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Abstract 
In this thesis, I describe an experiment and introduce an ACT-R cognitive 
model used to investigate the learning of robust and flexible skills. In the 
study, 60 students participated in an experiment solving problems in a 
simulation of a Flight Management System. In order to investigate robustness 
and flexibility, state and display malfunctions would occur during the 
experiment. An instruction based on a list of steps, and an instruction based 
on pre- and postconditions of the environment were used to manipulate the 
use of internal and external control states. Using mixed effect models, the 
experimental data and model’s data are compared. The model captures the 
overall performance of the participants in terms of reaction times and 
correctness scores. The results reveal that visual input is important in skill 
performance, and that a focus on pre- and postconditions aid participants to 
cope with system malfunctions. 
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Introduction 
June the first, 2009. An Airbus of KLM Air France disappears from the radar 
a few hours after its departure from Rio de Janeiro to Paris. Supposedly, the 
airplane is struck by lightning while flying through a storm above the Atlantic 
Ocean. A week later debris of the plane is found floating in the Atlantic Ocean. 
What went wrong that particular flight? There are many speculations about 
the origin of the crash. The lightning struck could have caused a short circuit 
in the planes systems, leading to a devastating ending. Just before the crash, 
the plane transmitted emergency messages about system failures and the 
disconnecting of the automatic pilot. One of the sensors, which were probably 
malfunctioning, was the speed sensor. Why did all those events eventually 
lead to a crash of the airplane? That is a question for the crash investigators to 
answer. I do know that in most cases there are procedures to handle 
malfunctioning sensors and systems. Whether human error or a system 
malfunction was the cause of the crash of Air France Flight 447, pilots need to 
cope with these unexpected problems. 
The way pilots learn the instructions for the abovementioned procedures are 
in a stepwise manner. Pilots learn a number of steps they have to execute to 
perform a certain procedure (Taatgen, Huss, Dickison, & Anderson, 2008). 
Whether this method is a good way of learning procedures is disputable and 
we will address this claim later in this chapter.  
A particular field of research in human machine communication I find 
interesting is that of learning and mastering procedures. One of the reasons is 
that errors made in procedures can lead to fatal events, such as the crash 
mentioned above. Therefore, the learning of procedures as a skill and the 
effect on system malfunctions will be the theme of this thesis.  

The acquisition of cognitive skills 
Over the past decades, extensive research has been done on the acquisition of 
cognitive skills. Traditionally, research in cognitive skills focuses on problem 
solving and decision making in mathematical problems and games such as the 
Tower of Hanoi and chess. In his review, VanLehn makes a comparison 
between motor skill learning and cognitive skill learning, identifying three 
stages of learning (VanLehn, 1996). The early, intermediate and late phases, 
borrowed from research on the acquisition of motor skills (Fitts, 1964), ideally 
describe the process of learning a skill. In the first phase general knowledge is 
learned, whereas more specialized knowledge is missing. In the intermediate 
phase more specialized knowledge is acquired, but there are still flaws in 
performance due to missing and incorrect information. Finally, in the late 
phase problems can be solved without conceptual errors. Errors that occur in 
this phase are due to slips and mistakes. 

Classic models of skill acquisition 
Traditional computational models that try to capture skill acquisition usually 
start out in the first phase. There already is general information about the task 
and the domain present. The models then specialize that knowledge and 
eventually reach the last phase. Usually such models store information of 
partially completed problems to enable faster problem solving by simply 
retrieving the solution of a specific part of a problem. This stored information 
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can be in the form of rules or facts. Examples of these kinds of mechanisms 
are Logan’s instance based learning (Logan, 1988), Newell and Rosenbloom’s 
chunking mechanism (1981) implemented in Soar (Laird, Rosenbloom, & 
Newell, 1986), and ACT-R’s production compilation system (Taatgen & Lee, 
2003).  
Laird, Rosenbloom and Newell (1986) present a model of learning to play the 
eight puzzle. The eight puzzle game is played as follows. The playing board 
consists out of a 3 x 3 grid containing in total nine squares. There are eight 
blocks, each block containing one of the numbers one to eight. One of the 
squares is empty; the other squares are randomly occupied by one of the eight 
blocks. Possible actions are moving one of the blocks towards the empty 
square (left, right, up or down). The game is finished whenever the blocks are 
in placed in an ascending, clockwise order; with block one being at the left 
corner of the grid (Figure 1). The probably more familiar version of this game 
is played with a scrambled picture. The objective is then to unscramble the 
picture by moving the blocks.  

To determine what action to take, the Soar model perceives the state of the 
outside world, and consults its production system what to do. On its turn, the 
production system tries to match rules that apply to the current situation, and 
selects the possible moves. A simplified example of a production rule is “if my 
goal is to move number one to the upper left corner and the square left to 
number one is free then move number one to the left”. The sorts of rules in 
the production system of Soar are divided in problem spaces. In the case of 
the game described here, one of the problem spaces contains the rules to move 
each block to its desired state. However, an impasse occurs in this problem 
state whenever there are multiple rules that can fire. To solve the impasse, the 
system will start searching in another problem state, which could provide an 
answer for the impasse. A sub-goal to solve this impasse is then created. If an 
answer is found, the solution is added to the first problem state. Whenever the 
impasse is encountered in the future, the production system will now find an 
answer in the current problem state without the need to create a subgoal. This 
process is called chunking in Soar and is one of the ways in which classic 
models specialize and acquire expert skill level. If in the second problem state 
an impasse would be encountered, another problem state would be consulted 
to find the answer, thus creating a subgoal hierarchy. Although Soar can 
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Figure 1: An example of the Eight-Puzzle game 
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handle unfamiliar problems through solving an impasse, this mechanism only 
works whenever all the knowledge needed to solve the problem is available in 
the problem spaces. Whenever general knowledge needed to solve the 
problem is missing, Soar gets stuck at the problem. In general, Soar’s 
chunking mechanism works not unlike production compilation in ACT-R or as 
instance learning of Logan. Thus, the problem that Soar faces is also faced by 
other cognitive architectures as ACT-R. 
A drawback of the abovementioned models and their underlying theories is 
that it is hard, or in some cases impossible, to generalize the learned 
knowledge and apply it in new and unseen situations, especially when general 
information is missing. Thus, although familiar problems can be solved much 
faster than unfamiliar problems, the learned skills are not robust and flexible 
enough to employ them in unseen situations.  

Embodied cognition 
On the other side of the spectrum is the research field of embodied cognition1. 
“Embodied” means that cognition is rooted in its environment. Researchers 
such as Brooks focus on using the environment directly to guide future 
actions, instead of reasoning about it internally. In his 1991 conference paper 
“Intelligence Without Reason”, Brooks (1991) attacks the traditional Artificial 
Intelligence approach. According to Brooks, the traditional approach focuses 
too much on top down reasoning leaving a gap between perception and action. 
He argues that it is necessary for a robot to be situated and embodied in the 
environment for intelligence to emerge. Although Brooks paper focuses on 
robots, it is in some sense applicable to cognitive architectures like those 
mentioned above. According to Brooks, modeling the world internally and 
reasoning about it can be computationally challenging. Using the perceptional 
input to reason about the world instead of an objective world model would be 
much more efficient. This might as well be true for cognitive models (and thus 
for humans). To quote Brooks, “The world is its own best model”. 
A working example of Brooks approach is the subsumption architecture 
(Brooks, 1986). The key aspect of the subsumption architecture is that it is a 
bottom up architecture, driven by the environment. The lower levels of the 
architecture imposes constraints through feedback from it sensors to the 
higher, goal-orientated levels. For example, if the lower level layer detects 
objects and is programmed to avoid those, it overrides the high level layer in 
charge of path planning and thus avoids collision. Perception and action are 
directly coupled without an overall control structure. This enabled Brooks to 
put the robot in an unknown environment able to navigate and avoid 
unexpected obstacles. More closely related to the topic of skill learning is the 
connectionist model of Botvinick and Plaut (2004). Using a recurrent 
connectionist network approach, they build a model that is capable of 
learning task sequences. The architecture of their model is shown in Figure 2.  

 

                                                   
1 The term embedded cognition is also used by some researchers to refer to 
embodied cognition 
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Figure 2. The architecture of the model presented by M. Botvinick and D. C. Plaut(2004). 
The circles in the grey box represent layers of units in the recurrent network. The 
perceptual input layer contains units for fixated objects as well as for held objects. 

The sequence task in the study of Botvinick and Plaut was that of making 
coffee. For the input layer, they identified features representing the state of 
the environment, such as cup, lid, brown-liquid, and so on. Every identified 
feature has its own unit in the input layer. In the output layer the units 
corresponds to actions, such as pick-up, put-down, pour and so on. The 
internal representation part consisted of 50 hidden units, representing the 
internal context state of the model.  
In the training phase of the model the correct sequence of making coffee was 
represented to the model, regardless of the model's output. The model then 
adjusted its weights to learn the patterns and sequence of the task. When 
testing the model no feedback about the correct sequence was given. In their 
simulations, Botvinick and Plaut showed that their model exhibits several 
features of normal and impaired routine sequential behavior. Through their 
model, they show that organized action can occur without explicit goals. 
However, they acknowledge that in some circumstances human action does 
involve explicit goals, something not captured by their model. In addition, the 
actions and perceptual input are predefined. The model cannot learn new 
actions or perceptual input. 
Taatgen et al (2008) combined the strength of both the classical and 
embodied cognition approach to skill learning. They were able to build a 
model that could learn a skill robust and flexible enough to cope with 
unexpected and partial completed problems. I will discuss this approach in 
the next section. 

Robust and flexible skill learning 
Although it is current practice to teach pilots procedures as lists of steps, 
Taatgen et al (2008) found evidence that there is a better way to learn 
procedures and cognitive skills than the learning of a list of steps. In their 
research, students had to perform certain procedures in a computer 
simulation of a Boeing 777 Flight Management System (henceforth called 
FMS). Taatgen et al show that context learning, where the focus is the pre- 
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and postconditions of actions and the environment, is far more effective than 
just plain list learning, where the pilot just has to study a list of actions for 
each procedure. The principle of context learning is based on the minimum 
control principle (Taatgen, 2007), which argues that humans tend to 
minimize the amount of mental control states by deriving the state from 
perceptual input. In this context, control states can be seen as a measure of 
top-down control. In other words, control states keep track of the progress of 
a task, without the necessity of a feedback loop from the environment. In 
context learning, the pre- and postconditions of actions are specified and the 
actions are embedded in the environment. This way the current control state 
can be derived from the environment. According to Taatgen et al (2008) this 
explains why learning the context procedure is more effective than learning a 
list of steps, it is just easier and more effective to infer control states from the 
environment rather than keeping track of control states internally. In the 
experiment, students had to solve problems concerning the direct-to and 
remove-discontinuity procedures in the FMS simulation. In some of the cases, 
just one or both procedures could be applied literally, in other cases they had 
to solve problems caused by their copilot using adaptations of the learned 
procedures, thus requiring flexibility and robustness. The participants in the 
context learning group had higher performance ratings on and were faster in 
solving the problems than the participants in the list learning group. In the 
next chapter, I will further discuss the abovementioned procedures and 
discuss the task participants had to do in more detail. 

Research on procedures and human error 
In the field of human factors, extensive research has been done to human 
error and the impact of it on society (McIlvaine, 2006)(Dhillon & Lui, 2006). 
Most research concerns teamwork, stress, environments, and interfaces. 
Though research has been done on learning of procedures, most of it is 
focused on educational programs and not on the underlying cognitive 
mechanism for learning a particular procedure. Gaba (2001) did research in 
skill learning and human error in the field of medicine. He argues that a 
cookbook approach on learning medical procedures is not effective and results 
in too rigid skills. With the term cookbook, he refers to what Taatgen et al 
dubbed list learning.  
Recently, Fennell et al (2006) published a paper on the impact of recall steps 
on errors made in a FMS task. They did research on learning FMS procedures, 
identifying two types of steps in the sequence of instructions: recognition and 
recall steps. A recognition step in the sequence is a step where the action is 
cued by salient labels or prompts. Recall steps on the other hand are not cued 
by the display and therefore a potential source of error. Pilots unfamiliar with 
the FMS learned several procedures and the access errors (hitting a wrong 
button or accessing a wrong routine) they made were analyzed. It turned out 
that there is a probability of .74 of making an access error, whenever the 
procedure has two recall steps. A probability of .13 was found for procedures 
with only one recall step. Whenever no recall steps were present, the 
probability for an access error was only .06. Their results show that perhaps 
environmental cues are important for recalling a step of the instructions. 
Possibly, it is easier for people to rely on environmental cues rather than 
internal cues. Note that the instructions in the study of Fennell et al were 
learned by a special method suited for their research. Pilots had to 



13 

 

reformulate the steps to promote remembering the step (e.g. as reported in 
their paper “Enter the winds” was reformulated to something like “Because 
winds are associated with waypoints, and waypoints are on the LEGS page 
and are part of the data of the route, enter the winds using the LEGS page, 
RTE Data prompt”). 
Regarding the steps in a procedure, Cox and Young (2000) speculated that 
device-specific and task-specific steps rely on different kind of knowledge. 
The main difference between the two steps is that device-specific steps do not 
directly contribute to the goal of the task, whereas the task-specific steps do. 
Aments, Blandford and Cox (2009) hypothesized that different cognitive 
processes underlie these two types of steps. They argue that device-specific 
steps rely more on external cues, whereas internal cues are more important 
for task-specific steps. This hypothesis is derived from the Activation-based 
Goal Memory model (Altmann & Trafton, 2002). This model states that goals 
are associated with activation levels and that they can be triggered by means 
of retrieval cues. Such cues are for example associative internal links (as a 
sequence of successive steps) or an external cue (such as a display item). The 
device-specific tasks are required by the device and do not form a natural part 
of the task, thus its associative links are weaker than those of the task-specific 
tasks. Aments et al therefore reason that external cues are more important for 
the device, than for the task-specific steps. In the research of Aments et al 
participants had to play the spy game. The objective of the game was to fly a 
plane to a certain destination to deliver a secret message. To accomplish this 
objective the participants had to follow a procedure specifying what to do. In 
the procedure, there were 11 device-specific steps and 17 task-specific steps. In 
a first experiment, they evaluated the difference between the steps by looking 
at eye-tracker data. It turned out that when an error is not made, there is a 
significant difference between the device-specific and task-specific steps. In a 
second experiment, they removed semi-randomly the visual cues such as a 
button, an input field or another item. The assumption here was that 
removing an item would lead to a reduced external cuing for the step involved 
with that item. However, the location of the item was still functional so that 
the task could still be completed. In the study there were significantly more 
errors made on device-specific steps than on task-specific step. There were 
also more errors made on the steps where the item was removed from the 
interface. This result supports the assumption of reduced cueing. However, no 
significant interaction was found between the two device types and the 
visibility of an item. Ament et al argue that it was due to the power of the 
statistical test used (too few participants) or due to a floor effect in error 
ratings, rather than that, the hypothesis is false. Two other reasons could be 
that the external cuing is more complex and that therefore the experimental 
manipulation did not work as expected or there could be a confounding factor; 
the hidden step could be a predictor for the next correct step. I think that 
something else could be going on, and that both steps in their experiment 
relied strongly on the external cues. Prior to the task, people had to learn the 
task. Feedback and instructions were given in the training phase and 
whenever each participant completed the task two times without any errors, 
the training would end. What could have happened is that there was enough 
time to learn the instruction and associate the steps in the procedure with the 
cues in the environment. As Taatgen (2007) argued, whenever people can 
divert control to the environment, they do it. Since I had no access to the 
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instructions used in the experiment, it is hard to say something about the 
learning method. Nevertheless, I speculate that perhaps the participants 
learned the procedure by context and not necessary by internal step (in a list 
learning way). This way one would expect the task steps to be retrieved by 
external cues, rather then by internal cues. 
 

ACT-R 
To show that the minimal control principle was indeed a possible explanation 
for the improved performance Taatgen et al (2008) built a computational 
model in the cognitive architecture ACT-R. The ACT-R architecture (Anderson 
et al., 2004) is a cognitive architecture designed to model cognitive tasks. The 
purpose of ACT-R is to provide a simple theory for complex cognition 
(Anderson, 1996). At first most of the tasks modeled in ACT-R were related to 
learning and memory processes. Later on, researchers started to model 
complex tasks in ACT-R and eventually a perceptual- motor theory was 
adapted by ACT-R (Byrne & Anderson, 2001) and implemented in the newer 
versions of ACT-R.  

 
Figure 3. A simplified diagram of the ACT-R architecture 

The ACT-R architecture (Figure 3) consists of several modules of which the 
production system is the core. This production system communicates with 
other modules through buffers implementing cognitive functions in ACT-R. 
The main modules currently implemented in ACT-R are the Intentional 
Module, Declarative Module, Visual Model, Motor (Manual) Module, Aural 
Module and Vocal Module. The production system has access to the chunks 
(pieces of information) in the modules’ buffers. The chunks are matched, 
selected and executed by the production system, letting all modules 
communicate together through the production system. These modules work 
parallel to each other, whereas a module itself is a serial process.  
ACT-R has been used to model several real world tasks including driving, 
aircraft maneuvering and recently the FMS task. I will discuss the model built 
by Taatgen et al later in this thesis. 

Present study 
From their research, Taatgen et al (2008) found evidence that both internal 
and external control states keep track of progress, and that context 
instructions are probably closely related to our internal representation of the 
task knowledge. As mentioned above, they came to these conclusions by 
building a model that incorporates both the classical and embedded cognition 
approach to skill learning. To investigate the distinction of internal and 



15 

 

external control further I propose an experiment based on the same task of 
Taatgen et al, but with a different experimental design. The same simulation 
will also be used in this research. In this research I will introduce system 
malfunctions, to see how robust both learning methods are coping, not only 
with partially or incorrectly completed problems, but also with system 
malfunctions. I hypothesize that because system malfunctions are unexpected, 
that this will test the robustness and flexibility of both methods more, 
revealing more of their underlying mechanisms.  

State malfunctions and display malfunctions 
For purpose of this study, I make a distinction between two types of 
malfunction. Whenever a state malfunction occurs, the system performs 
another action than the user intended. For example, the user wants to go to 
the LEGS page and presses LEGS. Now if a state malfunction occurs, the 
system goes to the RTE page instead of going to the LEGS page. Now, the user 
expects the system to be at the LEGS page, but the system really is at the RTE 
page. Hence, the users expected state of the system differs from the real state 
of the system. Thus, a state malfunction occurred. 
A display malfunction is the second malfunction type. In this case the 
interface of the FMS gets partly scrambled. 
I expect that a state malfunction is detected and recovered from faster by the 
context learning group than by the list learning group. Rather than being 
stuck in a list of steps, the context group will infer in what state or on what 
page the system is, and thus correct the malfunction more effectively. 
For display malfunctions, it is not clear what can happen. On the one hand, 
the list group could perform better than the context group because they rely 
less on the environment and keep track through their internal learned steps. 
On the other hand, the context group could infer the current state of the 
system more easily by using the information they do get.    
For the conditions where no system malfunctions occur, we expect to find the 
results as presented in the research of Taatgen et al. (2008) (i.e. the context 
group will perform better than the list group). 

Research question 
The research question in this thesis can be formulated as follows: Is the 
context learning method more flexible and robust to system failures than the 
list learning method?  
The following hypotheses can be formulated with respect to this research 
question: 

• I expect that the context group will perform better in resolving 
problems and executing procedures than the list group in case of no 
malfunctions and state malfunctions.  

• In case of state malfunctions, there will be a greater difference in 
performance between the context and the list group in favor of the 
context group.  

• In case of display malfunctions, it is not clear which group will perform 
relatively or absolutely better. The list group could perform even better 
than the context group, because they do not rely on the display as much 
as the context group does. On the other hand, the context group could 
perform better than the list group, because they probably have a better 
understanding of the system.  
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The Flight Management System experiment 
To investigate the abovementioned research question, I conducted an 
experiment involving the FMS task used in the research of Taatgen et al 
(2008). As briefly mentioned above, the FMS is the heart of automation of 
modern airplanes (Figure 4). It is used in both military and commercial 
airplanes. This device controls the behavior of the plane and can take care of 
the whole flight, except for the taking off part. The pilot programs the FMS 
and supplies it with information about the route of the plane, load, passenger 
numbers, and so on. In turn, the FMS takes care of the flight part. Therefore, 
it is important that the pilot knows how to use this system; it is a crucial part 
of his job. In the research of Taatgen et al, the subject of research was two 
procedures part of lateral navigation: planning and modifying routes. These 
procedures are also used in the experiment described later in this thesis.   

A route in aviation consists of a list of waypoints the plane has to follow from 
source to destination. These waypoints are often points on the map, but can 
also be radio beacons. To redirect the airplane the pilot has to access the route 
through the FMS and has to change waypoints in that route. Two specific 
procedures to change the route are the direct-to and remove-discontinuity 
procedures. The direct-to procedure is used whenever Air Traffic Control 
(ATC) gives the pilots the instructions to directly continue to a specific 
waypoint. Whenever the waypoint is not part of the current route, a 
discontinuity in the route will appear. That is, there is a missing link in the 

 

Figure 4. The layout of the Flight Management System of a Boeing 777. The buttons on the top 
left (with the ‘-‘ sign) are the L-keys. At the right, the R-keys can be found. If on a page the 
scratchpad is available, it will appear on the screen. 
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route. To solve the discontinuity, the pilot has to execute the remove-
discontinuity procedure. Both procedures are specified in Table 1. 
 
Table 1. The direct-to and remove-discontinuity procedures 

Procedure Instructions 
direct-to 1. Press the LEGS key 

2. Enter the desired waypoint in the 
scratchpad 

3. Push the 1L key 
4. If the word discontinuity appears 

on the screen, follow the procedure 
to remove discontinuities 

5. Verify the route on the 
Navigational Display 

6. Press EXEC 
remove-discontinuity 1. Press the LEGS key 

2. Press the line select key after the 
discontinuity 

3. Press the line with the THEN 
prompt 

 

The FMS task 
In the FMS task, participants have to follow instructions from Air Traffic 
Control and change the route of the airplane in a computer simulation of the 
FMS. In order to complete the task, they have to use two procedures used in 
lateral navigation, the direct-to and remove-discontinuity procedures. Figure 
5 shows the interface of the simulator. ATC instructions for rerouting the 
airplane pop up at the beginning of each trial at the right corner of the screen.  
An example of such an instruction is “Flight 123 … proceed direct to BEX, 
continuing on to LOAMY” with the current route being e.g. LOAMY-KEOKK-
BDF-BENKY. In order to solve this problem, participants have to first follow 
the direct-to procedure (pressing “LEGS”, typing “BEX”, pressing L1). While 
executing this procedure, a discontinuity pops up on the screen. Participants 
then have to follow the remove-discontinuity procedure (pressing “LEGS”, 
pressing L3, pressing L2) and then finishing the direct-to procedure (looking 
at NAV, pressing EXEC). The new route of the plane now is BEX-LOAMY-
KEOKK-BDF-BENKY. The discontinuity in this solution appears because BEX 
was not on the route before. If the instruction were something like “Flight 123 
… proceed direct to BDF”, then the direct-to procedure would be sufficient to 
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complete the task. 

 
Figure 5. The Flight Management System computer simulation 

Problems 
In the FMS task, the participants can encounter three types of problems, 
categorized by their difficulty. Easy problems are problems where the 
participants only have to apply the direct-to procedure. In medium problems 
a discontinuity occurs whenever a participant applies the direct-to procedure. 
Thus in these problems the remove-discontinuity also has to be applied. 
Finally, there are the hard problems. Problems can be hard for several 
reasons. First, one of the waypoints referred to in the problem could not be 
found at the first LEGS page. Participants have to use the function key ‘NEXT 
PAGE’ and ‘PREV PAGE’, which were not mentioned in the procedure, in 
order to solve the problem. Secondly, the waypoint to be modified could be 
one later in the flight plan. This was also not covered by the procedures, 
requiring some generalization. These are the easier problems in its type. 
Slightly harder problems are the problems where a co-pilot already executed a 
part of the procedure. It is up to the participant to detect it and to finish the 
procedure. In these problems, the co-pilot sometimes had made a mistake, 
which makes the problems harder. Taatgen et al have a distinct category for 
these problems, but since the focus of this study is not on problem difficulty, I 
do not make this distinction.   

Malfunctions 
As mentioned above, there are two types of malfunctions that can occur in the 
FMS task. In one condition, display malfunctions are encountered. The 
display malfunctions consist out of scrambled lines on the screen of the FMS 
simulation. In the other condition state malfunctions can occur. If a state 
malfunction occurs, the FMS simulation will do another action than what the 
participants would expect. For example pressing the LEGS key will have the 
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Left line keys 
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Function keys 
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effect of going to the RTE page or pressing a line key will copy the wrong 
content in the scratchpad. In some cases these malfunctions occur only the 
first time when one of the keys is pressed, otherwise if would be impossible in 
some cases to solve the problems. 

Method 

Participants 
A total of 60 students from Carnegie Mellon University and the University of 
Pittsburgh participated in the experiment. They all received a payment for 
their participation. The context learning condition had 31 participants, 
whereas the list learning condition had 29 participants.  

Procedure 
First, the participants had to study the general background information 
(appendix I) of the FMS task. After they were finished, they had to return the 
background information and the interface training started. The purpose of 
this part was to get the participants familiar with the interface of the FMS. 
This training consisted of getting instruction such as “Press the L1 line select 
key” and “Copy BOND into the scratch pad and then press Finish”. The 
background information and interface training was the same for both groups. 
Whenever people were finished with the training, they had to study the 
instructions for the direct-to and remove-discontinuity procedures. These 
instructions were adapted for each of the two conditions (appendix II and 
appendix III). After they were finished studying the instructions, the 
participants had to hand them back to the experimenter.  
The experiment consisted of four blocks (an overview of the blocks can be 
found in Table 2). The first block was the training block and consisted of six 
problems. The first three problems of this block were easy, the remaining 
three were medium problems. This block was also used to exclude participants 
from the analysis based on their performance.  The criterion to be excluded 
from the analysis was a score of zero or one correct. The second block 
consisted of nine easy and nine medium problems. For each problem 
difficulty, three problems were given in the display malfunction condition, 
three problems were given in de state malfunction condition, and three 
problems served as control condition in which no malfunctions occurred. The 
third block consisted of eighteen problems. This time all the problems were 
hard problems. The problems in this block were also randomly ordered. In 
this block, nine problems were in the display malfunction condition, nine in 
the state malfunction condition and nine problems served as control. The 
fourth block also consisted of eighteen problems. This time they were all hard 
problems. No malfunction conditions were presented in this block. Where the 
other blocks did not contain co-pilot problems, this block contained twelve co-
pilot problems. In half of the co-pilot problems, the co-pilot would have made 
a mistake. The ordering in this block was also random.  
To prevent biasing the experiment, no help was given to the participants 
throughout the experiment. The experiment, including studying the 
background information and instructions, lasted about one hour. 
For each participant the reaction times and correctness score were recorded. 
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Table 2. The design of the experiment 

 Block 1 
Easy and 
medium 
problems 

Block 2 
Easy and 
medium 
problems 

Block 3 
Hard 
problems  
(no co-pilot) 

Block 4 
Hard 
problems 
(with co-
pilot) 

Context 
Instructions 

3 problems  6 control 
problems 
6 display 
problems 
6 state 
problems 

9 control 
problems 
9 display 
problems 
9 state 
problems 

18 problems 

List 
Instructions 

3 problems 6 control 
problems 
6 display 
problems 
6 state 
problems 

9 control 
problems 
9 display 
problems 
9 state 
problems 

18 problems 

 

Results 
Based on the abovementioned criterion, data of 16 participants were 
eliminated from the experiment. Nine of the eliminated participants were part 
of the context group; seven of them were part of the list group. Data of 44 
participants remained with 22 participants in each condition. One problem 
with an average score of 0.00 was also excluded from the data. The results are 
displayed in Figure 6 and Figure 7.  
Examining the correctness score displayed in Figure 6, it seems that the 
context group performs better overall. Looking for interactions in the graph, it 
seems that the list group performs worse relative to the control problems than 
the context group. 
Figure 7 of the reaction times shows some interesting effects. Overall, the 
reaction times of the context group lies under those of the list group. It looks 
like the reaction time of the context group decreases in case of display 
malfunctions in the third block. Furthermore, the reaction times of the list 
group in case of state malfunctions looks higher than those of the context 
group relative to the control problems. 
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Figure 6. The results of the correctness score plotted per block. 

 

 
Figure 7. The results of the reaction time plotted per block. Reaction time is given in 
seconds. 

LME-analysis for the correctness score 
In order to investigate the effects in the data I fitted a mixed-effects model. 
The dependant variable was the correctness score. The fixed factors were 
condition, malfunction type and the square root of sequence (learning effect) 
with an interaction between malfunction type and condition. The trial and 
subject were taken as random factors in the LME analysis. With trial is meant 
the specific problem. Each problem causes variance and the problems are 
drawn from a bigger population of problems. Hence, the factor trial is treated 
as a random factor. The trials were randomly ordered within each block, thus 
the learning sequence is not caught in its entirely by the variable trials. 
Because the correctness score is a binary variable, a binomial logit (log odds) 
model was used. Because of the use of a logit model, the estimates of the 
models parameters are presented in log odds. To convert log odds back to 
correctness scores, the following formula is used: P(s) = 1/(1+e-s). This means 
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that a total log odd of 0 is equal to 0.5 in terms of correctness scores. A 
negative log odd estimate lowers the changes below 0.5.  
The results of the analysis can be found in Table 3. In order to see if the 
interaction between the malfunctions and instructions explain a significant 
amount of variance, I compared the model with a LME model with no 
interaction effects (i.e. condition, malfunction type, and sequence as fixed 
factors. The model with the interaction effect between malfunction type and 
condition turned out to explain significantly more variance (χ2(1) = 6.77, p = 
0.034). 
Because the focus lies on the malfunction type and condition, we left the 
problem type out of the analysis.  
 
Table 3. Results of the LME analysis 

 Estimate Std. error t-Value p-Value 
Intercept  0.328 0.409  0.804 0.422 
Display malfunction -1.422 0.196 -7.263 0.000 
State malfunction -0.735 0.212 -3.475 0.001 
List instructions -0.369 0.300 -1.230 0.219 
Learning sequence  0.353 0.063  5.597 0.000 
Display malfunction x List 
instructions 

-0.584 0.249 -2.346 0.019 

State malfunction x List 
instructions 

 0.099 0.265  0.374 0.709 

Display malfunction 
Whenever a display malfunction occurs there is an average decrease in the log 
odds of -1.422.  
The effect of display malfunctions is significant (p < 0.001). 

State malfunction 
A state malfunction also significantly decreases the log odds with -0.735 (p < 
0.001). 

List instructions 
While this effect is not significant, in earlier studies this main effect is 
significant (Taatgen, Huss, Dickison, & Anderson, 2008). The estimate is -
0.369, indicating that the list instructions score is on average lower than the 
context instructions.  

Learning sequence 
The learning effect is highly significant (p < 0.001) and increases with a 0.353 
in terms of log odds. Note that this estimation is based on the square root of 
the sequence to capture the learning effect.  

Display malfunction x List instructions 
When a display malfunction occurs in the list instructions, the log odd drops 
with an average of 0.584 (p = 0.019).  

State malfunction x List instructions 
No significant difference is found between the list and context instructions 
condition for the state malfunction. 
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LME-analysis for the reaction time 
The reaction time results were also fitted with a mixed-effects model. The 
same factors were used as in the analysis for the correctness score as 
mentioned above. The model with fixed factors malfunction type, condition, 
and sequence with an interaction effect between malfunction type and 
condition was compared with the same model without the interaction effects 
using ANOVA. In this case, the model with the interaction effect between 
malfunction type and condition turned out not to explain significant more 
variance (χ2(1) = 2.6, p = 0.39). This time the log of the reaction time in 
seconds was the depended variable. The log function was used to transform 
the results towards a normal distribution (examining the plot of the reaction 
time gave a skewed curve, the log function showed the curve of a normal 
distribution). The results are displayed in Table 4. Note that only reaction 
times of correct trials are used.  
 
Table 4. Results of the LME analysis 

 Estimate Std. error t-Value p-Value 
Intercept 10.739 0.095 113.42 0.000 
Display malfunction 0.290 0.033 8.78 0.000 
State malfunction 0.424 0.031 13.78 0.000 
List instructions 0.169 0.059 2.87 0.016 
Learning sequence -0.172 0.014 -12.04 0.000 
 

Display malfunction 
The effect of the display malfunctions is significant (p<0.001).  Whenever a 
display malfunction occurs the reaction time is longer on average.  

State malfunction 
For state malfunctions the effect on the reaction time is also significant 
(p<0.001). Whenever a state malfunction occurs, the reaction is longer than 
the reaction time on display malfunctions. 

List instructions 
The main effect of instructions is significant (p = 0.016). If the condition is list 
instruction, reaction time increases.   

Learning sequence 
There is a significant effect of the learning sequence (p<0.001). Participants 
get faster as they do more trials.  

Discussion 
The research question of this thesis is “Is the context learning method more 
flexible and robust to system malfunctions than the list learning method?” 
(Ament, Blandford, & Cox, 2009). 
One of the hypotheses we formulated with respect to this research question is 
that when no malfunctions occur, the context group will perform better. 
Taatgen et al (2008) found evidence in favor of this hypothesis in their 
research, as discussed in the introduction of this thesis. The results of the 
current study support this hypothesis. Although there is no main effect of the 
instruction condition for the correctness scores, the reaction times of the 
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context instruction group are significantly lower than those of the list 
instruction group. The fact that the instruction condition is not significant can 
be due to a few reasons. First, due to the complexity of the task and the 
individual differences of the participants, the effect is likely to be masked. 
Secondly, the interaction effect of the malfunctions and instruction within the 
mixed effect model explains part of the difference between the list instruction 
group and context instruction group, absorbing the main effect of 
instructions. Therefore, the main effect is likely to be moderated by the 
interaction between instructions and malfunctions. As stated above, the main 
effect of instructions is significant in the reaction times. The participants in 
the context instruction group perform the task faster than the participants in 
the list instruction group. The power of this effect in the mixed effect model is 
higher, for there are no interactions in this model. This is evidence that shows 
that the performance of the context group is indeed higher than that of the list 
instruction group. 
The main effects of the state and display malfunctions in correctness scores 
and reaction times show that the manipulation of the malfunctions did work. 
Examining the plots (Figure 6 and Figure 7) and results shows evidence that 
the performance of the context instructions group is slightly better than the 
performance of the list instruction group. The context instruction group 
performed better in both the control and malfunction conditions than the list 
instructions group. The decrease of performance on problems with display 
malfunctions makes sense because it is probably harder to infer the current 
state of the external world. 
The second hypothesis is that in case of state malfunctions, the context 
instruction group will perform better than the list instruction group. In 
contrast to display malfunctions, the drop in performance in state errors is 
less obvious, especially in the case of the context group. If this group solely 
relies on the visual input, the participants in the context learning condition 
should have scored as good as on the control problems. A cause for the drop of 
performance could be that the context group too sometimes relies on some 
internal control state, instead of on the visual input. 
The interaction between state malfunction and instructions is not found 
significant in correctness scores, maybe due to the lack of power due to the 
occurrence in only two of the four blocks. However, it could be that there 
really is no interaction between the state and the instructions. What could 
have happened is that the instruction group learned to exert control to the 
environment while practicing enabling them to handle the state errors. 
Another explanation could be that the state errors were just to simple and that 
the necessity to perform more actions decreased correctness scores and 
increased reaction times. 
No hypothesis was formulated on display malfunctions and instructions. As 
stated in the introduction, we speculated that either the context learning 
group or the list instruction group would perform better on the display 
malfunctions. The effect of this interaction is found significant in favor of the 
context instruction group. This means that there is evidence that the context 
instructions group can handle display malfunction better on average than the 
list instructions group. A reason for this could be that due to the allocation of 
control to the environment, the context group can derive the state of the 
system with more success when parts of the information that is available. The 
information that is visible guides the actions of the participants in the context 
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group, whereas the participants in the list learning group rely on their 
learning list of steps. It could also be that due to the formulation of the 
instructions of the context group, this group has a better understanding of the 
system. Therefore, they expect in what state the system is and how to react 
when a display malfunction occurs. In other words the learned pre- and 
postconditions have aided the context learning group in gaining a better 
understanding of the system, predicting what kind of information should be in 
the scrambled part of the display.  
Moreover, this interaction between display malfunctions and instruction 
reveals evidence that visual cues are important in handling display 
malfunction, and that even a bit of visual information is enough to cope with 
the malfunction. The learned pre- and postconditions could also have aided 
the context learning group in gaining a better understanding of the system, 
perhaps predicting what kind of information should be in the scrambled part 
of the display. 
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A model of robust and flexible skill learning 
The model used in this study is based on the model as described by Taatgen et 
al (2008). Illustrated in Figure 8 is the model of Taatgen et al. Figure 9 is an 
illustration of the model used in this study. Taatgen et al state that most of the 
ACT-R models are based on production rules, but that this is not a plausible 
account for acquiring skills. In their paper, they argue that a more plausible 
explanation is the storing of instructions in the declarative memory. General 
production rules are then defined which retrieve, interpret and carry out these 
instructions. To decide in which order to fire the rules, the easiest solution 
would be a list of steps. Each step then identifies the next step to be executed, 
remembering some internal control state. Learning instructions in a list 
manner could be compared to this approach. The second approach is defining 
environmental preconditions and postconditions for each step to be taken. 
This would mean that the environment triggers the next step, and this 
approach could be compared to the context learning method. 
As mentioned above the model is based on the model of Taatgen et al and thus 
is very similar to their model. In the next paragraphs, the differences in the 
models will be pointed out as I continue describing the model. 
 
 

 
Figure 8. Outline of the model as published in the paper of Taatgen et al (2008) 

 

 

 
Figure 9. Outline of the model used in this study. 

 

Representation of the external world and acting in it 
To keep the model fast and the interpretation simple, I used an abstraction of 
the external world. Two words are presented to the visual system of the 
model, representing the state of the world. Although this abstraction seems to 
be too abstract, Taatgen et al showed in their model that it is good enough to 
make predictions and reason about the learning of procedures. The model acts 
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in the world by typing keys on a keyboard. This also is rather different than in 
the experiment, but this is accounted for since in both instruction conditions 
this difference occurs.  Moreover, the participants in the experiment had a 
practice phase in which they learned to find and use the buttons of the 
interface. For both methods, this practice phase was the same, assuming that 
in the experimental phase the participants know where to find what button. If 
this assumption is correct, using a keyboard or using the mouse to control the 
FMS should not differentiate between the two instruction conditions. 
Within the model, the state of the world is represented in the goal module. 
This module keeps track of the current goal, task and states. In the goal 
module, two kinds of states are represented. An internal state based on 
expectations, and an external state based on the visual input. 
An example of this representation is “PAGE INIT”. These words indicate that 
the system currently is at the initial page. Whenever the “LEGS” button is 
pressed, the system would either show “PAGE DEST” or “PAGE LEGS”. Both 
states indicate that the system is currently at the LEGS page. However, the 
“PAGE DEST” indicates that this is the LEGS page where the destination 
waypoint is on. The model could now either type the destination in the scratch 
path or press the line key next to the destination in order to copy the 
destination to the scratch path. Whenever either one of those action is 
performed, the system would present the worlds “SCRATCH DESTINATION” 
to the model, which indicate the next state of the system. However, the system 
is still on the LEGS page.  

Representation of task knowledge in the model 
Task knowledge and instructions have an internal operator representation in 
the model. This is the same as with the model of Taatgen et al. To 
accommodate both learning methods in the model, the pre- and postcondition 
of an operator is either an internal or an external condition. For the list 
learning method, the conditions are internal, enabling every operator to 
trigger the following operator. The conditions in this case link the operators, 
and thus steps, to each other. This means that whenever a step in the 
instructions is executed, the following step will be triggered. 
In contrast, for the context learning method the pre- and postconditions are 
external, relying on the environment. The pre- and postcondition in this 
context links the operators to the world. Whenever the state of the world 
matches the precondition of an operator, it would be executed. Postcondition 
in this case is the predicted state of the world after executing of that operator.  
For example, the state “PAGE LEGS” can be a postcondition for an operator to 
press the page-up key in order to find the destination page. The postcondition 
for this operator can be “PAGE DEST”. This indicates that whenever the 
system is on the LEGS page, the page-up key has to be pressed in order to find 
the destination page. The operator described here has external pre- and 
postconditions and is one of the operators of the context learning condition. 
Another example of operators is one with internal pre- and postconditions. An 
operator with “STEP ONE” as precondition and “STEP TWO” as postcondition 
is typical for the list learning method.  The action belonging to this operator is 
to press the line key of the destination waypoint, or to scratch the destination 
into the scratch pad. The conditions in this case present the point the model is 
at in the execution of a list of steps. Looking this step up at Table 1 tells us that 
this is the second step in the procedure. Thus, the precondition “STEP ONE” 
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indicates that the first step has to be executed in order to execute this step. 
The postcondition “STEP TWO” indicates that the second step has been 
executed.  

Representation of general knowledge in the model 
The general knowledge in the model consists of the production rules that 
control the decision making process. At first, the model perceives the state of 
the environment and then searches its declarative memory for an applicable 
operator. If so, the operator is placed in its operator module. Next, the 
operator is executed. After execution, the environment is inspected, and the 
outcome is saved in the declarative memory. How the production rules work 
together is outlined in Figure 9. Although most of the production rules are 
quite similar to the ones used by Taatgen et al, some of them are slightly 
different to fit the purpose of this model.  
An example of a production rule is a rule to retrieve an operator from the 
declarative memory. The rule “retrieve-operator” states that whenever there is 
no operator in the buffer and the buffer of the declarative memory is free to 
use and empty, it should retrieve an operator based on the current task of the 
model. Whenever this rule fires, other rules checking this operator on 
applicability will fire. The process of deciding whether or not to execute an 
operator is described in the next section. 

Finding an applicable operator 
As mentioned above, operators are retrieved from the memory in order to see 
if they are applicable. If an operator’s condition matches the state of the 
external world, the operator is executed. However, the model also keeps an 
internal state of the world in its goal buffer. If an operator is found applicable, 
the model updates its internal state by the expected state (i.e. postcondition) 
of the operator. For the context learning method, this means that in most 
cases the external state will match the internal state. For the list learning 
method however, the internal state does not have to match the external state 
of the world. It could be that the internal state represents the next step to be 
executed, solely based on the last executed step. Whenever the internal state 
matches the precondition of the operator, it can also be found applicable. This 
way the model facilitates to learn both the learning methods and is able to act 
on them. If no applicable operators can be found, the model starts to explore 
for new operators. Note that the model in the context learning condition is 
forced to use the external state. The model in the list learning condition can 
either use the internal or external state, depending on the retrieved operator. 
The process of deciding if an operator is applicable is done by production 
rules. There are two types of production rules involved in this process, the 
rules that can accept an operator and the rules that can deny operators. For 
example, if an operator with precondition “STEP TWO” with the action to 
press the destination line key and postcondition  “STEP THREE” is retrieved 
from the memory, but the systems internal state is a different step, e.g. “STEP 
ELEVEN” or an internal state based on an external representation e.g. “PAGE 
DEST”, the operator is found not applicable. However, if the internal or 
external state matches the state of the retrieved operator, it does fire. Note 
that the internal state is only matched whenever the state is a “STEP” state, 
except in case of display malfunctions.  
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Exploration for new operators 
To quote Taatgen et al, one of the properties of learning from instructions is 
that instructions are forgotten easily. However, people can handle some of the 
situations in where they have forgotten steps in the instructions. The learned 
instructions are sometimes also not sufficient to solve the problems people 
face. This is the case in the FMS task. Forgetting of instructions is simulated 
in the model by eliminating operator chunks from the declarative memory at 
the start of the models run. There is a 30% chance for an operator to be 
forgotten by the model. This differs with the model of Taatgen et al who have a 
25% chance of forgetting an operator. The reason for this is that the 
probability of the forgetting is a free parameter within both models and that 
the model described here gets too good due to changes in the exploration 
process as described below. 
Whenever an operator is not in the declarative memory, or whenever its 
activation is too low to be retrieved, the exploration for new operators start. 
The way the model does this is by randomly guessing a possible action. As 
Taatgen et al report in the paper, people use this strategy too. 
A major difference between the model described by Taatgen et al and the 
model used in this research is in the exploring strategy. After the action is 
tried out an operator will be created in the memory, and the result is stored in 
the declarative memory. If the action was successful, a new operator will be 
created that will be evaluated it for applicability the next time it is retrieved. 
However, if the result of the action does not bring the model closer to the 
solution the operator would also be stored. This time the operator will be 
flagged; it will not be used next time the model has to guess, which is a major 
difference between both models. In order to evaluate the outcome of an 
operator a hill-climbing algorithm is used. People somehow have the ability to 
judge whether they made progress or not, and this algorithm emulates this 
judging process. This may not be the most plausible way to emulate this 
ability to judge progress, but I have found no literature on operator 
exploration that accounts for a plausible approach of estimating the progress 
in a task. In this sense, the model is omnibus in evaluating the system state, 
which is unrealistic and oversimplified. Whereas the model of Taatgen et al 
only learned by the exploration of new operators, the current model can learn 
operators with external pre- and postcondition of executed internal operators. 
Whenever an operator is executed, the model stores the operator plus its 
external pre and postconditions into its declarative memory. As a result the 
model in the list condition learns the pre- and postcondition of operators with 
internal conditions. 

The learning of specialized knowledge 
The model learns new general knowledge by means of production 
compilation. Productions firing directly after each other are combined to a 
single rule, speeding up the executing of the procedure. Moreover, 
information of the declarative memory is used to compile into a new 
production rule, creating rules that are more specific. This has the advantage 
that the declarative memory is used less often, what saves time on retrieving 
operators.  
For example if the retrieval rule mentioned above retrieves an operator with 
precondition “PAGE INIT” and postcondition “PAGE LEGS”, and the current 
system state is “PAGE INIT”, the operator will be found applicable. The 
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retrieve-operator rule is then compiled with the rule that found the operator 
applicable, combining the information of the retrieved operator and the two 
production rules in one production rule. Now whenever the system state is 
“PAGE INIT” this production can be selected, incorporating the firing of the 
two rules and the accessing of the declarative memory in one rule. 

Handling display malfunctions  
The model of Taatgen et al was not able to handle display malfunctions, thus 
this is a new part of the model. The model handles malfunctions in a fairly 
simple way. Whenever the display is scrambled (i.e. the visual input is 
unreadable), the system will assume that the state of the external world is the 
same as the expected state. This forces the model into using its internal state 
of the world. In case of a display malfunction, participants are sometimes still 
able to derive a state from the interface. Because of the abstraction level of the 
visual perception used in the model, the model itself cannot generate such a 
behavior. Thus, I estimated a free parameter representing the probability that 
the state is not successfully derived from the interface. This parameter is set to 
a probability of .80. Now, if a display error occurs and the previous system 
state was “PAGE INIT” and the operator to go to the legs page is executed, the 
expected state would be “PAGE LEGS”. In the model, a rule is fired whenever 
the state cannot be derived, changing its external state presentation into the 
expected state. Therefore, the model expects to be in the “PAGE LEGS” and 
reasons from there. Whenever for example discontinuities occur, the model is 
likely to make mistakes because it acts on its expected state. 

Handling state malfunctions 
The way the model handles state malfunctions is simply be retrieving an 
operator and checking its applicability. This could be done either through the 
declarative memory or by matching a compiled production rule. As a 
consequence, there would be no difference between the control problems. 
However, looking at the data of the experiment this is not the case. There is 
even a difference in the correctness score of problems with state malfunctions 
and the control problems. This could be evidence that sometimes the internal 
state is being used, even in the context conditions. To simulate this, the model 
randomly encounters display malfunctions in all problems with an estimated 
probability of .10. As the free parameter described above, this parameter again 
represents the chance that the state of the system is not successfully 
abstracted from the display during the perception process. The use of the 
models internal state is forced on the model this way. 
For example if the state changes of the system, i.e. a wrong line key action is 
performed while copying the destination to the scratchpad by the system, an 
scratchpad error would occur showing. Now if the state is scrambled by the 
random display malfunction, it forces the expected state on the system. While 
the model pressed the right key, the model expects the destination to be in the 
scratchpad and reasons from there. The way an error in solving the problem 
can occur is due to the mismatch between the internal and external state. I 
acknowledge that it would be better if the model would make errors on state 
malfunctions without the use of a free parameter, but due to the abstraction 
level of the visual input this is not possible. 
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Results 
The model ran 150 times for both the context and list instructions. The same 
analysis as done on the experimental data was done on the model's data. This 
was done to compare the model and the data gathered during the experiment. 
In Figure 10 and Figure 11, the results of the model are displayed as a graph. 

 
Figure 10. The results of the correctness score plotted per block.  

 
Figure 11. The results of the reaction time plotted per block. Reaction time is given in 
seconds. 

LME-Analysis for the correctness score 
The correctness scores of the model were fitted with a mixed effect model. The 
same model was used as with the correctness scores of the experimental data. 
As in the section on the results of the experiments, the effects found in the 
model's data will be discussed below. The results are summarized in Table 5. 
To facilitate comparison of the model and data, estimates of the data are also 
given. As with the mixed effect model of the data, estimates are given in log 
odds. Although it is hard to compare the estimates of the data and the model 
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individually per variable, the estimates show that in both the model and the 
experimental data display malfunctions score worse than the state 
malfunctions. Moreover, the models performance decreases over time as the 
estimate of the learning sequence show, in contrast to the experimental data, 
where the performance increases over time. I will further discuss this in the 
discussion. 
 
Table 5. Results of the LME-analysis 

 Estimate 
(data) 

Estimate 
(model) 

Std. error t-Value p-Value 

Intercept  0.328  1.907 0.100 19.124 0.000 
Display malfunction -1.422 -2.023 0.066 -30.609 0.000 
State malfunction -0.735 -0.366 0.066 -5.35 0.000 
List instructions -0.369 -0.748 0.118 -6.323 0.000 
Learning sequence  0.353 -0.121 0.011 -11.874 0.000 
Display malfunction x List 
instructions 

-0.584  0.575 0.095  6.047 0.000 

State malfunction x List 
instructions 

 0.099 -0.103 0.092 -1.111 0.268 

 

Display malfunction 
The model’s average log odd decreases significantly with -2.023 whenever a 
display malfunction problem is encountered (p < 0.001). 

State malfunction 
Whenever a state malfunction is encountered the log odds of the model 
decreased by 0.366 on average. This effect is also significant (p<0.001). 

List instructions 
The model in the list instructions condition score on average 0.748 lower than 
the model in the context instructions condition. In the models data this effect 
is significant (p<0.001). 

Learning sequence 
The learning effect in the model's data is negative. Log odds decrease with 
0.121 on average. This effect is also significant (p<0.001). 

Display malfunction x List instructions 
The model in the list instructions condition scores significantly higher on 
average with a log odd of 0.575 than the model in the context condition 
whenever a display malfunction occurs.  

State malfunction x List instructions 
In the state malfunction condition, there is no significant difference between 
the context and list instruction conditions. 

LME-analysis for the reaction time 
The reaction times were also analyzed with a mixed effect model. The results 
can be found in Table 6 and will be further discussed below. The same mixed 
effect model is used as with the data of the participants to make it possible to 
compare the data from the model and the experimental data.  
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Table 6. Results of the LME analysis 

 Estimate 
(data) 

Estimate 
(model) 

Std. error t-Value p-Value 

Intercept 10.739  3.196 0.021 154.06 0.000 
Display malfunction 0.290  0.045 0.021      2.17 0.030 
State malfunction 0.424  0.735 0.016   44.93 0.000 
List instructions 0.169  0.125 0.017     7.59 0.000 
Learning sequence -0.172 -0.068 0.003  -20.77 0.000 
 

Display malfunction 
The effect of the display malfunctions is significant (p = 0.030). For display 
errors, the reaction time goes up. 

State malfunction 
If the model encounters a state malfunction then the reaction time goes up 
according significantly (p<0.001). 

List instructions 
The main effect of instructions is also significant (p<0.001). Reaction time 
increases for the list instruction condition. 

Learning sequence 
There is a significant effect of the learning sequence (p<0.001). Participants 
get faster as they do more trials. 

Discussion 
In this session, I will discuss the performance of the model and compare the 
results of the model with those of the experiment. 

Context instructions vs. list instructions  
The main effect of instructions is significant in both the fixed effect model of 
the correctness scores and the fixed effect model of the reaction times. 
Although the latter is only significant in the fixed effect models capturing the 
effects of the experimental data, the model successfully captures the overall 
performance of the data, and is in line with the results found by Taatgen et al 
(2008). However, the effect is much larger in the model’s data than in the 
experimental data. This difference is probably due to noise in the data and 
could probably be influenced by the parameters used by the model.  

Malfunctions 
Examining the main effects of the malfunctions of the correctness scores, I 
find that the manipulation of the malfunctions also worked in the model. In 
case of display malfunctions the model performance is much lower than in 
case of the state malfunctions. One could argue that this effect is only caused 
by the fact that display malfunctions occur during the state malfunctions to 
force use of the internal state. However, the model is also forced to use the 
internal state in the control problems. We could conclude that the malfunction 
in the model worked as it did in the experiment. Note that it is possible that 
the state errors were just too simple or that forcing the model to take more 
actions simply increases the chance on errors.  
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The effects of the malfunctions in the reaction times of the model differs 
somewhat of those effects found in the experimental data. While the mixed 
effects model show that state malfunctions take longer than display 
malfunctions, which is the case for both the model and experimental data, 
examining Figure 7 and Figure 11 reveals a difference. In block 2 it seems that 
the context instruction group performs much slower than they do in block 
three. This is probably because the encounter of a display malfunction 
confused the participants. It seems that the list instruction group is less 
confused, but this does not have to be entirely true, for they perform worse on 
correctness scores in case of display malfunctions in the experimental data. 
The experimental data does not catch the phenomena; the model does not get 
confused in terms of longer reaction times. Reason for this is probably due to 
the abstraction of the external world; the model does not hesitate before 
making a decision.  

Difference in the effect of display malfunctions 
The interaction between the display malfunction and instructions reveals a 
difference between the model’s data and the experimental data. When looking 
at the interaction of the display malfunctions and instructions, the model 
performances on display malfunction problems compared to the control 
problems is worse for the context condition than for the list condition. This 
effect is opposite in the experimental data. The participants in the context 
group score higher on display malfunctions relative to the control problems 
than the participants in the list group. This strengthens the belief that visual 
cues are important in solving the problems with display malfunctions. 
Whereas the model successfully uses the step like operators to solve the 
display malfunction problems in the list condition, the experimental data 
shows empirical evidence that in fact the context condition benefits in case of 
display malfunctions. This difference can be due to the level of abstraction of 
the visual perception in combination with the ideal exploration algorithm 
implemented in the model.  
Perhaps a model working with a more complex representation of the external 
world and a more plausible exploration mechanism can catch this difference. 
As mentioned earlier in this thesis, I did not find any literature regarding a 
plausible mechanism for the exploration of operators from a complex visual 
interface.  

State malfunctions 
Consistent with the experimental data, the mixed effect model of the 
correctness scores of the model shows no interaction effect between the state 
malfunction and instructions. This means that probably due to the learned 
condition operators, the list instruction group performs equally well on 
problems with malfunctions as the context instruction group relative to the 
control problems. This indicates that although the participants in the list 
instruction group, who first start out with step like operators, probably learn 
to rely on their visual input relatively fast. However, this does not happen as 
well as with the context instruction group, whose instructions are focused on 
visual input.  
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Difference in learning sequence 
The most curious difference between the model’s data and experimental data 
is the effect of the learning sequence. The learning sequence in the model’s 
mixed effect model is negative for correctness scores. Examining both Figure 
6 and Figure 10, we find that in the last two blocks the correctness score of the 
model lies lower than the correctness score of the participants. The model as 
presented in the paper of Taatgen et al (2008) had a better fit on the problems 
presented used in the last two blocks. The difference is probably caused by the 
fact that the internal state is forced up on the model presented in this paper 
during the task, causing the model to make more mistakes whenever a harder 
problem is presented. Examining the effect of learning in the reaction times, 
we find that the model does get faster over time. This is consistent with the 
effect of learning found in the reaction times of the experimental data. In the 
model, the compilation of new production rules, the increasing of activation of 
chunks, and the newly learned operators are cause for the decrease of reaction 
times. In case of the compilation of new production rules, the model gets 
faster because it skips the retrieval process of an operator. Secondly, as the 
activation of operator chunks raises by every new encounter of the operator, 
the retrieval time decreases, decreasing the reaction times. Finally, the 
exploration process of new operators increases reaction time. This happens 
because the model checks whether an operator has already been tried by 
retrieving operators from its declarative memory. Whenever the model 
successfully learns new operators, its exploring behavior decreases, decreasing 
reaction times. 
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General discussion and conclusions 
In the discussion sections above, I already discussed the results of the 
experiment and those of the model. Below, I will discuss the implications of 
this study.  
I already tried to answer the research question “Is the context learning 
method more flexible and robust to system malfunctions than the list learning 
method?” In short the answer to this research question is “yes”. Overall, the 
context group performed better than the list group. In case of display 
malfunctions, the participants benefitted from the context learning method. 
In comparison to the control problems, the context group outperformed the 
list group. For the state errors, the context group did not seem to have an 
advantage. There is no relative difference found between control problems 
and problems with a state malfunction. Below, I will go into more detail on 
what makes the context learning method more flexible and robust. 

Robustness 
Taatgen et al (2008) associate robustness with “the ability to protect skilled 
performance from various disturbances, including unexpected events, 
interruptions, or changing demands.” Handling forgotten operators or the 
recovering of errors is seen as robustness of a skill. Display malfunctions and 
state malfunctions as introduced in this thesis test the robustness of a skill in 
this definition of robustness. I presented empirical evidence that in cases of 
display malfunctions and state malfunctions the context learning method 
performed better than the list learning method. Although the model did not 
show all the interaction effects visible in the data, overall it showed that the 
context method worked better as the list learning method, using the 
theoretical basis of ACT-R and the minimum control principle. The fact that 
even the participants trained with the list learning method performed worse 
in the display malfunction condition, and that they performed equally well on 
state malfunction relatively to the control problems, shows that participants in 
the list instruction condition also try to exert control to the environment. This 
shows that even after a few trials the list instruction group learns the pre- and 
postconditions of the different operators. 

Flexibility 
Flexibility is defined as “the ability to apply a skill to new problems that are 
different from the problems that served as the basis for training” (Taatgen et 
al, 2008). Again, the evidence presented in this thesis shows that the context 
method is more flexible than the list method. In new problems, with and 
without malfunctions (block three and block four), the context learning 
method performs better than the list learning method.  

Implications 
The most important implication of this research is that the environment and 
its visual input are important in the process of robust and flexible skill 
acquisition. To handle new problems and system malfunctions, a learning 
method focusing on the environmental cued pre- and postconditions provides 
the most benefit. The model also implicate that people tend to exert as much 
control to the environment as possible, and that people tend to learn the post- 
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and preconditions of different system states fairly fast. However, from time to 
time, people use internal control as well. The reason for this remains unclear 
in this thesis. What could be going on is that people do not always succeed in 
deriving the current state from the display. E.g., if someone does not scan the 
complete display and misses important information, a wrong state could be 
derived or no state at al, forcing the expectation to play a bigger role. 
Another implication of this thesis is that an abstraction of the external world 
does not always work. Even though it makes reasoning about system states 
and the learning of skills easier, it turned out not to be sufficient to capture 
the effects found in the experimental data. Although the model presented in 
this paper is enhanced with a more sophisticated operator exploration process 
and the ability to learn operators while executing them, improvement in the 
perceptual part of the model is needed to catch the whole learning process and 
effects found in the data. 

Future research 
While working on this thesis, I came across a few problems and challenges 
that in my opinion are interested to subject to future research. As mentioned 
above one of those challenges is to make a more accurate model of the world. 
This leads to another interesting subject, which is the exploration of 
operators. The model now knows whenever the current state is closer of 
further away from the goal state. It would be interesting to investigate how 
people get this feeling of progress and how the visual input of the environment 
is exactly formed to some kind of state.  
Another interesting case would be to do another study on context and list 
learning, but by changing the paradigm used in this thesis. I would propose to 
train the list instruction group in a manner that they know which button to 
press where in the interface. This for example, by letting them push the 
sequence of buttons several times in a row, and then after that subjecting 
them to the experimental problems.  
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Appendix I: General instructions 
 
Overview of the Experiment 
 
The first step of this experiment requires that you thoroughly study the following 
training material. Then you will go through a short session of interface training. Once 
you have studied the material and successfully finish the interface training, you will 
take a short quiz to measure your pre-task knowledge. Then, you will perform an 
aviation task and your performance on this task will be measured. After that, you will 
fill out a post-task questionnaire. At last, you will fill out the demographics and 
payment forms.   
 
Overview of the Flight Management System 
 
In this experiment you will take the role of a pilot on a Boeing 777 airplane. Modern 
commercial aircraft, such as the 777, have computer autopilot systems known as 
Flight Management Systems. You will be trained on how to use a Flight Management 
System. 
 
Your task will be to make changes to the flight plan of the plane as indicated by Air 
Traffic Control. The flight plan is simply the route that the plane’s autopilot (Flight 
Management System) will follow.  A route consists of a series of waypoints (GPS 
coordinates) that are linked together. The following is a printout of a route from 
Pittsburgh to Philadelphia (notice the waypoints in the second column): 
 

 
 
Routes, such as these, will be pre-programmed into the Flight Management System. 
Your task will be to make in-flight manipulations to a route by interacting with the 
airplane’s Flight Management System in a computer simulator. 
 
There are two relevant parts to the Flight Management System:  

- The Control Display Unit displays text information and allows for the 
inputting of data and commands. 

- The Navigational Display is a digital map on which you can see your current 
route. 
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The Control Display Unit (CDU) 
 
The Control Display Unit consists of a keyboard and a display. The following is a 
labeled diagram: 
 

 
 
The display contains a Title Field, six Line Fields, a Scratch Pad and a variety of 
buttons.   
 
The title displays the title of the current page. Different pages are accessed with the function 
keys. A page may itself have one or more sub-pages. The current sub-page and maximum 
number of sub-pages are shown in the top, right corner. To cycle through the sub-pages one 
uses the “PREV PAGE” and “NEXT PAGE” keys. 
 
There are 6 Line Select Keys on each side of the display (1L…6L, 1R…6R). Each Line 
Key is associated with a Text Field on the display showing information about the 
flight plan. Line keys are used for making or canceling changes in the flight plan.  
 
The Scratchpad is used to input, copy, and paste text as well as display error 
messages. Text can be input into the scratchpad via the keypad. If there is text in the 
Scratchpad and the current Page allows the operation, pushing a line key will attempt 
to paste whatever is in the scratchpad into the text field associated (next to) with it. If 
the Scratchpad is empty, then pushing a Line Key may copy whatever is in the 
associated text field into the Scratchpad. If improper values are entered when using a 
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Line Key errors may occur. Error messages will appear in the scratchpad. These must 
be deleted via the use of the “CLR” key.  
 
 

Primary Operations with the CDU 
 
 
To change a flight plan:  
 

- The current flight plan is shown on the LEGS and RTE pages  
- Changes to the flight plan can be made by adding / removing / replacing 

waypoints and routes   
 
 
To copy something to the scratchpad: 
 

- The scratchpad must be empty (use the clear key) 
- Select the line key next to the item that will be copied 

 
 
 
To type text into the scratchpad: 
 

- Select the correct sequence of keys on the keyboard 
 
 
 
To Paste something from the scratchpad: 
 

- Hit the line select key next to where you want to paste the item. It will then 
appear in that text field.  

 
 
 
To make a change permanent:  
 

- Press the EXEC key  
- Finishing a task without pressing EXEC will produce an incorrect flight plan  
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The Navigation Display 
 
The Navigation Display shows the current and modified routes, the planes position along 
those routes, and waypoints not on the route. The following is a labeled picture of the 
Navigation Display: 

 
The triangle on the bottom of the screen represents the airplane’s current position. 
The red line is the plane’s current, active route. Again, a route is a series of 
waypoints. Once you start modifying the route, a second, dashed, magenta line will 
appear on the display, showing you what your current modification of the route looks 
like. The zoom range slider shows the current scale of the map. You can move the 
slider to change the zoom of the map. If the map-scale is above approximately 500 
miles then only waypoints on your current route will be displayed. This is done to 
reduce clutter.  

Airplane’s 
current 
position 
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Task 
 
Your task is to make modifications to the flight plan as requested by Air Traffic 
Control (ATC). ATC’s instructions are given in the small rectangle at the lower-right 
corner of the FMS window, below the navigational display. Here you also see if your 
modifications are correct or incorrect.   
  
The ATC will identify you as “Flight 123”. You will start by reading the ATC’s 
instruction. Then you have to make the requested modifications to the flight plan by 
using the function keys and the keypad. You can use the navigational display to check 
if the modified flight plan is correct. Press the EXEC key when you want to make a 
modification final. Press the “Finish” button to display the feedback (correct or 
incorrect) and advance to the next problem. At this point it is not possible to make 
any further changes to the flight plan, even if it is incorrect.  
 
Try your best to give fast and correct solutions.  
      
      
 
NOTE: This task will be performed with a mouse (no keyboard). VERY 
RARELY WILL YOU ACTUALLY WANT TO DOUBLE-CLICK. DOUBLE 
CLICKING CAN HINDER YOUR PROGRESS.  
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Appendix II: List instructions 
 
Additional Instructions  
 
When Air Traffic Control gives you a directive to proceed directly to some waypoint, 
go through the following steps: 
 
1. Press the LEGS key 
2. Enter the desired waypoint in the scratchpad 
3. Push the 1L key 
4. If the word “discontinuity” appears on the screen, follow the procedure to remove 
discontinuities. 
5. Verify the route on the Navigational Display 
6. Press EXEC 
 
There is a separate procedure for removing discontinuities: 
 
1. Press the LEGS key 
2. Press the line select key after the discontinuity 
3. Press the line key with the THEN prompt 
 
 
 
 
 
ALSO: EACH KEYPRESS DENOTES AN ACTION VERY RARELY WILL 
YOU ACTUALLY WANT TO DOUBLE-CLICK. DOUBLECLICKING CAN 
EASILY HINDER YOUR PROGRESS 
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Appendix III: Context instructions 
 
Additional Instructions 
 
When Air Traffic Control gives you a directive to proceed directly to some waypoint, 
use the following list of steps to accomplish this: 
 

• When you are not yet on the LEGS page, Press the LEGS key to get to the 
LEGS page. 

• When you are on the LEGS page, Enter the desired waypoint in the 
scratchpad so you can put it into the flight plan 

• When you have your new destination in the scratchpad, Push the 1L key to 
move the waypoint from the scratchpad into the first line of the flightplan. 

• If “route discontinuity” appears on the screen, follow the procedure to 
remove discontinuities to remove the discontinuity 

• When you have modified your route and have removed all route 
discontinuities, Verify the route on the Navigational Display to make 
sure that the FMS has made the changes as you intended them 

• When you have verified that the route modification looks ok on the 
Navigational Display, Press EXEC to finalize the route modification. 

 
There is a separate procedure for removing discontinuities: 
 

• When you are not yet on the LEGS page, Press the LEGS key to get to the 
LEGS page. 

• If you are on the LEGS page and there is a discontinuity in one of the lines, 
Press the line select key after the discontinuity to copy the waypoint 
after the discontinuity in the route into the scratchpad. 

• If you have the waypoint after the discontinuity in your scratchpad, Press 
the line key with the THEN prompt to copy the waypoint after the 
discontinuity into the line with the discontinuity, and reconnect the route. 

 
 
 
 
ALSO: EACH KEYPRESS DENOTES AN ACTION VERY RARELY WILL 
YOU ACTUALLY WANT TO DOUBLE-CLICK. DOUBLECLICKING CAN 
EASILY HINDER YOUR PROGRESS 
  
 


