
Adaptive feature space Transformation in

Generalised Matrix Learning Vector

Quantization

MASTER THESIS

Johann Bernoulli Institute of Mathematics and Computer Science

University of Groningen

The Netherlands

Moses Matovu

February 18, 2010

Abstract

We propose and investigate a modification of Generalized Matrix Relevance Learning
Vector Quantization (GMLVQ). In the novel approach we restrict the linear transformation
to only the data set instead of transforming both the prototypes and the data like in the
original GMLVQ. The method is implemented using a rectangular transformation matrix
in a modified Euclidean distance measure. We analyse the performance of the modified
algorithm and compare with original GMLVQ. In this paper, the method is outlined and
experimental results are discussed in terms of a benchmark classification task.

1 Introduction

Several classification techniques for differentiating (or discriminating) features and patterns in
data sets do exist however, they provide different classification convergence behaviours, some
associated with various setbacks. Various domains and applications require more efficient al-
gorithms that provide better performances. Thus, the reason why several variants of classifiers
are being proposed, developed and deployed in various domains with the view that newer ones
may provide better performance results. The need for better optimal classifiers prompts the
continuity of on going research activities (and/or projects).

1



Our research project is based on Learning Vector Quantization (LVQ) algorithms where much
emphasis is put on adapting and modifying the Generalized Matrix Learning Vector Quantization
(GMLVQ) algorithm, which is introduced and discussed in [7, 14] and extended in [15, 16] to
a novel approach where linear matrix transformation is only restricted to the data set instead
of transforming both the data and the prototypes like it is the case in the GMLVQ algorithm.
We investigate and analyse whether the modified algorithm (possibly) provides better or attains
similar converging classification performances on same data sets as GMLVQ(MxN).

This paper is structured in 7 sections as follows. Section 1 gives a brief introduction and the
purpose (and/or motivation) of this research; in section 2, we give general introductory remarks
about the LVQ algorithms and review some of them like LVQ1, which introduced the basic
idea of prototype (codebook) learning based on heuristic codebook updates; Generalised LVQ
(GLVQ) algorithm, which is based on cost function using gradient descent; and relevance learning
algorithms such as GRLVQ, and GMLVQ; section 3 discusses our approach of modifying GMLVQ
algorithm; in section 4, we discuss and analyse the set-ups of the experiments and the data used
in training both the modified algorithm and GMLVQ; in section 5, we discuss the results of the
various experiments carried out; in section 7, we give conclusive remarks and recommendations;
and finally, acknowledgements in section 8.

2 LVQ Algorithms

Various pattern classification algorithms do exist associated with differences in their convergence
results. In order to improve on the optimization of performances and attain better convergences,
extensive research has been done and is still on going. It is a result of such needs that led to the
emergence of many algorithms among which are the LVQ methods, which have performed better
compared to many other algorithms on high data dimensionality.

LVQ is a method for training competitive network layers in a supervised setting where a
competitive layer learns to classify input vectors. The classes formed are dependant on only the
distance (similarity measure) between the classes and the input vectors.

Learning in LVQ networks classifies input vectors targeting classes specified by the user [3].
The emergence of LVQ algorithms provided an alternate machine learning approach of handling
the challenge of dealing with high data dimensionality associated with some classifiers. LVQ
algorithms provide better performance behaviours in terms of computational cost (as regards
resources and time) and the convergence. It involves an intuitive and simple though powerful
classification method [2]. The method is easy to implement; a user can control the complexity of
the resulting classifier; it provides classifiers that can deal with multi-class data problems; and
the resultant classifier is human understandable because of the intuitive classification of data
points to the class of their closet prototype [14].

In this paper, we review some of the LVQ algorithms but to a brief extent. In the next section,
we discuss LVQ1, GLVQ, GRLVQ and GMLVQ, which is the foundation of this research.

2.1 Classification in LVQ

Learning Vector Quantization (LVQ) algorithms are a group of learning algorithms based on
nearest prototype classification concept that was introduced and proposed by Kohonen [2, 3].
LVQ algorithms are on-line supervised versions of Vector Quantization (VQ) competitive learning
classification approaches that are used extensively. Since the introduction of LVQ, a number
of variants aimed at providing better performance have been proposed and developed. LVQ
methods are used when there is a set of labelled input data. Classes are pre-defined. There is
a set of reference vectors (prototypes), ωj ∈ RN , for j = 1, 2, 3, ...,K, where K is the number of

2



prototypes, that are used to approximate the different data classes. Each prototype carries a
label c (ωj) ∈ {1, 2, ..., C}, which can attain up to C number of classes. Note that K = C if only
one prototype per class is used during training.

Like other prototype-based algorithms, LVQ algorithms provide a good generalisation of
classification for high dimensional data [10]. Classification is attained by determining the closest
of the prototypes and returning the class label of the winning prototype. After determining the
closet prototype (or set of prototypes) from the original given set of prototypes, the closest (set
of) prototype(s) is then updated in such a way that, if its class label is the same as the label
of the data sample, the prototype is attached to the data set of this class and if otherwise, it
is pushed away from this data point that belongs to a different class. This is the basic idea of
prototype learning.

Classification in LVQ algorithms is based on the nearest prototype metric where a set of
chosen prototype vectors is used. LVQ algorithms rely on the distance measured between a data
point, ξ and the class to which the nearest prototype belongs. Usually, the algorithms employ
standard Euclidean metric as the similarity (distance) measure [5] but other forms of the distance
measure can be used, depending on the domain of application.

If we consider a given set of training data, (ξi, yi) ∈ RN × {1, 2, ..., C}, for i = 1,2...,P, where
N denotes the data dimensionality, P is the number of examples and C is the number of different
classes, where classification of the data into C classes is required. Classification in LVQ is achieved
by a winner-takes-all rule based on the concept of finding the nearest prototype such that the
distance between the data point ξ and prototype ω, denoted by d (ω, ξ) has to be minimum for
the winning prototype. A fixed number of vectors (prototypes), ωi for each class is chosen, and
a data point ξ ∈ RN is then mapped to the class label c (ξ) = c (ωi) of the closest prototype (the
winner), for which d (ωi, ξ) ≤ d (ωj , ξ) holds for all i 6= j. This is the basic approach used by all
LVQ algorithms.

2.2 LVQ1

According to [2], learning in LVQ methods determines weight locations for prototypes so that
the given training data sets can be mapped onto the corresponding class labels. LVQ1 builds on
the idea of the standard Self-Organising Maps (SOM) introduced and discussed in [3].

Given input vectors ξ and weights (prototypes) ωj , the main objective in LVQ1, is to deter-
mine a set of prototypes that best represent each class. LVQ1 applies labels of inputs to determine
the best classification label for each prototype, ωj . After a number of training iterations have
been carried out and deemed sufficient, the learned prototypes are used in the nearest prototype
classification. The algorithm checks the input classes and moves prototype ωj accordingly at
each iteration, and ωj is updated in accordance with the winner-take-all approach. The generic
form of updating these prototypes is

ωp+1 = ωp −∆ωp (1)

If the input vector ξ and the associated weight, ωj (the winner) have the same class label,
c (ωj) = c (ξ), then they are both moved together by

∆ωj (t) = +ηω (t) [ξ − ωj (t)]

as in SOM [3] to give the update

ωj (t+ 1) = ωj (t) + ηω (t)
(
ξ − ωj (t)

)
(2)

3



If input vector, ξ is correctly classified, the algorithm continues with the next element other-
wise, if the input vector, ξ and the associated weight, ωj (the winner) have different class labels,
c (ωj) 6= c (ξ), then they are moved apart using

∆ωj (t) = −ηω (t) [ξ − ωj (t)]

and the update of ωj (t) to ωj (t+ 1) proceeds as

ωj (t+ 1) = ωj (t)− ηω (t)
(
ξ − ωj (t)

)
(3)

where ηω(t) is the learning rate of the prototypes, which is an iteration dependent parameter
used to control algorithm convergence and decreases with the number of iterations (epochs) of
the training. The value of ηω(t) may be constant or may vary throughout the learning process in
order to ensure convergence of the algorithm. If weights ωj(t) correspond to other input vectors
(no winner), ωj(t) remains unchanged.

There are modifications of LVQ1 based on the same concept of heuristic prototype updates.
These are LVQ2.1 and LVQ3, see [1, 2, 3] and GLVQ introduced in [9]. In both LVQ2.1 and LVQ3,
two winning code vectors, one having a correct label and another having a wrong label (the two
prototypes ωj and ωk, which belong to the correct class and the wrong class of ξ respectively are
the nearest neighbours to data point, ξ) are changed simultaneously at each update step unlike
in LVQ1, where only one codebook vector is changed at each update step. The simultaneous
update of ωj(k) is given by

ωj (t+ 1) = ωj (t) + η (t)
(
ξ − ωj (t)

)
(4)

ωk (t+ 1) = ωk (t)− η (t)
(
ξ − ωk (t)

)
(5)

2.3 GLVQ

Like LVQ1, LVQ2.1 and LVQ3; the generalized LVQ (GLVQ) algorithm proposed by Sato and
Yamada [9] is also based on the nearest prototype classification concept. It determines the closest
correct prototype and closest incorrect prototype using the winner-take-all scheme. This method
is based on the minimization of the cost function.

The prototypes, ωj(k) are adapted such that for each class, the corresponding prototypes
represent the class as accurately as possible. This requires a minimum relative distance difference
between the points of the class and the corresponding prototypes, given by

µ (ξ) =
(
dj−dk
dj+dk

)
where dj = d (ωj , ξi) is the distance of the data point ξi from the closest correct prototype

ωj of the same class label and dk = d (ωk, ξi) is the distance of the data point ξi from the closest
wrong prototype ωk of a different class label than that of data point, ξi.

Note that µ (ξ) ranges between -1 and +1 and is negative when a data point, ξi is correctly
classified otherwise, it is positive (when a data point ξi is wrongly classified). This approach
involves minimizing the misclassification (error) measure, using a stochastic gradient descent
approach. The error improves when µ (ξ) decreases for all inputs. Eq. (6) gives a very flexible
approach introduced in [5], which involves minimising the cost function (and aims at maximizing
the number of correctly classified data points). The learning rule is therefore formulated as the
minimization of the cost function, f defined by Eq. (6).

4



f =

P∑
i=1

φ (µ (ξi)) =

P∑
i=1

φ

(
dj − dk
dj + dk

)
(6)

From Eq. (6), f is minimized by updating the prototypes ωj and ωk based on steepest descent
approach. In Eq. (6), the quantities

dj = d (ωj , ξi) with c (ωj) = c (ξ),

dk = d (ωk, ξi) with c (ωk) 6= c (ξ),

where P is the number of input vectors for training, and φ is a monotonically increasing
function such as the logistic function or the identity φ (x) = x, which we use throughout the
following. Also, note that the numerator of Eq. (6) can only be smaller than 0 if and only if the
classification of the data point is correct, which provides greater classification security.

The learning rule is derived from the formulation of cost function, given in Eq. (6) by taking
derivatives with respect to the prototypes ω, which yields an adaptation rule based on gradient.
If we assume that the similarity measure d (ω, ξ) can be differentiated with respect to ω; to
minimize f , prototypes ωj and ωk have to be updated based on the steepest descent method to
give

∆ωj = +ηφ
′
(µ (ξ))µ+ (ξ)∇ωjdj (ξ) (7)

∆ωk = −ηφ
′
(µ (ξ))µ− (ξ)∇ωk

dk (ξ) (8)

where η is the learning rate, φ
′

is the derivative of function, φ taken at position µ (ξ),

µ+ (ξ) = 2.dk
(dj+dk)2 , µ− (ξ) =

2.dj
(dj+dk)2 , and µ (ξ) =

(
dj−dk
dj+dk

)
.

This choice of employing a standard Euclidean metric as the similarity measure yields the
Generalized Learning Vector Quantization (GLVQ) algorithm.

2.4 Relevance Learning in LVQ Algorithms

The idea of relevance learning is now widely applied in newer variants of LVQ algorithms. Gen-
eralised Relevance Learning Vector Quantization (GRLVQ) method proposed in [7], is a variant
of LVQ algorithms that aims at producing better convergence results by employing relevance
factors in the similarity measure, dλ (ω, ξ).

If we consider a set of training data points, ξk ∈ RN × {1, 2, ..., C}, for k = 1,2, ..., P; where
classification of the data into C, classes is required, the squared Euclidean distance measure is
formulated as

dλ (ω, ξ) =

N∑
i

λi (ξi − ωi)2
(9)

with relevance terms λi ≥ 0 for every dimension, i, and
∑
i λi = 1. GRLVQ is a powerful

approach that supports prototype learning (based on the nearest prototype classification concept)
in the presence of of high data dimensionality features of different, yet a priori unknown, relevance
[5].

According to [7, 5], the use of relevance factors λi in the similarity measure enhances easy
interpretation. Dimensions with large λi are considered to be more important for classification

5



while those with very small (or zero) relevances indicate that the corresponding feature could be
omitted.

The choice of the metric with relevance factors does not have to be global but can be attached
locally to single prototypes. If that happens, individual updates take place for relevance factors
λj for each prototype ωj , and the distance of a data point ξ from prototype ωj , d

λj

(ω, ξ) is
computed based on λj , which allows local relevance adaptation. Localised GRLVQ (LGRLVQ)
is a variant of GRLVQ method with localised relevance factors attached to a single prototype,
see [5] for more details.

Generalised Matrix Learning Vector Quantization (GMLVQ) introduced and analysed in [7,
14] is another variant of LVQ algorithms based on relevance learning. It gives an important
extension of the concept of using relevance factors in the similarity measure. It has two variants,
GMLVQ(NxN) and GMLVQ(MxN) according to [15, 16]. The GMLVQ algorithm is based on
the use of full matrices of relevances in the distance similarity measure of the form

d∧ (ω, ξ) = (ξ − ω)
T ∧ (ξ − ω) (10)

where ∧ is an NxN full matrix (∧ ∈ RN×N ). An Euclidean metric is derived from Eq. (9) by
deciding on the suitable parameters to use [10]. Accordingly, the similarity measure becomes a
squared Euclidean distance metric if matrix, ∧ is positive (semi-) definite, so that,

d∧ (ω, ξ) =
(

Ω (ξ − ω)
)2

≥ 0 (11)

where, ∧ = ΩT .Ω with Ω ∈ RN×N or Ω ∈ RM×N , where M<N .

The original GMLVQ employs a symmetric squared (quadratic) matrix, Ω in the implementa-
tion of Eq. (10), which is extended in [15, 16] with the use of a rectangular matrix, Ω (Ω ∈ RM×N ,
where M<N) of limited rank corresponding to low but varying dimensionality representation of
the data. This provides reduction of the number of adaptive parameters where 2- or 5- or 9- or
13-dimensional representations are deemed to provide sufficient and efficient visualization.

The dimension of matrix, Ω (even ∧) plays a key role because it influences how the prototypes
and the data are transformed and/or projected in the feature space. Two forms of matrix, Ω
are used in the formulation of the similarity measure, which results into the two variants of
GMLVQ. The choice of which form to use depends on the shape and the dimension required to
address, [15, 16] proposes the following; (i) Quadratic and symmetric matrix, Ω (i.e. Ω ∈ RN×N ,
Ωij = Ωji), (ii) Quadratic and non-symmetric matrix, Ω (i.e. Ω ∈ RN×N , Ωij 6= Ωji), and (iii)
Rectangular matrix, Ω (i.e. Ω ∈ RM×N ,M<N).

Note that, a rectangular matrix, Ω ∈ RM×N , where M = N is a special case of the rectangular
matrix that is equivalent to a non-symmetric quadratic (square) matrix, Ω.

To effectively reduce the dimensionality of data, the GMLVQ extension does the training of
prototypes and identifying of suitable transformations simultaneously unlike other algorithms
where dimensionality reduction is a pre-processing step [15, 16]. The extended method provides
a possibility to incorporate prior knowledge about the intrinsic dimension of the data efficiently,
and significantly reduces the number of free parameters in the learning problem.

The computation of the derivatives with respect to matrix, Ω, therefore depends on the shape
and the dimensionality of matrix, Ω. With two different forms of the transformation matrix, Ω
selected and used in GMLVQ(NxN) and GMLVQ(MxN), gives rise to two different alternatives
for expressing d∧ (ω, ξ) in terms of Ω. Hence, d∧ (ω, ξ) is expressed in terms of a symmetric
quadratic matrix, Ω ∈ RN×N as

6



d∧1 (ω, ξ) =

N∑
i,j,k

(ξi − ωi) ΩikΩkj (ξj − ωj) (12)

The expression of d∧ (ω, ξ) in terms of either a rectangular matrix (Ω ∈ RM×N , where M 6=N),
or a quadratic non-symmetric matrix (Ω ∈ RM×N , where M=N), gives

d∧2 (ω, ξ) =

N∑
i,j

M∑
k

(ξi − ωi) ΩkiΩkj (ξj − ωj) (13)

Training in LVQ involves minimizing the cost function and the learning rule is derived by
taking the derivatives of the cost function with respect to the prototypes and the involved metric
parameters. Thus, the adaptation formulae for GMLVQ variants whose formulation is given in
Eq. (10) are derived to attain a stochastic gradient descent.

To attain the learning criterion and improve on the error rates, the cost function, f of the

form given in Eq. (6), (where f =
∑
i φ
(
d∧J−d

∧
K

d∧J +d∧K

)
with φ (x) = x being a function that increases

monotonically) has to be minimized by updating the prototypes and metric parameters with
their respective derivatives.

If we consider a data point, ξ with the closest correct prototype, ωJ and the closest wrong
prototype, ωK ; the update equations are obtained based on the strategies given in Eq. (14) and
Eq. (15) for the prototypes and matrix, Ω respectively.

ωJ(K) = ωJ(K) − ηω
∂f

∂ωJ(K)
(14)

ΩJ(K) = ΩJ(K) − ηΩ
∂f

∂Ω
(15)

where ηω and ηΩ are the respective learning rates of the prototypes and matrix, Ω, and ∂f is
the derivative of f , see the flexible learning approach proposed in [14] derived as a minimization
of the cost function, of the form given in Eq. (6). Taking the derivative of f with respect to ω,
we get

∂f
∂ωJ

= −φ′
(µ (ξ))µ+ (ξ)∇ωJ

d∧J

and

∂f
∂ωK

= +φ
′
(µ (ξ))µ− (ξ)∇ωK

d∧K

But the derivative of d∧ (ω, ξ) with respect to ω is as given by

d∧ (ω, ξ)

∂ωJ,K
= −2 ∧ (ξ − ωJ,K) (16)

By substitution, we get

∂f

∂ωJ
= +φ

′
(µ (ξ))µ+ (ξ) .2∧ (ξ − ωJ) (17)

∂f

∂ωK
= −φ

′
(µ (ξ))µ− (ξ) .2∧ (ξ − ωJ) (18)

7



From Eq. (14), the updates of the closest correct prototype, ωJ and closest wrong prototype,
ωK are given by

∆ωJ = +ηω.φ
′
(µ (ξ)) .µ+ (ξ) .2 ∧ (ξ − ωJ) (19)

∆ωK = −ηω.φ
′
(µ (ξ)) .µ− (ξ) .2 ∧ (ξ − ωK) (20)

where µ+ (ξ) =
2.d∧K

(d∧J +d∧K)2 , µ− (ξ) =
2.d∧J

(d∧J +d∧K)2 , µ (ξ) =
(
d∧J−d

∧
K

d∧J +d∧K

)
, and φ

′
is the derivative of

the cost function φ; index J(K) refers to the closest correct (wrong) prototype ωJ(K) and ηω is
the learning rate for the prototypes.

For the update of matrix elements, Ωlm, we get

∆Ωlm = −2ηΩ.φ
′
(µ (ξ)) . (21)(

µ+ (ξ)
(

(ξm − ωJ,m) [Ω (ξ − ωJ)]l

)
− µ− (ξ)

(
(ξm − ωJ,m) [Ω (ξ − ωK)]l

))
where the parameters µ+ (ξ), µ− (ξ), µ (ξ) and φ

′
are as defined for Eq. (19) and Eq. (20),

and ηΩ, is the learning rate of the parameters.
The two learning rules are given special terms in [15, 16] based on the choice of the transfor-

mation matrix, Ω employed in the formulation of the similarity measure. The original GMLVQ
is termed as GMLVQ(NxN) due to the matrix, Ω having a square shape (Ω ∈ RN×N ), and
its extension as GMLVQ(MxN) because matrix, Ω has a rectangular shape (Ω ∈ RM×N , where
M < N).

The learning rates ηω and ηΩ (assuming that ηω � ηΩ for a slower time scale than that of
the prototypes) are chosen independent of one another.

3 GMLVQ(MxN) modification

In our proposed novel approach, we investigate and adapt GMLVQ classification algorithm. We
modify the use of the full matrix of relevance vectors in GMLVQ’s formulation of the similarity
measure to a new method that uses matrices of relevance vectors that only transform the data
set instead of transforming both the data and the prototypes like in GMLVQ. We investigate
the use of rectangular matrices used in GMLVQ(MxN) for the implementation our proposed
new approach. We train both both the GMLVQ(MxN) and its modification on the same set of
data to determine their classification performances, which we compare to analyse how they both
perform.

We use more or less the same implementation approach as that used to implement GLMVQ
[7] and GMLVQ(MxN) [15, 16]. We extend the use of a matrix relevance vectors, such that for
a data point, ξ from prototype, ω, we modify and formulate the distance similarity measure of
the form used in the formulation of the GMLVQ, Eq. (10) to the algorithm of the form

dΩ (ω, ξ) = (ω − Ωξ)
T

(ω − Ωξ) (22)

Accordingly, this ensures that the matrix transforms only the data sets according to Eq. (22).
This is the formulation of the algorithm of our approach, from which two varying implementations
due to the different matrix shapes (symmetric quadratic and rectangular) can be obtained.

We use of a rectangular matrix, Ω in our approach, which GMLVQ(MxN) algorithm employs.
Our approach is based on the same principle as that of GMLVQ algorithm and many other LVQ
variants, where the updates move the closest prototype, ωJ towards a data point, ξ that belongs

8



to the same category and move away the closest prototype, ωK that belongs to a different class
label than that of the data point, ξ.

Training in LVQ involves minimizing the cost function, and the learning rule is derived from
this cost function by taking its derivatives with respect to the prototypes and the involved metric
parameters. If we consider the similarity measure given in Eq. (22), its adaptation formulae

are derived using f =
∑
i φ(

dΩ
J−d

Ω
K

dΩ
J +dΩ

K

), from Eq. (6) to attain a stochastic gradient descent by

computing the derivatives of f with respect to both ω and Ω. If we take derivatives of f with
respect to ω, we have

∂f
∂ωJ

= −φ′
(µ (ξ)) .µ+ (ξ) .∇ωJ

dΩ
J

∂f
∂ωK

= +φ
′
(µ (ξ)) .µ− (ξ) .∇ωK

dΩ
K

But the derivatives of dΩ (ω, ξ) with respect to ω, is

∂dΩ

∂ω
= 2 (ω − Ωξ) (23)

Hence, by substitution,

∂f

∂ωJ
= −φ

′
(µ (ξ))µ+ (ξ) .2 (ωJ − Ωξ) (24)

∂f

∂ωK
= +φ

′
(µ (ξ))µ− (ξ) .2 (ωK − Ωξ) (25)

where φ
′

is the derivative of the function φ, with µ+ (ξ) = 2.dK
(dJ+dK)2 , µ−(ξ) = 2.dJ

(dJ+dK)2 and

µ (ξ) =
(
dΩ
J−d

Ω
K

dΩ
J +dΩ

K

)
.

Using the strategy given in Eq. (14) for updating both ωJ(K), we obtain the following update
equations

∆ωJ = −2ηωφ
′
(µ (ξ))µ+ (ξ) . (ωJ − Ωξ) (26)

∆ωK = +2ηωφ
′
(µ (ξ))µ− (ξ) . (ωK − Ωξ) (27)

Note that, from Eq. (24),

∂f
∂ωJ

= − 4.dK
(dK+dJ )2 (ωJ − Ωξ),

and from Eq. (25),

∂f
∂ωK

= + 4.dJ
(dK+dJ )2 (ωK − Ωξ).

Substituting the values of φ
′
(µ (ξ)), µ+ (ξ) and µ− (ξ), we obtain the following simplified

equations, which indicate the changes in prototypes.

∆ωJ = −ηω
4.dK

(dK + dJ)2
(ωJ − Ωξ) (28)

∆ωK = +ηω
4.dJ

(dK + dJ)2
(ωK − Ωξ) (29)

9



We now consider the update of a single matrix element, Ωl,m. Because of the rectangular
shape of the matrix, Ω, the expression of dΩ (ω, ξ) in terms of Ω is

∂dΩ (ω, ξ)

∂Ωlm
=

N∑
i,j

M∑
k

(ωi − Ωkiξi) (ωj − Ωkjξj) (30)

The derivative of dΩ (ω, ξ) with respect to a single rectangular matrix element, Ωlm, is

∂dΩ (ω, ξ)

∂Ωlm
= 2

∑
i

−2ξm (ωi − Ωliξi) (31)

By substitution, we have

∂dΩ (ω, ξ)

∂Ωlm
= −4

∑
i

ξm. (ωi − Ωliξi) (32)

For the update of matrix elements, Ωlm, we get

∆Ωlm = +4ηΩ.φ
′
(µ (ξ)) .

(
µ+ (ξ)

(
ξm[ωJ − Ωξ]l

)
− µ− (ξ)

(
ξm[ωK − Ωξ]l

))
(33)

Now that we have discussed the formulation of our modified approach of GMLVQ(MxN),
next, we discuss the various experiments and associated results.

4 Experiments

We train our approach on the same data sets as GMLVQ(MxN) to compare their respective
performances.

Various data sets can be used for training the algorithms, which include; artificial data, image
segmentation data (that can be obtained from UCI Repository [8]), iris data and bio-informatics
data. But for purposes of simplifying the experiments, we train with with only one data set,
whose results from the experiments will be discussed. We chose segmentation data.

Experiments are carried-out to test the performances of our approach with available data sets
so as to compare and analyse the classification performances attained against GMLVQ(MxN)
performance. We reduce the number of feature dimensionality of the data used to train the algo-
rithms to ease the analysis of the classification performances. Because of the rectangular shape
of matrix, Ω that is used, we use M-dimensional prototypes, which results in fewer prototype
components. The unused dimensions are neglected.

In all the experiments, prototype training is done for at least 1000 time steps (epochs) and the
adaptation of the parameters starts after some number of time steps, which varies with different
dimensions. The learning rates are re-set continuously (increased) during the entire duration of
training with the initial values set to ηω = 0.001 and ηΩ = 0.0001 (each value of ηΩ being 10 times
smaller than that of the corresponding ηω). The learning goes on, as the training error decreases
until it remains constant, at which point the optimal values of the learning rates are determined.
The optimal values of the learning rates are found and set to 0.1 and 0.01 respectively. We use
the same schedule of the learning rates as that used in GMLVQ of the form given by Eq. (33)
and Eq. (34) for ηω and ηΩ respectively;

ηω (t) =
ηω (0)

1 + c (t− 1)
(34)

10



ηΩ (t) =
ηΩ (0)

1 + c (t− 1)
(35)

where t counts the number of training epochs, factor c determines the speed and is chosen
independently for every application. ηω (t) and ηω (t) are learning rates at epoch, t and ηω (0)
and ηω (0) are the initial learning rates at epoch, 0. Note that, these learning rates ηω, for the
metric and ηΩ, for the prototypes are chosen independent of one another.

There are various ways that can be used for the initialization of the prototypes in LVQ
algorithms. Different prototype initializations approaches are used for GMLVQ(MxN) and the
modified algorithm. In GMLVQ(NxN), the prototypes are initialized by randomly choosing 10%
of all training samples of each class and computing their corresponding mean values. They are
N-dimensional prototypes. In our approach, we randomly choose 10% of the transformation of
the training data by matrix, Ω for each class and compute their corresponding mean values which
we then use to initialize the prototypes. There are M-dimensional prototypes to correspond to
the MxN matrices, Ω that project to an N-dimensional space.

In the experiments, after every update; matrix, Ω is normalised. It is updated and normalized
repeatedly a number of time steps (epochs) to be able to achieve convergence, which is attained
after 1000 epochs. To normalize matrix,Ω, the

∑
ij Ω2

ij = 1 is used by dividing all elements of

matrix, Ω by
∑
i Ω2

ii after every update.
Since both GMLVQ(MxN) and the modified algorithm have to be trained with the appropriate

data sets to facilitate in analysing their respective performances; next, we discuss the nature of
the data used in the various experiments.

4.1 Data

During the training and testing of our approach, image segmentation data is used. It contains
19-dimensional feature vectors with different attributes of 3x3 pixel regions extracted out of seven
outdoor images. each sub-region is assigned to one of the seven classes; brickface, sky, foliage,
cement, window, path and grass, in that order, see [8]. The training data set consists of 210 data
points with 30 samples for each of the seven (7) classes and the test data set contains 300 data
points per class.

Features 3, 4 and 5 for both test and training data sets are deemed (almost) constant and are
excluded (eliminated) from being used in the experiments. The remaining 16 are pre-processed.
The features are normalised to zero mean and unit variance.

In the next section, we discuss the results obtained from the various experiments carried out.

5 Results

Various experiments were carried-out. Different observations and results were obtained with
varying dimensions, M. Some of which we will discuss in detail. The ones we discuss give gener-
alized performances for other dimensions. The overall classification performances of our approach
in comparison to those of GMLVQ(MxN) for different dimensions of transformation matrix, Ω
are displayed in Fig.1 (left and right panels for GMLVQ(M×N) and its variant modification
respectively), with mean percentage accuracies plotted as a function of dimension, M. Note that,
the mean performance accuracy results are averaged over a number of trials (10 runs to be exact).

The results obtained after training the modified version of GMLVQ(M×N) on segmentation
data are compared with the classification performance results of GMLVQ(M×N) in order to
analyse if the modified version gives similar, better or worse performance (and/or convergence).

11



0 2 4 6 8 10 12 14 16
60

65

70

75

80

85

90

95

Dimension #

M
ea

n%
ag

e 
Ac

cu
ra

cie
s

GMLVQ(MxN)

 

 
Test Data
Training Data

0 2 4 6 8 10 12 14 16
65

70

75

80

85

90

95

Dimension #

M
ea

n%
ag

e 
Ac

cu
ra

cie
s

GMLVQ(MxN) model

 

 
Test Data
Training Data

Figure 1: Visualization of the classification performances after training GMVLQ(MxN) and its
modified algorithm (left and right panels respectively), with one prototype per class for segmen-
tation data set as a function of dimensions, M. The accuracies in both cases for training- and
test data sets are displayed on an average of 10 randomized initializations. Both algorithms
exhibit low performance for dimension, M = 1, though the modification’s performance is bet-
ter than that of GMLVQ(MxN) by approximately 0.6% for both test- and training data sets.
With dimension, M = 2; both algorithms perform close to the optimal performance but still
the modified algorithm performs better with a 0.74% and 1.4% on training- and test data re-
spectively. Both algorithms converge with optimal performances starting at dimension, M = 4.
GMLVQ(MxN) performance stabilizes compared to the modified algorithm’s performance, which
has slight differences and fluctuations for higher dimensions.

0 2 4 6 8 10 12 14 16

65

70

75

80

85

90

Dimension #

M
ea

n 
%

ag
e 

Ac
cu

ra
cie

s

Test Data

 

 
GMLVQ(MxN)
Model

0 2 4 6 8 10 12 14 16

65

70

75

80

85

90

95

Dimension #

M
ea

n 
%

ag
e 

Ac
cu

ra
cie

s

Training Data

 

 
GMLVQ(MxN)
Model

Figure 2: Visualization of the classification performances after training both GMVLQ(MxN)
and the modified algorithm with one prototype per class as a function of dimensions, M for
segmentation data set. The fluctuations of performances accuracies for both algorithms after
training them with test- and training data sets averaged over 10 randomized initializations, are
displayed in the left and right panels respectively. The modified algorithm performs better than
GMLVQ(MxN) for lower dimensions but does not give stable results for higher dimensions.

12



The mean classification accuracies during the entire course of training both the GMLVQ(MxN)
algorithm and its modified variant on the training- and test data sets with the varying dimensions,
M re displayed in Fig. 1 for the both algorithms. Fig. 2 shows the performance variations for
the two algorithms on test data (left panel) and training data (right panel).

Table 1 and Table 2 summarize the mean classification accuracies on both the training-
and test data sets during the entire process of training with the GMLVQ(MxN) and modified
algorithm respectively for a few cases of dimension, M. The modified algorithm shows better
performance on the test- and training data sets than GMLVQ(MxN) with dimension M = 1,
with a higher standard deviation, see Table 3, than the rest of the dimensions. Therefore, both
algorithms provide performances which are similar.

Table 1: Mean classification accuracies of GMLVQ(MxN) are averaged over 10 runs for each
dimension. Performances of a few dimension cases for GMLVQ(MxN) algorithm are summarised
in the table. Lower dimensions, M ∈ 1, 2 give low performances but rest give high performances.

Algorithm Accuracies

Test Data Training Data
GMLVQ(1xN) 63.67 68.45
GMLVQ(2xN) 83.90 87.91
GMLVQ(5xN) 88.51 90.58
GMLVQ(9xN) 88.58 90.66
GMLVQ(12xN) 88.67 90.51
GMLVQ(16xN) 89.00 90.65

Table 2: Mean classification accuracies of the GMLVQ(MxN) modification are averaged over 10
runs for each dimension. Performances of a few cases of dimension for the modified algorithm
are summarised in the table. Lower dimensions, M ∈ 1, 2 give low performances but higher
dimensions produce high performances.

Algorithm Accuracies

Test Data Training Data
GMLVQ(1xN) modified 69.45 74.10
GMLVQ(2xN) modified 85.27 88.65
GMLVQ(5xN) modified 88.58 90.75
GMLVQ(9xN) modifiied 88.67 90.78
GMLVQ(12xN) modified 88.99 90.97
GMLVQ(16xN) modified 88.05 90.15

Table 3: Standard deviations of the modified algorithm against GMLVQ(MxN) on test and
training data for a few dimensions, M=1 exhibits the highest standard deviation. Standard
deviations realised with the rest of the dimensions suggest that both algorithm perform equally.

Algorithm Standard Deviations

1 2 9 16
Test data 0.0409 0.0097 0.0006 0.0067

Training data 0.0400 0.0052 0.0008 0.0035

13



Both algorithms exhibit low performances with dimension, M ∈ 1, 2. The performance in-
creases with increase in dimension, M (see Fig. 1 and Fig. 2). Both GMLVQ(MxN) algorithm
and its modification perform close to the optimal performance with dimension, M = 3, see left
panel and and right panels of Fig. 1 for their respective performance behaviours. Generally,
GMLVQ(MxN) modification algorithm performs equally as good as the GMLVQ(MxN) algo-
rithm on both data sets with every dimensions, M. After attaining the optimal classification
performance, both algorithms exhibit very minimal fluctuations in performances as the dimen-
sions increase. Though, the performance of GMLVQ(MxN) stabilises, while the one of modified
algorithm fluctuates slightly.

There are more performance behaviours and convergence results as a result of training the
two algorithms to be considered. They vary from dimension to dimension. For that matter, we
will not discuss the results for every dimension, M. We will instead consider and discuss results
separately for a few cases (3 cases) for dimension, M (i.e. M = 2, 9 and 16).

Case 1: Dimension, M = 9

We investigate and analyse the performance behaviour of training both algorithms with dimen-
sion, M = 9 on segmentation data. Below, we give a full account and analysis of the results and
observations from the various experiments.

The plot of the cost function against epoch for both cases, see Fig. 3, shows that there is
similar behaviour of the curve for the two algorithms which emphasizes that gradient descent
steps are correctly and effectively implemented. A flexible approach given in Eq. (6) enables the
minimization of the cost function.

0 100 200 300 400 500 600 700 800 900 1000
−150

−145

−140

−135

−130

−125

−120

−115

0 100 200 300 400 500 600 700 800 900 1000
−150

−145

−140

−135

−130

−125

−120

−115

−110

Figure 3: Visualization of cost function curves of the GMLVQ(9xN) algorithm and the modified
algorithm after training both algorithms on segmentation data. Both algorithms display similar
curve behaviours because of the proper implementation of gradient descent using Eq. (6).

From Table 1 and Table 2 (even Fig.1 and Fig. 2), it be observed that the modified algorithm
has almost similar classification performance as GMLVQ(9xN) algorithm on both the test- and
training data sets averaging 88.67% and 90.78%, with 0.12% and 0.09% difference on the GM-
LVQ(9xN) algorithm respectively. With more training time steps, we were able to attain slightly
higher performance (minimum error) accuracies.

Fig. 4 represents eigenvalues of the global matrix, ∧ (=ΩTΩ) for GMLVQ(9xN) and its
modification in the left and right panels respectively. Note that in our modification, the global
matrix, ∧ is obtained using the same notation as that used for GMLVQ(9xN) for comparison
purposes even though it is not required in our implementation. Both figures show that there is
correlation in the way both algorithms behave. There is significant change in the first eigenvalue,
which is always increasing for both cases.

14



0 500 1000 1500
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

epoch

e
ig

0 500 1000 1500
0.25

0.3

0.35

0.4

0.45

0.5

epoch

e
ig

0 500 1000 1500
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

epoch

e
ig

0 500 1000 1500
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

epoch

e
ig

Figure 4: Visualization of the evolution of eigenvalues of the global matrix, ∧ (=ΩTΩ) plotted
as a function of epochs during training both the GMLVQ(9xN) algorithm and its modification
on segmentation data, as shown in the left and right panels of the figure respectively. The first
eigenvalue increases drastically in both cases whereas the rest, which are non-zero, decrease and
stabilize after a few epochs.

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8
Dimensionality:16x16

 

 

5 10 15

5

10

15
−0.1

−0.05

0

0.05

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4
Dimensionality:16x16

 

 

5 10 15

5

10

15
−0.1

−0.05

0

0.05

Figure 5: Visualization of the diagonal and off-diagonal elements of global matrix ∧ after 1000
epochs training of the GMLVQ(9xN), left panel and the modified algorithm, right panel. The
diagonal elements are set to zero for the plot. The feature indexed 16 is ranked highest in both
algorithms.

0 2 4 6 8 10
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

prototype #

class 3 (foliage)

 

 
GMLVQ(9xN)
Model

0 2 4 6 8 10
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

prototype #

class 4 (cement)

 

 
GMLVQ(9xN)

Model

0 2 4 6 8 10
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

prototype #

class 5 (window)

 

 
GMLVQ(9xN)
Model

Figure 6: Visualization of prototype positions of class 3 (foliage), class 4 (cement) and class 5
(window) as identified by both GMLVQ(9xN) and the modified algorithm, left and right panels
of the figure respectively. We use Ω to project prototypes for the GMLVQ(9xN) algorithm,
which has a big influence on the final locations in the feature space. Prototypes in the modified
algorithm are considered to be implicitly projected.

15



The analysis of the diagonal elements of the full matrix in Fig. 5 shows that the last feature
(indexed 16) is ranked highest followed by feature indexed 13 in both algorithms; the rest have
low values. In our modified approach, there are no off-diagonal elements with zero values but in
GMLVQ(9xN), there are some off-diagonal elements with value zero.

In our modified approach, prototypes are are defined in the feature space projected by matrix
Ω, which is not the case in GMLVQ(9xN). We achieve the same influence, by projecting the pro-
totypes of GMLVQ(9xN) with matrix, Ω after training for purposes of comparison. The position
projections of the prototypes of 3 of the 7 classes of segmentation data for both algorithms are
as depicted in Fig. 6 (for classes 3, 4, and 5). The metrics used in these algorithms have a great
influence on these positions. The behaviours of the two algorithms are quiet different.

Case 2: Dimension, M = 16 (Special Case)

We discuss the results obtained and observations analysed after training both algorithms with
dimension, M = 16. A rectangular matrix, Ω ∈ RM×N , where M =N, is a special case that is
equivalent to a quadratic (square) matrix, Ω ∈ RN×N . Hence, for M = 16 and the number of
features, N = 16, we have a 16x16 square matrix, Ω.

From Table 1 and Table 2, the classification performances for both algorithms are similar.
The modified algorithm averages 88.05% and 90.15% compared to 89.00 and 90.65% for GM-
LVQ(16xN) on the test- and training data sets respectively. These results are more or less the
same as the optimal classification performance accuracies, see Fig. 1 and Fig. 2.

0 100 200 300 400 500 600 700 800 900 1000
10

12

14

16

18

20

22

24

26

28

Epoch

M
ea

n 
Te

st
 E

rr
or

 

 
eta = .001
eta = .01
eta = 0.1
eta = 1

Figure 7: Evolution of mean test error during
the process of training GMLVQ(16xN) with seg-
mentation test data.

0 100 200 300 400 500 600 700 800 900 1000
5

10

15

20

25

30

35

Epoch

M
ea

n 
Tr

ai
ni

ng
 E

rr
or

 

 
eta = .001
eta = .01
eta = 0.1
eta = 1

Figure 8: Evolution of mean training error dur-
ing training of GMLVQ(16xN)with segmenta-
tion training data.

0 100 200 300 400 500 600 700 800 900 1000
10

20

30

40

50

60

70

80

Epoch

M
ea

n 
Te

st
 E

rr
or

 

 
eta = .001
eta = .01
eta = 0.1
eta = 1

Figure 9: Evolution of mean test error during the
process of training GMLVQ(16xN) modification
with segmentation test data.

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

Epoch

M
ea

n 
Tr

ai
ni

ng
 E

rr
or

 

 
eta = .001
eta = .01
eta = 0.1
eta = 1

Figure 10: Evolution of mean training error dur-
ing training of GMLVQ(16xN) modification with
segmentation training data.

16



The mean classification errors during the entire course of training with GMLVQ(16xN) are
shown in Fig. 7 and Fig. 8 respectively, and in Fig. 9 and Fig. 10 for the GMLVQ(16xN)
modification on the test- and training data sets respectively. Mean percentages of error are
plotted as function of training time for different variations of prototypes (and the metric param-
eters) learning rates. For both algorithms, the training errors drastically reduce and stabilise
afterwards.

The cost function is repeatedly computed through the entire training process. Fig. 11 shows
a plot of cost function against epoch, representing cost functions of GMLVQ(16xN) and its
modification (left and right panels of the figure respectively). Both curves have a decreasing
slope (negative gradient) due to the proper implementation of gradient descent. The curves have
the same behaviours.

0 500 1000 1500
−150

−145

−140

−135

−130

−125

−120

0 500 1000 1500
−160

−140

−120

−100

−80

−60

−40

−20

0

20

40

Figure 11: Visualization of cost function against epoch for GMLVQ(16xN) and the modified
variant. Left and right panels respectively.

The projections of prototypes of 3 of the 7 classes of segmentation data for both algorithms
are as shown in Fig. 12 (for classes 3, 4, and 5). The metrics definitely influenced these positions.
The behaviours of the two algorithms are quiet different.

0 5 10 15
−1

−0.5

0

0.5

1

1.5

2

2.5

3

prototype #

class 3 (foliage)

 

 
GMLVQ(16xN)
Model

0 5 10 15
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

prototype #

class 4 (cement)

 

 
GMLVQ(16xN)
Model

0 5 10 15
−1

−0.5

0

0.5

1

1.5

prototype #

class 5 (window)

 

 
GMLVQ(16xN)
Model

Figure 12: Visualization of prototype positions of class 3 (foliage), class 4 (cement) and class 5
(window) as identified by both GMLVQ(16xN) and the modified algorithm, as displayed by the
left and right panels of the figure respectively.

The eigenvalues, off-diagonal elements and diagonal elements of the global relevance matrices
obtained as a result of training both GMLVQ(16xN) and the modified algorithm on the seg-
mentation data are shown in Fig. 13 and Fig. 14. An analysis of the diagonal elements of the
global full matrix show that the last feature (indexed 16) is ranked highest for both algorithms
followed by the feature indexed 13. For GMLVQ(16xN), most of the features have very low
values compared to the modified algorithm close to zero.

The global matrix, ∧ (=ΩTΩ), after training both algorithms with segmentation data sets
has the eigenvalues shown in Fig. 14 (left and right panels for GMLVQ(16xN) and the modified

17



0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4
Dimensionality:16x16

 

 

5 10 15

5

10

15 −0.05

0

0.05

0.1

0 2 4 6 8 10 12 14 16 18
0

0.05

0.1

0.15

0.2

0.25
Dimensionality:16x16

 

 

5 10 15

5

10

15 −0.15

−0.1

−0.05

0

0.05

Figure 13: Visualization of the diagonal and off-diagonal elements of global matrix ∧ after 1000
epochs training of the GMLVQ(16xN), left panel and the modified algorithm (right panel). The
diagonal elements are set to zero for the plot.

algorithm respectively), which are obtained in every run with different values of Ω.

0 200 400 600 800 1000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

epoch

e
ig

0 200 400 600 800 1000
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

epoch

e
ig

0 200 400 600 800 1000
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

epoch

e
ig

0 200 400 600 800 1000

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

epoch

e
ig

Figure 14: Visualization evolution of eigenvalues of matrix, ∧ (=ΩΩT ) plotted as a function of
epochs during the process of training the GMLVQ(16xN) algorithm and its modified variant, as
shown in the left and right panels of the figure respectively. After 1000 epochs, all eigenvalues
are non-zero. The first one increases drastically during metric adaptation while others decrease
after a few epochs and stabilize.

The features were observed throughout the training process. After approximately 1000
epochs, for both algorithms, only one eigenvalue remains increasing. The left part of the left
panel of Fig 14 displays all the eigenvalues of matrices, ∧ for GMLVQ(16xN) as a function of
training time (epochs), so is the left part of the right panel but for the GMLVQ(16xN) mod-
ification. For GMLVQ(16xN), all eigenvalues apart from the first one start decreasing to zero
almost immediately at the start of metric adaptation. After 1000 epochs, only one eigenvalue
remains. For the modified algorithm, it can be observed in Fig. 14 (right panel) that some
eigenvalues, at the start of metric adaptation increase and then start diminishing shortly after
about 50 epochs, then increase slightly for like another 50 epochs and start diminishing, apart
from the first eigenvalue, which increases drastically and start stabilising after 100 epochs.

Case 3: Dimension, M = 2

We consider the case where the two algorithms are trained with rectangular transformation
matrices, Ω of dimension, M = 2. From Table 1, Table 2 and Figure 1, both algorithms exhibit

18



relatively low classification performances compared to higher dimensions. But the performance
is better in both cases than for dimension, M = 1.

Fig. 15 shows a plot of cost function against epoch, left and right panels of the figure
representing the behaviours GMLVQ(2xN) and the modified algorithm respectively. Both display
a decreasing slope (negative gradient) due to gradient descent, implemented using Eq. (6).

0 100 200 300 400 500 600 700 800 900 1000
−140

−135

−130

−125

−120

−115

−110

−105

−100

−95

0 100 200 300 400 500 600 700 800 900 1000
−150

−140

−130

−120

−110

−100

−90

Figure 15: Visualization of the cost function against epoch for GMLVQ(2xN) and the modified
version, left and right panels respectively.

The final locations of the prototypes of 3 classes out of 7 in the feature space are as depicted
in Fig. 16 (for classes 3, 4 and 5). There is a difference in the behaviours of the two algorithms.

1 1.2 1.4 1.6 1.8 2
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

prototype #

class 3 (foliage)

 

 
GMLVQ(2xN)
Model

1 1.2 1.4 1.6 1.8 2
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

prototype #

class 4 (cement)

 

 
GMLVQ(2xN)
Model

1 1.2 1.4 1.6 1.8 2
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

prototype #

class 5 (window)

 

 
GMLVQ(2xN)
Model

Figure 16: Visualization of prototype positions of class 3 (foliage), class 4 (cement) and class 5
(window) as identified by both GMLVQ(2xN) algorithm and its modified variant, displayed in
the left and right panels of the figure respectively.

An analysis of the global relevance matrix elements shows that diagonal elements of the full
matrix rank the last feature (indexed 16) highest for both algorithms, see Fig. 17.

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4
Dimensionality:16x16

 

 

5 10 15

5

10

15 −0.2

−0.1

0

0.1

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1
Dimensionality:16x16

 

 

5 10 15

5

10

15
−0.1

−0.05

0

0.05

Figure 17: Visualization of the diagonal and off-diagonal elements of global matrix ∧ after 1000
epochs training of the GMLVQ(2xN), left panel and the modified algorithm (right panel). The
diagonal elements are set to zero for the plot.

The global matrices, ∧ (=ΩTΩ), of both the GMLVQ(2xN) and modified algorithm have the
eigenvalues shown in Fig. 17, which are obtained in every run with different values of Ω.

19



0 200 400 600 800 1000
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

eepoch

e
ig

0 200 400 600 800 1000
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

epoch

e
ig

0 200 400 600 800 1000
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

epoch

ei
g

0 200 400 600 800 1000
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

epoch

ei
g

Figure 18: Visualization of the eigenvalues of global matrix, ∧ (=ΩTΩ) as a function of epochs
during the process of training the GMLVQ(2xN) algorithm and its modification, as depicted in
the left and right panels of the figure respectively. In both cases, two non-zero eigenvalues are
used to determine convergence. The right hand plots in both the left and right panels of the
figure display the evolution of the first eigenvalue.

After approximately 1000 epochs, for both variants, there is only one eigenvalue remaining.
Fig. 18 displays the eigenvalues of the global matrices, ∧ for GMLVQ(2xN) and its modified
version (on the left and right panels of the figure respectively) as a function of training time. In
both cases, the first eigenvalue increasing almost immediately at the start of metric adaptation,
and the second diminishes to zero. After 1000 epochs, only the first eigenvalue remains increasing,
the second stabilises but is greater than zero.

The global matrices, ∧ (=ΩTΩ), of both the GMLVQ(2xN) and modified algorithm have the
eigenvalues shown in Fig. 18, which are obtained in every run with different values of Ω.

Dimension, M = 2, provides a good visualisation tool of the data sets. Fig. 19 displays
a visualization for labelled segmentation data after the transformations with matrix, Ω. Both
algorithms give good classification performance in the two dimensions (M = 2). In the training,
10 independent runs are performed to obtain classification with a single prototype per class.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−1.5

−1

−0.5

0

0.5

1

 

 

1

5

3

4
6

2

7

−2 −1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

2

7

6

4

3 5

1

Figure 19: Visualization of the image segmentation data set as transformed in the GMLVQ(2xN)
algorithm and its modified version displayed in the left and right panels of the figure respectively.
The two axes correspond to the components of the projection, Ωξ. All data samples for each of
the labelled 7 classes are displayed. Only one prototype per class is used during training. The
two projections are quite different but not so different. Each of the classes 2 and 7 are projected
far away from the rest for each algorithm.

Most of the results obtained in the case of dimension, M = 2 are totally different from other
cases discussed possibly because there is very low degree of freedom.

20



6 Conclusion

In this research project, we investigated GMLVQ algorithm (with two variants GMLVQ(NxN)
and GMLVQ(MxN)), a prototype based classification but put much emphasis on GMLVQ(MxN),
which we adapted and modified it by replacing the full matrix of relevances that transforms both
the data and the prototypes with a matrix that transforms only the data as given by Eq. (22).

Our modified algorithm provides almost similar results when trained with image segmenta-
tion data as those of the GMLVQ(MxN) variant. Having a matrix transform only the data rather
than transforming both the data and the prototypes as is the case in the GMLVQ(MxN), does
not decrease or increase the classification convergence significantly. We obtained good perfor-
mances in the predictions observed for both training and test data sets that were considered for
experiments, which is almost the same performance as that achieved by GMLVQ(MxN) algo-
rithm. Since the results are similar with the established results of GMLVQ [15, 16], the modified
algorithm,s metric is sufficient to be used as a similarity distance measure to achieve classification
performance.

We would like to train both algorithms on artificial data, iris data and possibly bio-informatics
data and see how they perform.

We would like to investigate further how the re-formulation of Eq. (22) to the one given
below, with the introduction of function, phi, which may be a square matrix of dimension 2x2
or 16x16 would affect the classification performances. Consider the following equation

dΩ (ω, ξ) = (ω − Ωξ)
T

Φ (ω − Ωξ) (36)

where Ω ∈ RN matrix, Φ is a 2x2 matrix, ω is 2-dimensional so that the learning rule is
achieved by finding the derivatives with respect to Ω, Φ and ω.

7 Acknowledgements

We would like to thank the NUFFIC co-ordinators of the NPT programme at the University of
Groningen for giving this research a life-line given the fact that it ought have been completed
much earlier than now. Special appreciation go to the supervisors, Prof. dr. Michael Biehl and
Prof. dr. ir. Paris Avgeriou but more especially Prof. dr. Michael Biehl for their constant
guidance, endurance and tolerance towards the project/research completion; and also, to Drs.
Petra Schneider for her positive role and contributions. We thank the Uganda Parliamentary
Commission and Kyambogo University for their support.

References

[1] Teuvo Kohonen, Jussi Hynninen, Jari Kangas, Jorma Laaksonen, and Kari Torkkola; LVQ
Programming Team of Helsinki University of Technology, Labaratory of Computer and
Information Science, Rakentajanaukio 2 C, SF-02150 Espoo, FINLAND LVQ-PAK: The
Learning Vector Quantization Program Package, 1996.

[2] T. Kohonen, Self-organising maps. Springer, Berlin, 1995.

[3] T. Kohonen, Self-organisation and Associative Memory, Second Edition. Berlin, Springer-
Verlag, 1987.

[4] B. Hammer, M. Strickert and T. Villmann, Supervised neural gas with general similarity
measure, Neural Processing Letters 21(1): 21 - 44, 2005.

21



[5] P. Schneider, M. Biehl and B. Hammer, Adaptive Relevance Matrices in Learning Vector
Quantization, Neural Computation 21:3532-3561, 2009.

[6] A. Ghosh, M. Biehl and B. Hammer. Performance analysis of LVQ algorithms: a statistical
physics approach. Neural Networks 19:817 - 829, 2007.

[7] B. Hammer and T. Villmann, Generalised Relevance Learning Vector Quantization, Neural
Networks 15: 1059 - 1068, 2002.

[8] D. J. Newman, S. Hettich, C. L. Blake, C. J, Meez; UCI Repository of machine learning
database - http://www.ics.uci.edu/ mlearn/MLRepository.html; Irvine, CA: University of
California, Department of Information and Computer Science., 1998.

[9] Atsushi Sato and Keiji Yamada, Generalized Learning Vector Quantization, In Advances in
Neural Information Processing Systems, volume 8, pages 423-429, 1996.

[10] P. Schneider, M. Biehl and B. Hammer, Relevance Matrices in Learning Vector Quantization,
Proc. European Symposium on Artificial Neural Networks ESANN, M. Verleysen (ed.), d-
side (2007) 37-43, 2007.

[11] R. Duda, P. Hart and D. Stock, Pattern Classification, Whiley, 2001.

[12] M. Biehl, A. Ghosh and B. Hammer, Learning Vector Quantization: the Dynamics of
Winner-Takes-All algorithms, Neuralcomputing 69: 660 - 670, 2006.

[13] M. Biehl, B. Hammer, and P. Schneider, Matrix Learning in Learning Vector Quantization,
Technical Report ifl-06-14, Institute of Informatics, Clausthal, University of Technology,
2006.

[14] P. Schneider, F.-M. Schleif, T. Villman and M. Biehl, Generalized Matrix Learning in Learn-
ing Vector Quantization for the Analysis of Spectra Data, Proc. Europ. Symp. on Artificial
Neural Networks ESANN, M. Verletsen (ed.), d-side publishing 451-456, 2008.

[15] P. Schneider, K. Bunte, H. Stiekema, B. Hammer, T. Villman and M. Biehl, Regularization
in Matrix Relevance Learning, in press, IEEE Trans. Neural Networks, 2010.

[16] K. Bunte, P. Schneider, B. Hammer, F.-M. Schleif, T. Villman and M. Biehl, Discriminative
Visualization by Limited Rank Matrix Learning, Machine Learning Reports 02/2008, Univ.
Leipzig, 2008.

22


