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SUMMARY

A central issue in the development of agents that have practical reasoning skills is the
concept of resource-boundedness. For an agent to reason effectively, he has to use the
limited resources that are available to him (e.g. processing time, memory) in an effective
way. Research on planning systems such as STRIPS [FN71] and the limitations of these
systems have led to the development of the BDI paradigm. According to this approach, an
agent can be described as having beliefs, desires and intentions. Roughly speaking, beliefs
correspond to the agent's knowledge of the world, desires correspond to the agent's goals,
and intentions correspond to the set of goals that an agent has currently adopted.

Adding the 'mental' state intention to agent ontology greatly reduces the computational
costs of the agent's planning processes, making it feasible for an agent to perform in real-
time. However, in principle the BDI approach cannot guarantee that an agent is responsive
to its environment, another important requirement for an agent that functions in a real-
world application. Practical systems based on BDI theory such as PRS [GL87] and
dMARS [dLW97] have addressed this issue, but not in a conceptually convincing fashion.

In humans, emotions appear to play a key role in ensuring our being responsive to the
environment. In this thesis, I explore psychological and computational models of emotion,
and incorporate a computational model of control, based on models of emotion, in the BDI
architecture. The resulting extended BDI architecture enables agents to adapt the timing of
planning processes to the current state of the environment. For example, the resulting
agent will interrupt his current planning processes and re-plan his actions when he
becomes "afraid’.

Finally, I have implemented a greatly simplified version of the proposed extended BDI
architecture in order to test the effectiveness of the model.
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PREFACE

This thesis is the result of my graduation project for a master’s degree in Cognitive
Science at the University of Groningen. This project was performed at the Artificial
Intelligence group at the department of Computer Science at RMIT University in Melbourne,
Australia.

1 have chosen to do my master’s project at RMIT because the Artificial Intelligence group
had done a number of interesting projects on computational models of emotion in the past. In
my opinion, this topic brings together a number of important aspects of cognitive science, and
[ believe it is a perfect topic for a master’s thesis in cognitive science. On the pne hand there is
the goal of developing an artificial system that displays coherent behavior, an important goal
in artificial intelligence. On the other hand, there is a fascinating phenomenon that seems to
play an important role in known intelligent life: emotion. [t might well be that computational
models of emotion can be used to address some of the current problems of agent architectures.

In this project, 1 have had two supervisors: Niels Taatgen in the Netherlands and associate
professor Lin Padgam at RMIT University. 1 have started out my project by getting familiar
with agent theory, BDI agents in particular, emotion research and existing computational
models of emotion. This research led me to believe that concepts from theories of emotion can
be used to improve the reasoning processes of existing agent architectures, in particular in
balancing planning and responsiveness. In order to test this hypothesis 1 was to incorporate a
shallow implementation of such an emotion system in an existing agent system, the PAC
system.

PAC is short for Personality and Cognition and is a system that was developed at RMIT
University in order to test the appropriateness of implementing emotions in an agent system.
In the course of my project I have worked with PAC extensively and have spent a lot of time
fixing some of the problems with the system itself. Partly because of this, I have not been able
to test the developed emotional agents in the system.

1 have received much-needed financial support for the trip to and stay in Australia from a
number of funds: the Marco Polo fund and Groningen University fund from the University of
Groningen, and a fund from the Schimmel-Schuurman van Outeren Foundation, for all of
which [ am very grateful.
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CHAPTER 1

INTRODUCTION

1.1

In this introductory chapter I provide some background in agent systems, and BDI systems
in particular. Furthermore, I will give a brief overview of theories of emotion, computational
models of emotion, and research that has attempted to endow agents with artificial emotions.

Agents as Intentional systems

Recently, there has been a great deal of interest in artificial agents from the academic and
industrial research community. Part of the reason for this interest lays in the fact that it is easy
to relate to the level of complexity of an agent. When modeling an environment, in which
multiple independent functional units can be distinguished, the agent metaphor provides a
convenient and appropriate level of description. Just as there are different departments and
divisions in a complex organization, it makes sense to break up a complex piece of software in
a number of semi-independent agents, each of which has different abilities and
responsibilities.

Although the agent metaphor is a very popular one, there is no generally agreed upon
definition of the concept of an agent. Still, the general consensus is that at least agents should
function continuously and be autonomous to some degree. Opinions differ on what it precisely
means for an agent to be autonomous, but in general the term is taken to mean that the agent's
activities do not require constant human guidance or intervention [Sho93]. In addition, many
applications require agents to be intelligent: to show goal-directed behavior and respond to
events in the environment in a timely fashion.

A common approach to the design of agent systems views an agent as an intentional
system. An intentional system is a system, which can be described as having beliefs, desires
and intentions. For example, a thermostat can be said to 'believe’ that the temperature in the
room is at a certain level and 'desire' to have the temperature in the room at a different level.
Describing a thermostat as an intentional system is not very useful since we already have a
clear idea of the inner workings of a thermostat, but it does help us reason about many more
complex systems (e.g. other people, robots, computer programs). The idea is that it is not only
useful to describe an agent's behavior in these terms, but also to use these concepts in the
design of an agent. The intentional stance [McC79, Den87), as this approach is called, results
in a computational agent having symbolic representations of his beliefs, desires (goals) and
intentions.

Beliefs describe the information that is available to an agent about the world and itself.
Desires are preferred states of the world and roughly correspond to goals. Intentions are
partial plans of action that the agent has decided to act upon. Since agents are usually designed
to perform one or more goals, a mechanism is needed to map an agent's beliefs and desires to
actions. In the symbolic Al community a lot of research has been done in the field of planning
systems and means-end analysis. It is not surprising that many agent architectures include a
reasoning mechanism that is based on this body of research.
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In traditional planning systems, the planning process usually involves a search in state
space, using a goal stack. A typical example of this approach is the STRIPS system [FN71],
which has representations of the current state, goal states and a set of actions. The system tries
to find a sequence of actions that will achieve the goal by simple means-end analysis. As an
illustration of STRIPS-like planning systems consider the following classic block-world
example. In this example the system has to plan a sequence of actions that will transform the
current state of the world into some goal state.

Current state Goal state
Cc 8
A B A Cc
77
777% %%
ontable(A) A ontable(A) A clear(A) A
on(C, A) a clear(C) A on(B, C) a clear(B) A
ontable(B) A clear(B) A ontable(C) A
armempty armempty
Action Precondition Postcondition
stack(x, y) holding(x) A clear(y) on(x, y) A armempty
unstack(x, y) on(x, y) A armempty holding(x) A clear(y)
pickup(x) clear(x) A ontable(x) holding(x)
putdown(x) holding(x) armempty A ontable(x) A clear(x)

A correct sequence of actions is found by focusing on the goal state and, for each aspect of
the goal state that is not yet true, try to find an action that makes it true. If such an action
exists but is not applicable, set a sub-goal to make the action applicable. By following this
process the following action sequence can be found.

unstack(C, A) - putdown(C) - pickup(B) -> stack(B, C)

Planning systems such as STRIPS are not suitable for most real-time applications, that is
applications where planning has to be performed in real-time. There are two reasons for this.
First, as the number of possible actions increases, the search space increases dramatically. As
a result, the time the system spends in the planning processes will often exceed real-time
demands. A second problem is the issue of responsiveness. Any system working in real-time
has to stay responsive to changes in the environment. However, planning systems such as
STRIPS only perform planning for predefined goals and do not include mechanisms for
monitoring the environment. In addition, many planning systems assume that the beliefs, on
which the planning process operates, remain valid during the planning process. Clearly, in
practical applications agents have to function in fast-changing environments and the
assumption that an agent's beliefs will not change during the planning process simply will not
hold.

These issues have been recognized by Bratman [Bra87], who suggests that, since every
real agent is resource-bounded, no agent can continuously decide which goals to pursue. He
proposes that an agent should choose a goal, and commit to that goal. Bratman used the term
intention to describe such a committed goal. In order to maintain responsiveness, this
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commitment should not be unconditional, and suitable conditions for rejecting a committed
goal have to be developed. In the next chapter on BDI (beliefs, desires and intentions) agents,
I will describe these conditions in more detail.

At the time of Bratman’s proposal, the general consensus held that rational behavior could
be analyzed in terms of beliefs (knowledge about the world) and desires (goals). His work
however, led to the recognition that a third mental state, intention, was needed. The
introduction of intention and commitment addresses the issue of responsiveness, but in itself
does not restrict the planning process. In order to restrict the planning process, Bratman has
proposed to organize intentions into partial plans of action. For instance, the intention of
buying a book can be achieved by executing the following plan:

¢ Go to a bookshop
o  Get the book
» Pay for the book

This plan is partial, in that each of the steps needs to be further elaborated. This is done by
adopting the intention to, say go to a bookshop, which leads to the execution of another partial
plan that specifies which intentions need to be achieved in order to achieve ‘go to the
bookshop’. In this way a hierarchy of partial plans is executed to achieve a given intention. At
the lowest level of this hierarchy, elementary actions are executed.

Following Bratman's proposal of adding a third mental state, intention, to the theory of
rational agents, a lot of research has started to investigate what properties intention should
satisfy, how intention is related to other mental states like belief and desire and how intentions
are formed and retracted. Also, a number of researchers have built agent architectures on the
basis of the BDI (belief, desire and intention) theory (e.g. [IRMA [BIP88] and PRS [GL87]).
The field of research that focuses on the importance of intentions in agent models is better
known as the BDI paradigm and has become one of the leading frameworks in the deliberative
approach to agent systems.

Alternative approaches

While the introduction of intention and commitment provides some way of dealing with
the issue of resource-boundedness within the field of deliberate agent architectures, a group of
rescarchers have proposed radically different approaches to agent systems. According to one
of the strongest critics of the deliberative approach, Rodney Brooks, intelligent behavior arises
as a result of an agent's interaction with the world. Brooks [Bro91] argues that human level
intelligence is too complex and little understood to be correctly decomposed into the right sub-
pieces. It would be better to start with very simple level intelligence and incrementally build
up the capabilities of the system.

Brooks demonstrated his ideas by building a number of robots based on the subsumption
architecture. These robots are very simple in terms of the amount of computation they need to
do and do not use explicit abstract reasoning at all. While designing his robots based on this
approach, Brooks noticed that for very simple level intelligence explicit representations and
models of the world are simply in the way: it is better to use the world as its own model. This
observation has led Brooks to formulate the hypothesis that intelligent behavior can arise
without the need for a central symbolic representation or explicit abstract reasoning of the
kind symbolic Al proposes.

The simplicity of the computational processes in the behavior-based approach, as Brooks'
design method has been named, has attracted a lot of researchers to experiment with the
approach. It has been found that while the behavior-based approach promises agent systems
that can successfully function in real-time environments, the actual design process is
extremely difficult. Successful coordination of different competing behaviors involves a long
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process of trial and error. Also, it has been argued that the behavior-based approach might
well work for low-level behaviors such as obstacle avoidance, but is unsuitable for tasks,
which involve multiple complex long-term goals (e.g. [Fer92]).

Seeing that the strong points of the deliberative and the behavior-based architectures
complement each other, some researchers have attempted to combine the different approaches
in one architecture. These resulting hybrid architectures usually consist of a number of
different layers, each of which functions at a different level of abstraction (e.g. [Fer92,
MPT95]). At the lowest level of abstraction, the reactive layer is capable of reacting to events
in the world, without engaging in complex reasoning. An intermediate level abstracts away
from raw sensory data and provides a knowledge level description of the agent. Typically, this
level is capable of performing means-end analysis. Some hybrid architectures add a third
layer, which deals with social aspects of the environment: reasoning about and coordination
with other agents.

The different layers in a hybrid architecture need to interact in order to produce coherent
behavior, but the way in which this is done varies from architecture to architecture. Usually, a
potentially large number of ad hoc rules are defined that coordinate the balance between the
layers for specific situations or actions. There is a need for a clean, well-motivated model of
control in these architectures, if we are to understand how and why these architectures work. It
seems that in different situations different layers of the architecture are important: in an
emergency, the agent needs to react quickly and therefore the reactive layer should play the
dominant role. But if all is well, the agent has got more time, and it might pay to do some
abstract reasoning in order to find a possibly more appropriate behavior.

In the search for a model of control between the layers of hybrid architectures, interrupting
ongoing reasoning and shifting the control to the reactive layer in case of an emergency seems
to be a requirement. According to Simon [Sim67) emotions might play this role in humans.
His theory implies that there are at least two different mechanisms working at all times: a goal
executor that generates and monitors actions, and processes that continuously check for
situations that require attentive processing.

Emotions and agents

Emotions play an important role in our everyday life, and it is hard to imagine how life
would be if we did not experience emotions. Still, it has long been thought that emotion is not
a prerequisite for the existence of intelligence. Emotions were seen to be exactly what
rationality is nor about. However, recent research in neurobiology has clearly implicated
emotion in decision-making, learning and memory processes [Dam94, LeD96].

At a biological level, emotions are complex phenomena that have neurologi cal, hormonal,
cognitive and social aspects. When frightened for example, we consciously experience fear.
At the same time, the fear emotion is accompanied by a response of the autonomic system that
prepares the body for action by increasing heartbeat and respiration. Some of these bodily
responses are externally visible, and also serve to communicate the emotion to other people.
The autonomic responses depend on subcortical parts of the nervous system, and operate on a
subconscious level. In the development and expression of an emotion, several phases can be
distinguished:

e The recognition of an important event — seeing your house on fire.

e Subconscious bodily responses to the event — increased heart beat, sweating, etc.
e The conscious experience of the emotion — fear.

Note that the subconscious bodily response precedes the conscious experience of the
emotion. The subcortical structures that are involved in the subconscious bodily response (the
amygdala, hypothalamus and hippocampus) receive information from both the sensory




systems and the cortex. The sensory information is not very detailed, but provides a rough
picture of the external world, enabling a swift response to a potential threat.

There has long been a controversy about the role of the cortex in generating emotions.
James and Lange proposed that emotional experience is the direct result of sensory
information arriving in the cortex, or to put it as James wrote: “We fee/ sorry because e cry, angry
becanse e strike, afraid because we cry and not that we cry, strike or tremble because we are sorry, angry
or fearful as the case may be.”The James-Lange hypothesis has since been refined in many ways,
most importantly by Stanley Schachter [Sch64] in the 1960s and more recently by Antonio
Damasio [Dam94]. In the refined theory, the cortex creates a cognitive response to sensory
information that is consistent with the individual’s expectations and social context. As such,
the experience of emotion is essentially a story that the cortex concocts to explain the bodily
reactions.

Initiating swift responses to potential dangers is an important function of our emotions. For
instance, when we see a curled shape resembling a snake on the ground ahead of us, we are
startled and stop walking. This is clearly functional, since it steers us away from danger, and
at the same time forces us to attend the potential threat. It may turn out that the curled shape
was just a branch of a tree, and once we recognize it as a branch our heartbeat returns to
normal levels, etc. For such an alarm system to work effectively, it has to respond quickly to
important events in the environment. It doesn’t really matter if the system produces a false
alarm from time to time.

Another important function of emotions is their motivating value. Evolution has ‘designed’
us to enjoy things like eating and sex, because it has turned out to be beneficial for us.
Poisonous plants often don’t taste very good to us; another very useful property evolution has
equipped us with. As such, our emotions often steer us away from potential dangers. Emotions
also play an important role in learning. For instance, when you feel embarrassed because
you’ve just said something stupid in public, next time you’ll think twice before you open your
mouth.

These functions of the emotion system are clearly adaptive, but does it make sense to
incorporate a computational model of emotions in an agent architecture? I think it does,
because it could improve an agent’s responsiveness to the world, especially for agent systems
that work in real-world situations. I believe emotions can serve as a basis for a model of
control in agent architectures that balances planning and reactivity.

I am not the first to envisage a role for emotions in agent architectures. Recently, a number
of researchers from the agent community have tried to incorporate computational models of
emotion in their agent architectures in attempts to make their agent systems more adaptive
(e.g. [Bat94, FS87, Cn97 and Wri97]). In the remainder of this section I will describe some of
this research.

An influential model of emotion appraisal is Ortony, Collins and Clores cognitive model
of emotion elicitation [OCC88]. The model describes how an emotional response is
constructed by cognitive analysis of the features of the environment in relation to an agent's
beliefs, goals and standards. Under the model, emotion types are distinguished on the basis of
the types of situations, which give rise to them.

Ortony et al. propose three main categories of emotions; emotions arising from an agent's
perception of:

e events, which are advantageous or disadvantageous with regard to the agent's goals
(e.g. joy, distress).

e actions, the agent's own actions and those of other agents, which are compared to the
agent's standards for behavior (e. g. pride, shame).

e objects, towards which the agent has an attitude (e.g. like, dislike).




These global categories can be further divided into a number of distinct emotion types. For
instance, examples of emotion types belonging in the category of emotions arising in response
to perceived events are hope, fear, satisfaction and disappointment.

Although Ortony et al. have not implemented their theory, a number of other researchers
have used this model as a basis for the implementation of other computational models of
emotion. Two well-known examples are the Oz project at CMU [Bat94] and Elliot’s Affective
Reasoner [EI92]. Both of these applications incorporate a model of emotion and emotion
processing very similar to the Ortony et al. model. In addition, agents in these applications are
able to display their emotional state in their behavior (e.g. by modifying the movements of the
agent or by producing simulated facial exprgssions).

While Ortony et al. focus on the appraisal process, Frijda and Swagerman [FS87] approach
the study of emotions from a functional perspective. Central in their research on emotion is the
assumption that emotions help people function in an uncertain world. They construct their
model by analyzing what properties a subsystem that implements these adaptive functions
would need to have. To quote:

“The major phenomena are: the existence of the feelings of pleasure and pain, the
tmportance of cognitive or appraisal variables, the presence of innate, preprogrammed
behaviors as well as of complex: constructed plans for achieving emotion goals, and the
occurre nce of be havioral inte rruption, disturbance and impulse -like prionty of
emotional goals. The system properties underlying these phenomena are fackities for
re le vance de te ction of e ve nts sth regard to the multiple concerns, avatlability of
relevance signals that can be recognized by the action system, and facilities for control
precedence, or flexable goal priority ordering and shift.” [FS87), (p. 235).

Concerns play a central role in Frijda's theory of emotion. A concern refers to an agent's
preference for certain states of the world and roughly corresponds with what other theories
refer to as motives or major goals. Staying alive, being part of a social group and being
respected by others are good examples of concerns. These examples also make clear how
concerns lead to adaptive behavior: a concern is not a goal, but a goal might be produced
when an event is detected that is relevant to a concern. So, being threatened with a gun will
threaten the concern of staying alive and may ultimately lead to the adoption of a goal that
will lessen the threat (e.g. complying with the person with the gun).

In order to test the theory Swagerman has constructed a fairly simple computer program,
ACRES, that satisfies the specifications provided by this model of emotion. The ACRES
program successfully shows that concerns may be used to generate goals, but it has failed to
point out precisely how these concern-based goals interact with non-emotional goals. In an
attempt to overcome this and other shortcomings of ACRES, Frijda and Moffat [FM93] have
recently proposed an updated model of emotion that focuses on the interaction of emotion
processing and other processes like perception and abstract reasoning. As with the original
concern-based theory, they have constructed a broad, but shallow implementation of the
updated model. The implementation, Will, has been tested in the context of the prisoner's
dilemma game and although the environment is quite restricted in its emotional implications,
Will shows the major processing features that are proposed by the theory.

Another prominent researcher in the field of emotional agents is Dolores Caiiamero. In an
implementation of emotional agents in a multi-agent environment, she has shown that
emotions may be used to increase the adaptiveness of the agent [Can97]. In this system,
emotions arise as a result of the perception of events and patterns of stimulation. Cafiamero
models emotions at the hormonal level, so whenever the agent experiences an emotion, a
distinct set of "hormones’ are released. These hormones in turn influence the levels of several
motivators and affect the perception process. In this way emotions bias perception and in
effect serve as perceptual filters.




Finally, an important research group in the field of computational models of emotion is the
Cognition and Affect group at the University of Birmingham, headed by Aaron Sloman. The
work of this group pays special attention to the interaction of emotion and other cognitive
processes, or more generally the role of emotion in a larger architecture. Sloman et al.
distinguish several levels of abstraction in the architecture of human cognition and argue that
these different layers in the cognitive information processing apparatus have been formed at
different times in our evolutionary history. In addition, Sloman et al. suggest that human
mental states and processes depend on the interaction between old and new layers in a
biologically plausible control architecture [SL98]. This interaction produces various kinds of
internal and external behavior, including internal processes such as motive generation,
attention switching, etc.

Sloman proposes that three different layers, each responsible for certain types of emotion,
can be distinguished. The oldest layer, the reactive layer, consists of 'routine’ reactive
mechanisms and a global alarm system that produces emotions as a result of rapid, automatic
processing (e.g. fear, sexual arousal). A more recent layer, the deliberative layer, is
responsible for such processes as planning and decision making and supports cognitively rich
emotional states linked to current desires, beliefs and plans (e.g. hope, relief). Finally, the
newest layer, the meta-management layer, coordinates planning and attention strategies. This
meta-management layer is argued to be responsible for typically human emotional states such
as humiliation and guilt.

The remainder of this thesis is organized as follows. Chapter 2 deals with theories and
architectures that have been developed in the BDI paradigm. Special attention is paid to the
concept of commitment. In chapter 3, I describe a process model of emotion and a model of
control for BDI architectures that is based on this model of emotion. Chapter 4 describes a
limited implementation of the model presented in chapter 3. A scenario for evaluiting the
model is presented. Finally, in chapter 5, [ presentmy conclusions and propose future areas of
research.
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CHAPTER 2

BDI AGENTS

2.1

The concept of a BDI agent effectively started with Bratman et al.'s high-level description
of an architecture for practical reasoning, IRMA [BIP88]. The architecture was developed to
address two competing requirements for agent systems. First, an architecture for a rational
agent must allow for means-end analysis, for the weighing of competing desires and for
interactions between these two forms of reasoning. Second, the architecture must be able to
perform this reasoning in a timely fashion, i.e. address the problem of resource-boundedness.

The basic idea behind the architecture is the observation that a rational agent is committed
to doing what he plans. In other words, once an agent has formed the intention of achieving a
certain goal, he is committed to achieving it. Adopting an intention has two important
influences on the process of means-end analysis. First, in IRMA intentions are structured into
partial plans. Plans are partial in the sense that they describe an agent's intention, without
going into high detail on how to achieve the intention. For instance, an agent may adopt the
plan of buying a certain book, without deciding on a particular bookshop or whether to pay
with cash or credit card. The means-end reasoning component of the architecture is
responsible for the filling in of the means for achieving a certain plan. In this way intentions
act as a driving force for means-end analysis.

The second way in which intentions affect planning is in the way they restrict the set of
options that the planning process has to consider. Braman et al. propose that intentions should
be consistent, both internally and with the agent's beliefs. So, the intention of paying in cash
for a book is inconsistent with the belief of not having enough cash to pay for the book, and
having the belief prevents the intention from being adopted. Current intentions act in a similar
way as a filter for allowing new intentions to be considered by the planning process.

Overview of a practical BDI architecture

Bratman's research shows how research on planning systems can be used in agent systems
to produce goal-directed behavior without losing reactivity. Much research in the BDI
paradigm is aimed at refining mechanisms to maintain the balance between rationality and
reactivity. A number of implementations of agent architectures based on the BDI paradigm
have been made, of which the best-known are the Procedural Reasoning System (PRS)
[GL87] and its successor the distributed Multi-Agent Reasoning System (AMARS) [dKLW97].

Figure 2-1 gives an overview of an abstract BDI architecture that is largely based on Rao
and Georgeffs work on practical BDI architectures [RG95]. Not surprisingly, the architecture
comprises three data structures, which represent the agent's beliefs, desires and intentions. In
addition to these three mentalistic data structures, the agent architecture also includes an event
queue. The BDI interpreter uses the queue and the three mentalistic structures to perform the
actual planning. The queue is used as a kind of a blackboard. Both the BDI interpreter and
external motor and perception routines put information in the event queue (e.g. new
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Figure 2-1: The BDI Architecture

(sub)goals, perceived events), which the BDI interpreter uses in the next step in the planning
process.

Most work in the BDI paradigm is theoretical in nature, in that it aims to describe how an
agent represents information about the world, and how an agent's attitudes (e.g.
desires/intentions) interact with beliefs to produce adaptive behavior. These so-called agent
theories are partly based on research on planning systems that was done in the symbolic Al
community over the past decades. An agent's beliefs about the world are usually described in
some form of possible worlds semantics. Under these semantics, an agent 'believes' a set of
formulas, typically in propositional logic. The agent's knowledge is partial in nature: there are
many aspects of the world that are hidden to the agent. The idea is that the agent can still
reason about these aspects of the world by considering a number of alternatives. These
alternatives can be seen as possible worlds.

For theoretically important reasons, many theories assume that an agent believes all
equivalent formulas of his beliefs and also all logical consequences of his beliefs. These
properties however are very problematic for practical reasoning systems. Considering the
effort it takes a logician to prove that one complex logical formula follows from another
complex formula, we cannot expect a real agent system with limited resources to make all
these deductions in time to be useful.

Rao and Georgeff [RG95] note that planning by theorem proving is potentially boundless
and therefore not very suitable for real agent systems. As a practical solution, Rao and
Georgeff propose to represent only the current state of the world, which corresponds to
representing only the agent's current beliefs. As a consequence, whenever some logical
deduction is needed, the agent needs to adopt an explicit intention to do so.

Desires are like goals, in that they represent the motivational state of the system. However,
unlike goals, desires need not be mutually consistent. It is possible for an agent to have both a
desire to go to the cinema tonight and a desire to go to a friend's birthday party. While desires
are allowed to conflict, they do need to be consistent with the agent's current beliefs about the
world. To be more precise, an agent has to believe that a world in which the desire has been
satisfied is possible.

Rao and Georgeff, like Bratman, include partial plans in their architecture for representing
the means for achieving certain desires. These plans consist of a body, an invocation
condition, and a context condition. The body describes the primitive actions and subgoals that
have to be achieved for completing the plan. The invocation condition contains the triggering
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Figure 2-2: Example dMARS plans

event that has to occur before the plan can be considered, and the context condition specifies
the situation that must hold for the plan to be applicable. In this practical architecture, desires
are modeled as the set of plans that are currently applicable. To illustrate these concepts, I
have included two example plans in dMARS syntax in figure 2-2.

dMARS uses a lisp-like syntax in the plans. The buy-book plan in figure 2-2 is only
invoked when the invocation condition is true, in this case when the agent has formed a new
goal (! (buy-book Sbook)). The *!>-operator means ‘achieve’, and ‘$’ denotes a variable. When
the plan is activated, the plan starts in the START-state, and will attempt to step through states
P1 and P2 to reach the END-state. The plan can only move to another state if the transition
link evaluates to true. In the buy-book plan, each transition link causes the agent to formulate
a new goal. The transition to the next state can only be made if the new goal is achieved. If no
transition can be made from a state other than the END-state, the plan returns ‘false’. Suppose
for example that the agent succeeds in finding a bookshop and selecting the book in question,
but is unable to pay for the book. This will cause the transition from P2 to the END-state to
fail and since there are no other transitions leaving state P2, the whole buy-book plan will fail.

The have-amount plan simply checks whether the agent has got enough money to pay for
the book. To do so the plan accesses the agent’s belief database, using the context condition.
In the have-amount plan, the belief database is searched for the logical formula (money val).
The value of the variable $mon is unified with the val value in the belief database. The only
transition in the plan checks whether $mon is equal to or larger than Sam. If so, the plan
returns true.

In most rational agent theories, intentions are required to be consistent with the agent's
beliefs, desires and the agent's other intentions. This means that an agent has to believe that a
world in which the intention has been realized is possible, and that the agent actually has the
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desire to achieve that state of the world. Furthermore, his intentions should be mutually
consistent. The reason for this is easily seen: intentions can be regarded as the desires the
agent has chosen to try to achieve and as such, they should not be conflicting (turning both left
and right at a corner is impossible, and an agent shouldn't try to do both at the same time).

In Rao and GeorgefFs practical architecture, intentions are represented by the set of plans
the agent is currently pursuing. The setof current plans is hierarchically organized, containing
high-level plans and plans that have been adopted to achieve some subgoal of the high-level
plans.

Intention and Commitment

Central in the BDI architecture is the notion of an intention: a goal that the agent has
decided to attempt to achieve. Seeing the potential of intentions as a way of guiding and
restricting practical reasoning, many researchers have included intentions in their agent
theories and architectures. In addition, a number of attempts have been made to describe and
define in formal semantics how intentions relate to beliefs and desires.

Cohen and Levesque [CL90] were one of the first to incorporate Bratman's ideas in a
formal agent theory. They defined intention as ‘choice with commitment'. As in Bratman's
proposal [BIP88] an agent that has committed to a certain intention will maintain his intention
for a period of time and will repeatedly try to achieve his intention. According to Cohen and
Levesque, the concept of commitment is central to a theory of intention, as coordination of
future actions would be hopeless without some notion of commitment.

Following Bratman [Bra87] Cohen at al. propose a number of properties that should hold
in any reasonable theory of intention. Of these properties, the following are also important for
a theory of commitment:

e The agent keeps track of the success of his attempts to achieve his intentions and is
disposed to re-plan to achieve the intended effects if earlier attempts fail.

e The agent believes it is possible to achieve his intentions.

e The agent does not believe he will not bring about his intentions.

An important issue in any theory of intention is deciding when to abandon an intention.
The above-mentioned properties sketch a rough picture of the criteria Cohen and Levesque
suggest for reconsidering current intentions. In their formal agent theory intentions are treated
as a special kind of persistent goal. A persistent goal is defined as a goal that the agent has
decided to pursue and will not be dropped until the agent either believes the goal has been
achieved or believes that the goal is unachievable.

Identifying intention with a persistent goal ultimately leads to a fanatically committed
agent: an agent that will go to extreme lengths to achieve his goal (e.g. an agent hijacking a
bus in order to get to the airport in time to catch a plane). Cohen and Levesque realized this
and added a third option for dropping or an intention: an agent should also drop his intentions
if he believes that the reasons for adopting the intention no longer hold. To illustrate the
Cohen and Levesque theory, consider the following example:

An agent that has heard on the news that it is going to rain today. Now suppose that, asa
result of this forecast, the agent adopts the intention of buying an umbrella. According to
Cohen and Levesques definition of intention the agent should only drop his intention if he
believes he has succeeded in buying an umbrella, believes it is impossible for him to buy an
umbrella (e.g. he doesn't have enough money to buy one), or if he believes it is not going to
rain after all.

Singh [Sin97] argues that this definition of intention is too strong: in many cases the agent
should abandon an intention even though none of Cohen and Levesques conditions for doing
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so hold. For instance, an agent that has the intention of starting his own company would like
to be able to drop that intention once he realizes that he does not want to invest the required
effort in the project (e.g. he has to draw up a business plan in order to get a loan). In this
situation it is still possible to reach his goal and h is reason for adopting the intention may still
hold (e.g. he doesn't want to work for somebody else), but under Cohen et al.'s model of
intention the agent cannot abandon his intention!

Commitment as Entrenchment

There is a need for additional conditions for dropping an intention in a realistic model of
intention. Roughly speaking, the agent should be committed as long as it is beneficial to do so
(it has a positive expected utility), and should give up as soon as it is not. Unfortunately,
deciding whether a given intention is beneficial or not may not be very straightforward and if
the agent has to make these decisions frequently, the reasoning processes involved may very
well end up using up the resources intentions should be protecting.

The reason for introducing intention is to avoid having to repeatedly reason about one's
actions. Singh goes a step further and defines commitment as entrenchment: an agent that is
committed to an intention simply does not reconsider his intention until his commitment for
that intention runs out. When this happens, the agent can decide if the intention is still worth
pursuing (and re-commit to it) or if he should abandon it. Under this model an agent's
commitment to an intention is a measure of the amount of time, risk or effort the agent is
willing to invest in pursuing that intention. The agent is presumed to be able to make an
estimate of the risk or cost of different courses of action prior to committing to one. There will
be some computational cost in keeping track of when to reconsider, but this will be relatively
small.

Singh admits that an agent that adopts his model of commitment will miss out on some
opportunities that he could have noted by rethinking, but he argues that this comes at the
advantage of not being swamped by intentions to deliberate on. A significant shortcoming of
his argument is that the agent will not only miss out on opportunities, but will fail to notice
threats as well, which may prove to be fatal to the agent's goals or ultimately, the agent
himself. Even when an agent is committed to an intention, he should not ignore the
environment altogether: the agent should drop or suspend his current intention, whenever an
event occurs that threatens the agent or the agent's current goals. When this happens the agent
can decide which is more important and should be dealt with first: the threatening situation at
hand, or the agent's current goal(s).

Summarizing, I propose that a model of commitment should have the following properties:

» Intentions are dropped when they have been achieved, or more precisely when the
agent thinks they have been achieved.

» Intentions are dropped when the agent believes that the cost of achieving them is
higher than what he is willing to invest in their pursuit.

» Intentions are dropped when the agent believes he cannot possibly achieve them.

» Intentions are dropped or suspended when a more important or urgent situation arises.

I believe the last condition requires a process that continuously and swiftly monitors the
environment for important events. Furthermore, I believe this role is fulfilled by emotions in
humans and other animals. In the next chapter, I propose a model of control, based on a model
of emotion that is set up to satisfy these properties in a fashion that also takes irto account the
fact that every real agent has limited resources.

12
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CHAPTER 3

AN EMOTION-BASED MODEL OF
CONTROL

3.1

From the discussion of the BDI architecture in chapter 2 it should be clear that practical
BDI systems such as PRS and dMARS are able to display high-level goal-oriented behavior.
Reactive behavior can also be generated by these systems. This is realized by defining a
number of simple plans for handling emergencies. Both PRS and dMARS support priority
schemes, which can be used to ensure that a plan can be adopted even if other plans are
already active. In this way, whenever a triggering event for one of these emergency plans
occurs, such a plan is activated and executed, in the meanwhile effectively suspending other,
often more complex, plans that run at lower priority levels.

Coordinating behavior with limited resources

Intentions, especially when structured in partial plans, can significantly reduce the
computational cost of deliberation. As was described in the previous chapter, adding intention
as a functional concept to the agent architecture in principle does not address the issue of
responsiveness. An agent that functions in a real environment has to be able to respond
quickly to important changes in that environment. In other words, current intentions need to be
pushed back or suspended in certain circumstances, in order to deal with more pressing events.

[ propose to add a mechanism that monitors the environment for important events and that
lets only these events interrupt current reasoning. This results in an architecture that adopts a
concept of commitment that is similar to Singh's treatment of commitment as entrenchment:
reasoning about which intentions to adopt is only done when an interrupt has been generated,
a current intention has been achieved, or it is perceived that it is no longer possible to achieve
a certain intention. So, reasoning about which intentions to adopt, and reasoning about how to
achieve already adopted intentions is performed in separate, consecutive time intervals.

This approach differs from Singh's in that the level of commitment is not determined at the
time an intention is adopted, but instead a mechanism is included hat dynamically monitors
the environment for more important events.

Both Bratman [BIP88] and Cohen and Levesque [CL90] have argued that an agent has to
monitor the success of his actions in achieving his intentions, and attempt to achieve his
intentions in an alternative way if his current actions are not successful. In PRS and dMARS
this is implemented by trying all possible ways to achieve a goal, until the goal is achieved or
until there are no more alternatives left. I believe that emotions can also be useful in refining
this function. If we don’t succeed in achieving our goals, we often become frustrated or even
desperate. As a result, we decide to persist, try some alternative action, or give up the goal
completely, even before we've tried all possible options.

13
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If we are to gain anything from adding a mechanism that monitors the environment for
important changes, it needs to do so efficiently. Fast heuristics or spreading activation
networks, rather than abstract reasoning, are capable of this kind of fast, efficient processing.
A result of relying on heuristics is that the interrupt mechanism will not be perfect.
Unnecessary interrupts will be produced from time to time, and at times emergencies will be
missed. This latter form of error is potentially more dangerous, and special care should be
taken to minimize their occurrence.

In humans, many of the desired functions of an interrupt mechanism can be found in
emotional processing. Emotional states like being startled, surprised or being disgusted by
some revolting tasting food force us to pay attention to the situation at hand. In addition, when
these emotions are very strong we often act quickly by minimizing the amount of planning or
rational deliberation: we are not interested in finding the best course of action, but we choose
some action that gets us out of trouble.

The above-mentioned emotions can be said to have a global effect. Other emotions have
more local effects. For instance, being irritated or frustrated are emotional states that refer to
current goals. Presumably, being frustrated at a lack of progress in achieving a certain goal,
causes the agent to rethink his commitment to that intention. Commitments to other intentions
are not influenced by this frustration.

Most emotion theories emphasize that an agent's emotional state is the result of his
subjective cognitive appraisal of the current situation. The appraisal process interprets the state
of the world, taking into account the agent's current beliefs, desires and intentions. The
resulting emotions contain two types of information: control information, in the form we have
considered above, and semantic content. Every emotion type corresponds to a certain type of
situation. Anger for instance, corresponds to a situation in which some aspect of the situation
is negative for the agent, and some (other) agent is responsible for the negative situation. This
semantic information can be used to restrict the set of desires that have to be considered by the
planning process.

A number of models have been proposed that describe the control function of emotion,
with varying levels of architectural detail (e.g [Sim67, FM93, SC81, OJL85]). In one of the
first proposals of an interrupt system for an abstract reasoner [Sim67], Simon lays down
similar requirements and functions as we have in this thesis. In an extension of Simon's
theory, Sloman [SC81] distinguishes two forms of information processing: a highly parallel,
pre-attentive and automatic motive generation process, and attentive, resource-bounded
‘motive-management’ processes that are largely serial of nature.

The motive generation process produces a number of motivators, which are like emotional
states. These motivators have a certain level of insistence for disrupting attentional processing.
Sloman argues that attentive processing should be open to interruption by motivators, but at
the same time should not be interrupted too often. This balance is dependent on the current
state of the world, and Sloman proposes to include a context-sensitive variable threshold
interrupt filter in the architecture, in order to manage the interrupts.

[ agree with Sloman that not every emotional response should cause the agent to
reconsider one or more of his current intentions. Intuitively, an agent should replan his actions
only when a significant change in the environment has occurred. Since an agent's emotions
paint a rough subjective picture of the state of the world, it can be expected that an important
change in the world will lead to a significant change in the agent's emotional state. We can use
this change in emotional state to trigger a new round of reasoning about intentions.

14




3.2

A process model of emotion appraisal

Up to this point I have mainly focused on the control function of emotion and have not
specified how artificial emotions could be generated. Given the fact that emotions play a role
in attention-regulation, it is important that the emotion appraisal process is fast. On the other
hand, it has been widely argued that emotions also play a motivational role and as such, they
should be as information-rich as possible. Smith et al. [SKS96, SK99] present a process model
of emotion appraisal that attempts to satisfy these competing constraints.
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Figure 3-1: Simplified model of emotion appraisal

Figure 3-1 presents a simplified version of the Smith et al. model. The key way in which
their model addresses both motivational and attention-regulatory aspects of emotion is in
proposing that there are multiple appraisal processes that occur in parallel. One mode of
processing is responsible for a rough, and in important ways incomplete, emotion appraisal
that is memory-based. Whenever this rough appraisal exceeds some threshold a slower and
more deliberate appraisal process is initiated. This mode of processing is more flexible and is
able to analyze emotion-eliciting situations more thoroughly.

In order to coordinate the different forms of processing and integrate their respective
results, Smith et al. include an appraisal register in their model. This register continuously
monitors for, and is responsive to, appraisal information from a number of different sources.
The person's emotional state is determined on the basis of the appraisal information that has
been detected by the appraisal register. The register does not actively perform appraisals in the
sense that it is evaluating the person's relationship to the current environment; this is a
function that is performed by the two forms of processing. Instead, the function of the register
is to integrate appraisal information that is received from various sources and, on the basis of
the integrated appraisal information, to initiate processes that generate the person's overall
emotion response, including a subjective feeling state, changes in action readiness and a
variety of physiological responses.




As can be seen in the figure, the appraisal register receives input from three sources: direct
sensory input, schematically activated representations and conceptual thought. It is assumed
that some forms of perception have a direct effect on the appraisal register. For instance, the
bodily sensation of pain directly leads to a negative emotional appraisal, without the need for
any kind of interpretation of the sensation by either automatic or deliberate processing.

Schematic processing is fast, automatic and memory-based, and involves spreading
activation and priming. Memories of prior experiences are activated as a result of perceived
similarities with the person's current circumstances, or as a result of associations with other,
already activated, memories. The similarities can be both perceptual and conceptual in nature.
In this way, both highly perceptual cues, such as sounds, colors and smells, and more abstract
conceptual ideas can activate memories. If any appraisal meanings are associated with these
memories, they too are activated. Whenever these meanings are activated to a sufficient
degree, they can be detected by the appraisal register, and in this way influence the person’s
emotional state.

It is assumed that full-blown appraisal meanings can be quickly activated through
automatic processes like spreading activation and priming. As a result, even though schematic
processing is a fast mode of processing, the resulting appraisal meanings that are detected by
the appraisal register can be highly detailed. They may not fit the current situation too well
though, especially when the person is not very familiar with that type of situation. Another
important assumption that Smith et al. make is that the threshold at which appraisal
information becomes available to the appraisal register is somewhat lower than the threshold,
at which activated memories and associated appraisal meanings become available to focal
awareness and working memory, and thus to the higher-level deliberate thought processes.

This assumption is important for attention-regulatory reasons: through this assumption it is
possible that the first indication a person gets that the environment has changed in some
significant way, is a change in subjective emotional feelings. In effect, Smith et al. propose
that a change in emotional state, caused by rapid, automatic, memory-based processing should
lead to the penetration of this emotional state into conceptual processing. As a result, the agent
can then analyze the current situation in a more focused way through conceptual processing.
Finally, it is assumed that schematic processing occurs continuously and in parallel with
conceptual processing.

Conceptual processing is a relatively slow, controlled and resource-intensive mode of
processing. Smith et al. argue that conceptual processing is somewhat more limited in the
types of information that are available to it. They propose that whereas schematic processing
can operate on any kind of information that can be represented in memory, conceptual
processing can only operate on information that has been semantically encoded in some way.
Thus, sensations, sounds and images are not readily available to conceptual processing unless
they have been associated with some sort of semantic information.

These limitations notwithstanding, conceptual processing is argued to be extremely
important in the appraisal process for a number of reasons. First, since schematic processing is
largely data-driven, only fairly constant relations in the environment can be reliably detected.
By performing attentive conceptual processing, the emotion-eliciting situation can be analyzed
more thoroughly, and the resulting reappraisal of the situation can be passed on to the
appraisal register. In this way, initial appraisals that have been elicited through schematic
processing may be modified to provide a more appropriate evaluation and a more fitting
emotional response.

Second, Smith et al. argue that the results of this conceptual appraisal process can be used
to fine-tune association strengths in associative memory. In addition, when a situation occurs
with which the person is not familiar, the results of conceptual processing may be added to
memory to ensure that the next time, schematic processing can provide a fast evaluation.



3.3

The Smith et al. model of emotion appraisal shows great promise as a mechanism for
balancing reactive and goal-oriented behavior in an adaptive way. The model is essentially a
model for emotion appraisal in human beings, but I believe many of the issues that the model
addresses are also relevant in agent systems, especially rational agent architectures.

Extending the BDI architecture

The BDI paradigm is mainly concerned with intentions and the processes of adopting,
revising and achieving them. Practical systems that have been developed on the basis of this
theoretical research also address the issue of responsiveness: both PRS and dMARS make use
of priority schemes to ensure that perceived events are noticed by the BDI interpreter almost
instantly. Depending on the relative priority of the newly perceived event, the interpreter
handles the event immediately, or deals with oth er, higher-priority issues first.

In a typical application, incoming external events are produced by a separate perception
process, which runs concurrently and independently from the BDI architecture. These external
events contain information about a specific change in the state of the world, or the perception
of some object. While this is clearly useful information, an agent should not reevaluate his
current intentions every time such a change occurs. Especially in applications where the world
is complex and the perception system needs to process many external events, there is a need
for a mechanism that can determine when it is appropriate to reevaluate the agent's current
intentions.

Perceptual Input
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Figure 3-2: Extended BDI Architecture

1 have argued above that the mechanism that was presented by Smith et al. satisfies this
requirement, and I propose to extend the BDI architecture by adding a mechanism based on
Smith et al.'s model to the architecture. The main objective in extending the BDI architecture
is to protect ongoing means-ends reasoning by only allowing subjectively important changes
in the agent's (internal or external) environment interrupt reasoning. Figure 3-2 presents this
extended BDI architecture. The abstract BDI architecture, as was described in section 2.1 can
be clearly distinguished in the figure. Two new functional modules have been introduced into
the architecture: an associative memory and an appraisal register.

The Smith et al. model consists of three functional units that can also be found in the
extended BDI architecture: Smith et al.’s schematically activated representations correspond
to the associative memory; the appraisal register remains the same; and the conceptual thought
module is represented by the original BDI architecture.




The associative memory performs low-level schematic processing of the form that was
described by Smith et al. An associative memory with spreading activation is very suitable for
meeting the requirements for fast, context-sensitive appraisal. As a result of spreading
activation in the associative memory, appraisal meanings are activated. As elements in
associative memory become more activated — as a result of input from perceptual processing,
or as a result of current intentions, beliefs or desires — the appraisal meanings that are
associated with these elements become more activated as well. Once these meanings have
become activated to a sufficient degree, they become available to the appraisal register.

In addition to input from the associative memory, the appraisal register receives input
directly from perceptual processes, and from the BDI part of the extended architecture as well:
the results of deliberate emotion appraisal from the original BDI architecture. This deliberate
appraisal process can best be modeled after the cognitive appraisal theory by Ortony, Collins
and Clore [OCC88] that was described in section 1.3.

I have argued that since emotions paint a rough subjective picture of the state of the world,
a significant change in emotion signals that the world has changed in some way that is
important to the agent. Therefore, I propose that the appraisal register should compare the
current emotional state with the agent's emotional state at the last time the agent reasoned
about which intentions to adopt.

Whenever the current emotional state differs significantly from that previous emotional
state, the register produces an interrupt signal, forcing the BDI part of the architecture to
deliberately appraise the situation at hand, and to re-evaluate its current intentions. Depending
on the semantic content of the new emotional state resulting from the deliberate appraisal (e.g.
fear, anger, joy) this reasoning process involves reconsidering current intentions (e.g. due to
frustration or anger), or analyzing the environment thoroughly to find an opportunity or a
threatening situation (e.g. due to terror or fear).

The proposed extension to the BDI architecture ensures that current intentions are only re
evaluated when there has been a significant change in the environment, provided that this is
correctly reflected by significant change in emotional state. Consider the following example as
an illustration of the working of the extended BDI architecture:

Agent X ‘lives’ in an artificial world, in which his main goal is to collect food parcels. In
this world, there are two types of other agents: blue agents that upon encountering agent X,
spontaneously offer food to the agent; and red agents that steal food from the agent. As a
result of training or design, the perception of red agents causes the associative memory to
activate a negative emotional appraisal, while the perception of blue agents activates a positive
emotional appraisal. Now consider the following scenario:

Agent X is minding his business, collecting food parcels when he sees a red agent. As a
result of this perception, the associative memory outputs a negative appraisal, ‘fear’, to the
appraisal register. As a result of the shift in the appraisal input to the appraisal register, the
register interrupts current plans (e.g. collect-food). Agent X now deliberatively appraises the
situation, and as a result decides to abort his current plans, and start a flee-plan. As a result of
fleeing, the agent moves away from the red agent, until it is no longer in sight. At this point,
the associative memory outputs a neutral appraisal, which causes the appraisal register to
interrupt the flee-plan and re-evaluate the situation, etc.
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CHAPTER 4

A PRELIMINARY IMPLEMENTATION

4.1

I believe the extended BDI architecture has a great potential for dealing with complex
environments, in which many different aspects of the environment can be important to the
agent at a given time. However, this potential has to be demonstrated by a concrete
implementation. In this chapter, [ describe the first steps toward an implementation of the full
model as it was presented in the previous chapter.

System setup

This first implementation uses PAC, a system that includes facilities for reasoning and a
simulated three-dimensional environment, in which agent designs can be implemented and
evaluated. The PAC system, short for Personality and Cognition, was developed at RMIT
University in order to test the appropriateness of implementing emotions in agent systems,
with a special emphasis on computer animations [PT97]. It consists of two distinct
components: dMARS for the abstract reasoning, and a simulated three-dimensional
environment called AgentWorld. Figure 4-1 gives an overview of the system.

Like many other agent applications, an agent represented in PAC consists of three
functional elements: a perception component, a goal-oriented planning component, and an
action component. Both an agent's perception and action components are part of AgentWorld,
while dMARS is responsible for goal-oriented planning. The perception component consists
of a number of perception routines, which specify which changes in the environment are
important enough to be passed on to the goal-oriented planning system. For instance, for an
agent in a robotic soccer application, the perception system may contain routines for detecting
the position of the ball, other players, the lines of the field and the goals. Perception routines
actively monitor aspects of the simulated world by directly accessing the data-structures
representing the three dimensional world.

Information is passed from the perception component to the goal-oriented planning
component through messages. Such a message typically contains information about a change
in what the perception routines perceive, since the symbolic representations in the planning
system need only be updated when there has been a change.

PAC uses dMARS for the goal-oriented planning. As a result of the reasoning process, the
planning system sends messages containing action commands to the communications agerit in
AgentWorld, which passes the message on to the representation of the agent in AgentWorld.
Action command messages specify which action should be executed, and also how the new
action should affect already running actions. The action component consists of a number of
action routines, each implementing a certain low-level behavior of the agent (e.g. move-to-
position, shoot-ball and pass-ball for a robotic soccer player). At this low level of abstraction,
it is important not to execute two action routines that are inconsistent (€.g. moving in two
different directions at the same time).
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Figure 4-1: Overview of the PAC system

Consistency between action routines is maintained by having each action routine claim the
body parts of the agent that are involved in the action. Once a body part has been claimed by
an action routine, another action routine that requires the use of the same body part cannot be
executed, unless the planning system has specified in the action command that the action
should abort any conflicting actions.

Whenever a running action routine finishes, feedback is sent to the agent's dMARS
component specifying whether the action succeeded, failed, or was aborted by another action
routine. The dMARS component can use this information to search for alternative means for
achieving the intention in question, and when there are no more alternatives, drop the
intention.

A shallow implementation

In the presentation of the extended BDI architecture in chapter 3, I have mainly focused on
the functional aspects of the model. Creating an implementation of the model introduces a
number of additional research questions that need to be addressed before the effectiveness of
the model can be demonstrated. For example, what should the associative memory look like?
Which learning algorithm should be used? What’s the best representation for the agent’s
emotional state? Addressing all these issues is beyond the scope of a master’s thesis and I
have chosen to focus on the relationship between the appraisal register and the BDI
architecture.
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I believe the first logical step toward an implementation of the full model, is to
demonstrate that emotion-based interrupts of current intentions are feasible. In order to show
this, [ have decided to focus on generating interrupts in the appraisal register and dealing with
the interrupts in the BDI architecture. For this approach to make sense, the experiment
scenario needs to fulfill a number of requirements.

First, the scenario needs to be simple. If the scenario is simple, the associative memory can
be replaced by a small number of simple rules that generate rudimentary artificial emotions. In
a simple scenario it is easy to identify emotions that should be generated by the associative
memory. The appraisal register can generate interrupts on the basis of these emotion-eliciting
rules.

Second, there shouldn’t be exceptions to the emotion-eliciting rules. With this [ mean that
there should be no situation in which the emotion-eliciting rules do not apply. If no such
exceptions exist, we can trust the results of the emotion-eliciting rules and there is no need for
a deliberate emotion appraisal process. Eliot [El192] has already demonstrated that such a
process if feasible and by not including it, we can focus better on the way an interrupt should
influence the BDI architecture.

In the next section, a scenario is described that satisfies both of the requirements
mentioned above. Given such a scenario, the appraisal register combines input from the
emotion-eliciting rules and generates an overall emotional state. In this first implementation,
very rudimentary emotions suffice, so I have chosen to represent only the positive-negative
dimension of emotions. The agent’s emotional state is represented as a value between ~1 and
1. In the previous chapter, I have argued that a significant change in emotional state should
lead to an interrupt. Therefore, a record should be kept of the emotional state at the time of the
previous interrupt. Finally, a parameter must be set that reflects when a change in emotional
state is significant.

When the appraisal register generates an interrupt, the BDI agent should suspend his
current intentions, and evaluate the current situation and the emotional state. On the basis of
this information, the agent has to decide which plans need to be stopped,and which plans need
to be started. To realize this, a number of plans have been written that together make up the
control structure of the extended BDI architecture. Figure 4-2 gives a functional overview of
the control structure.

—_—— Appraise the ¥
situation at hand

AL Ld s ILLIITIELL]

Y
Update current @
Intention has intentions g
e|th'e( been PLILIEIIEIS I IIFIILELIY. Interrupt from
achieved or the appraisal
given up. .'. register
Try to achieve the [
top-most intention
IS Ly T4 TLLIIIS P IIIEAY,

Figure 4-2: The control structure

21




4.2.1 Anintroduction to dMARS plans

Before I describe the dMARS plans that implement the control structure in detail, a short
introduction to dMARS plans is in place. As was seen in chapter 2, every dMARS plan
consists of at least an invocation condition and a body. The invocation condition describes
which event has to take place before the plan can be considered. The plan’s body describes
what has to be done to complete the plan. In addition to these two required elements, a plan
can also have a context condition, a maintenance condition and a priority level. The context
condition queries the agent’s database for some variable at the time the plan is adopted, in
order to make the value of the variable available in the plan. The maintenance condition
contains a proposition that must remain true while the plan is being executed, otherwise the
plan will be aborted. The priority level describes how important the plan is relative to other
plans. In dMARS, a plan that has a lower priority value is more important than a plan with a
higher priority value.

Start-Counting

(told (start-countina $from) told $env)
o) 4giA g '«.\ The agent has received a message of the form

'''' ~{~.. (start-counting number) from another agent.
Information about the other agent is stored
$env.

®

{* (= (count-start $from)))

Assert the propositions (count-start number) and
“t~, (counting true) to the agent's befief database.
“ This information is important for the count plan.

L]
ll'
N/
\
\ J
A Y

{* (= (countina true))) &

(3

(! {(count)) g---------1 - Create a sub-goal count

(®-

Figure 4-3: The start-counting plan

As an example of these concepts, consider the plans in figures 4-3 to 4-5. These three
plans simply make the agent count the seconds from the time that he is told to start counting
until the time he is told that he should stop counting. The first plan, start-counting, is activated
when the agent receives a message from another agent telling him to start counting from a
certain number (e.g. ‘(start-counting 24)’). The agent ‘remembers’ the number it should start
counting from and the fact that he has started counting by asserting this information into his
belief database. Finally, the agent creates the sub-goal count, which activates the count plan
shown in figure 4-4.
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The count plan in figure 4-4 reads the value of (count-start somenumber) from the belief
database and adds | to that number every second. Notice that the count plan does not have an
end state. The only way to stop this plan is by making the maintenance condition false. This is
exactly what the stop-counting plan in figure 4-5 does. The plan is activated when a message
(stop-counting) is received from another agent. As a result the agent stores (counting false) in
the belief database. This in turn makes the count plan’s maintenance condition false, which
causes the plan to be aborted.

e e e
: i
; (new-goal (1 (count))) ! Copy the value of start to
m @ _4” the counter variable

,’

i (count-start $start)
I maintenance

i {countlno true) (* (= Seey Sstart))
propertles
lprlontv 10)
(* (= Scounter (plus ($oounter m (& (elapsed m

‘\ Wait (" means ‘wait’ )
Y unti 1 second has
elapsed

Increase the counter with one.

- The count plan is started when the goal count is formed.

- The value of the (count-start somenumber) field in the belief database is stored in the

-------- variable start.

- The plan can only run while (counting true) holds in the agent’s belief database.

- The default priority level in dMARS is 7. By choosing 10 as priority level, we can be sure
that incoming messages and other events are processed even when the count plan is
running.

Figure 4-4: The count plan

Stop-Counting

{told {stop-countina) told $env) ) o
~~~~~~ ~..]._ The agent has received a message of the form

@ (stop-counting) from another agent.

. 1 <------ | _ Assert (counting false) to the agent's belief
(* (= (countina falseW database. This causes the count plan to abort.

Figure 4-5: The stop-counting plan
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4.2.2 The dMARS plans implementing the control structure

Having provided a background in dMARS plans, I can now present the dMARS plans that
implement the interrupt-based control structure. The control structure is implemented by the
four plans shown in figures 4-6 to 4-9. The main control loop is implemented in the top-loop
plan in figure 4-6. This plan should be started when the simulation in the PAC system starts,
and should run until the simulation ends. In the current implementation, this is achieved by
having an init-plan assert (simulation-running true) at the simulation startup, and having an
end-plan assert (simulation-running false) when the simulation ends (neither of these plans are
shown here).

Top-Loop

{add-fact (simulation-runnina true))

maintenance

{simulation-runnina true)

(priority 10} @

(* (= linterrlupted false))

(! (do-action-selection)) Q otherwise

{! (appraise-situation))

Figure 4-6: The top-loop plan

The top-loop plan runs at priority level 10 to ensure that incoming messages from
AgentWorld will be processed and handled while the plan is running. All sub-plans inherit the
priority level of the parent plan, so in this case the do-action-selection and appraise-situation
plans run at priority level 10.

At the first step in the top-loop plan (interrupted false) is asserted to the agent’s belief
database. This proposition is important for the do-action-selection plan, which uses it as a
maintenance condition. The next step in the plan creates the sub-goal appraise-situation,
which causes the appraise-situation plan in figure 4-7 to be executed. This plan tells
AgentWorld to send it information about the world. As a consequence, AgentWorld sends a
message containing information about the state of the world. Another plan (not shown here) is
responsible for updating the agent’s belief database. In future implementations, the appraise-
situation plan will also be responsible for the deliberate emotion appraisal that I described in
chapter 3.

At the next step in the fop-loop plan’s cycle there are two outgoing links from p2 to start.
In dAMARS, an ‘otherwise’ link is only followed when all other links have been attempted
unsuccessfully. In this case, the do-action-selection link is always attempted first. The do-
action-selection sub-goal is responsible for deciding on an action and executing it. Regardless
of the success or failure of the do-action-selection sub-goal a new cycle should be started,
hence the otherwise link. In this way, the top-loop plan stays active until the simulation ends.
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4.3

Appraise-Situation

{new-aoal (! (appraise-situation)))

(* (tell (atomic give-state-data) agentworld))

Figure 4-7: The appraise-situation plan

The do-action-selection plan in figure 4-8 does little of it’s own, except make sure that any
action that is being executed is aborted when an interrupt occurs. The plan creates a sub-goal
perform-action, which is the invocation condition of all individual action plans. So, if an agent
can perform three possible actions, each of those three action plans has (hew-goal (! (perform-
action))) as its invocation condition. When an interrupt is received, the interrupt plan in figure
4-9 changes (interrupt false) to (interrupt true), and as a result the do-action-selection plan is
aborted, and all it’s sub-plans with it. Control is returned to the fop-loop plan and a new cycle
of appraise-situation > do-action-selection is started.

Do-Action-Selection | Interrupt
(new-goal (I (do-action-selection})) (told (interrupt now) told $env)
.
{interrupted false)

(! (perform-action)) (= (interrtilpted true)))
|
L
Figure 4-8: The do-action-selection plan Figure 4-9: The interrupt plan

The Scenario

As was indicated above, the main goal of this first simulation scenario is to demonstrate
that the control structure as described in the previous section works. For this purpose I have
chosen to keep the simulation scenario as simple as possible. The agent of interest in this first
simulation is Dogbert, a dog. He lives in a world where food parcels appear at random
positions, and being a good dog, Dogbert collects as many food parcels as he can. However, in
this simulation another dog, Cujo, steals food parcels from Dogbert when he can. Therefore,
Dogbert should try to avoid Cujo as much he can.
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In this scenario, Dogbert needs only a few perception routines. I have equipped Dogbert
with a ‘food parcel detector’, and a ‘Cujo detector’: perception routines that sense whether a
food parcel and/or Cujo are in sight. Dogbert’s emotional state is determined as the weighed
sum of two emotion-eliciting rules relating to the proximity of food and Cujo:

emotion emotion
1+ I SN
”a- ————————————— e
] distance | distance
= <« =
= in sight  outof sight in sight  outof sight
4 __,_"’ Cujo proximity . Food proximity

Figure 4-10: The emotion-eliciting functions

Dogbert can perform four actions: flee-from x, move-to x, pick-up x and wander. Each of
these actions is implemented in AgentWorld, as are the emotion-eliciting rules and the
appraisal register (i.e. overall emotional state in the current implementation). The following

This plan is called when a message is received containing information about Dogbert's state. This
is the result of the request for state information by the appraise situation plan (figure 4-7).

The state information message contains the following information:

- (food-near $food $food-name) : if $food is false, there is no food parcel nearby. tf $food is
true, the parcel is named $food-name.

- (cujo-near $cuj): if Scu] is true, Cujo is nearby. If $cuj is false, Cujo is not in sight.

Update-Beliefs

{told (state-data ((food-near $food $food-name) {cuio-near $cuil) told $env)

(* (= (cujo-near Scuj))  geal__

==~.l_Update the agent's belief
Q et database.
4"

(* (= (food-near $food $food-name)))

Figure 4-11: The update-beliefs plan

plans were added to the general control plans described in the previous section:
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Collect-Food

(& (cujo-near false)
(food-near true $food)
(num-parceis $np))

(* (ask (abortDurational movle-to $food) agentworid Senv))




4.4

P N—— _ Only wander when Cujo isn't in
sight and there is no food nearby.

(& . (cujo-near false)
{food-near false $_|

e

(* (ask (abortDurational wander) aaentworld $Serv)) - Tell Dogbert’s AgentWorld agent

to wander around.
H The wander action doesn't end
by itself, so this is really just a

( (get-reply Senv (action success))) ®-="1" aitforever statement. The only

way to stop wandering is to have
an interrupt happen.

i)
3
<n

Figure 4-14: The wander plan

The Simulation

Unfortunately, 1 have not been able to fully implement all of Dogbert’s action routines in
AgentWorld, and therefore have been unable to run the simulation scenario described above.
However, [ have implemented the control structure described in section 4.2.2 and all
Dogbert’s dMARS plans described in section 4.3. I have tested these plans by manually
sending messages to the Dogbert agent, for example telling him to interrupt his current
actions, or telling him that he has succeeded in moving to a certain food-parcel.

In this way, I have been able to verify that the control structure that is implemented by the
plans in figures 4-6 to 4-9 functions as expected, and that the BDI architecture can use an
interrupt-based control structure.
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CHAPTER DS

CONCLUSIONS

5.1

In this thesis | have presented an extension to the BDI architecture based on psychological
and computational models of emotion. I believe that emotions play an important role in
coordinating our thought processes, and that some of the characteristics of emotions can also
be very useful for agent architectures. My work has focused on the control dimension of
emotions: our emotions often force us to attend to certain aspects of the environment.

In chapter 2, I have argued that one of the difficult issues in deliberate agent systems is
deciding when to abort an intention. An agent shouldn’t give up to soon, nor should he be too
fanatic about achieving his goals. Moreover, this region between under-committing and over-
committing to a plan seems to depend on the agent’s context. In a hostile environment an
agent should be more careful and give up sooner than in a friendly environment.

I believe that emotions are very important in deciding when to give up and when to
persevere, at least for humans. In chapter 3, I have presented an extension to the BDI
architecture that is based on Smith et al.’s mode! of emotion appraisal ([SK99]). The main
feature of the extension of the BDI architecture is that plans are interrupted when there has
been a significant change in the agent’s emotional state, which should reflect a subjectively
significant change in the state of the world.

The first step toward an implementation of the model is to determine how the BDI
architecture can be adapted to accommodate interrupts, and to show that, given a plausible
emotion-appraisal process, the resulting behavior is sensible. For this purpose, [ have designed
a simulation scenario and have implemented the interrupt-based control structure in dMARS. ]
have been able to show that dMARS can accommodate an interrupt-based control structure,
but have been unable to run the simulation due to time limitations.

Topics of Future Research

My focus in this thesis has been on the control function of emotions and on how the BDI
architecture can be extended to accommodate an interrupt-based control structure. I have
given only relatively high-level descriptions of how the two different types of emotion
appraisal processes (automatic and deliberate) can be implemented. There are a lot of open
issues that need to be addressed before the model I have presented can be fully implemented.

Aside from these issues, adding a model of emotion to any agent architecture opens up a
number of further possibilities. I believe that an emotional state should influence planning
processes not only by interrupting current planning, but also by restricting the amount of
planning performed. For instance, when you are being attacked, you should minimize
planning and act as soon as possible. I believe that emotions are partly responsible for this
balance between planning and acting in humans.

Emotions also play a motivational role in humans, and this is another interesting topic that
should be explored further for agent systems. Frijda’s [FS87, FM93] concerns, described in
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section 1.3 emphasize the motivational role of emotions, and I think it would be interesting to
see how emotions can serve as motivations within the BDI architecture. Also, using emotions
as motivations makes the process of designing plans more natural since the plan’s motivation
corresponds more closely to our own motivations.

Currently, most agent systems do not incorporate learning mechanisms: the plans are
hand-made by the programmer. I believe that the valence dimension of emotions is very
suitable as a reinforcement value in reinforcement learning. When an agent is faced with a
problem that strongly 'distresses' him, a plan that solves the problem could receive a strong
positive reinforcement. In this way, the agent could learn from subjectively important
situations much easier than not-so important situations.

Finally, another promising field where emotions play an important role is in believable
agents: agents that appear to be 'real' creatures. An agent that has an emotional state can also
display his emotional state to another agent or a user. Being the social creatures that we are, it
is more natural to communicate with such an agent. The potential of emotional agents is
enormous. They can be used in a great variety of applications, ranging from computer assisted
learning to characters in computer games.

I believe our emotions play much more important role in our everyday life that is often
thought, and that we can learn a lot about information processing from the study of emotions.
Much research into the nature of emotions is needed, but [ believe artificial emotions have a
great potential in agent systems.
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