
IDIAP
Mortigny - Voids - Suisse

U

z
MINIMAL HIGH ORDER

PERCEPTRON CONSTRUCTION

Robbert Visscher

0
0

1(ARCH 1997

Coçiitive Science and Enineering, (Jruvereity of Groninen

955
1997

006

0



1,3

Foreword
This report contains an outline and papers concerning the research conducted at IDIAP, from May 1996 to
February 1997, for the finalization of my studies of Cognitive Science and Engineering, at the University of
Groningen. With this last work my studies have come to an end. During this time I have learned a great
deal, not only through my studies, but also through my extra-curriculary activities. Therefore, I would like
to thank several people who have helped me make my studies and my stay in Switzerland into a success.

My parents and André for supporting me, not only during my stay in Switzerland, but also, and most
importantly, during my studies in Groningen. Without their moral and, of course, financial support it would
have been impossible to round off my studies succesfully.

Furthermore, Emile Fiesler, from IDIAP, for having confidence in me, and giving me freedom in conducting
the research and Tjeerd Andringa for giving me helpful feedback from the Netherlands. Hans, Perry, Georg,
the rest of the people at IDIAP, and Christian for giving me a swell time in Switzerland.

Last but not least my friends in Groningen without whom studying in Groningen would not have been as
much fun. Of these friends I would like to name two; Reinder for introducing me to the studies of Cognitive
Science and Arieke for proof-reading my final report.

Groningen, 31 March 1997.

Robbert Martijn Visscher.



Abstract

High Order Perceptrons offer an elegant solution to the problem of finding the amount of hidden layers

in multilayer perceptrons. High order perceptrons only have an input and an output layer, whose size is

completely defined by the problem to be solved.
The major drawback of high order perceptrons is the exponential number of possible connections, which

can even become infinite. The aim of this work is to find ways of restricting the amount of connections by
verifying a restriction method on the order of the network and to identify a heuristic which can be used in an
ontogenic method for the dynamical construction of the connectivity of the high order perceptron. Besides
these two issues an answer is also found to whether rerandomization of the parameters is beneficial for the

construction.

Keywords: ontogenic(l networks, pruning, generalization, high order perceptrons, partially connected
networks, backpropagation neural networks, feature selection.



Contents
1 Introduction 2

2 High Order Perceptrons 3

2.1 Computational Burden 3

2.2 Learning 4

2.3 Topology

3 Defining a Good Topology 6

3.1 Minimal Topologies 6

3.2 Generalization Ability 7

3.3 Criterion defenition 7

4 Ontogenic Methods 8

4.1 Pruning Methods 8

1.2 Pruning in High Order Perceptrons 9

4.3 Growing Methods 9

5 Ontogeiiic Methods for Growing High Order Perceptrons 10

5.1 Feature Selection in Higher Order Perceptrons 10

5.2 Feature selection and growing Higher order perceptrons . . . 11

6 Papers 15

6.1 Superceptron Construction Methods 16

6.2 Order Restriction in High Order Perceptrons 16

6.3 Heuristics for the Ontogenic Construction of High Order Perceptrons 16

1



1 Introduction
This research on constructing minimal high order neural networks, was done as part of the curriculum for
Cognitive Science and Engineering (TCW) at the University of Groningen in The Netherlands.

One of the topics in cognitive science and engineering is connectionist systems, and neural networks are an
example of that. An important part of the curriculum involves the actual implementation of systems. This
research into minimal networks enhances the practicle usage of neural networks in general.

The research was performed at the Dalle Molle Institute for Perceptive Artificial Intelligence (IDIAP) in
Martigny, Switzerland. IDIAP researches are of both theoretical and applied nature in the domain of artificial
intelligence and more specifically the study of perception, cognition and pattern recognition. The three main
research groups are neural networks, speech recognition and computer vision. This research was done for the
neural network research group.

A major research goal of the neural networks group at IDIAP is the development of compact and user-
friendly neural networks. Large scale acceptance of neural networks has been hampered by the fact that they
are user-unfriendly. A large amount of expertise and training overhead is required for the selection of the
topology and the training parameters.

To alleviate this problem a promising new alternative to multilayer perceptrons is introduced, the high
order perceptrons. These networks are characterized by the fact that they only have an input and an output
layer whose sizes are completely defined by the problem and hence no choice about the number of hidden
layers and units per layer has to be made. The absence of hidden layers make these networks more efficient
and, in combination with complexity reducing strategies, enhance their compactness. These strategies are
based on partial connectivity, meaning that not all possible connections are used, and training methods that
automatically modify the network during the training process, so-called ontogenic methods. These methods
enhance the user-friendliness by reducing the amount of parameters (e.g. weights) by exploiting the network's
capability to learn and self-organize.

Although high order perceptrons have a potentially unlimited amount of connections, several studies show
that it is not needed to use all possible connections as partially connected networks perform very well [Lee-86].
In fact, a network can be found that is just big enough to map the data. In [Fiesler-93] these networks are
called minimal neiworks.

Several complexity reducing strategies have been investigated at IDIAP. These methods can be roughly
divided into initialization methods and ontogenic methods. The first are methods by which a final network
is directly constructed from the data. Ontogenic methods also make use of information in the data, but the
network is automatically modified during the training process, and only after the training process construction
is finished.

Ontogenic methods generally fall into three categories: growing methods which add connections to a small
network, pruning methods which remove connections from a large network, and a combination of growing and
pruning. This research will concentrate on the combination of growing and pruning as a complexity reduction
strategy.

First of all, some background will be given into the basic theories that underlie this research. High order
per ceptrons, and the reasons why they are more efficient and user-friendly than multilayer perceptrons, will
l)e considered first. These networks have a drawback, however, and that is their potentially enormous amount
of connections. As was mentioned above not all of these connections are needed and some background will be
given on minimal neural networks. Besides minimality, another important issue is generalization, which will
also be considered in relation to higher order perceptrons. Finally, ontogenic methods as a network reduction
strategy will be considered.

In the following papers the specific research items will be introduced and discussed together with the
results. In the first paper three simple heuristics for the construction of high order perceptrons will be
introduced, together with the rerandomization of weights as a strategy for avoiding local minima. In the
second paper a restriction on the order of the network will be compared to not restricting the order. By
restricting the order a restriction on the possible infinite amount of connections can be obtained. In the third
paper three further heuristics for the construction of high order perceptrons will be investigated.

2



2 High Order Perceptrons
High order perceptrons are a relatively new kind of neural networks that have advantages over multilayer
perceptrons. An important problem for multilayer perceptrons is the fact that they require a lot of knowledge
of the problem to be solved and knowledge of neural networks in general. One of the biggest problems is
finding the number of hidden layers, and number of neurons per hidden layer. Problems like these can be
overcome using so called high order perceptrons instead of multilayer perceptrons. The solutions lie in the
fact that these high order perceptrons do not make use of hidden layers which means that the topology is
completely defined by the problem. Having no hidden units also means that a simpler training algorithm can
be used, which is more efficient than training the multi-layer network [Giles-87]. Furthermore, according to
[Lee-86] the number of computational cycles is much lower than for networks using back-propagation. See
figure 1 for the relation between a multilayer perceptron and it's higher order counterpart.

As can be seen in the figure, the multilayer perceptron (right) connects exactly one source or input neuron
to one sink or output neuron. These are all first order connections in a fully interconnected three layer
perceptrom. In the left of the two networks the hidden layer is discarded and higher order connections are
introduced, that combine inputs using a so called splicing function. In the most simpel case this splicing
function is a multiplication. [Rumelhart-86 calls these high order perceptrons Sigma-Pi neural networks
and networks using more complicated splicing functions are introduced by [Pao-89] and called functional link

networks.
The figure above of a high order perceptron can also be written in a formula for an output, y, as follows:

= + > wixi + IIJIXIXJXk + ...) (1)

This equation resembles a Taylor series expansion, and is known in signal processing as a Voile rra filter.

In equation 1, is the activation or transfer function, y is the i-th output, W the weight assigned to a
connection, and x is the i-tli input. The first two terms of this equation are the same as for a standard
perceptron, the bias W0 and the first order connections > The next terms are the second, third, and
higher order connections. The order of a connection is determined by the amount of inputs combined by that
connection and the order of a network, , is determined by the connection of the highest order.

2.1 Computational Burden
A high order perceptron can be used for equivalent problems as mnultilayer perceptrons and from formula 1
it can easily be seen that the computational burden of a higher order perceptron is smaller than that for the
multi-layer perceptron. In the case of the first only the output neurons have an activation function (.). In
the case of the multilayer perceptron the hidden units also have an activation function (.). The output for
a three layer perceptron can be written as follows:

3

Figure 1: The relationship between high order perceptrons (right) and multilayer perceptrons (left)



= ;( (lVo + IVix,) (2)

k j

Whereas the output for a second order perceptron can be written as:

= 'p(Wo + Wix + > 11 2r,xk) (3)

j j,k

In the multilayer perceptron the activation function ç() comes in twice compared to once in the higher
order case. In the higher order case there is only a multiplication because of the choice of the splicing function

used for the second order connections.

2.2 Learning
Besides the calculation of the output, the learning-rule for high order perceptrons is also simpler than for

niultilayer perceptrons. In two layered standard perceptrons the della-rule is used as a learning-rule. The
weight changes are determined using an errorsignal e(n), which is the difference between the desired output

d(n) and actual output y(n). The learning algorithm changes the free parameters the weights, to minimize

the error signal.
Multilayer perceptrons have hidden units, which means that not all weights are connected to the output.

For connections to the output layer the new weights can easily be determined because the difference between

desired and actual output is readily available. For weights connected to hidden layers however, that is not
the case and for these weights an error function has to be calculated based on the error function determined
for the connections to the output layer. This means that the error has to be fed backwards through the
network to determine the changes for every layer of connections. For this reason the learning rule is called,
back-propagation' [Rumelhart-86J. This learning rule is computationally more demanding than the delta rule

and can easily get stuck in local minima.
As for standard perceptrons, higher order perceptrons do not have hidden layers. As a learning rule

an augmented form of the standard delta-rule can be used as shown below. The delta-rule uses a linear
activation function which in the back-propagation learning-rule, also known as the generali:ed Della-ride,
may be changed to a non-linear one. This can be introduced in the equations below, but for simplicity a

linear activation function is assumed. For a standard perceptron with one output neuron the learning rule

takes the form [Haykin-94]:

+ 1) = w,(I,k)(n) + ij[d(n) — y(n)]x1(n) (4)

= i-th input from (p+ 1)-by-i input vector
= [—1,xi(n),x2(n), . .

.

= weight connecting input x to output ii

y(n) = actual output
d(n) = desired output

= learning-rate parameter

The updated weight Wj(jk) after presentation of the input pattern (n + 1) is the weight W1(jk) after

presentatioii of pattern a plus the error signal [d(n) — y(n)] multiplied by the input associated with the
weight. This term is then multiplied by a constant i known as the learning-rate. Because there are no hidden

Several terms are used in the literature to denote this learning algorithm, such as error back-propagation algorithm or just
back-prop. This algorithm is also known as the Generalized Delta rule

4



layers the weight update can be calulated at once. The connection associated with the weight updated above
is a first order connection, the connection is from one input to one output. The update rule for a second order
connection can easily be derived from the update rule for a first order connection and takes the following
form:

W;(jjk)(li + 1) = W2(jJ,k)(fl) + q[d(n) — y(fl)]Xi(fl)Xj(fl) (5)

In equation 5 the input zj has been replaced by two input variables x and .r3, hence the notation W,(jjk)
where i, j and k denote the two input variables connected to the output variable respectively. The remaining
part. of the equation is unaltered. As for the weight update for a first order connection the weight update for
a second order connection can also be calculated instantaniously because from the output neuron the high
order connection is simply another input for which a weight has to be found so as to minimize the error.

2.3 Topology
In high order perceptrons the connections are the solution to the problem estimating the optimal number of
hidden layers but the introduction of high order connections means that a large amount of connections are
possible. Especially when all connections up to a certain order are present, a so called fully connected network.
For a fully connected neural network of order � the amount of connections IL' is given by [Fiesler-92.3]

(6)

The relation between number of weights TV and the number of neurons in the input layer N1 is exponential
and can go to infinity for ever higher ft However, in this work a restriction on the order is investigated by
not allowing all possible combinations of inputs. An upper bound for the order 11 = N1 is found if inputs are
only allowed to combine with other inputs to form a high order connection.

Although these connections form a drawback for the use of high order perceptrons over multilayer percep-
trons, in the next section the notion of partially connected networks and minimal topologies will be introduced.

5



3 Defining a Good Topology
Before going on to methods for limiting the amount of connections, an idea of what a good topology is will have
to be introduced for later comparison of the different methods. Topologies of artificial neural networks consist
of a framework of neurons and their interconnection structure. In high order perceptrons the framework of
neurons is detemined by the problem, but the connectivity has still to be determined.

In defining a good topology, several issues play a key role. The network has to be easily implementable,
in the sense that the network topology has to be as simple as possible. This simplicity will also help to
understand the working of the network. As was seen in the previous section, high order perceptrons were
already simpler than multilayer perceptrons, except for their connectivity. For a high order perceptron to be

as simple as possible, a low connectivity is desired. But besides this issue the network also has to have a good
performance.

The two issues are thus:

• The minimal topology.

• The performance of the network.

3.1 Minimal Topologies
In inultilayer perceptrons a fully connected network is often taken because it supposedly has a greater ro-
bustness due to multiplication of information. For high order perceptrons, as was indicated above, this means
a great computational load. However, research aimed at finding partially2 connected architectures has been
done. [Caiining-88, [Gardner-89] and [Walker-901 wrote some theoretical papers on partially interconnected
networks. Most work done on this topic however concerns multilayered networks and not high order networks.
But also for high order perceptrons this fully connected network is not always the best network for the problem
[Fiesler-92]. Several reasons are:

• All connections are often an overkill, resulting in an extra computational burden.

• Smaller networks tend to generalize better. Bigger networks can over-fit the data (see following para-
graph).

• Smaller networks are more easily hardware implemented.

The optimum topology for a network is, according to [Fiesler-93], the smallest topology that solves the
problem. In fact, there is a minimal topology defined by Fiesler as being the network that solves the problem
adequately with a minimal computational complexity. Adequately is in this sense somewhat underspecified
1w the paper, but can be thought of as meeting a given performance criterion such as the generalization (see
following section). This definition of minimality is of course only suitable for theoretical problems where the
whole problem domain is known. For real world problems, where the total domain is unknown, this minimality
principle generalizes to a smallest topology search.

For very simple theoretical problems an exhaustive search can be done to find the minimal topology.
This is what is done for the XOR-problem [Rumelhart-86] and minimal topologies are found for multilayer
perceptrons and higher order perceptrons. The minimal networks for higher order perceptrons are shown to
have less neurons and connections for these specific problems than for multilayer perceptrons.

Minimal networks and partially connected networks are not the same, but through partial connectedness
a minimal topology can be acquired. There are several ways of finding partially connected networks and some
of these methods will be discussed in the next section of this report.

2Several different terms are used to denote partially connected neural networks. Sparsely connected, sparse or diluted to name
some. In this paper the more objective term partially connected will be used.

6



3.2 Generalization Ability
\Vhen training a network, the error on the training set always decreases due to the learning rule. This means
that for the given set of data, the network will try to find an ever better solution. If the network is trained
on all possible instances, it would find the best possible solution. But, this is not the case for real world
problems. The data on which the network is trained, is only a selection of what occurs in the real world.
\Vhat might be the optimal solution for the given set of data, might not be the optimal solution for another
set of possible data points. Vhat is needed, is a network that performs well on the training set and performs
well on another independent data set, the so-called test set. The performance on this independent data set
is called the generalization ability of the network, or for short generalization because it gives an indication of
the network performance on new data.

In some cases the test set is used in the training of the network, a third set of data is then used to verify
the obtained network, the so called validation set. In the training of high order perceptrons the test set is not
used and hence two data sets are sufficient.

In research on multilayer perceptrons there have been a number of investigations into generalization and
the relation between the generalization ability and the training error. There seems to be a simple relation
between the training error and the generalization, the training error keeps going down, but at some point
the generalization reaches a minimum after which the generalization ability deteriorates. This effect is called
overt raining, the network has learned the relations in the training set too well, it has learned relations that
are present in the training set which are not present in the test set. See figure 2 for the relation.

Error

MSE

I I

Figure 2: The training-error curve in comparison to the generalization ability.

For higher order perceptrons this relation is not as simple as for multilayer perceptrons. There has not
been extensive research into this subject, but evidence shows that the generalization ability will not deteriorate
when the training error curve is nearly flat.

3.3 Criterion defenition
In defining an optimal topology the above defined criteria have to be taken into account. In the first place there
is the networks size, which should be as small as possible and still be able to solve the problem adequately.
Solving the problem adequately can than be defined as having a good generalization ability.

In the following section methods for the construction of partially connected networks will be introduced.

7

Training error

time T



4 Ontogenic Methods
One way of finding a minimal topology for a higher order network is letting networks find their own topol-

ogy. These methods are often called ontogenic methods and networks constructed on this basis called on-
togenic neural networks. The term superceptron is also used to describe ontogeilic higher order perceptrons
[Vissclier_96 1].

The term ontogenic is derived from the english word "Ontogenesis" which means the origin and develop-
ment of an individual. This ontogenesis can also be seen in the biological nervous system. The topology of
biological nervous systems is not hard wired but changes with time, connections are made and deleted. This
can also be done for high order perceptrons and hence methods that do just this are called ontogenic methods.

These ontogenic neural networks can be divided into three categories depending on were you start the
process. In one case the network starts from a small network to become as big as necessery by adding
components to a network, such methods are called constructive or growing methods. On the other hand, a
fully connected network can l)e taken and connections or units can he deleted from the network, these methods

are called destructive or pruning methods.
These methods can also be combined into algorithms that first add components to a small network. After

the training is complete and the network has satisfied an error criterion the network then starts pruning the
superfluous connections as long as this error criterion remains satisfied.

First of all some pruning methods will be discussed. Several references vill be given for these methods
and how they can be applied to high order perceptrons. Subsequently construction methods will be taken
into account and how they can be used in higher order percept rons.

4.1 Pruning Methods
Pruning methods are generally used to upgrade network performance by deleting components from a network.
Deleting connections and thus making the network smaller is seen as a way to overcome overfitting of the
data and enhancing the generalization of the network. In multilayer neural networks these components can
be units as well as connections. In high order perceptrons only connections can be deleted from the network.

The difficulty for pruning methods is to decide when the pruning should start, how far the pruning should
go and how many and which components have to be pruned from the network. There are quite a few met liods
for pruning neural networks, ranging from the very simple methods, to the difficult methods that use complex
ways of deciding when to start pruning and which components to prune. In [Fiesler-97J and {Fiesler-94.2 a
comparison is given of several methods of which an overview will be given here.

[Thodberg-90J starts with a fully connected network and proposes to randomly delete a connection and
retrain the network, if the error is not significantly increased the pruning is made permanent. If the error
does increase the old network is restored. This is done for all connections in the network. Seeing that that
there might be a lot of connections in the network this scheme is very slow.

Another simple pruning method that is less time consuming, is a method that assumes that the importance
is proportional to the weight of the connection. Weights that are smallest (close to zero) are pruned, and to
reduce the induced error the average contribution of the removed connection is added to the corresponding

bias.
[Sietsma-91] proposes a pruning method that removes units with small contribution variance on the training

set. The contribution of a connection is the value available to the connection from the lower layer, multiplied
by its weight.

[Karnin-90] proposes a method that estimates the sensitivity of a network to the removal of a weight by
monitoring the sum of all weight changes during training. [Mozer-89] uses a pruning method that estimates
the error induced by the removal of a connection based on a manipulation of the function that is to be
minimized by backpropagation, the objectzve function.

Several other methods are Optimal Brain Damage (OBD) [LeCun-90], Optimal Brain Surgeon (OBS)
[Hassibi-931, autoprune, a pruning method introduced by [Finnoff-93], and Lprune by [Prechelt-95].

8



4.2 Pruning in High Order Perceptrons
[Tliimm-95J has compared several pruning methods to see how well they perform for higher order perceptrons.
Both computational burden is taken into account and final found network sizes are taken into account.
Furthermore, an idea of the dependancy of the generalization on the pruning proces is given.

Five pruning methods with low computational complexity were chosen. The smallest weight pruning
method, the smallest contribution variance method proposed by [Sietsrna-91], the method proposed by
[Karnin-9O], the method proposed by [Mozer-89) and finally autoprune proposed by [Finnoff-93].

Thimm concludes that the simple pruning methods (the smallest weight method and the smallest contribu-
tion variance method) perform best on networksize for high order perceptrons. These simple methods find the
smallest networks. The generally excepted wisdom that pruning has a positive influence on the generalization
capability of neural networks was not found by Thimm for higher order perceptrons. During the pruning
phase the generalization performance does not increase steadily, but shows an erratic behaviour. There was
also no significant difference in generalization for the different pruning methods. Thimm then concludes that
if a good performance on generalization is required, a network with an non-optimal size is to be considered
and several different pruning methods will have to be tried.

4.3 Growing Methods
Growing methods are seen as a method of avoiding local minima. The addition of extra units creates a higher
dimensional error surface which might eliminate the local minima in a lower dimensional one [Fiesler-94.2].
In multilayer perceptrons these units can be hidden layers, neurons and/or connections but in higher order
perceptrons only connections can be added.

There have also been a number of investigations into growing methods for neural networks and some of
more well known ones will be discussed here. For an overview and comparison of these and other methods
see [Fiesler-94.2], [Fiesler-9i] and [Smieja-91]. In these papers methods are divided into two categories, the
perceptron based methods and the tree-based methods. A well known growing method will be given as an
example.

Dynamic Node Creation (DNC) is introduced by [Ash-89]. In this method a three layered network is
constructed by adding a neuron to the hidden layer. This node is added every time the error curve has
flattened at some error that is unacceptibly high. The newly added connection is then connected to all input
and output units. The moment to stop growing is specified by two parameters set by the user and are the
maximum and worse case error. According to Ash, the DNC method needs more training iterations than
simply using a fully connected network, but DNC naively starts with one hidden unit while more are probably
necessar. Ash also notes that DNC always converges where standard back-propagation training does not.

Other well known methods are the Tiling algorithm by [Mezard-89], a method by [Nadal-89J and the
Upstart Algorithm by [Frean-90].

These different methods all have one thing in common. They all grow by adding hidden layers or neurons
to hidden layers. Although it is done in totally different ways, these methods can not be used for high order
perceptrons, because they do not have hidden units. In the case of high order perceptrons only connections
can be added to the network.

In the next section methods for growing high order perceptrons are described which make use of the fact
that adding connections means that more information becomes available to the network.

9



5 Ontogenic Methods for Growing High Order Perceptrons
As mentioned in the previous section, existing growing methods can not be used for higher order perceptrons,
because they add units and hidden layers to the network, and thus build a multilayered perceptron. High
order perceptrons only have connections that can be added which means that a totally new approach is needed
to grow high order perceptrons.

The higher order perceptrons use inputs and combinations of inputs to model the output. The connections
in high order perceptrons relate directly to the different inputs. This means that methods for growing high
order perceptrons become, from a problem of determining which connections to use, a problem of determining
lich inputs and combinations of inputs to use.

To determine which inputs to use methods for input selection are used. Input selection, or more well
known feature selection methods, select the features that are most informative. In the following sections,
different stages in the construction of high order perceptrons are described together with possible feature
selection methods.

Before feature selection is introduced, another issue has to be dealt with first. Feature selection methods
leave the existing data unaltered. But, besides these selection methods, there are also feature extraction
methods. Just as feature selection selects the best features from existing set of features, feature extraction
creates a new set of features that are more informative. In this report attention will focus on feature selection
methods.

5.1 Feature Selection in Higher Order Perceptrons
Feature selection is of general interest to a lot of different research fields, and a lot of different methods of
selecting features exist. Although there are several ways of looking at feature selection, it is mostly used as
a method for preprocessing. Before taking the data and train a network, it is always important to look at
the data first. Check for very clear relationships between features or outliers. Using these methods, a subset
of features can be found that give enough information to determine the solution and at the same time these
methods eliminate noise. However, the way these methods determine whether features are needed or not can
be very different. These differences boil down to determining a total set of features to evaluating each feature
and choosing the best features on the basis of the evaluation. These differences mean that the feature selection
methods can be used at different stages in the construction of high order perceptrons as will be discussed
below.

Iii the construction of minimal neural networks there are three stages that are of interest. That is the stage
l)efore a network is constructed, the pre-processing stage, the stage in which a partailly connected network
is created by some other means than ontogenic method, the initializing stage, and finally, the stage where a
network is constructed by using a growing method, the growing stage.

Feature selection as a preprocessing stage, can be seen as a method of subset selection of features that
describe the problem best. An evaluation of how good certain inputs are relative to others is not important,
what is wanted is an elimination of noise features. There are a lot of these methods especially in statistics.
All methods of feature selection can be used for this step, however not all will be as efficient and the quality
of the selected features is an important criterion for determining which method to use. That this might
be a problem, can be seen in the following; selecting certain features means discarding others. So, certain
information is lost when the network is trained, because several combinations of inputs are no longer possible.
But as a preprocessing step this method can make the use of neural networks more efficient. By eliminating
certain inputs, more elaborate initializing and growing methods may become possible.

Forward selection and backward elimination are well known statistical subset selection algorithms used for
preprocessing. These methods select a subset of features for which the mean square error is minimal. The
selected features in no way reflect the relative importance of the selected inputs [Miller-90] and [Derksen-92].

Initialization methods need to be efficient, because they give an approximation of the partially connected
network to use before the growing process. Such a method will have to be more efficient than growing and
pruning, which as a combination is already a feature selector in itself. Using feature selection as a method

10



to find an initial topology before growing, a fast and efficient method is prefered. The fine tuning will be
done by growing the network. This way more methods can be combined. An initialization method based on
a different selection method may find different connections than the feature selection method on which the
growing mehtod is based.

As an initialization method, certain tree-based methods could well be used. These methods determine a
complete set of features to be used; also in high order combinations. Features that are most deterministic for
a problem will be put at the top of the tree and less important features are put in the branches untill the
problem is adequately solved. This tree structure can than be used as a basis for determining which features
to use and how to combine them to model the problem. Examples of tree based methods are 1D3 [Quinlan-83],
and CART [Breiman-84]. A related method is MARS [Friedman-881.

The methods used for subset selection, like linear regression, tend to be usefull for initializing a network,
hut way it is used differs from the preprocessing stage. As a preprocessing step, it can be used for deleting
non-necessary inputs. As an initializing method it can be used as a way to find an initial network topology,
where the unused features are not discarded completely, but remain available for later growing.

Feature selection in growing higher order perceptrons is different from methods in the before mentioned
stages. It has to give an estimate of how good a certain feature is to be able to make an ordering. This means
that a lot of statistical subset selection methods are not useful. Some methods, such as certain tree-based
methods and for instance MARS, give a total model, rendering it more useful as an initialization method,
than as a growing method.

Next, several issues concerning growing superceptrons and feature selection will be discussed in more
detail, and other issues to be dealt with are discussed.

5.2 Feature selection and growing Higher order perceptrons
In this work special attention is given to methods that are useful for growing high order perceptrons. Before

useful methods are discussed, several issues have to be considered. First of all an initial topology has to
be chosen. This can be a network that is constructed using an initialization method as discussed above or
choosing all connections up to a certain order or only using a bias connection. Then the actual growing can
take place using a growing method. Feature selection can be used in the growing method, but it is not the
actual growing method. Feature selection is used as a heuristic, it evaluates a certain connection from its
input(s) and output, the growing method uses this evaluation of the possible connections for determining
when and if to add the connection. This distinction is very important.

The fact that feature selection is used as an evaluation method, means that feature selection methods
like forward selection can not be used. These methods only select a group of inputs that are necessary, it
does not give an evaluation of how important a certain input is. A good example of a method that depends
on this evaluation for selecting a subset of inputs is for instance the mutual sn-formation. This is a measure
introduced by the information theory [Shannon-49]. The mutual information measures the general dependency
between two variables, e.g. input and output. This is much like another possible heuristic, the correlation
coefficient, but the correlation measures only the linear dependency between two variables [Li-9O. In for
instance [Battiti-941, [Bichsel-89] and [Bridle-90] this mutual information measure has been used as a feature
selection method, and even as a feature extraction method, in neural networks.

There are several possible growing methods, but for determining whether a feature selection method
performs well the most simple one will be used in this research. This is the growing method where the
connections are evaluated according to a heuristic, and afterwards ordered in a list with the connection with
the best evaluation at the top. The growing method adds connections to the network according to the ordering
of the list. This is an a priori growing method because all connections are evaluated before growing. The
reason for taking this very simple procedure is that this way a comparison between the different heuristics
can be made. Taking a more complex method makes it unclear to determine whether the heuristic or the
method itself was performing well, it might even be possible that the combination of method and heuristic is
the reason for the good performance.

Using such a method for growing, implies that an evaluation will have to be made for every possible
connection, otherwise an ordering will be impossible. Calculating the evaluation for every possible connection

11



in a high order perceptron means that the feature selection method will have to be very efficient. Ideally
another growing method should be used when a good heuristic for evaluating a connection is determined.
A possible method could be to pick a possible connection at random and calculate its evaluation. If the
evaluation exceeds a threshold the connection can be added. If not, it will be discarded and a new connection
will he chosen. \Vhen such a method for growing is used, the heuristic does not need to be very efficient,
rather a very good evaluation method is needed.

12



References
[Ash-89] T. Ash. Dynamic Node Creation in Backpropagation Networks. Connection Science, vol. 1, no. 4, pp. 365-375,

1989.

[Battiti-94] R. Battiti. Using Mutual Information for Selecting Features in Supervised Neural Net Learning. IEEE
Transactions on Neural Networks, vol. 5, no. 4, July 1994.

[Bichsel-89] M. Bichsel and P. Seitz. Minimum Class Entropy: A Maximum Information Approach to Layered Net-
works. Neural Networks, vol. 2, 133-141, 1989.

[Breiman-84] L. Breiman, J. Friedman, R. Olshen, and C. J. Stone. Classification and Regression Trees, Wadsworth

Belmont, CA, 1984.

[Bridle-90] J. S. Bridle. Training Stochastic Model Recognition Algorithms as Networks can Lead to Maximum Mutual
Information Estimation of Parameters. Advances in Neural Information ProcessingSystems, vol. 2, pp. 211-217,

Morgan I'Caufmann, San Mateo, CA, USA, 1990.

[Canning-88] A. Canning and E. Gardner. Partially Connected Models of Neural Networks. Journal of Physics A:
.1ath. Gen., vol. 21, pp. 3275-3284, 1988.

[Deffaunt-90] G. Deffaunt. Neural Units Recruitment Algorithm for Generation of Decision Trees. Proceedings of

IJCNN '90, vol. 1, pp. 637-642, San Diego, USA, 1990.

[Derksen-92] S. Derksen and H. J. Keselman. Backward, Forward and Stepwise Automated Subset Selection Algo-
rithms: Frequency of Obtaining Authentic and Noise Variables. British Journal of Mathematical and Statistical
Psychology, voL. 45, pp. 265-282, The British Psychological Society, Great Britain, 1992.

[Fiesler-92] E. Fiesler. Partially Connected Ontogenic High Order Neural Networks. Tech-Report 92-02, IDIAP, Mar-

tigny, Switzerland, 1992.

{Fiesler-93] E. Fiesler, Minimal and High Order Neural Network Topologies. Proc. of the Fifth Workshop on Neural

Networks, pp. 173-178, San Diego, California, 1993.

[Fiesler-94.l] E. Fiesler, Neural Network Classification and Formalization. In J. Fulcher (ed.), Computer Stan-
dards & Interfaces, vol. 16, Hum. 3, special issue on Neural Network Standardization, pp. 231-239. North-
Holland/Elsevier, 1994. ISSN: 0920-5489

[Fiesler-94.2] E. Fiesler, Comparative Bibliography of Ontogenic Neural Networks. Proc. of the International Confer-
ence on Artificial Neural Networks (IANN 94), pp. 793-796, Sorrento, Italy, 1994.

[Fiesler-97] E. Fiesler and R. Beale, Handbook of Neural Computation. Institute of Physics and Oxford University
Press, New York, New York, 1997. ISBN: 0-7503-0312—3 and 0-7503-0413-8.

[Finnoff-93] \V. Finnoff, F. Hergert, and H. G. Zimmermann. Improving Model Selection by Nonconvergent Methods.

Neural Networks, vol. 6, pp. 771-783, 1993.

[Frean-90] M. Frean. The Upstart Algorithm: A Method for Constructing and Training Feedfroward Neural Networks.
Neural Computation, vol. 2, pp. 198-209, 1990.

[Friedman-88J J. H. Friedman. \lultivariate Adaptive Regression Splines, Technical Report 102, Stanford University

Lab for Computer Statistics, 1988.
[Gardner-89] E. Gardner. Optimal Basins of Attraction in Randomly Sparse Neural Network Models. Journal of

Physics A: Math. Gen., vol. 22, pp. 1969-1974, 1989.

[Giles-87] C. L. Giles and T. Maxwell. Learning, Invariance, and Generalization in High-Order Neural Networks.
Applied Optics, vol. 26, no. 23, pp. 4927-4978, 1987.

[Hassibi-93] B. Hassibi and D. G. Stork. Second Order Derivatives for Network Pruning: Optimal Brain Surgeon.
Advances in Neural Information Processing Systems, vol. 5, Morgan Kaufmann, San Mateo, CA, USA, 1993.

[Haykin-94] S. Haykin. Neural Networks; A Comprehensive Foundation. MacMillan College Publishing Company, New
\ork, New York, USA, 1994. ISBN: 0-02-352761-7

[Judge-85] G. G. Judge, V. E. Griffiths, R. Carter Hill, and T.-C. Lee. The Theory and Practice of Econometrics.
Wiley Series in Probability and Mathematical Sciences. John Wiley and Sons, 2nd edition, 1985.

[Karnin-90] E. D. Karnin. A Simple Procedure for Pruning Back-Propagation Trained Neural Networks. IEEE Trans-
actions on Neural Networks, vol. 1, num. 2, pp. 239-242, 1990.

13



LeCLIn-90] V. LeCun, J. S. Denker, and S. A. Solla. Optimal Brain Damage. Advances rn Neural Information Pro.
ce,.sing Systems, vol. 2, pp. 598-605, Morgan Kaufmann, San Mateo, CA, USA, 1990.

[Lee-86] V. C. Lee, G. Doolen, H. Chen, T. Maxwell, H. Lee, and C. L. Giles. Machine Learning Using a Higher Order
Correlation Network.Physica D: Nonlinear Phenomena, volume 22, pages 276-306, 1986. ISSN: 0167-2789.

[Li-90J \V. Li. Mutual Information Versus Correlation functions. J. of Statistical Physics, vol. 60, no.5/6, pp. 823-837,
1990.

[Mezard-89] M. Mezard and J.-P. Nadal. Learning in Feedforward Layered Networks: The Tiling Algorithm. Journal
of Physics A: Math. Cen. vol. 22, pp. 2191-2203, 1989.

[\Iiller-90] A. J. Miller. Subset Selection in Regression, St. Edmundsbury Press Ltd, Bury St Edmunds, Suffolk, Great
Britain, EU, 1990. ISBN: 0-412-35380-6.

[\lozer-89) M. C. Mozer and P. Smolensky. Using Relevance to Reduce Network Size Automatically. Connection
Science, vol. 1, num. 1, pp. 3-16, 1989.

[Nadal-89] J.-P. Nadal. Study of Growth Algorithm for a Feedforward Network. interantional Journal of Neural Sys-
tems, Vol. 1, No. 1, pp. 55-59, 1989.

[Pao-89] V. Pao. Adaptive Pattern Recognition and Neural Networks. Addison-Wesley Publishing Company, Inc., Read-
ing, Massachusetts, USA, 1989. ISBN: 0-201-12584-6.

[Prechelt-95] L. Prechelt. Adaptive Parameter Pruning in Neural Networks. Tech. Report 95-009, International Com-
puter Science Institute, Berkeley, California, 1995.

[Quinlan-83] J. R. Quinlan. Learning Efficient Classification Procedures and Their Application to Chess and Games.
Machine Learning: An Artificial Intelligence Approach, chapter 15, pp. 463-482, Tioga P., Palo Alto, 1983.

[Rumelhart-86] D. E. Rumelhart, J. L. McClelland, and the PDP Research Group.Parallel Distributed Processmg:
Explorations in the Microstructure of Cognition. The MIT Press, Cambridge, Mass., 1986. ISBN: 0-262-18120-

[Shannon-49} C. E. Shannon and \V. Weaver. The Mathematical Theory of Communication. Urbana, IL. University of
Illinois Press, 1949.

[Sietsma-91] J. Sietsma and R. J. F. Dow. Creating Artificial Neural Networks that Generalize. Neural Networks, vol.4,
num.1, pp.137-69, 1991.

[Srnieja-91] F. J. Smieja, Neural Network Constructive Algorithms: Trading Generalization for Learning Efficiency?,
German National Research Center for Computer Science, November 22, 1991.

[Tliimm-95] G. Thimm and E. Fiesler. Evaluating Pruning Methods. 1995 International Symposium on Artificial
Netiral Networks (ISA NN'95), pp. 20-25, 1995.

[Thodberg-90] H. H. Thodberg. Improving Generalization of Neural Networks through Pruning. International Journal
of .Veural Sytenzs, vol. 1, pp. 317-326, 1990.

[\'isscher-96.1] R. M. Visscher, E. Fiesler and G. Thimm. Superceptron Construction. Proceedings of SIPAR Workshop
96, University of Geneva, Geneva, Switzerland, 1996.

[\Valker-90] C. C. Valker. Attractor Dominance Patterns in Sparcely Connected Boolean Nets. Physica D: Nonlinear
Phenomena, vol. 45, pp. 441-451, 1990.

14



6 Papers

15



Superceptron Construction Methods
R. \I. \Tisscher and E. Fiesler /

IDIAP, CP 592, CH-1920 Martigny, Switzerland
E-mail: Robbert©IDIAP.CH
http://www.idiap.ch/nn.html

Abstract
Superceptrons are higher order perceptrons constructed by ontogenic methods. These superceptrons offer

an elegant solution to the problem of finding the amount of hidden layers in multilayer perceptrons because
they only have an input and an output layer, whose size is completely defined by the problem tobe solved. The
power of Superceptrons lies in the use of high order connections which render them superior in functionality
with respect to back-propagation based neural networks.

The aim of this paper is to identify a so called ontogenic method for a dynamical construction of the
connectivity of the Superceptron. More precisely, an answer is found to whether rerandomization of the
parameters is beneficial for the construction, and to which ontogenic methods are candidates for adaptively
building the network topology. j

Keywords: ontogenic neural networks, growing, pruning, generalization, high order perceptrons, partially
connected networks, backpropagation neural networks, rerandomization, superceptrons.

1 Introduction
A Superceptron is a higher order perceptron constructed using so called onlogenic methods. This isa relatively
new kind of neural network that have advantages over the popular multilayer perceptrons. An important problem
for the practical application of multilayer perceptrons is that they require knowledge of the problem to be solved
and knowledge of neural networks. One of the biggest problems is finding the number of hidden layers and number
of neurons per hidden layer. This problem makes the usage of multilayer perceptrons very user-unfriendly.

A promising way of selecting the number of hidden layers and neurons per hidden layer is to make use of the
network's ability to adapt and to let it find the topology itself. The hidden layers are constructed by either adding
units to the network or deleting units from the network whenever necessary. These methods are called oniogenic
methods [Fiesler-97] and often find smaller and thus more efficient networks. However the ideal ontogenic method
is not found yet. Moreover, these ontogenically constructed inultilayer perceptrons still have hidden layers which
make it hard to analyse the network's performance. Another type of network, the high order perceptron, does

not make use of hidden layers but combines inputs by so-called high order connections. A high order connection
combines inputs using a splicing function, which, in our case, is a multiplication. This way of modeling the
problem resembles a Taylor series expansion and is known in signal processing as a Volierra filter. The output
of the network, y, can be written as given in equation 1:

In this equation, is the activation or transfer function, y1 is the i-th output, W the weight assigned to
a connection, and x1 is the i-th input. The total number of possible combinations is limited as high order
connections need not use the same input more than once [Visscher-97.2]. The first two terms of this equation are
the same as for a standard perceptron, the bias Wo and the first order connections, The next terms are
the second, third, and higher order connections.

In these high order perceptrons only an input and an output layer are required, the sizes of which are com-
pletely defined by the problem. This makes these networks much easier to construct than multilayer perceptrons.
Having no hidden units also means that a simpler learning rule can be used. The learning rule for standard
perceptrons is the delta-rule which has been extended to the generalized delta-rule, or backpropagation learning



rule, for multilayer perceptrons. The higher order perceptrons do not make use of hidden units which means that
the delta-rule can be used as a learning rule. However, there is a tradeoff, because for high order perceptrons the
order of the problem has to be estimated.

Using higher order connections has the disadvantage that an enormous amount of connections are possible
because in a fully connected network there is an exponential relationship between the number of connections
and the number of neurons in the input layer [Fiesler-97]. However a fully connected network is not needed, as
partially connected networks perform very well {Lee-86]. In fact, a network is needed that is just big enough to
map the data; in [Fiesler-93] these networks are called minimal neiworks. For small, theoretical problems such
as the XOR-problem [Rumelhart-86], the minimal topology can be found and proven to be the smallest. For real
world problems used in this paper, the minimality of a topology can not be proven, so the topologies sought are
to be as sinai! as possible.

As with multilayer perceptrons, the construction of these networks can be done using ontogenic methods,
letting the network adapt and learn the problem-specific network topology. Existing growing methods for mul-
tilayer perceptrons primarily add units to the hidden layers, which means that these methods are not useful for
higher order perceptrons. On the other hand, pruning methods for multilayer perceptrons delete units and/or
connections from the network which means that they can also be used for pruning higher order perceptrons
[Thimni—95].

In this paper three simple growing methods are introduced that determine the best connections to add. Besides
these three growing methods a weight randomizing method during the growing phase will also be investigated.
This weight randomizing method might improve the average network size and performance by avoiding local
minima. Both heuristics and rerandomization will be explained in subsequent sections.

2 Description of the Ontogenic Methods
The process of constructing a network using ontogenic methods starts with defining an initial topology. Several
different possibilities exist ranging from a topology with only the bias connection(s) to all connections up to a
certain order and adding higher order connections or replacing lower order connections with higher order ones. In
this case a bare topology with only bias connections is used. This bare topology is too small to learn the input-
output combinations and connections have to be added. The addition of connections means that the network
gets more information which reduces the squared error in the trainingset.

Connections are added according to a growing method which calculates the a value for a connection using
a certain heuristic. This is an a priori computation and the connections are ordered to ensure that the best
(relative to the heuristic) connections are added first. The amount of connections means that the methods used
should ideally be as simple as possible and therefore three heuristics have been used based on the variance of
the input, the correlation between the input and output and a combination of correlation and variance. As a
reference random adding of connections is used.

The variance heuristic calculates the variance of the input data for a given connection:

V..1, = VAR(X) VAR(Xi *X2) (2)

The first of the two equations calculates the variance for a first order connection with input z connected to output
y. The capital X denotes the data corresponding with input z. The second calculates the variance for a second
order connection with inputs x1 and x2. For a second order connection the corresponding input variables are
first multiplied, because the splicing function is a multiplication, and the outcome of this multiplication is used
to compute the variance.

The largest value for the variance is put at the top of the list because the hypothesis is that the larger the
variance is the more information might be contained in the data. Or the other way around: if an input variable
has zero variance this means that the input is always the same irrespective of the output and is thus bound to
convey little information.

For the correlation heuristic the correlation coefficients between the input and output variables of the data,
and hence the corresponding connections, are calculated. For first order connections this comes down to the
correlation between the corresponding input variable and output variable. For a second order connection the



corresponding input variables are first multiplied, and the result of the multiplication is used to calculate the
correlation coefficient.

= CORR(X, Y) = CORR(Xi * X2, Y) (3)

Here the denotes the correlation coefficient for a first order connection from x to y, the capital X denotes
the data for input x and equivalently Y denotes the data for the output of the connection y. Similarly rxj,xa.....y
is the correlation coefficient for a second order connection with inputs x1 and x2. The correlation coefficient
ranges between [—1, 1], but for a neural network a negative correlation is the same as a positive correlation save
a different sign for the associated weight. hence an absolute value for the correlation coefficient will be taken.

The correlation computes the linear dependency of the input and the output. A correlation coefficient that
approaches 1 indicates that there is a large dependency between the input and the output. In the same way
a zero correlation coefficient indicates that the variables are linearly independent. Higher absolute values for
the correlation coefficient might be an indication that the input(s) associated with that connection give more
information about the output than a connection with a lower value.

After viewing the results for size and generalization of the correlation and variance heuristic a combination of
the two heuristics was constructed. The calculations are exactly the same for the variance and correlation given
above but the two values are combined in such a way that connections that have a large variance and a large
correlation are added first. The reason for using the combined method is that besides finding a minimal network
it is also important to have a robust heuristic. A heuristic is sought that performs well without having a lot of
outliers. Although it might not always find the smallest solution it will always find a good solution. Note that
rerandomizing of the weights only takes place during the growing phase.

After the network training has reached a certain error criterion, the growing process is stopped and the
pruning process starts. Pruning is done because the network might have added too many connections and the
pruning process might be able to remove these superfluous connections. It is generally thought that pruning
these connections improves the generalization ability of the networks because superfluous connections deteriorate
the network's performance by adding non-informative data to the network. These extra connections can cause
the network to over-fit the training data which means that it might be optimal for the given training set but not
for the unseen test set. Using less connections also reduces the dimensionality and thus the possibilities of the
network to over-fit the training set. For pruning, the smallesi variance method is used [Sietsma-91]. This is a
very simple method, shown to perform very well for high order perceptrons [Thinim-95.

3 Weight Rerandomization
During the growing phase of the high order perceptrons, connections are added whenever the decrease in the error
curve becomes smaller than a predetermined threshold and the given error criterion is not reached (see section
4 for further details). Every connection that is added has to be given a random weight when it is introduced
otherwise the network will be biased in a certain direction. Furthermore, the newly added connection is added
to a network that is already in a state in which the weight setting has been determined. This means that the
network might be biased towards the original weight setting, which might not be optimal for the new network.

A solution to this problem might be to assign a higher learning rate to the new connection which decreases
during the learning process. This implies that every connection added is assigned its own variable learning rate,
making the total computation of the network more difficult and less transparant. An easier solution that might
help to overcome this problem is to rerandomize all weights when a new weight is introduced. This ensures that
the whole process starts anew and a new weight setting can be found in an unbiased way.

This rerandomizing of the weights might help in finding smaller networks because the networks can find the
optimum for every number of connections without being biased towards a certain solution because of previou8
weight settings. This might also hold true for the generalization capabilities for the networks constructed in this
way.



4 Simulations
The construction of a higher order perceptron starts with initializing a network with bias connections only. The
training starts, and after a certain amount of training cycles when a mean squared error criterion for the training
error is not reached, an extra connection is added according to one of the heuristics discussed above. The point
in time to add a connection is determined by a minimal decrease in the error slope' which is calculated over a
certain amount of training iterations. This process is continued until the convergence criterion is reached (see
table 1 for the error criterion for each of the datasets). \Vhen the criterion is reached the pruning process starts
using the smallest variance method as discussed above. Connections are removed and a check is made to see if
the error criterion is still satisfied. If this is the case more connections are removed. However if the criterion is
no longer satisfied, training takes place until the criterion is satisfied again. The pruning stops when the training
error does not reach the criterion and the error slope is smaller than the minimal error slope.

Six real-world data sets were chosen, most of which were obtained (if not stated otherwise) from an anonymous-
ftp server at the University of California [Murphy-94], and which are described below. The name of the data set
is followed by the number of input and output variables of the problem, which also determines the number of
input and output units of the network.

Solar (12,1) contains sunspot activity for the years 1700 to 1990. The task is to predict the sun spot activity
for one of the years, given the preceding twelve years. The real-valued input and output data are scaled to

the interval [0, 1].

Glass (15,1) consists of 8 scaled weight percentages of certain oxides found in the glass, the ninth input is a
7-valued code for the type of glass (eg.tableware, head lamps etc.). The input is scaled to [-1, 1]. The
output is the refractive index of the glass, scaled to [0, 1].

Wine (13,3) is the results of a chemical analysis of wines grown in the same region in Italy but derived from
three different cultivars. The analysis determined the quantities of 13 constituents found in each of the
three types of wines. The 13 real-valued input values are scaled to the interval [-1, 1], the output values

are boolean and scaled to [-1, 1].

Servo (12,1) was created by Karl Ulrich (MIT) in 1986 and contains a very non-linear phenomenon: predicting
the rise time of a servomechanism in terms of two (continuous) gain settings and two (discrete) choices

of mechanical linkages. The input is coded into two groups of five boolean values each, and two discrete
inputs, one assuming four, the other five values. The output is real-valued, and like all real-valued inputs,
scaled to the interval [0, 1].

Auto-mpg (7,1) concerns city-cycle fuel consumption of cars in niiles per gallon, to be predicted in terms of
three multi-valued discrete and 4 continuous attributes. Input data is scaled to the interval [-1, 1], output
to [0,1].

British Vowels (10,11) was created by Tony Robinson (CMU) and concerns speaker independent recognition
of the eleven steady state vowels of British English using a specified training set of lpc derived log area
ratios. Input data type is real and scaled to the input interval [-1, 1], output is boolean and scaled to [-1,
1].

Parameter settings were all taken from Thimm-96 and are summarized in table 1. The benchmark name
is given followed by the number of connections in a fully connected second order network. For the maximum
order 2 is taken because of computational constraints and in [Thinim-96] 2-nd order networks performed very
well for these benchmarks. For the training error criterion either the mean square error or a percentage of wrong
classifications tolerated on the training set is taken, depending on the kind of benchmark. The initial weight
distribution is the same for all data sets: uniform with initial weight variance iO and therefore not listed in
the table. According to [Thimm-96], for higher order perceptrons a very small value for the initial variance is
l)etter than a bigger value.

'The decrease in the error slope is determined by calculating the mean error over 20 iterations and comparing it to the mean of
the previous 20 iterations. Is the difference between the two smaller than a defined minimal decrease, a connection is added.



benchmark full
2-nd

learning
rate

momentum activation
function

error
criterion

Solar
Glass
Wine
Servo
Auto-MPG
Vowels

79
121
273

79

28
616

0.2

0.5
2.5
4.5
0.1

0.005

0.5
0

0

0

0.3
0.3

linear
stand. sigmoid
tanh
stand. sigmoid
linear
tanh

0.05
0.03
10%
0.05
0.06
10%

Table 1: Parameters for each dataset.

Seven datasets were selected for experementing but the seventh dataset, CES, performed poorly due to its
small size. This dataset was subsequently removed from the experiments.

5 Results and Discussion
In table 2 the results of the experiments on minimizing the size are shown. Each experiment consists of 50
simulations and the resulting network sizes are considered to be normally distributed. For each experiment a
95% confidence interval is calculated to enhance comparison. The first column shows the name of the dataset.
The second column states if all weights were rerandomized after introducing a connection. The subsequent
columns give the outcome of the different heuristics with the network size after growing has taken place and the
network size after pruning has also taken place. The format is: the mean size of the networks found for that
specific experiment followed by the confidence interval. Boldfont indicates the smallest network after growing
and after pruning for either with rerandomizing and without rerandomizing, for a benchmark. Bold font is only

used when there is no overlap in the confidence intervals.

bench-
mark

rerand.
weights

heuristic
network size after growing after pruning

random correlation variance combined random correlation variance combined

Solar yes
no

36.7± 3.0
36.9±

15.6* o.m
16.1± o.i

17.2* 0.2
17.1* 0.1

16.1± o.m

16.1± o.i
16.7± 1.6
19.4± i

7.5± 0.2
13.0± 0.0

8.1* 0.2
7.9* o.,

11.0* o.i
11.7± 0.3

Glass yes
no

21.8± 2.1
24.3± j.g

13.0* 0.0
13.0± 0.0

51.0± 0.0
51.9± 0.1

19.0± 0.0
19.0± 0.0

10.9± 1.2
12.1± 1.2

5.0* 0.0
7.1± 0.6

10.0± o.7
16.2± os

7.6± o.i
10.6* 0.6

\Vine yes
no

37.2* .o
29.5± 1.6

20.3± 0.1
17.2± 0.0

23.3* 0.1
21.3± 0.2

18.0± 0.4
16.4± 0.2

18.7± 1.3
19.5± i s

10.9± 0.3
13.5* 0.3

13.4± 0.2
17.5± 0.6

11.9± o.1
13.0± 0.2

Servo yes
no

33.6± 2.5
35.3±

23.0± 0.0
23.0± 0.0

23.1± 0.1
22.0± 0.0

24.0± 0.0
24.0± 0.0

14.9± 1.2
18.4± 1.4

13.4± o.
10.0* 0.0

20.8± 0.7
17.2* 0.1

14.7± 0.4
10.2± o.,

Auto-
MPG

yes
no

20.9± 1.2
21.7* 1.1

18.6± 0.2
19.0* 0.3

12.3± 0.1
12.6± 0.1

12.3* 0.1
13.1* 0.2

11.5± 1.0
12.1± 1.0

9.3± o.
10.7* 0.2

10.8± 0.3
10.5± 0.3

10.6* 0.3
11.3± 0.2

Vowels yes
no

306.4± 2.5
436.6± 21.1

295.4± 1.5
292.4± s.a

287.7* 3.4
392.2± 4.3

307.7* .s
313.6± 3.7

275.6± 3.6
229.2± 23.1

182.3* 'i..
210.2± si

194.8± is
245.0± 5.1

212.6± i
222.9± ii 4

Table 2: Summary of the results on size for each dataset.

The discussion of the results will be divided into two parts. First of all the results for the different heuristics
will be discussed, after which the rerandomization will be taken into consideration. After the growing phase
all heuristics find smaller networks than the random adding of connections except for the variance heuristic on
the Glass dataset and the combined heuristic on the Vowels dataset with rerandomization of the weights. The
correlation heuristic finds the most networks that are the smallest in size when compared to the other heuristics.



The results after the pruning phase shows an increase in the amount of networks found by the correlation
heuristics that are the smallest in size. The networks found by the correlation heuristic are also always smaller

than the random adding of connections. This contrasts with the variance heuristic which also finds bigger
networks than the random adding of connections. The combined heuristic only finds the smallest network once,
but iiever finishes pruning with more connections than the random case.

Overall the correlation heuristic performs the best. It generally finds smaller networks after growing and
pruning. Correlation grown networks also benefit pruning, because the correlation heuristic finds more smallest
networks after pruning than after the growing phase.

Besides using different heuristics, all weights have been randomized after the addition of a connection. To
see if this gives better results, the mean sizes of these networks are compared with mean network sizes when no
rerandomization has taken place, for every benchmark.

After tile growing, tile difference between rerandomization or no rerandomization is minimal. Of the twen-
tyfour (four possible heuristics and six benchmarks) experiments, with rerandomizing gives smaller networks in
twelve experiments, compared to eight for without rerandomizing. Rerandomizing the weights during the growing
phase seems to facilitate the pruning process because after pruning the experiments with weight rerandomization
perform significantly better than experiments without weight reranomization.

Taking the different heuristics into account it is seen that specifically for the correlation heuristic rerandomiza-
tion performs better. For five out of six benchmarks with rerandornizing the weights finds the smaller networks.
\Vhell comparing the different heuristics for rerandomizing, the correlation heuristic finds the smallest network
for all benchmarks. The same applies when rerandomization is not taken into consideration, the correlation
heuristic finds the smallest networks possible for all benchmarks.

In table 3 the results for tile generalization performance are given. Tile results are the mean square errors
except for the U'ine and Vowels benchmarks indicated by a , where it is the amount of correctly classified
instances. Tile resulting generalization performances of the simulations are considered to be normally distributed
and a 95% confidence interval is given to enhance comparison. Bold font indicates the best performance for that
benchmark for both with and without rerandomization. Bold font is oniy used when there is no overlap in the
confidence intervals.

bench-
mark

rerand.
weights

heuristic
Random Correlation \'ariance Combined

Soiar yes
no

0.0865± o.ooe
0.0918± 0.0031

0.0794± 0.0009
0.0816± o.o005

0.0732± o.ooos
0.0731* 0.0003

0.0785* o.oooi
0.0796± 0.0007

Glass yes
no

0.0378* 0.0014
0.0359± 0.0013

0.0367± 0.0003
0.0307± 0.0003

0.0444± o.oooa
0.0426± o.oooo

0.0431± 0.0003
0.0468± 0.0006

\Vine * yes
no

0.749* 0.017
0.735± o.o'

0.793* 0009
0.743± 0.003

0.808* 0.011
0.730* 0.004

0.759± 0.009
0.771± o.oos

Servo yes
no

0.0791± 0.0032
0.0921* 0.0004

0.0816± o.ooo
0.0852± 0.0004

0.0629± o.ooo6
0.0653± 0.0006

0.0684* 0.0006
0.0813± 0.0005

Auto-
MPG

yes
no

0.0595* 0.0007
0.0598* 0.0009

0.0623* 0.0002
0.0628± 0.0003

0.0623± 0.0002
0.0653± 0.0003

0.0623* 0.0003
0.0631* 0.0003

Vowels * yes
no

0.458± 0.003
0.375* 0.007

0.465* 0.003
0.453* o.oo

0.519* 0.003
0.489± 0.003

0.498± 0.003
0.496± 0.004

Table 3: Summary of the results for tile generalization of the final network after pruning.

For tile results of the generalization the following has to be taken into account. In [Thimm-95 it was found
tilat tile smallest network is not always the network with the best generalization because the generalization
performance shows an erratic behaviour during the pruning phase. Therefore it is possible that the method A
that performs best on the size criterion might find a worse generalization compared to a method B, that finds
bigger networks after pruning. However a slightly bigger network for method A, buts still smaller than the one for



method B, might give a comparable, or better generalization than the network found by method B. If, however,
the smaller network also finds the better generalization a better conclusion can be taken whether or not one
heuristic performs better than another taking both network size and generalization into account.

\Vhen looking at the results for the generalization performance for the experiments it can be seen that
rerandomization of the weights also seems to benefit the performance on generalization. For the different heuristics
however the outcome is not that clearcut but the variance heuristic generaly performs better on generalization.
However the variance heuristic also finds bigger networks which makes a conclusion difficult.

6 Conclusions
In this paper several heuristics for the ontogenic construction of high order perceptrons were introduced, together
with the rerandomization of weights. All the heuristics perform significantly better than the random adding
of connections, which justifies their use. There exist however, considerable differences between the different
heuristics. The variance heuristic for example is not very reliable because it sometimes grows very big networks
which can be very hard to prune. The correlation heuristic seems to be the best because it most often results in
the smallest networks found and does not have the problems of the variance heuristic. The combined heuristic
also performs reasonably well, sometimes even better than both of the heuristics that comprise it, but not when
the overall results of the correlation heuristic are compared with it.

Rerandomizing does not decrease the size of the networks found after the growing phase, but it results in
considerably smaller final networks. This might be because the rerandomizing, although not of much influence
in the growing part, relaxes the networks in such a state that it benefits pruning. Hence, for finding the smallest
networks the correlation heuristic should be used in combination with rerandomizing all the weights when adding
a new connection.

Acknowledgements
This research was made possible, in part, thanks to funding by FORMITT. Special thanks to Georg Thimm for
helpful comiuents and suggestions and for proofreading of the paper.

References
[Fiesler-93] E. Fiesler, Minimal and High Order Neural Network Topologies. Proc. of the Fifth Workshop on Neural

Networks, pp. 173-178, San Diego, California, 1993.

[Fiesler-94.1] E. Fiesler, Neural Network Classification and Formalization. In J. Fulcher (ed.), Computer Standards L4
Interfaces, vol. 16, num. 3, special issue on Neural Network Standardization, pp. 231-239. North-Holland! Elsevier,
1994. ISSN: 0920-5489

[Fiesler-94.2] E. Fiesler, Comparative Bibliography of Ontogenic Neural Networks. Proc. of the International Conference
on Artificial Neural Networks (ICANN 94), pp. 793-796, Sorrento, Italy, 1994.

[Fiesler-97J E. Fiesler and R. Beale, Handbook of Neural Computation. Institute of Physics and Oxford University Press,
New York, New York, 1997. ISBN: 0-7503-0312—3 and 0-7503-0413-8.

[Lee-86] Y. C. Lee, G. Doolen, H. Chen, T. Maxwell, H. Lee, and C. L. Giles. Machine Learning Using a Higher Order
Correlation Network.Physica D: Nonlinear Phenomena, volume 22, pages 276-306, 1986. ISSN: 0167-2789.

[Murphy-94] Data made available in 1994 by librarians P. M. Murphy and D. W. Aha from the UCI Repos-
itory of Machine Learning Databases, a machine-readable data repository accessible via anonymous-ftp:
ftp://ftp.ics.uci.edu/pub/machine-learning-databases.

[Prechelt-95] L. Prechelt. Adaptive Parameter Pruning in Neural Networks. Tech. Report 95-009, International Computer
Science Institute, Berkeley, California, 1995.

[Ruinelhart-86] D. E. Rumelhart, J. L. McCIelland, and the PDP Research Group.Parallel Distributed Processing: Explo-
rations in the Microstructure of Cognition. The MIT Press, Cambridge, Mass., 1986. ISBN: 0-262-18120-7



[Sietsma-91] J. Sietsma and R. J. F. Dow. Creating Artificial Neural Networks that Generalize. Neural Networks, vol.4,
num.1, pp.67-69, 1991.

[Thirnrn-95J G. Thimm and E. Fiesler. Evaluating Pruning Methods. 1995 International Symposium on Artificial Neural

Set works (JS.4NN'95), pp. 20-25, 1995.

[Thirnni-96] G. Thimm and E. Fiesler. Weight Initialization in Higher Order and Multi-Layer Perceptrons. Accepted for
publication in IEEE Transactions on Neural Networks, 1996.

[Visscher-96.1] R. M. Visscher, E. Fiesler, and G. Thimm, Superceptron Construction. Proc. of SIPAR '96, pp. , Geneva,

1996.

[Visscher-97.2] R. M. Visscher and E. Fiesler, Order Restriction in High Order Perceptrons, RR 97-02, IDIAP, Martigny,

Switzerland, 1997.



Order Restriction in High Order Perceptrons
R. M. Visscher and E. Fiesler

IDIAP, CF 592, CH-1920 Martigny, Switzerland
E-mail: Robbert(tcw2.ppsw.rug.nl

http://www .idiap.ch/nn.html

Abstract
The amount of possible connections in high order networks has an exponential relation to the number of

neurons in the input layer, and can even become infinite when the order of the network is unrestricted. Clearly
this is not desired and hence the effect of restricting the order is considered here.

Keywords: ontogenic neural network, growing, pruning, generalization, high order perceptron, partially connected
network, backpropagation neural network, rerandomization.

1 Introduction
High order perceptrons are a relatively new kind of neural network that have advantages over the popular multilayer
perceptrons. An important problem for the practical application of multilayer perceptrons is that they require
knowledge of the problem to be solved and knowledge of neural networks. One of the biggest problems is finding

the number of hidden layers and number of neurons per hidden layer. This problem makes the usage of multilayer
perceptrons very user-unfriendly.

A promising way of selecting the number of hidden layers and neurons per hidden layer is to make use of the
network's ability to adapt and to let it find the topology itself. The hidden layers are constructed by either adding
units to the network or deleting units from the network whenever necessary. These methods are called oniogenic

methods [Fiesler-97] and often find smaller and thus more efficient networks. However the ideal ontogenic method is
not found yet. Moreover, these ontogenically constructed multilayer perceptrons still have hidden layers which make
it hard to analyse the network's performance. Another type of network, the high order perceptron, does not make
use of hidden layers but combines inputs by so-called high order connections. A high order connection combines
inputs using a splicing function, which, in our case, is a multiplication. This way of modeling the problem resembles

a Taylor series expansion and is known in signal processing as a Volterra filter. The output of the network, y1, can
be written as given in equation 1:

= +lViJkx1XjXk+...) (1)

In this equation, a is the activation or transfer function, y is the i-tb output, IV the weight assigned to a
connection, and x1 is the i-th input. The first two terms of this equation are the same as for a standard perceptron,
the bias W0 and the first order connections W8x1. The next terms are the second, third, and higher order
connections.

In these high order perceptrons only an input and an output layer are required, the sizes of which are completely
defined by the problem. This makes these networks much easier to construct than multilayer perceptrons. Having
no hidden units also means that a simpler learning rule can be used. The learning rule for standard perceptrons is
the delta-rule which has been extended to the generalized delta-rule, or backpropagation learning rule, for multilayer
perceptrons. The higher order perceptrons do not make use of hidden units which means that the delta-rule can be
used as a learning rule. However, there is a tradeoff, because for high order perceptrons the order of the problem
has to be estimated.

Using higher order connections has the disadvantage that an enormous amount of connections are possible because
in a fully connected network there is an exponential relationship between the number of connections and the number
of neurons in the input layer [Fiesler-97]. However a fully connected network is not needed, as partially connected



networks perform very well [Lee-86]. In fact, a network is needed that is just big enough to map the data; in
[Fiesler-93] these networks are called minimal neiworks. For small, theoretical problems such as the XOR-problem
[Rumelhart-861, the minimal topology can be found and proven to be the smallest. For real world problems used in
this paper, the minimality of a topology can not be proven, so the topologies sought are to be as small as possible.

As with multilayer perceptrons, the construction of these networks can be done using ontogenic methods, letting
the network adapt and learn the problem-specific network topology. Existing growing methods for multilayer per-
ceptrons primarily add units to the hidden layers, which means that these methods are not useful for higher order
perceptrons. On the other hand, pruning methods for multilayer perceptrons delete units and/or connections from
the network which means that they can also be used for pruning higher order perceptrons [Thimm-95.

The problem for these kind of ontogenic methods is that when determining the merit of a connection, all con-
nections will have to be taken into consideration. In fact the total amount of connections can be infinite, as will be
discussed in the following section. In [Visscher-96.1] the amount of possible connections was restricted and in this
paper the use of this restriction will be compared to not using it.

2 High Order Connections
As discussed in the introduction, high order connections combine inputs. This combining of inputs has the disadvan-
tage that there is an exponential relationship between the number of possible connections and inputs. For problems
with a lot of inputs this means a huge computational load. Although through the use of ontogenic methods the
amount of connections in the final network can be restricted, the difficulty remains that growing methods based
on an a priori calculation of the best connection to use will have a complexity proportional to the total amount of
possible connections. These growing methods use an ordered list of connections, therefore the values have to be
calculated for all connections before they can be sorted.

In [Visscher-96.1] a choice was made to restrict the number of connections through only combining different
inputs. In equation 2, N1 denotes the number of neurons in the input layer and N2 the number of neurons in the
output layer.

W=N22( '' ) (2)

The relation between number of weights W and the number of neurons in the input layer N1 is exponential but
has an upper bound for the maximum order = N1, if inputs are only allowed to combine with other inputs to
form a high order connection. If this restriction is not applied, the order can go to infinity thus allowing an infinite

amount of connections.
Not using this restriction on using an input more than once means an enormous potential increase in the

computational load of calculating the best connection to add in an a priori growing method. The networks found
without applying any restrictions on the possible combination will thus have to be significantly smaller than the
networks found when this restriction applies to render it worthwhile.

3 Description of the Ontogenic Methods
The process of constructing a network using ontogenic methods starts with defining an initial topology. Several
different possibilities exist ranging from a topology with only the bias connection(s) to all connections up to a
certain order and adding higher order connections or replacing lower order connections with higher order ones. Here
a bare topology with only bias connections was chosen. This bare topology is too small to learn the input-output
combinations and connections have to be added. The addition of connections means that the network gets more
information which reduces the squared error in the trainingset.

Connections are added according to an a priori growing method which gives an evaluation for a connection using
a cert.ain heuristic. The connections are then ordered to ensure that the best (relative to the heuristic) connections
are added first. The number of possible connections means that the methods used should ideally be as simple as
possible. Therefore three heuristics have been used based on the variance of the input, the correlation between the



input and output and a combination of correlation and variance. As a reference random adding of connections is
used.

The variance heuristic calculates the variance of the input data for a given connection:

= VAR(X) = VAR(X * A2) (3)

The first of the two equations calculates the variance for a first order connection with input x connected to output
y. The capital X denotes the data corresponding with input x. The second calculates the variance for a second
order connection with inputs x and x2. For a second order connection the corresponding input variables are first
multiplied, because the splicing function is a multiplication, and the outcome of this multiplication is used to compute
the variance.

The largest value for the variance is put at the top of the list because the hypothesis is that the larger the
variance is the more information might be contained in the data. Or the other way around: if an input variable has
zero variance this means that the input is always the same irrespective of the output and is thus bound to convey
little information.

For the correlation heuristic the correlation coefficients between the input and output variables of the data, and
hence the corresponding connections, are calculated. For first order connections this comes down to the correlation
between the corresponding input variable and output variable. For a second order connection the corresponding
input variables are first multiplied, and the result of the multiplication is used to calculate the correlation coefficient.

= CORR(X,Y) CORR(X1 * X2,Y) (4)

Here the rr_y denotes the correlation coefficient for a first order connection from x to y, the capital X denotes

the data for input x and equivalently Y denotes the data for the output of the connection y. Similarly is

the correlation coefficient for a second order connection with inputs x1 and x2. The correlation coefficient ranges
between [—1, 1], but for a neural network a negative correlation is the same as a positive correlation save a different

sign for the associated weight. Hence an absolute value for the correlation coefficient will be taken.
The correlation computes the linear dependency of the input and the output. A correlation coefficient that

approaches 1 indicates that there is a large dependency between the input and the output. In the same way a zero
correlation coefficient indicates that the variables are linearly independent. Higher absolute values for the correlation
coefficient might be an indication that the input(s) associated with that connection give more information about
the output. than a connection with a lower value.

After viewing the results for size and generalization of the correlation and variance heuristic a combination of the
two heuristics was constructed. The calculations are exactly the same for the variance and correlation given above
but the two values are combined in such a way that connections that have a large variance and a large correlation are
added first. The reason for using the combined method is that besides finding a minimal network it is also important
to have a robust heuristic. A heuristic is sought that performs well without having a lot, of outliers. Although it
might not always find the smallest solution it will always find a good solution.

As described in [Visscher-96 .11, besides using the addition of connections to avoid local minima, rerandomizingall

weights when a new connection is added might also aid in avoiding local minima and thus finding smaller networks.
The results confirmed this and the same will be done here to see if it also applies to these heuristics. Note that
rerandomization only takes place during the growing phase.

After the network training has reached a certain error criterion, the growing process is stopped and the pruning
process starts. Pruning is done because the network might have added too many connections and the pruning
process might be able to remove these superfluous connections. It is generally thought that pruning these connec-
tions improves the generalization ability of the networks because superfluous connections deteriorate the network's
performance by adding non-informative data to the network. These extra connections can cause the network to
over-fit the training data which means that it might be optimal for the given training set but not for the unseen test
set. Using less connections also reduces the dimensionality and thus the possibilities of the network to over-fit the
training set. For pruning, the smallest variance method is used [Sietsma-91]. This is a very simple method, shown

to perform very well for high order perceptrons [Thimm-95.



4 Simulations
The construction of a higher order perceptron starts with initializing a network with bias connections only. The
training starts, and after a certain amount of training cycles when a mean squared error criterion for the training
error is not reached, an extra connection is added according to one of the heuristics discussed above. The point in
time to add a connection is determined by a minimal decrease in the error slope' which is calculated over a certain
amount of training iterations. This process is continued until the convergence criterion is reached (see table 1 for the
error criterion for each of the datasets). \\'lien the criterion is reached the pruning process starts using the smallest
variance method as discussed above. Connections are removed and a check is made to see if the error criterion
is still satisfied. If this is the case more connections are removed. However if the criterion is no longer satisfied,
training takes place until the criterion is satisfied again. The pruning stops when the training error does not reach
the criterion and the error slope is smaller than the minimal error slope.

Six real-world data sets were chosen, most of which were obtained (if not stated otherwise) from an anonymous-
ftp server at the University of California [Murphy-94], and which are described below. The name of the data set is
followed by the number of input and output variables of the problem, which also determines the number of input
and output units of the network.

Solar (12,1) contains sunspot activity for the years 1700 to 1990. The task is to predict the sun spot activity for
one of the years, given the preceding twelve years. The real-valued input and output data are scaled to the
interval [0, 1].

Glass (15,1) consists of 8 scaled weight percentages of certain oxides found in the glass, the ninth input is a 7-
valued code for the type of glass (eg.tableware, head lamps etc.). The input is scaled to [-1, 1]. The output is
the refractive index of the glass, scaled to [0, 1).

Wine (13,3) is the results of a chemical analysis of wines grown in the same region in Italy but derived from three
different cultivars. The analysis determined the quantities of 13 constituents found in each of the three types
of wines. The 13 real-valued input values are scaled to the interval [-1, 1], the output values are boolean and
scaled to [-1, 1].

Servo (12,1) was created by Karl Ulrich (MIT) in 1986 and contains a very non-linear phenomenon: predicting
the rise time of a servomechanism in terms of two (continuous) gain settings and two (discrete) choices of
mechanical linkages. The input is coded into two groups of five boolean values each, and two discrete inputs,
one assuming four, the other five values. The output is real-valued, and like all real-valued inputs, scaled to
the interval [0, 1].

Auto-mpg (7,1) concerns city-cycle fuel consumption of cars in miles per gallon, to be predicted in terms of three
multi-valued discrete and 4 continuous attributes. Input data is scaled to the interval [-1, 1], output to [0,1].

British Vowels (10,11) was created by Tony Robinson (CMU) and concerns speaker independent recognition of
the eleven steady state vowels of British English using a specified training set of lpc derived log area ratios.
Input data type is real and scaled to the input interval [-1, 1], output is boolean and scaled to [-1, 1].

Parameter settings were all taken from [Thimm-96] and are summarized in table 1. The benchmark name is
given followed by the number of connections in a fully connected second order network. For the maximum order 2
is taken because of computational constraints and in [Thimm-96J 2-nd order networks performed very well for these
benchmarks. For the training error criterion either the mean square error or a percentage of wrong classifications
tolerated on the training set is taken, depending on the kind of benchmark. The initial weight distribution is the
same for all data sets: uniform with initial weight variance iO and therefore not listed in the table. According to
[Thimm-96], for higher order perceptrons a very small value for the initial variance is better than a bigger value.

'The decrease in the error slope is determined by calculating the mean error over 20 iterations and comparing it to the mean of the
previous 20 iterations. Is the difference between the two smaller than a defined minimal decrease, a connection is added.



benchmark full learning[momentum activation error
2-nd rate function criterion

Solar 79 0.2 0.5 linear 0.05

Glass 121 0.5 0 stand. sigmoid 0.03
\Vine 273 2.5 0 tanh 10%

Servo 79 4.5 0 stand. sigmoid 0.05
Auto-MPG 28 0.1 0.3 linear 0.06
Vowels 616 0.005 0.3 tanh 10%

Table 1: Parameters for each dataset.

5 Results and Discussion
The results of the experiments using inputs multiplied with itself (in this case quadratic connections because the
order is two) will be compared to results found for experiments not using quadratic connections. In table 2 and
table 3 the results of the experiments on the size criterion are shown. Each experiment consists of 50 simulations
and the results for the size of the network are considered to be normally distributed. For each experiment a 95%
confidence interval is calculated to enhance comparison. The first column gives the name of the dataset. The second

column states if all weights were rerandomized after introducing a connection. The subsequent columns give the
outcome for the different heuristics used, first the outcome of the experiment without quadratic connections Q— and
subsequently with quadratic connections Q+. The format is: the mean size of the networks found for that specific

experiment followed by the confidence interval. Bold face indicates the smaller network when comparing Q+ to Q-
for the given heuristic. Bold face is only used when there is no overlap in the confidence interval.

bench- rerand.
mark weights= = heurisLic

Random Correlation 1
Variance Combined

Q- Q+ 1 Q- I

Solar yes
no

36.7*30
36.9± 2.6

40.8± 3.2
38.8± 3.1

15.6* 0.'
16.1± o.i

16.5± o.i
17.0± 0.0

17.2± o.
17.1* o.i

15.0± 0.2
15.1* o.i

16.1± o.i
16.1± o.i

12.2± o.
12.2* o.1

Glass yes
no

21.8± 2.1
24.3± i.a

21.7* 2.3
23.0* i.e

13.0* 0.0
13.0* o.o

15.0* o.o
10.0* o.o

51.0* 0.0
51.9* o.1

52.0± 0.0
53.0± o.i

19.0* 0.0
19.0± o.o

20.0* 0.0
20.0* 0.0

Wine yes
no

37.2* 2.0
29.5± i.e

38.6±
32.4* 2.3

20.3* o.'
17.2± 0.0

21.2* 0.3
19.6± 0.2

23.3* o.1
21.3* 0.2

23.9* 0.3
22.7* 0.1

18.0± 0.4
16.4* o.

21.0* 0.3
19.2* 0.3

Servo yes
no

33.6± 2.6
35.3* 2.6

36.0* 2.6
38.1* 2.9

23.0* 0.0
23.0* 0.0

28.0± 0.0
28.0* 0.0

23.1* 0.1
22.0* 0.0

38.4* 0.6
33.0± 0.1

24.0* 0.0
24.0* 0.0

31.0* 0.0
31.0* 0.0

Auto-
MPG

yes
no

20.9* 1.2
21.7* '.i

22.0* 1.4
21.4± 1.2

18.6* 0.2
19.0* 0.2

22.2± 0.1
22.2* 0.2

12.3* 0.1
12.6* o.'

19.4* 0.3
21.1± 0.1

12.3* 0.1
13.1± 0.2

18.6* 0.9
23.9* 0.3

Vowels yes
no

306.4* 2.8
436.6* 21.1

326.0* 21.3
398.9* 40.4

295.4* 1.5
292.4* 6.9

278.0* 2.6
285.0* 14.1

287.7* 3.4
392.2* .3

376.0* 0.0
—I—

307.7* 6.5
313.6* a.

258.0* 7.'
281.0* 9.8

Table 2: Summary of the results for each dataset after growing has taken place.

Tile results of tile experiments after the growing phase, table 2, show that using the quadratic connections have
a negative impact on the size of the resulting networks. Overall the tendency is that not using quadratic connections
produces smaller networks.

Tile few instances where Q+ gives better results using the correlation heuristic are for the Glass benchmark
without rerandomizing the weights and for the Vowels benchmark. The variance heuristic gives better results for
the Solar benchmark but the Vowels benchmark without using rerandomization of the weights gives no results. This
is probably due to the fact that the combination of the quadratic connections with the variance heuristic and no
rerandomizing of tile weights allows the network to get trapped in a local minimum, the network has insufficient
connections to get out of tile minimum and reach a desired solution. For the combined heuristic smaller networks
are found for the benchmarks Solar and Vowels.



bench-
mark

rerand.
weights

heuristic
Raodom Correlation Variance Combined

Q- Q+ Q- Q+ Q- Q+ Q- Q+
Solar yes

no
16.7± 1.6
19.4* 'a

15.6* t.s
19.0± s.

7.5* 0.2
13.0* 0.0

9.2± o.
14.7* 04

8.1* 0.2
7.9* o.i

9.9* 0.4
10.0± 0.4

11± o.i
11.7* o.

8.8± o.2
9.0± 0.1

Glass yes
no

10.9* I.]
12.1* 1

10.3* i.,
11.4* 1.1

5.0± o.o
7.1* o.a

6.2± 0.3
8.0± 0.1

10.0± 0.7
16.2± o.e

9.5± o.s
15.3± o.s

7.6± o.i
10.6± 0.6

7.8± 0.1
11.7± o.s

Vine yes
no

18.7± 1.3
19.5± 1.3

18.4* 1.1
21.4± 1.6

10.9± o.s
13.5* 0.3

11.1* 0.2
13.3* 0.3

13.4* o.
17.5± 0.8

15.8± 0.7
14.6* o.7

11.9± 0.1
13.0± o.s

12.0±0 1
14.6± 0.3

Servo yes
no

14.9* 12
18.4* 1.4

15.3* 1.4
18.9± 1.6

13.4* 0.2
10.0± 0.0

14.0± o.
9.8* 0.1

20.8* o.
17.2± o.i

18.0* 0.6
17.8± 0,7

14.7± o.
10.2± 0.1

11.9± o.i
9.8± 0.4

Auto-
MPG

yes
no

11.5* 1.0
12.1* 1.0

11.6± 1.0
12.1* 0.8

9.3* 0.2
10.7± 0.2

12.8* 0.3
10.6* 0.4

10.8* 0.3
10.5* 0.3

12.3± o.s
14.7± 0.2

10.6± 0.3
11.3± 0.2

11.5± 0.4
14.3* 0.2

Vowels yes
no

275.6± 36
229.2* 23 1

206.0± 17.7
229.6± 38.5

182.3* 11.8
210.2± ,.i

172.2* 24.0
194.6± 29.6

194.8* 1.9
245.0± a.'

260.9± 31.1
—/ —

212.6* 15.4
222.9± II 4

200.6* 27.3
195.8± 10.4

Table 3: Summary of the results fr each dataset after pruning has taken place.

Looking at the results for tile experiments after the pruning phase, table 3, Q— still tends toperform better than
Q-i- although the advantage is less than after the growing phase. The correlation and variance heuristic most often
give tile smallest networks when no quadratic connections are used. For the combined heuristic there is no difference,
Q— and Q+ both give the same amount of smallest networks.

In table 4 the results for tile generalization are given for the experiments. For most datasets the results are the
mean squared error on the test set. Datasets marked by a * use a percentage measure as error criterion on the test
set. The simulation results on the generalization are considered to be normally distributed and a 95% confidence
interval is given. The best generalization performance for a heuristic is printed in bold font. For data sets using the
mean square error this means that tile smaller the value the better. For data sets using a percentage the higher the
value tile better tile performance is. Bold font is only used when the confidence intervals do not overlap.

mark
rerand. heuristic
weights Random Correlation Variance Combined

Q- Q- I Q+ Q- ] Q+ I

Solar yes
no

0.0865± 00028
0.0918± 0.0031

0.0878± 0.0029
0.0937* 0.0031

0.0794* 0.0009
0.0816* 0.0005

0.0801± 0.0005
0.0814* 0.0005

0.0732± 0.0005
0.0731± 00003

0.0755* 0.0007
0.0758* 0.0006

0.0785* 0.0007
0.0796* 0.0007

0.0808* 0.0006
0.0809* o.ooos

Glass yes
no

0.0378* 0.0014
0.0359± 0.0013

0.0370* 0.0013
0.0370* 0.00 14

0.0367* 0.0003
0.0307* 0.0003

0.0372± 0.0003
0.0339* 0.0004

0.0444* 00008
0.0426* 0.0009

0.0452± o.ooos
0.0422* 0.0009

0.0431* 0.0003
0.0468* 0.0006

0.0433± 0.0003
0.0470* 0.0005

Wine - yes
no

0.749* 0.017
0.735± 0.016

0.752± 0.014
0.739* 0.017

0.791* 0.009
0.774± 0.003

0.795* 0.006
0.752± 0.007

0.808* 0.011
0.730* 0.004

0.801± 0.009
0.798± 0.012

0.759± 0.009
0.771± 0.005

0.766± 0.006
0.781* o.oos

Servo yes
no

0.0791± 00032
0.0921* 0.0004

0.0824± 0.0044
0.0917* 0.0051

0.0816* 0.0005
0.0852* 0.0004

0.0789± 0.0006
0.0856± 0.0004

0.0629± 0.0006
0.0653± 0.0006

0.0698* o.oooa
0.0657* 0.0005

0.0684± 0.0006
0.0813± o.ooos

0.0651± 0.0006
0.0747* 0.0013

Auto-
MPG

yes
no

0.0595± 0.0007
0.0598± 0.0009

0.0588* 0.0008
0.0593* 0.0008

0.0623* 0.0003
0.0628± 0.0003

0.0566* o.ooos
0.0566* 0.0001

0.0623* 0.0003
0.0653* 0.0003

0.0588± 0.0002
0.0696* 0.0003

0.0623± 0.0003
0.0631± 0.0003

0.0581* 0.0003
0.0593* 0.0002

Vowels yes
no

0.458± 0003
0.375± o.oo7

0.405± 0.020
0.417± 0.022

0.465* 0.003
0.453± 0.005

0.490* 0.012
0.503± 0.011

0.519* 0.003
0.489* 0.003

0.494± 0.014
—

0.498± 0.003
0.496± 0.004

0.496* 0.006
0.471* 0.008

Table 4: Summary of the results for the generalization performance of the final networks.

For the results of tile generalization the following has to be taken into account. In [Thimm-95] it was found that
the smallest network is not always the network with the best generalization because the generalization performance
shows an erratic behaviour during the pruning phase. Therefore it is possible that the method A that performs best
on tile size criterion might find a worse generalization compared to a method B, that finds bigger networks after
pruning. However a slightly bigger network for method A, buts still smaller than tile one for method B, might give
a comparable, or better generalization than the network found by method B. If, however, the smaller network also



finds the better generalization a better conclusion can be taken whether or not one heuristic performs better than
another taking both network size and generalization into account.

For the generalization performance there is not much difference between the performance of the networks con-
structed using quadratic connections and networks not using quadratic connections. \Vhen quadratic connections
are used, the generalization is better in 25 experiments and in 23 experiments when no quadratic connections are
used.

Besides looking at these results it is also interesting to know if connections with connections of the same input
are used in the final networks. First of all during the growing phase the quadratic connections are introduced in the
network which results in bigger networks. Secondly after pruning has taken place the networks still contain these
quadratic connections although without them better or at least similar results can be obtained. These quadratic
connections thus seem to impair the networks performance in the growing phase and pruning phase and does not
result in a better generalization performance.

6 Conclusions
In this paper the use of of a retriction on the order of a high order perceptron and thus on the total amount of
possible connections was investigated. \Vithout this restriction an infinite amount of connections would be possible,
see section 2, whereas with this restriction the order is bound by the amount of inputs. The number of possible
connections already is a problem for high order perceptrons and is the reason for finding methods to construct
partially connected networks. For the restriction to be a viable alternative the networks constructed using this
restriction will have to perform as well or better than networks constructed without using the restriction. For this
paper a restriction to the order was taken to be two and hence the term quadratic connections is introduced.

The results show that the use of quadratic connections generally gives worse results on the network sizes. Although
the differences are slight it clearly does not give smaller networks. The results on the generalization performance
is similar which implies that overall it can be concluded that the use of quadratic connections is not necessary and
that the restriction on the order can be used.

Acknowledgements
This research was made possible, in part, thanks to funding by FORMITT.

References
[Fiesler-92J E. Fiesler, Partially Connected Ontogenic High Order Neural Networks. Tech-Report 92-02, IDIAP, Martigny,

Switzerland, 1992.

[Fiesler-93] E. Fiesler, Minimal and High Order Neural Network Topologies. Proc. of the Fifth Workshop on Neural Networks,
pp. 173-178, San Diego, California, 1993.

[Fiesler-94.1] E. Fiesler, Neural Network Classification and Formalization. In J. Fuicher (ed.), Computer Standards 1 Inter-
faces, vol. 16, film. 3, special issue on Neural Network Standardization, pp. 231-239. North-Holland/Elsevier, 1994.
ISSN: 0920-5489

[Fiesler-94.2] E. Fiesler, Comparative Bibliography of Ontogenic Neural Networks. Proc. of the International Conference on
.4rtificial Neural Networks (ICANN 94), pp. 793-796, Sorrento, Italy, 1994.

[Fiesler-97] E. Fiesler and R. Beale, Handbook of Neural Computation. Institute of Physics and Oxford University Press, New
York, New York, 1997. ISBN: 0-7503-0312—3 and 0-7503-0413-8.

[Lee-86] Y. C. Lee, G. Doolen, H. Chen, T. Maxwell, H. Lee, and C. L. Giles. Machine Learning Using a Higher Order
Correlation Network.Physica D: Nonlinear Phenomena, volume 22, pages 276-306, 1986. ISSN: 0167-2789.

[Murphy-94] Data made available in 1994 by librarians P. M. Murphy and D. \V. Aha from the UCI Repos-
itory of Machine Learning Databases, a machine-readable data repository accessible via anonymous-ftp:
ftp: //ftp.ics.uci.edu/pub/machine_learning-databases.



[Prechelt-95] L. Prechelt. Adaptive Parameter Pruning in Neural Networks. Tech. Report 95-009, International Computer

Science Institute, Berkeley, California, 1995.

[Ruinelhart-86] D. E. Rumelliart, J. L. McClelland, and the PDP Research Group.Parallel Distributed Processing: Explo-

rations in the Microstructure of Cognition. The MIT Press, Cambridge, Mass., 1986. ISBN: 0-262-18120-7

[Sietsma-91] J. Sietsma and R. J. F. Dow. Creating Artificial Neural Networks that Generalize. Networks, vol.4, num.1,

pp.67-69, 1991.

[Thimm-95) G. Thimm and E. Fiesler. Evaluating Pruning Methods. 1995 International Symposium on Artificial Neural

Networks (ISANN'95,), pp. 20-25, 1995.

[Thimm-96] G. Thimm and E. Fiesler. \Veight Initialization in Higher Order and Multi-Layer Perceptrons. Accepted for
publication in IEEE Transactions on Neural Networks, 1996.

[Vjsscher-96.1J R. M. Visscher, E. Fiesler, and G. Thimm, Superceptron Construction. Proc. of SIPAR '96, pp. , Geneva,

1996.



Heuristics for the Ontogenic Construction of High
Order Perceptrons
R. M. Visscher and E. Fiesler

IDIAP, CP 592, CH-1920 Martigny, Switzerland
E-mail: Robbert©tcw2.ppsw.rug.nl

http://www.idiap.ch/nn.html

Abstract
The major drawback of high order perceptrons is the exponential number of possible connections. Partially

connected networks offer an answer to this problem and can be constructed using ontogenic methods. In

this paper three heuristics for determining which connection to add to the network are investigated. These
heuristics are based on maximizing the information content by starting with adding connections from an input
that might minimize the error most. The heuristics are the correlation coefficient, mutual information and a
method based on the Wiener-Hopf equations.

Mutual information measures the general dependency between two variables, contrary to only the linear
dependencies for the correlation coefficient. The heuristics based on the Wiener-Hopf equations not only take
into account the correlation between the input and the output of a connection, but also between the inputs
of the different connections.

Keywords: high order perceptrons, growing, pruning, generalization, ontogenic neural networks , partially
connected networks, input selection, rerandomization, Mutual Information, Wiener approximation

1 Introduction
High order perceptrons are a relatively new kind of neural network that have advantages over the popular
multilayer perceptrons. An important problem for the practical application of multilayer perceptrons is that
they require knowledge of the problem to be solved and knowledge of neural networks. One of the biggest
problems is finding the number of hidden layers and number of neurons per hidden layer. This problem makes
the usage of multilayer perceptrons very user-unfriendly.

A promising way of selecting the number of hidden layers and neurons per hidden layer is to make use of the
network's ability to adapt and to let it find the topology itself. The hidden layers are constructed by either adding
units to the network or deleting units from the network whenever necessary. These methods are called on! ogenic
methods [Fiesler-97] and often find smaller and thus more efficient networks. However the ideal ontogenic method
is not found yet. Moreover, these ontogenically constructed multilayer perceptrons still have hidden layers which
make it hard to analyse the network's performance. Another type of network, the high order perceptron, does
not make use of hidden layers but combines inputs by so-called high order connections. A high order connection
combines inputs using a splicing function, which, in our case, is a multiplication. This way of modeling the
problem resembles a Taylor series expansion and is known in signal processing as a Volterra filter. The output
of the network, y, can be written as given in equation 1:

Yi=(wo+>wixi+wiixixi+>kw$ikxixixk+...) (i.j) (1)

In this equation, is the activation or transfer function, y is the i-th output, W the weight assigned to
a connection, and x1 is the i-th input. The total number of possible combinations is limited as high order
connections need not use the same input more than once [Visscher-97.2]. The first two terms of this equation are
the same as for a standard perceptron, the bias W0 and the first order connections > W1x,. The next terms are
the second, third, and higher order connections.

In these high order perceptrons only an input and an output layer are required, the sizes of which are com-
pletely defined by the problem. This makes these networks much easier to construct than multilayer perceptrons.



Having no hidden units also means that a simpler learning rule can be used. The learning rule for standard
perceptrons is the delta-rule which has been extended to the generalized delta-rule, or backpropagation learning
rule, for multilayer perceptrons. The higher order perceptrons do not make use of hidden units which means that
the delta-rule can be used as a learning rule. However, there is a tradeoff, because for high order perceptrons the
order of the problem has to be estimated.

Using higher order connections has the disadvantage that an enormous amount of connections are possible
because in a fully connected network there is an exponential relationship between the number of connections
and the number of neurons in the input layer [Fiesler-97]. However a fully connected network is not needed, as
partially connected networks perform very well [Lee-86]. In fact, a network is needed that is just big enough to
map the data; in [Fiesler-93] these networks are called minimal networks. For small, theoretical problems such
as the XOR-problem [Rumelhart-86], the minimal topology can be found and proven to be the smallest. For real
world problems used in this paper, the minimality of a topology can not be proven, so the topologies sought are
to be as small as possible.

As with multilayer perceptrons, the construction of these networks can be done using ontogenic methods,
letting the network adapt and learn the problem-specific network topology. Existing growing methods for mul-
tilayer perceptrons primarily add units to the hidden layers, which means that these methods are not useful for
higher order perceptrons. On the other hand, pruning methods for multilayer perceptrons delete units and/or
connections from the network which means that they can also he used for pruning higher order perceptrons
[Thuinm-95].

In earlier investigations three simple heuristics, among which the correlation coefficient, for determining which

connections to add have been used as a basis for a simple a priori growing method [Visscher-96.1]. The heuristics
used are based on the fact that connections that are expected to decrease the error of the network the most
need to be added to the network first. The heuristics investigated in this paper are based on the same principle
and are the Mutual Information measure and a method derived from a linear approximation of the higher order
perceptron, the Wiener filter. The basics of these heuristics will be discussed first. Next, the results for the
different heuristics will be discussed in relation to the size of the network found; the smallest one being the best.
The size however is not the only important criterion. The goal of a neural network is to be able to work well with

new data and to apply the learned relationships to new situations. This ability is known as the generalization
ability and is measured by the error of the network on so called test data.

2 Correlation and Mutual Information
A well known statistical measure to quantify the dependency between two variables is the coefficient of correlation.
This coefficient gives the proportion to which changes in the first variable can be attributed to the second variable.
The coefficient is always between —1 and 1 where —1 indicates that if the first variable increases the second
variable decreases, 1 indicates that when the first variable increases the second variable also increases. Zero
correlation indicates that the second variable remains constant when the first variable is changed. The coefficient

of correlation p is defined as:

- n(xy)-(>x)(>y)
2

— — (>x)2/n(>y2) — (y)2
An input that has a high correlation with the output, is likely to give more information concerning the output

than an input with zero correlation. In the neural network context, this means that a connection connecting an
input that has a high correlation with its output is preferred over a connection with a lower correlation. For
neural networks however, a high but negative value for the correlation coefficient has the same effect as a high
positive value, because the weights assigned to the connections in a network can have negative values.

However, correlation only computes the linear dependency between two variables where there might be a
nonlinear dependency. A measure of dependency which takes this nonlinearity into account is the mutual infor-

mation. This is a measure from information theory which deals with the question of the amount of information
associated with an event [Shannon-49].



The mutual information measure has been used in neural networks before, especially in the preprocessing

stage of input reduction. In [Battiti-94J the mutual information as a method for input reduction is discussed and
compared to correlation. Since mutual information measures a more general dependency between two variables,

this implies that when two variables are linearly independent, they might still have a more general nonlinear
dependency. A description of the mutual information will be given next.

The idea behind information theory is that rare events convey much information and common events a small

amount. The amount of information conveyed by an event i is considered to be log(l/P(i)), where P(i) is the
probability of that event occurring. When there are a finite number of output classes for a certain problem
and the probability of the different output classes c = 1, ..., N of C occurring is P(c), then the initial amount of
uncertainty about the output class is known as the eniropy:

H(C) = —P(c)log(P(c)) (3)

\Vhen a certain input feature f = 1, ..., N of F is known the remaining uncertainty is defined by the conditional

entropy H(CIF). This conditional entropy can be written as a combination of the joint entropy H(C, F) and the

entropy H(F). The definition of the joint entropy is the same as for the entropy, only for a combination of two

variables.

H(CIF) = H(C, F) — H(F) (4)

Furthermore the joint entropy never exceeds the sum of the individual entropies:

H(C, F) < H(C) + H(F) (5)

\Vhen combining equations 4 and 5 it can be seen that the remaining uncertainty about C when F is known

never exceeds the initial uncertainty of C, H(CIF) < H(C). The mutual information I(C, F) is then defined as
the amount by which the knowledge provided by the input feature decreases the initial uncertainty H(C).

I(C, F) = I(F, C) = H(C) — H(CIF) (6)

\Vliich can also be written as:

I(C,F) = I(F,C) = P(c,f)logp7) (7)

\Vhere P(c) is the probability density for class c of C and P(c, f) is the joint probability density for class c

and input feature f.

3 Wiener Approximation
The basic idea from the heuristics discussed above is that a connection to be added to the network should provide

as much information as possible. For this reason the correlation and the mutual information are introduced.

However, these methods do not take into account the possibility that two features might convey the same or

a large part of the same information. Introducing connections that add similar features does not add much
extra information to the network. Hence, besides providing a lot of information a feature should also add new
information to the network, which means that the dependencies between the features will also have to be taken

into consideration.
The intuitive idea discussed above can also be found in the field of linear adaptive filters using a linear neuron

model. These networks consist of input nodes, which represent the different input features {x}1j...N and are
connected to an Adder node by a weight. The Adder node sums the weighed inputs to produce an output y. The
relation between input and output is given in equation 8. By changing the weights of this network the filter can
decrease the difference between the desired response d and the system output y. The goal is to minimize this



difference and hence obtain the optimal settings of the weights. An optimal solution to this problem is known as
the Wiener filter.

y = W1x1 (1-st order) (8)

This filtering problem can easily be extended to higher order perceptrons with a linear activation function.
Equation 8 can be viewed as a first order connection of a high order perceptron as described in equation 1. A
higher order connection can be viewed as an artificial input constructed from the real inputs x1 . The relation
between input and output for a second order connection is given in equation 9.

y = W,jxjx (i i) (2-nd order) (9)

i ,j = 1

A high order connection is a multiplication of two or more input features resulting in an alternative input
feature for the network. Equation 9 can simply be seen as a special case of equation 8 where the subscript
i is changed to incorporate all the new higher order features or connections. i = 1 ,..,.N is changed to i =

N + 1 1!. Wi can thus be either a weight belonging to a first order connection or a weight belonging to

a higher order connection. For x, the same applies, it can be a first order feature or high order feature comprising
two or more first order features features. The inequality i j is the restriction applied to high order connections
[Visscher-97.2].

The error signal is defined as the difference between the desired response d and the actual response y:

e=d—y. (10)

To be able to change tile weight in order to decrease the difference between the desired response and the
system output, a performance measure has to be introduced. As a performance measure the mean-squared error

is defined:

J = E[e], (11)

Where E is the statistical expectation function.
Finding the smallest mean-squared error for this linear approximation of high order networks can be done

using tile \Viener-Hopf equations [Haykin-94]. Therefore, the equations 8, with the summation extended to M,
and 10 are substituted into equation 11:

M M M
J = E[d1 — 1V1E [x1d] + >> lV1W2E[x1xJ. (12)

i=1 i=1 1=1

The summation and weights can be taken out of the expectations because the expectation is a linear operator.
The last part of the equation should not be confused with a higher order connection comprising two inputs. It
is rather a combination of two input features to be compared which could be either a first order input feature or
a higher order one.

Equation 12 can be rewritten after taking following definitions into account. E[d9 is the mean-square value of

the desired output and denoted by s(d). E [x1d] is defined as 1/N '' x(n)d(n), which is the cross-correlation
between the desired output and an input and denoted by r(d, x1) and E [xx1] is then the auto-correlation between
two input signals and denoted by r(x, x1).

M M M
J= s(d)_>Wjr(d,xj)+>WiWjr(Xi,Xj) (13)

i=1 1=1 j=l

The minimum value for J is determined by a gradient descent with respect to the free parameters in the
equation, the weights. For this value for J the optimal settings of the weights will thus be found.



\Vhen growing a higher order perceptron, not all input features are connected to the output and hence

are not used in the calculation of the mean squared error. This nieans that besides the weights W1 the features
also become free parameters and optimal features can thus be defined. From equation 13 it can be seen that,
irrespective of the weights, a feature that has a high cross-correlation with the output will decrease J more
than a feature with a smaller value for the cross-correlation. However, the last term indicates that a large auto-
correlation with other features in the network has an increasing effect on J. Hence for a feature to have maximal
effect it should be correlated with the output and uncorrelated with the features already in the network.

4 Description of the Ontogenic Methods
The process of constructing a network using ontogenic methods starts with defining an initial topology. Several
different possibilities exist ranging from a topology with only the bias connection(s) to a topology which contains
all possible connections up to a certain order. In this paper, a bare topology with only bias connections is chosen

as an initial topology. This bare topology is too small to learn the input-output combinations, connections have to

be added. The addition of connections means that the network uses new information which reduces the squared

error in the training set. To be as efficient as possible, a connection is needed that adds as much new information

to the network as possible.
Connections are added according to an a priori growing method which gives an evaluation of a connection

using a certain heuristic. The connections are ordered such that the best (relative to the heuristic) connections
are added first. Hence, the heuristics need to give an indication of the amount of information contained in an

input that will be connected to the output for a certain connection. This evaluation will have to be done for all
connections and because the total amount of possible connections is enormous, three simple heuristics were used
in [Visscher-96.1]. Namely based on the variance of the input, the correlation between the input and the output,
and a combination of these two. The conclusion from that paper was that the best performing heuristic was the

one based on correlation. The heuristics above were all compared to the reference random adding of connections.

In this paper the correlation heuristic will be used besides the random adding of connections.
In this paper three new heuristics will be introduced: one based on the mutual information and two based on

the \Viener-Hopf equations; see sections 2 and 3. The implementation of these methods will be discussed here
together with the implementation of the correlation heuristic.

Correlation

For the correlation heuristic the correlation coefficients between the input and output variables of the data, and
hence the corresponding connections, are calculated see equation 2. For first order connections this is equal to
the correlation between the corresponding input variable and output variable. For a second order connection the
corresponding input variables are first multiplied, and the result of the multiplication is used to calculate the

correlation coefficient:

= CORR(X, Y) Pri,x3-...y = CORR(X1 * 2, Y). (14)

In equation 14 the denotes the correlation coefficient for a first order connection from x to y, the capital
X denotes the data for input, x, and Y denotes the data for the output of the connection, y. Similarly

is the correlation coefficient for a second order connection with inputs x1 and x2.

Mutual Information
The calculation of the mutual information for a connection is done in a similar fashion as described above for the
correlation heuristic. The implementation of the mutual information is similar to the implementation described
in [Battiti-94] which also contains a proof for the reliability of this approach.

For the calculation of the mutual information, see section 2, the probability densities, P(c), P(f) and P(c, f)
are needed. These probability densities will have to be estimated from samples contained in the data sets and
can be obtained using histograms. If there are N samples, the number of times that a sample belongs to a certain



interval is counted and a value n is determined for that interval. This is done for all intervals for both input and
output and from these values an approximation of the probability density can easily be calculated by dividing
the number of instances in an interval by the total amount of samples P = n/N.

To give a good approximation using histograms, a certain amount of intervals need to be taken. In [Battiti-94]
good results were obtained using 10 intervals which is also taken for this implementation. The input and output
range are divided into 10 equal parts and the amount of data points falling into each interval is determined. For
the input features the intervals can be denoted by nj; I = 1...10 where nj denotes the amount of instances in a
certain interval. Similarly for the output classes n. The value for the combined occurrences flcj is calculated in
a similar way but for a two dimensional histogram. The probability densities are simply calculated by dividing
by the total amount of samples N, Pj = nj/N,P = ne/N, and P1 = nj/N.

The calculation of the Mutual Information is straightforward once the different probability densities have
been calculated. The summations in equation 7 are taken over the ten different input and output intervals.

Wiener Approximation
For the implementation of the heuristics based on the linear Wiener filter, see section 3, the cross- and auto-
correlations have to be calculated for the different connections. However, when comparing correlations, normal-
ization is necessary and hence for the practical implementation of these heuristics the correlation coefficients will.

be used. The calculation of these correlation coefficients is discussed above. Furthermore it has to be used in an
a priori growing method, constraining the implementation possibilities. An approximation will therefore be used

here.
The calculation of a value for a connection according to the \Viener heuristic comprises several steps. First

of all the best connection to add to the network has to be found. For this reason the connections will first be
sorted according to the correlation heuristic ensuring that the most informative connections will be added first.
To verify whether connections add new information, their correlation with the preceding connections in the list
is calculated. For every connection a new value has to be determined based on the how much it correlates with
the preceding connections. For that reason a punishment term is introduced that is defined as the mean of the
correlation coefficients between the input of the connection in question and all its preceding connections divided

by two, see equation 15.

Wr,_y — .p(X1,Xj) j<i) (15)

This value is directly taken from the equation 13. A connection that is highly correlated with preceding
connections will thus get a high punishment term. This punishment term is then subtracted from the value of
the correlation between input and output of the connection in question. After this procedure is done for all
connections the list is reordered.

In fact two strategies can and have been used for calculating the punishment term. In calculating the
punishment term all correlations can be taken, another possibility is to take only the positive correlations between
the inputs. The reason for exploiting both these methods is that a connection that has a negative correlation
with another connection might give new information, which is still desired for the network. The two different
methods will be indicated with lViener approximation and Wienerpos approximation respectively.

As described in [Visscher-96.1], besides using the addition of connections to avoid local minima, rerandomizing
all weights when a new connection is added might also aid in avoiding local minima and thus finding smaller
networks. The results confirmed this and the same will be done here to see if it also applies to these heuristics.
Note that rerandomization only takes place during the growing phase.

After the network training has reached a certain error criterion, the growing process is stopped and the
pruning process starts. Pruning is done because the network might have added too many connections and the
pruning process might be able to remove these superfluous connections. It is generally thought that pruning
these connections improves the generalization ability of the networks because superfluous connections deteriorate
the network's performance by adding non-informative data to the network. These extra connections can cause



the network to over-fit the training data which means that it might be optimal for the given training set but not
for the unseen test set. Using less connections also reduces the diniensionality and thus the possibilities of the
network to over-fit the training set. For pruning, the smallest variance method is used [Sietsma-91]. This is a
very simple method, shown to perform very well for high order perceptrons [Thimm-951.

5 Simulations
The construction of a higher order perceptron starts with initializing a network with bias connections only. The
training starts, and after a certain amount of training cycles when a mean squared error criterion for the training
error is not reached, an extra connection is added according to one of the heuristics discussed above. The point
in time to add a connection is determined by a minimal decrease in the error slope' which is calculated over a
certain amount of training iterations. This process is continued until the convergence criterion is reached (see
table 1 for the error criterion for each of the datasets). \Vhen the criterion is reached the pruning process starts
using the smallest variance method as discussed above. Connections are removed and a check is made to see if
the error criterion is still satisfied. If this is the case more connections are removed. However if the criterion is
no longer satisfied, training takes place until the criterion is satisfied again. The pruning stops when the training
error does not reach the criterion and the error slope is smaller than the rnininial error slope.

Five real-world data sets were chosen, most of which were obtained (if not stated otherwise) from an
anonymous-ftp server at the University of California [Murphy-94], and which are described below. The name of
the data set is followed by the number of input and output variables of the problem, which also determines the
number of input and output units of the network.

Solar (12,1) contains sunspot activity for the years 1700 to 1990. The task is to predict the sun spot activity
for one of the years, given the preceding twelve years. The real-valued input and output data are scaled to

the interval [0, 1].

Glass (15,1) consists of 8 scaled weight percentages of certain oxides found in the glass, the ninth input is a
7-valued code for the type of glass (eg.tableware, head lamps etc.). The input is scaled to [-1, 1J. The
output is the refractive index of the glass, scaled to [0, 1].

Wine (13,3) is the results of a chemical analysis of wines grown in the same region in Italy but derived from
three different cultivars. The analysis determined the quantities of 13 constituents found in each of the
three types of wines. The 13 real-valued input values are scaled to the interval [-1, 1], the output values
are boolean and scaled to [-1, 1].

Servo (12.1) was created by Karl Ulrich (MIT) in 1986 and contains a very non-linear phenomenon: predicting
the rise time of a servomechanism in terms of two (continuous) gain settings and two (discrete) choices
of mechanical linkages. The input is coded into two groups of five boolean values each, and two discrete
inputs, one assuming four, the other five values. The output is real-valued, and like all real-valued inputs,
scaled to the interval [0, 1].

Auto-mpg (7,1) concerns city-cycle fuel consumption of cars in miles per gallon, to be predicted in terms of
three multi-valued discrete and 4 continuous attributes. Input data is scaled to the interval [-1, 1], output
to [0,1].

Parameter settings were all taken from [Thimm-97J and are summarized in table 1. The benchmark name
is given followed by the number of connections in a fully connected second order network. For the maximum
order 2 is taken because of computational constraints and in [Thirnm-97] 2-nd order networks performed very
well for these benchmarks. For the training error criterion either the mean square error or a percentage of wrong
classifications tolerated on the training set is taken, depending on the kind of benchmark. The initial weight
distribution is the same for all data sets: uniform with initial weight variance iO and therefore not listed in

'The decrease in the error slope is determined by calculating the mean error over 20 iterations and comparing it to the mean of
the previous 20 iterations. Is the difference between the two smaller than a defined minimal decrease, a connection is added.



the table. According to [Thimm-91, for higher order perceptrons a very small value for the initial variance is
better than a bigger value.

rbenclimark
[

full
2-nd

learning
rate

momentum activation
function

error
criterion

Solar
Glass
\Vine
Servo
Auto-MPG

79

121

273
79
28

0.2
0.5
2.5
4.5
0.1

0.5
0

0

0

0.3

linear
stand. sigmoid
tanh
stand. sigmoid
linear

0.05
0.03
10%
0.05
0.06

Table 1: Parameters for each dataset.

6 Results and Discussion
In table 2 the results of the experiments on minimizing the size are shown. Each experiment consists of 50
simulations and the resulting network sizes are considered to be normally distributed. For each experiment a
95% confidence interval is calculated to enhance comparison. The first column of table 2 shows the name of
the dataset. The second column states if all weights were rerandomized after introducing a connection. The
subsequent columns give the outcome of the different heuristics with the network size after growing has taken
place and the network size after pruning has also taken place. The format is: the mean size of the networks found
for that specific experiment followed the confidence interval. The different heuristics are corr. indicating the
correlation heuristic, MI indicating the mutual information heuristic, Wienerpos indicating the Wiener heuristic
only using positive correlations between the inputs for the punishment term and Wiener finally indicates the
Wiener heuristic using all correlations between the inputs to calculate the punishment term. Bold font indicates
the smallest network after growing and after pruning for either with rerandomizing or without rerandomizing,
for a benchmark. Bold font is only used when there is no overlap in the confidence intervals.

bench-
mark

rerand.
weights

[
heuristic

after
[

network size after growing
Wienerdom corr. MI \Vienerpos Wiener random corr.

Solar yes
no

36.7±3.0
36.9±2.6

15.6±o.i
16.1±0.1

16.0±0.2
16.3±0.2

16.1±o.i
16.1*o.i

20.4±o.2
19.1±o.i

16.7*'..
19.4±1.9

7.5±0.2
13.Ojo.o

10.O±o.2
11.4±o.3

9.8±0.2
9.1±o.i
5.0±o.o

11.7±0.4
11.1±0.3
5.0±o.oGlass yes

no
21.8±2.1
24.3±i.s

13.0±o.o
13.0*o.o

15.0±o.o
15.Ojo.o

7.0±o.o
7.1±o i

12.0*o.o
12.0±o.o

10.9±1.2
12.1±1.2

5.O±o.o
7.1±o.i

5.0±o.o
10.0±0.0 4.0±o.o

10.4±o.i
4.1*02
12.0±o.2\Vine yes

flO

37.2±2.0
29.5±1.6

20.3±o i
17.2±o o

32.0±o.o
24.4±0.2

15.8*0.4
12.0±o.o

16.7±0.3
12.5±o.i

18.7±1.3
19.5*1.3

13.7±o.i
12.1±0.2

11.6±0.2
16.4±o.s 9.5±o.i

10.0±o.o
10.0±0.1
9.O±o.oServo yes

no
33.6±a.e
35.3±2..

23.0±o.o
23.0±o.o

22.0*o.i
22.1±o.i

12.0±o.o
12.0±o.o

15.0±o.o
15.0±o.o

14.9±1.2
18.4±1.4

13.4*0.2
10.0±o.o

11.1*o.z
12.0±o.s 10.0±o.o 8.6±0.3

13.4±0.4Auto-
MPG

yes
no

20.9±1.2
21.7±1.1

18.6±0.2
19.0±0.2

15.0±0.2
15.9±0.2

17.2±0.2
18.0±0.3

18.0±0.4
18.5±0.4

11.5±1.o
12.1*i.o

9.3±0.3
10.7*0.2

9.2±o.i
11.1±o.i 12.5±0.4 14.2±o.a

Table 2: summary of the results on size for each dataset.

First of all, the results on the network sizes for the mutual information heuristic will be compared to the
random adding of connections and the correlation heuristic. In table 2 it can clearly be seen that the network
sizes after the growing phase are all smaller than the networks constructed by randomly adding connections.
However when comparing to the correlation heuristic there is not much difference in tile network sizes. For Glass
and Wine the correlation heuristic performs better and for Servo and Aulo-mpg the Mutual information produces
smaller networks. The differences are only slight except for the Wine benchmark.



The performance of mutual information on the final network sizes after pruning is also comparative to the
correlation heuristic and no clearly better method can be deterniined. Hence, although the mutual information
can define nonlinear dependencies, it does not seem to give clearly better results than the linear dependencies
given by the correlation.

After the growing phase, the Wienerpos and Wiener heuristics always find smaller networks than randomly
adding connections. When comparing to the correlation and mutual information heuristic the networks found
with the heuristics based on the Wiener-Hopf equations are significantly smaller for Glass, Wine and Servo. For
Solar the networks are comparable, for Auto-mpg they are comparable to correlation but slightly bigger than for
the mutual information heuristic. The results of the heuristic that only uses the positive correlations between
the inputs for determining the punishment term, Wienerpos, clearly outperforms the heuristic that takes all

correlations into account. It always finds smaller networks.
After the pruning phase the Wiener heuristics still outperforms the correlation and Mutual information

heuristics. The advantage has slightly decreased, however the Wiener heuristics still find considerably smaller
networks for 6 experiments, mainly for the same benchmarks as after growing. For the Solar benchmark without
rerandomizing all weights the \Viener heuristic using only positive correlations also did considerably better than
either correlation or mutual information. However the results for the Auto-mpg benchmark are very poor contrary
to the other results obtained. Overall, the Wienerpos heuristic is able to find the smaller networks after growing
as well as after pruning for these data sets.

The advantage found for rerandomizing of weights in [Visscher-96.1] and [\'isscher-97.2] for the correlation
heuristic was not found for the Wiener heuristics. There seems to be a slight advantage for not rerandomizing the
weights. However the results for the Mutual Information do show an advantage for rerandomizing the weights.

In table 3 the results for the generalization performance are given. The results are the mean square errors
except for the Wine benchmark indicated by a *, where it is the amount of correctly classified instances. The
resulting generalization performances of the simulations are considered to be normally distributed and a 95%

confidence interval is given to enhance comparison. Bold font indicates the best performance for that benchmark
for both with and without rerandomization and italics indicates the second best performance on generalization.
Bold font and italics are only used when there is no overlap in the confidence intervals.

bench-
mark

rerand.
weights

heuristic
Random Correlation MI Wienerpos Wiener

Solar yes
no

0.0865*o.oo2l
0.0918±0.0031

0.0794±0.0009
0.0816±o.ooos

0.0798±0.0004
0.0806*0.ooo6

0.0885*0.0007
0.0826±0.0007

0.0876*o.ooo,
0.0921±o.ooo9

Glass yes
no

0.0378*o.ooi
0.0359*0.0013

0.0367*0.0003
0.0307*o.ooo3

O.0380jo.oooi
0.0398*0.0004

0.0307*o.oooi
0.0807±o.oooi

0.0864±0.0002
0.0296*o.oooi

Wine yes
no

0.749±o.oiy
0.735±0.016

0.791*o.ooo
0.774*0.003

0.701±o.ooo
0.738±o.oo

0.841±o.ooy
0.879*0.004

0.85±o.oo
0.886±0.004

Servo yes
no

0.0791 ±o.oo
0.0921*o.oooi

0.081 6±o.ooos

0.0852jo.ooo4
0.0679±o.ooo2
0.0717±o.ooo,

0. 0742*o.ooo3
0.0748*0.0003

0.0782±o.oooi
0.0771±0.0003

Auto-
MPG

yes
no

0.0595*0.0007
0.0598*0.0009

0.0623±0.0003
0.0628*0.0003

0.0625±0.0003
0.0624*0.0003

0.0615*0.0003
0.0621±0.0004

0.0619*0.0004
0.0618*0.0004

Table 3: Summary of the results for the generalization performance of the final network after pruning.

For the results on generalization the following has to be taken into account. In [Thimm-95J it was found
that the smallest network is not always the network with the best generalization because the generalization
performance shows an erratic behaviour during the pruning phase. It is therefore possible that a method A
that performs best on the size criterion might find a worse generalization as compared to a method B that finds
bigger networks after pruning. However, a slightly bigger network for method A, but still smaller than the one for
method B, might give a comparable or better generalization than the network found by method B. If, however,
the smaller network also finds a better generalization, a better conclusion can be reached whether or not one



heuristic performs better than another taking both network size and generalization into account.
The results for mutual information on the generalization are mixed when compared to the correlation heuristic.

Although it gives best performance on generalization in four experiments, in three of those experiments the
network found is also bigger than when using correlation. In all other experiments the results are poorer and
furthermore the generalization performance is more often worse than the generalization performance for the
random adding of connections, besides Auto-mpg also for the Glass and lVine benchmarks.

The two methods using the Wiener approximations show satisfactory results for the generalization perfor-
mance. In four of the five experiments that the Wienerpos heuristic finds the smallest networks it also finds
the best or second best generalization. This is for the benchmarks Glass and Wine. The results for the \Viener
heuristic is comparable to the \Vienerpos results for generalization but the Wiener heuristic performs extremely

poor on the Solar benchmark, the network size is the biggest and the generalization performance is even worse
than for the random adding of connections. On generalization the Wienerpos heuristic seems to perform best of

all five heuristics.

The smallest benchmark, Avto-mpg, gives some odd results. The random addition of connections gives smaller
networks than the \Viener heuristics and the generalization for the random addition of weights is the best overall.
One reason could be that the maximum second order network of this benchmark is not much bigger than the
network size after growing using the random heuristic. The fact that the random adding of connections lets the
network grow quite big as compared to the total amount of connections possible, increases the chance of better
connections getting into the network. During pruning, these 'better' connections are kept in the network and a
good performance on size and generalization is ensured. For bigger problems the results for the random adding
of connections are far worse.

7 Conclusions
In this paper, several heuristics were reviewed for their merit as a basis for a growing algorithm for higher order
neural networks. In earlier papers by \'isscher et al. it was concluded that the correlation heuristic performs
satisfactory and in this paper this heuristic has been compared to some more elaborate ones. There is however a
trade off between the computational complexity of the growing heuristic and its usefulness for a neural network
growing method. A more complex method has to perform better than a simple method for it to be an acceptable
alternative. In this paper a simple method of a priori computation of the ordering of the connections was used

to get a good idea of how the different methods perform. Depending on the final growing method implemented
one can choose either an efficient heuristic as correlation or a less efficient but better performing heuristic like
\Viener approximation.

The first heuristic to be compared to the correlation heuristic was the mutual information heuristic which
also takes the nonlinear dependencies between different variables into account. This method is however more
complex than the simple method of correlation which means that if it is to be an alternative it has to increase
performance on the size of the final network found and the generalization capability of this final network. There
is however no clear sign of an increase in performance even though the method is more elaborate.

The heuristics based on the \\TienerHopf equations improve performance considerably, especially the heuristic
that only uses the positive correlations for the calculation of the punishment term. First of all, after the growing
phase the networks are considerably smaller, making the growing procedure more efficient. Secondly, the final
networks after pruning are smaller than for both correlation and mutual information. Lastly, this method also
performs well on the generalization performance. The drawback is that the method is considerably more complex
than either correlation or mutual information. As a heuristic for an a priori growing method it might therefore
not be very suitable, but as a heuristic for an efficient growing method it is.

For further investigations into heuristics for growing methods, a Wiener heuristic based on the mutual infor-
mation instead of the correlation looks interesting. As mentioned earlier one of the problems with the correlation
heuristic is the fact that it only takes linear dependencies into account. The mutual information heuristic how-
ever, did not increase performance as compared to the correlation heuristic, but a \Viener heuristic based on



mutual information might prove to work even better than a Wiener heuristic based on correlation.
Furthermore, a growing method is needed that is not based on the a priori calculation of the value for all

weights. A possible method might be to randomly choose a connection and verify that the heuristic value for
this connection is above a certain threshold. If so, the connection can be added to the network, otherwise take
another connection and do the same thing. Such a growing method is far more efficient and would allow for
computatioiially complex heuristics.

Acknowledgements
This research was made possible, in part, thanks to funding by FORMITT.

References
[Battiti-94] R. Battiti. Using Mutual Information for Selecting Features in Supervised Neural Net Learning. IEEE Trans-

actions on Neural iVet works, vol. 5, no. 4, July 1994.

[Fiesler-93] E. Fiel1 Minimal and High Order Neural Network Topologies. Proc. of the Fifth Workshop on Neural
Networksl73-l78, San Diego, California, 1993.

[Fiesler-94.1] E. Fiesler, Neural Network Classification and Formalization. In J. Fuicher (ed.), Computer Standards €.4

Interf aces, vol. 16, num. 3, special issue on Neural Network Standardization, pp. 231-239. North-Holland/Elsevier,

1994. ISSN: 0920-5489.

[Fiesler-94.2] E. Fiesler, Comparative Bibliography of Ontogenic Neural Networks. Proc. of the International Conference
on Artificial Neural Networks (ICANN 94), pp. 793-796, Sorrento, Italy, 1994.

[Fiesler-97] E. Fiesler and R. Beale, Handbook of Neural Computation. Institute of Physics and Oxford University Press,

New York, New York, 1997. ISBN: 0-7503-0312—3 and 0-7503-0413-8.

[Haykin-94] S. Haykin. Neural Networks; A Comprehensive Foundation. MacMillan College Publishing Company, New

York, New York, USA, 1994. ISBN: 0-02-352761-7.

[Lee-86] Y. C. Lee, G. Doolen, H. Chen, T. Maxwell, H. Lee, and C. L. Giles. Machine Learning Using a Higher Order
Correlation Network. Physica D: Nonlinear Phenomena,

[Prechelt-95] L. Prechelt. Adaptive Parameter Pruning in Neural Networks. Tech. Report 95-009, International Computer
Science Institute, Berkeley, California, 1995.

[Murphy-94] Data made available in 1994 by librarians P. M. Murphy and D. \V. Aha from the UCI Repos-
itory of Machine Learning Databases, a machine-readable data repository accessible via anonymous-ftp:
ftp://ftp.ics.uci.edu/pub/machinelearning-databaseS.

[Rumelhart-86] D. E. Rumelhart, .1. L. McClelland, and the PDP Research Group.Parallel Distributed Processing: Explo-
rations in the Microstructure of Cognition. The MIT Press, Cambridge, Mass., 1986. ISBN: 0-262-18120-7.

[Shannon-49] C. E. Shannon and \V. Weaver, The Mathematical Theory of Communication. University of Illinois Press,

Urbana, Illinois, 1949.

[Sietsma-91] J. Sietsma and R. J. F. Dow. Creating Artificial Neural Networks that Generalize. Neural Networks, vol.4,

num.1, pp.67-69, 1991.

[Thimm-95] C. Thimm and E. Fiesler. Evaluating Pruning Methods. 1995 International Symposium on Artificial Neural

Networks (ISA NN'95), pp. 20-25, 1995.

[Thimm-97] C. Thimm and E. Fiesler. Weight Initialization in Higher Order and Multi-Layer Perceptrons. IEEE Trans-
actions on Neural Networks, vol. 8, num. 2, 1997.

[Visscher-96.1] R. M. Visscher, E. Fiesler, and G. Thimm, Superceptron Construction. Proc. of SIPAR '96, pp. , Geneva,

1996.

[Visscher-97.2] R. M. Visscher and E. Fiesler, Order Restriction in Higher Order Perceptrons, RR 97-02, IDIAP,Martigny,

Switzerland, 1997.


