose estimation with Sonar

Jan Willern Marck
s1162381

February 27, 2006

Supervised by:
dr. Bart de Boer

drs. Gert Kootstra

Artificial Intelligence
Rijks Universiteit Groningen



Abstract

Probabilistiq Robotics is a relatively young approach to robotics. It emphasizes
uncertainty in robot perception and action. Using probability theory it is able
to represent this uncertainty explicitly. Probability density distributions are
used instead of a single "best guess". This way it can model ambiguity and
belief in a mathematically sound way.

The research for my thesis focuses on pose estimation. Pose estimation
is the estimation of location and orientation of the robot. Odometry gives a
very good estimation of the current pose, but still gives only an estimation.
Over time the cumulative odometry error can grow quite large. This error can
be corrected using sensor information. But using only one scan is not always
adequate. Matching multiple sensor readings can provide extra information.
This is called scan matching. If these two errors are combined with odometric
information using a Kalman filter, scan matching should provide an improved
pose estimation.

Usually scan matching is done with laser range finders. For my implemen-
tation I adapted the most widely used scan match algorithm so it can be used
with sonar range finders. I tested four models for determining the translational
and rotational update in the Kalman Filter. I will give the results to these tests
and a general overview of Probabilistic Robotics.
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Robotics has always had my interests. Finishing my artificial intelligence (Al)
studies at the Rijks Universiteit Groningen (RUG) in autonomic systems was a
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Chapter 1

Introduction

Mapping has been researched avidly the last two decades. Reliable maps are
needed in various mobile robot applications, for example guided museum tours,
mine exploration or vacuum cleaners. Probabilistic Robotics is the current
fashionable paradigm in this research area. Using probability densities it models
the world and the robot. In doing so Probabilistic Robotics creates robust and
reliable options for ditfereiit applications.

A central theme within Probabilistic Robotics is the problem of self localiza-
tion. The biggest problem is a cumulative error in odometry information. Var-
ious approaches exist to deal with this error. One specifically is scan matching.
By comparing range finder scans from two different times, it corrects odometry
information. This technique is very successful with laser range finders. It has
not been implemented with laser range finders as yet.

Sonar range finders are unreliable (40% failure rate), are noisy and provide
less data, that is less reliable, when compared with a laser rangefinder. Succesfull
scanmatching with sonar rangefiders would provide a irietliod for mobile robots
with sonar range finders to create more reliable maps. If the sonar variant it
would also provide method to do scan matching with sparse data.

1.1 Research Objectives
The main goal of my master thesis is doing a reconnoitering study of simultane-
ous localization and mapping (SLAM) in the paradigm of probabilistic robotics.
One branch of SLAM research deals with scan matching, in which two or more
scans are combined to improve the estimation of the location of the robot. In
my thesis an algorithm normally used with laser range-finders is adapted to one
usable with sonar range-finder. The research question of this thesis is:

Is it possible to adapt a laser scan match algorithm to a sonar scan
match algorithm?

The laser scan match algorithm that is adapted is described in [22J by Lu
and Milo's. Experiments with the Pioneer 2DX and experiments in simulation
are done to test. the effectiveness of the new algorithm. Parameters are needed
for some robot models. Experiments are done to estimate these as well.
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Chapter 2

Theoretical Background

Research on simultaneous localization and mapping (SLAM) consists, as the
name already implies, of the study of two entwined problems: localization and
mapping. Localization is hard without a map and mapping is impossible without
proper knowledge of where you are. Various simplifications of this problem allow
us to look at different subproblems of SLAM. For example, current state of the
art localization techniques are very capable if the map and the starting position
are known [33]. If the map is known but the starting position not, it is called
the kidnap problem. In this case there are also various solutions that work well
[33, 30, 7].

There are two different approaches on how to model the position of the
robot. In the Markov approach the map is sliced in smaller portions to create
a topological network. For each element of the Markov network the probabil-
ity is calculated that the robot is there at that time [20]. Though this is a
robust approach, it takes more computational power but is less susceptible to
catastrophic failure, an unrecoverable error or deviation, when compared to the
second option [101. Which is that robot position is modeled with a probability
density function (p.d.f.). I will use the latter, because there is more literature
covering it. I will ignore the former because investigating this as well lies out of
the scope of my master thesis.

An other often applied simplification is the use of landmarks. Landmarks
are distinctive features in the environment of the robot. For example electro-
magnetic beacons embedded in the ground or the colored goals in robocup.
Landmarks were used in the beginning of SLAM research. They work easily
and good as long as the robot knows which landmark it is sensing. Landmarks
are used to get an better location estimation instead of only using odometnc
information. Sometimes landmarks are indistinguishable or unavailable. Non-
landmark techniques are developed for these scenarios [12]. Combinations of
both are used as well [9]. In this study landmarks will not be used. Land-
marks require consistent recognition, which would have taken too much time to
implement and test properly.

In the case of simultaneous localization and mapping there are two basic
approaches. One is called on-line SLAM. On-line SLAM processes one chunk
of information at a time, be it odometric or sensor information, and in doing
so it updates its knowledge of the world after each information chunk. The sec-
ond solution is called full SLAM. This approach considers all sensor information
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available in one batch and gives the most probable map afterward. The great
difference is that on-line SLAM is usually implemented iteratively and operates
in real time. The full SLAM calculations take much longer and are performed
after all the data is available. On the other hand full SLAM is more accurate.
However in most cases the increased accuracy is not worth the extra computa-
tional demands. I have chosen for on-line SLAM, because it is more plausible
in a cognitive way. Also it is a more elegant solution than the brute force so-
lution of full SLAM, considering terms like memory usage and computational
demands.

To summarize the SLAM approach for this thesis:

• The position of the robot is modeled by a probability density function
(p.d.f.).

• Landmarks are not used.

• on-line SLAM is implemented instead of full SLAM.

In the next sections probabilistic robotics theory is discussed. The most
important aspect of this theory is the Bayes filter. In the following section
three applications of the Bayes filter and how they are applied are discussed.
The third section discusses different pose estimation algorithms and how they
interact with the Bayes filter. The fourth section explains in detail a specific
scan match algorithm. This technique is adapted from laser range finder usage
to sonar range finder usage.

2.1 Probabilistic Robotics
Probabilistic Robotics is a relatively young approach to robotics. It emphasizes
uncertainty in robot perception and action. Using probability theory it is able to
represent this uncertainty explicitly. It utilizes probability density distributions
instead of a single "best guess". This way it can model ambiguity and belief
in a mathematically sound way. To quote the writers of the book Probabilistic
Robotics [33]:

A robot that carries a notion of its own uncertainty and that acts
accordingly is superior to one that does not.

In the next subsections I will explain how probabilistic robotics models the
world with state and how it models the position of the robot in the world
over time. The interaction with the world and this interaction influences the
knowledge about the position of the robot is discussed thereafter. The Markov
assumption and its consequences are discussed next. This leads to Bayes filter,
which is the foundation on which most probabilistic robotic research rests.
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2.1.1 State and Belief
If robots are to interact with the world, they need to have knowledge about
the world. Exceptions are the Braitenberg vehicles [1], flocks

f
25] or similar

reflex based robots. For example. an autonomous vacuum cleaner robot needs
to collect dust in a room. To be able to clean the room properly it should
have a well designed body, so it can collect dust in corners. It must have decent
sensors to detect dust and the room with furniture, and a well designed computer
program to control the robot [34]: the robot must find the dust in the room
and avoid obstacles. To be able to do this, the program needs a good model or
description of the world and of the robot itself.

Most robots use models of the world. These descriptions can consist of
either the robot's location and orientation in the world or a map of the world
or anything else you want your robot to consider. This description is called
state. State at time t is denoted as Xt. State can be dynamic, such as the
location of the robot or state can be static, for example a map. In my thesis
state Xt is defined as the robot pose. The robots I work with are harbored
in a 2 dimensional environment. As such the robot pose consists of x and y
coordinates and orientation.

A sequence of states is used to describe the robot in time. As the state
sequenc gets longer and longer, the difference between the modeled state,
called belief (bel), and the actual state in the real world increases. Proba-
bilistic Robotics tries to model the uncertainty of the robot with belief. Belief
is defined as the probability density function of the chance that the world is in
state Xt. Using statistical calculus and clever algorithms it tries to minimize the
uncertainty in belief and the difference between it and the actual state of the
robot.

bel(xt) = p(zt) (2.1)

2.1.2 Environment interaction
A robot has two different types of interaction with the world. It can perceive
or manipulate the world. In other words the robot can gain information about
the state of the world or it can change this state.

• Sensor measurements: z stands for all the information by which the robot
perceives the world. For example laser/sonar range finders, a camera or
a touch sensor. The sensor measurements on time t will be denoted as Zt
through out this thesis. Sensor data from t1 till t2 is denoted as Ztl:t2

• Control actions, u stands for the actions by which the robot changes the
state of the world. For example by movement or actuators. Odometers are
considered control data, because they measure the turning of the wheels
and as such control the wheel gyration. State change on time I will be
denoted as Ut throughout this thesis. Control data from Ij till 12 is denoted
as Utl:t2

There is one important difference between sensor measurements and control
actions. Sensor data increases the robots knowledge about the environment,
thus decreasing the total uncertainty in the next state. Control actions, on the
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other hand, are always performed with a bit of noise. For example a robot
wheel may slightly slip. Control actions always add some uncertainty to the
next state. A more detailed explanation will follow later on.

In probabilistic robotics belief is represented by conditional probability dis-.
tributions [331• It assigns a probability to every possible state. To determine
the belief of state Zt, you need to take into account everything that happened
before t. In other words bel(xt) is dependent on all past sensor and action data.
This is shown in following conditional:

bel(xt) = p(xtlzi:t,ui:t) (2.2)

Later on it will be necessary to calculate bel(xt) without using the newest
sensor information. This will be denoted as:

i(Xt) = p(xtlzi:t_i , U1:) (2.3)

2.1.3 The Markov Assumption
If state Xt is the best estimator for the future it is called a complete state [33].
State Xt being the best estimator means that states x0 to x — are not necessary
for predicting state and that the only necessary information for predicting
state Xt+1 is state Xt. State x does not have to be discrete and deterministic
it can have continuous and stochastic variables. Of course it is impossible to
model the perfect complete state for a robot but if made well enough a model
can be assumed complete.

Time processes that comply to completeness as defined above are commonly
known as Markov chains [33]. Markov chains have the Markov property:

p(qtIqt—1,qt—2,...,) = p(qtlqt—t) (2.4)

This a first order Markov assumption. A second order Markov assumption
would mean that in the conditional on the right side of equation 2.4 qt-2 would
be used as well as a prior knowledge. This Markov property is an important
property for probabilistic robotics. As long as the modeled state is complete
enough this allows recursive solutions for localization, mapping and comparable
estimation problems. The Markov assumption is very important for the Bayes
filter and keeps the mathematics tractable.

2.1.4 The Bayes Filter
A well known method to calculate belief in robotics is the Bayes filter. The
use of the Bayes filter and variants is widespread among the SLAM research
corpus (some examples:[27, 32, 30]) and it plays a central role in probabilistic
robotics and its literature. The recursive function requires bel(xt_i), Ut and z
to calculate bel(xt) is shown in equation 2.5.

bel(xt) = 71P(ZtIXt)JP(XtIXt_itLt)bel(Xt_i)dXt_i (2.5)

To provide extra insight in the importance of the Markov assumption and
the inner workings of the Bayes filter I will give a short prove of the correctness
of the Bayes filter by induction. The proof comes from [331• It will show that
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the Bayes filter correctly calculates Bel(x) from BeL(xj_i). The Bayes rule [17]
is first applied to equation 2.2:

bel(xt) = p(xtlzi:t,ui:t)
— p(ztlxg, Z1:t_1, ui:t)p(xglzi:t_i,tii:t)
— p(ztlzi:t_i,ui:t)
= Z1:t_1, ui:t)p(xtlzi:t_i, Ui:t) (2.6)

The term p(ztlzi:t_i,ui:t) is the same for every possible configuration of
state Xt and thus is considered a constant. Since the Bayes filter is a probability
density function, i is used to make the total probability one. , normalizes the
Bayes filter. State Xt is known. The application of the Markov assumption
renders all knowledge before this state irrelevant. p(ztIxt, Zj:t_1, U1:t) = p(ztlxt)
This leads to following equation:

bel(xt) = 71P(Ztkt)P(xtIZl:t_l,tzl:t)
bel(x) = ii(ztIxt)(xt) (2.7)

The theorem of total probability is applied to bel(x).

bel(xt) = p(xtlzi:t_i,tti:t)

= f p(XtXt_i, Z1:t_1, ui:t)p(xt_i Izi:t_i , u.)dx_ (2.8)

The Markov assumption is applicable again. If state Xt_1 is known knowl-
edge before t — 1 is irrelevant. p(xtIxt_i,zi:t_i,ui:g) = p(XtIXt_i,ut). It is
obvious that ut can be omitted from P(xt_1IZ1:t_1,tLl:t), since it does not con-
vey information about state x.1. Equation 2.9 and equation 2.7 together form
equation 2.5.

i(Xt) = fP(XtIXt_iUt)P(Xt_iIzi:i_ltLi:t_i)dXt_i

= JP(xtIxt_iut)bel(xt_i)dxt_i (2.9)

The Bayes filter has two steps. First it incorporates Ut in the distribution of
bel(x_i). This step is the state update step or is called prediction. To update
bel(xt_i) it uses the state transition probability: p(xtlxt_i, Ug). The second step
is the correction step. bel (Xt) is corrected with measurements zt. Which is done
by the measurement probability. Finally f bel(xt)dzt has to be 1 for it to be a
probability density function (p.d.f.). It is normalized by i to make it a p.d.f..

Algorithm 2.1.1: BAYES FILTER(bel(xt_i), Ut, Zj)

for Vx

do ft) = fp(xtluxt_i)bel(xt_i)dxt_i
bel(xt) = p(ztlxt)bel(xj)

Normalize bet(x)
return (bel(x))

Algorithm 2.1.1: The Bayes filter
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2.2 Bayes Filter Implementations
There is an abundance of possible implementations for the state transition prob-
ability and the measurement probability an thus there are plenty of implemen-
tations of the Bayes filter. The simplest implementations are for finite state
machines in which simple numerical solutions can be found [33]. The next step
up are probability estimators which use Gaussian distributions. They try to esti-
mate the mean and covariance of the estimatee. The most important example is
the Kalman filter [36]. It has an entire franchise of upgrades and variations: the
extended Kalman filter [33], the unscented Kalman filter [35] or the information
filter [33]. There is a rich body of knowledge and literature about this.

There are situations where the unimodal Gaussian distributions cannot be
used for a Bayes filter implementation. For example when there are 2 distinct
hypotheses a unimodal distribution cannot model this ambiguity. In such cases
numerical approaches are used with good results. In the probabilistic robotics
literature they are called particle filters. Particle filters are used for localization
[301 or for estimation of a driven path [32].

I will give a short overview of the Kalman filter, the particle filters and
occupancy grids, which is a Bayes implementation often used for mapping.

2.2.1 The Kalman filter
The oldest en best understood Bayes filter implementation is the Kalman filter.
Kalman published his paper in 1960 [19]. Since then it has undergone extensive
research and it has spawned a couple of variations. It is widely used in the area
of autonomous systems. The Kalman filter calculates belief in such way that
it is solely applicable to continuous states. It is incompatible with discrete or
hybrid states. it is part of the Gaussian Filters family [33]. Which means that
the belief is modeled by a multivariate normal distribution.

In the Kalinan filter belief is modeled as the first two moments of a probabil-
ity density function: The mean pj and covariance E. The Kalman filter makes
two assumptions about the state model in addition to the Markov assumption of
the Bayes filter. These assumptions make sure that belt is normal multivariate
distribution [33].

• The first assumption is that the state transition probability, p(xtlxt_i, Ut),
and the measurement probability, p(ztlxt), are linear functions with Gaus-
sian noise. They are expressed by the following equations:

Xt = Ax_1 + Btut + e (2.10)

(2.11)

Xt, ttt and Zt are state vectors, with lengths, respectively, n,m and p.
Matrix A has the size n x n, matrix B has the size n x m and matrix C
has the size p x n. and ö are vectors that model the Gaussian noise in
the equation. They have lengths of, respectively, n and p. Each element
of these noise vectors has a mean of zero. The covariance Matrices that
describe the noise vectors are respectively R and Q.

• The second assumption is that belt_i is a multivariate normal distribution.
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Algorithm 2.2.1: KALMAN FILTER(Pt_l, E, Ut, Zt)

= AtPt_1 + Bu
= A1A + Q

EtHt
= HEH+R
= 7i + K(z — Hji)
= (I -

return (pt,Ej)

Algorithm 2.2.1: The Kalman filter

The Kalmaii filter is described in algorithm 2.2.1. The algorithm models
belief with mean p and covariance . It calculates Pt and E from fZ.i and
l_i using tAt and Zt. The first two lines constitute the prediction step as they
incorporate Uj in p and _i to calculate bel(zt). The next line describes the
Kalman gain, K. This stands for the amount of trust in the measurement vector
Zt in relation to the prediction of bel(xt). If the K goes towards I,measurement
Zt is trusted greatly. The consequences of this for the next two lines, the cor-
rection step, are that Pt is corrected more towards Zt and that the covariance,
E, will become smaller. If the Kalman gain is very small Zt is not trusted in
comparison to bel(xt). This means that Zt is only slightly incorporated and that
the covariance decrease is tinier.

The Kalman filter is a very efficient and effective estimation technique. How-
ever it has limited applicability. It can only model linear systems and it has
a unimodal normally distributed probability density. This linearity makes the
Kalman filter a bit crude for most applications. As answer to the problem of
linearity, the extended Kalman filter uses a first order Taylor expansion to give
a better approximation of non linear systems 1351. This gives improved results
but it does not deal wit.h the problem of the fixed shape of the probability den-
sity. For example, in the kidnap problem, as explained earlier, the algorithm
must be capable of having multiple hypothews of where it could be, to finally
choose the best. With a Kalman filter or a Kalman-like filter this is impossible,
because of the unimodality of Gaussian distributions.

The extended Kalman filter functions as the basis for more advanced SLAM
techniques [16, 121.

2.2.2 Particle Filters
Particle filters are a popular type of Bayes filter implement ation. Most of the
time particle filters are used as localization techniques [5, 30], or as path es-
timation techniques [32]. Particle filters try to model belief with a numerical
approximation of the state of the world. For this they use an arbitrary amount
of hypotheses of the state of the world. The distribution of the hypotheses in
the state space describes the belief. This is where particle filters differ greatly
from the Gaussian filters. The shape of the distributions of the Gaussians is
determined by the parameters of the Gaussian. Particle filters belong to the
family of the nonparametric filters. This means that the bel(xt) is not deter-
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mined by parameters, such as mean or covariance of the distribution [33]. The
mathematical derivation can be found in [5].

bel(x2) is modeled with Xt which is a set M hypotheses in it.

Xt = {Xt,1,Xt,2,. . .,xt,,j} (2.12)

The particle filter algorithm is described in algorithm 2.2.2. It has two im-
portant parts. The first part processes Xt— 1 with Ut and z to the proposal distri-
bution and W. First a new hypothesist,m is sampled from p(XtIUj,Xt_i,m),
the state transition probability. Then Wt,m is calculated, which is the proba-
bility that hypothesis t,m could have produced sensor measurements Zt. The
measurements probability, p(ztlxt), is used for this. Distribution W is a prob-
ability density constructed from the weighting factors Wt,M for all state Xt,M
elements. W is a probability density and as such the integral over W should
be one. To make sure of this the weights are normalized by dividing each weight
by the sum of all the weights.

The second part of the algorithm is called the importance sampling step.
Hypotheses are sampled from using probability density W to fill the set Xt
with hypotheses from . Before the importance sampling step the hypotheses
are distributed according to belt, after the re-sampling step the distribution of
hypotheses is bel(xe).

Over time belief will converge to the hypotheses that produces the most likely
output. Essentially this works like evolution. The best hypotheses survive.

Algorithm 2.2.2: PARTICLE FILTER(xt_i,ut, Zt)

= Xt = 0
for m = 1 to M

(Sample t,m from P(XtlUt,Xt_i,m)
do Wt,m = P(Zttm)

Insert Xt,m in
Normalize W
for m = 1 to M

d f Sample Xtm from W)
Xt,m in

return (Xt)

Algorithm 2.2.2: The particle filter

The choice of how many hypotheses to use in the filter is not without influence.
There are two aspects to consider when choosing. Having plenty of particles to
consider goes together with greater computational complexity. However if the
chosen amount of particles is too small, the particle depletion problem will show
up. The particle depletion problem implies that groups of hypotheses can be
exhausted of particles, because there aren't enough particles. When the filter
is converging, this can cause catastrophic failure. There are approaches how
to deal with dynamically[4, 7]. Aspects like available computational power and
filter convergence influence t he amount of particles used.
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2.2.3 Occupancy Grids
The robot Minerva [29] gave guided museum tours in the Smithsonian National
Museum of American History for two weeks. It navigated from exhibit to exhibit
avoiding people and objects. If some one was blocking her way Minerva would
ask the person to move out of her way or honk her horn to get the blocker to
move on. So Minerva maneuvered around in the museum. To do this she needed
a valid internal map to be able to navigate and to be able to plan a path around
objects to the next exhibit. Minerva used an occupancy grid.

Occupancy grids are a Bayes Filter implementation used for estimating which
space around the robot is empty and which is occupied. They have been the
standard mapping paradigm from 1985 when Moravec published the first article
about it [23]. The map used by the algorithm is a fine grained grid. Using sonar-
or laser range-finder sensor input, the algorithm tries to determine the chance
for grid cell whether it is occupied or empty. is the map at coordinates
x and y. If is 1, the algorithm is completely certain that it is occupied. If
it is 0, the cell is unoccupied.

There are multiple ways to calculate this probability. In [261 three occu-
pancy grid algorithms are compared and discussed: A probabilistic approach,
a Dempster-Shafer theory approach and an approach based on fuzzy sets. The
probabilistic and the Dempster-Shafer approach were both equally superior to
the one based oti fuzzy sets. Dempster-Shafer theory is based on finding evidence
in favor and finding evidence not in favor of your estimation [24]. Therefor it uses
2 functions to handle the sensor input and calculate p(mz,y). The probabilistic
approach uses only the meastrement probability to do this. The probabilistic
algorithm is used for two reasons. The first is Ockhain's Razor. Although it is
not superior, the Dempster-Shafer theory is more complex than the probabilis-
tic approach, The other reason is that the probabilistic way falls more in line
with the rest of this thesis. The most straightforward implementation of the
probabilistic algorithm is described by Thrun in [28].

Most variations make two important assumptions. First they consider the
estimation for each grid cell an independent process. This means that in the
Bayesian update algorithm only the information from state x_j from the cur-
rent grid cell is used. The algorithm ignores information in other cells. This
assumption allows computationally elegant and real time solutions but it is
inferior to the approaches that do take these dependencies into account [28].
Unfortunately these approaches are not real time.

The second assumption is that the environment of the robot is static. Walls
arid doors do not change position. This simplification is of great importance to
occupancy grids, see below. Unfortunately it is only valid in simple and artificial
surroundings in which nothing moves except the robot itself. Adaptations to
accommodate coinhabitants have been developed and work well [15, 161.

Occupancy grids work like this: sensor input, Z1:t, is used to calculate
z can be a sonar, or laser scan combined with pose information to give the
scan a location and orientation in space. Occupancy grids are calculated with
a special variation of the Bayes filter. It tries to estimate a static target. Walls,
occupied and empty space do not move around. The variation of the Bayes filter
is called the static Bayes filter. Again I will give a small proof of correctness
of the algorithm. The algorithm tries to calculate the following probability:
p(mx,yIzi:t). The Bayes' rule is applied:
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— p(ztlzi:t_i, lflz,y)P(Tflz,yIZl:t_1)
p(mx,ylzi:t) — (2.13)

PI.ZtIZ1:t_1

The static world assumption implies that past sensor readings are condition-
ally independent, given knowledge of map m [281. Occupancy grid maps make
a stronger claim. They claim a conditional independence for each grid cell:

p(ztlzit_i,mx,y) = p(ztIm,) (2.14)

Although this is technically incorrect it allows for a very convenient simplifica-
tion.

— p(ztmx,y)p(mz,yIzj:t_i)
— (2.15)

p(Z4Zi:t_i)

The Bayes rule is applied this time to p(ztim,). This gives us:

— p(mz,y zt)p(zt)p(mx,y IZi:t —1)
p(mx,ylzi:t) — (2.16)

p(mx,v)p(z ki:t_i)

This is the probability that grid cell is occupied. The same derivation
can be done for the probability that this grid cell is free: Divide the
probabilty of occupation by the probabilty of being unoccupied and a lot of
difficult to calculate terms disappear.

p(mx,y Z1:t) — p(mx,y 12t )p(iiIx,y)p(mx,ylzi:t_i) (2 17)
p(rn, Izi:t) — p(rn,Jzt )p(mx,y)p(11x,yIzi:t_j)

p(mx,y) obviously equals 1 — p(i,). And p(m,IQ) equals 1 —
for any conditioning variables Q. This turns the division in following:

______________

— p(m,vIzt)(1 —p(mz,y))p(mx,ylzi:t_j)
(2 18)

1 — p(mz,ylzj:t) — (1 — — p(mx,ylzi:t_i))

If you take the natural logarithm of this chance it turns into:

=
p(m,z)

— in + i' (2 19)ZY
1 —p(m,vIzt) 1 —p(mx,y) ZY

Equation 2.19 is a nice recursive function. It depends on three terms.i;', which
is the estimation from t — 1. The term p(mx,y) determines the initialization of
the grid map and is constant. It initializes the occupancy grid with [28]:

= in p(mz,y) (2.20)' 1 — p(mx,y)

The final and third term which defines equation 2.19 is p(m,zt). This
term stands for the chance that according to measurement z2 grid cell is

occupied or empty. This probability relates the sensor measurements back to
its causes and is called the inverse measurement model. The shape of of this
function is determined by the sensors and where they are mounted on the robot.
They look like figure 2.1(a). My implementation is discussed in section 3.4 and
is derived from the probabilistic sonar model in section 3.3.
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An example of my implementation of occupancy grids is given in figure
2.1(b). The reliability of the grid depends on the size of the grid and the
preciseness of the range finder used. Another important cause of errors in oc-
cupancy grids is the cumulative error in the odometry information of the robot.
The next section will elaborate on this.

Figure 2.1: An occupancy grid example.

12

(a) Thrun's simplistic model. The white squarea are empty with a fixed probability and the
black squarea are likewise empty. This figure is adapted slightly from [281

(b) An example occupancy grid map. (c) The simulated map in which the robot
White is moat probably empty while black drove.
is occupied. Grey areas are uncertain.



2.3 Pose Estimation
The main part of the research and the implementation for this thesis is about
pose estimation. Pose estimation is the estimation of the difference between two
states Xt and Odometers give a very good estimation of the true pose,
but still give only an estimation. Over time the cumulative odometry error
can grow quit large, see figure 2.2. For SLAM this is a serious problem. Scan
matching, matching multiple sensor readings, can provide extra information such
as a rotational and translational error. If these are combined with odometric
itifonnation usitig an (extended) Kalman filter, scan matching should provide an
improved pose estimation with lower variance, compared with only odometric
information usage.

There are two approaches to scan matching: local and global pose estimation.

4.

— ,,.. . ——.

,r ,
.. .•-- . .... -

a

'I

4.4l it4.

Figure 2.2: The black dots are the path driven by the robot. The gray
dots are sonar readings from the surrounding walls. The cumulative
error in the path grows larger as the robot drives more.
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2.3.1 Local Pose Estimation
Local pose estimation tries to improve the estimation between two sequential
poses. These so called scan matching techniques reveal a rotational and trans-
lational deficit of the odometry estimation, as shown in figure 2.3. By integrat-
ing sensor measurements from both states into a better pose estimation, scan
matching tries to make successive poses more locally consistent.

Figure 2.3: At time T-1 the robot make a scan (black). The robot moves
over a short distance and makes another scan (red). Somewhere along
the path of the robot the odometry made an error and the red and the
black dots do not align properly. The red scan can be realigned over the
black scan: the blue scan. The blue scan now fits the scan at time T — 1

much better and states XT and XT_ are now more locally consistent.

The most widely used scan match algorithm is the Iterative Closest Point
(ICP) algorithm, as described in [12]. Actually this is an adapted combination of
two scan match algorithms. The first works very well in polygonal surroundings
and works by matching the current scan to a set of line segments, determined
from either an a-priori map or from previous scans [2].

The second algorithm, the IDC algorithm [22], matches scans with two
heuristics after filtering outliers: the closest point rule and the matching rule.
The closest point rule attempts to maximize point to point correspondence,
while the matching rule tries to minimize a distance function, which is defined
as a one dimensional search problem for orientation, and a least squares solu-
tion for the remaining two dimensions. This search/least squares algorithm is
discussed in detail in section 2.4.

14

••
S

• • • • S S S• • • • •
S

• • • • • .•
S

S
•

S•S •

S
S

S

I
'S
#5
S. •
S.

S.



2.3.2 Global Pose Estimation
Global pose estimation works by inspecting the driven path of the robot for
loops. If global pose estimation detects a closing ioop in the robot's path it
tries by using correlation filters [21] or a least squared distance function [31] to
match its current surroundings with how they looked in the past. It distills a
translational and rotational error from the matching process, which is used to
correct the driven path. In this way the scan matching technique tries to make
the path estimation topological correct or as it is sometimes called globally
consistent. This problem of making the path estimation globally consistent is
called the loop closure problem. This will not be discussed further.

2.3.3 Scan Matching and the Markov Assumption
To apply scan matching is accepting that the Markov assumptions in the Bayes
filter do not hold entirely [11]. More sensor and pose information instead of
only Zt and x is used to correct the Bayes filter output. While the Markov
assumption acts as a sturdy and sound foundation for all the Bayes filter im-
plementations, scan matching shows that there is not a simple answer to the
questions SLAM poses. Each estimation technique, heuristic and algorithm,
has different assumptions, limitations, strengths and weaknesses. The best re-
sults are produced knowing these properties and taking them into account in a
concoction of different techniques.

2.4 The Search/Least Squares Algorithm
The search/least squares part of the scan match algorithm, as described by Lu
and Milios in [22] is adapted in chapter 5 to sonar range finders. This section
will explain the original algorithm. The interested reader should read the article
by Lu and Milios for more depth and details.

The algorithm tries to align two scans to find the rotation and translation
T that optimizes the alignment. The scan with new information is called Smew.
This scan is aligned with reference scan Srej. The algorithm has the following
building blocks:

• The scan filter. Both scans are filtered for measurements that are unusable
for matching the scans.

• Combining the scans. Both scans have scanned the same objects. Points
that have the same correspondence to the real world are paired.

• The pair filter. Some pairs are not usable and are filtered away.

• Search. The rotation and translation for the best alignment are found by
a search procedure.

2.4.1 The Scan Filter
For each point on Snew a tangent line is calculated using inference statistics. N
neighbor points are used for this. These tangents are used for the aligning the
scans.
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Some of these tangents are not used. The tangent lines near occlusions
or corners usually have little correspondence with the actual surroundings and
make their scan point unsuitable for matching. Tangent lines have to pass two
checks before they can be used in the search for w and T. First of all the value
of Ej1 should be below a chosen threshold. E,1 is defined in equation 2.21.
This is described in [221. Ej1 describes how well the used points fit to the line
and a high value indicates that the scanned surface has too much curve or it
indicates a range-finder error. Figure 2.4 is an example of this check.

E,1 = S + S — + (S — S)2 (2.21)

In which S2 is the variance of the X-coordinates the variance of the Y-
coordinates of the current scan points and its neighbors. the covariance of
both type of coordinates.

The second hindrance to be passed by the tangent lines is that the angle of
the the tangent must not point straight away from the location of the robot.
These tangents are very likely erroneous as surfaces aligned with the direction
of the range-finders rarely produce decent data (section 3.3.3). More often they
are produced by occlusions as well. A well chosen threshold for this angle is
used as a check.

/
0

e

Figure 2.4: The scan filter. The picture is adapted from (22]. The circled
scan points are filtered out. The lines are examples of the tangents lines
fitted to the scan measurements.

2.4.2 Combining The Scans
Both scans are put together in the same coordinate system, with the robot at
time of S,1, in the origin. Invisible points on both scans are discarded. The
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points on the scans are ordered by their polar angle. From the perspective of
the robot in the other scan, some scan points may be ordered reverse. These
points indicate a surface pointing away from the robot, a surface invisible for
the robot. These points are discarded, since they cannot be used to align the
scans.

The point P1 is a point on Snew. P2 is the point on Srej that corresponds to
the same physical point. The difference in the scans suggest an w and translation
T to correct the information from the odometry. The relation between the points
is defined in:

P2=&P1+T (2.22)

/ cos(w) — sin(w) \.In which R,, = i . i is the matrix that rotates the scan around\ sin(w) cos() j
the origin. The tangents at both points have their normal directions defined by
the vectors rij and r.

To calculate the optimal translation and rotation (the next section) a method
is needed to determine which point on Srej corresponds with P1. This point
is P., the estimation of P2, has to be chosen on S,.ej close to P2. P and P1
form the so called correspondence pair. In [22] Lu and Mylo's decided to use
the intersection of Srej with the extrapolation of RP1. The intersection has
to be between two successive points that passtd the scan filter. In figure2.5 is
an example.

Scan from bme T-1
X ScanfromtimeT
0 Corresponding po.nts

x

Figure 2.5: Correspondence pairs. The crosses are scan points on
that are matched to scan points on Srej. The circles are their estimated
corresponding points on Srej.

2.4.3 The Pair filter
The pair has to pass two threshold tests before it can be used in the next step.
Both points can not be too distant and the difference in directions of both
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tangents can't be too large either. These are the two thresholds:

(R,..rij) 7 � C05(Qthreshojd) (2.23)

IRPi — P.1 < Dthreshold (2.24)

These two thresholds are important for how well the scan matcher works as
a pose estimator. In the next section these threshold will return and in chapter
5 the optimal settings for these will be discussed.

2.4.4 The Search For The Optimal w
In [22]Lu and Milios use a distance function to compare different scan align-
ments. The alignment with lowest distance is considered the best. The squared
error of all correspondence pairs is used for this, as transcribed in the following
equation from Lu and Milios:

N
D(w, T) = + n1) (R..,Pi,1 + T — P.,1))2 (2.25)

For each given w the P. and n5 are estimated. The T that minimizes the
distance function is found by setting and to zero. This makes the
distance function solely dependent on w.

Unfortunately if there are plenty of discarded outliers, the distance D can
be overestimated. In [221 they use a truncated quadratic robust estimator for
this to make sure that arbitrarily bad outliers are not arbitrarily bad for the
estimation. The correspondence pairs which fall outside the thresholds in pair
filter will get a default penalty D?hreshojd. Equation 2.26 implements the robust
distance D. The robust estimator:

D
— D(w, T) + NoDlhreshold

2 2robust N0+N (.6)
In which N0 is the number of omitted correspondence pairs and Dthre.hold is
the penalty of omitting a pair. N is the number of correspondence pairs that
passes the threshold tests.

Drobust indicates the the quality of rotation w. In figure 2.6 Drst S set
out against w. This is typical for how relates to Dr9t. To find the w that
minimizes the distance, techniques like hill-climbing are not suitable, because of
the ruggedness of the graph. Simulated annealing is discarded as well because
stochastic method like it are deemed by Lu and Milios to be too demanding on
computational needs.They use the golden section algorithm to approximate the
optimal w instead.

In the golden section algorithm [181 a window around w is searched for the
optimal w. Two points in the search window are checked for the distance. The
first lies at 61,8%, the golden section, of the search window. The second at
38.2%. The point with the worst distance replace the border on its side of
the search window. After enough iterations the window around the optimal w
becomes smaller and smaller, until a decent approximation of the optimal is
found. On wikipedia there is plenty of information on the golden section.
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Figure 2.6: The distance function in the search window of w. The
picture is &lapted from [22].
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Chapter 3

Implementation and
Formalization

In this chapter the implementation for this thesis is discussed. The formal-
izations of the necessary probabilistic models and their parameter follow after-
wards.

3.1 The Implementation
Two programs have been implemented. The first is a Player agent that commu-
nicates through TCP/IP with the Player simulation. The other is the program
that does all the probabilistic calculus and presents this to the user. Everything
is implemented in C++ using QT. QT is a C++ library used to create graphic
application.

3.1.1 The Player Agent
The Player Agent is a multi threaded program. The first thread is an object
avoiding Braitenberg vehicle [1J (vehicle 2a "fear"). This thread also puts all
the odometry information ,location and rotation, and the senor measurements
in a Singleton class [8], named "Control". The object avoiding module is in this
thread because it has to be able to steer the robot through the map without
collisions. Lengthy calculations prevent the other thread from acting fast enough
to do this reliably.

The "Control" class adds noise to the information from the simulation and
makes the noised information available to the other thread. To generate the
noisy it uses the probabilistic model that are discussed later on in this chap-
ter. The second thread starts the Viewer program and provides it with the
information it needs.

3.1.2 The Viewer
The viewer program is used to plot the maps, occupancy grids, the driven path
and the particle location estimation. The output window was made using the
QT 3-3 libraries. Halfway during the thesis it appeared that the wrong class was
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used to be able to create movies. A Qimage object was used while a QPixmap
object would have provided easier movie production.

Two variations of the viewer program exist. One gets its input from the
simulation the other gets its information from the datasets. The datasets are
explained in chapter 4.

These are the different functions by which the viewer produces its output.

• Path: draws the driven path of the robot.

• Location: provides a numerical estimation of the robots location.

• Naive: plots the sonar output. This makes maps as figure 2.2.

• Scanmatch: this function implements the sequence matcher as described
in the methods chapter.

• Occgrid: this draws occupancy grids.

• Seqfilteroccgrid: this draws occupancy grids with the points that pass the
sequence filter. This filter is described is described as well in the methods
chapter.

All the probabilistic models need values for their parameters. When the
viewer program is started it reads a file named "default .dat". This file contains
all the parameter settings for the program itself and for the the probabilistic
models.

3.2 Probabilistic Kinematic Models
To model the uncertainty of a moving robot a probabilistic model of its kine-
matics is needed. The state transition probability as described in section 2.1.4
is used for this: p(xtxt_i,ut). Using nothing but the latest known pose and
the last motion command issued, it projects a probability density function over
state Xt.

In [33] two ways to model such a kinematic model are discussed: a ve-
locity model and a odometry model. The velocity model uses rotational and
translational speed as the action command Uj to calculate the state transition
probability. The odometry model uses odometry information as Ut instead.

The writers of [331 consider the odometry model superior to the velocity
model. While both suffer from drift and slippage. Drift is a constant bias in the
odometry, while slippage is the accidental slipping of the wheels. The velocity
model suffers from a mismatch between actuators and crude mathematics as
well. However the velocity model predicts the state one frame further, since
odometry is only available after the robot has moved. The only model used
in relevant literature is the odometry model [13, 10]. The velocity model is
mentioned only in [33]. The odometry model has more literature coverage and
the approval of the writers of [33] therefore I will use it.

3.2.1 The odometry Model
The difference between pose x and pose Xt1 consists of translation and a
change of bearing. This transition is modeled in three steps. Step 1: A rotation
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to the direction of the translation: 6rot1 Step2: The translation: Step3:
A rotation to the bearing of xt: 5rot2 These three deltas make the vector Ut.
Figure 3.1 illustrates this.

Figure 3.1: Step1:ö0tj Step2:trans Step3:örot2

Ut = ( 5rot1, 5trans, 5ro22 ) (3.1)

The odometry model assumes that each element of change Ut is corrupted by
independent noise.

/ rot1 \ / örotl \ / 6roti
trana J = I ötrans

I
+

I
Etrans (3.2)

\ 5rot2 I \ örot2 / \ /
erotl, etransanderot2 are normally distributed deviations with mean zero and
variances, respectively:

• (iöroti + (2t5trans)

• (cr3ötran, + a4(trot1 + örot2))

• (1örot2 + (2öt08)

The ( parameters are the influences of translation and rotation on themselves
and on each other. They are robot specific and need to be estimated for a
valid robot model. The next section will elaborate on this. With this model, if
control t and pose Xt_1 are known, it is possible to calculate the probability
of pose Xt. A probability density function for pose Xt can be calculated also.
Sampling from this distribution is used to generate the noise for the simulation.
The distribution is also used for sampling poses for Monte Carlo localization.

The odometry models time as discrete steps of undetermined length. The
model uses only Ut and ignores the duration between the steps. Iteration of
thesv steps can be used to model a moving robot (fig. 3.2.1). Unfortunately the
kinematic model does not take into account at what speed the robot moves and
therefore loses all information that could be gained this way. This is not really
a problem as long as the Ut'S are sampled at such a rate that the Ut succession
provides a good approximation of the original robot movement.
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(a) A probability density of the robots po- (b) A numerical approximation of the
sition. robots position.

Figure 3.2: A probability density and numerical estimate.

The reason that the rotation should be split up in two parts instead of only
one rotation is that the SLAM algorithm might update insufficiently fast, when
compared to a module that steers and controls the robot, for example an Object
Avoidance (OA) module. The OA module makes sure that the robot does
not bump into object and walls. It need to react fast and reflexively. The
update time is an order of magnitude smaller than the update time of the
SLAM part. If a robot control module would steer the robot in an S shaped
curve between a SLAM update (figure 3.2.1), control Ut would have a too small
bearing adjustment. The two rotations in the model are to make sure that the
variance induced by bearing change is not underestimated. For an example look
at figure 3.2.1.

(a) Update time of Object Avoiding vs
SLAM. The uj vectors for SLAM are
longer and cover more time than those of
OA.

Figure 3.3: SLAM update times

3.2.2 Parameter estimation
The a parameters and how to estimate them lack sufficient literature cover-
age. In the course "robotica" [14] a comparable odometry motion model [14]
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was used. This model used slightly different parameters. These parameters
were estimated by experiments. Some of the experiments are re-usable for the
odometry model from [331.

To estimate C3, the variance in translation caused by translation, the robot
rode three meters in a straight line. The odometry readings and the exact mea-
sured distance were compared ten times. A regression analysis from odometry
information to measured distance was made from this. We used the regression
line to estimate the variance of the point estimation of the measured distance as
described in [17]. Scaled properly this variance is cs. The standard deviation
for driving 1 meter is 35mm.
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(a) Driving roughly 3 meters. (b) Driving 5, 10 and 50 circles.

Figure 3.4:

The same procedure is used to get the bearing on bearing variance. The
pioneer spun around for 5 round, 10 rounds and 50 rounds. The angle as given by
odometry is compared with the measured one. The scaled standard deviation for
this is cs, Which is 0.O3ir for 1 ir turning. The experiments shows that turning
when standing still first gives a big initial bias. Another experiment was done
in which the pioneer rode 50cm straight ahead, turned 90° and repeated this
a number of times. This experiment showed no startup error for the measured
angle. The startup error is ignored. When the robot is standing still and starts
driving it always shocks a bit. This is probably caused by loose axels.

No experiments which would cleanly estimate the other two &s were done.
Looking at the test results from the other experiments a rough estimation is
made that seems to work quite well:cs2, the rotation variance caused by trans-
lation, is certainly not more than 1 degree per meter. There was not a lot of
angle variance in the experiment for and most of that variance was probably
caused by slight 0 variance in the starting conditions. 0.Olir per driven meter is
probably an overestimation of

There was no notable translation in the rotation experiment. The newest
version of the stage simulation uses a cruder form of this noise model. Stage's
documentation shows that (14 is omitted. Therefore (34 is removed from the
implementation. This a reasonable assumption because of the reasons above.

To summarize, these are the cs values used throughout the thesis:
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• = 0.O3ir per ir rotation.

• = 0.Olir per driven meter.

• ck3 = 35mm per driven meter.

3.2.3 Model adaptations
After the model was implemented there were two problems that created ex-
plosive amounts of noise in test runs. In these test runs the model was used
to add noise to the odometry information from the simulation. Roughly ten
thousand hypotheses estimated the robots position. Every frame sampled for
every hypothesis a relative pose update from the noise model and updated the
hypothesis with this update. The distribution of the hypotheses is the same
kind of approximation used in Monte Carlo Localization. For an example look
at figure 3.2.1. In two scenarios the particle acted with too much variance.

When the robot drove backwards the first problem reared its head. The two
rotational delta's would both be almost ir, figure 3.5(b). In other words the
bearing needed a 180 degree flip, when the robot drives backwards, to fix this.

(a) A very small translation under an awk- (b) If the robot moves backwards, the
ward angle can cause to much variance, bearing needs to flip 180o.

Figure 3.5: Problematic situations.

When using odometry data from the pioneer robot, from the standard re-
search setup in section 4.1, instead of the noised simulation data a slight transla-
tion noise created too much variance in the particles. Normally when the robot
is moving this type of noise is too small to have any significant consequences.
There is the possibility though that, when the robot is standing still or only
rotating, there is translation noise in a random direction, figure 3.5(a). The
possibility rises that the bearing difference between two states is 1° and that
the translation noise happens in a 44° direction. 5rotl rotates to the direction
of the translational noise. 6rot2 rotates back to the new bearing of the robot. In
this scenario there is suddenly a humongous and unrealistic amount of variance
introduced. The following adaptation is made: the rotation is not split up in 2
parts for state change tt. If the translation is smaller than 4 standard deviations
of noise caused by rotating This fixed this problem. The justification
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for this perhaps ad-hoc seeming fix is that when the robot is in the situation of
causing the problem, it can never ride an S-curve and as such it does not need
to accommodate the extra variance precautions for it.

3.3 Probabilistic Sonar Beam Models
A probabilistic model of the sonar beam of our pioneer 2 robot is needed to
do calculations with the measurement probability, p(ztlxt), and to be able to
generate realistic noise for the simulation. In [33] two models are presented.
The first option is an approximative physical model. By combining four different
types of measurement errors it forms a computationally very cheap measurement
probability. How will be explained later on. The other option is better suited
for cluttered environments and works with likelihood fields. Figure 3.6 is an
example of a measurement probability derived from such a field.

Figure 3.6: Adapted from [33]

When compared with the approximative physical model the likelihood fields
are more realistic, though it is complexer and more computational demanding
approach. It takes more time to implement and test properly as well. Only
empty environments are used in this thesis, therefor the extra realism of the
likelihood fields would be a minimal gain and not worth its price. The approx-
imative physical model is used instead.

3.3.1 The noise model
To calculate p(ztlxt), the model uses Zaim, the exact distance provided by the
range finder in the simulation.
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The model breaks down the measurement probability in four different con-
ditionals as is shown in equation 3.3 and figure 3.7. There is a chance that the
sonar suffers from unexplainable noise. This results in a uniform distribution
over the reach of the sonar range finders (ftrand,). There is also a chance that
the sonar beam hits an object and bounces away(pfajz). The range finder senses
no object and gives maximum range. The third possibility is that an object close
to the range finder beam interferes so that the range finder produces a shorter
distance than Zasm (Pshm.t). This probability is exponentially distributed [33]. If
none of these three situations occur, the sonar range finder produces results nor-
mally distributed around Zasm (phst)' This specification results in the following
equation:

p(z[xt) = Zhtph2t(z Xj) + Zaho,.tpho,.t(zxt) +

ZrandomProndom (zIXt) + Ziasipiasi (zlxt) (3.3)

psrt(x
piw(x
pmax(iO

- _/- -
Zk

Figure 3.7: Constructing the measurement probability from Zk.

In other words, if there is no inexplicable noise (random hits) and if there is
no failure (fail hits) and if there are no other objects interfering with the range
finder (short hits) than z is normally distributed around Zasm (hit hits).

3.3.2 Parameter estimation
This model has four parameters to estimate. To estimate these parameters
empirical results are needed. The course "robotica", [14] indicated that the
sonar range finder is far from perfect. For example if the beam hit an object at
an angle greater than a certain angle, the critical angle, the sound wave would
bounce away and the raiige finder produced erroneous results. Also there is a
slightly positive bias if the measured distance is shorter than a meter and a
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Figure 3.8: Different Zk values generate different pdf's.

slightly negative bias if z was greater than 1 meter. Figures 3.9(b) and 3.9(a)
show the results of these experiments.

More experimentation was needed. The pioneer robot was placed with (1 25°
and 350 on variable distances from a wall (figure 3.10). The center of the pioneer
is placed 50, 100, 150 and 200cm away from the wall. The configuration is such
that the angle under which the sonar beam hits the wall is varied from 5° to 85°
with variable distances. Each range finder produced a dataset for each ()and
distance from the wall with 2500 readings. In these datasets there are almost
no short and random hits (figure 3.11(a)). There are a lot of failures. When
the angle is larger then the critical angle there is an 100% failure rate.

The experiment was too noisy to say anything conclusive about the bias,
so concerning the bias I will use the findings pictured in figure 3.9(b). The
bias is omitted in the simulation. When SLAM is done on the real pioneer the
sensor output of the range finders will be adjusted instead. In figures 311(a)
and3.11(b) each dataset minus it's mean is plotted. Failures are omitted. There
are very few outliers. Notice the tight Gaussian bell around the mean.

3.3.3 Model adaptations
The experimental setup (chapter 4) used for the final experiment has no objects
to generate short and random noise just like the last experiment. This does
not justify short and random hits in the model. The noise model is downscaled
to only the Gaussian curve and a chance of failure. This makes it less suitable
for dense office environments or other noisy environments.

The critical angle is a problem and gives me two choices: The first option is
to calculate iii simulation the angle with which the range finder hit its object. In
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(a) The critical angle becomes smaller if (b) There is a slight bias in the distance
the detected object is farther away and less as detected by the range finder.
objects are detected on long range. Unfor-
tunately the data from the course is quite
sparse and no information is available be-
tween one and three meter.

Figure 3.9: Data from [14].

Figure 3.10: Experiment setup. The robot is placed at different dis-
tances from the wall. Data is produced by all sonar range finders. They
hit the wall at different angles and different distances.

the Player/Stage simulation this is very difficult, because the map is a bitmap.
Choice two is to model this type of noise independent of angle. This seemed
easier and more time effective at the time. But it leads to a bit awkward solution.

Range finder failure is almost 100% if the struck angle is above the critical
angle and almost 0% if below. With the sonar rangefinders of the pioneer 2DX
this results in sequences of failures and succesful hits. The angle struck by
the rangefinder is unknown to the simulation. This disahk the possiblity to
generate this noise realistically. This is not really a problem if the structure of
the angle noise is not used in the SLAM algorithm. The SLAM algorithm just
needs to be robust enough to handle this type of noise, sequences of failures
and hits. To prepare my SLAM algorithm for the real world, noise that looks
like this angle-failure noise would do. I modeled this noise with a counter. To
this counter at random 1 is added or subtracted. The counter has a certain
maximum. If the counter is above a predefined maximum or below zero the
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Figure 3.11: For each dataset the failures are omitted and subtracted
the mean of that dataset. The following data of all the datasets are
combined in these figures. The deviation around the mean is plotted
against its plentitude. Two different scales are shown. On the left 4 cm
scale to show the Gaussian bell. On the right 50 cm range showing no
short and random hits. Failures are omitted.

counter switches to the other extreme. If the counter is above a certain level
the range finder produces failure noise. If the counter below this level it produces
output normally distributed around z. This results in sequences of failure noise
arid sequences of normally distributed noise. The sonar range finder creates the
same kind of sequences of failure noise in reality.

The model as suggested by Thrun [33] considers each measurement an inde-
pendent process. This angle—failure noise makes successive noised measurements
not independent, which is considering the critical angle, a valid assumption.

3.4 Inverse measurement model for occupancy
grids

In section 2.2.3, occupancy grids are discussed. Occupancy grids need an inverse
measurement model: p(mz,ylzt). The inversion means that the model relates
the sensor readings back to its origins: the surroundings. It models where the
object, that caused the readings, could be and the likelihood that it is there.
In the literature some models are discussed. Moravec [23] does not use a static
Bayes estimator and the rest of his occupancy grid mathematics are not easily
adaptable to the static Bayes estimator. In [28] Thrun describes, what he calls,
a siiiiplistic' model. This gives either an occupied or an empty output (fig.
2.1(a)) instead of a probability, as demanded by the static Bayes filter. Ribo
and Pinz describe in their probabilistic approach in [261 a complex sensor model
that is not explained in any detail. Unsatisfied with the enigmatic and strange
models I encountered, I developed an inverse measurement model myself.

The model works somewhat the same as the probabilistic approach used in
[26]. Ii uses two functions. The first, the information function, determines from
measurement z the probability whether location (x, y) is occupied or not, as
in figure 3.12(a) and equation 3.4. This function is solely dependent on the
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distance to the range finder. The second function, the spread function, spreads
the information from the first function over the width and length of the sonar
beam. If the sonar range finder returns a distance it is unknown where in the
width of the sonar beam the results were produced. This uncertainty is modeled
with a normally distributed function over the isodistance, all places with the
same distance to the range finder. To prevent long range readings from adding
too much information, the spread function is also divided by the distance from
the range finder (figure 3.12(b), equation 3.5). This way the integral over every
infinitesimal slice along a isodistance has the same size. A final note: if the
range finder produces a failure,that is when it returns the maximal distance, it
is ignored. Otherwise failed detections introduce to much erroneous grid cell
changes.

6 is the distance from the grid cell to the range finder. a is the deviation
from the center axis of the sonar beam in radials. These equations describe the
information and the spread function.

Jo f P(T>o) if6>zt 34
— 1 —.5 + 2P(T < 6) otherwise ( . )

In which T is normally distributed with mean Zt and a, from the probabilistic
sonar model.

= OP(A> a)
(35)

In which 0 is a scaling variable. A is normally distributed with standard devia-
tion of a quarter of the width of the sonar beam.

= .5 + i; (3.6)

p(mx,ylzt) is transformed into a location relative to the range finder with
polar coordinates: p(m0,6 Izt). This is calculated as in equation 3.6.
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(c) The inverse measurement model. Black is probably occupied and white probably
empty. In this example the range finder produces a measurement of one meter.
The rangefinder produces reliable measurements from a distance of 20 centimeters.
Therefore the model strarts from there.

Figure 3.12: The creation of the inverse measurement model.
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(a) The information function. (b) The spread function.
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3.5 Examples
To show what the implementation actually produces, some sample outputs are
made. The experimental setup, that is explained in the next chapter, is used.
Figures 3.13 and 3.14 are two sonar plots. Both consist of roughly 2000 frames.
The first is made using a dataset produced by a robot in the robotlab. The
latter is made with the simulation. The output from the simulation is noised
with probabilistic models. This results in decent approximation of the real
world. There is noise in the sonar scans and the kinematic model has produced
a cumulative error.

Occupancy grids can be made with the robot and with the simulation. An
example made with the real robot is in figure 3.15. An occupancy grid made
after the sequence filter is in figure 3.16. This produces better results.

In figure 3.14 is a blue area. This is a numerical estimation of its position.
This estimation is based on the kinematic model as well.
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Figure 3.13: A basic sonar map with the robot. The
map is relatively similar to the map of the robot lab
(figure 4.2). The black line is path, that is driven by
the robot.

:
•

. :'

Figure 3.14: A basic sonar map with the simulation
combined with a numerical estimation of the robots po-
sition.
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Figure 3.16: The points that passed the sqeuence filter
are used to produce a occupancy grid. Data from the
robot lab is used for this.
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Figure 3.15: An occupancy grid map made with the



Chapter 4

Experimental setup

SLAM research is usually done in simulations and on real robots. The simu-
lations are easier and cheaper to use, while the goal will always be to perform
as good as possible on real robots. My experiments are done in both environ-
ments. The laboratory setup is explained first, the simulation setup will follow
thereafter.

4.1 The Robot Laboratory
The robot laboratory at our faculty has an old fashioned robocup field with
two goals. The field at our faculty is roughly 4 by 5 meters and is walled by
50 cm high boards, figure 4.1. All the experiments on robots in this thesis are
performed on the field.
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Figure 4.2: The map of the robot lab. It is five meters long and 4 meters
wide. Two boxes were input in the corner to make it less symetrical.

4.1.1 Pioneer 2 DX Robot
Different robots are used for SLAM research. Localization research is done on
AIBOs to improve their robocup game [9]. There is a research project involving
the Groundhog robot. This big four wheeled robot explores and maps aban-
doned and perhaps dangerous mines [161. The robot that is most commonly
used for SLAM research is the Pioneer robot of Activ media (figure 4.3(b)).
Being easily programmable, remotely controllable and the added cheap range
finders made the robot widely used in SLAM research.

The robots available at our laboratory are Sony's walking robot AIBO and
the Pioneer 2 DX. The Pioneer robot is used in favor of the AIBO because it
has accessible and reliable odometry. The AIBO lacks these. The Pioneer has
sixteen sonar range finders as well. It propels itself with two wheels and uses
one wheel at the back for support. The locations and directions of where the
sonar range finders are mounted on the Pioneer Robot are listed in table 4.3(c)
and shown in figure 4.3(a).

4.1.2 The Sonar Range Finder
Sensors are needed for mapping. Cameras are used sometimes [3, 6], but sonar
or laser range finders are used more often. Processing camera data is compu-
tationally very costly and it is more difficult to determine distance to objects,
when compared with range finders for obvious reasons. Most SLAM research is
done with laser range finders, because of the precise plentitude of distance data
it provides. The combination of camera and range finder has been researched
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N X Y
1 0.115 0.130 90
2 0.155 0.115 50
3 0.190 0.080 30
4 0.210 0.025 10

5 0.210 -0.025 -10
6 0.190 -0.080 -30
7 0.155 -0.115 -50
8 0.115 -0.130 -90
9 -0.115 -0.130 -90

10 -0.155 -0.115 -130
11 -0.190 -0.080 -150
12 -0.210 -0.025 -170
13 -0.210 0.025 170

14 -0.190 0.080 150
15 -0.155 0.115 130
16 -0.115 0.130 90

(c) Mounting po8itions and direc-
tions of the sonar range finders on
Pioneer 2DX.

Figure 4.3: The pioneer 2DX robot.
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(a) A simplified pioneer model, with (b) A picture of the Pioneer in action.
wheels and rangefinders.



as well, providing techniques to make a detailed three dimensional map of the
surroundings to which texture maps from the camera are added [16j.

Generally there are t.wo types of range finder sensors: Sonar and laser range
finders. Laser scanners consists of one laser. Every frame the laser is rotated
over an arc, usually 180 degrees, and gives for example every half a degree
the distance to an object. They are very precise and can give a detailed and
precise snapshot of their surroundings. The other archetype range finder is the
sonar scanner. The sonar range finder emits a sound wave. After the sound
waves bounces back from an object, it returns back to sensor. Using the delay
between the departure and arrival of the sound wave the range finder determines
the distance of the detected object. There are a couple differences between sonar
and laser range finder. The first is the width of the beam with which the range
finder works. The laser range finder works with a very tight beam, which gives
the scan, given by the range finder, a good resolution. The sonar range finder
on the other hand uses a beam which is approximately 30 degrees wide. The
resolution of the scans provided by the sonar range finder are rather crude
compared with the other variant.

Only sonar range finders were available at our faculty when I started with
my thesis, so I was restricted in my range finder choice. At the moment a laser
range finder is available. The sonar range finder has maximum range of three
meters and a minimum of roughly 20 centimeters. The beam has an angular
width of fifteen degrees.

4.2 The Simulation: Player/Stage
SLAM research should always be tested on real robots, but it is very dependent
on good simulation testing as well. Experiments in simulation are easily repeat-
able and variable, and simulations are cheaper in maintenance and purchase
than real robots. There are some requirements for a simulation before it can
be properly used. The simulation needs to be fast, realistic and controllable for
real-time SLAM research to be useful. The saphira simulation at our faculty
was lacking in the latter two aspects. A bit of research revealed the player/stage
simulation.

Player is network server software for controlling and communicating with
robots. It can be used with either real robots or with their digital simulacra
in Stage or Gazebo. Stage is a multi robot 2D simulation using fairly sim-
ple, computationally cheap models of lots of devices rather than attempting to
emulate any device with great fidelity. Figure 4.2 is an example. Stage can
reliably model fast amounts of simple robots. Gazebo is used in 3D simulations
for more accurate simulations. Both communicate with their clients through a
TCP/IP protocol. The Player/Gazebo/Stage combination has an active open
source community on playerstage.sourceforge.net. Bugs are removed regularly
and new improvements and device drivers are written on a regular basis. The
software came with some example worlds and robots. The geometry of the pi-
oneer robot, handily supplied in the Player/Stage distribution, is used trough
out this thesis.

The stage simulation version does not model noise. To make sure the SLAM
algorithms are robust enough, it was needed to add sufficiently realistic noise
to the simulation of the pioneer robot. For this probabilistic noise models are
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needed: a model for kinematics of the robot and a model for the sonar range
finders. These are discussed in chapter 3.2.

Figure 4.4: The simulation Stage. A map with a pioneer robot in it.
The green beams are the sonar range finder measurements.

4.3 Datasets
Datasets are used in the experiments in favor of real-time experiments. These
datasets are processed as if they were produced real-time by the robots or the
simulation. This way my experiments are performed faster and they are re-
peatable. This is important for comparing different techniques. Using real-time
information was impossible on the pioneers anyway. The computers inside the
robots are too slow to perform the calculations.

The datasets consist of odometry information and sonar information, that
is x- and y coordinates, orientation and the measurements of the sixteen sonar
range finders, mounted on the robot. Datasets are made with the pioneers as
well as the simulation.

Four pioneer 2DX robots are available in the robot lab: Sam, Frodo, Merry
and Pippin. During the first experiments eight sonar range finders on the robot
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Frodo were found to malfunction. This made the robot unusable for exper-
iments. Sam needs a new mainboard. With Sam and Frodo unfit for duty,
Pippin and Merry produced all the robot datasets used in this thesis.

The datasets produced in the robot lab are made with both the usable
pioneers. An object avoiding Braitenberg vehicle controlled the robot in the
robot lab, while the robot put the necessary data in a datafile. Two boxes were
put in the corner to break the symmetry of the map to make left from right
distinguishable.

The simulated datasets were made in the player/stage simulation, using the
map in figure 4.2. Again the object avoiding agent piloted the robot while the
needed data was stored in a data-file.
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Chapter 5

Methods: Sonar Scan
Matching

In section 2.4 a scan match method is explained. This method is usually used
with a laser range finder. If this method is applied using sonar range finders
without adapting the method, it runs into problems. The inferior precision
of the sonar range finder introduces more variance. About forty percent of
the sonar measurements are, usually incorrect, maximum range readings. Also
sonar beams sometimes bounce twice. This results in wrong readings. Also
the 16 measurements are far fewer then the amount of laser scanners produce.
These add up and make it very unlikely that acceptable correspondence pairs
are found, as described in section 2.4

Instead of comparing two scans from different times, the scan match method
is adapted to compare sonar sensor measurements with sequences of measure-
ments of the same range finder.

This approach is chosen because when compared with the original algorithm,
this allows more acceptable tangents and more correspondence pairs. There will
be more acceptable tangents when using sequences instead of scans, because the
mere sixteen range finders and the geometry of how they are mounted on the
Pioneer 2DX do not easily allow scan points that are right next to each other.
Using a sequence from one range finder allows plenty of readings that are close
to each other. This allows more correspondence pairs. In the original each
scan point can produce only one correspondence pair. In the new algorithm
all scan points on Snewcan form correspondence pairs with all the sequences,
even the sequence belonging to range finder that produced the reading. With
the Pioneer2 DX geometry this allows in the best circumstances to form 256
correspondence pairs instead of the 16 in the original.

First the adaptations to scan match algorithm are discussed. The experi-
ments to test these adaptations are described after wards.

5.1 The Sequence Matcher
The original algorithm consists of four steps (section 2.4): The scan filter, Corn-
biniiig the scans, The pair filter and Search. In the adapted algorithm the scan
filter is replaced by the sequence filter. In the next step are the correspondence
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pairs are formed using sequences instead of scans. The third and the fourth
step remain almost the same. The sequence matcher consist of the following
features:

• The Sequence filter. S,,, the new scan is added to sequences. Useless
points are filtered.

• Finding the pairs. The new points on the sequences have scanned the
same objects as previous points on the sequences. Points that have the
same correspondence to the real world are paired.

• The pair filter. Some pairs are not usable and are filtered away.

• Search.The rotation and translation for the best alignment are found by
a search procedure.

5.1.1 The Sequence Filter
The new scan Snew is added to the sequences. To calculate the tangents line
that are fitted on a point in a sequence inferential statistics are used. In the
calculation the position of neighboring points on the sequence are needed. For
example: if five points in both sides are used, than there can only be reliable
tangents from the sixth point on in the sequence. This creates a 5 five frame
delay before the points can be used to find the correspondence pairs. This mealis
that not Snew is used to find the pairs. The scan of which the scan points have
passed the sequence filter check is used instead.

The longer the neighborhood of points, that is used for this, the more reliable
the check is. However if more points are used in this check the delay gets longer
and more points in the corners are discarded, because they fail the E,1 check.
The find the length and the threshold experiments are done. This is explained
in the next section. Optimal settings should filter out outliers, corners and
occlusion boundaries.

E11 = S + S — + (S — S)2 (5.1)

Ej1 indicates the fitness of the line. S is the variance of the X-coordinates ,S
the variance of the V-coordinates of the current scan points and its neighbors.
S the covariance of the coordinates.

5.1.2 Finding The Pairs
The corresponding points in Sf*1tprd the sequences are used for the search part.
To find these pairs the scan points in Sfiltered are extended to find intersec-
tions with the sequences. Only intersections between two successive points on
a sequence are accepted. Both points must have passed the sequence filter. For
each scan point a sequence is searched from the newer points to the older points
(figure 5.1). Multiple corresponding pairs are possible, but only the newest are
used. They suffer less from cumulative error.

The check for invisible points is omitted, because if the robot drives an S-
curve a range finder may sweep back and forward over the same region of its
surroundings. This makes the check for invisible point check inapplicable here,



• • Sequence of measurements
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Figure 5.1: Correspondence pairs. The crosses are the scan points that
are matched with the sequence. The circles are their estimated corre-
sponding points on the sequence. The blue cross results in two corre-
sponding pairs because it has correspondence with two sequences.

since this back and forward sweep reverses the polar angle order for a section
of sequence Z,, while the points are visible. I could not find a solution for this
check as easy as the polar angle order.

Computational demands force a limit on the length of the sequences. How
the length of the sequence influences the pose estimator is determined by an
experiment in the next section.

5.1.3 The Pair Filter
The pair filter works in the same way. For each trial rotation It checks for
each pair whether they are not too far apart and that the directions of their
sequences are in the same direction. This results in the following two checks.
The default values of Lu and \lilios were fitted to their data. The value of
athreshod is .5 ir. No mention was made about the translational limit. Five
centimeters are used as the maximal distance.

(J?.7j) . � cos(thre,hojd) (5.2)

IRPi — Psi < Dthreshold (5.3)

R,,, is the rotation matrix. If a vector is multilpied with it, it rotates the
vector with rotation w. ñ is the normal of the tangent line that belongs to
point P1. r1 is the normal of the tangent line that belongs to point P5.
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5.1.4 Search
Four different distai 1(C functions to calculate D(w, T) are tested. In all the
distance functions it is possible for each rtial rotation to find T and T. This
is done by finding the minimum of the distance function. Setting dDw,T) and
dD(,T) both to zero you get two formula's with two unknown variables: T
and T. This is solveble and results in the minimum distance for a given trial
rotation and the translation that goes with it.

N
D(w, T) = (n., (RP1,i + T — P.,))2 (5.4)

N
(w,T) = ((Rnj,, + n,) (R,Pi, + T — (5.5)

N
(w, T) = I&Pi,2 + T — P.,,2 (5.6)

N (I&Pi1+T—P,I2\(w,T) = (Rinj n) ) (5.7)

The first two models are suggested in [22]. Lu and Milios do not give an
intuitive explanation of their formulas. The third and fourth distance functions
are devised by myself. The third distance function is solely dependent on the
displacement between the correspondence pairs. The fourth not only takes
the distance between the correspondence pairs into account, but divides this
translational difference with in-product of the normals of the tangents. This
means that the more these tangents have the same direction the smaller the
"distance" becomes between the points in the pair.

The algorithm which finds the w that minimizes the robust estimator dis-
tance function differs. During initial testings it appeared that the distance
function is not near as smooth as in figure 2.6. Therefore the golden section
approach to find the optimal w did not work. Instead the search window was
divided on a hundred equal intervals. The interval with the lowest distance is
the approximated optimal w.

5.2 The Experiments
Three experiments are performed to optimize and test the performance of the
sequence matcher. The experimental setup as discussed in chapter 4 is used for
this. All experiments are done on robot ans in simulation. Two experiments
were already mentioned above.

• The Pair filter. The two parameters of the sequence filter are varied to
find an optimal configuration.

• The sequence matcher. In this experiment the data from the datasets
(chapter 4) is used. The data are processed by the sequence matcher
with the four distance functions. The sequence length is varied as well
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to see what kind of influence that has. The corrections relative to the
robot are plotted. The suggestions put forward by the pose estimator are
incorporated in the information of the robot.

• Softer restraints, In the second experiment the parameter settings for the
pair filter were copied from the [22]. These settings judged the correspon-
dence pairs very strictly, reducing the amount of usable pairs greatly. In
this experiment different settings for the pair filter are looked at. Again
the corrections relative to the robot are plotted.
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Chapter 6

Results

6.1 Experiment 1: Sequence filter
Two variables are varied in this experiment: The amount of neighbors used for
calculating El it (equation 2.21). The other variable is the threshold which,
if transgressed by Ef it, makes the current scan point unacceptable. Optimal
settings should filter out points near occlusion boundaries and points on corners.

Different settings are tried and the solution that produced the best results
was selected. Criteria that are used for this are the amount of points that were
wrongly discarded and the amount that are wrongly accepted. Using 13 points
in t he Scan filter and using a threshold of 20 results in the best filter as is shown
in figure 6.1. This figure illustrates as well what happens when the variables
are changed.
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Figure 6.1: Different parameter settings for the sequence filter. The optimal
settings are shown in the picture in the top left corner. The other pictures are
examples of how the two variable influence the filter process.

6.2 The unstable distance function
The amount of correspondence pairs that is detected is minimal for each frame.
There are generally not enough pairs to make a distance function with a curve
that is similar to figure 2.6. A typical curve as it is found in the sonar pose
estimator is depicted figure 6.2. An increase or decrease in pairs has more
influence on this curve than the corresponding pairs can cope with. The trial
rotation with the lowest distance is selected. Because the correspondence pairs
appear and disappear at random the sonar pose estimator is also random.

Another aspect of having not enough pairs is that most of the time not even
a pose estimator can be calculated. This is also apparent in figure 6.2. Not
enough pairs are available to calculate the distance function on the left and
the right side. Both aspects render the pose estimator practically useless. The
results of the next two experiments will illustrate this.
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Figure 6.2: Distance and the amount of pairs set in the search window
for w. The window goes from minus 5 degrees to five degrees. An
increase or decrease in correspondence pairs has more influence than
the correspondence pairs can cope with. If there would be more pairs
the correspoiidence pairs would have more influence compared with the
influence of an increase/decrease in pairs.

6.3 Experiment 2: Sequence matching
The four distance function that were tested are:

• Ml, equation 5.4:
D(w,T) = . (J?P, + T — P.,2))2

• M2, equation 5.5:
D(w, T) = (RP1,1 + T — P.,1))2

• M3, equation 5.6:
D(w,T) = I&Pi,1 + T - P.42

• M4, equation 5.7:
D(w,T) =

(I5Tl2)
The dataset of the pioneer 2DX Merry is used with the setup that is explained

earlier. In figure 6.3 the suggestions of the pose estimator relative to the robot
are plotted. A Kalman filter uses the variance of both odometry and the pose
estimator to determine how much the pose estimator can correct. If the variance
of the pose estimator is much larger than the variance of the pose estimator it
will mostly be ignored.

The sample standard deviations of the Models Ml and M2 are larger by
far. They also produce plenty of outliers when compared with M3 and M4. In
all cases the measurements have smaller deviations when longer sequences are
used. The variance of the pose estimator is too large when compared with that
of the odometry.
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Figure 6.3: The suggestions relative to the robot are plotted. The left
corner says which model is used and the length of the sequence. Un-
derneath is the sample standard deviation. Ml and M2 have different
scales to show the outliers.

6.4 Experiment 3: Softer Restraints
The sequence matcher needs far more correspondence pairs to make it at least
a bit. reliable. Therefore the restraints in the pair filter were softened in this
experiment. The thrcshold determines how much the tangent lines in a corre-
spondence pair can differ in alignment. If they more than thrcshoLd the pair is
discarded. The cutoff threshold thrcsho1d was made 75°, 45° and 15°.

Specifically The softer restraints provided more corresponding pairs, but it
did not significantly improve the estimator. Results are in figure 6.4. Although
there are more corresponding pairs, the instability of the distance function is
still too much.
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Figure 6.4: More eligible pairs are found with softer restraints in the
sequence filter. This does not really improve the variance of the pose
estimation.

51

8.05

0

S 0.00852.
N1038,

006

0

S 0.00950968
N356

0.06
S 0.00832525
N 218

V'1.1

-0.06'
0.06 -0.06 0 0.05

-0.05
-0.05 0 0.05 0



Chapter 7

The Conclusion

As a pose estimator the sequence matcher will not work neither will it, in its'
current form, suffice as a proof of concept that such a sequence matcher will
work properly as a pose estimator. The main problem of the sequence matcher
is the randomness of the distance function due to lack of correspondence pairs.
This randomness makes the pose estimator mostly random and useless. The
lack of pairs is caused by the unreliability of the sonar range finders and the
lack of information. The suggested corrections should have been applied with a
Kalman filter. Before the Kalman filter was implemented the randomness of the
suggested corrections emerged. This randomness made the sequence matcher
unusable as a estimator. No Kalman filter was implemented.

The implementations of the viewer program and the player agent both work
well. I hope more work will be done with these.

Another conclusion is that the odometry of the pioneers is highly reliable as
long as the robot rides without shocking or stopping. These actions create the
largest amount noise in odometry.

7.1 Future work
Some suggestions for future work can be made. Perhaps more and better cor-
respondence pairs can be made if different estimations of P2, that is P., are
tried. Lu and Milios [22] made the suggestions that P2 can be estimated by
intersecting the normal of the tangent line of Pi on Snew. Another option is
that P. is the scan point on the sequence that is closest to the scan point P1.

Another thing is that for the parameters of the kinematic model and the
sonar beam model experiments were done in a rather ad hoc way. The param-
eters are in the right order of magnitude, but they are not precise. If more
research is done in probabilistic robotics at our faculty these parameter esti-
mations should be done more elaborately. A suggestion is to check whether
tapestry would reduce the amount of failure of the sonar range finders. The
ruggedness of tapestry on the lab walls would make the walls act less like a
mirror for the sound pulses of the robot. This would lessen the forty percent
failure rate. Perhaps a bachelor project would fit.

There is no future for sonar range finders except in the most basic applica-
tions. They are far from state of the art. They will probably never be used in
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service robots, because they make a decent amount of annoying noise. Laser
scanners are far more precise and all state of the art probabilistic robotics re-
search is done with them. If the faculty wishes to perform state of the art
research on this topic laser scanners are needed.
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