Region Enhanced Neural Q-learning in Partially
Observable Markov Decision Processes

Thijs Kooi
Department of Atrtificial Intelligence
University of Groningen
T.Kooi @ai.rug.nl

Bachelor Thesis

Abstract—To get a robot to perform tasks autonomously, the
robot has to plan its behavior and make decisions based on
the input it receives. Unfortunately, contemporary robot sensors
and actuators are subject to noise, rendering optimal decision
making a stochastic process. To model this process, partially
observable Markov decision processes (POMDPs) can be applied.
In this paper we introduce the RENQ algorithm, a new POMDP
algorithm that combines neural networks for estimating Q-
values with the construction of a spatial pyramid over the state
space. RENQ essentially uses region-based belief vectors together
with state-based belief vectors, and these are used as inputs
to the neural network trained with Q-learning. We compare
RENQ to Qmdp and Perseus, two state-of-the-art algorithms
for approximately solving model-based POMDPs. The results
on three different maze navigation tasks indicate that RENQ
outperforms Perseus on all problems and outperforms Qmdp if
the problem becomes larger.

I. INTRODUCTION

In robotics, a major goal is getting a robot to learn to
perform a task autonomously. This task can involve getting a
robot from a start to a goal position. A possible approach to
this problem is to use reinforcement learning (RL) [24].
Reinforcement learning originated from early work in
cybernetics, statistics, psychology and neuroscience, but
lately has received a lot of attention from the Artificial
Intelligence (AI) and machine learning disciplines [7]. It
can be seen as a form of machine learning, but is different
from other methods in the sense that the agent does not
learn from correct input-output examples, provided by an
external supervisor, but has to learn from feedback given by
the environment. The feedback the agent receives is typically
represented as a numerical value, where a positive reward is
given for the display of a desired behavior and a negative
reward for an undesired action. The robot’s task is to develop
a model of what action to take in a given state, thereby
maximizing its long term reward.

Unfortunately the robot’s actuators do not always act
according to the instructions they have been given. When it
has to move right it sometimes moves left or bumps into a
wall and stays in the same place. This uncertainty in transition
can be modelled using a Markov Decision Process (MDP).
On top the uncertainty in the robot’s actuators, there is noise

in its sensors readings as well. This partial observability of
the world can be captured in a generalization of an MDP,
called a Partially Observable Markov Decision Process or
POMDP.

Although robot navigation is one of the applications of
POMDPs, the method is widely applicable to other problems.
Givon and Grosfeld-Nir [5], for instance, used a POMDP
for computing optimal termination times of TV shows. An
application in an entirely different field is provided by Hoey
et at. [6], who use the formalism to handle the uncertainty in
observations from a monitor, assisting people with dementia
washing their hands.

In this paper we will present RENQ, a novel approach
for solving model-based POMDPs. RENQ uses a neural
network in combination with Q-learning [25], [26], where the
belief-state is given as input to the neural network. RENQ
enhances the state-based belief vector input of the network
by constructing a spatial pyramid over the state space [9], a
method derived from machine vision. At every level of the
pyramid, the average belief of a subset of the state space is
computed and the enhanced belief state is presented to the
neural network. We compare the RENQ algorithm to Qmdp
[11], a method known to be fast in handling large state spaces
and Perseus [22], an efficient state-of-the-art point-based
value iteration algorithm. We will test the algorithms on
three different maze navigation tasks and show how RENQ
outperforms the other two methods.

Outline. This paper is divided into 6 sections. In section
II, we will discuss the basic framework of Markov decision
processes, followed by a brief description of value iteration
and Q-learning, two techniques for solving MDPs and
reinforcement learning problems. In section III the POMDP
model will be presented along with two algorithms for
handling POMDPs. Next we discuss RENQ, the new
method based on Q-learning and neural networks, combined
with a spatial pyramid approach. Section V will cover
the experimental setup and results acquired with the three
POMDP algorithms. A conclusion and discussion will be

presented in section VL.

II. MARKOV DECISION PROCESS

In this section, we will start by giving a formal definition
of the MDP model, followed by an example and a description
of value iteration. Next, we will sidestep from the MDP
formalism and return to regular RL, where we discuss the Q-
learning algorithm, which is part of the RENQ method, and
two exploration policies.

A. Formal Description
An MDP is characterized by:

« a finite set of states s € S

« a finite set of actions a € A

« atransition function T'(s, a, s’), specifying the probability
of ending in state s’ after taking action a in state s

» a reward function R(s,a), providing the scalar reward
the agent will receive for executing action a in state s

The MDP model assumes a full map of the environment
is known to the agent and treats time and sets S and A
as discrete. The Markov property, named after the Russian
statistician Andrei Markov, entails the fact that the state of the
environment and the reward the agent receives at time ¢+ 1 is
completely determined by the state of the agent at time ¢ and
the action the agent takes. This is called a first order Markov
process [19].

P(St;rt‘507a07--~75t—17at—1) = P(Start|5t—1aat—1) (D

Higher order Markov processes involve taking into account
a longer history. Here, we will only concern ourselves with
first order Markovian signals.

As mentioned before, the agent’s task is to maximize
its long term reward. Since a model of the environment
is known to the agent, a simple action sequence could be
learned. However, due to the stochastic nature of the state
transitions, the agent might very well stray from its course
somewhere during the execution of this sequence, resulting
in a deviation from the goal state. Therefore a mapping is
needed, describing what action to take for each individual
state. We call such a mapping a policy and denote it as 7(s).
An optimal policy 7%, will maximize the magnitude of the
long term reward sequence. With this definition, we can
translate the goal of the agent of maximizing the cumulative
expected reward into finding an optimal policy.

The optimal policy depends on the nature of the task.
We have to consider whether the task yields a finite or an
infinite horizon for decision making. In a finite horizon
problem the agent has a limited number of steps and has to
achieve its goal within this limit. A policy in this scenario
could be different from one in an infinite horizon task. After
a few steps the agent might realize it is running out of time
and take a different route. However, in most tasks this number
of steps is rarely known, therefore we will only concern
ourselves with infinite horizon tasks.

Example 1. Consider the small maze navigation task
depicted in figure 1, where the goal of the robot is to get
from start position S, to the goal position G, taking the
least number of steps possible. The agent will be given
a reward of 10 for reaching the goal and —1 for each
step it has to take, ensuring it will try to get there as
efficiently as possible. In every state the agent has 4 actions:
A = {go left, go up, go right, go down}

G

Fig. 1. A simple maze navigation task

Starting from (1, 3), the least number of steps to get to
the goal position is 4. The maximum cumulative reward the
agent can expect to receive will be: —14+—-14+—-1+10=17.
An optimal policy will urge the agent towards the execution
of this action sequence.

In every action, there is a possibility the robot’s actuators
might fail to perform the given command and execute a
random action from .A. The transition function models this
probability.

—>
-—>

©

o
©
+

a2

+|

=2
~—:
a2
n[S o—> 8
+
NS

a2

Fig. 2. Example of transition probabilities

If we define a 10% chance of a random action, the
transition probabilities will look like those in figure 2. (Left):
When intending to go up, the agent has a 90% chance of
ending in the planned state, plus the chance of accidently
performing the correct action and a 2.5% chance of ending
in any of the remaining adjacent states. (Right): The robot
is partially surrounded by walls and will remain in the same
state when performing an action left or down by accident.
Unsurprisingly, numerous other transition functions could be
defined.

The task discussed here is an MDP in its simplest form.

Many other things could be added to a maze. For example, if
we do not want the robot to damage itself, we could consider
penalizing a collision. Also, extra rewards can be added. For
instance, a battery charging station or the finding of some
valuable object. Different tasks will result in different optimal
policies. If we punish the robot for running into a wall, an
optimal policy will steer the agent away from walls as much
as possible, avoiding the probability of accidently hitting one
and additional rewards in the maze will result in a policy
trading off between collecting as many objects as possible
and in the same time minimizing the number of actions.

In order to pick the action with the best outcome, the
agent has to assign a certain value for being in a state, e.g., in
the maze navigation example, the states adjacent to the goal
state will be very valuable as they are most likely a gateway
to the goal state, where the agent will receive a large reward.
Farther away from the goal position, the states will become
less and less valuable, as it is less likely to get a reward,
since in every step there is uncertainty in transitions. A value
function is needed to assign a value to each state.

B. Value Functions

The return R; of a state is defined as the cumulative reward
the agent can expect to receive after reaching the given state at
time step t. Because of the transition noise, this is an estimate
and can only be denoted as an expected value. Mathematically,
R; is written as the sum over all rewards the agent receives
at each time step, weighted by a discount factor -, where
0<~y<1:

o0
Ry =11 + g2 + P regs + ... = Z Vrosesr ()
k=0
Introducing a discount factor has two purposes: (1) it models
the preference of the agent to immediate rewards as opposed
to those received in the future, and (2) ensures the infinite
sum is finite as long as v < 1 and the reward sequence is
bounded. When the discount factor is set close to 1, the agent
will value future rewards greatly, whereas one close to 0 will
make the agent focus on immediate rewards and value the
future less.

With this knowledge in hand we can assign a value to
every s € S. This value models the cumulative discounted
reward the agent can expect to receive after reaching state
s and is crucial in the selection of actions described earlier.
The value depends on all future actions the agent will take
and therefore on the policy. The value of state s under policy
7 is defined as the expected discounted cumulative reward
and is given by:

V7(s) = E[Y_ ¥ rerilse = o A3)
k=0

In an optimal policy, the agent will select the best action
for every state, thereby optimizing its long term cumulative

reward. All optimal policies share the same optimal value
function:
V*(s) =maxV"™(s), Vse€ S)

In most situations it is desired to have knowledge of the value
of an action in a certain state, we call this the Q-value, with
Q(s,a) providing the value of taking a in s, it is defined as:

Q"(s,a) = E[Z ’Yth+k+1|St = s,a; = a ®)
k=0

Assuming the value of all successor states s’ is known to the
agent, (5) can be rewritten as the reward the agent receives
plus the discounted value of s’, weighted by the probability
of ending in &, after taking action a in s:

Q" (s,a) = Z T(s,a,s)|[R(s,a) +yV™(s")] (6)

This formula is a form of the Bellman equation named after
Richard Bellman, who introduced it in 1957 [3]. With this
function, we can iteratively update the value of all states, until
it reaches a convergence criterion, resulting in an optimal state-
value function V*(s), from which we can derive an optimal
state action-value function Q* (s, a). Knowing the value of all
states, the agent can select the action with the highest utility
in every state, which will lead to an optimal policy. Value
iteration is an algorithm that uses this concept.

C. Value Iteration

Value iteration is a (truncated) dynamic programming algo-
rithm for computing optimal value functions and provides an
exact solution for solving MDPs. The main idea behind this
method is to compute the value of all s € S iteratively, and to
truncate the algorithm as soon as the difference in value of a
state between two iterations: A = maxges |Vi(s) — Vi—1(9)|
drops below a threshold, where A is typically referred to as the
Bellman residual. To approximate the value of a state, value
iteration uses the Bellman equation in (6) as an update rule.
The outline of the method is given in algorithm 1.

Algorithm 1 Value iteration

Initialize V(s) arbitrarily
repeat
A—0
for all s € S do
v V(s)
V(s) <« maxqea >, T(s,a,8)[R(s,a,s") +~V(s)]
A — max(A,v —V(95))
end for
until A < ¢
return a deterministic policy 7, such that:
7(s) = argmaxgeea y o T(s,a,8)[R(s,a,s") + vV (s')]

Formally, the algorithm would need an infinite number of
sweeps through the state space to converge to an optimal
value function, but the optimal value can be approximated

by aborting the algorithm if A is sufficiently small. A major
drawback is that each iteration requires updating the value
of every s € S, resulting in a computational complexity of
O(|A||S)?). This is time consuming for problems with a
large state space.

Once the algorithm is finished, the agent can use the
value of state-action pairs, to select the action with the best
expected outcome:

7 (s) = arg max Q*(s,a) 7

Reinforcement learning is commonly associated with MDPs.
We can however, ignore the a-priori model of the environment
and focus only on the state-action pairs. Q-learning is such a
technique, working without beforehand defined models and
can be used outside of the context of MDPs.

D. Q-Learning

The introduction of Q-learning by Watkins in 1989 [25],
[26], signified a great leap forward in the progress of the
field of reinforcement learning. It is different from value
iteration in the sense that it does not require an a-priori model
of the environment and can therefore also be used outside
the context of MDPs. Q-learning is known as an off policy
temporal difference (TD) method, meaning that one policy
can be followed while updating another, as long as the two
policies have state-action pairs in common.

The original algorithm works with a look-up table, storing the
value of all state-action pairs encountered and updates these
at it goes along. After each action taken, the agent directly
evaluates the value of the action and uses this to update the
current Q-value:

Q(st,ar) — Q(s¢,ar) + ad(se, ar) ®)

where « denotes the learning rate, to be decreased as the
algorithm progresses, and (s, a;) the TD-error, which is
computed according to:

6(s¢,at) = regp1 + VmgXQ(StH,a) = Q(st,a) (9)

It is known that for finite state and action spaces, Q-learning
converges to the optimal Q*(s,a) as long as every state
action-pair is visited infinitely often [26].

In section IIA, we briefly mentioned policies and discussed
the deterministic variant, where there is a direct mapping
between the state of the environment and the action to
take. The agent always selects the action with the highest
expected value. It can be said the agent acts greedy and
always exploits the knowledge it has of the environment.
Policies can however, be dichotomized into deterministic and
stochastic cases. In some reinforcement learning tasks, we
want the agent to explore the environment, making it register
state-action pairs that would otherwise not be encountered.
For instance, Q-learning needs to visit all state-action pairs

repeatedly to get reliable estimates of their values and is
therefore in need of an exploration method. A stochastic
policy 7(s,a), describes the probability of taking action a in
state s.

A simple way to provoke explorative behavior is the e-
greedy selection rule. Here, the agent occasionally selects a
random action with probability e, but will mostly behave in
a greedy fashion. A drawback of the method is that, when
not taking the optimal action, it selects remaining actions
with equal probability. One might want to consider ranking
actions, according to their expected value. This is modelled
in the softmax action selection rule [24], also known as
Boltzmann exploration. Softmax uses a Gibbs or Boltzmann
distribution for acquiring the probability of an action.

(s,0) = (10)
w(s,a) = ——F
Z eQ=a)
a’'€A
Where 7 denotes the temperature parameter. A high

temperature will cause all actions to be selected with nearly
equal probability. Low temperatures will result in a greater
difference in selection probability, between actions that differ
in their value, and will result in a policy resembling e-greedy
if 7 is set close to 0.

Consider again the robot trying to navigate itself from
a start to a goal position. In all real world situations, there
is noise in its sensor readings as well; the world is partially
observable to the agent. On top of this, some sensor readings
might seem similar, due to a similar looking environment or
due to the distortion caused by the noise in its sensors. This
phenomenon is known as perceptual aliasing. The uncertainty
in observations can be incorporated into the MDP model.
The acquired result is called a Partially Observable Markov
Decision Process, or POMDP.

III. PARTIALLY OBSERVABLE MARKOV DECISION
PROCESS

A POMDRP is a generalization of an MDP and models not
only the stochasticity in transitions, but also in observations,
rendering the state of the agent partially observable. The
POMDP framework consists of the same set of states s € S,
actions a € A, transition function T'(s,a,s’) and reward
function R(s,a). On top of this, a POMDP defines a set of
observations z € Z and an observation function O(s,a, 2),
providing the probability of observing z in state s, after
executing action a (to avoid confusion, we choose Z instead
of O, commonly used to indicate an algorithms computational
complexity). Similar to the MDP model all sets S, A and Z
are assumed to be discrete, although work in continuous spaces
has been done (e.g., [15]). In an MDP the agent acts according
to what seems to be the best possible action for a given state,
but since the agent is no longer certain of its location it has
to estimate its position based on the input it receives and its

actions taken. A common approach to do this is by generating
a belief state [2].

A. Belief states

A belief state b, is a probability distribution over S, to model
the belief of the agent at time ¢. The set of all possible belief
states is referred to as the belief space 5. The belief of state
s at time ¢ is denoted to as b;(s). Every time the agent takes
an action, its belief state is updated. Given O(s’,a,z), the
probability of observing z in successor state s’ after action a
and the transition probability T'(s, a, s’), Bayes’ theorem can
be applied to update the belief of the agent:

bi(s') =n0(s',a,z2) Z T(s,a,s")b(s)

seS

ey

Where 7, is a normalizing constant. The belief state effectively
sums up all of the agent’s past actions and observations and
is therefore a Markovian signal and a sufficient statistic to
base its actions on.

Since the agent is no longer certain of its position, the
expected reward for a belief state has to be weighted by the
belief in all individual states:

R(b,a) = > b(s)R(s,a)

sES

12)

Rewriting (3), the expected cumulative reward for a belief state
b is defined as:

V(b) = E[>_+*R(b,a)] (13)
k=0
And the initial value function at ¢ = 0 is then given by:
Vo(b) = max Z R(s,a)b(s) (14)

seS

The value of a belief state under a policy 7 is computed
according to:

VT(b) = b(s)V7(s)

sES

15)

The key observation here is that this knowledge is sufficient
to transform the POMDP to a continuous state MDP, where
belief space B represents the state space S. In section IIIC
we will further elaborate on this concept and show how value
iteration can be applied in POMDPs.

Numerous algorithms have been developed for solving
POMDPs [7], [11], [12], [13], most of these using some
form of value iteration. Qmdp is one of these, applying value
iteration in its most rudimentary form.

B. QOmdp

An easy method for solving POMDPs is to make use of
the Q-values of the underlying MDP, thereby ignoring the
observation model [11]. By treating the belief space as if it

were the state space in an MDP, the value of taking action a
in belief state b is given by

Q(b.a) = > b(s)Qupr(s,a)
seS

Where Qppp denotes the Q-value of the underlying MDP.
With these values in hand, (7) can be rewritten to select the
action with the highest expected value.

(16)

7(b) = arg mgx[z b(s)Qrpp(s,a)]

sES

a7)

The Qmdp algorithm is easily implementable and can be
very fast in problems with a large number of states. A
disadvantage however, is that an agent following this policy
does not take explorative actions. This can lead to the agent
going back and forth between belief states, without achieving
its goal, rendering the algorithm inexpedient for problems
where repeated exploration of the environment is necesarry. A
possible solution to battle this problem is to use the softmax
action selection as discussed in section IID. Rewriting (10),
the probability of taking action a in belief state bis computed
according to:

. eQ(b,a)/7
n(ba) = ———=— (18)
Z eQ(ba’)/T
a’'eA

Although Qmdp can be very effective in large state spaces,
its simplicity generally lacks the subtlety to efficiently solve
complex problems. For a more exact solution we have to
consider the observation model and adjust the value iteration
algorithm to suit POMDPs. A short version of the methods
involved will be provided in the next section.

C. Value iteration in POMDPs

Value iteration can also be applied to approximate
solutions for POMDPs. Here, we will present a brief outline
of the methods involved, as an introduction to the Perseus
algorithm. For detailed descriptions we refer to Sondik [21]
and Puterman [16].

Recall from section IIIA, that when acquiring the value
function of a POMDP under a certain policy, the value of
every state needs to be weighted by the agent’s belief in the
given state. For notational convenience (15) can be written as
a dot product:

V() =b-a" (19)

Where o™ = {V7(s1),V"™(s2),...,V"™(s,)}. In section 1IB,
a policy was described as a function specifying which action
to take in a given state. Working towards an optimal policy,
the agent needs to select the best action at every time step t:

Vi(b) = maxb- o~ (20)
ac

T
with Ty = {a1,a9,...,ax}. The state of the agent is a
continuous functions of all individual beliefs in a state.
Assigning the belief of a state to every axis, plotting the

belief state will result in an |S| — 1-dimensional hyperspace
(probabilities sum to 1, thus the belief in |S| — 1 states
is sufficient to determine the entire belief state). All belief
points are contained in a belief simplex A. With every region
of the belief space, an optimal action is associated, this is
represented by one of the a-vectors. The value of every
action is a linear function of the belief of a state.

Again, applying the concept of weighting probabilities,
we can combine the functions defined so far into a general
formula for an optimal value function:

V() = max 3" Rs, a)b(s) + Y O, a,2)V* (7))

sES ZEZ
(21)

where b7 is given by the belief function, defined in (10).
For short, we can write: V* = HV™, with H defined as the
Bellman backup operator.

Since for every region of the belief space, there is an
a-vector optimizing the value, the optimal value function
will be made out of a finite set of hyperplanes, building
up the surface of the belief simplex. Sondik showed this
function is piecewise, linear and convex for finite horizon
POMDPs and is approximately PWLC for POMDPs with an
infinite horizon. The piecewise property stems from the max
operator and the linearity can be explained by the fact that
the value of every action is a linear function of the belief
state. The convexity of the value function has an intuitive
explanation. In the corners of the function the entropy, the
degree of uncertainty, is low, yielding a firm basis for decision
making, whereas in the center of the simplex, where the
entropy is high, there is much uncertainty in the state of
the environment, meaning the outcome of a decision will be
unclear.

Analogous to value iteration in MDPs, the value function
is updated iteratively. In every iteration n, an |.4| number
of a-vectors will be added, one associated with each action
and a new value function, made up of the surface of all
optimizing vectors will be computed. Every stage can be
seen as a backup of the previous value function. At every
backup stage, the vector parameterizing the surface of the
value function can be computed according to:

backup(b) = ab | =arg max 5~a§+1 (22)
a€cl, 41
Where 'y = {a1,00,...,0x} and k = |HV,|, ie,

the number of vectors in the current value function [22].
This notation will be useful for understanding the Perseus
algorithm. Value iteration is computationally expensive in
POMDPs, because at each iteration the value of every point in
the entire belief space is updated. Recently developed methods,
known as point-based algorithms, have started working with
restricting value iteration to a subset of the belief space [8],
[12], [14], [28]. Perseus is one of such algorithms.

D. Perseus

Perseus is an approximate point-based value iteration
algorithm for solving POMDPs and was introduced by Spaan
and Vlassis in 2005 [22], [23]. The algorithm starts by
performing a random walk through the environment, thereby
sampling a set B = {b1, ba, ..., b, } of reachable belief points.
These points remain the same throughout the algorithm. This
holds an advantage over other algorithms that work with the
complete belief space in the sense that it only computes values
for belief points that can actually be encountered by the agent.

The initial value function is set as a single vector, with
all components set to - min,,7(s,a), the minimal
cumulative reward obtainable in the POMDP, guaranteed
to be below V*. Perseus introduces a new backup operator
H PERSEUS, and in every backup stage, tries to improve the
value of all belief points, or at least makes sure that they do

not decrease:

It keeps track of the set of non-improved points B, and as long
as B is not empty, samples uniformly at random a belief point
b and computes « = backup(b). If the vector improves the
value of b, it is added to the value function of V;, 1, otherwise
a copy of V,, will be inserted. In an ideal situation, an increase
in value of a belief point b € B will increase the value of many
other points in B. Given the shape of the value function, such
a method can be very effective in approximating solutions.
The backup stage is given in algorithm 2.

Algorithm 2 The backup stage V,, 11 = H PERSEUS
Vn+1 — (Z)

B—B
repeat
Sample a belief point b uniformly at random from B and
compute « = backup(b)
if b- o>V, (b) then
add o to V41

else
add o/ = arg max b-ato Vyi
end if "
B={¥beB:Vyy(b) < Vi(b)}
until B =

return V,

This stage is performed iteratively, until some stopping
criterion is met. This could be, analogous to regular
value iteration, terminating the algorithm as soon as
the maximum difference between two backup stages
maxpeg(Vint1(b) — Vi (b)), drops below a threshold.

The POMDP algorithms discussed so far, all make use
of value iteration. We will now discuss some previous work
on Q-learning in combination with reinforcement learning

and neural networks, followed by the introduction of a new
approach, combining several of these techniques.

IV. Q-LEARNING IN POMDPs

As described in section IIE, the Q-learning algorithm
updates each state-action pair after executing an action.
However, because the belief space is used as a state space, the
number of possible states encountered is infinite. Therefore,
to work with a lookup table for each belief state-action pair
becomes impossible and there is need for a prediction method,
which generalizes between these pairs and associated Q-
values. Neural Networks (NN) provide such a method and are
known to be a powerful formalism in function approximation,
gaining success in a wide variety of applications.

The use of a NN within the context of reinforcement
learning has been demonstrated to be effective before [4],
[10], [18], [27]. Schifer and Udluft [20], for instance showed
how an NN in combination with RL can be applied to solve
the pole balancing problem. Riedmiller [17] argued that a
weight change induced by a change in value of a certain
part of the state space, can cause the value of other regions
to change as well, and therefore undo previous training. He
proposed a method of storing all previously encountered
state-action pairs in memory and use these to perform offline
training of the network. Unfortunately this is not convenient,
when simulating Q-learning in POMDPs, and will result in
longer learning times. We can however, use this insight in
the choice of our neural network configuration for estimating
the Q-values. The advantage of using neural networks in
approximating Q-values is that only the weights of the
network have to be stored in memory.

To use neural nets to predict Q-values, there are two
possible approaches. Either one network is used, with |A|
output units, or a single net is assigned to every a € A, as
used by Lin [10]. The advantage of the latter approach is
that, when trying to obtain the Q-value of a given action,
one can easily address the responsible network. Also this
will reduce the untraining of weights, caused by changes in
the state space, as mentioned by Riedmiller. Therefore this
method is used.

To each a € A, we assign an NN: QNV. The belief
state at time ¢, gt, is fed to the network as an |S|-dimensional
input vector and a single output unit was used to predict
the Q-value of a given belief state. The number of hidden
units was left as a parameter. As opposed to normal neural
network training, the networks in this case do not learn from
correct examples, but from approximations. So as a target,
the Q-value at the next time step was fed to the network
and used to compute the error. To obtain this target, we can
rewrite (9) and get:

Qb ar) = rs1 + Y max QNN (bi11) (24)

Instead of updating the Q-value as in (8), the backpropagation
learning algorithm is used to update the weights of the
networks, with learning rate a.

The method discussed so far, can be also used outside
the context of a POMDP, because the agent does not need a
model of the environment. Since we are working within the
context of a POMDP and a model is known, we can exploit
this knowledge and use it to provide the networks with more
information.

A. RENQ: Region Enhanced Neural Q-learning

A technique for extracting information from images in
object recognition is making use of a spatial pyramid [9],
[1]. In this method, the image is divided into subsections
and spatial features, e.g., a histogram, are computed for all
sections. This approach is known to improve recognition
performance greatly. RENQ uses this method in a novel way
and applies the spatial pyramids to the state space of the
POMDP. The approach works with several levels. At each
level, the state space is divided into k regions of equal size.
At level 1 the used region is equal to the original state space,
where each state is a singleton region, thus & = 1. Level 2
decomposes S into 2 x 2 quadrants, making k£ = 4. Level 3
subsequently subdivides S in 3 x 3 regions with £ =9, level
4 in 4 X 4, etc.

For every k, ¢, C S the average belief value b is computed:

(25)

The set of average beliefs at level L is By, = {b1,ba,...,bs},
with & = L2. The enhanced belief vector b+ is the union of
all belief sets at every level:

bt = U B. (26)
L=1

Subsequently, b+ is fed as an inputvector to the networks and
Q-values are estimated. The computation of this additional
information might seem redundant but, as we will show, this
can actually be very effective.

Example 2. Consider again the 4 x 4 grid maze, used
in example 1, with |S| = 12. The grid can be divided into
4 square regions of 2x2 (level 2). For each region we will
compute the average belief according to (25). A depiction of
the general idea is provided by figure 3.

ey |
\]
ey |

A=)

ey |
N’/
ey |

N/

Fig. 3. Level 2 Spatial Pyramid applied to the belief state of a POMDP

The belief function represents a belief of the agent, being
in a certain state. The knowledge we add will also provide
the agent with an estimate of its approximate position. If
the goal of the agent is to get to a goal state somewhere in
the upper right corner of the state space and the agent has
a fair degree of faith its position is somewhere within the
boundaries of the lower left corner, it is very likely it will
steer itself either north or east.

In this example, the state space was divided into 4 regions.
For larger problems, one might consider breaking up the
problem into more and/or larger sections, i.e., higher levels,
and add the average belief of these regions to the input
vectors of the networks as well. This is left as a parameter.
Naturally, variations on this scheme can be developed, for
instance for problems that are not captured in a square state
space POMDP, the dimensions of spatial pyramid can be
modified to suit the particular problem. In the following
section we will provide details about the benchmark problems
used to test the algorithms, the optimal parameter settings
found and show the results comparing the RENQ algorithm
to Qmdp and Perseus.

V. EXPERIMENTS

To test the algorithms, we use 3 square maze navigation
tasks of 6x6, 12x12 and 24x24, with |S| = 12, |S| = 73
and |S| = 344, respectively. Every maze has one static goal
position and every other unoccupied state can be the initial
state. The objective of the agent is to reach the goal position
as soon as possible and with every action can only reach
adjacent states. In every maze, we use the set of actions:
A = {go left, go up, go right, go down}, with a 20% chance
that the selected action is changed by a random action
from A. In every of the 4 directions the agent can either
observe a wall or an empty field, making the cardinality of
|Z| = 2% = 16. We added 10% noise in the observation in
each separate direction, meaning that an observation is correct
with probability 0.9* = 66%. The agent receives a reward of
100 for reaching the goal position and is penalized by —0.1
for every other action. In all mazes the only opportunity
for the agent to get a reward is reaching the goal state. We
therefore chose to measure the number of steps to the goal
position, since this does not depend on the size of the rewards.

We run the algorithms on an Intel Dual Core 2.33GHz,
with 3.4 GB RAM. For Perseus, the Matlab implementation
available on Spaan’s website is used and the algorithm is run
on Matlab 2009b for Linux. The RENQ and Qmdp algorithms
use self written C++ implementations.

A. Small Maze

The maze is depicted in Figure 1, with G as the goal
position. The starting state can be any other unoccupied state.
The entire maze is surrounded by a 1 block wall (note that we
did not draw the walls around the maze). For all algorithms,
the discount factor is set to v = 0.7.

RENQ. A simulation lasts for 100,000 steps. During
an experiment, we perform 50 simulations. A run is finished
if the goal is hit or if the agent performed 1000 actions
during the run. The learning rate « of the neural network is
set to 0.015. The neural network used 20 sigmoidal hidden
units for each separate action network. We used Boltzmann
exploration with 7 = 1. We also used the same parameters to
test the performance of BQNN and Q-learning with neural
networks on an MDP.

Perseus. Following Spaan, we ran Perseus 10 times,
each with a different random seed. For the small maze, we
sampled a set |B| = 200 belief points. With every simulation,
the algorithm performs 1000 episodes, starting from random
positions. We let the algorithm run for 120 seconds, which
proved to be enough for convergence. The average of the
total 10.000 trajectories is computed along with the standard
deviation.

Qmdp. We ran the algorithm 100 times, in each simulation
letting the agent start at each different starting location.
The average of all the (12)(100) = 1200 different episodes
is computed, along with a success percentage, indicating
how often the goal was found in an episode. As a stopping
criterion for the value iteration part we use § = 1576,

We also tested regular value iteration on an MDP, to compare
with the Q-learning and neural networks method on an MDP.
The results are shown in table I. For value iteration on the
MDP (VI MDP) we did not compute standard deviations,
since it always computes the same policies.

TABLE I
RESULTS ON THE SMALL MAZE.

Method Final steps | Nr. Times Goal hit | % Success
RL+NN MDP 3.85 £ 0.04 25375 £ 533 100
BQNN 4.37 £ 0.09 22156 + 967 100
RENQ LEVEL 2 || 437 £ 0.08 22172 £ 1001 100
RENQ LEVEL 3 || 4.36 £ 0.06 22307 £ 796 100
VI MDP 3.86 100
Qmdp 4.38 + 0.68 100
Perseus 4.79 + 0.03 100

Discussion. As can be seen in Table I, RENQ significantly
outperforms Perseus at all levels, but performs the same as

Qmdp. Furthermore, it can be seen that RENQ at level 3 hits
the goal more often during its learning process than BQNN,
the method without region enhanced beliefs and therefore
performs better. The results also show that solving this MDP
with Value Iteration (VI MDP) results in a solution of 3.86
steps on average, whereas using Q-learning and a neural
network as function approximator (RL+NN MDP) learns the
same optimal policy. RENQ requires around 5 seconds of
computational time for the 100,000 steps and is therefore faster
than Perseus.

B. Middle-sized Maze

The 12x12 maze is depicted in figure 4. For all algorithms,
the discount factor is set to v = 0.95.

Fig. 4. The Middle-sized maze. G denotes the goal position.

RENQ. A simulation lasts for 200,000 steps. The learning
rate o of the neural network is again set to 0.015. The neural
network used 60 sigmoidal hidden units for each separate
action network. We used Boltzmann exploration with 7 = 1.

Perseus. Again we ran the algorithm 10 times, each
with a different random seed and let the agent perform 1000
trajectories, each starting from a different random starting
location. We sampled |B| = 1000 and let the value iteration
stage run for 600 seconds. The average number of steps for
the 10000 trajectories is computed along with a standard
deviation.

Qmdp. We use 100 simulations, in each simulation consists
of |S| episodes and the average of all the 100|S| = 7300
trajectories is computed. The results are shown in table II.

the best for this maze, while RENQ significantly outperforms
Perseus at all levels. At levels higher than 1, RENQ performs
much better than when using only the state-based belief vector,
since the goal is hit significantly more often, during training.
We can also see that solving this MDP with Value Iteration
(VI MDP) finds a solution of 11.3 steps on average and using
Q-learning with a neural network as function approximator
(RL+NN MDP) comes very close to this optimum. RENQ
requires around 90 seconds of computational time for the
200,000 steps and is therefore a bit faster than Perseus.

C. Large Maze

For the large maze, depicted in Figure 5, we use a discount
factor v = 0.99.

Fig. 5. The Large maze. G denotes the goal position.

RENQ. A simulation lasts 2,000,000 steps. The learning
rate o of the neural network is set to 0.01. The neural
network used 60 sigmoid hidden units for each separate
action network. We used Boltzmann exploration with 7 = 1.

Perseus. Continuing in the same fashion, we ran the
algorithm 10 times, each with a different random seed. We
sampled |B| = 10000 belief points and let the algorithm run
for 2 hours. The average number of steps of 5 simulations is
computed along with a standard deviation.

Qmdp. Again we use 100 simulations, in each simulation we
let the algorithm start from all different non-goal positions.
The average number of steps the total 100|S| = 34400
episodes is computed, along with a success percentage and a
standard deviation. The results are shown in table III.

TABLE III
TABLE II RESULTS FOR Q-LEARNING WITH NEURAL NETWORKS ON THE 24 x 24
RESULTS FOR Q-LEARNING WITH NEURAL NETWORKS ON THE 12x12 MAZE.
MAZE.

Method Final steps | Nr. Times Goal hit | % Success

Method Final steps | Nr. Times Goal hit | % Success RL+NN MDP 23.7+24 51372 £ 5413 100

RL+NN MDP 119 £ 0.3 14165 + 436 100 BQNN 397.8 4 1438 27290 £ 7502 97

BQNN 152 + 04 10971 £ 208 100 RENQ LEVEL 2 339 £ 05 37639 + 1363 100

RENQ LEVEL 2 || 15.1 £ 0.3 11526 + 195 100 RENQ LEVEL 3 33.6 £ 0.5 38418 + 1338 100

RENQ LEVEL 3 || 152 4+ 0.3 11608 + 200 100 RENQ LEVEL 4 33.8 + 04 38098 + 1641 100

RENQ LEVEL 4 152 £ 0.3 11606 + 179 100 VI MDP 214 100

VI MDP 11.3 100 Qmdp 35.6 £ 1.0 99.3

Qmdp 14.7 £ 0.6 100 Perseus 347 £03 100
Perseus 15.7 £ 0.1 100

Discussion. As can be seen in Table II, Qmdp performs

Discussion. As can be seen in Table I1I, RENQ significantly
outperforms Qmdp and Perseus with levels 2, 3, and 4. BQNN

fails to learn a good policy in 2 of the 50 simulations. RENQ
at Levels 3 and 4 performs the best of all POMDP methods.
We can also see that solving this MDP with Value Iteration (VI
MDP) results in a solution of 21.4 steps on average and using
Q-learning and a neural network as function approximator
(RL+NN MDP) again comes very close to this optimum.
RENQ requires around 1 hour of computational time for the
2,000,000 steps and is therefore a bit faster than Perseus for
this problem. Note that for this largest problem, Qmdp may
be a too simple algorithm and is outperformed by Perseus
and RENQ. Unfortunately, we did not have time to run even
larger problems to see whether the difference between RENQ
and Qmdp becomes even larger, although we expect this to be
the case.

VI. CONCLUSION

The partially observable Markov decision process (POMDP)
framework provides a model for decision making under
uncertainty, caused by for instance, noise in a robot’s
actuators and sensor readings. In this paper we have
presented RENQ, a novel approach combining techniques
from machine vision with Q-learning and neural networks
to approximate an optimal solution for POMDPs. We have
shown that RENQ outperforms Qmdp, a simple POMDP
algorithm, and Perseus, a state-of-the-art algorithm when the
maze problems become larger.

The benchmark problems all consist of maze navigation
tasks, where state transitions are only defined for adjacent
states. It would be interesting to see how RENQ can be used
for problems where this is not the case. Ultimately, the goal
is of course to work towards a method providing effective
learning behavior in a real world situation. We would also
like to study different hierarchical approaches to improve
RENQ’s learning speed, in future work.

ACKNOWLEDGEMENTS

As a final word I would like to express my gratitude towards
Dr. Marco Wiering, for guiding me on this project, helping me
with the programming parts and providing useful, constructive
criticism on my writings and of course, all credit for the RENQ
algorithm goes to Marco.

REFERENCES

[1] A.Abdullah, R.C. Veltkamp, and M.A.Wiering. Spatial pyramids and
two-layer stacking svm classifiers for image categorization: a compar-
ative study. In IJCNN’09: Proceedings of the 2009 international joint
conference on Neural Networks, pages 1130-1137. Institute of Electrical
and Electronics Engineers Inc., The, 2009.

[2] KJ. Astrom. Optimal control of Markov decision processes with
incomplete state estimation. J. Math. Anal. Applic., 10:174-205, 1965.

[3] R. Bellman. Dynamic Programming. Princeton University Press, 1957.

[4] L.T. Dung, T. Komeda, and M. Takagi. Reinforcement learning for
POMDPs using state classification. Applied Artificial Intelligence,
22(7&8):761-779, 2008.

[5] M. Givon and A. Grosfeld-Nir. Using partially observed markov
processes to select optimal termination time of tv shows. Omega,
International Journal of Management science, 36:477-485, 2006.

[6]

[7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]
[19]
[20]

[21]

[22]

[23]

[24]
[25]
[26]

[27]

(28]

J. Hoey, P. Poupart, A. von Bertoldi, T. Craig, C. Boutilier, and
A. Mihailidis. Automated handwashing assistance for persons with de-
mentia using video and a partially observable markov decision process.
Computer Vision and Image Understanding, 2009.

L.P. Kaelbling, M.L. Littman, and A.W. Moore. Reinforcement learning:
A survey. Journal of Artificial Intelligence Research, 4:237-285, 1996.
H. Kurniawati, D. Hsu, and W.S. Lee. SARSOP: Efficient point-based
POMDP planning by approximating optimally reachable belief spaces.
In Proc. Robotics: Science and Systems, 2008.

S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories. In In CVPR,
pages 2169-2178, 2006.

L.J. Lin. Self-improving reactive agents based on reinforcement learning,
planning and teaching. Machine Learning Journal, 8(3/4), 1992. Special
Issue on Reinforcement Learning.

M.L. Littman, A.R. Cassandra, and L.P. Kaelbling. Learning policies
for partially observable environments: scaling up. In Proc. 12th In-
ternational Conference on Machine Learning, pages 362-370. Morgan
Kaufmann, 1995.

W.S. Lovejoy. A survey of algorithmic methods for partially observable
Markov decision processes. Annals of Operations Research, 28(1):47—
65, 1991.

G.E. Monahan. A survey of partially observable Markov decision
processes: Theory, models, and algorithms. Management Science,
28(1):1-16, jan 1982.

J. Pineau, G.J. Gordon, and S. Thrun. Anytime point-based approxi-
mations for large POMDPs. Journal of Artificial Intelligence Research
(JAIR), 27:335-380, 2006.

J.M. Porta, N. Vlassis, M.T.J. Spaan, and P. Poupart. Point-based value
iteration for continuous pomdps. J. Mach. Learn. Res., 7:2329-2367,
2006.

M.L. Puterman. Markov Decision Processes—Discrete Stochastic Dy-
namic Programming. John Wiley & Sons, Inc., New York, NY, 1994.

M. Riedmiller. Neural fitted Q iteration - first experiences with a data
efficient neural reinforcement learning method. In Jodo Gama, Rui
Camacho, Pavel Brazdil, Alipio Jorge, and Luis Torgo, editors, ECML,
volume 3720 of Lecture Notes in Computer Science, pages 317-328.
Springer, 2005.

G.A. Rummery and M. Niranjan. On-line Q-learning using connectionist
systems. Technical report, October 04 1994.

S.J. Russel and P. Norvig. Artificial Intelligence: a modern approach.
Prentice Hall, Englewood Cliffs, NJ, 1994.

A. M. Schifer and S. Udluft. Solving partially observable reinforcement
learning problems with recurrent neural networks, 2005.

E. J. Sondik. The Optimal Control of Partially Observable Markov De-
cision Processes. PhD thesis, Stanford University, Stanford, California,
1971.

M.T.J. Spaan. Approximate planning under uncertainty in partially
observable domains. PhD thesis, University of Amsterdam, Amsterdam,
The Netherlands, 2006.

M.T.J. Spaan and N. Vlassis. Perseus: Randomized point-based value
iteration for POMDPs. Journal of Artificial Intelligence Research,
24:195-220, 2005.

R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, 1998.

C. J. C. H. Watkins. Learning from Delayed Rewards.
Cambridge University, Cambridge, England, 1989.

C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning
Journal, 8(3/4), May 1992. Special Issue on Reinforcement Learning.

M.A. Wiering and H. van Hasselt. Ensemble algorithms in reinforcement
learning. /EEE Transactions on Systems, Man, and Cybernetics, Part B,
38(4):930-936, 2008.

W. Zhang and N.L. Zhang. Restricted value iteration: Theory and
algorithms. Journal of Artificial Intelligence Research (JAIR), 23:123—
165, 2005.

PhD thesis,

