
The Learning of Robust and Flexible
Skills with Respect to System Failures

in a Flight Management System

Stefan Wierda
August 2009

Master Thesis
Human-Machine Communication

Dept of Artificial Intelligence
University of Groningen, The Netherlands

Supervisor:
Prof. Niels Taatgen (University of Groningen/Carnegie Mellon
University, USA)

2

3

Abstract
In this thesis, I describe an experiment and introduce an ACT-R cognitive
model used to investigate the learning of robust and flexible skills. In the
study, 60 students participated in an experiment solving problems in a
simulation of a Flight Management System. In order to investigate robustness
and flexibility, state and display malfunctions would occur during the
experiment. An instruction based on a list of steps, and an instruction based
on pre- and postconditions of the environment were used to manipulate the
use of internal and external control states. Using mixed effect models, the
experimental data and model’s data are compared. The model captures the
overall performance of the participants in terms of reaction times and
correctness scores. The results reveal that visual input is important in skill
performance, and that a focus on pre- and postconditions aid participants to
cope with system malfunctions.

4

5

Acknowledgements
In total, it took me seven years to reach this point in life where I finish my
Master thesis and close a chapter in my life. Before I start with the findings of
my thesis, I would like to thank a few people whose help I had reaching this
point.
First, I want to thank my supervisor Niels Taatgen. Without his help, funding
and feedback, I would not be able to go to the United States and do this
research project. Secondly, I would like to thank Carnegie Mellon University
and the people I worked with for their support and feedback on my project.
Special thanks go to Ion Juvina, whose advice during our weekly meetings was
of great support for me.
I would also like to thanks the University of Groningen, and especially the
department of Artificial Intelligence. Thanks for the support of the staff and
students, without them, I would not be able to finish my Bachelor and Master
degree. Special thanks to Fokie Cnossen for supervising me in writing my
Bachelor thesis. I would also like to thank her for being the second reviewer of
this thesis.
Next to my education, I gained a lot of experience by taking a seat in the
Faculty Council, board of the Groninger Student Union, board of CoVer (the
Artificial Intelligence and Computer Science student association), and so fort.
I would like to thank the people who supported me in those positions and
helped me getting there.
Next, I would like to thank my American friends in Pittsburgh, who supported
me during my stay in the United States and who contributed to a great
experience I will remember for life.
Of course, I want to thank my friends in Groningen for their friendship and
support during my time as student. In special, I want to thank Ingrid, who
inspired, supported and encouraged me the past three years.

6

7

Table of Contents
The acquisition of cognitive skills ... 8

Classic models of skill acquisition ... 8
Embodied cognition ... 10

Robust and flexible skill learning... 11
ACT-R ..14
Research on procedures and human error Error! Bookmark not defined.
Present study...14

State malfunctions and display malfunctions ..15
Research question ...15

The Flight Management System experiment 17
The FMS task .. 18

Problems..19
Malfunctions ...19

Method ... 20
Participants .. 20
Procedure ... 20

Results...21
LME-analysis for the correctness score... 22
LME-analysis for the reaction time ... 24
Discussion .. 24

A model of robust and flexible skill learning.....................................27
Representation of the external world and acting in it 27
Representation of task knowledge in the model...................................... 28
Representation of general knowledge in the model 29

Finding an applicable operator.. 29
Exploration for new operators ... 30

The learning of specialized knowledge.. 30
Handling display malfunctions ..31
Handling state malfunctions..31
Results.. 32

LME-Analysis for the correctness score .. 32
LME-analysis for the reaction time ... 33

Discussion .. 34

General discussion and conclusions ...37
Robustness ... 37
Flexibility ... 37
Implications ... 37
Future research .. 38

References... 39

Appendix I: General instructions.. 41

Appendix II: List instructions .. 46

Appendix III: Context instructions ...47

8

Introduction
June the first, 2009. An Airbus of KLM Air France disappears from the radar
a few hours after its departure from Rio de Janeiro to Paris. Supposedly, the
airplane is struck by lightning while flying through a storm above the Atlantic
Ocean. A week later debris of the plane is found floating in the Atlantic Ocean.
What went wrong that particular flight? There are many speculations about
the origin of the crash. The lightning struck could have caused a short circuit
in the planes systems, leading to a devastating ending. Just before the crash,
the plane transmitted emergency messages about system failures and the
disconnecting of the automatic pilot. One of the sensors, which were probably
malfunctioning, was the speed sensor. Why did all those events eventually
lead to a crash of the airplane? That is a question for the crash investigators to
answer. I do know that in most cases there are procedures to handle
malfunctioning sensors and systems. Whether human error or a system
malfunction was the cause of the crash of Air France Flight 447, pilots need to
cope with these unexpected problems.
The way pilots learn the instructions for the abovementioned procedures are
in a stepwise manner. Pilots learn a number of steps they have to execute to
perform a certain procedure (Taatgen, Huss, Dickison, & Anderson, 2008).
Whether this method is a good way of learning procedures is disputable and
we will address this claim later in this chapter.
A particular field of research in human machine communication I find
interesting is that of learning and mastering procedures. One of the reasons is
that errors made in procedures can lead to fatal events, such as the crash
mentioned above. Therefore, the learning of procedures as a skill and the
effect on system malfunctions will be the theme of this thesis.

The acquisition of cognitive skills
Over the past decades, extensive research has been done on the acquisition of
cognitive skills. Traditionally, research in cognitive skills focuses on problem
solving and decision making in mathematical problems and games such as the
Tower of Hanoi and chess. In his review, VanLehn makes a comparison
between motor skill learning and cognitive skill learning, identifying three
stages of learning (VanLehn, 1996). The early, intermediate and late phases,
borrowed from research on the acquisition of motor skills (Fitts, 1964), ideally
describe the process of learning a skill. In the first phase general knowledge is
learned, whereas more specialized knowledge is missing. In the intermediate
phase more specialized knowledge is acquired, but there are still flaws in
performance due to missing and incorrect information. Finally, in the late
phase problems can be solved without conceptual errors. Errors that occur in
this phase are due to slips and mistakes.

Classic models of skill acquisition
Traditional computational models that try to capture skill acquisition usually
start out in the first phase. There already is general information about the task
and the domain present. The models then specialize that knowledge and
eventually reach the last phase. Usually such models store information of
partially completed problems to enable faster problem solving by simply
retrieving the solution of a specific part of a problem. This stored information

9

can be in the form of rules or facts. Examples of these kinds of mechanisms
are Logan’s instance based learning (Logan, 1988), Newell and Rosenbloom’s
chunking mechanism (1981) implemented in Soar (Laird, Rosenbloom, &
Newell, 1986), and ACT-R’s production compilation system (Taatgen & Lee,
2003).
Laird, Rosenbloom and Newell (1986) present a model of learning to play the
eight puzzle. The eight puzzle game is played as follows. The playing board
consists out of a 3 x 3 grid containing in total nine squares. There are eight
blocks, each block containing one of the numbers one to eight. One of the
squares is empty; the other squares are randomly occupied by one of the eight
blocks. Possible actions are moving one of the blocks towards the empty
square (left, right, up or down). The game is finished whenever the blocks are
in placed in an ascending, clockwise order; with block one being at the left
corner of the grid (Figure 1). The probably more familiar version of this game
is played with a scrambled picture. The objective is then to unscramble the
picture by moving the blocks.

To determine what action to take, the Soar model perceives the state of the
outside world, and consults its production system what to do. On its turn, the
production system tries to match rules that apply to the current situation, and
selects the possible moves. A simplified example of a production rule is “if my
goal is to move number one to the upper left corner and the square left to
number one is free then move number one to the left”. The sorts of rules in
the production system of Soar are divided in problem spaces. In the case of
the game described here, one of the problem spaces contains the rules to move
each block to its desired state. However, an impasse occurs in this problem
state whenever there are multiple rules that can fire. To solve the impasse, the
system will start searching in another problem state, which could provide an
answer for the impasse. A sub-goal to solve this impasse is then created. If an
answer is found, the solution is added to the first problem state. Whenever the
impasse is encountered in the future, the production system will now find an
answer in the current problem state without the need to create a subgoal. This
process is called chunking in Soar and is one of the ways in which classic
models specialize and acquire expert skill level. If in the second problem state
an impasse would be encountered, another problem state would be consulted
to find the answer, thus creating a subgoal hierarchy. Although Soar can

Initial state Goal state

4

2

3

1

2

3

8

7

1

8

4

6

5

7

6

5

Figure 1: An example of the Eight-Puzzle game

10

handle unfamiliar problems through solving an impasse, this mechanism only
works whenever all the knowledge needed to solve the problem is available in
the problem spaces. Whenever general knowledge needed to solve the
problem is missing, Soar gets stuck at the problem. In general, Soar’s
chunking mechanism works not unlike production compilation in ACT-R or as
instance learning of Logan. Thus, the problem that Soar faces is also faced by
other cognitive architectures as ACT-R.
A drawback of the abovementioned models and their underlying theories is
that it is hard, or in some cases impossible, to generalize the learned
knowledge and apply it in new and unseen situations, especially when general
information is missing. Thus, although familiar problems can be solved much
faster than unfamiliar problems, the learned skills are not robust and flexible
enough to employ them in unseen situations.

Embodied cognition
On the other side of the spectrum is the research field of embodied cognition1.
“Embodied” means that cognition is rooted in its environment. Researchers
such as Brooks focus on using the environment directly to guide future
actions, instead of reasoning about it internally. In his 1991 conference paper
“Intelligence Without Reason”, Brooks (1991) attacks the traditional Artificial
Intelligence approach. According to Brooks, the traditional approach focuses
too much on top down reasoning leaving a gap between perception and action.
He argues that it is necessary for a robot to be situated and embodied in the
environment for intelligence to emerge. Although Brooks paper focuses on
robots, it is in some sense applicable to cognitive architectures like those
mentioned above. According to Brooks, modeling the world internally and
reasoning about it can be computationally challenging. Using the perceptional
input to reason about the world instead of an objective world model would be
much more efficient. This might as well be true for cognitive models (and thus
for humans). To quote Brooks, “The world is its own best model”.
A working example of Brooks approach is the subsumption architecture
(Brooks, 1986). The key aspect of the subsumption architecture is that it is a
bottom up architecture, driven by the environment. The lower levels of the
architecture imposes constraints through feedback from it sensors to the
higher, goal-orientated levels. For example, if the lower level layer detects
objects and is programmed to avoid those, it overrides the high level layer in
charge of path planning and thus avoids collision. Perception and action are
directly coupled without an overall control structure. This enabled Brooks to
put the robot in an unknown environment able to navigate and avoid
unexpected obstacles. More closely related to the topic of skill learning is the
connectionist model of Botvinick and Plaut (2004). Using a recurrent
connectionist network approach, they build a model that is capable of
learning task sequences. The architecture of their model is shown in Figure 2.

1 The term embedded cognition is also used by some researchers to refer to
embodied cognition

11

Figure 2. The architecture of the model presented by M. Botvinick and D. C. Plaut(2004).
The circles in the grey box represent layers of units in the recurrent network. The
perceptual input layer contains units for fixated objects as well as for held objects.

The sequence task in the study of Botvinick and Plaut was that of making
coffee. For the input layer, they identified features representing the state of
the environment, such as cup, lid, brown-liquid, and so on. Every identified
feature has its own unit in the input layer. In the output layer the units
corresponds to actions, such as pick-up, put-down, pour and so on. The
internal representation part consisted of 50 hidden units, representing the
internal context state of the model.
In the training phase of the model the correct sequence of making coffee was
represented to the model, regardless of the model's output. The model then
adjusted its weights to learn the patterns and sequence of the task. When
testing the model no feedback about the correct sequence was given. In their
simulations, Botvinick and Plaut showed that their model exhibits several
features of normal and impaired routine sequential behavior. Through their
model, they show that organized action can occur without explicit goals.
However, they acknowledge that in some circumstances human action does
involve explicit goals, something not captured by their model. In addition, the
actions and perceptual input are predefined. The model cannot learn new
actions or perceptual input.
Taatgen et al (2008) combined the strength of both the classical and
embodied cognition approach to skill learning. They were able to build a
model that could learn a skill robust and flexible enough to cope with
unexpected and partial completed problems. I will discuss this approach in
the next section.

Robust and flexible skill learning
Although it is current practice to teach pilots procedures as lists of steps,
Taatgen et al (2008) found evidence that there is a better way to learn
procedures and cognitive skills than the learning of a list of steps. In their
research, students had to perform certain procedures in a computer
simulation of a Boeing 777 Flight Management System (henceforth called
FMS). Taatgen et al show that context learning, where the focus is the pre-

12

and postconditions of actions and the environment, is far more effective than
just plain list learning, where the pilot just has to study a list of actions for
each procedure. The principle of context learning is based on the minimum
control principle (Taatgen, 2007), which argues that humans tend to
minimize the amount of mental control states by deriving the state from
perceptual input. In this context, control states can be seen as a measure of
top-down control. In other words, control states keep track of the progress of
a task, without the necessity of a feedback loop from the environment. In
context learning, the pre- and postconditions of actions are specified and the
actions are embedded in the environment. This way the current control state
can be derived from the environment. According to Taatgen et al (2008) this
explains why learning the context procedure is more effective than learning a
list of steps, it is just easier and more effective to infer control states from the
environment rather than keeping track of control states internally. In the
experiment, students had to solve problems concerning the direct-to and
remove-discontinuity procedures in the FMS simulation. In some of the cases,
just one or both procedures could be applied literally, in other cases they had
to solve problems caused by their copilot using adaptations of the learned
procedures, thus requiring flexibility and robustness. The participants in the
context learning group had higher performance ratings on and were faster in
solving the problems than the participants in the list learning group. In the
next chapter, I will further discuss the abovementioned procedures and
discuss the task participants had to do in more detail.

Research on procedures and human error
In the field of human factors, extensive research has been done to human
error and the impact of it on society (McIlvaine, 2006)(Dhillon & Lui, 2006).
Most research concerns teamwork, stress, environments, and interfaces.
Though research has been done on learning of procedures, most of it is
focused on educational programs and not on the underlying cognitive
mechanism for learning a particular procedure. Gaba (2001) did research in
skill learning and human error in the field of medicine. He argues that a
cookbook approach on learning medical procedures is not effective and results
in too rigid skills. With the term cookbook, he refers to what Taatgen et al
dubbed list learning.
Recently, Fennell et al (2006) published a paper on the impact of recall steps
on errors made in a FMS task. They did research on learning FMS procedures,
identifying two types of steps in the sequence of instructions: recognition and
recall steps. A recognition step in the sequence is a step where the action is
cued by salient labels or prompts. Recall steps on the other hand are not cued
by the display and therefore a potential source of error. Pilots unfamiliar with
the FMS learned several procedures and the access errors (hitting a wrong
button or accessing a wrong routine) they made were analyzed. It turned out
that there is a probability of .74 of making an access error, whenever the
procedure has two recall steps. A probability of .13 was found for procedures
with only one recall step. Whenever no recall steps were present, the
probability for an access error was only .06. Their results show that perhaps
environmental cues are important for recalling a step of the instructions.
Possibly, it is easier for people to rely on environmental cues rather than
internal cues. Note that the instructions in the study of Fennell et al were
learned by a special method suited for their research. Pilots had to

13

reformulate the steps to promote remembering the step (e.g. as reported in
their paper “Enter the winds” was reformulated to something like “Because
winds are associated with waypoints, and waypoints are on the LEGS page
and are part of the data of the route, enter the winds using the LEGS page,
RTE Data prompt”).
Regarding the steps in a procedure, Cox and Young (2000) speculated that
device-specific and task-specific steps rely on different kind of knowledge.
The main difference between the two steps is that device-specific steps do not
directly contribute to the goal of the task, whereas the task-specific steps do.
Aments, Blandford and Cox (2009) hypothesized that different cognitive
processes underlie these two types of steps. They argue that device-specific
steps rely more on external cues, whereas internal cues are more important
for task-specific steps. This hypothesis is derived from the Activation-based
Goal Memory model (Altmann & Trafton, 2002). This model states that goals
are associated with activation levels and that they can be triggered by means
of retrieval cues. Such cues are for example associative internal links (as a
sequence of successive steps) or an external cue (such as a display item). The
device-specific tasks are required by the device and do not form a natural part
of the task, thus its associative links are weaker than those of the task-specific
tasks. Aments et al therefore reason that external cues are more important for
the device, than for the task-specific steps. In the research of Aments et al
participants had to play the spy game. The objective of the game was to fly a
plane to a certain destination to deliver a secret message. To accomplish this
objective the participants had to follow a procedure specifying what to do. In
the procedure, there were 11 device-specific steps and 17 task-specific steps. In
a first experiment, they evaluated the difference between the steps by looking
at eye-tracker data. It turned out that when an error is not made, there is a
significant difference between the device-specific and task-specific steps. In a
second experiment, they removed semi-randomly the visual cues such as a
button, an input field or another item. The assumption here was that
removing an item would lead to a reduced external cuing for the step involved
with that item. However, the location of the item was still functional so that
the task could still be completed. In the study there were significantly more
errors made on device-specific steps than on task-specific step. There were
also more errors made on the steps where the item was removed from the
interface. This result supports the assumption of reduced cueing. However, no
significant interaction was found between the two device types and the
visibility of an item. Ament et al argue that it was due to the power of the
statistical test used (too few participants) or due to a floor effect in error
ratings, rather than that, the hypothesis is false. Two other reasons could be
that the external cuing is more complex and that therefore the experimental
manipulation did not work as expected or there could be a confounding factor;
the hidden step could be a predictor for the next correct step. I think that
something else could be going on, and that both steps in their experiment
relied strongly on the external cues. Prior to the task, people had to learn the
task. Feedback and instructions were given in the training phase and
whenever each participant completed the task two times without any errors,
the training would end. What could have happened is that there was enough
time to learn the instruction and associate the steps in the procedure with the
cues in the environment. As Taatgen (2007) argued, whenever people can
divert control to the environment, they do it. Since I had no access to the

14

instructions used in the experiment, it is hard to say something about the
learning method. Nevertheless, I speculate that perhaps the participants
learned the procedure by context and not necessary by internal step (in a list
learning way). This way one would expect the task steps to be retrieved by
external cues, rather then by internal cues.

ACT-R
To show that the minimal control principle was indeed a possible explanation
for the improved performance Taatgen et al (2008) built a computational
model in the cognitive architecture ACT-R. The ACT-R architecture (Anderson
et al., 2004) is a cognitive architecture designed to model cognitive tasks. The
purpose of ACT-R is to provide a simple theory for complex cognition
(Anderson, 1996). At first most of the tasks modeled in ACT-R were related to
learning and memory processes. Later on, researchers started to model
complex tasks in ACT-R and eventually a perceptual- motor theory was
adapted by ACT-R (Byrne & Anderson, 2001) and implemented in the newer
versions of ACT-R.

Figure 3. A simplified diagram of the ACT-R architecture

The ACT-R architecture (Figure 3) consists of several modules of which the
production system is the core. This production system communicates with
other modules through buffers implementing cognitive functions in ACT-R.
The main modules currently implemented in ACT-R are the Intentional
Module, Declarative Module, Visual Model, Motor (Manual) Module, Aural
Module and Vocal Module. The production system has access to the chunks
(pieces of information) in the modules’ buffers. The chunks are matched,
selected and executed by the production system, letting all modules
communicate together through the production system. These modules work
parallel to each other, whereas a module itself is a serial process.
ACT-R has been used to model several real world tasks including driving,
aircraft maneuvering and recently the FMS task. I will discuss the model built
by Taatgen et al later in this thesis.

Present study
From their research, Taatgen et al (2008) found evidence that both internal
and external control states keep track of progress, and that context
instructions are probably closely related to our internal representation of the
task knowledge. As mentioned above, they came to these conclusions by
building a model that incorporates both the classical and embedded cognition
approach to skill learning. To investigate the distinction of internal and

15

external control further I propose an experiment based on the same task of
Taatgen et al, but with a different experimental design. The same simulation
will also be used in this research. In this research I will introduce system
malfunctions, to see how robust both learning methods are coping, not only
with partially or incorrectly completed problems, but also with system
malfunctions. I hypothesize that because system malfunctions are unexpected,
that this will test the robustness and flexibility of both methods more,
revealing more of their underlying mechanisms.

State malfunctions and display malfunctions
For purpose of this study, I make a distinction between two types of
malfunction. Whenever a state malfunction occurs, the system performs
another action than the user intended. For example, the user wants to go to
the LEGS page and presses LEGS. Now if a state malfunction occurs, the
system goes to the RTE page instead of going to the LEGS page. Now, the user
expects the system to be at the LEGS page, but the system really is at the RTE
page. Hence, the users expected state of the system differs from the real state
of the system. Thus, a state malfunction occurred.
A display malfunction is the second malfunction type. In this case the
interface of the FMS gets partly scrambled.
I expect that a state malfunction is detected and recovered from faster by the
context learning group than by the list learning group. Rather than being
stuck in a list of steps, the context group will infer in what state or on what
page the system is, and thus correct the malfunction more effectively.
For display malfunctions, it is not clear what can happen. On the one hand,
the list group could perform better than the context group because they rely
less on the environment and keep track through their internal learned steps.
On the other hand, the context group could infer the current state of the
system more easily by using the information they do get.
For the conditions where no system malfunctions occur, we expect to find the
results as presented in the research of Taatgen et al. (2008) (i.e. the context
group will perform better than the list group).

Research question
The research question in this thesis can be formulated as follows: Is the
context learning method more flexible and robust to system failures than the
list learning method?
The following hypotheses can be formulated with respect to this research
question:

• I expect that the context group will perform better in resolving
problems and executing procedures than the list group in case of no
malfunctions and state malfunctions.

• In case of state malfunctions, there will be a greater difference in
performance between the context and the list group in favor of the
context group.

• In case of display malfunctions, it is not clear which group will perform
relatively or absolutely better. The list group could perform even better
than the context group, because they do not rely on the display as much
as the context group does. On the other hand, the context group could
perform better than the list group, because they probably have a better
understanding of the system.

16

17

The Flight Management System experiment
To investigate the abovementioned research question, I conducted an
experiment involving the FMS task used in the research of Taatgen et al
(2008). As briefly mentioned above, the FMS is the heart of automation of
modern airplanes (Figure 4). It is used in both military and commercial
airplanes. This device controls the behavior of the plane and can take care of
the whole flight, except for the taking off part. The pilot programs the FMS
and supplies it with information about the route of the plane, load, passenger
numbers, and so on. In turn, the FMS takes care of the flight part. Therefore,
it is important that the pilot knows how to use this system; it is a crucial part
of his job. In the research of Taatgen et al, the subject of research was two
procedures part of lateral navigation: planning and modifying routes. These
procedures are also used in the experiment described later in this thesis.

A route in aviation consists of a list of waypoints the plane has to follow from
source to destination. These waypoints are often points on the map, but can
also be radio beacons. To redirect the airplane the pilot has to access the route
through the FMS and has to change waypoints in that route. Two specific
procedures to change the route are the direct-to and remove-discontinuity
procedures. The direct-to procedure is used whenever Air Traffic Control
(ATC) gives the pilots the instructions to directly continue to a specific
waypoint. Whenever the waypoint is not part of the current route, a
discontinuity in the route will appear. That is, there is a missing link in the

Figure 4. The layout of the Flight Management System of a Boeing 777. The buttons on the top
left (with the ‘-‘ sign) are the L-keys. At the right, the R-keys can be found. If on a page the
scratchpad is available, it will appear on the screen.

18

route. To solve the discontinuity, the pilot has to execute the remove-
discontinuity procedure. Both procedures are specified in Table 1.

Table 1. The direct-to and remove-discontinuity procedures

Procedure Instructions
direct-to 1. Press the LEGS key

2. Enter the desired waypoint in the
scratchpad

3. Push the 1L key
4. If the word discontinuity appears

on the screen, follow the procedure
to remove discontinuities

5. Verify the route on the
Navigational Display

6. Press EXEC
remove-discontinuity 1. Press the LEGS key

2. Press the line select key after the
discontinuity

3. Press the line with the THEN
prompt

The FMS task
In the FMS task, participants have to follow instructions from Air Traffic
Control and change the route of the airplane in a computer simulation of the
FMS. In order to complete the task, they have to use two procedures used in
lateral navigation, the direct-to and remove-discontinuity procedures. Figure
5 shows the interface of the simulator. ATC instructions for rerouting the
airplane pop up at the beginning of each trial at the right corner of the screen.
An example of such an instruction is “Flight 123 … proceed direct to BEX,
continuing on to LOAMY” with the current route being e.g. LOAMY-KEOKK-
BDF-BENKY. In order to solve this problem, participants have to first follow
the direct-to procedure (pressing “LEGS”, typing “BEX”, pressing L1). While
executing this procedure, a discontinuity pops up on the screen. Participants
then have to follow the remove-discontinuity procedure (pressing “LEGS”,
pressing L3, pressing L2) and then finishing the direct-to procedure (looking
at NAV, pressing EXEC). The new route of the plane now is BEX-LOAMY-
KEOKK-BDF-BENKY. The discontinuity in this solution appears because BEX
was not on the route before. If the instruction were something like “Flight 123
… proceed direct to BDF”, then the direct-to procedure would be sufficient to

19

complete the task.

Figure 5. The Flight Management System computer simulation

Problems
In the FMS task, the participants can encounter three types of problems,
categorized by their difficulty. Easy problems are problems where the
participants only have to apply the direct-to procedure. In medium problems
a discontinuity occurs whenever a participant applies the direct-to procedure.
Thus in these problems the remove-discontinuity also has to be applied.
Finally, there are the hard problems. Problems can be hard for several
reasons. First, one of the waypoints referred to in the problem could not be
found at the first LEGS page. Participants have to use the function key ‘NEXT
PAGE’ and ‘PREV PAGE’, which were not mentioned in the procedure, in
order to solve the problem. Secondly, the waypoint to be modified could be
one later in the flight plan. This was also not covered by the procedures,
requiring some generalization. These are the easier problems in its type.
Slightly harder problems are the problems where a co-pilot already executed a
part of the procedure. It is up to the participant to detect it and to finish the
procedure. In these problems, the co-pilot sometimes had made a mistake,
which makes the problems harder. Taatgen et al have a distinct category for
these problems, but since the focus of this study is not on problem difficulty, I
do not make this distinction.

Malfunctions
As mentioned above, there are two types of malfunctions that can occur in the
FMS task. In one condition, display malfunctions are encountered. The
display malfunctions consist out of scrambled lines on the screen of the FMS
simulation. In the other condition state malfunctions can occur. If a state
malfunction occurs, the FMS simulation will do another action than what the
participants would expect. For example pressing the LEGS key will have the

NAV display

Right line keys

Left line keys

Scratchpad

Function keys

Keypad keys

Instructions
box

20

effect of going to the RTE page or pressing a line key will copy the wrong
content in the scratchpad. In some cases these malfunctions occur only the
first time when one of the keys is pressed, otherwise if would be impossible in
some cases to solve the problems.

Method

Participants
A total of 60 students from Carnegie Mellon University and the University of
Pittsburgh participated in the experiment. They all received a payment for
their participation. The context learning condition had 31 participants,
whereas the list learning condition had 29 participants.

Procedure
First, the participants had to study the general background information
(appendix I) of the FMS task. After they were finished, they had to return the
background information and the interface training started. The purpose of
this part was to get the participants familiar with the interface of the FMS.
This training consisted of getting instruction such as “Press the L1 line select
key” and “Copy BOND into the scratch pad and then press Finish”. The
background information and interface training was the same for both groups.
Whenever people were finished with the training, they had to study the
instructions for the direct-to and remove-discontinuity procedures. These
instructions were adapted for each of the two conditions (appendix II and
appendix III). After they were finished studying the instructions, the
participants had to hand them back to the experimenter.
The experiment consisted of four blocks (an overview of the blocks can be
found in Table 2). The first block was the training block and consisted of six
problems. The first three problems of this block were easy, the remaining
three were medium problems. This block was also used to exclude participants
from the analysis based on their performance. The criterion to be excluded
from the analysis was a score of zero or one correct. The second block
consisted of nine easy and nine medium problems. For each problem
difficulty, three problems were given in the display malfunction condition,
three problems were given in de state malfunction condition, and three
problems served as control condition in which no malfunctions occurred. The
third block consisted of eighteen problems. This time all the problems were
hard problems. The problems in this block were also randomly ordered. In
this block, nine problems were in the display malfunction condition, nine in
the state malfunction condition and nine problems served as control. The
fourth block also consisted of eighteen problems. This time they were all hard
problems. No malfunction conditions were presented in this block. Where the
other blocks did not contain co-pilot problems, this block contained twelve co-
pilot problems. In half of the co-pilot problems, the co-pilot would have made
a mistake. The ordering in this block was also random.
To prevent biasing the experiment, no help was given to the participants
throughout the experiment. The experiment, including studying the
background information and instructions, lasted about one hour.
For each participant the reaction times and correctness score were recorded.

21

Table 2. The design of the experiment

 Block 1
Easy and
medium
problems

Block 2
Easy and
medium
problems

Block 3
Hard
problems
(no co-pilot)

Block 4
Hard
problems
(with co-
pilot)

Context
Instructions

3 problems 6 control
problems
6 display
problems
6 state
problems

9 control
problems
9 display
problems
9 state
problems

18 problems

List
Instructions

3 problems 6 control
problems
6 display
problems
6 state
problems

9 control
problems
9 display
problems
9 state
problems

18 problems

Results
Based on the abovementioned criterion, data of 16 participants were
eliminated from the experiment. Nine of the eliminated participants were part
of the context group; seven of them were part of the list group. Data of 44
participants remained with 22 participants in each condition. One problem
with an average score of 0.00 was also excluded from the data. The results are
displayed in Figure 6 and Figure 7.
Examining the correctness score displayed in Figure 6, it seems that the
context group performs better overall. Looking for interactions in the graph, it
seems that the list group performs worse relative to the control problems than
the context group.
Figure 7 of the reaction times shows some interesting effects. Overall, the
reaction times of the context group lies under those of the list group. It looks
like the reaction time of the context group decreases in case of display
malfunctions in the third block. Furthermore, the reaction times of the list
group in case of state malfunctions looks higher than those of the context
group relative to the control problems.

22

Figure 6. The results of the correctness score plotted per block.

Figure 7. The results of the reaction time plotted per block. Reaction time is given in
seconds.

LME-analysis for the correctness score
In order to investigate the effects in the data I fitted a mixed-effects model.
The dependant variable was the correctness score. The fixed factors were
condition, malfunction type and the square root of sequence (learning effect)
with an interaction between malfunction type and condition. The trial and
subject were taken as random factors in the LME analysis. With trial is meant
the specific problem. Each problem causes variance and the problems are
drawn from a bigger population of problems. Hence, the factor trial is treated
as a random factor. The trials were randomly ordered within each block, thus
the learning sequence is not caught in its entirely by the variable trials.
Because the correctness score is a binary variable, a binomial logit (log odds)
model was used. Because of the use of a logit model, the estimates of the
models parameters are presented in log odds. To convert log odds back to
correctness scores, the following formula is used: P(s) = 1/(1+e-s). This means

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Block

P
ro

p
o
rt

io
n
 c

o
rr

e
c
t

1 2 3 4

Control
State
Display

List

Context

0
1
0

2
0

3
0

4
0

5
0

Block

R
e
a
c
ti
o
n
 t
im

e

1 2 3 4

Control

State

Display
List

Context

23

that a total log odd of 0 is equal to 0.5 in terms of correctness scores. A
negative log odd estimate lowers the changes below 0.5.
The results of the analysis can be found in Table 3. In order to see if the
interaction between the malfunctions and instructions explain a significant
amount of variance, I compared the model with a LME model with no
interaction effects (i.e. condition, malfunction type, and sequence as fixed
factors. The model with the interaction effect between malfunction type and
condition turned out to explain significantly more variance (χ2(1) = 6.77, p =
0.034).
Because the focus lies on the malfunction type and condition, we left the
problem type out of the analysis.

Table 3. Results of the LME analysis

 Estimate Std. error t-Value p-Value
Intercept 0.328 0.409 0.804 0.422
Display malfunction -1.422 0.196 -7.263 0.000
State malfunction -0.735 0.212 -3.475 0.001
List instructions -0.369 0.300 -1.230 0.219
Learning sequence 0.353 0.063 5.597 0.000
Display malfunction x List
instructions

-0.584 0.249 -2.346 0.019

State malfunction x List
instructions

 0.099 0.265 0.374 0.709

Display malfunction
Whenever a display malfunction occurs there is an average decrease in the log
odds of -1.422.
The effect of display malfunctions is significant (p < 0.001).

State malfunction
A state malfunction also significantly decreases the log odds with -0.735 (p <
0.001).

List instructions
While this effect is not significant, in earlier studies this main effect is
significant (Taatgen, Huss, Dickison, & Anderson, 2008). The estimate is -
0.369, indicating that the list instructions score is on average lower than the
context instructions.

Learning sequence
The learning effect is highly significant (p < 0.001) and increases with a 0.353
in terms of log odds. Note that this estimation is based on the square root of
the sequence to capture the learning effect.

Display malfunction x List instructions
When a display malfunction occurs in the list instructions, the log odd drops
with an average of 0.584 (p = 0.019).

State malfunction x List instructions
No significant difference is found between the list and context instructions
condition for the state malfunction.

24

LME-analysis for the reaction time
The reaction time results were also fitted with a mixed-effects model. The
same factors were used as in the analysis for the correctness score as
mentioned above. The model with fixed factors malfunction type, condition,
and sequence with an interaction effect between malfunction type and
condition was compared with the same model without the interaction effects
using ANOVA. In this case, the model with the interaction effect between
malfunction type and condition turned out not to explain significant more
variance (χ2(1) = 2.6, p = 0.39). This time the log of the reaction time in
seconds was the depended variable. The log function was used to transform
the results towards a normal distribution (examining the plot of the reaction
time gave a skewed curve, the log function showed the curve of a normal
distribution). The results are displayed in Table 4. Note that only reaction
times of correct trials are used.

Table 4. Results of the LME analysis

 Estimate Std. error t-Value p-Value
Intercept 10.739 0.095 113.42 0.000
Display malfunction 0.290 0.033 8.78 0.000
State malfunction 0.424 0.031 13.78 0.000
List instructions 0.169 0.059 2.87 0.016
Learning sequence -0.172 0.014 -12.04 0.000

Display malfunction
The effect of the display malfunctions is significant (p<0.001). Whenever a
display malfunction occurs the reaction time is longer on average.

State malfunction
For state malfunctions the effect on the reaction time is also significant
(p<0.001). Whenever a state malfunction occurs, the reaction is longer than
the reaction time on display malfunctions.

List instructions
The main effect of instructions is significant (p = 0.016). If the condition is list
instruction, reaction time increases.

Learning sequence
There is a significant effect of the learning sequence (p<0.001). Participants
get faster as they do more trials.

Discussion
The research question of this thesis is “Is the context learning method more
flexible and robust to system malfunctions than the list learning method?”
(Ament, Blandford, & Cox, 2009).
One of the hypotheses we formulated with respect to this research question is
that when no malfunctions occur, the context group will perform better.
Taatgen et al (2008) found evidence in favor of this hypothesis in their
research, as discussed in the introduction of this thesis. The results of the
current study support this hypothesis. Although there is no main effect of the
instruction condition for the correctness scores, the reaction times of the

25

context instruction group are significantly lower than those of the list
instruction group. The fact that the instruction condition is not significant can
be due to a few reasons. First, due to the complexity of the task and the
individual differences of the participants, the effect is likely to be masked.
Secondly, the interaction effect of the malfunctions and instruction within the
mixed effect model explains part of the difference between the list instruction
group and context instruction group, absorbing the main effect of
instructions. Therefore, the main effect is likely to be moderated by the
interaction between instructions and malfunctions. As stated above, the main
effect of instructions is significant in the reaction times. The participants in
the context instruction group perform the task faster than the participants in
the list instruction group. The power of this effect in the mixed effect model is
higher, for there are no interactions in this model. This is evidence that shows
that the performance of the context group is indeed higher than that of the list
instruction group.
The main effects of the state and display malfunctions in correctness scores
and reaction times show that the manipulation of the malfunctions did work.
Examining the plots (Figure 6 and Figure 7) and results shows evidence that
the performance of the context instructions group is slightly better than the
performance of the list instruction group. The context instruction group
performed better in both the control and malfunction conditions than the list
instructions group. The decrease of performance on problems with display
malfunctions makes sense because it is probably harder to infer the current
state of the external world.
The second hypothesis is that in case of state malfunctions, the context
instruction group will perform better than the list instruction group. In
contrast to display malfunctions, the drop in performance in state errors is
less obvious, especially in the case of the context group. If this group solely
relies on the visual input, the participants in the context learning condition
should have scored as good as on the control problems. A cause for the drop of
performance could be that the context group too sometimes relies on some
internal control state, instead of on the visual input.
The interaction between state malfunction and instructions is not found
significant in correctness scores, maybe due to the lack of power due to the
occurrence in only two of the four blocks. However, it could be that there
really is no interaction between the state and the instructions. What could
have happened is that the instruction group learned to exert control to the
environment while practicing enabling them to handle the state errors.
Another explanation could be that the state errors were just to simple and that
the necessity to perform more actions decreased correctness scores and
increased reaction times.
No hypothesis was formulated on display malfunctions and instructions. As
stated in the introduction, we speculated that either the context learning
group or the list instruction group would perform better on the display
malfunctions. The effect of this interaction is found significant in favor of the
context instruction group. This means that there is evidence that the context
instructions group can handle display malfunction better on average than the
list instructions group. A reason for this could be that due to the allocation of
control to the environment, the context group can derive the state of the
system with more success when parts of the information that is available. The
information that is visible guides the actions of the participants in the context

26

group, whereas the participants in the list learning group rely on their
learning list of steps. It could also be that due to the formulation of the
instructions of the context group, this group has a better understanding of the
system. Therefore, they expect in what state the system is and how to react
when a display malfunction occurs. In other words the learned pre- and
postconditions have aided the context learning group in gaining a better
understanding of the system, predicting what kind of information should be in
the scrambled part of the display.
Moreover, this interaction between display malfunctions and instruction
reveals evidence that visual cues are important in handling display
malfunction, and that even a bit of visual information is enough to cope with
the malfunction. The learned pre- and postconditions could also have aided
the context learning group in gaining a better understanding of the system,
perhaps predicting what kind of information should be in the scrambled part
of the display.

27

A model of robust and flexible skill learning
The model used in this study is based on the model as described by Taatgen et
al (2008). Illustrated in Figure 8 is the model of Taatgen et al. Figure 9 is an
illustration of the model used in this study. Taatgen et al state that most of the
ACT-R models are based on production rules, but that this is not a plausible
account for acquiring skills. In their paper, they argue that a more plausible
explanation is the storing of instructions in the declarative memory. General
production rules are then defined which retrieve, interpret and carry out these
instructions. To decide in which order to fire the rules, the easiest solution
would be a list of steps. Each step then identifies the next step to be executed,
remembering some internal control state. Learning instructions in a list
manner could be compared to this approach. The second approach is defining
environmental preconditions and postconditions for each step to be taken.
This would mean that the environment triggers the next step, and this
approach could be compared to the context learning method.
As mentioned above the model is based on the model of Taatgen et al and thus
is very similar to their model. In the next paragraphs, the differences in the
models will be pointed out as I continue describing the model.

Figure 8. Outline of the model as published in the paper of Taatgen et al (2008)

Figure 9. Outline of the model used in this study.

Representation of the external world and acting in it
To keep the model fast and the interpretation simple, I used an abstraction of
the external world. Two words are presented to the visual system of the
model, representing the state of the world. Although this abstraction seems to
be too abstract, Taatgen et al showed in their model that it is good enough to
make predictions and reason about the learning of procedures. The model acts

28

in the world by typing keys on a keyboard. This also is rather different than in
the experiment, but this is accounted for since in both instruction conditions
this difference occurs. Moreover, the participants in the experiment had a
practice phase in which they learned to find and use the buttons of the
interface. For both methods, this practice phase was the same, assuming that
in the experimental phase the participants know where to find what button. If
this assumption is correct, using a keyboard or using the mouse to control the
FMS should not differentiate between the two instruction conditions.
Within the model, the state of the world is represented in the goal module.
This module keeps track of the current goal, task and states. In the goal
module, two kinds of states are represented. An internal state based on
expectations, and an external state based on the visual input.
An example of this representation is “PAGE INIT”. These words indicate that
the system currently is at the initial page. Whenever the “LEGS” button is
pressed, the system would either show “PAGE DEST” or “PAGE LEGS”. Both
states indicate that the system is currently at the LEGS page. However, the
“PAGE DEST” indicates that this is the LEGS page where the destination
waypoint is on. The model could now either type the destination in the scratch
path or press the line key next to the destination in order to copy the
destination to the scratch path. Whenever either one of those action is
performed, the system would present the worlds “SCRATCH DESTINATION”
to the model, which indicate the next state of the system. However, the system
is still on the LEGS page.

Representation of task knowledge in the model
Task knowledge and instructions have an internal operator representation in
the model. This is the same as with the model of Taatgen et al. To
accommodate both learning methods in the model, the pre- and postcondition
of an operator is either an internal or an external condition. For the list
learning method, the conditions are internal, enabling every operator to
trigger the following operator. The conditions in this case link the operators,
and thus steps, to each other. This means that whenever a step in the
instructions is executed, the following step will be triggered.
In contrast, for the context learning method the pre- and postconditions are
external, relying on the environment. The pre- and postcondition in this
context links the operators to the world. Whenever the state of the world
matches the precondition of an operator, it would be executed. Postcondition
in this case is the predicted state of the world after executing of that operator.
For example, the state “PAGE LEGS” can be a postcondition for an operator to
press the page-up key in order to find the destination page. The postcondition
for this operator can be “PAGE DEST”. This indicates that whenever the
system is on the LEGS page, the page-up key has to be pressed in order to find
the destination page. The operator described here has external pre- and
postconditions and is one of the operators of the context learning condition.
Another example of operators is one with internal pre- and postconditions. An
operator with “STEP ONE” as precondition and “STEP TWO” as postcondition
is typical for the list learning method. The action belonging to this operator is
to press the line key of the destination waypoint, or to scratch the destination
into the scratch pad. The conditions in this case present the point the model is
at in the execution of a list of steps. Looking this step up at Table 1 tells us that
this is the second step in the procedure. Thus, the precondition “STEP ONE”

29

indicates that the first step has to be executed in order to execute this step.
The postcondition “STEP TWO” indicates that the second step has been
executed.

Representation of general knowledge in the model
The general knowledge in the model consists of the production rules that
control the decision making process. At first, the model perceives the state of
the environment and then searches its declarative memory for an applicable
operator. If so, the operator is placed in its operator module. Next, the
operator is executed. After execution, the environment is inspected, and the
outcome is saved in the declarative memory. How the production rules work
together is outlined in Figure 9. Although most of the production rules are
quite similar to the ones used by Taatgen et al, some of them are slightly
different to fit the purpose of this model.
An example of a production rule is a rule to retrieve an operator from the
declarative memory. The rule “retrieve-operator” states that whenever there is
no operator in the buffer and the buffer of the declarative memory is free to
use and empty, it should retrieve an operator based on the current task of the
model. Whenever this rule fires, other rules checking this operator on
applicability will fire. The process of deciding whether or not to execute an
operator is described in the next section.

Finding an applicable operator
As mentioned above, operators are retrieved from the memory in order to see
if they are applicable. If an operator’s condition matches the state of the
external world, the operator is executed. However, the model also keeps an
internal state of the world in its goal buffer. If an operator is found applicable,
the model updates its internal state by the expected state (i.e. postcondition)
of the operator. For the context learning method, this means that in most
cases the external state will match the internal state. For the list learning
method however, the internal state does not have to match the external state
of the world. It could be that the internal state represents the next step to be
executed, solely based on the last executed step. Whenever the internal state
matches the precondition of the operator, it can also be found applicable. This
way the model facilitates to learn both the learning methods and is able to act
on them. If no applicable operators can be found, the model starts to explore
for new operators. Note that the model in the context learning condition is
forced to use the external state. The model in the list learning condition can
either use the internal or external state, depending on the retrieved operator.
The process of deciding if an operator is applicable is done by production
rules. There are two types of production rules involved in this process, the
rules that can accept an operator and the rules that can deny operators. For
example, if an operator with precondition “STEP TWO” with the action to
press the destination line key and postcondition “STEP THREE” is retrieved
from the memory, but the systems internal state is a different step, e.g. “STEP
ELEVEN” or an internal state based on an external representation e.g. “PAGE
DEST”, the operator is found not applicable. However, if the internal or
external state matches the state of the retrieved operator, it does fire. Note
that the internal state is only matched whenever the state is a “STEP” state,
except in case of display malfunctions.

30

Exploration for new operators
To quote Taatgen et al, one of the properties of learning from instructions is
that instructions are forgotten easily. However, people can handle some of the
situations in where they have forgotten steps in the instructions. The learned
instructions are sometimes also not sufficient to solve the problems people
face. This is the case in the FMS task. Forgetting of instructions is simulated
in the model by eliminating operator chunks from the declarative memory at
the start of the models run. There is a 30% chance for an operator to be
forgotten by the model. This differs with the model of Taatgen et al who have a
25% chance of forgetting an operator. The reason for this is that the
probability of the forgetting is a free parameter within both models and that
the model described here gets too good due to changes in the exploration
process as described below.
Whenever an operator is not in the declarative memory, or whenever its
activation is too low to be retrieved, the exploration for new operators start.
The way the model does this is by randomly guessing a possible action. As
Taatgen et al report in the paper, people use this strategy too.
A major difference between the model described by Taatgen et al and the
model used in this research is in the exploring strategy. After the action is
tried out an operator will be created in the memory, and the result is stored in
the declarative memory. If the action was successful, a new operator will be
created that will be evaluated it for applicability the next time it is retrieved.
However, if the result of the action does not bring the model closer to the
solution the operator would also be stored. This time the operator will be
flagged; it will not be used next time the model has to guess, which is a major
difference between both models. In order to evaluate the outcome of an
operator a hill-climbing algorithm is used. People somehow have the ability to
judge whether they made progress or not, and this algorithm emulates this
judging process. This may not be the most plausible way to emulate this
ability to judge progress, but I have found no literature on operator
exploration that accounts for a plausible approach of estimating the progress
in a task. In this sense, the model is omnibus in evaluating the system state,
which is unrealistic and oversimplified. Whereas the model of Taatgen et al
only learned by the exploration of new operators, the current model can learn
operators with external pre- and postcondition of executed internal operators.
Whenever an operator is executed, the model stores the operator plus its
external pre and postconditions into its declarative memory. As a result the
model in the list condition learns the pre- and postcondition of operators with
internal conditions.

The learning of specialized knowledge
The model learns new general knowledge by means of production
compilation. Productions firing directly after each other are combined to a
single rule, speeding up the executing of the procedure. Moreover,
information of the declarative memory is used to compile into a new
production rule, creating rules that are more specific. This has the advantage
that the declarative memory is used less often, what saves time on retrieving
operators.
For example if the retrieval rule mentioned above retrieves an operator with
precondition “PAGE INIT” and postcondition “PAGE LEGS”, and the current
system state is “PAGE INIT”, the operator will be found applicable. The

31

retrieve-operator rule is then compiled with the rule that found the operator
applicable, combining the information of the retrieved operator and the two
production rules in one production rule. Now whenever the system state is
“PAGE INIT” this production can be selected, incorporating the firing of the
two rules and the accessing of the declarative memory in one rule.

Handling display malfunctions
The model of Taatgen et al was not able to handle display malfunctions, thus
this is a new part of the model. The model handles malfunctions in a fairly
simple way. Whenever the display is scrambled (i.e. the visual input is
unreadable), the system will assume that the state of the external world is the
same as the expected state. This forces the model into using its internal state
of the world. In case of a display malfunction, participants are sometimes still
able to derive a state from the interface. Because of the abstraction level of the
visual perception used in the model, the model itself cannot generate such a
behavior. Thus, I estimated a free parameter representing the probability that
the state is not successfully derived from the interface. This parameter is set to
a probability of .80. Now, if a display error occurs and the previous system
state was “PAGE INIT” and the operator to go to the legs page is executed, the
expected state would be “PAGE LEGS”. In the model, a rule is fired whenever
the state cannot be derived, changing its external state presentation into the
expected state. Therefore, the model expects to be in the “PAGE LEGS” and
reasons from there. Whenever for example discontinuities occur, the model is
likely to make mistakes because it acts on its expected state.

Handling state malfunctions
The way the model handles state malfunctions is simply be retrieving an
operator and checking its applicability. This could be done either through the
declarative memory or by matching a compiled production rule. As a
consequence, there would be no difference between the control problems.
However, looking at the data of the experiment this is not the case. There is
even a difference in the correctness score of problems with state malfunctions
and the control problems. This could be evidence that sometimes the internal
state is being used, even in the context conditions. To simulate this, the model
randomly encounters display malfunctions in all problems with an estimated
probability of .10. As the free parameter described above, this parameter again
represents the chance that the state of the system is not successfully
abstracted from the display during the perception process. The use of the
models internal state is forced on the model this way.
For example if the state changes of the system, i.e. a wrong line key action is
performed while copying the destination to the scratchpad by the system, an
scratchpad error would occur showing. Now if the state is scrambled by the
random display malfunction, it forces the expected state on the system. While
the model pressed the right key, the model expects the destination to be in the
scratchpad and reasons from there. The way an error in solving the problem
can occur is due to the mismatch between the internal and external state. I
acknowledge that it would be better if the model would make errors on state
malfunctions without the use of a free parameter, but due to the abstraction
level of the visual input this is not possible.

32

Results
The model ran 150 times for both the context and list instructions. The same
analysis as done on the experimental data was done on the model's data. This
was done to compare the model and the data gathered during the experiment.
In Figure 10 and Figure 11, the results of the model are displayed as a graph.

Figure 10. The results of the correctness score plotted per block.

Figure 11. The results of the reaction time plotted per block. Reaction time is given in
seconds.

LME-Analysis for the correctness score
The correctness scores of the model were fitted with a mixed effect model. The
same model was used as with the correctness scores of the experimental data.
As in the section on the results of the experiments, the effects found in the
model's data will be discussed below. The results are summarized in Table 5.
To facilitate comparison of the model and data, estimates of the data are also
given. As with the mixed effect model of the data, estimates are given in log
odds. Although it is hard to compare the estimates of the data and the model

33

individually per variable, the estimates show that in both the model and the
experimental data display malfunctions score worse than the state
malfunctions. Moreover, the models performance decreases over time as the
estimate of the learning sequence show, in contrast to the experimental data,
where the performance increases over time. I will further discuss this in the
discussion.

Table 5. Results of the LME-analysis

 Estimate
(data)

Estimate
(model)

Std. error t-Value p-Value

Intercept 0.328 1.907 0.100 19.124 0.000
Display malfunction -1.422 -2.023 0.066 -30.609 0.000
State malfunction -0.735 -0.366 0.066 -5.35 0.000
List instructions -0.369 -0.748 0.118 -6.323 0.000
Learning sequence 0.353 -0.121 0.011 -11.874 0.000
Display malfunction x List
instructions

-0.584 0.575 0.095 6.047 0.000

State malfunction x List
instructions

 0.099 -0.103 0.092 -1.111 0.268

Display malfunction
The model’s average log odd decreases significantly with -2.023 whenever a
display malfunction problem is encountered (p < 0.001).

State malfunction
Whenever a state malfunction is encountered the log odds of the model
decreased by 0.366 on average. This effect is also significant (p<0.001).

List instructions
The model in the list instructions condition score on average 0.748 lower than
the model in the context instructions condition. In the models data this effect
is significant (p<0.001).

Learning sequence
The learning effect in the model's data is negative. Log odds decrease with
0.121 on average. This effect is also significant (p<0.001).

Display malfunction x List instructions
The model in the list instructions condition scores significantly higher on
average with a log odd of 0.575 than the model in the context condition
whenever a display malfunction occurs.

State malfunction x List instructions
In the state malfunction condition, there is no significant difference between
the context and list instruction conditions.

LME-analysis for the reaction time
The reaction times were also analyzed with a mixed effect model. The results
can be found in Table 6 and will be further discussed below. The same mixed
effect model is used as with the data of the participants to make it possible to
compare the data from the model and the experimental data.

34

Table 6. Results of the LME analysis

 Estimate
(data)

Estimate
(model)

Std. error t-Value p-Value

Intercept 10.739 3.196 0.021 154.06 0.000
Display malfunction 0.290 0.045 0.021 2.17 0.030
State malfunction 0.424 0.735 0.016 44.93 0.000
List instructions 0.169 0.125 0.017 7.59 0.000
Learning sequence -0.172 -0.068 0.003 -20.77 0.000

Display malfunction
The effect of the display malfunctions is significant (p = 0.030). For display
errors, the reaction time goes up.

State malfunction
If the model encounters a state malfunction then the reaction time goes up
according significantly (p<0.001).

List instructions
The main effect of instructions is also significant (p<0.001). Reaction time
increases for the list instruction condition.

Learning sequence
There is a significant effect of the learning sequence (p<0.001). Participants
get faster as they do more trials.

Discussion
In this session, I will discuss the performance of the model and compare the
results of the model with those of the experiment.

Context instructions vs. list instructions
The main effect of instructions is significant in both the fixed effect model of
the correctness scores and the fixed effect model of the reaction times.
Although the latter is only significant in the fixed effect models capturing the
effects of the experimental data, the model successfully captures the overall
performance of the data, and is in line with the results found by Taatgen et al
(2008). However, the effect is much larger in the model’s data than in the
experimental data. This difference is probably due to noise in the data and
could probably be influenced by the parameters used by the model.

Malfunctions
Examining the main effects of the malfunctions of the correctness scores, I
find that the manipulation of the malfunctions also worked in the model. In
case of display malfunctions the model performance is much lower than in
case of the state malfunctions. One could argue that this effect is only caused
by the fact that display malfunctions occur during the state malfunctions to
force use of the internal state. However, the model is also forced to use the
internal state in the control problems. We could conclude that the malfunction
in the model worked as it did in the experiment. Note that it is possible that
the state errors were just too simple or that forcing the model to take more
actions simply increases the chance on errors.

35

The effects of the malfunctions in the reaction times of the model differs
somewhat of those effects found in the experimental data. While the mixed
effects model show that state malfunctions take longer than display
malfunctions, which is the case for both the model and experimental data,
examining Figure 7 and Figure 11 reveals a difference. In block 2 it seems that
the context instruction group performs much slower than they do in block
three. This is probably because the encounter of a display malfunction
confused the participants. It seems that the list instruction group is less
confused, but this does not have to be entirely true, for they perform worse on
correctness scores in case of display malfunctions in the experimental data.
The experimental data does not catch the phenomena; the model does not get
confused in terms of longer reaction times. Reason for this is probably due to
the abstraction of the external world; the model does not hesitate before
making a decision.

Difference in the effect of display malfunctions
The interaction between the display malfunction and instructions reveals a
difference between the model’s data and the experimental data. When looking
at the interaction of the display malfunctions and instructions, the model
performances on display malfunction problems compared to the control
problems is worse for the context condition than for the list condition. This
effect is opposite in the experimental data. The participants in the context
group score higher on display malfunctions relative to the control problems
than the participants in the list group. This strengthens the belief that visual
cues are important in solving the problems with display malfunctions.
Whereas the model successfully uses the step like operators to solve the
display malfunction problems in the list condition, the experimental data
shows empirical evidence that in fact the context condition benefits in case of
display malfunctions. This difference can be due to the level of abstraction of
the visual perception in combination with the ideal exploration algorithm
implemented in the model.
Perhaps a model working with a more complex representation of the external
world and a more plausible exploration mechanism can catch this difference.
As mentioned earlier in this thesis, I did not find any literature regarding a
plausible mechanism for the exploration of operators from a complex visual
interface.

State malfunctions
Consistent with the experimental data, the mixed effect model of the
correctness scores of the model shows no interaction effect between the state
malfunction and instructions. This means that probably due to the learned
condition operators, the list instruction group performs equally well on
problems with malfunctions as the context instruction group relative to the
control problems. This indicates that although the participants in the list
instruction group, who first start out with step like operators, probably learn
to rely on their visual input relatively fast. However, this does not happen as
well as with the context instruction group, whose instructions are focused on
visual input.

36

Difference in learning sequence
The most curious difference between the model’s data and experimental data
is the effect of the learning sequence. The learning sequence in the model’s
mixed effect model is negative for correctness scores. Examining both Figure
6 and Figure 10, we find that in the last two blocks the correctness score of the
model lies lower than the correctness score of the participants. The model as
presented in the paper of Taatgen et al (2008) had a better fit on the problems
presented used in the last two blocks. The difference is probably caused by the
fact that the internal state is forced up on the model presented in this paper
during the task, causing the model to make more mistakes whenever a harder
problem is presented. Examining the effect of learning in the reaction times,
we find that the model does get faster over time. This is consistent with the
effect of learning found in the reaction times of the experimental data. In the
model, the compilation of new production rules, the increasing of activation of
chunks, and the newly learned operators are cause for the decrease of reaction
times. In case of the compilation of new production rules, the model gets
faster because it skips the retrieval process of an operator. Secondly, as the
activation of operator chunks raises by every new encounter of the operator,
the retrieval time decreases, decreasing the reaction times. Finally, the
exploration process of new operators increases reaction time. This happens
because the model checks whether an operator has already been tried by
retrieving operators from its declarative memory. Whenever the model
successfully learns new operators, its exploring behavior decreases, decreasing
reaction times.

37

General discussion and conclusions
In the discussion sections above, I already discussed the results of the
experiment and those of the model. Below, I will discuss the implications of
this study.
I already tried to answer the research question “Is the context learning
method more flexible and robust to system malfunctions than the list learning
method?” In short the answer to this research question is “yes”. Overall, the
context group performed better than the list group. In case of display
malfunctions, the participants benefitted from the context learning method.
In comparison to the control problems, the context group outperformed the
list group. For the state errors, the context group did not seem to have an
advantage. There is no relative difference found between control problems
and problems with a state malfunction. Below, I will go into more detail on
what makes the context learning method more flexible and robust.

Robustness
Taatgen et al (2008) associate robustness with “the ability to protect skilled
performance from various disturbances, including unexpected events,
interruptions, or changing demands.” Handling forgotten operators or the
recovering of errors is seen as robustness of a skill. Display malfunctions and
state malfunctions as introduced in this thesis test the robustness of a skill in
this definition of robustness. I presented empirical evidence that in cases of
display malfunctions and state malfunctions the context learning method
performed better than the list learning method. Although the model did not
show all the interaction effects visible in the data, overall it showed that the
context method worked better as the list learning method, using the
theoretical basis of ACT-R and the minimum control principle. The fact that
even the participants trained with the list learning method performed worse
in the display malfunction condition, and that they performed equally well on
state malfunction relatively to the control problems, shows that participants in
the list instruction condition also try to exert control to the environment. This
shows that even after a few trials the list instruction group learns the pre- and
postconditions of the different operators.

Flexibility
Flexibility is defined as “the ability to apply a skill to new problems that are
different from the problems that served as the basis for training” (Taatgen et
al, 2008). Again, the evidence presented in this thesis shows that the context
method is more flexible than the list method. In new problems, with and
without malfunctions (block three and block four), the context learning
method performs better than the list learning method.

Implications
The most important implication of this research is that the environment and
its visual input are important in the process of robust and flexible skill
acquisition. To handle new problems and system malfunctions, a learning
method focusing on the environmental cued pre- and postconditions provides
the most benefit. The model also implicate that people tend to exert as much
control to the environment as possible, and that people tend to learn the post-

38

and preconditions of different system states fairly fast. However, from time to
time, people use internal control as well. The reason for this remains unclear
in this thesis. What could be going on is that people do not always succeed in
deriving the current state from the display. E.g., if someone does not scan the
complete display and misses important information, a wrong state could be
derived or no state at al, forcing the expectation to play a bigger role.
Another implication of this thesis is that an abstraction of the external world
does not always work. Even though it makes reasoning about system states
and the learning of skills easier, it turned out not to be sufficient to capture
the effects found in the experimental data. Although the model presented in
this paper is enhanced with a more sophisticated operator exploration process
and the ability to learn operators while executing them, improvement in the
perceptual part of the model is needed to catch the whole learning process and
effects found in the data.

Future research
While working on this thesis, I came across a few problems and challenges
that in my opinion are interested to subject to future research. As mentioned
above one of those challenges is to make a more accurate model of the world.
This leads to another interesting subject, which is the exploration of
operators. The model now knows whenever the current state is closer of
further away from the goal state. It would be interesting to investigate how
people get this feeling of progress and how the visual input of the environment
is exactly formed to some kind of state.
Another interesting case would be to do another study on context and list
learning, but by changing the paradigm used in this thesis. I would propose to
train the list instruction group in a manner that they know which button to
press where in the interface. This for example, by letting them push the
sequence of buttons several times in a row, and then after that subjecting
them to the experimental problems.

39

References
Altmann, E. M., & Trafton, J. G. (2002). Memory for goals: An activation-

based model. Cognitive Science , 26 (1), 39-83.
Ament, M. G., Blandford, A., & Cox, A. L. (2009). Different Cognitive

Mechanisms Account for Different Types of Procedural Steps. In N. A.
Taatgen, & H. van Rijn (Ed.), Proceedings of the 31 Annual Conference of
the Cognitive Science Society (pp. 2170-2175). Cognitive Science Society.

Anderson, J. R. (1996). ACT: A simple theory of complex cognition. American
Psychologist , 51, 355-365.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, G., Lebiere, C., & Qin, Y.
(2004). An integrated theory of the mind. Psychological Review , 111 (4),
1036-1060.

Botvinick, M., & Plaur, D. C. (2004). Doing without schema hierarchies: A
recurrent connectionist approach to normal and impaired routine sequential
action. Psychological Review , 111 (2), 395-429.

Brooks, R. (1986). A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation , 2 (1), 14-23.

Brooks, R. (1991). Intelligence Without Reason. Proceedings of the 12th
International Joint Conference on Artificial Intelligence (pp. 569-595). San
Mateo, CA: Morgan Kaufmann.

Byrne, M. D., & Anderson, J. R. (2001). Serial modules in parallel: The
psychological refractory period and perfect time-sharing. Psychological
Review , 108, 847-869.

Cox, A. J., & Young, R. M. (2000). Device-oriented and task-oriented
exploratory learning of interactive devices. In N. Taatgen, & J. Aasman (Ed.),
Proceedings of the third international conference on cognitive modelling
(pp. 70-77). Veenendaal,The Netherlands: Universal Press.

Dhillon, B. S., & Lui, Y. (2006). Human error in maintenance: a review.
Journal of Quality in Maintenance Engineering , 21 (1), 21-36.

Fennell, K., Sherry, L., Roberts, R. J., & Feary, M. (2006). Difficult Access:
The Impact of Recall Steps on Flight Management System Errors. The
International Journal of Aviation Psychology , 16 (2), 175-196.

Fitts, P. M. (1964). Perceptual-motor skill learning. In A. W. Melton (Ed.),
Categories of Human Learning (pp. 243-285). New York: Academic.

Gaba, D. M. (2001). Simulation-based training in anesthesia crisis resource
management (ACRM): A decade of experience. Simulation & Gaming , 32
(2), 175-193.

Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986). Chunking in Soar: The
anatomy fo a general learning mechanism. Machine Learning , 1 (1), 11-46.

Logan, G. D. (1988). Towards an Instance Theory of Automatization.
Psychological Review , 22, 1-35.

McIlvaine, W. B. (2006). Human error and its impact on anesthesiology.
Seminars in Anesthesia, Perioperative Medicine and Pain , 25 (3), 172-179.

Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill acquisition and
the law of practice. In J. R. Anderson (Ed.), Cognitive skills and their
acquisition (pp. 1-56). Hillsdale, NJ: Erlbaum.

Taatgen, N. A. (2007). The Minimal Control Principle. In W. D. Gray,
Intergrated Models of Cognitive Systems (pp. 368-379). New York: Oxford
University Press.

40

Taatgen, N. A., Huss, D., Dickison, D., & Anderson, J. R. (2008). The
Acquisition of Robust and Flexible Cognitive Skills. Journal of Experimental
Psychology: General , 137 (3), 548-565.

Taatgen, N., & Lee, F. J. (2003). Production compilation: A simple
mechanism to model complex skill acquisition. Human Factors , 45 (1), 61-
76.

VanLehn, K. (1996). COGNITIVE SKILL ACQUISITION. Annual Review of
Psychology , 47, 513-539.

41

Appendix I: General instructions

Overview of the Experiment

The first step of this experiment requires that you thoroughly study the following
training material. Then you will go through a short session of interface training. Once
you have studied the material and successfully finish the interface training, you will
take a short quiz to measure your pre-task knowledge. Then, you will perform an
aviation task and your performance on this task will be measured. After that, you will
fill out a post-task questionnaire. At last, you will fill out the demographics and
payment forms.

Overview of the Flight Management System

In this experiment you will take the role of a pilot on a Boeing 777 airplane. Modern
commercial aircraft, such as the 777, have computer autopilot systems known as
Flight Management Systems. You will be trained on how to use a Flight Management
System.

Your task will be to make changes to the flight plan of the plane as indicated by Air
Traffic Control. The flight plan is simply the route that the plane’s autopilot (Flight
Management System) will follow. A route consists of a series of waypoints (GPS
coordinates) that are linked together. The following is a printout of a route from
Pittsburgh to Philadelphia (notice the waypoints in the second column):

Routes, such as these, will be pre-programmed into the Flight Management System.
Your task will be to make in-flight manipulations to a route by interacting with the
airplane’s Flight Management System in a computer simulator.

There are two relevant parts to the Flight Management System:

- The Control Display Unit displays text information and allows for the
inputting of data and commands.

- The Navigational Display is a digital map on which you can see your current
route.

42

The Control Display Unit (CDU)

The Control Display Unit consists of a keyboard and a display. The following is a
labeled diagram:

The display contains a Title Field, six Line Fields, a Scratch Pad and a variety of
buttons.

The title displays the title of the current page. Different pages are accessed with the function
keys. A page may itself have one or more sub-pages. The current sub-page and maximum
number of sub-pages are shown in the top, right corner. To cycle through the sub-pages one
uses the “PREV PAGE” and “NEXT PAGE” keys.

There are 6 Line Select Keys on each side of the display (1L…6L, 1R…6R). Each Line
Key is associated with a Text Field on the display showing information about the
flight plan. Line keys are used for making or canceling changes in the flight plan.

The Scratchpad is used to input, copy, and paste text as well as display error
messages. Text can be input into the scratchpad via the keypad. If there is text in the
Scratchpad and the current Page allows the operation, pushing a line key will attempt
to paste whatever is in the scratchpad into the text field associated (next to) with it. If
the Scratchpad is empty, then pushing a Line Key may copy whatever is in the
associated text field into the Scratchpad. If improper values are entered when using a

43

Line Key errors may occur. Error messages will appear in the scratchpad. These must
be deleted via the use of the “CLR” key.

Primary Operations with the CDU

To change a flight plan:

- The current flight plan is shown on the LEGS and RTE pages
- Changes to the flight plan can be made by adding / removing / replacing

waypoints and routes

To copy something to the scratchpad:

- The scratchpad must be empty (use the clear key)
- Select the line key next to the item that will be copied

To type text into the scratchpad:

- Select the correct sequence of keys on the keyboard

To Paste something from the scratchpad:

- Hit the line select key next to where you want to paste the item. It will then
appear in that text field.

To make a change permanent:

- Press the EXEC key
- Finishing a task without pressing EXEC will produce an incorrect flight plan

44

The Navigation Display

The Navigation Display shows the current and modified routes, the planes position along
those routes, and waypoints not on the route. The following is a labeled picture of the
Navigation Display:

The triangle on the bottom of the screen represents the airplane’s current position.
The red line is the plane’s current, active route. Again, a route is a series of
waypoints. Once you start modifying the route, a second, dashed, magenta line will
appear on the display, showing you what your current modification of the route looks
like. The zoom range slider shows the current scale of the map. You can move the
slider to change the zoom of the map. If the map-scale is above approximately 500
miles then only waypoints on your current route will be displayed. This is done to
reduce clutter.

Airplane’s
current
position

45

Task

Your task is to make modifications to the flight plan as requested by Air Traffic
Control (ATC). ATC’s instructions are given in the small rectangle at the lower-right
corner of the FMS window, below the navigational display. Here you also see if your
modifications are correct or incorrect.

The ATC will identify you as “Flight 123”. You will start by reading the ATC’s
instruction. Then you have to make the requested modifications to the flight plan by
using the function keys and the keypad. You can use the navigational display to check
if the modified flight plan is correct. Press the EXEC key when you want to make a
modification final. Press the “Finish” button to display the feedback (correct or
incorrect) and advance to the next problem. At this point it is not possible to make
any further changes to the flight plan, even if it is incorrect.

Try your best to give fast and correct solutions.

NOTE: This task will be performed with a mouse (no keyboard). VERY
RARELY WILL YOU ACTUALLY WANT TO DOUBLE-CLICK. DOUBLE
CLICKING CAN HINDER YOUR PROGRESS.

46

Appendix II: List instructions

Additional Instructions

When Air Traffic Control gives you a directive to proceed directly to some waypoint,
go through the following steps:

1. Press the LEGS key
2. Enter the desired waypoint in the scratchpad
3. Push the 1L key
4. If the word “discontinuity” appears on the screen, follow the procedure to remove
discontinuities.
5. Verify the route on the Navigational Display
6. Press EXEC

There is a separate procedure for removing discontinuities:

1. Press the LEGS key
2. Press the line select key after the discontinuity
3. Press the line key with the THEN prompt

ALSO: EACH KEYPRESS DENOTES AN ACTION VERY RARELY WILL
YOU ACTUALLY WANT TO DOUBLE-CLICK. DOUBLECLICKING CAN
EASILY HINDER YOUR PROGRESS

47

Appendix III: Context instructions

Additional Instructions

When Air Traffic Control gives you a directive to proceed directly to some waypoint,
use the following list of steps to accomplish this:

• When you are not yet on the LEGS page, Press the LEGS key to get to the
LEGS page.

• When you are on the LEGS page, Enter the desired waypoint in the
scratchpad so you can put it into the flight plan

• When you have your new destination in the scratchpad, Push the 1L key to
move the waypoint from the scratchpad into the first line of the flightplan.

• If “route discontinuity” appears on the screen, follow the procedure to
remove discontinuities to remove the discontinuity

• When you have modified your route and have removed all route
discontinuities, Verify the route on the Navigational Display to make
sure that the FMS has made the changes as you intended them

• When you have verified that the route modification looks ok on the
Navigational Display, Press EXEC to finalize the route modification.

There is a separate procedure for removing discontinuities:

• When you are not yet on the LEGS page, Press the LEGS key to get to the
LEGS page.

• If you are on the LEGS page and there is a discontinuity in one of the lines,
Press the line select key after the discontinuity to copy the waypoint
after the discontinuity in the route into the scratchpad.

• If you have the waypoint after the discontinuity in your scratchpad, Press
the line key with the THEN prompt to copy the waypoint after the
discontinuity into the line with the discontinuity, and reconnect the route.

ALSO: EACH KEYPRESS DENOTES AN ACTION VERY RARELY WILL
YOU ACTUALLY WANT TO DOUBLE-CLICK. DOUBLECLICKING CAN
EASILY HINDER YOUR PROGRESS

