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Abstract

The development of traditional approaches to phylogeny inference has been governed by
the trade-off between available time and accuracy of the method. The Neighbor-Joining
method is the simplest and fastest of the discussed methods, but its lack of an optimality
criterion (i.e. a numerical fonnula which calculates the optimal phylogeny according to
the criterion) severely affects the probability to find the true phylogenetic tree. The
Maximum Parsimony method includes an optimality criterion when it searches for the
tree with the least nucleotide substitutions. The main problem with this method is that it
thereby can underestimate the number of nucleotide changes that took place in reality
such depending on the evolutionary time involved. The Maximum Likelihood method
searches the tree that fits the data best by calculating likelihood values for the data
regarding each possible tree. Although this approach is very accurate, it is

computationally heavy and therefore restricted with regard to the number of taxa and/or
number of informative nucleotide positions used in the phylogenetic inference.
Bayesian inference of phylogeny, like Maximum Likelihood, includes a likelihood value,
but transforms it into a posterior probability which indicates the degree of belief for a

certain tree regarding the data. The procedure allows the incorporation of prior
knowledge, which is subsequently updated in the posterior probability in light of the new
data. Like the Maximum Likelihood method, Bayesian inference is very accurate but
slow. The development of the Markov chain Monte Carlo algorithm, which estimates
posterior probabilities by regarding a subset of all trees slowly converging to the optimal
tree, made the use of Bayesian inference of phylogeny feasible. Because Bayesian
inference with MCMC is both accurate and fast, it has gained much attention and is
increasingly used in answering phylogenetic questions.

Bayesian inference of phylogeny deals with some difficulties. First, the use of prior
knowledge is controversial because it is thought to introduce subjectivity in the
calculation which is harmful when the prior exerts much influence on the outcome of the
calculation. Second, it is hard to guess when the MCMC has run long enough in order to
having converged to the optimal tree. Third, Bayesian inference is said to be too liberal,
i.e. presenting posterior probabilities which are too high. Tricks exist that overcome the
first two points of critic, the use of prior knowledge and the length of the MCMC run.
The third point, concerning the liberality of the calculation, is a more difficult problem,
which will hopefully be solved in the future. Despite these difficulties, Bayesian
inference is still the best method available at the moment since it is both fast and
accurate.
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Introduction

The theory of evolution states that species are related to each other by descent (Darwin
1859). Phylogenetics is the branch of biology that tries to reconstruct these relationships
between taxa based on shared characters. In classical phylogeny, morphological,
physiological or behavioural characters are regarded. Since the rise of molecular biology,
phylogenetic inference methods are increasingly applied to DNA sequence data (Hillis et
a!. 1994). Because of the vast amount of characters obtained (each nucleotide is a
character), manual inference of phylogenies has become unfeasible and computer
algorithms (i.e. mathematical step-by-step procedures to infer phylogenies) are needed.

Phylogenies can be computationally inferred from DNA sequence data in many
different ways. During the last decades, numerous methods have been designed and
improved to approximate real molecular evolution better and better, thereby obtaining
more confident phylogenic reconstructions (Lewis 2001). However, limits are set to the
complexity of algorithms due to the exponential (or faster) increase in computing time
with increasing number of taxa although the increasing power of desktop computers
allows the use of larger datasets; there is a trade-off between available time and the
complexity of the method used (Felsenstein 2004). For instance, the Maximum
Likelihood method is one of the best performing methods to date, but it is very slow, so it
can only be used when the number of taxa and/or number of informative nucleotide
positions is small. The Maximum Parsimony method, though less precise, is a much
faster method which is preferred when dealing with large datasets.

During the last several years, Bayesian inference of phylogeny has proven to be
very fruitful since it overcomes some of the problems with older inference methods,
especially the processing speed. It is both fast and accurate (Huelsenbeck et aL 2001).
However, there is also critic on Bayesian methods, for instance concerning the use of
prior knowledge (Shoemaker et a!. 1999; Lewis 2001; Holder & Lewis 2003). The
question central to this review is whether the Bayesian approach is better compared to
traditional methods of phylogeny inference.

In this review, the three most popular traditional approaches to phylogeny
inference, i.e. Neighbor-Joining, Maximum Parsimony and Maximum Likelihood, will be
explained and advantages and disadvantages of these methods will be highlighted.
Subsequently, Bayesian statistics, Bayesian inference of phylogeny and the Markov chain
Monte Carlo (MCMC) algorithm will be explained. Then, the advantages and
disadvantages of Bayesian over traditional phylogeny inference will be discussed.
Finally, a conclusion will be drawn regarding the usability of the Bayesian approach
based on the discussed advantages and disadvantages.
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Traditional approaches to phylogeny inference

First of all, it should be made clear that "traditional approaches" are defined as
approaches which predate the Bayesian method of phylogeny inference. It bears no
notion of being outdated whatsoever. The Bayesian approach is relatively new, still
controversial and quite different from the other methods that it is convenient to group all
other (i.e. older) approaches together and call them traditional. The traditional methods
that will be discussed are the Distance-Matrix method Neighbor-Joining and the two
discrete data based methods Maximum Parsimony and Maximum Likelihood.

Neighbor-Joining
The oldest approaches to phylogeny inference are based on distance matrices, such as
Neighbor-Joining (Saitou & Nei 1987), which is still in use as it is a very fast method. In
Distance-Matrix methods a matrix (taxa x characters) is created which values indicate the
distance between pairs as the fraction of overall similarity between the data. These
similarity values are used to construct the tree. Various Distance-Matrix methods,
including Neighbor-Joining, search for the tree which minimizes all branch length
distances in relation to the similarity values between pairs by means of clustering
(Felsenstein 2004).

For the calculation of the similarities between sequences, a model of DNA
evolution can be used. For example, transitions and transversions of nucleotides can be
given equal weight with the Jukes-Cantor model or different weights with Kimura's two-
parameter model. Another example of a nucleotide substitution model is the Sankoff
algorithm, which calculates the minimum total cost of a certain tree with different costs
for different types of nucleotide changes. These models are reversible, meaning that a
change from A to G is as likely as a change from G to A. The most flexible model of
nucleotide substitution rates is the general time-reversible (GTR) model, which allows
different rates for each type of nucleotide change at different sites and through time
(Felsenstein 2004).

The best nucleotide substitution model can be determined with the computer
programme Modeltest (Posada & Crandall 1998), which tests which model explains the
data best. In Modeltest a Likelihood Ratio Test algorithm can be performed on the data
comparing models in a hierarchical fashion starting with the most general model (Jukes-
Cantor) and increasing in model complexity. The algorithm compares the fit of different
models to the data by iteratively comparing a simpler model with a more complex model
and returning a likelihood value for each comparison. Finally, the programme interprets
the results and presents the best-fitting model (Huelsenbeck & Rannala 1997; Felsenstein

2004).
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After the similarities have been calculated based on the chosen nucleotide
substitution rates, the construction of the tree is a simple and fast calculation. It is also
fast compared to other methods because there is no optimality criterion involved, like in
Maximum Parsimony, Maximum Likelihood and Bayesian inference. An optimality
criterion is a numerical formula which calculates the optimal phylogeny according to a
criterion, e.g. the least number of nucleotide changes. The use of an optimality criterion
makes the calculation a slow process because it theoretically compares all possible
phylogenies, after which it presents the optimal phylogeny (Felsenstein 2004).

The lack of an optimality criterion is also the main drawback of Distance-Matrix
methods compared to other methods, because it does not optimise phylogenies according
to a certain criterion but it calculates the phylogeny from the distance values. In fact, the
mere result of the computation is a tree without anything known about ancestral states of
sequences. However, the phylogenies of recently diverged sequences can often be
inferred quite well with Neighbor-Joining, but older relationships may obscure multiple
nucleotide transitions in one character, which this method does not take into account
(Baldauf 2003; Felsenstein 2004).

Maximum Parsimony

The Maximum Parsimony method was developed to be a better alternative to distance
methods for phylogeny inference by taking into account an optimality criterion. The
Maximum Parsimony method searches for the tree with the least total number of
nucleotide changes; it is therefore based on the principle of William of Ockham that the
simplest hypothesis that explains the data is the one to be preferred (Felsenstein 1988).
The main advantage of this method is that, contrary to the Neighbor-Joining method,
Maximum Parsimony takes into account the evolution of the DNA sequence. Similar to
Neighbor-Joining, the nucleotide substitution rates can be adjusted to some extent in the
Maximum Parsimony method (Felsenstein 2004).

Besides using an optimality criterion to infer phylogeny, another advantage of the
Maximum Parsimony method is that gaps, which describe insertions and deletions
(indels) of nucleotides after sequence alignment, can be simply coded as a fifth type of
'nucleotide' with a different nucleotide substitution rate. Each insertion or deletion could
encompass more than one nucleotide, but should be counted as one evolutionary event.
These events should therefore be encoded by one additional nucleotide at the end of the
sequence with a different nucleotide substitution rate (Meusnier et a!. 2004).

A disadvantage of the Maximum Parsimony method is that it can show long branch
attraction (Hendy & Penny 1989; Felsenstein 2004). In long branches leading to two
different species, the probability that part of the branches show a similar route is higher
than the probability of a single change in an interior branch that split the two species in
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the far past (Fig. 1). This is particularly a problem in datasets with distantly related
species so that long branches are likely to occur.

The underlying cause for long branch attraction is that Maximum Parsimony
methods are based on the assumption that the tree with the minimum changes is the best
tree. This is a major drawback of Maximum Parsimony since in this way the number of
changes is structurally underestimated. In reality multiple changes in one character in a
branch are possible, but these are neglected by Maximum Parsimony. Therefore, chance
is high that a slightly less parsimonious tree is the real tree (Huelsenbeck et a!. 2002).

Figure 1. (a) True tree; (b) Long branch attraction resulted in the
node between C and E. Based on Felsenstein (2004).

Maximum Likelihood
The Maximum Likelihood method is among the best methods for phylogeny inference
(Huelsenbeck & Rannala 1997). It is both accurate (more likely to predict the real tree)
and robust (less sensitive to incorrect models and assumptions) (Huelsenbeck & Rannala
1997). In short, the Maximum Likelihood method determines how well each possible tree
predicts the data. While calculating likelihood values, the parameter values (e.g. for
nucleotide substitution rates) in the model are estimated. The tree with the highest
likelihood to predict the data is the resulting tree. However, there are many trees possible
for a data set and the search through so-called tree space is multi-dimensional, which
explains why this approach is one of the slowest of all (Holder & Lewis 2003).

For the likelihood calculations, a model for nucleotide substitution rates is needed
for which the computer programme Modeltest (Posada & Crandall 1998) can be used
(explained above). The best performing model can then be implemented in the Maximum
Likelihood calculations. (Huelsenbeck & Rannala 1997; Felsenstein 2004).

When a certain model is chosen for the Maximum Likelihood calculation, the
actual rates of nucleotide substitutions are still unknown. These parameters are often not
of major importance to the question, so they are regarded as 'nuisance' parameters and,
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as explained above, they are usually estimated in accordance with the model during the
calculations (Holder & Lewis 2003). However, by estimating the nuisance parameters, a
large range of possible trees is not regarded, which influences the robustness of the
method (Holder & Lewis 2003).

An advantage of the Maximum Likelihood method is that estimation of branch
lengths, although often regarded as a nuisance parameter, is an important component of
the method. Changes are more likely along long than short branches and branch lengths
are therefore important for the outcome of the likelihood calculations. Maximum
Parsimony, in contrast, does not take the relationship between substitution chances and
branch lengths into consideration; it just minimizes the total length of the branches in the
tree. Maximum Likelihood tries to estimate the actual amount of change based on the
chosen evolutionary model. Maximum Likelihood therefore results in more accurate trees
than Maximum Parsimony (Hillis et a!. 1996).

Bootstrapping
Neighbor-Joining, Maximum Parsimony and Maximum Likelihood produce phylogenies
as a point estimate from which it is impossible to deduce confidence levels for
relationships within the tree. Some nodes may be wealdy supported by the data while
others have strong support. For calculation of confidence levels bootstrapping is a
commonly used method. Bootstrapping is a semi-statistical approach because the
calculation of confidence levels is based on multiple (often 1000) pseudo-replicate
datasets generated from the original data by performing resampling with replacement.
Replacement is necessary because otherwise the same dataset would be obtained every
resampling. In the case of species x characters matrices, characters are resampled since
species are not independent samples (characters might not be independent either, but that
problem is not considered here). Some characters are drawn more than once and some not
at all; the number of times a character is drawn is a sample from a multinomial
distribution. The idea behind resampling is that the variation obtained between pseudo-
replicate datasets is typical for variation found when new data would be gathered. From
these pseudo-replicate datasets new trees are calculated. Each node in the original tree is
given a support value indicating its frequency of occurrence in the bootstrap trees (often
as a percentage). Bootstrap values higher than 50% therefore indicate that in more than
half of the phylogenies the node was present, which is a weak but positive support.
Bootstrap values of 70% or higher indicate strong support. A drawback of this method is
that bootstrapping extends the processing time linearly with the number of resamplings.
This may especially hamper the use of bootstrapping in the already computationally
heavy Maximum Likelihood method (Holder & Lewis 2003).
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NP-complete problem
The NP-complete (Non-Deterministic Polynomial-Time Complete) problem is the major
obstacle towards accurate phylogeny inference. In short, the more accurate a model needs
to be, the more complex it will be, the more processing time it needs to reach that
accuracy. Illustrating this, the Neighbor-Joining method carries out a number of
operations proportional to the polynomial function n3, where n is the number of species
(Felsenstein 2004). Regarding this function, the number of operations can increase very
fast if more species are added. However, the relation between the number of species and
the number of operations in methods like Maximum Parsimony and Maximum
Likelihood can be described by an exponential function, denoted as ?, which will always
overtake nX functions if n is large enough. In fact, exponential functions increase so fast
that it quickly becomes infeasible to work with them. As the number of operations is
related to the processing speed, exponential functions are a general problem in algorithms
for phylogeny inference since the time needed for computations sharply rises to immense
amounts with increasing number of species. This is called the NP-complete problem. It is
assumed that this problem cannot be solved, i.e. the formula cannot be rewritten so that
the number of computations needed do not increase exponentially with the number of
species. A way to solve this problem is to improve existing or new algorithms so that
they allow a higher n before they start to increase into too high number of computations,
e.g. 0.0000001? or e0°00 (Felsenstein 2004).

Bayesian statistics

The first work on Bayesian statistics, formulating Bayes' theorem, was published in
1763, two years after the death of the author Reverend Thomas Bayes (1702-176 1). For a
long time after the publication of Bayes' work, the proposed Bayesian formula has been
forgotten or ignored and the frequentist approach dominated statistical thought. Only
during the last decades has Bayesian inference increasingly been applied in most
branches of science (Beaumont & Rannala 2004).

Bayesian statistics is based on quite different principles and assumptions than
frequency statistics. Frequentists describe the probability of an event as the relative
frequency of that event in a hypothetically unlimited number of trials. Contrasting,
Bayesian analysis defines probability as a degree of belief in the likelihood of an event.
This makes Bayesian inference deal with likelihood values instead of probabilities when
regarding the data. Another distinction between the two approaches is that, in the
Bayesian approach, the probabilities are based only on observed data, whereas the
frequentist approach does involve predictions on data that have not been gathered
(Dennis 1996; Quinn & Keough 2002; Ellison 2004).

Bayes' theorem can be stated mathematically as follows (Bayes 1763):
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Prob(H I k) = Prob (X I H) Prob (II) / Prob (X)

Here, Prob(H I X) means the posterior probability distribution, or the probability that a

certain hypothesis is true given the data and the prior probabilities. Prob (X I 11) is the

likelihood that the data are true given a certain hypothesis, which is the basis of the
Maximum Likelihood method discussed earlier. Prob (Ii) is the prior probability
distribution. It is a priori chosen by the experimenter and reflects the pregiven probability
that a certain hypothesis is true. The denominator, Prob (X), is a normalizing factor,
calculated as the sum of all possible numerators, so that all probabilities add up to one.

Bayes' theorem has two interesting properties. First, it changes prior probabilities
to posterior probabilities based on likelihood values and therefore updates degrees of
belief that a certain event will occur. Second, it allows estimation of probabilities of one
or more hypotheses based on the data. This is in sharp contrast with likelihood functions

that give probabilities for the data considering different hypotheses (Prob (X I H)). It
may not be directly clear why hypotheses should be treated as random variables. It is
accepted that a probability can be calculated for observed data given a model, like in the
Maximum Likelihood method, but there are difficulties to accept that a probability can be
calculated for a model given the data. How can a probability be assigned to a one-time
event which is either true or false? The reasoning behind this is that different histories
(models) are observed to which extent they result in the given dataset. In this way it
would actually be better to speak of degree of belief instead of probability to discern it
from frequentist nomenclature (Eddy 2004).

To get more insight on Bayes' formula and its power, the following example is
given. Consider two species A and B that have an identical morphology and therefore
cannot be distinguished by eye (cryptic species). We would like to know the chance that a
random species is A given the outcome of a new chemical test. It is already known that A
and B occur in a ratio 1:99, so 1% of the cases is species A. This is the prior probability

(Prob (H)). To determine a random sample being A or B, the chemical test indicates the
presence of species A in 80% of the cases of A. Unfortunately, this test gives a false
positive in 9.6% of the cases (indicating A whereas in fact it is species B). Both
probabilities indicate the likelihood of either hypothesis (Prob (X I H)). In order to
calculate the probability that a species is A given that the chemical test showed a positive

result, which is the posterior probability (Prob(H I X), we need all three pieces of
information. According to Bayes' theorem, this probability needs to be calculated as
(0.8*0.01) / (0.8*0.01 + 0.096*0.99) = 0.078. The probability that the chemical test gives
the correct answer is therefore 7.8%, which is much higher than the prior probability of
1% that we deal with species A. So from this example, it becomes clear that
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incorporation of the prior probability can have much influence on the outcome. In this
particular case, the prior is even necessary to solve the problem. In addition, Bayes'
theorem calculates probabilities for different hypotheses based on the data (chance of
species A given a positive result). It derives these from likelihood values for the data
given certain hypotheses (chance of positive result if species A & chance of positive
result if species B). So the important point here is that the probability that a species A
gives a positive result (Prob (X I Fl)) is not the same as the probability that a positive

result implies that the species is A (Prob(H I X)) (Example based on Yudkowsky 2006).

Bayesian phylogeny inference

Both Bayesian analysis and Maximum Likelihood are likelihood-based methods to
infer phylogenies. Different tests have shown that both Bayesian analysis and Maximum
Likelihood outcompete other methods (Huelsenbeck et a!. 2002). Bayesian statistics is
used to estimate probabilities of different hypotheses based on the data, whereas
Maximum Likelihood calculates likelihood values for the data given the hypotheses.

In phylogeny inference, many trees can be produced with a given dataset, so many
hypotheses need to be compared. It depends on the chosen model of nucleotide evolution
which tree is the most probable. Some models fit a certain dataset better than other
models. The Maximum Likelihood approach searches through all possible trees while
estimating the nucleotide substitution rates for a certain model of evolution. In this way,
an optimal tree will be found which is a point estimate based on the data. As explained
above, this approach may take unreasonable amounts of time.

When Bayes' theorem is applied to phylogeny inference, the data (X) are the
sequences obtained from the different individuals; the hypotheses (Ii) are all possible
trees. Bayesian analysis does not estimate the nucleotide substitution rate parameters like
Maximum Likelihood, but searches through all possible combinations of parameters (tree
topology, branch lengths andlor nucleotide substitution rates) and comes up with a
likelihood for the data for each possible configuration of parameters. The obtained
likelihood value is then used to calculate the posterior probability of that particular
configuration of parameters based on the data and in relation to the prior probabilities. A
consensus tree can then be created by observing all trees and their posterior probabilities.
Based on the frequency of occurrence of nodes in the possible trees, probability values
are given to each node. Another possibility is that different tree topologies or particular
(groups of) configurations of parameters can be given a posterior probability indicating
their chance of occurrence based on the data. In this way, different hypotheses can be
compared according to their probability of occurrence given the data. Compared to
frequentist approaches, Bayesian inference allows addressing new questions. For
example, it allows comparisons between multiple hypotheses like the case of monophyly
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against non-monophyly in Ipomoea species discussed later on (Huelsenbeck Ct a!. 2002).

The basis of questioning is not traditionally statistical with a null and alternative
hypothesis, but a broad range of outcomes can be compared directly by interpreting their
posterior probabilities. Traditional approaches check how unlikely the data would be if a
certain situation is assumed. The Bayesian approach questions what the probability is of
one or more hypotheses given the data (Shoemaker et a!. 1999).

In theory, the Bayesian approach has to search in every possible combination of
parameter values, which makes the search space multi-dimensional. Theoretical Bayesian
inference of phylogeny therefore deals with NP-completeness. It may be clear to the
reader that in theory the Bayesian method is not fast at all. In contrast, it involves far
more complex calculations than, e.g., the Maximum Likelihood method which time-
consuming nature is already a major obstacle to phylogeny inference. The reason why
Bayesian analysis has become feasible in practice is because a sophisticated algorithm,
called the Markov chain Monte Carlo algorithm, drastically lowers the processing time
while still giving accurate results (Felsenstein 2004).

Markov chain Monte Carlo methods

Markov chain Monte Carlo methods (MCMC methods) have been designed to overcome
the problem that all hypotheses need to be tested for probability analysis which makes
analyses dauntingly slow. MCMC methods calculate optimal trees and their
accompanying posterior probabilities with randomly chosen parameter values. A
calculated tree is compared with the preceding tree and then either accepted or rejected as
the new tree based on whether it improves the posterior probability or not. In this way,
the MCMC methods can produce a reliable estimation of the posterior distribution and
the accompanied parameters in a very quick way.

The Metropolis algorithm is the most widely used MCMC method and uses the
following procedure. It calculates the optimal tree T1 and its posterior probability with
randomly chosen parameter values. Then it calculates a neighbouring (i.e. closely related;
with slightly changed parameter values) tree T and computes the ratio of the posterior
probabilities of these trees. If the ratio is >1, the new tree T is accepted and the next
neighbouring tree Tk is calculated. If the ratio is <1, a random number between 0 and 1 is
drawn. If the drawn number is less than the ratio, the new tree T is accepted and the next
tree Tk calculated. Otherwise, the new tree T is rejected and another neighbouring tree T
is calculated.

In this way, a long chain of trees is calculated that over time converge towards trees

with high probabilities. The danger of getting stuck in local optima is lowered by the
chance that a calculated tree, although worse than its preceding tree, can be accepted if
the ratio is higher than a randomly drawn value. From the long chain of trees, only a
subset (e.g. every 1000th tree) is recorded including the accompanying posterior
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probabilities. The log-likelihood of these trees is plotted over time, showing a function
that increases towards an optimal value (Fig. 2). The initial increasing phase is called the
bum-in phase. In this phase, the posterior distribution increases rapidly from the initial
tree with random parameter settings towards the region with high posterior probabilities.
Only the trees from this seemingly asymptotic phase are used as these contain the trees
with the highest posterior probabilities. Based on this subset of high probability trees, a
consensus tree can be constructed by observing all recorded trees. The subset of trees can

also be used to calculate posterior probabilities for different groups of hypotheses. These
probabilities indicate the chance of occurrence of these hypotheses based on the data just
like in the full Bayesian approach without using the MCMC algorithm. Concluding, the
MCMC approach allows much faster inference of phylogenies and their probabilities by
using only a small subset of possible trees. It does not estimate parameters like Maximum
Likelihood, but calculates probabilities over the whole spectrum of parameter
configurations that make up the multidimensional tree space.
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Figure 2. An example of a log-likelihood plot of posterior
probabilities (from Huelsenbeck et al. 2000).

Critic on and problems with Bayesian phylogeny inference

Prior probability
The incorporation of a prior probability distribution can be seen as an advantage, because
previously gathered informative data is not discarded but used in a statistically sound
way. These previous probabilities, or beliefs, can then be updated in the light of the
newly gathered data. However, if no information on probabilities for certain hypotheses
exists beforehand, the prior probability distribution should be an equal distribution
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(Huelsenbeck el a!. 2002). Such non-informative priors are regarded as being objective as
they give equal weight to different hypotheses (Ellison 2004).

Huelsenbeck et a!. (2002) give an example of phylogeny inference of Ipomoea,
where researchers could give their own belief in monophyly of Ipomoea species based on
up-to-date morphology-based trees. Most researchers gave a probability of 0.5 reasoning
that it was fair to give equal weight to monophyly and non-monophyly. All possible trees
can be divided in monophyletic and non-monophyletic trees with a ratio of 296,366
against one. In this way, a prior distribution of 0.5 gives a much higher weight to
monophyly. Despite this, a higher posterior probability was found for non-monophyletic
trees and most researchers changed their belief accordingly. Even if a high prior
probability (e.g. 0.9) for monophyly was assumed, posterior distributions would still
indicate non-monophyly. This is an example where the prior distribution does not affect
the outcome very much.

If the posterior distribution is very sensitive to the choice of prior, different
conclusions can be drawn from the same data but based on different priors. This is the
main critic on Bayesian phylogeny inference, or Bayesian statistics in general; the choice
of the prior distribution is too subjective. Unfortunately, the prior probability is a
necessary evil if the hypothesis-based likelihood needs to be transformed into a data-
based probability. Another reason why the prior is indispensable is that it enables
integration over all possible parameter values by weighting the parameters according to
their posterior probability (Holder & Lewis 2003).

To estimate the effect of the prior on the outcome, multiple analyses can be
performed with different priors. The relative contribution of prior and data on the
posterior distribution can also be determined by calculating the odds of prior against
posterior distribution in favor of a certain hypothesis. This ratio is called the Bayes factor.
If the prior has much power, the reasoning behind choosing a particular prior should be
explained very well in order to be accepted by the scientific community. Generally, the
larger the dataset, the less influence the priors have on the outcome. (Huelsenbeck et a!.
2002).

The critic that the use of priors in Bayesian inference is subjective can be countered
by stating that the frequentist method also involves subjectivity when setting the critical
level for rejection of a hypothesis (i.e. a-value). In addition, frequentist approaches are
often burdened with prior information, although it is often obscured. For instance,
knowledge on how large the sample size should be or what type of analysis to use is not
discarded for the sake of objectivity but used to optimize an experiment and the data
analysis.

As explained above, a flat (or uniform) prior is often used which gives equal a
priori probability to all possible trees. However, this could result in problems if, for
instance, a uniform prior is put on unbounded quantities, creating a zero probability for
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every possible tree. Therefore, the prior needs to be truncated somewhere, but this results
in slanted probabilities. For example, if the prior gives equal weight to all branch lengths
(t), than the substitution rates (p) accompanied with branch lengths shows a much higher
probability in the range of % as this is the highest rate of change (Fig. 3). Vice versa, a
flat prior probability for substitution rate creates distribution of branch lengths slanted to
values close to zero (Fig 4.; Felsenstein 2004).

I I

0.0 0.25 0.5 0.75

p
Figure 3. Prior probability distributions for branch
length (1) and nucleotide substitution rate (p). A flat
prior is used for substitution rate.

I I I I I

______________

0 1 2 3 4 5 6 0.0 0.25 0.5

p
Figure 4. Prior probability distributions for branch
length (1) and nucleotide substitution rate (p). A flat
prior is used for branch length.

Convergence and mixing

Another point of discussion is how long the burn-in phase should be before convergence
to a stable likelihood value is achieved. The use of log-likelihood plots, which show the
change in likelihood of the trees during the calculation, has been shown to be unreliable
to assess convergence (Huelsenbeck et a!. 2002). Sometimes there appears to be a stable
likelihood value, which then suddenly starts climbing again to higher values. A way to
assess whether the algorithm gets stuck in local optima is to observe the (apparent) final
states of multiple analyses starting with different trees (Huelsenbeck et a!. 2002). If
different stable states have been reached, the lower probability values represent local
optima. If all trials converge to the same value, this is less likely to be a local optimum.
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An additional problem is that the degree of mixing of the chain, which is the
variability in accepted trees, cannot be detected with log-likelihood plots (Huelsenbeck et
a!. 2002). The higher the variability, the more chance that the optimal tree will be found.
However, a relatively constant likelihood value says nothing about the amount of mixing.
Again, if multiple random starting trees converge to the same tree, this may indicate that
mixing is sufficient (Huelsenbeck et a!. 2002).

Metropolis coupling is a method that enhances mixing and increases the chance that
full convergence is found (Huelsenbeck et a!. 2002). Although the Metropolis algorithm
in the MCMC method can leave local optima by accepting a tree with a lower likelihood,
there is a chance that the same local optimum is found time and again. This is because all
proposed trees are neighbouring trees which look like each other converging towards the
same optimum. The problem that the Metropolis algorithm gets stuck in local optima can
be overcome by Metropolis coupling (Huelsenbeck et a!. 2002). In a Metropolis-coupled
procedure, a number of parallel chains are run. One chain samples from the original
posterior distribution, referred to as the cold distribution. The other chains sample from
heated distributions, which means that the posterior distribution is raised by a randomly
chosen but fixed factor between 0 and 1. Two chains are randomly chosen at a regular
interval and the present trees are proposed to each other's chain like a normal Metropolis
step. Heated chains are more likely to leave local optima. Several times a tree from a

heated chain is proposed to the cold chain, which may help the cold chain to leave a local
optimum. Metropolis-coupling in this way proposes intelligent alternative trees to the
cold chain. Metropolis-coupled MCMC, or (MC)3 has improved the potential of
phylogeny inference considerably, although convergence and mixing remain problematic.

Probabilities and likelihood values

The Bayesian method is said to be too liberal in its assignment of probabilities to overall
trees or separate nodes (occurrence of Type I error is higher than expected), whereas
Maximum Likelihood and Neighbor-Joining bootstrap calculations are too conservative
(occurrence of Type I error is lower than expected), according to a study by Suzuki et a!.
(2002). They calculated the number of false-positives in a comparison between three
concatenated genes. The genes, when analysed separately, would result in three different
tree topologies. The three sequences differed equally from each other which, when
concatenated, would theoretically result in low support values for each tree topology.
However, in more than 40% of the Bayesian analyses, the result was a false-positive.
This is more than the 5% false-positives generally accepted as a Type I error.
Contrasting, the Neighbor-Joining method and the Maximum Likelihood approach were
found to be too conservative, revealing less than 5% Type I errors.

In line with these results, bootstrap values of around 50% are often regarded as
enough evidence for moderate support for a bifurcation (Baldauf 2003, Holder & Lewis
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2003), whereas 95% is usually the minimum allowed in Bayesian analyses. There are
several potential explanations why bootstrap support values are often lower than
Bayesian posterior probabilities. A plausible explanation is the following. Bootstrap
support values, calculated for Neighbor-Joining, Maximum Parsimony or Maximum
Likelihood methods, are measures of uncertainty based on the outcomes of resampled
data matrices. As explained above, a value below 50% means that the node in question
was found in less than 50% of the bootstrap replicates. The main difference with
posterior probabilities is that bootstrap values have no relationship with evolutionary
uncertainty whereas posterior probabilities are in fact measures of evolutionary
uncertainty. This is because posterior probabilities are based on integration over all
possible parameter values calculated from the likelihood values and the prior distribution
(Huelsenbeck et a!. 2002; Felsenstein 2004). This methodological difference may be the
reason for the discrepancy between bootstrap values and posterior probabilities as found
by Suzuki et a!. (2002).

Conclusion

An overview of the different methods of phylogeny inference and their computing speed,
advantages and disadvantages is given in table 1.

Table 1. Computing speed, advantages and disadvantages of different phylogeny inference methods.

Method of Inference Speed Advantages Disadvantages
Neighbor-Joining -4-+ -Conservative method. -No optimality criterion.

Maximum Parsimony + -Robust if evolutionary
change is small,

-Disregards influence of branch

length on substitution chance.
-Can show long branch attraction

Maximum Likelihood -Results in the optimal
tree based on estimated
parameters of evolution.
-Conservative method.

-Oniy one tree is given as a point
estimate.

Bayesian Inference + -Creates posterior
probabilities of different
hypotheses given the data
by integrating over all
parameter values,

-May result in too high probabilities.

-Use of prior distribution is

subjective.

-Hard to guess when MCMC has run

long enough.

Recapitulating the advantages and disadvantages of Bayesian inference compared to
traditional methods, it can be concluded that the appearance of the Bayesian method
represents a step forward in the development of sophisticated inference of phylogeny.
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Three main reasons can be given. First, Bayesian inference is based on the likelihood
function, which already proved to be advantageous in the Maximum Likelihood method
compared to other traditional methods. Second, prior information can be incorporated in
the calculation, although this can also be seen as undermining the objectivity of the
statistical method. Third, the MCMC method makes the calculations feasible by
approximating the posterior probabilities. The main disadvantages of Bayesian inference
are threefold. First, it tends overestimate posterior probabilities, thereby falsely giving
support for trees or nodes. Second, as already mentioned the use of prior probabilities
undermines the objectivity but in addition can also exert much influence on the outcome.
Third, it is difficult to estimate when the MCMC method has run long enough to have
converged to the global optimum (Table I.). These disadvantages are no reason to
abandon the Bayesian method but ask for caution when using it. Whereas the influence of
the prior can be estimated by regarding Bayes factors and the results of multiple chains
can be compared to estimate mixing and convergence, the problem of overestimation of
posterior probabilities seems harder to tackle. However, the advantages of Bayesian
inference compared to traditional methods have created a large active scientific
community working on and with Bayesian inference. Bayesian inference therefore is not
a finished project but is continuously improved, increasing the chance that solutions will
be found for the still existing problems. Although, that is what I belief.
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