
955
1999

003

1.

S

28-04-1999

Rijksuniversiteit Groningen

Michael Heemskerk

Lennart Quispel

Sven Warns
http://tcw2.ppsw.rugnl/ — sim

Automan

cS If,
'S '

K

-J

Table of contents
Part I

Abstract 7

2 Introduction 9

2.1 From system to agent 9

2.2 Goals 9

2.3 Theoretical Background 9

2.3.1 Autonomous Agents 10

2.3.2 Behavior Based Approach 10

2.3.3 Fuzzy Techniques 12

2.4 Structure of this document 13

3 The Traffic Simulator 15

3.1 Introduction 15

3.2 System design and functionality 15

3.3 Current Autonomous Agents 17

3.3.1 Scenarios 18

3.3.2 Hardware 18

3.3.3 Usability 18

Part II
4 Automan Overview 23

4.1 Human driving behavior 23
4.2 Model for Automan 25

4.3 World Projection 26
4.4 Perceptual Filter 27

4.4.1 Shifting Gaze Direction 29
4.5 Behavior system 31

4.5.1 Hierarchical structure 31

4.5.2 Object-based 31

4.5.3 Activation and success 31

4.5.4 Holding on to a decision 32
4.6 Action system 32
4.7 Memory 32

4.7.1 Working memory 33
4.7.2 Long term memory 33
4.7.3 Procedural memory 33

4.8 Evaluation and updating objects 33
4.9 Emotion System 34

4.9.1 Emotions influence behavioral patterns 34
4.9.2 Behavioral patterns influence emotions 34
4.9.3 Emotions and Fuzzy Logic 35

3

A

4

5 Perception 37
5.1 Perception in Automan 37
5.2 Perceiving the environment 37

5.2.1 Perception of objects in sight. 38
5.2.2 Intrinsic Vagueness of perceptual objects. 40
5.2.3 Attention control. 41
5.2.4 Attention in driving a vehicle 42
5.2.5 Gaze Direction 42
5.2.6 Visual Schemes 43

Part III
6 Architecture for Cognition 49

6.1 The need for a cognitive architecture 49
6.1.1 Overview of existing cognitive architectures 49
6.1.2 ACT-R 50
6.1.3 Soar 51
6.1.4 Other Architectures 52

6.2 FLAC: a different approach 52
6.2.1 The three task levels in FLAC 54

7 FLAC Subsystems 55
7.1 Working Memory 55
7.2 Long Term Memory 56

7.2.1 Declarative Memory 57
7.2.2 Procedural Memory 58

7.3 Evaluation of Concepts and Rules 59
7.3.1 Creating Instances 59
7.3.2 Updating Properties 60

8 Automan in FLAC 63
8.1 Perception 63
8.2 Memory 63

8.2.1 A subjects knowledge about himself 64
8.3 Behavior System 64
8.4 Emotion System 65
8.5 Action System 65
8.6 The rulesets and processing cycle. 66

Part IV
9 Fuzzy Logic 73

9:1 Crisp Set and Fuzzy Sets 73
9.2 Ambiguity 75
9.3 Vagueness or Fuzziness 76
9.4 Statistics and Fuzzy Logic 76
9.5 Natural Language 77
9.6 Conclusion 78

10 Bibliography 79

Part I

Chapter 1
Abstract

This paper describes the design and implementation of an autonomous agent for
controlling vehicles in a traffic simulator. This agent is based on recent develop-
ments in artificial intelligence, autonomous (oboticand cognitive psychology. The
goal of this to simulate realistic drivinbéhavior. A cognitive architecture
was developed to implement the design of the agent. This architecture is based on
rule-base-evaluation and is used in trying to describe human driving behavior and to
function in the way prescribed by the model. Fuzzy logic is used to assure natural
flow of information and to make human-like reasoning possible.

PattI 7

Chapter 2
Introduction

$2.1 From system to agent
The COV at the University of Groningen is specialized in traffic and environmental
research. Their main tool for the research is an impressive traffic simulator. It al-
ready contains autonomous agents: the cars in the simulator are controlled by a set
of rules which allow them to navigate through the system. For a more detailed de-
scription, see chapter 3.

The major goal of this research project was to develop a cognitive model of a human
driver. Therefore the model should give an adequate description of the driver of a
car.

After completion this model should be incorporated in the simulator. This docu-
ment will give a full account on how this model came about, the choices made and
why and how the model was incorporated in the simulator as an autonomous agent.

2.2 Goals

The primary goal is to develop an autonomous agent of a driver based on a cognitive
plausible model. This goal can be divided into three subgoals:

1. Development of a cognitive driver model based on cognitive psychology
2. Development of a cognitive architecture based on and suited for the model
3. Implementation of the model in the architecture and evaluating its useful-

ness as an autonomous agent

These goals were not set immediately. in the beginning, the first subgoal was the ma-
jor goal of the project. But after long debate and research this proved to be impossi-
ble to achieve without subgoals two and three. Later on in this document it will
come clear why this is the case.

2.3 Theoretical Background
When you set out to develop a cognitive model one thing should be considered care-
fully: what is cognition? It is not in the scope of this document to discuss the philo-
sophical issues associated with this question. For those interested in this field see
Kim, 1996 [23D. It is an important question, however, because all functions as de-
fined to be part of the driving process should be incorporated in the model. Accord-
ing to some, cognition is a higher mental activity of the brain(Matlin (1983, [24D,
Stillings (1987, [3711)). This definition includes acquisition, storage, retrieval and use
of knowledge. It excludes however low-level perception and motor control. Recent-

Partl 9

Introduction 2

ly, others (Port(1995,[30D claim the last two functions are also part of the complete
cognitive process. We agree with the latter, and will include perceptual and motor
processes in our model. Not only does this correspond better to the recent views
held in cognitive science, it is also a practical choice; it would be nearly, if not com-
pletely, impossible to design a model that could drive a car without perception and
motor control.

Having adopted this convenient view of cognition, three fields of research were
helpful in developing the model.

2.3.1 Autonomous Agents

In the third sub-goal in section 2.2 autonomous agents are introduced. An autono-
mous agent is an artificial created 'creature' in a (virtual or real) world, that can act
and react without direct interference from a person. All sorts of techniques known
from Artificial Intelligence (Rich(1983,[33D) are used to build agents that can do one
or more tasks. Commonly used techniques are neural networks (Haykin (1994,
[18D, fuzzy logic (Kosko (1992,[24D, and genetic algorithms (Holland (1992,[19D.
This field of research is known as Artificial Life (AL) or Autonomous Robotics (in
the case the agent is to act in the real world). Because many agents are based on sys-
tems found in animals (from insects to dogs) these creatures are known as Automat-
ed Animals, or automals for short.

A great deal of the model presented here is based on the research of Blumberg and
Galyean 6D from MIT. They created a virtual dog named Silas which is used to in-
teract with people. This dog is a perfect example of an automal. Because the model
implements a human driver the name automal is not quite right, although a human
is an animal. The model of the driver is more an Automated Human and therefore
the agent is called Automan1.

2.3.2 Behavior Based Approach

The design of Automan is also heavily inspired by the so-called Behavior Based ap-
proach (Braitenberg (1984,[7]),Brooks (1986,[8], 1991 ,[9]) ,Steinhage(1997,[33). This
approach of designing Autonomous Agents was introduced by Brooks in 1986. The
idea is, that to model intelligent behavior in a complex, dynamic environment, one
can specify relatively independent modules that perform small parts of the behavior.
Traditionally, one would make a central controller, that has access to all sensorial
information and incorporates a decision mechanism to decide on the correct action.
To do this, the controller needs a central representation of the environment, that has
to be extracted from sensorial data. There are several problems with this approach.
A central representation is needed, that has to be updated when an action is per-
formed or the environment changes, which is inherently complex (Den-
net(1987,[12D,McFarland(1996,[12). This representation has to contain all the

1. This is also a nice playing with words; in dutch, 'auto' means car, and 'man' means man /
human.

10 Partl

2 Introduction

information neccessary to decide on an action. Furthermore, for all possible situa-
tions, one or more decision rules has to be given in advance. The more complex the
task of the agent and its environment gets, the more rules are needed. Also, these
rules get increasingly complex.

By contrast, in the behavior based approach the task of the agent is split up in small
elementary behaviors. To avoid confusion, we will hereafter refer to these behaviors
as behavioral patterns. These behavioral patterns are directly coupled to their rele-
vant sensorial inputs.For example, a behavioral pattern would be Lane_Following.
This behavioral pattern keeps the agent driving straight on and uses the sensorial in-
formation about the position of the vehicle on the lane; no abstract representation
of the agent and its environment is needed. All behavioral patterns have a certain ac-
tivation level1. Only behavioral patterns with high activation levels will be executed.
Mostly, a method is used that only executes the most active behavioral patterns; this
can be done by using only two activation levels (either active or inactive), or using
dynamical systems (e.g. in Steinhage (1997,[33D). The Lane_Following behavioral
pattern will by default have a high activation. The various behavioral patterns can
interact; they can reinforce or inhibit each other's activation level. For example, two
other behavioral patterns would be Obstacle_Detection and Obstacle_Avoidance.
The Obstacle_Avoidance behavioral pattern uses sensorial information about the
environment immediately in front of the agent, and tries to detect obstacles. Like
the Lane_Following behavioral pattern, it has by default a high activation value. If
it detects an obstacle, it will inhibit Lane_Following, but will activate the
Obstacle_Avoidance behavioral pattern. This behavioral pattern will steer the agent
around the obstacle.

Activation of behavioral patterns can not only be done by other behavioral patterns,
but also by direct sensor input. For example, instead of having the two behavioral
patterns Obstacle_Detection and Obstacle_Avoidance, one can have a behavioral
pattern (e.g. Obstacle_Handlin that is activated by an obstacle sensor of some sort
and inhibits Lane_Following. How one specifies the behaviors and how they are ac-
tivated is of course dependent on the task to be performed and the sensors used.

The overall behavior of the agent is now determined by the interaction between the
elementary behavioral patterns. By specifying relatively simple behavior patterns
complex behavior will emerge from the interaction of the smaller ones. Silas (see sec-
tion 2.3.1) proofed that by finding these smaller elements of the behavior which one
tries to model, complex behavior need not to be specified explicitly.

1. In Brooks original conception, behavioral patterns could be either active or inactive. How-
ever, in various extensions of the behavior based approach activation values have been used.
A behavioral pattern can be more or less active in this way, which makes the approach more
flexible.

Partl 11

Introduction 2

2.3.3 Fuzzy Techniques

With designing Automan a choice was made which is considered a waste of resources
in traditional AL. When an agent resides in a virtual world it can access information
from the surrounding with a very high degree of precision. But this sort of perfec-
tion is unwanted in the automan because humans do not have access to this kind of
information. The real world distorts information. With that the human perception
is also not perfect. This makes it that humans need to be able to deal with uncertain
and unclear information. Rules humans use are if the car is close and I'm driving fast
then break. Because of the imperfection of the information the driver does not know
exactly the distance between him and the other car. But he is capable of reacting in
this situation. When making an error in perceiving the car he can make a wrong
choice. This happens in everyday life and therefore it must be incorporated in the
functionality of the model. This model will be implemented in a computer program
so the need for a system that can handle information like close distance and high speed
arises. If the architecture should translate these value to 20 meters or 100 kph the re-
lation with human reasoning will not hold. This is the reason why the architecture
makes use of fuzzy logic. For an example of a fragment of a Fuzzy rulebase see table
1.

Table 1 shows a small part of a fuzzy rulebase. Such a rulebase usually consists of
dozens of rules. Depending on the value of each variable the activation for evey rule
is determined. This in contrast with boolean logic. In that case only one rule will be
active. See the chapter on Fuzzy Logic for detailed information. The main reason we
have chosen for fuzzy logic is that it enables the system to have a more natural way
of constructing and evaluating rules.

With the use of fuzzy logic, driver experience can be easily modeled. Close to curve-
stone may range for a novice race car driver from 10 to 20 cm from the curvestone,
but an experienced driver may find this alreadyfar from the curvestones and handle
a range of 0 to 3 cm from the curvestones as close. By giving different ranges for the
same linguistic variables not only different levels of experience can be modeled, but
also feelings of safety and risktaking can be described in principle.

12 Part!

Table 1 Fuzzy rulebaseFragment of a fuzzy rulebase

medium increase

medium increase

2 Introduction

2.4 Structure of this document
The structure of this document reflexes the sequence of the goals set in section 2.2.
In part 1 terms and parameters of these goals are set. It will give an overview on au-
tonomous agents, fuzzy logic and the simulator. Part 2 will give a full description of
the cognitive model, followed by part 3 which will give a description of the cognitive
architecture.

Partl 13

Chapter 3
The Traffic Simulator

+ 3.1 Introduction
This chapter will give a description of the traffic simulator. This might help the read-
er to understand the environment in which the agent will be placed. It will also give
a short overview of the types of research the simulator is used for. Most of the de-
scription comes directly from Wolffelaar and Van Winsum 48D and Bakker et.

The traffic simulator is situated in a large room in the building of the faculty. This
space holds the three essential objects for the simulator: a BMW 518, a powerful
computer and three video projection screens. The system has been developed for be-
havioral traffic research and has incorporated this concept of interactivity as a cen-
tral principle in the design. The definition of a particular traffic environment starts
by defining a logical road network. Next the scenario will be defined for every in-
teractive traffic participant and its specific actions.

3.2 System design and functionality
The hart of the computer consists of two different systems. One system is complete-
ly dedicated to the graphical display of the simulated world and the other one calcu-
lates all traffic-related tasks. This gives the system a constant refresh-rate (= the
amount of frames per second), no matter how intensive the other calculations are.
The human driver sees the autonomous agents as cars projected on the screen.

Although the projection screen is best viewed from inside the BMW, the projector
can display the environment from almost every angle. Generally this the viewpoint
of the driver at eye-height, but viewing the scenario playback from an other angle
may give new insights in what happened.

Partl 15

The Traffic Simulator 3

The traffic system is represented as a logical network of nodes. A logical network

gives a description of the world in logical terms enabling real-time traversal and com-
putations of traffic encounters. The graphical system uses this network together
with a geometric description to visualize the environment in real-time.

In this network all properties of the road-segments (intersections etc.) are stored.
Properties can be position, dimension, curve, etc.

• Intersection. Several roads join at this node. An intersection has a centre-
position and a lay-out as well as a list of all the joining roads.

• Path. A path is nothing more than a connection between two nodes, thus
between two intersections. It contains a list of segments that together form
a road. The list is in consecutive order. This means that when the list is
walked through it is just like riding on the road.

• Segment. A segment is a part of a road. It has a curve. When its curve is set
to zero the segment is a straight road. A segment is always joined at both
ends. This can be with other segments or with an intersection(s).

• Traffic participant. Every path holds a list with the traffic participants on
that road. In this way traffic is connected to a road.

16 Partl

Figure 1: Functional overview of the TRC driving simulator

3 The Traffic Simulator

Figure 2 shows how these elements are tide together in a road network design.

Figure 2: Road network logical design

3.3 Current Autonomous Agents
The autonomous agents that are currently in the system work strictly goal-directed.
There are three goals defined which the agent always tries to satisfy:

• Prevent collisions. An agent will never collide with an other traffic partici-
pant. The basic setup will not allow the agent to collide with any object in
de environment and the agent will do anything to prevent such a collision.
This will otherwise disrupt normal traffic flow

• Prevent dangerous situations for others. In a simulator that is used for
research with human test-subjects it is usually unwanted that situations
could occur which pose a thread to a traffic participant. Situations like
these will result in unpredictable behavior and will disrupt normal traffic
flow

• Prevent disruptions in the traffic flow. An agent will not manoeuvre itself
in a position that might disrupt the traffic flow. It will not stop at the mid-
dle of the road, unless the scenario control says otherwise

At the highest level there is another goal defined. An agent must be able to navigate
through the system. The goal can be either to go from A to B or to follow a random
path. In the first instance A, B and the path between these two points are given by
the scenario that is in use at that time.

The agents currently driving around in the car simulator have some major short-
comings. Three of them are:

• Very little psychological plausibility. This means the agents are not useful
as modelling tools. The set-up of the agent did not need it at the time it was
developed

• Hard to extent to other situations then the ones currently available. When
the system is extended with for example a three-lane highway, the autono-

Partl 17

The Traffic Simulator 3

mous agents can not handle it. The rules the agent are based on can only
act and react when driving on a two-lane highway and will probably not
notice the third lane. It can be done, but it will take a considerable amount
of time
Too rigid in some situations which might cause oscillating behaviour.
Some rules are too crisp. This might result in a behavior like overtake -
don't overtake. When this happens an agent will start overtaking then
brake it off, start overtaken, etc. With the use of fuzzy logic in the auto-
man these kinds of behaviours will not occur.

3.3.1 Scenarios

Scenarios are build with the Scenario Specification Language. This language enables
the designers to give a precise description of the traffic flow over time. One way of
control is to specify the start of a vehicle if the driver passes a point X. In this way
you can for example guarantee that the new car will arrive at the intersection the
same time as the driver does. Commands can also be given while the simulator is
running, thus giving the designer/researcher more dynamic control of the situa-
tions. Scenarios are a powerful tool to make sure that the environment is the same,
time and again. This is of great important when dealing with statistical research. The
deviations in the statistical numbers most come from the driver, not from the simu-
lator.

3.3.2 Hardware

The computer is a fast Silicon Graphics machine. It is a multi-processor Unix system
with dedicated graphical hardware. This makes it very suitable for simulators like
the one in use here. The car is a complete BMW 518. The motor has been replaced
by two servos, which deliver counter forces on the steering wheel and gas pedal. The
motor sound is generated by a high quality sound system. The projection screen is
divided into three parts. The centre screen has a resolution of 1280 by 1024 pixels,
the two outer parts have a lower resolution: 640 by 512. The screen is bent with an-
gles 165 by 45 degrees. The projection itself consists of 3D models of the objects in
the simulation. There are also three rectangles projected on the screen, one for each
mirror. These 'mirrors' give the driver a rear-view.

3.3.3 Usability

The system can and is used in several ways. The following are a few of them:

• Determination of individual driver-characteristic in specific and controlled
traffic situations. In this type of research several people are placed in the
same traffic situation. The researcher then monitors the behaviour of
every person to see how they act

• Testing and evaluation of onboard navigation and information systems.
With this simulator systems like distance-to-car-ahead-estimators can be
tested

18 Partl

3 The Traffic Simulator

• Driver training and selection. Like a flight simulator the traffic simulator
can be used to train individuals. The simulator can also be used to see if a
person is fit to drive a car

• Road-layout testing. If an institute would like to see the effects of different
road-settings on the behaviour and mental state of a driver the roads need
not to be build in real life. Virtual reality will do just nicely.

Partl 19

Part II

Chapter 4
Automan Overview
4.1 Human driving behavior

Over the years much research has been done on how humans drive. This is not a
coincidence: driving is a task handled by many people and one of few tasks that is
learned by instruction. Some even did a complete task analysis of this complex task
(McKnight en Adams(1970,[29D).

This research indicates that it is useful to distinguish three task levels: strategical, tac-
tical and a control level (Michon (1989,[22I). At the first (thus strategical) level plans
are made on which route to take with what kind of transportation, etc. The deci-
sions on this level are influenced by general and personal opinions and attitudes and
personal circumstances.

The tactical level describes how a person behaves in the situation at that time. How-
ever, while reacting in the current situation higher level plans are still considered. So
when the driver needs to decide whether to make a left or a right turn at a intersec-
tion, the strategical level is checked to see which one fits best with the route set.

The standard operational tasks like steering, gear shifting and other tasks which en-
able the driver to take part in traffic are on the operational control level. Most of the
time, in normal traffic situations these tasks are handled autonomously. When in a
new or hazardous environment the driver will be aware of his actions. It is obvious
that this level interacts with the above two levels.

Part II 23

Automan Overview 4

Michon argues that a driver model need not to be incorporated all three levels. With-

Plans

Navigation
time:> lOs

Controled action
patterns

time: < I - lOs

Automated actionp-
lans

time: < Is

Figure 3: Structure of the driving tasks (Michon (1989,[22])).

in its own parameters each level is independent. If a theory is developed which
should model human planning it is not necessary to include low-level driving tasks.
This also holds for the low-level behavior-modeling: when maneuvering a car
through traffic it is not necessary to have a high plan of the route to be taken. It is
for example possible to make a random selection at each intersection.

Although each level is more or less independent, interaction between the separate
levels is vital. If for example at an intersection the left turn cannot be made because
it is temporally closed, at a higher level a new decision needs to be taken. But the
downward flow is even stronger: higher levels control or define the parameters for
the lower levels. The decision 'turn left' is made and the control level is forced to ex-
ecute this behavior. Or if for example a route for A to B is set by the strategic level,
it is not up to the tactical level to decide to go to C.

Michons argument is used to outline and describe the Automan-model. To test for
example its low-level behaviors like 'negotiate intersection' a high level plan need
not to be developed. A model of such a low-level behavior should be able to describe
human behavior on an intersection without the need to consider wiry this intersec-
tion needs to be taken. This is a high-level decision and only the outcome of this de-
cision is important, not the way it come about. It gives a great deal of flexibility: each
separate part of human driving can be modeled and tested independently.

24 Part II

4 Automan Overview

With this in mind, the model of Automan can be presented by example. Michons
argument implies that it should hold for any other example.

4.2 Model for Automan
In the next sections the model will be presented and explained. 'Negotiate intersec-
tion' will be used as an example to clarify the objects and flow of information and
control through the model. Imagine the Automan is traveling on a road which ends
on a T-shaped intersection. See figure 4 for the picture of the situation.

H

Figure 4: Example situation: Automan(A) is approaching a T-shaped intersection in dense fog

In the picture Automan is coming from the south and is about to travel to the right.
From the left another car is approaching. The dots in the picture represent a dense
fog. In the following sections some (but not all) aspects of the task of negotiating this
intersection will be used to explain the model. Because it is a very complex task, not
all relevant behaviors and decisions will be highlighted. That would make this a very
long exercise, but it will not clarify the main problems. Every little part of the task
needs to be evaluated when designing a working Automan, however.

In figure 5 a overview of the model is given. The grey in this picture area contains
the Automan-subsystems. The other objects are environmental conditions.

Part II 25

Automan Overview 4

Figure 5: Model of Automan. Objects in the dotted box are part of Automan

,

4.3 World Projection

26

To interface the model with the (simulated) environment a World Projection queries
the simulator and returns the objects in sight. This system isn't really part of the
driver model, but must be included to translate the world representation in the sim-
ulator to a representation more suitable for the model. It is a kind of simulated pro-
jection screen. It determines the objects in sight, which come in two types: foveal
objects, objects in the small fovea! field of view of the driver, and peripheral objects,
objects in the broader peripheral field of view of the driver. Peripheral objects are
only seen when they are especially conspicuous. This is the case when they are mov-
ing fast, or contrast sharply with their environment. When an object is perceived in
the peripheral field of view, its properties are not perceived; to perceive an object
properly it must be seen in the fovea! field of view.

The world projection takes into account obstructions that block the drivers line of
sight (such as buildings, other cars, etc.) and weather conditions to set the vagueness
of the fuzzy properties of the objects. This is done by Reliability functions. These are
simple functions relating vagueness modification to some perceptual condition. The
most convenient form of these functions needs to be determined by experiments.
The effect of these functions is cumulative. What this means, is that when a car is
perceived in dense fog behind another car and some tree all these elements have their
impact on the vagueness of the properties of that car.

Part 11

II

4 Automan Overview

Every perceptual condition has its own reliability function. Some of these are:

• Distance. The further away an object is, the more difficult it is to perceive
it. Therefore, vagueness is increased with distance

• Buildings. Objects behind a building are not seen at all. Therefore, not the
vagueness of those objects is increased, but the objects themselves are not
perceived at all. Of course, it could be the case that an object is partially
occluded by a building. Humans are mostly able to identify an occluded
object, up to certain degree of 'occiudedness'. However, properties such as
speed of an occluded object are harder to perceive. At this point, the best
choice seems to be to define a degree of occludedness at which an object
cannot be perceived. If an object is less occluded, its vagueness can be
slightly decreased

• Other Cars. Other cars hinder perception, but objects can mostly still be
seen. People can look through windows of another car, and parts of the
object may not be occluded by the car. Therefore, dependent on how
much of the object can be seen, vagueness increases up to a point where the
whole object is behind the car, where it makes a jump to a higher vague-
ness level, but not maximum vagueness

• Trucks. Trucks totally block the view of a driver. Just like with buildings,
the vagueness drops with the amount of object that is not occluded. When
the whole object is occluded, it is not perceived any more

• Weather Conditions. Dependent on how much fog (or rain, snow or
other conditions) there is, vagueness is also increased. As remarked, the
vagueness increases are cumulative. Objects at a distance will already have
a high vagueness, which will be further increased by the weather condition

In the example a car is coming from the left. If the Automan is looking is this direc-
tion, the car is passed through the world projection. This filter sets the intrinsic
vagueness of the object (which is very low, because it is close-by). But the weather-
conditions are miserable because of the dense fog. This makes the car difficult to per-
ceive, therefore its vagueness is increased. The object is then passed to the perceptual
filter.

4.4 Perceptual Filter
The Perceptual Filter takes as input the objects in sight, and updates Automan's
working memory. This updating can be either the placing of a new perceived object,
or updating the properties of an already present object that was perceived again. Ev-
ery time an object is placed or updated in working memory by the perceptual filter,
it will contain a timestamp with the present time. This will be used later on the de-
termine whether properties have to be updated or whether an object was perceived
too long ago.

The perceptual filter has a certain minimum time required to perceive an object, the
Minimum Perceptual Time. An object perceived in the minimum perceptual time

Part II 27

Automan Overview 4

will have property values at maximum vagueness, which means that they are too
vague to be usable. If more time is spent looking at an object, the perceived proper-
ties will have smaller vaguenesses. The vagueness decreases linearly with viewing
time. We have chosen a linear function here because we could not find much infor-
mation in the literature about durations of incomplete perception. It is clear that the
longer one looks, the more one sees, but an exact relation between viewing time and
perceived properties is difficult to obtain. A linear function seems preferable, be-
cause of its simplicity. However, later on one might conclude that another function
makes much more sense. Of course, these vagueness decreases are applied after the
reliability functions of the world projection have adapted the vagueness.

If the gaze direction stays the same long enough, an object will be perceived with its
properties at minimally obtainable vagueness. If this is the case, a new object will be
perceived. In this process, closer objects will be perceived first. If all objects in a cer-
tain direction are perceived, and the gaze direction still hasn't shifted, again the clos-
est object will be perceived. This will result in updating its properties in working
memory, dependent on the time spent looking at it. The longer the interval between
successive views of an object, the greater its vagueness will have increased, and the
longer it is to be viewed again to perceive its properties with minimally obtainable
vagueness.

vaguenes

Figure 6: Vagueness of an object: a decrease means time is spend looking at the object and an
increase means the object is not perceived

In the example the car is close and because visibility is poor, much time is spend
looking to the left. The car is perceived with maximum time, so its vagueness will
be not much greater then the value it has received from the world projection. Keep
in mind this is still a high value: although much time is spend looking, the fog makes
it still difficult to see.

28 Part II

I

time

4 Automan Overview

4.4.1 Shifting Gaze Direction

The output of the perceptual filter is dependent on the time spent looking at an ob-
ject. This time, in turn, is governed by the Visual Scheme. A visual scheme is a sort
of behavioral pattern. Its activation is based on the active behavioral patterns. Only
one visual scheme can be active at a time. For instance, if approaching an intersec-
tion, the Navigate_Intersection behavioral pattern will be active. This behavioral
pattern will have a visual scheme associated with it, Check_Intersection, that speci-
fies where the driver has to look to be able to carry out the Navigate_Intersection
behavioral pattern. A behavioral pattern can have more than one visual scheme as-
sociated with it. For instance, if overtaking a vehicle, it is convenient to have two
visual schemes, one for checking whether overtaking can be safely performed, and
one to check if, after overtaking, the driver can go safely to his own lane. Just like
behavioral patterns, the activation of visual schemes can also be influenced by emo-
tions. The visual schemes are evaluated after the behavioral patterns have been eval-
uated.

A visual scheme contains priorities for various gaze directions, and rules to update
these priorities. The gaze direction will be set to the direction with the highest pri-
ority by the action system. For instance, if approaching an intersection, it is more
important to know if there is traffic coming from the right than from the left. The
rules consult working memory for perceived objects in the various directions. If, in
a certain direction, enough objects are perceived recently enough, the priority of
that direction will be decreased. Another direction will now have highest priority,
and the gaze direction will be shifted. Take, for example, the situations when Auto-
man is (again) approaching an intersection, and has no objects in working memory
that represent cars coming from the right. This can have two reasons.

Firstly, Automan has just looked in that direction, and nothing was there. Its work-
ing memory will contain only an object for the road coming from the right, which
will have a very recent timestamp, and, while looking to the right, this timestamp
will be updated again and again because there are no other objects. The priority of
looking to the right will then be decreased. Looking to the left will now have a high-
er priority.

Secondly, Automan has not looked to the right yet. Then, there will be no objects
in the specific direction.1 In this case, nothing will be done with the priorities, and
the model will go on looking to the right until it has perceived enough objects. How
much is enough is dependent on the situation (and, hence, on the active visual

1. Well, since Automan knows it is approaching an intersection, it probably will have an object
for the road from the right. However, its timestamp will be older, so looking to the right will
still keep its high priority. This is because the Navigate_Intersection behavioral pattern only
becomes active at a certain distance from an intersection, while intersections are mostly per-
ceived at a much higher distance. This means the visual scheme associated with the driving
straight ahead behavioral pattern will be active a certain time after the road from the right is
perceived, and will have shifted the gaze direction to other directions in the meantime.

Part II 29

scheme). For instance, when trying to overtake a vehicle, it is enough to know there
is one car on the other lane; the cars behind it may become important later, but for
the present the driver has to wait until the one car has passed. When approaching a
crossing, it is more important that all cars coming from a certain direction have been
noticed.

How many objects is enough depends on the visual scheme. It can be the case that
only a certain type of object is relevant (e.g. a traffic sign). Then, as soon as this ob-
ject is perceived, the gaze direction will be shifted. On the other hand it can be the
case that a complete mental picture of a certain direction is required, containing all
objects (e.g. when approaching an intersection). Then the gaze direction will be
shifted only when the closest object is updated again (signifying that all objects in
the direction have been perceived.)

It is also possible that an object is perceived in the peripheral field of view (because
it is very conspicuous). The active visual schemes will then shift the gaze direction
immediately to the direction of that object, after which it can be properly perceived
by the perceptual filter.

In figure 7 the various parts of the perceptual process of Automan are sketched.
Strictly speaking, the shifting of the gaze direction is done by the action system.

Automan Overview 4

Figure 7: The perceptual process of Automan

30 Part II

4 Automan Overview

4.5 Behavior system

The purpose of the behavior system is to activate the 'right' behaviors in every situ-
ation. The system checks working memory on active objects and behaviors to acti-
vate (or deactivate) new behaviors and objects. Internal states, emotions, motivation
and expectations influence the outcome of the processes involved. Conflicting be-
haviors need to be resolved, like turning left or right.

4.5.1 Hierarchical structure

The behavior system is a hierarchical network of independent, goal-directed ele-
ments called behavioral patterns. The purpose of these elements vary a great deal.
Some are very specific (turn on signaling), but some are more global behaviors (take
next three left turns). An element can therefore be at the strategical, tactical or con-
trol level. Not only real world objects in working memory are used to set the acti-
vation of a new behavior. Already active (or in the absent of an active) behavior(s)
are also used. The behavior 'turn_on_signaling' is only relevant if the higher-level
behaviors 'turn' or 'switch_lane' are active. In turn, in the absent of the
'turn_on_signaling'-behavior may result in the activation of 'check_lane'-behavior.
The latter will direct the gaze direction to see if the lane is clear.

The hierarchical structure becomes apparent when the following observation is
made: a high-level behavior consists of one or more lower-level-behaviors. Overtak-
ing for example consists of amongst others of 'turn_on_signaling', 'switch_lane',
'overtake', 'turn_on_signaling' and 'switch_lane'.

4.5.2 Object-based

Behavior-selection is object-based. This comes from the fact that a driver 'overtakes
a car' or 'negotiates an intersection'. If the traffic situation contains more than one
car for example, several 'overtake_car'-behaviors may come active. A driver can
however only overtake one single car at a time. In this case the most active behavior
will be selected. Because the car closest to the driver will create the highest activa-
tion, this car will be overtaken. This automatically disables any strange actions like
driving through the car in front to overtake the second car.

4.5.3 Activation and success

Selection and control is done based on the current activation of a behavior. How is
this activation determined? If a behavior is based solely on real world objects (like
traffic-participants) activation is based on the information-value of the referred ob-
jects. If an object that perceived poorly (the car from the left in the example) the ac-
tivation of behaviors based on this object will be adjusted. The activation of
'start_turning' will be fairly low, because you can not be sure where the car is and
what the driver is about to do. On the other, activation of 'slow_down' will be high,
and therefore shall Automan approach the intersection at a low speed.

Part II 31

Automan Overview 4

Activation of objects will in this way propagate through the complete network, al-
tering the activation of objects (e.g. behaviors) already in memory or setting the ac-
tivation of an new object.

Success of a behavior is much more delayed then direct activation. And it is not re-
lated in such a way that high activation will give a high success. It is more time-re-
lated: if a behavior has been selected to be performed, its success-rate will increase.
On the other hand, if a behavior is very active, but cannot be performed its success-
rate will be decreased. In the example automan has the goals: turn right and drive
fast. But due to the fog, both behaviors cannot be performed: because of low visibil-
ity he nearly comes to a stop. This decreases the success-rate of both behaviors al-
though they are both very active.

4.5.4 Holding on to a decision

Activation of a selected behavior also influences its own activation in a positive way.
This has an effect which is widely know in psychology: humans will stick to their
current decision, although more appropriate decisions have arise. Automan has for
example decided to start the right turn. It then notices the car from the left. If Au-
toman had seen him in time, he may not have started the turn. But he did, so his urge
to stop turning is decreased and therefore could he collide with the other car.

Another example to clarify this: if a person is driving behind a slow driving vehicle,
the person will see if he can overtake. The situation does not allow it, so he does not
start overtaking. If, however, the lane is free, he may decide to start overtaking.
While overtaking a car approaches from the other side. If this situation occurred be-
fore he starting overtaking he may not have started the routine. But he did, so he
may try to 'go for it' and keeps overtaking.

4.6 Action system
The action system is also a kind of decision system. It does not decide what action
should be taken however, this is done by the behavior system. The action systems
determines how the actions are carried out. In the example the Automan is at the
point of turning right. The action system calculates based on current position, speed,
etc what the next steering angle should be as well acceleration and signaling. It can
be compared with the human motor-cortex: it determines, based on the current po-
sition, the next position of the arm while picking up a glass.

The car model of the simulator then translates the outcome of the action system in
order to the car.

4.7 Memory
In the text some references to sorts of memory systems are made. The next sections
will give a more detailed description of all the memory types avaible to Automan.

32 Part II

4 Automan Overview

4.7.1 Working memory

A central part in most cognitive models is working memory. Experiments show that
people can hold some piece of information 'at hand' and forget it in a short time
span. Anderson[2] gives a good overview and explanation of the current view on var-
ious types of memory. In the context of this model, working memory is the name
for the storage of all currently active objects, although it is assumed that humans
have several memory types for the storage of these objects. Maybe they are function-
al somewhat seperated, conceptual they are all the same.

This is why in Automan all active objects are stored in working memory. This rang-
es from perceived objects to currently active behaviors. Working memory functions
as a storage and retrieval system for the reasoning mechanisms of Automan

4.7.2 Long term memory

Long term memory holds information which can be seen as Automan's knowledge
of the world. In this part of the model, concept definitions, which tell for example
what a car looks like, are stored. Long term memory is queried by the perceptual
processes and reasoning systems for these definitions. Whether this information is
stored in a frame-structure or semantic network does not matter. For Automan only
the concept of a type of memory where all knowledge is stored suffices. In the model
this specific part of long term memory is called Declarative Memory.

4.7.3 Procedural memory

As said before, Automan does not contain any learning mechanisms at this point.
But is this not a major disadvantage? The level of driving of Automan is that of a
experienced driver. With that, driving a car can been seen as a visual-motor-process.
So when learning to drive a car, a person will go through the three steps in acquiring
these skills (Anderson, [2. At the last stage, the skills are stored in a procedural
memory. It makes it hard for researchers to retain the information stored here, but
it makes it for humans driving a car to a much easier task.

The task of driving a car consists of evaluating a lot of rules and procedures. These
are thus stored in the procedural memory. Automan is equipped with a similar kind
of memory. Here all available rules can be retrieved and used for reasoning and for
the connecting the perceptual processes to the driving task itself.

4.8 Evaluation and updating objects
When an object is perceived, not all its properties are known. It is for example pos-
sible that not all traffic participants' behaviors are evaluated. A driver is about to
overtake a car but the lane is not clear: there is much oncoming traffic. It is not rel-
evant to know the behavior of the tenth car, to know it is there is enough. So it
would be unnatural and unwise to set all known properties for all objects. The Au-
toman-model is equipped with a system that handles these situations. If a rule in a

behavioral pattern requests a property of an object yet unknown, the evaluation

Part II 33

Automan Overview 4

process will use the appropriate rule from procedural memory to calculate the re-
quested value. If for example the behavior of the tenth car becomes relevant (because
it is now near), the evaluation process will determine its behavior.

Some properties are set by the visual process, like distance from the intersection,
speed, etc. But not every update-cycle all objects in the visual world are seen again.
The objects are of course still in memory and are still needed in the behavior system.
An update process makes sure that the correct values are set when a behavior ele-
ment requests it. In the example where Automan is approaching the intersection, he
is at this point looking to the right. But while updating the behaviors the current
position of the car from the left is needed. By using its last known speed and distance
and the time of the last update a new value is calculated. These old values are very
uncertain and this means the estimated values based on the old observations are even
more uncertain. If Automan can not be sure enough where the car is, he will look
at the car again. Because of the dense fog this will occur more often than in normal
circumstances.

4.9 Emotion System

Automan is developed to create a virtual human driver that behaves like you would
expect from any other real human driver. An intelligent agent like this is therefore
called a believable agent. One major influence on human decision making is emo-
tion. An artificial agent with no emotions will behave 'robot-like': analytical and al-
ways correct. Hardly believable. This is the reason why Automan has emotions. It
is a process not yet completely understood and hard to research. It is however an
important part of somebodies personality. So if the model incorporates emotions it
not only will result in a more believable agent but with different settings will also
give different 'personalities'. Emotions are difficult but necessary for a good model
of human driving behavior.

4.9.1 Emotions influence behavioral patterns

A good example of an emotions influencing behavior is that of aggression. If a per-
son is aggressive, this has effect on several processes. Attention is more focused on
the participant that irritates the driver most and therefore will not see everything
else that happens on the road. Risk-assessment is also affected. Aggressive people
tend to take more risk than non-aggressive people do. This makes that they are will-
ing to take more risks in for example overtaking a car, although they just get a few
meters ahead.

4.9.2 Behavioral patterns influence emotions

Almost no-one enters a car in an aggressive state. Along the way, some people do get
more and more aggressive. This shows that driving a car influences emotions. If a
person wants to overtake a car but he can't because traffic is coming ahead, he may
get frustrated and perhaps aggressive if it takes too long. This aggression may again
lead to more risk-taking.

34 Part II

4 Automan Overview

4.9.3 Emotions and Fuzzy Logic

A property like 'speed' is defined in fuzzy logic by a membership function (see chap-
ter 9). The standard definition can be seen as the subjective definition a person gives
in a neutral state. By adding factors to the shape of this function, emotion can be
modeled at a low level. By changing the factors, the starting and end point of each
single membership can be shifted or can the angle of incline / decline be set. In figure
23 the standard shape for 'speed' is given. If for example the subject is aggressive the
starting and end points of each member will be shifted to the right, hence giving the
person a different sense of 'speed', hence giving a different outcome to the rules
which use 'speed'.

Part II 35

Chapter 5
Perception

+ 5.1 Perception in Automan
In this chapter one particular part of the model will be highlighted. Perception is
probably the most complex cognitive system in the human brain. Quite a number
of braincells are devoted to seeing and perceiving our environment. While driving a
car, this sensory information is by far the most used sensory system. For Automan,
however, only the results of these processes are relevant. But then why all this atten-
tion to perception? The answer is not so complicated: it is not important how hu-
man perception comes to the conclusion that the object in sight is a car, but it is very
important to know how the object is perceived and more over why the object is (not)
perceived. All sorts of elements, internal and external, influence the possible out-
come of how an object is perceived. Attention and visual schemes control the gaze
direction of the driver and therefore why and how object is perceived. The next sec-
tions will elaborate on this subject.

5.2 Perceiving the environment
Human drivers use almost exclusively visual perceptual information. Indeed, it has
been argued that a large part of the driving task must be considered a visual task. We
think this a little exaggerated; not only are other sources of information also used
(e.g. sound, g-forces due to acceleration), but also a large part of the driving task is
making decisions and controlling a vehicle. However, visual perception remains an
important aspect. Because Automan should be cognitive plausible, it was decided to
use visual information for its perception, just like human drivers. Sound or acceler-
ation information is not used at this stage. The simulator does not provide sound in-
formation, and it is generally accepted that sound information is not nearly as
important as visual information. Acceleration information could be fairly easily ob-
tained, but would be mostly used as an indication of vehicle behavior. Although it
is not used at this point, it would not be too difficult to include it later on.

Automan is to function in a simulated environment and has access to a complete rep-
resentation of this environment. Therefore, the visual output of the simulator is not
used. This would imply a range of complex pattern recognition algorithms would
have to be used to filter the relevant information out of the images. This would make
Automan computationally and conceptually much more complex, while adding
nothing to its functionality. The goal is to model realistic driving behavior, not to
model human low-level object recognition. Another problem would be, that every
Automan used in experiments would have to have access to the visual information.

Part II 37

Perception 5

This poses new computational requirements to the simulator, because for each Au-
toman a complete image would have to be calculated.

Instead, a World Projection is used, that queries the simulator about the objects in
the environment of Automan. Based on these objects, it determines what objects
Automan actually sees. Just like humans, Automan doesn't have a complete field of
view. It has a fovea! field of view, in which objects are easily recognized, and a pe-
ripheral field of view, in which objects are perceived if they are very conspicuous.
The world projection determines which objects are visible in the foveal and the pe-
ripheral field of view. When using multiple Automen, they all would have their own
world projection which queries the simulator.

Much research has been devoted to the nature of human perception in driving a ve-
hicle (e.g. Gale (1991,[15],1996,[16]). No clear picture emerges from this research;
human perception is too broad a subject to give way to a simple explanation. How-
ever, broadly speaking two areas of interest can be distinguished: low-level percep-
tion and attention.

5.2.1 Perception of objects in sight.

Low level visual perception is concerned with the actual recognition of objects. In
driving, much perception seems to have to do with optic flow (Berthe-
lon(199 1,[3]) ,Cavallo(1997,[10]) ,Landwehr(199 1,[27])). Optic flow can be described
as the apparent movement between two consecutive images. Mostly, this is deter-
mined by calculating flow vectors. For instance, when a plane of red pixels has
moved a certain number of pixels, the vector describing this movement is the flow
vector. These low-level calculations are not done by Automan, so it will be left at
this.

Various factors influence perception. For example, when a vehicle is on a collision
course, the other vehicle will seem not to move against the background. In maritime
environments, this is often used as a useful trick to determine whether a vessel is on
a collision course. But because of the lack of apparent movement, the recognition
can be severely impaired (Santos (1997,[36])). Properties of objects can also influence
perception. In perceiving curves, a slight slope in the curve (to counteract centrifugal
forces) or a transition curve seems to enhance perception (Riemersma(1991,[34])).
Furthermore, if an object is very conspicuous (e.g. by color or contrast), it is easier
to perceive. However, this effect seems stronger if the environment also contains
conspicuous objects, at least for perceiving motion (Berthelon(1991,[3])). The size of
the object also influences perception. For example, there is evidence that the high
accident rate by child pedestrians is not only due to the carelessness of those pedes-
trians, but also due to a perceptual effect which makes objects harder to perceive if
they are as high as the drivers eye level (Stewart (1991,[37])). Also driving in fog,
spray, or rain makes perception worse.

A problem in exactly modeling human low level perception is that many phenom-
ena that can be observed only occur in relatively few instances. For instance, looking

38 Part II

-I

5 Perception

and failing to see a child pedestrian does not occur every time one is present. Unless
one would like to build a model on an even lower level, using images as input and
constructing neural pattern recognition algorithms, there are no real models to de-
scribe these phenomena. Even for such low level models, it would be an open ques-
tion whether they would exhibit all human perceptual phenomena. It is not at all
clear whether such phenomena are due to low level perception or to higher level at-
tentional processes.

When modeling all the perceptual phenomena in Automan, one could use probabil-
ity distributions for these phenomena. A new problem arises then, because these dis-
tributions have to be reliably estimated. Not much data is available for such an
estimate, and individual differences between drivers are fairly large. One could make
some assumptions, of course, but the question is whether Automan would really
benefit.

To make matters worse, it is not at all clear what exactly is perceived when an object
is perceived. In curve perception, various parameters are used together to estimate
the curve (Riemersma (199 1,[34D); what perceptual mechanisms lie behind this is
not known. There is considerable evidence, that drivers use an estimate of Time-to-
Contact on the behavioral level when engaging in situations with other vehicles (For
example, when following another car, or when approaching an intersection.). This
estimate is thought to be derived directly from perception. It is unclear how this is
done, (Groeger(199 1 ,[17D,Van der Horst (199 1,[2Q1),Stewart(199 1 ,[379) although re-
cent research in playing tennis or hitting a baseball seems promising in this direc-
tion. However, there are several factors influencing this perception: expansion of the
vehicle on the retina, own speed, distance of the vehicle, environment of the vehicle,
and the task at hand (Cavallo (1996,[1OD). The question arises whether Automan
would really benefit from including complex perceptual processes. Theoretically, it
is unclear whether some of the phenomena are due to perceptual or attentional pro-
cesses. Most of the phenomena that can have a large impact on driving behavior can
be incorporated in an attentional process (section 5.2.3). Others, for instance time-
to-contact estimation, can be included in an inference process later on; the use of
fuzzy logic is very well suited for exactly such a thing.

It is generally accepted that humans perceive one object at a time in traffic situations.
Also, the more time spent looking at an object, the better it will be perceived. To
model the low level perceptual process in Automan a Perceptual Filter is included.
This filter receives the objects seen from the world projection, and determines which
object is currently being perceived. Mostly, this object will be in the Foveal field of
view. However, if a very conspicuous object is present in the peripheral field of view
(e.g. because it is moving fast, is fairly big, or has conspicuous colors) the perceptual
flter will also output that object.

The output of the perceptual filter is placed in Automan's Working memory (section
4.5). This working memory contains active behavioral patterns, perceived objects
and information about Automan itself. It is needed because direct sensor coupling

Part II 39

Perception 5

would not be enough for Automan to function. Many behavioral patterns need in-
formation that has to be present for a certain timespan. Also, much information is
used by different behavioral patterns. It is therefore convenient to have a central
storage mechanism for this information. Furthermore, information about perceived
objects must be accessible even if Automan is looking in an entirely different direc-
tion.

In figure 8 the flow of visual information is sketched.

5.2.2 Intrinsic Vagueness of perceptual objects.

Figure 8: The flow of visual information to and in Automan

if a person looks at an object he can perceive its properties. However, several factors
(like weather-conditions and human perception capabilities) make it that the person
will not see the value of those properties completely correct. For example, at first
glance a car is viewed to be driving really fast. How fast? The viewer could say 'be-
tween 100 en 175 kph.' But after a closer look (e.g. more time is spend looking at the
car) the viewer may narrow it down to 'about 150 kph'. Because human vision is lim-
ited, this is as ciose as the person will get in assessing the value. This is called the in-
trinsic vagueness.

Every fuzzy.object property has an intrinsic vagueness. This is its vagueness under
optimal conditions. For example, this would be the vagueness when an object is per-
ceived on a day with clear weather conditions and when much time is spent looking
at it. Depending on perceptual conditions, this vagueness is increased. Both the
world projection and the perceptual filter are able to increase vagueness.

The world projection modifies vagueness based on external conditions. This is done
based on Reliability functions. Depending on the situation, these functions specify
how the vagueness should be increased. These functions are cumulative; the percep-

40 Part II

-'

5 Perception

tion of a car in fog partially occluded by a building is influenced both by the fog and
the occlusion functions.

The perceptual functions modify vagueness based on the time spent looking at a cer-
tain object. The more time is spent looking, the lower the vagueness. There is a max-
imum perceptual time, that is needed to perceive objects and its properties at
intrinsic vagueness. There is also a minimum perceptual time that is needed to per-
ceive an object, with its properties at maximum vagueness (which would amount to
not perceiving the properties at all.)

By varying the time neccessary to perceive an object properly, the perceptual func-
tion can reflect the efficiency of a human drivers perception. It is known, that expe-
rienced drivers can perceive a situation much faster then inexperienced or older
drivers. This can be easily simulated in the model by increasing the perceptual time.

5.2.3 Attention control.

As remarked, attention plays a major role in human driver perception. Attention in
this regard expresses itself in the direction the driver fixates his eyes. There is no
clear model about how attention processes might function. In Kosslyn(1991, [25D a
model is presented that incorporates the common held views on perception and at-
tention. In this model, information from the retina is first stored in a Visual Buffer.
In this visual buffer, an attention window selects a region for detailed further process-
ing. This processing occurs in two streams, the what and the where stream. The what
stream processes object properties, such as shape and color, and is responsible for the
recognition of the object. The where stream processes spatial properties, such as lo-
cation and size.

These streams converge in an associative memory, where the properties obtained are
matched with those of objects in visual memory. For this match, both object and spa-
tial properties can be, and have to be, used. For example, a pencil could be identified
by two parallel lines; the lines are object properties, parallel is a spatial property. If
a good match is obtained, the object is recognized.

If a good match is not obtained, the attention window can be used to look for addi-
tional information about an object (for example, if only one line was extracted, the
attention window might shift to look for another line to identify a pencil). Not only
the location of the attention window can be controlled in this way. There is ample
evidence that the specific properties extracted from the image in the what processing
stream are also dependent on what is considered to be useful in identifying it. That
is, depending on one's previous experiences, processing in this stream focuses on dif-
ferent properties (edges, textures, colors, etc.)

Apart from this process, there is also a stimulus-based attention shifting process. This
process draws one's eyes or one's attention window to a region of space where a nov-
el stimulus appears. This can be detected by looking where large changes in the vi-
sual field occur. Furthermore, there is evidence from patients with brain damage
that shifting attention consists of three phases: disengaging from a particular loca-

Part II 41

Perception 5

tion, moving and engaging at another location. The attention window in this model
can also be used to identify objects that are not directly pointed to by the eyes, by
shifting the attention window to specific regions of the visual buffer.

5.2.4 Attention in driving a vehicle

Although there is some controversy in the literature the general idea is that in driv-
ing, people mostly pay attention to the objects in the direction where their eyes are
pointed, their foveal field of view (Cohen (1996,[11D). Just as the attention window
in Kosslyn's model, the direction of this field is mostly controlled by the informa-
tion needed at a particular time (Theeuwes(1991,[42J,1996 [43D. The driver actively
searches the scene to gather information about his environment. It seems perception
of a certain object when driving depends more on whether a driver is searching for
that object than on the conspicousity of it. When looking for a particular object, it
is more difficult to find it when it is not on an expected location.

In driving, the expectation about where an object might be is mostly given by the
particular traffic situation. For example, when approaching an intersection, the need
arises to know if there is traffic coming from the other roads. This will prompt a
visual search for that traffic. When there are no expectations, for example when driv-
ing ahead on a straight road, the eye movements will concentrate around the so-
called focus of expansion. Therefore, when modeling this proces, a mechanism is
needed that incorporates a kind of goal directed search for needed information, de-
pending on the traffic situation. Indeed, it seems that if drivers engage in a familiar
situation (e.g. an intersection they have encountered many times), their search will
be constricted. They will only look in directions in which they have experienced
traffic before (Van Elslande (1991,[13])), possibly neglecting directions that would
also be important. In negotiating curves, drivers exhibit a kind of sawtooth scanning
pattern, which suggests they are tracking certain points (or certain textures or mark-
ings) on the curve. This depends on curve radius urgensohn (1991,[21D). All this
suggests that human drivers employ certain looking strategies, that function similar-
ly to Kosslyn's attention window.

5.2.5 Gaze Direction

Research has shown, that eye- and head movements in driving are closely related
(Land (199 1,[26]). When a driver shifts his looking direction, this is composed of
three phases: a fast movement of the eye, followed by a slower but larger movement
of the head, followed by a movement of the eye to compensate for the head move-
ment. Also, when the head direction stays constant during a certain period of time,
still eye movements occur, although the fixation points will be fairly close to each
other. This is presumably an attention effect, to focus on different objects or part of
objects for recognition. Mostly, the direction of the eye and the direction of the head
will be roughly similar.

The foveal field of view can thus be conveniently approximated by using just one
looking direction, the Gaze Direction, which is an aggregate of both eye and head di-

42 Part II

5 Perception

rection. This has several advantages when trying to model looking behavior. The
where processing stream becomes implicit in the gaze direction. Whole objects with
their properties are perceived at a time, and information about where they are is al-
ready available. If assuming only an object in the foveal field of view can be per-
ceived, there is no need for such a stream. Furthermore, the mechanisms behind eye
movements are poorly understood, and are only partly consciously controlled.
Therefore, it is very difficult to make a realistic model of these movements. These
movements occur very frequently and swiftly, which makes it computationally hard
to model in real-time. Also, it seems that eye movements occur at a constant speed,
being controlled by their duration, while head movements occur with a fixed dura-
tion, and are controlled by speed. In a digital model, it is mostly easier to use fixed
durations for low level actions, because the duration of the action does not have to
be calculated each time. Also, when modeling it is very convenient to keep the mod-
el as simple as possible. When one can get the same results using just one looking
direction, this would be a good thing. In Automan, it is not neccessary to model pre-
cisely where an eye looks to. Because it is already known which objects are in sight,
it is more convenient to use one looking direction, and define the foveal field of view
to be somewhat larger than in humans (incorporating the area scanned by a few con-
secutive saccades). One can then treat all objects in this foveal field of view as if they
were recognized by saccades, without having to model the saccades explicitly. Last-
ly, incorporating a visual buffer with an attention window becomes neccessary. Be-
cause the input to Automan will be already 'recognized' objects, there is no need to
extract spatial and object properties out of an image. Attention can be modeled by
changes in gaze direction, that depent on expectations the driver has, or strategies
the driver has learned. By using vagueness with the properties perceived, the percep-
tual filter incorporates a sort of what processing stream. It might be possible to in-
clude attentional effects also in the perceptual filter, but at present it is unclear
whether this would gain anything.

It is known that inexperienced drivers shift their gaze more often than experienced
drivers (see Aasman (1995,[1]), De Velde Harsenhorst (1987, [45] en [46:1)). Although
a goal driven visual search seems to be an accurate description of driver looking be-
havior, it is difficult to devise a standard strategy usedflJ4l]). Therefore, for control-
ling Automan's looking behavior, we needed a way to make flexible looking
strategies possible.

5.2.6 Visual Schemes

The gaze direction of Automan is controlled by Visual Schemes. These schemes rep-
resent the driver's expectations about a situation, and specify which directions are
important to look at. For example, when approaching a left turn traffic from other
directions are more important then when approaching a right turn. Given a certain
situation, a certain visual scheme will be active. This scheme contains priorities for
the various directions, that are updated dependent on what is already seen. In this
updating process, the vagueness of properties of objects is used. If an object is seen

Part II 43

Perception 5

some time ago, the vagueness of its properties will be increased, representing the fact
that the information is less reliable. (For instance, a car may have slowed down or
turned, is no longer at the same position, etc.) If the properties of an object perceived
in a relevant direction are too vague, the priority of that direction will be increased.

In figure 9 this is illustrated.

The difference in gaze direction shifting between experienced and inexperienced
drivers can be modeled in a couple of different ways. Firstly, by greater updates of
the priorities in the visual schemes. This would represent that inexperienced drivers
are not really confident to which direction they have to pay attention. Their expe-
rience is too limited to form good expectations about the situation; rather, they
swiftly form a series of expectations, not being sure which is the right one. Secondly,
by greater increases in vagueness of properties of objects. This would represent a
lack of Situational Awareness (the ability to maintain a coherent representation of a
changing situation). Drivers can have good expectations where danger might be
coming from, but are not able (by lack of experience or otherwise) to keep track of
their perceptions when looking at the various directions.

Also, the model can "look and fail to see". If it takes a quick look to the right, but
shifts his gaze direction swiftly for whatever reason, it can perceive things so vague
they don't influence the overall behavior. This swift shifting can occur, for example,

44 Part II

1

Figure 9: The determination of the gaze direction

5 Perception

because the perceptual filter has perceived a peripheral object (because, for instance,
it is moving fast, implying a large change in the visual field). In the visual scheme can
be specified that if there is such a peripheral object, the gaze direction has to be shift-
ed immediately to that object. This can be described as a discrepancy between the
driver's expectation (namely, no significant change in the periphery) and hispercep-
tion, triggering an attention shift. Alternatively, one could use a peripheral object to
directly influence or activate a behavioral pattern, ensuring fast reaction to a danger.
Of course, this does not neccessary have to be done. Effects like tunnel vision or in-
ability to perceive swift changes because of distractions can be incorporated by spec-
ifying a corresponding visual scheme. How to best model drivers reactions to
peripheral objects needs to be determined by experiments.

In figure 10 the whole proces is sketched.

The attention in the visual system thus consists of a time resource, the time spent
looking in a certain direction. A visual scheme controls this attention by controlling
the gaze direction. This control represents the expectations a driver has about the
situation at hand. A driver will devote attention to directions where he expects rel-
evant information. To keep track of which information he already has and what ad-
ditional information he needs, a sort of feedback ioop is present. The gaze direction
depends on the perceived objects present in working memory, which depent on the
output of the perceptual filter, which is in turn dependent on the gaze direction.

A visual scheme can therefore devote all attention to a specific direction, by specify-
ing that all other directions are not so important, or by specifying that the informa-

Part H 45

Figure 10: Automan's perceptual process.

Perception 5

tion about that direction has to be very recent. Alternatively, it can distribute this
attention, by specifying it is only important to know some things about a certain
direction, represented by a set of required objects or properties of objects. As soon

as this required information is present in working memory, attention can be devoted

to another direction, and the gaze direction will be shifted.

46 Part II

Part III

Chapter 6
Architecture for Cognition

To implement the various subsystems of Automan in a convenient, easy-to-modify
way, a new cognitive architecture was developed. This architecture, although spe-
cially developed for Automan, is more generic in nature and would be useful for oth-
er purposes than controlling a vehicle. In this chapter the development and
functions of this achitecture are explained.

6.1 The need for a cognitive architecture
The Behavior, Action, Emotion and Perceptual systems of Automan are all fuzzy
rule-based systems. They all work with the contents of working memory, and some
systems even work with the same objects in working memory. All systems apply
fuzzy rules to update or infer properties of objects, or create new objects. They all
have to use long term memory for their rules and objects definitions. Furthermore,
the behavior and perceptual systems both work with vagueness. Although the sys-
tems perform fairly different functions, their inner workings are the same. All of the
systems perform more or less cognitive functions; they manipulate the representa-
tions Automan has of the environment.

Also, if Automan is to be generic enough to be applicable in a wide range of traffic
situations, the rules and objects used have to be easily modifiable. If it turns out cer-
tain rules do not perform as well as planned, it has to be fairly easy to change those
rules. This implies that the rules cannot be hardcoded in the system, but must be
specified in structure files that can be edited by hand.

Therefore, for an implementation of Automan it would be very convenient to have
a generic system that can handle fuzzy rulesets. All systems can then be implemented
by composing rulesets that define and structure the systems, and the generic system
used will take care of the rest. What is needed for this is what is called a Cognitive
Architecture (Taatgen (1995,[4 1],VanLehn(199 1 ,[4410.

6.1.1 Overview of existing cognitive architectures

Cognitive Architectures grew out of the idea that humans are capable of performing
a wide variety of cognitive functions using the same basic setup. This would imply
that if one can specify this basic setup, one would have a system in which it is easy
to implement various cognitive processes. An analogy can be made with a computer.
If one knows the set of instructions the machine understands, one can program a
wide range of applications using those instructions, from word processing to shoot-
ing down space invaders. Similarly, if one has the basic architecture of the human

Part III 49

Architecture for Cognition 6

cognitive system, one can implement a variety of cognitive processes, for example
playing chess, understanding language, or making decisions about traffic situations.

Cognitive architectures are sometimes linked to what is called a Unified theory of
Cognition (Anderson & Lebiere, (1998,[3])). Such a theory functions as a framework
to integrate the various theories that have been developed over the years to explain
isolated cognitive phenomena. The architecture is used as an implementation of the
theory, in which various cognitive phenomena can be modeled.

Most cognitive architectures are based on the use of production rules. These are basi-
cally IF condition THEN action rules. The condition part of these rules are mostly
compared to some information in the architecture, and if this condition is fulfilled,
the action part is executed. This process is called matching.

A variety of cognitive architectures exist, each with its own underlying theory. In
the following paragraphs a short overview of the most important architectures cur-
rently used is given.

6.1.2 ACT-R

ACT-R is the result of a sequence of models and theories based on the use of produc-
tion rules in long term memory. It is an implementation of ACT*, which was pro-
posed by John Anderson as a unified theory of cognition. ACT-R consists of two
memory systems.

The declarative memory contains chunks. Chunks are the representation of facts.
They are roughly comparable to what is calledframes in Artificial Intelligence; they
consist of a name and type, and a number of slots with additional information. (For
example, a chunk for the fact that one plus one equals two would have a name like
addition_fact_one, a type addition fact, and three slots, containing one, one (the ad-
denda-slots) and two (the answer slot))

In the production memory the rules are stored. The chunks in working memory are
compared with the preconditions of these rules. If there is a rule that matches the
condition part of a chunk, that rule is executed. A rule can modify slot values of
chunks, create new chunks in working memory, or perform a special action.

Not all chunks in working memory are used for this matching; ACT-R uses a focus
of attention, which is a kind of pointer to a certain chunk. Initially, this focus will
point to a chunk in declarative memory that represents the goal of the task. The first
chunk in the condition part of a production rule has to match with a goal that has
the focus of attention. The matching of the other chunks in the condition part is
based on the activation value of the corresponding chunks in declarative memory.
Each chunk in declarative memory has an activation value. This value is based on
how often and how recent the chunk was used, and on the activation of associated
chunks. Chunks that are rarely used will have a low activation value. Chunks that
are highly associated with a chunk with high activation will also have a high activa-
tion. An association matrix between chunks is maintained for this. The lower the

50 Part III

6 Architecture for Cognition

activation value of a chunk, the longer it takes to compare the chunk with the pre-
conditions of the rules.

All production rules are matched in parallel. However, because some productions
take more time than others to match, this process stops after a while. When this is,
depends on a kind of cost/benefit evaluation of the current production rules. Each
rule has a set of parameters associated with it, a, b, q, and r. a is the cost of execution
of a rule, b is the average cost that has to be made after execution to reach the goal,
q is the chance that the rule succeeds, and rthe average chance that the goal is reached
after execution of the rule. The probability of success of certain rules (q and r) times
the value of the goal to be attained is the benefit of a rule. The cost of a rule is deter-
mined by the cost of the execution of that rule (a) and the estimated cost to reach the
goal after that (b). The benefit of a rule minus its cost gives the expected yield of a
rule. Each time, the best yield of all the matching rules is taken and compared to a
probability distribution. If the probability that an even higher yield is found is iow
enough, the matching process will stop and the rule with the highest yield will be
executed.

Rules can have Special Actions. These include writing something to the screen, but
also changing the focus of attention to another chunk. This can be used, for instance,
in an inference process where a rule places a new chunk in working memory as the
result of a certain inference. By changing the focus of attention, the process can con-
tinue with this new chunk. Also, a goal stack can be maintained, which makes it pos-
sible to specify subgoals, and return to the original goal if these subgoals are reached.

ACT-R can learn in two different ways. The first way is concerned with the efficien-
cy of know-ledge storage and representation. The learning mechanism here simply
adapts the various parameters (activation values, a, b, q, r, etc.). The second way is
creating new production rules. This is done by analogy. Because learning is not of
concern in this context, it will not be explained further. The reader should however
keep in mind that learning is a essential part of ACT-R. To fully understand and
make use of this architecture, this part should not be forgotten.

6.1.3 Soar

SOAR is the result of a re-evaluation of the work done in the 1950's on GPS (Gen-
eral Problem Solver), a program that was to be both intelligent and a model for hu-
man problem solving. One of the developers of GPS, Allan Newell, extended the
GPS-ideas in the 1980's, which led to SOAR.The central hypothesis of SOAR is that
all human cognition is problem solving. Problem solving is searching a problem space,
which has as dimensions various operators. This search is heuristic, in that the search
is controlled by the estimated distance to a goal. SOAR makes goals and subgoals
itself. Subgoals are made when SOAR reaches an impasse, a situation in which it can
not decide which operator to apply. The subgoal then creates a new problemspace
with new operators. This new problemspace is now searched for the right operator
to solve the impasse.

Part III 51

Architecture for Cognition 6

SOAR consists of two memory systems: a Long Term Memory and a Working Mem-
ory. As with most architectures, information is present in working memory in the
form of so-called WME's (Working Memory Elements). Again, these are very similar
to the frames used in artificial intelligence. It can be put in working memory by so-
called I/O modules, that interface the architecture with its environment, or by the
architecture itself. The long term memory, also called recognition memory, contains
operators (production rules). In SOAR, the rules which propose an operator for a
specific state and the rules which apply that operator are separated. SOAR contains
a decision mechanism that can decide which operator to use in a certain state, if there
is more than one proposed operator. This mechanisms consists of search/control
rules, that prefer some operators above others.

Learning in SOAR is called Chunking. This happens when a subgoal is created and
reached. SOAR will then add new operators to the Recognition Memory, which is
applicable to precisely the state in which the subgoal was created. These new opera-
tors form a Chunk. When a similar problem is encountered, it is no longer necessary
to create a subgoal, but the new operator can be applied directly.

Soar has been used to model driver behavior (Aasman, 1995,[1D. Although the re-
sults where promising, some major shortcoming were also identified. One technical
shortcoming was that Soar is computational very inefficient. Other, more funda-
mental, shortcomings were the absence of timing mechanisms, absence of perceptual
and motorical modules, and the difficulties for SOAR to forget; chunks are kept in
working memory too long.

6.1.4 Other Architectures

Some other architectures exist, but are not so widely used as SOAR or ACT-R, al-
though they are comparable to those two. For example, EPIC emphasizes perceptu-
al processes, but is not very good at handling rulebases. Also, some attempts have
been made to make a cognitive architecture with neural networks or genetic algo-
rithms. Although these last approaches seem promising, they have not reached us-
able architectures yet. Lastly, some architectures are set up with a specific goal in
mind, like FLAC.

6.2 FLAC: a different approach
A cognitive architecture is needed to implement the cognitive processes needed for
Automan. A.relatively simple architecture is needed with not much add-ons that are
really relevant for the implementation of Automan. For instance, from a theoretical
viewpoint the Cost/Benefit evaluation of ACT-R is very interesting, but from a
practical viewpoint it is an inconvenience, because there is less direct control over
the matching process1.

The architecture does, at this point, not need learning algorithms. Later on it will be
very interesting to see whether Automan can be extended to model the learning of

52 Part III

6 Architecture for Cognition

driving a vehicle, but initially the goal is to model a driver at a certain level of expe-
rience. This level of experience can vary, but not while the system is running.

What is needed, is an architecture that can handle fuzzy logic and vagueness. As said,
for the task at hand fuzzy logic has many advantages. All systems of Automan are
designed using the specific benefits of fuzzy logic. To the knowledge of the writers
such an architecture is not currently available.

Also, the existing architectures are not suited for applications that interact with their
environment in a time-dependent, dynamical way. While all architectures work
with relatively fixed goals, Automan has a constantly changing hierarchy of goals,
implemented by high- and lowlevel behavioral patterns. Also, in Automan, it is nec-
essary to keep track of the information in working memory, because most of this
information will degrade over time. Furthermore, the model assumes that it is pos-
sible to evaluate rules in a certain sequence; first the behavioral patterns, then the
visual schemes, etc. There is no architecture that contains mechanisms for these pro-
cesses.

What is needed therefore is a new cognitive architecture. In specifying this architec-
ture a different approach has been taken than other architectures have. We have not
started from a high-level theory of what cognition could be. Instead, specifications
of which cognitive functions would be needed for Automan were setup and used in
designing an architecture. This architecture turned out to be very generic in nature,
and not only suited to modeling driving behavior. Arguably, the result is not a true
cognitive architecture; no learning mechanisms are included, and there is no under-
lying unified theory of cognition. However, the result is general enough to be ex-
tended to such a system.

The architecture is called FLAC (Fuzzy Logic Architecture for Cognition). In the
following chapter, a complete description of it is given. For now a short overview
will do.

In FLAC, the central module is the working memory. This memory consists of ob-
jects (which are instances of concepts in FLAC terminology). These objects form the
current representation the architecture has of its environment and its own state.
Again, these objects are very similar to the frames used in artificial intelligence. Ob-
jects can be created in working memory by a perceptual process (in this case, the per-
ceptual filter), or by the architecture itself. In the case of objects created by a
perceptual process, working memory will receive the kind of object and the neces-
sary information about this object from the perceptual process and create it. The
properties of the objects can be of various types.

1. To keep within the theoretical framework of ACT-R, one can say that all chunks that have
to do with driving have a fairly large activation value, because they are used all the time. A
problem would be the chunks that have to do with exceptional situations. It is a bit unrealis-
tic to assume that deciding on an emergency brake manoeuvre would take more time than
deciding to cross an intersection, because emergency brake manoeuvres are less frequent.

Part III 53

Architecture for Cognition 6

FLAC also has a procedural memory, in which all rules are stored. Rules can be of
two types: creation rules, that can create new objects in working memory, and Up-
date rules, that can update properties of objects in working memory. Finally, FLAC
has a declarative memory, in which facts and definitions of concepts are stored.

The objects in working memory are continuously evaluated with the evaluation
rules in procedural memory. If a creation rule matches, it can create a new instance
in working memory. It is possible to specify a hierarchy of evaluation of creation
rules; all rules belonging to a certain type of concept can be evaluated first, than all
rules belonging to another type of concept (in Automan, these types are behavioral
patterns, visual schemes, emotions and actions). If a property of an object in work-
ing memory, whose value was requested by a creation rule, is not known or (in the
case of a linguistic variable) too vague, the update rule corresponding to that prop-
erty will be evaluated.

A full description of FLAC and the implementation of Automan in this system will
be given in the next chapters.

6.2.1 The three task levels in FLAC

In chapter 4 three task levels are presented. In FLAC it is possible to separate these
levels in the way described in the last paragraph. First the behavioral patterns of the
highest level will be evaluated. These behavioral patterns will use the objects cur-
rently in working memory together with lower-level behaviors active at the same
moment to set new goals. Now the second level is evaluated using again available ob-
jects and the (newly) activated higher level behaviors and goals.This process is fol-
lowed by the third and last level. In short: first the strategic level, second the tactical
level, followed by the control Level.

54 Part III

Chapter 7
FLAC Subsystems

In this chapter a detailed descriptions of FLAG will be given. In figure 11 a schematic
overview of FLAG is given.

7.1 Working Memory

In the design of Automan a working memory is specified. This memory contains the
current representation of the environment and the driver itself and is the base from
which Automan functions. Because this memory plays such an important role in
Automan it will also be the first part of FLAC to be designed. It is therefore the cen-
tral part of the architecture (somewhat comparable to the focus-of-attention in
ACT-R) from which all processing is done.

This working memory contains so called Instances of Concepts. A concept is an ab-
St Tact definition of a physical or none-physical object in human reasoning. Thus, a car is
a concept, but overtaking is also a concept. A concept is composed of the name of
the concept and a set of properties (slots). The concepts are defined in the Dec/a rative
Memory. In working memory, not the concepts themselves are present, but instances

Part III 55

Figure 11: Schematic overview of FLAC

FLAC Subsystems 7

of these concepts. In an instance of a concept, the properties of the concept have spe-
cific values. For example, one can have multiple instances of the concept car, one
with color property blue and brand property Volvo, and one with color property
red and brand property Mazda. Both instances will have a property road that refers
to the object representing the road they are driving on.

Instances of concepts can be placed in working memory by applying rules or by a
perceptual process. Properties of concepts can have various types (see section 7.2.1).
All instances and properties have timestamps specifying when they were last set or
updated. If a property is a linguistic (fuzzy) variable, the property also contains a
vagueness term. This makes it possible to implement the updating of old informa-
tion. If a property has a timestamp that is too long ago, the property needs to be up-
dated. Instances of concepts are removed from working memory if their timestamps
are too long ago (which can be set in a structure file), or if they are no longer needed.
At what time instances are no longer needed / useful, needs to be specifiedexplicitly
in the rules. For example, road instances will be removed if they are too far behind
Auto man.

7.2 Long Term Memory
In Automan, a lot of different rules are required. In FLAC, a system is needed that
can store and retrieve these rules. Also, because FLAG works with instances of con-
cepts, the concept definitions must be stored somewhere. While the working mem-
ory contains the instances of concepts that are currently relevant, in the Long Term
Memory all concepts and rules are defined. Conceptually, it is convenient to differ-
entiate between two kinds of long term memory, similar to what is done in cognitive
psychology.

All rules and concept definitions are read into long term memory at the initializa-
tion of FLAC. They can be conveniently specified in structure files. For efficiency
reasons, the whole long term memory is implemented as a huge cross-linked struc-
ture. Long term memory can not be changed at runtime yet. It is initialized at the
start of FLAC with the various rules and concept definitions, and is thereafter only
consulted. This might seem strange, but all processing is done in working memory.
Changing long term memory would be the result of learning, which is not incorpo-
rated for two reasons: firstly, Automan is not set up as a model that can learn, and
secondly, it is not a trivial matter to devise a suitable, efficient and realistic learning
mechanism.

It may seem to the reader that some unrealistic choices were made here. This is not
the case, however. With complex and real-time simulations speed is of the essence.
Therefore if a part of the system can be made much more efficient without compro-
mising the cognitive architecture, this implementation should be chosen. This is
why the following 'features' are added to the system:

56 Part III

—I

7 FLAC Subsystems

• Use of compiler. Computer-languages that are interpreted are much
slower then compiled code. This is the case with prolog, lisp and java,
compared to pascal or c.

• No on-line editing. While the system is running, no changes can be made
to for examples the rules. The program should be shutdown and restarted
with the new code every time something has changes. This follows some-
what for the first choice, but it remains difficult to modify a running pro-
gram.

In the future a more userfriendly system will be developed. By then, computers are
much faster and will hopefully run as fast with an interpreter as contemporary com-
puters do with compiled code. The current situation however allows rapid code-de-
velopment and testing of the model. If it becomes clear that every part meets it
requirement a GUI will be added as well as an interpreter.

7.2.1 Declarative Memory

In the Declarative Memory all definitions of concepts are stored. Every concept has
a unique name, and a set of properties. These properties can be of the following
types1:

• Fuzzy. These are properties with fuzzy values, and are accompanied by a
vagueness term and a timestamp

• String. The values of these properties are strings (lists of characters)
• Number. The values of these properties are floating point numbers

(rational numbers)
• IS-A. This is a fixed property, and relates to another concept. It can be

used to implement a hierarchy in concepts (like subclasses in C+ +). For
example, a police car is a car with some additional properties

• Boolean. These are properties that can be either 'true' or 'false'
• Reference to another Instance. For instance, a road instance will contain

references to the traffic instances on it

Some properties also contain references to a rule. This is necessary because proper-
ties have to be updated from time to time. For elaboration on this process see section
7.3.

There is no limit to the number of properties a concept can have. In declarative
memory only the distinctive and necessary properties are defined. Mostly, these are
the properties that the perceptual process sets. FLAC has the ability to add new
properties to an instance of a concept in working memory if needed. For example,
if a traffic sign is observed that says the current road has right-of-way, FLAC can add
the property 'right-of-way' to the road instance.

1. In the future, it may be useful to add others.

Part III 57

FLAC Subsystems 7

In figure 12 is sketched what happens when a perceptual process is outputting a new
object. Declarative memory is searched for the right concept definition, and the rel-
evant instance is created.

Figure 12: The creation of a new instance of a concept in wm. through a perceptual process

7.2.2 Procedural Memory

In the Procedural Memory the rules are stored. A rule has the general form IF condi-
tion THEN action. The condition part of the rule has to match with properties of
instances or sometimes just the availability of an instance in working memory for
the action part to be executed. Rules come in two types:

• Creation rules. These rules can create new instances of concepts in Work-
ing Memory

• Update rules. These rules can update or infer property values of concepts
in working memory

Creation rules can be used to create for example a new instance of a behavioral pat-
tern. When the preconditions of such a rule apply to the current (internal) situation
it results in the creation of such a particular concept. For example: Automan is driv-
ing on a straight road. A slow car is in front of him and the road ahead is clear of any
traffic. These conditions could then trigger the activation of the overtaking-behav-
ioral pattern.

When a rule is evaluated, a property of an instance is requested. It could be that some
time has past since the last request and the property is no longer up-to-date. This val-
ue needs to be re-evaluated. If it is not a property that can be perceived (because it is

58 Part III

7 FLAC Subsystems

an abstract concept or the object is no longer in sight), the update rule is invoked to
calculate the new value. For example: when approaching an intersection the proper-
ty is-crossing-intersection of another car is requested by a rule. This car came around
the corner and is seen for the first time. Therefore, the property is not known, be-
cause it takes time to perceive some if not all relevant properties (like speed). So the
rule to evaluate the requested property is invoked: if its speed is steady or increasing
then the car is about to cross the intersection and perhaps: f the car is on the intersection
then it is crossing the intersection.1

In the condition as well as the action part of the rules, (fuzzy) logic operations as well
as mathematical functions can be used.

7.3 Evaluation of Concepts and Rules
FLAC functions mainly by creating new instances of concepts in working memory
or setting properties of these instances, governed by the rules in the procedural
memory. FLAC consults working memory and tries to match the instances present
with the creation rules in procedural memory. This is performed in a specific se-
quence.

7.3.1 Creating Instances

In every cycle, FLAC tries to match the instances in working memory with the cre-
ation rules. This matching can be done hierarchically. All rules that can create certain
types of instances are processed at once. An exact sequence can be specified, consist-
ing of which creation rules have to be processed at what time. In Automan, this is
neccessary because the behavioral patterns must be activated before the visual
schemes, after which the emotions and the actions must be updated.

1. These are only indications of how such rules may look like. Real rules can be much more
complex.

Part III 59

FLAC Subsystems 7

In figure 13 the process of creating a new instance through a creation rule is
sketched.

If the condition part of a creation rule matches with the properties of the relevant
instances in working memory, the action part will be executed. This action part will
create a new instance, and set the relevant properties. However, it could be possible
that the relevant instances for a condition part are already present in working mem-
ory, but that their property values are unknown, not present or have a timestamp
that is too long ago. In that case, the update rules are invoked to determine the value.

7.3.2 Updating Properties

In declarative memory only the necessary and distinctive properties ofa concept are
stated. In most system that use frame-structured data, a problem arises: it is unreal-
istic and even impossible to know all the properties in every situation in advance.
And if it is possible, the structure is usually highly complex and consumes a lot of
computer memory. In Flac the unique and distinctive features of a concept are al-
ways known (it should be). Other properties have to be inferred and are only in-
ferred when they are needed. Also, some properties have to be updated. Whenever
such a property is requested by a rule, FLAC will consult the procedural memory
for an update rule. This update rule states which value the property has to have in
certain situations. When the rule is invoked the timestamp of the property is reset
to the current time. Update rules can also be included in the evaluation sequence.

60 Part III

Figure 13: The first creation ruleset is consulted, resulting in the creation of an new instance

7 FLAC Subsystems

This is necessary, because some properties need to be continuously updated (emo-
tions, activations of behavioral patterns, etc.)

In figure 14 this process is sketched. The second creation ruleset is invoked. Howev-
er, a property of the first instance needs to be inferred or updated before this ruleset
can create a new instance. Therefore, the update ruleset is called. This ruleset looks
at the instances present to update the relevant property in the first instance. After
this is done, the new instance can be created, just as in figure 13.

Apart from being necessary for Automan to function, the use of update rules has an-
other, more general, advantage. As said before, one of the problems for any logic-
based system that operates in a dynamic environment is the frame problem: deter-
mining which parts of the environment or its representation of it change when per-
forming an action (see [11], [12]). With update rules, it is possible to have all property
values represent the current perceived (internal) state1. If a property should be
changed, either because the environment has changed or because new actions have
been performed, it will be changed through its update rule. However, this may not
be necessary. If the value of the requested property is fresh (has recently been updat-
ed) and not too vague, it is not efficient to recalculate the value. If, for example, the
action of a car behind Automan driving on a highway has been evaluated and set to

1. The combined information given by every concept and its properties describe the current sit-
uation. Memorized objects have the properties set which are relevant at this point in time.
With this it is possible to have a general description of a situation; objects that are relevant
only at a certain point need only be known at that time.

Part III 61

Figure 14: The second creation ruleset invokes the first update ruleset

FLAC Subsystems 7

'driving straight ahead' not even a second ago, it is not really necessary to re-evaluate
its action again. Only if Automan is about to overtake somebody, its action becomes
highly relevant and will probably be re-evaluated more often. The level and speed of
this decay can be set by specifying the amounts in the concept definition.

62 Part III

Chapter 8
Automan in FLAG

With FLAC, the model of Automan can be implemented. Because the system is not
implemented yet, it is only a rough description of how it should be done. However,
if FLAC is build and Automan designed the way they are discribed, this would be
the result.The reader should however bare in mind this situation. Some of the as-
pects in this chapter are fixed principles, others are more educated guesses. When the
implementation of the model is complete every hole will be plugged.

8.1 Perception
FLAG itself does not contain a perceptual system. Vision but most of all perception
of objects is a complex system. Not every necessary process in the biological mind
has been identified and those which are identified are mathematical very hard to un-
derstand. At the time this document is written no computersystem exists that can
match any higher order biological entity like humans or cats. In the first section it is
argued that it is not a necessary part of a cognitive model like Automan.Therefore
all information comes directly from the simulator and a separate perceptual system
is designed according to the specifications laid out in section 4.4. Of course, still a
world projection module has to be used as outlined in section 4.3. This perceptual
system has the ability to create and update instances in FLAC's working memory.
The concept definitions used for this are known in advance, so it is known what con-
cepts can be expected from perceptual input.

The implementation of the visual schemes will be explained in section 8.3.

8.2 Memory
FLAC's memory systems correspond very well to the memory systems used by Au-
toman (this is of course not very surprising). Therefore, Automan's memories are

Part III 63

Automan in FLAC 8

directly implemented as FLAC's working memory, Automan. For instance, the de-

clarative memory could contain the concept definition of a car:

Concept-Def Car {
is-a Vehicle;
speed: Fuzzy;
color: Fuzzy;
direction: Fuzzy;
relative-direction: Fuzzy;

Figure 15: Concept definition of a car

8.2.1 A subjects knowledge about himself

In working memory the current internal situation is registered. This situation con-
tains descriptions on and values of emotions, actions, speed and position. This
knowledge is used in decision-rules to for example reposition the car or deduce the
time of impact with another car. It is an always active instance of the concept Sub-
ject. Like with normal concepts, rules can update properties of Subject.

8.3 Behavior System
Behavioral patterns can be easily implemented as concepts. One "super concept", be-

havioral pattern, is defined. This concept has one property, namely activation. All
behavioral patterns can now be specified, and have an IS-A property with as value
behavioral pattern. The low level behavioral patterns have properties Steering Angle,
Acceleration1, and Signal. These properties will be used by the action system to per-
form the actions. Higher level behavioral patterns have no direct access to these
properties, because they do not directly steer the vehicle, but influence lower level
behavioral patterns that do. FLAC's evaluation sequence will be set to first process
all rules that can create instances of the behavioral pattern-concepts.

In these creation rules, a ruleset is created for instantiating the behavioral patterns.
The rules in it specify instances and their properties that must be present in working
memory for a behavioral pattern to become active. For example, suppose Automan
is on a straight road with not much traffic, and is behind a slower car. This will of
course be perceived and the corresponding concepts will be created in working

memory. In the procedural memory will be a rule that creates an instance of the
Overtaking behavioral pattern because of these instances. The activation of this be-
havioral pattern will be set to 1. This can be modified later on; how will be addressed

at a later time. The real overtaking maneuver can of course only start if the road is
clear. Therefore, there is a "sub" behavioral pattern Start_Overtaking. For this be-
havioral pattern to become active, two conditions must be satisfied: an instance of

1. Physically speaking, braking is also a form of acceleration, namely negative acceleration.

64 Part III

8 Automan in FLAC

the Overtaking behavioral pattern must be present, and the other lane must be clear.
If this is the case, a new instance of Start_Overtaking will be created with activation
1.0. This instance has properties Steering Angle, Acceleration, and Signal. These prop-
erties will be used by the action system later on.

If the preconditions of a rule, whose action part specifies the creation of a behavioral
pattern that is already present, matches with instances in working memory, the be-
havioral pattern will not be created again. After the behavioral pattern creation
ruleset is evaluated, an update ruleset will be invoked to determine the activations of
the behavioral patterns. This update ruleset looks at other active behavioral patterns
and emotions and sets the activities of the behavioral patterns accordingly.

The visual schemes are implemented in the same way, only they use a different
ruleset, which is evaluated after the behavioral pattern and activity rulesets. Further-
more, there is no hierarchy in the visual schemes, and no activations. The creation
rules used for the visual schemes look at the most active behavioral pattern and other
relevant instances and create the appropriate scheme. If the scheme is already
present, nothing is done. The visual schemes do contain properties for the various
gaze directions, with a numeric value that represent their priorities.

8.4 Emotion System

The emotion system is implemented as an update ruleset. Emotions are properties
of the Subject-concept, and are updated after the visual schemes. An update ruleset
specifies on basis of what this is done. For example, if the Overtaking behavioral pat-
tern has been active for a while, but the Start_Overtaking behavioral pattern is still
not active, the frustration will increase.

8.5 Action System

The action system consist of two update rulesets. These two rulesets specify which
property of a behavioral pattern or visual scheme has to be changed and how, given
certain instances in working memory. For example, a rule might be that the priority
of the gaze direction to the right in a present Check_Intersection visual scheme in-
stance will be increased if there is a Navigate_Intersection behavioral instance and
an intersection instance with empty properties for traffic present.The Degrees-of-
Freedom ruleset takes the behavioral pattern with the highest activation and prop-
erties for Steering Angle, Acceleration and Signal, and updates these properties, de-
pending on instances in working memory. These values are used directly to drive the
car. Also, the gaze direction ruleset takes the present visual scheme, and sets the val-
ues of the various gaze directions priorities.

For example, when approaching an intersection the Navigate_Intersection behav-
ioral pattern will be active. If there is no traffic coming from the other roads, the
Driving_Straight_Ahead behavioral patterns will be highly activated (its activation
will be positively influenced by Navigate_Intersection, and it will only be created if
no traffic is coming from other roads. However, a slower car can be in front of Au-

Part III 65

Automan in FLAC 8

toman. In that case, the acceleration property of Driving_Straight_Ahead will be de-
creased.

In figure 16 this implementation is sketched.

Figure 16: Implementation of Automan in FLAC. The lines represent the influences of the rulesets
on relevant instances. Of course, in a real implementation, more instances would be present in

working memory

8.6 The rulesets and processing cycle.
To put it all together, implementing Automan in FLAC should be done by specify-

ing six rulesets:

• Behavioral Pattern ruleset. These are the creation rules that determine
when a behavioral pattern becomes active. In their condition part, the rele-
vant instances and their properties are specified. Their action part calls for
the creation of a behavioral pattern instance. The precise form of these
instances and rules is not laid out yet. It would require some experiments
to determine how to divide the driving task in behavioral patterns most
effectively, and how the instances corresponding to them are made most

66 Part III

Acceleration, steering angle,

8 Automan in FLAC

efficiently. Conceptually, this ruleset is part of the behavioral patterns sys-
tern
Visual Scheme ruleset. These are the creation rules that determine when a
visual scheme becomes active. Just like the behavioral pattern rules, in
their condition part the relevant instances and their properties are specified
and their action parts call for the creation of a visual scheme instance.
Also, their precise form has to be determined by experimentation, and is
also dependent on the determination of the behavioral patterns. The rule-
set is conceptually part of the perceptual system

• Activity ruleset. These are the update rules that determine the activation
of the behavioral patterns. In their condition part, the relevant other
behavioral patterns and emotions are specified. When the behavioral pat-
terns are determined, it should be fairly easy to determine which behavio-
ral patterns influence each other in what way. They are conceptually part
of the behavior system

• Degrees-Of-Freedom ruleset. These are the update rules that set the
degrees of freedom (Steering Angle, Acceleration and Signal) based on rele-
vant instances (Cars, their relative speeds and distances, etc.). They are
called by the action system. Precise formulation of these rules should fol-
low from the determination of the behavioral patterns; only the low level
patterns, that actively drive the vehicle, should have these rules associated
with them. For those behavioral patterns, it should not be too hard to
define these rules. Conceptually, they can be thought of as being part
either of the action or the behavior system. For the sake of the argument,
they are considered to be part of the behavior system

• Gaze Direction ruleset. These are the update rules that set the gaze direc-
tion in the active visual scheme. They examine the relevant instances and
their timestamps, and reset the priorities in the visual scheme. As with the
degrees-of-freedom ruleset, their precise formulation should follow from
the determination of the visual schemes. They are considered to be part of
the perceptual system, although they are called by the action system

• Emotion ruleset. These are the update rules that update the emotions in
the Subject-instance. Although the emotions are a fundamental part of the
model, they have not received much attention yet. Precise formulation of
the emotions and their influence on the behavioral patterns needs still to
be done. Conceptually, these rules are of course part of the emotion sys-
tem

All concepts used by the rules have to be defined in the declarative memory. A com-
plete processing cycle/evaluation sequence in Automan's implementation in FLAC
would go as follows:

1. The Perceptual Filter places a new instance or updates an old instance of
an object perceived in working memory, based on the objects in sight from
the world projection. For example, Automan has just perceived a slower

Part III 67

Automan in FLAC 8

car in front of him, while driving straight ahead. A car instance with,
among others, the corresponding speed property (with value 'slow') will
then be created in working memory

2. The Behavioral Pattern Ruleset is invoked. New instances of behavioral
pattern concepts are created and placed in working memory if neccessary.
In the example, Automan now has a car instance in working memory,
with property slow. In his procedural memory, one of the rules from the
behavioral pattern ruleset will have such an instance as precondition. This
rule will match, and create an Overtake behavioral pattern instance in
working memory

3. The Activation Ruleset is invoked. The activation of all behavioral pat-
tern instances present in working memory is determined, based on other
behavioral pattern instances and emotions. One behavioral pattern
instance will have the highest activation. In the example, probably also a
Cruising behavioral pattern, responsible for Automan's behavior when
cruising along without hindering traffic or intersections, and a

Driving_Straight_Ahead' behavioral patterns instance, responsible for
keeping the car straight on the road, are present, with a fairly high activa-
tion. For the moment, the Driving_Straight_Ahead instance is alright, and
its activity will not be changed much. It will be associated with rules that
brake, if the other car is too close, and while Automan hasn't looked at
other traffic yet, he has to keep driving straight on his lane. However, the
activity of the Cruising instance will be greatly decreased because of the
presence of the Overtake instance. Automan is not cruising any more, but
is preparing to overtake

4. The Visual Scheme Ruleset is invoked. Based on the most active behavio-
ral pattern, a corresponding visual scheme instance is created, if not
already present in working memory. In our example, because there is an
Overtake instance present, a new visual scheme instance,
Check_Lane_Free, is created, and the old on that was present before is
removed

5. The Emotion Ruleset is invoked. The emotion properties of the Subject-
instance in working memory are set. Well, not much emotions come into
play in the example. However, one could imagine Automan's frustration
increasing slightly because he is irritated by the slower car

6. The Degrees-of-Freedom Ruleset is invoked. The values for steering
angle, acceleration and signal are determined based on the most active
behavioral pattern and perceived objects. In the example, there will not be
much change yet; perhaps acceleration will be slightly decreased, depend-
ing on the distance to the other car

7. The Gaze Direction Ruleset is invoked. The new gaze direction is deter-
mined. In the example, because a new visual scheme is present, the direc-

1. It could also be a Navigate_Curve behavioral pattern instance, of course.

68 Part III

8 Automan in FLAC

tion which by default has highest priority will control the gaze direction;
this will result in Automan looking to the other lane

8. The degrees of freedom are sent to the simulator, that determines what
happens

9. The gaze direction is sent to the world projection, that determines the new
objects in sight

This cycle repeats itself. In the example, suppose no other car is on the other lane.
This will be apparent because a property of the road instance in working memory,
traffic_on_other_lane, will be empty. This can be either a result of Automan's gaze
direction shifting, or it might have been perceived a little time before, so its vague-
ness is still small enough. In any case, suppose the car to be overtaken is now nearby,
a new behavioral pattern instance will be created (Start_Overtaking) by the Behav-
ioral Pattern ruleset. Then, the activation of Driving_Straight_Ahead will be sharp-
ly decreased by the activity ruleset. The present visual scheme instance is still the
right one, so no new visual scheme instance will be created by the visual scheme
ruleset. Perhaps Automan's frustration will now be slightly decreased by the emo-
tion ruleset, because he is now able to overtake1. Next, the degrees-of-freedom
ruleset looks at the Start_Overtaking behavior; there will be rules that increase ac-
celeration and change steering angle, so the corresponding properties will be set like-
wise. Then, the gaze direction ruleset will change gaze direction to looking straight
ahead, to keep the car on the other lane and keep looking for traffic. And then, the
cycle repeats.

As remarked, this is just a rough outline of how Automan could be implemented in
FLAC. The precise form of the rules and instances have not been determined yet,
just like the behavioral patterns and visual schemes to be used. Some experiments
would be neccessary to determine how this could be done most effectively. Also, it
would depent on the kind of behavior one would let Automan display, and on the
situations it will encounter. However, the rulesets and processing cycle described in-
corporate all the characteristics of the Automan model. They form probably the
most efficient and effective way to implement Automan in FLAC. Whether this is
correct has to be determined by experiments.

1. Perhaps the sheer joy of the acceleration and anticipation of the overtaking manoeuvre
increases Automan's happiness....

Part III 69

Part IV

Chapter 9
Fuzzy Logic

If the reader is familiar with computer systems like expert shells, one major disad-
vantage could come to mind: these systems are not really capable of human-like rea-
soning. This drawback comes from a fundamental property of the way the rules are
implemented. The rules of systems that should be able to mimic human reasoning
do that by mathematical equations and boolean logic. But this unnatural, because
such systems imply perfect knowledge of the world on which the rules apply. In
most cases (perhaps ever) perfection cannot be reached. Fuzzy Logic offers a great
opportunity to build a new reasoning system which can make use of imperfect
knowledge or vagueness. The how and why will be the subjects of this chapter.

9.1 Crisp Set and Fuzzy Sets

Classical sets as they are known from mathematical theory have crisp boundaries.
This means that there exists no uncertainty on where the set ends. An element be-
longs to the set or not, but there is no inbetween. The following example gives a
crisp definition of the set 'cylinders'.

An object A belongs to the set Cylinders if and only if:

(.i < (A[surface]) <L') A A[surfaceType] = circle
10 (A[height}) 10'

Formula I

Part IV 73

9 Fuzzy Logic

According to this definition the following discrimination can be made:

Figure 17: Objects on the left are no cylinders, the objects on the right are cylinders according to
formula 1 on page 73

Now we would like to build a robot that can pick-up every cylinder in a room. The
first few objects in figure 17 will of course be left alone, but what about the objects
more to the right? The question is: when becomes an object a cylinder? In most prac-
tical applications these crips definitions are too rigid. Fuzzy sets have no crisp
boundaries. These sets are discribed by vague or ambigous properties. In this way an
element has not the value 1 or 0 (1 = belongs to the set; 0 — no member of the set)
but is mapped to a value ranging from 1 to 0. This value is called the membership
value and will be determined by a function.

1

0

Figure 18: Membership function for cylinders

Part IV 74

Cylinder

x -> height / surface

9 Fuzzy Logic

With this function, every object from figure 17 will be reevaluated. This gives the
following set with for each object its membership value.

Figure 19: Objects with their appropriate membership value

At this point it is possible to program the robot with a rule like: pickup any object
that looks very much like a cylinder. 'Very much' will then be defined as any object
with membership value over 0.8. The major avantage for the robot is that it does not
need a perfect visual system. It can make an error in detecting an object but still be
able to classify it as a cylinder.

If a cylinder is flattened it becomes a disc and if it's streched it becomes a bar. But
these distinctions are also fuzzy. Adding membership functions for the two defini-
tions will produce the next figure:

9.2 Ambiguity
In figure 20 on page 75 the membership functions cross at two points. How should
this be read? The red surface defines the area where an object belongs two both sets.
In fuzzy logic, sets that are defined over exactly the same domain need not te be mu-
tual exclusive. In classical logic an object is either a disc or cylinder, in fuzzy logic
this need not to be the case. The orange object from figure 19 on page 75 has a mem-
bership value of 0.2 in the fuzzy set 'Cylinders' and the membership function for

Part IV 75

Disc

1

Cylinder Bar

0
x -> height / surface

Figure 20: Membership functions for discs, cylinders and bars

9 Fuzzy Logic

'Discs' (figure 20 on page 75) will give a value of 0.8. The orange object has the fol-
lowing value: (, Disc 0.8, Cylinder 0.2, Bar 0.0). This type of information is called
ambiguious, because one object can have more than one meaning.

9.3 Vagueness or Fuzziness

Fuzzy logic can be used to build better system, because it is more natural. But some-
times one would like to know how vague the fuzzy set really is. If it is too vague you
might not want to use the set. A car has for example a direction. But if that direction
is too vague one could say 'I can not say which direction it is heading.' The vagueness
or fuzziness of a set can be found by a simple function. This function calculates the
surface of the memberfunction and takes the 2log of that value. The outcome defines
the fuzziness of the set.

9.4 Statistics and Fuzzy Logic

The distiction between fuzzy logic and statistics is not always clear to some. Even
books on Artificial Intelligence get it wrong[33]. Some properties of fuzzy logic may
give this false impression:

• Both systems handle uncertain information
• The shape of the membership function usually looks like a statistical distri-

bution
• Like chance, a membership function is defined on the interval [0.. 1]

Figure 21 shows the information world. This information can be split into two dif-

Information World

Figure 21: Information world[35J

ferent types: certain and uncertain. Most of the uncertain information is not ran-

Part IV 76

Fuzzy, Imprecise,
vague

9 Fuzzy Logic

dom, but vague. The next example should make clear what the major difference
between these two is.

An experiment goes as follows: a person stands in front of you with in one hand the orange disc () with membership
value 0.8. Now you are asked to guess in which hand he is holding the disc. So now we have:
- chance: 0.5 of chosing correctly, but the disc has fuzzy value 0.8
You've guessed and the otherone opens his hand. The uncertainty disappears: you know for a fact if this hand holds the
disc (I) or not (0). But still the disc has a fuzzy value of 0.8, it does not become 'more a disc' now you can look at it or
it does not become 'less a disc' if you can't look at it.

Figure 22: An example that shows the difference between fuzzy and statistics

9.5 Natural Language
Speed is a common property associated with objects that move. But when humans
reason with the speed of some car for instance, we don't say 'Wow, that car is driv-
ing 20 1,2 kph' but we usually say: 'Wow, that car is driving really fast'. It is obvious
that this distinctions is fuzzy: when is a car driving at normal speed and when is it
driving fast? Figure 23 shows a possible membership function for Speed.

Speed
1 Stop Slow Normal Fast

oyx
10 50 100

x -> kph

Figure 23: Membership function for speed

When it is possible to assign a distinctive name to such a set of fuzzy sets this name
is called a linguistic variable. Because fuzzy rules are almost ever defined by the rea-
soning proces of a person (usually an expert in some field) it is always possible to
assign such a name,

With the use of linguisic variables it is now possible to build a system that can reason
more in a way humans do. For example:

IF (Speed = high) & (Distance — close) THEN Brake: hard

It can be seen from this example that the outcome of a rule with linguistic variables
can give an answer in the form of a linguistic variable.

Part IV 77

9 Fuzzy Logic

9.6 Conclusion

Fuzzy logic gives developers the tool to modulate human-like reasoning with much
ease. It makes it possible to write down rules in the way humans use them and not
in some strict mathematical sentence.

This chapter is just an introduction in fuzzy logic. For more information on how to
use it see for example (Ross, [35. It covers the basics of fuzzy logic with some engi-
neering applications as examples of how it can be just in practise.

Part IV 78

Chapter 10
Bibliography

[1] J. Aasman. Modelling Driver Behavior in Soar. Phd Thesis, Univerity of
Groningen, 1995.

[2] J.R. Anderson. Learning and Memoiy. John Wiley & Sons, Inc. 1995.
ISBN: 0-471-11596-7

[3] J.R. Anderson, C. Lebiere, The Atomic Components of Thought. LEA
publishers, ISBN: 0-8058-2817-6

[4] P.1 Bakker, S. Burry, W.B. Verwey, M.). Kuiken, W van Winsum,
P.C.van Wolffelaar, E. Webster. GIDS implementations: the interactive
traffic and driving simulator and the ICA CAD. University of Groningen.
May 1992.

[5] C. Berthelon, D. Mestre, P. Peruch. Perception of a moving Vehicle
when approachin an Intersection. In: [15].

[6] B.M. Blumberg, l.A. Galyean. Multi-Level Direction of Autonomous
Creatures for Real-Time Virtual Environment. MIT Media Lab:
www.media.mit.edu

[7] V. Bra itenberg. Vehicles, experiments in synthetic psychology. MIT
Press, Cambridge, MA, 1984.

[8] R.A. Brooks. A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, RA-2 (1), 1986.

[9] R.A.Brooks. How to built Complete Creatures rather then Isolated
Cognitive Simulations. In: [44].

[10] V. Cavallo, D. Mestre, C. Berthelon. Time-to-collision judgements: Vis-
ual and spatio-temporal factors. In: [31].

[11] A.S. Cohen, R. Hirsig. The role of foveal vision in the process of infor-
mation input. In: [16].

[12] D.C.Dennet. Cognitive Wheels: The frame problem of Al. In: Z.W.
Pylyshyn, The Robot's Dilemma: The frame problem in Artificial Intelli-
gence. Norwood, NJ: Ablex publishing corporation, 1987.

[13] P. van Elsiande, L. Faucher-Alverton. When Expectancies become Cer-
tainties: A potential Adverse Effect of Experience. In: [15].

[14] D.J. McFarland. Animals as cost based robots. In: M.A. Boden, The
philosophy of artificial life, behaviors Oxford University Press 1996.

[15] A.G. Gale, Vision in Vehicles III. Elsevier Science, Amsterdam, The
Netherlands, 1991.

[16] A.G; Gale. Vision in Vehicles V. Elsevier Science, Amterdam, The Neth-
erlands, 1996.

[17] LA. Groeger, V. Cavallo. Judgements of Time-to-Collision and Time-to-
Coincidence. In: [15].

[18] 5. Haykin. Neural Networks, A Comprehensive Foundation. Prentice
Hall. 1994. ISBN: 0-13-895863-7

[19] J.H.Holland. Adaptation in Natural and Artificial Systems. MIT Press,
Cambridge, MA, 1992.

Part IV 79

10 Bibliography

[20] R. van der Horst. Time-to-collision as a Cue for Decision-making in
Braking. In: (15].

[21] T. Jurgensohn, M. Neculau, H.P. Willumeit. visual Scanning Pattern in
Curve Negotiation. In: [15].

[22] C.W.F van Knippenberg, J.A. Rothengatter, J.A. Michon. Handboek
Sociale Verkeerskunde. Van Gorcum & Comp. by. 1989. ISBN: 90-
232-2269-5

[23]). Kim. Philosophy of Mind. Westview Press, Inc. 1996. ISBN: 0-8133-
0775-9

[24] B. Kosko. Neural Networks and Fuzzy Systems. A Dynamical Approach
to Machine Intelligence. Prentice Hall, Englewood Cliffs, NJ, 1992.

[25] S.M. Kosslyn, O.Koenig. Wet Mind. The New Cognitive Neuroscience.
The Free Press, New York, 1992.

[26] M.Land, 3. Horwood. The Relations between Head and Eye Movement
during driving. In: (16].

[27] K. Landwehr. Optical guidance revisited. In: (15].
[28] M.W. Matlin. Cognition. Harcourt Brace Publishers. 1983. ISBN: 0-15-

500571-5
[29] A.J. McKnight, B.B. Adams. Driver education task analysis. Volume I:

Task Descriptions. Final Report, Human Resources Research Organiza-
tion

[30] R.F. Port (Editor), T. van Gelder (Editor). Mind as motion, Explorations
in the Dynamics of Cognition. MIT Press. 1995. ISBN: 0-262-16150-8

[31] T. Rothengatter, E.C. Vaya (ed.). Traffic & Transport Psychology. Else-
vier Science Ltd., 1997.

[32] A.H. Reinhardt-rutland. Relative Visual Movement Perception applied
to vehicle guidance. In: (15].

[33] E. Rich, K. Knight. Artificial Intelligence. McGraw-Hill, Inc. 1983.
ISBN: 0-07-100894-2

[34] J.B.J. Riemersma. Perception of Curve Characteristics. In: [15].
[35] T.). Ross. Fuzzy Logic With Engineering Applications. McGraw-Hill, Inc.

1995. ISBN: 0-07-053917-0
[36] J.A. Santos. Detection times of a leading's vehicle motion: Effects of

driving speed and road layout. In: [31].
[37] D. Stewart. Driver Perceptual errors and child pedestrian accidents.

In: [15].
[38] Stillings et. al. Cognitive Science, An Introduction. MIT Press. 1987.

ISBN: 0-262-19257-8
[39] A.Steinhage, T. Bergener. Dynamical Systems for the behavior organi-

sation of an Anthropomorphic Mobile Robot. In Proceedings of the
IEEE International Symposium on Industrial Electronics IEEE 1997,
pages 117 - 112. IEEE publications, 1997.

[40] D.L.. Stewart, 3. Rowland Lishman, C.J. Cudworth. An Alternative
source of Time-to-Collision. In: [16].

[41] N.A. Taatgen. Architecturen voor Cognitie. 1995.
[42] 3. Theeuwes. Visual Selection: exogenous and endogenous control. In:

[15].
[43] J.Theeuwes. Visual Search at intersections: an eye movement analy-

sis. In: [16]
[44] P.C. VanLehn, K. (Ed.) Architectures for intelligence: The twenty-sec-

ond Carnegie Mellon Symposium on Cognition. Hillsdale, N): Lawrence
Erlbaum (1991).

Part IV 80

10 Bibliography

[45] 3.). De Velde Harsenhorst, P.F. Lourens. Classification of driving errors
and analysis of driving performance parameters. Tech. Rep. VK 87-17,
Haren, The Netherlands: University of Groningen, Traffic Research
Center, 1987

[46] 3.3. De Velde Harsenhorst, P.F. Lourens. Classification of driving errors
and analysis of driving performance parameters. Tech. Rep. VK 87-17,
Haren, The Netherlands: University of Groningen, Traffic Research
Center, 1987

[47] 3.3. de Velde Harsenhorst, P.r. Lourens. Aspects of Driving behavior in
Learner and Inexperienced Drivers. In: A.G. Gale (ed.): Vision in Vehi-
cles III, Elsevier Publishing corporation, North Holland, 1991.

[48] Wolffelaar, W. van Winsum. Driving simulation and traffic scenario
control in the TRC driving simulator. Paper IC1TP 1996: Symposium on
the Design and Validation of Driving Simulators. Valencia may 1996.

Part IV 81

Index
A
accident rate 38
ACT* 50
action system 29, 30, 32, 49, 64, 65, 67
activation 12, 29, 31, 50, 61,64, 65,68

level 11
ACT-R 50,55
agent 10,11,12,15,17

artificial 34
autonomous 9
believable 34
intelligent 34

aggression 34
ambiguity 74, 75
architecture 12
artificial 10

intelligence 10, 50, 52, 53
life 10, 12

associative memory 41
attention 34, 37, 38, 45
attention process 41
attention window 41, 43
attentional process 39
automal 10
Automan 10, 12, 18, 24, 25, 27, 29, 30, 32, 33,

34, 38, 49, 52, 55, 63, 65
automated

animal 10
human 10

autonomous
agent 10, 13, 15, 17
robotics 10

autonomous agent 10

B
behavior 10, 11, 17, 18, 23, 24, 25,31,32,33

based 10,11
conflict 31
selection 31

behavior system 31, 32, 34,49, 64, 67

behavioral
traffic research 15

behavioral level 39
behavioral pattern 11, 29, 31, 33, 40, 53, 59,

64, 66, 68
boolean logic 73

C
central controller 10
chunk 50, 52
chunking 52
classical logic 75
cognition 9, 10
cognitive

architecture 9, 13, 49, 52, 56
driver model 9
function 49
model 9, 13, 33, 63
phenomena 50
plausible 9, 37
process 10, 49, 52
psychology 9
system 37

compiler 57
concept 55, 57, 67
concept definition 33, 56, 62, 63
condition 58, 64
crisp boundary 73

D
decision 24, 25
decision mechanism 10, 52
decision system 32
decision-rule 64
declarative

memory 50
declarative memory 33, 50, 54, 58, 60, 67
driver experience 12
driver model 26
driver-characteristic 18

driving process 9
dynamical system 11

E
emotion 31, 34, 35, 59, 61, 65, 67, 68
emotion system 49, 65, 67
EPIC 52
evaluation 12, 59
evaluation process 33, 34
expectation 31, 44
expert shell 73

F
FLAC 52, 53, 55, 63, 64, 66
flexibility 24
focus of attention 50
focus of expansion 42
foveal

field of view 26, 38, 39, 42
object 26

frame 50, 52, 60
frame problem 61
frame-structure 33
framework 50
fuzziness 76
fuzzy logic 10,12,13,18,35,39,53,73
fuzzy property 26

G
gaze direction 28, 29,31,37,42,44,65,67,69

shifting 29, 69
General Problem Solver 51
genetic algorithm 10
goal-directed 31
GPS 51

H
hierarchical

network 31
structure 31

I
impasseS!
imperfection 12
inference process 51
information world 76
inhibit 11
instance 53, 54, 56, 57, 59, 60, 63, 65, 67
intelligence

artificial 76
interaction 24
internal state 31,61
is-a 57, 64

K
knowledge 9

L
learning 52
learning algorithm 52
learning mechanism 33, 51, 56
linear 28
linguistic variable 12, 54, 56, 77
logical road network 15, 16
long term memory 33, 49, 52, 56
looking strategies 42

M
matching 50
matching process 51, 52
membership function 35, 75, 77
membership value 74, 75
mental activity 9
module 10
motion 38
motivation 31
motor control 9, 10
motor process 10
motor-cortex 32

N
natural language 77
neural network 10

0
object-based 31
occiudedness 27
occlusion 41
optic flow 38

P
parameter 13
pattern recognition 37, 39
perception 9, 10, 12, 26, 27, 37, 38, 41, 63

visual 37
perceptual

condition 26, 27,40
filter 27, 29, 30, 39, 40, 43, 53, 67
function 41
information 37
input 63
maximum - time 41

mechanism 39
minimum - time 27,41
process 10, 33, 39, 53, 56, 58
system 63, 67

peripheral
field of view 26, 30, 38, 39
object 26, 45

personality 34
planning 24
precondition 51
problem space 51
procedural memory 33, 34, 54, 60, 64, 68
processing cycl 69
production memory 50
production rule 50, 51
psychology 32

R
reasoning 12, 73, 78
reasoning mechanism 33
reasoning system 33, 73
recognition memory 52
reinforce 11
reliability function 26, 27, 28, 40
representation 10, 11, 26, 37, 44,49, 61
request 58
retina 41
retrieval system 33
rule 11, 12, 18, 29, 33, 57

creation 54, 58, 59, 64, 65
update 54, 58, 60, 65

rulebase 12, 49
ruleset 61

S
scenario 15, 17, 18
selection 19
semantic network 33
sensorial

data 10
information 10, 11
inputs 11

set
classical 73
crisp 73
fuzzy 73, 74, 75, 77

Silas 10,11
simulator 9, 13, 15, 17, 26, 32, 63
situational awareness 44
skill 33
slot 50
SOAR 51
statistics 76
storage system 33
Sub ject-concep 65
Subject-instance 67, 68
subsystem 25, 49
success 32
success-rate 32

T
task 25, 33
task level 23, 54

control 23, 31, 54
strategic 54
strategical 23, 31
tactical 23, 24, 31, 54

timestamp 27, 29, 56, 57, 60, 67
time-to-contact estimation 39
traffic participant 15
training 19
tunnel vision 45

U
uncertain information 76

Unified theory of Cognition 50
update process 34
update-cycle 34
updating 27
updating process 43

V
vagueness 26, 28, 40, 43, 49, 53, 56, 69, 73, 76

intrinsic 27, 40, 41
maximum 27
minimally obtainable 28

virtual world 12
vision 63
visual buffer 41, 43

visual information 37
visual memory 41
visual process 34
visual scheme 29, 37, 43, 53, 59, 63, 65, 67, 68,

69
visual system 75
visual-motor-process 33

w
working memory 27,28,29,31,33,39,45,49,

50, 52, 53, 55, 63, 64, 65, 67, 68, 69
world projection 26, 28, 38, 39, 63, 67

