

Maturing and Versioning an Architectural

Knowledge Repository

Hubert ten Hove
University of Groningen, the Netherlands

25th of May 2010

Maturing and Versioning an Architectural Knowledge Repository

~ 2 ~

Abstract

This thesis is written as a master thesis in cooperation with the research group SEARCH.

SEARCH does research into software architecture, the work in this thesis allows for more

research by upgrading and extending the current repository. This thesis answers two problem

statements, the first “The current repository is not mature enough” was needed to stabilize

our repository, the second “The repository is not able to store the evolution of a software

architecture”. First the repository needs to be stable before the current repository can be

extended with functionality that allows us to store this data. Our approach was also two

folded, first we analyzed the current server to get better insights into its workings, after

writing unit tests to validate the process constantly we upgraded the server on several fronts.

The second part also starts with a requirement analysis, to fulfill these requirements, existing

solutions where searched and custom solutions were proposed. All those solutions are

validated against the requirements using a custom framework; Performance was the main

requirement therefore a thorough performance test is done for all the proposed solutions. The

results in the framework presented the best solution and this was developed into a prototype.

The first problem statement stabilized our repository, and improved the performance by 50

times. Then the results of the research and the build prototype proved that the solution works.

And reevaluating the prototype against the requirements showed that it still fulfilled all of

them. Not only is the prototype sufficient for the needs of the research group, but it is also

build in such a generic way that it can be adopted into the Sesame architecture. First the

prototype and the rest of the system need to be tweaked and polished, this however is future

work.

Maturing and Versioning an Architectural Knowledge Repository

~ 3 ~

Acknowledgements
This thesis is the result of a long period of hard work. It was hard sometimes, and distractions

and side tracks are hard to leave alone. Nevertheless I am grateful that I got the opportunity to

work on such a great project and with such devoted people. This work could not have been

done without them.

First of all I would like to thank SEARCH group of the University of Groningen for allowing

me into their midst and performing research in collaboration with them and supporting me in

this process. In particular, I would like to thank my supervisor Anton Jansen for always being

there when I needed him, giving guidance and having insightful discussions about my work.

Also I would like to thank Paris Avgeriou for his input and support.

Secondly I would like to thank my parent for believing in me that I could finish this thesis and

my friends who stood behind me if I needed them giving a layman‟s opinion if I needed one,

bringing things into a different perspective.

Finally I would like to thank my girlfriend for being supportive throughout my thesis work,

for who at some times my mood must have been hard. Thank you for keeping up with me

when I got stuck with some problem and did not have much attention for other things in life.

Maturing and Versioning an Architectural Knowledge Repository

~ 4 ~

Contents

Acknowledgements .. 3
Contents .. 4
1 Introduction .. 6

1.1 Architectural Knowledge ... 6
1.1.1 Architectural Knowledge Management ... 6
1.1.2 Architectural Decisions .. 7

1.2 AK Repositories .. 7
1.3 GRIFFIN Project ... 8

2 Problem Statements .. 9
3 The Knowledge Hub .. 11

3.1 The existing Knowledge Hub .. 11
3.2 Requirements of the Knowledge Hub ... 12
3.3 Maturity problems of knowledge grid ... 13

4 Maturing to the knowledge hub ... 14
4.1 Step one: Error Prone Code ... 14

4.2 Step two: Faulty Data .. 15
4.3 Step three: Complex Queries Crash MySQL .. 15
4.4 Step four: No Inspection Mechanism .. 16

5 Maturity Evaluation .. 17

6 Storing Architectural Evolution ... 18
6.1 RDF ... 18

6.1.1 Inferencing ... 19

6.2 Unable to store architectural evolution .. 20

6.3 What is needed to store the architectural evolution ... 20
7 Requirements for storing evolutionary data ... 22
8 Potential Solutions .. 24

8.1 The Solutions ... 24
8.1.1 OMM .. 24

8.1.2 DBMS ... 24
8.1.3 Sesame with version control system .. 25
8.1.4 Extending Sesame .. 25

8.2 Scoping Solutions .. 25

8.2.1 Sesame with a version control system .. 25

8.2.2 Extending Sesame .. 26

9 Quantitative Evaluation .. 31
9.1 Identify the test environment ... 31

9.2 Identify performance acceptance criteria... 32
9.3 Plan and Design Tests .. 33
9.4 Configure test environment ... 34

9.5 Implement test design .. 34
9.6 Execute Tests ... 35
9.7 The Results .. 36

9.7.1 The committing use cases .. 36
9.7.2 The updating use cases ... 36

9.7.2.1 Analysis .. 37

9.7.3 Other metrics .. 37

9.8 Retesting and validating .. 37
9.9 Conclusion ... 38

10 Qualitative Evaluation .. 39

Maturing and Versioning an Architectural Knowledge Repository

~ 5 ~

10.1 Evaluation Framework ... 39
10.2 Qualification of the requirements .. 40

10.2.1 Sesame with SVN ... 40
10.2.2 Extending Sesame .. 42

10.3 Conclusion ... 45
11 Validation / Re evaluation .. 46

11.1 The prototype ... 46
11.1.1 The inner workings ... 46
11.1.2 The Logic ... 48

11.1.3 Rules for usage ... 49
11.1.4 The test cases .. 49
11.1.5 Queries ... 50

11.2 Validation ... 52
11.2.1 Storing Architectural Evolution ... 53

11.3 Re-evaluation ... 53
11.3.1 Storing and retrieving ... 54
11.3.2 Performance ... 54

11.3.3 Reliability ... 54
11.3.4 Implementation ... 54
11.3.5 Querying ... 54
11.3.6 Transparency .. 55

11.3.7 Maintainability ... 55
12 Related work .. 56

12.1 The Semantic web .. 56
12.2 RDF Repositories ... 56

12.3 Inferencers .. 57
12.4 Architectural Knowledge ... 57

12.5 Versioning systems .. 58
13 Conclusion .. 59

13.1 Future work .. 59

Literature .. 61

APPENDIX I The Performance Testing Report

APPENDIX II The LOFAR Domain Model

APPENDIX III The Meta Model

APPENDIX IV Query Results of the Prototype Repository

Maturing and Versioning an Architectural Knowledge Repository

~ 6 ~

1 Introduction
The main focus of this thesis is maturing and extending the GRIFFIN knowledge hub, a part

of the Knowledge Architect, a tool suite for software architecture. Software architecture is

part of the software development process, a process that consists of a set of activities that as a

result produces a software product. One of these activities is the creating of the software

architecture. Software architecture plays an important role in managing the complex

interactions and dependencies between stakeholders and providing a central artifact that can

be used for reference [12]. However it proves to be very difficult to understand software

architectures through their documentation. The documentation is only a description of the

design but it tells nothing about the rationale behind the design, e.g. which choices and

decisions made up the final design. This leads to serious problems in traceability in the

software architecture. Bosch [13] defines the following problems:

1. Lack of first-class representation;

2. Design decisions crosscutting and intertwined;

3. High cost of change;

4. Design rules and constraints are violated;

5. Obsolete artifacts are not removed from architecture;

6. Lack of stakeholder communication;

7. Limited reusability.

Problems 3 to 7 all follow from the first two problems, Lack of first-class representation, and

Design decisions crosscutting and intertwined. Without proper documentation about the

design decisions it is impossible to have a full understanding about the architecture, this leads

to mistakes in the maintenance and evolution of the software. The consequences of not

documenting those architectural decisions are well known in the software industry: expensive

system evolution, poor stakeholder communication, limited reusability of architectural assets,

and poor traceability between requirements, architecture, and implementation [12].

Architectural design decisions are part of the wider notion of architectural knowledge, which

is an emerging field in software architecture.

1.1 Architectural Knowledge

The last few years there has been a shift from software architecture to architectural knowledge

(AK). AK encompasses software architecture; it is not only the architecture but also the

knowledge needed to create that architecture. Therefore AK not only improves the

architecting process but also the architecture itself [14]. At the moment there is no agreed

upon definition for AK [15]. Some define AK as, AK = design decisions + design [16], others

as AK = drivers, decisions, analysis [17], and some also include the process and the people

aspects [18]. In this thesis, we embrace the view of the GRIFFIN project on AK:

“Architectural Knowledge is defined as the integrated representation of the software

architecture of a software-intensive system or a family of systems, the architectural design

decisions, and the external context / environment” [30].

1.1.1 Architectural Knowledge Management

Architectural Knowledge Management (AKM) is Knowledge management (KM) specialized

for AK. KM comprises a range of practices used in an organization to identify, create,

represent, distribute, and enable adoption of insights and experiences [35]. Knowledge and

AK can come in many forms and dimensions; one of these dimensions is the type of

Maturing and Versioning an Architectural Knowledge Repository

~ 7 ~

knowledge. In KM, there is a distinction between two types: implicit and explicit knowledge

[19]. Implicit knowledge, also known as tacit knowledge, is the knowledge that is in the heads

of people. Explicit knowledge is tangible knowledge; it is written down or modeled in some

document or source code. One of the challenges of software architecture, at the moment, is to

document this tacit knowledge to make it explicit instead of implicit knowledge.

AKM becomes more and more important as organizations want to improve their architectural

capabilities. Already several tools exist that specialize in AKM, Peng et al. gives an overview

of them [36]. In his paper, he gives an overview of the available tools for AKM and from

these tools and trough research he defines use cases needed for developing AKM tools. Some

of these use cases are implemented in the available tools while others are desired by

researchers in the field of AKM.

1.1.2 Architectural Decisions

Software architecture is much more that a set of models to describe a system, to construct

those models architects make decisions. Decisions have contexts, assumptions, drivers,

consequences, and considered alternatives. This knowledge remains tacit knowledge in the

head of the architect, but it is an essential part of the architecture and architecting process, that

needs to be documented. A developer is not able to explicitly derive these decisions from the

architecture models unless they are documented. Architectural Decisions (AD) have been

proposed as the missing link that bridges the gap between requirements, rationale, and

software architecture design by capturing their implicit relations [20, 21]. When tacit

knowledge is not documented, it is forgotten over time, this is called knowledge vaporization.

Awareness and standards for documenting AK would prevent knowledge vaporization [22]

and improve the traceability between the architecture and the requirements. The AD describe

how the requirements are addressed in the design, this allows the reader to understand the

rationale behind the design. Understanding the rationale behind the design allows for better

reuse, adaptation, maintenance, and evolution of the architecture. Looking at software

architecture in this way makes software architecture the result of a set of decisions [23].

1.2 AK Repositories

AK repositories are a specialized form of knowledge repository. They store AK allowing

users to store and retrieve the AK inside. The repository consists of an ontology, which

describes the knowledge domain of the knowledge that is stored inside the repository. There

are various formal languages to encode an ontology. The Web Ontology Language (OWL) is

the most frequently used and is defined by the W3C [33]. OWL can be used to build

ontology‟s; it can explicitly represent the meanings of terms in vocabularies and their

relationships [34]. It has build in facilities for expressing meanings and semantics which go

beyond the power of XML, RDF, and RDF-S. OWL does use the RDF (S) syntax but extends

it when needed.

OWL has the power to build an ontology for a specific domain, and to inference additional

data from the provided data. This inferencing system, also known as truth maintenance

system, uses the domain model to inference the additional data. And fits perfectly into the

vision of the Semantic web (web 2.0) in which information is given explicit meaning, making

it easier for machines to automatically process and integrate information available on the

Web.

Maturing and Versioning an Architectural Knowledge Repository

~ 8 ~

1.3 GRIFFIN Project

The GRIFFIN (a GRId For inFormatIoN about architectural knowledge) research project

focuses on the capturing, sharing, (re)using, and managing AK during the architecting

process. To do so the GRIFFIN project develops notations, tools, and associated methods to

extract, represent, and use architectural knowledge that currently is not documented or

represented in the system. The project emphasizes sharing architectural knowledge in a

distributed context. Consequently, the project will also devise tools and infrastructure to do so

in an integrated way [32].

The Griffin Repository

As envisaged by Zhuge [24], “Modern communication facilities, like the Internet, provide

people with unprecedented social opportunities for knowledge generation and sharing”. Zhuge

designed a knowledge grid to improve the generation and sharing of knowledge. The aim of

the GRIFFIN project is to create a knowledge hub for professionals involved in the software

architecture process. For this case, the GRIFFIN project created the GRIFFIN toolsuite. i.e.

the Knowledge Architect.

The Knowledge Architect

The GRIFFIN project created the Knowledge Architect (KA) to support the architecting

process [29]. The Knowledge Architect (KA) is an AKM tool suite for capturing, using,

translating, sharing, and managing AK [36]. At the center of the tool suite is the Knowledge

Hub, an AK repository, which is accessed by different clients [29]. Semantic Web

technologies are extensively used throughout the tool suite to allow for formal AKM. The tool

suite is created iteratively according to the needs and feedback of the case studies performed

at Astron [31]. The KA supports the following use cases defined for AKM [36].

1. View AK and their relationship

2. Trace AK

3. Share AK

4. Elicit/Capture AK

5. Integrate AK

6. Translate AK

7. Add/Store AK

8. Edit AK

9. Search/Retrieve AK

10. Check completeness of AK

At the moment the KA consists of one server and five client programs [29]. The server is the

knowledge hub; also known as the GRIFFIN repository. Here all AK is stored and interfaces

are provided for the clients to store and retrieve data. The Document Knowledge Client is a

MS Word client that allows capturing, storing and retrieving of AK inside MS Word

documents. For analysis models, similar tools have been developed, the Excel and Python

clients, both capture, store, and retrieve AK inside, respectively, excel or python quantitative

analysis models. The Knowledge Explorer visualizes the AK and their relationships. It

provides various visualizations to analyze the data inside the repository. The last client tool of

the KA is the Knowledge Translator. It can translate formal AK from one domain model to

another domain model. The tool manually or automatically makes a mapping between the two

domain models and translates it.

Maturing and Versioning an Architectural Knowledge Repository

~ 9 ~

2 Problem Statements
The first thing that was developed for the AK tool suite was the Knowledge Hub (repository).

Following was the development of the Document Knowledge Client which was connected to

the hub. Other case studies brought the need for further development of different tools for the

KA tool suite. During these developments it became obvious that the current repository was

not able to provide the required stability. The repository proved to be stable enough for the

initial case studies, but due to increased usage it started to show problems. The repository

seemed to possess some errors and crashed on some queries. Also initial signs of performance

issues where emerging, through the growing amount of data inside the repository. From

experience the first problem statement was formulated:

PS1: The current repository is not mature enough.

From this problem statement four research questions can be derived.

RQ1 What are the maturity problems and what is causing them?

RQ2 What are potential solutions to address the aforementioned causes?

RQ3 What potential solutions to use?

RQ4 Do the solutions solve the maturity problems?

Another case study in the GRIFFIN project revolved around tracking the evolution of

software architecture documentation (SAD). The aim was to see how software architecture

documentation changed and evolved over time. To facilitate this, the knowledge from and

changes to the SAD needed to be stored somewhere inside the Knowledge Hub and the AK

tool suite should be able to work with it. This lead to the following problem statement:

PS2: The repository is not able to store the evolution of a software

architecture documentation.

From this problem statement six research questions can be derived.

 RQ5 Why is the repository not able to store the evolution of a software architecture?

 RQ6 How to store evolution of a software architecture in a knowledge repository?

 RQ7 What are the requirements for tracking the evolution?

 RQ8 What are the potential solutions for tracking the evolution?

 RQ9 Which solution is the best one?

 RQ10 How to validate whether the chosen solution meets the requirements?

In the following chapters the defined research questions will be addressed. The first three

chapters address problem statement one: Chapter three addresses the problems that the current

repository has and the requirements that follow from these problems (RQ1). The next chapter,

Maturing and Versioning an Architectural Knowledge Repository

~ 10 ~

four, reviews the potential and the chosen solutions to the problems (RQ2 & RQ3). Chapter

five gives a conclusion and answers RQ4, i.e. do the solutions solve the maturity problems.

The next five chapters address problem statement two. The second part of this thesis

addresses problem statement two. First chapter six describes why the current repository is not

able to store architectural evolution data, and what is needed to store that data (RQ5, RQ6).

Chapter seven presents the requirements for tracking the evolution of software architecture

(RQ7). The potential solutions for this problem are in chapter eight (RQ8). Chapters nine

presents a quantitative evaluation of the potential solutions and chapter ten does a qualitative

evaluation using a framework (RQ9). And chapter eleven validates the chosen solution by

building a prototype (RQ10). In chapter twelve the related work for this thesis is presented.

Finally, chapter thirteen presents the conclusion of our work and future directions.

Maturing and Versioning an Architectural Knowledge Repository

~ 11 ~

3 The Knowledge Hub
At the start of the project the knowledge hub was in its early stages of development. The

further developing of tools to add to the AK tool suite showed problems on different levels in

the knowledge hub. The hub proved to be prone to errors, had badly written code, and slowed

in performance due to increasing amounts of data and higher demands. The current repository

was not deemed mature enough to handle all the needs. To identify the problems a good

understanding of the current repository was needed.

3.1 The existing Knowledge Hub

The existing Knowledge Hub was developed incrementally as different case studies needed

different kind of the tools and functionality. A the start of the project it was decided to use

Sesame as the central repository of the knowledge hub. Sesame is an open source Java

framework for storing, querying, and reasoning with RDF and RDF Schema [7]. It is a

database for RDF or RDF Schema and provides a framework for applications to implement

RDF internally. Different data stores can be connected to Sesame, initially the choice was

made for MySQL due to its scalability and easy implementation. Figure 1 shows the existing

knowledge hub as it was build supporting the first case studies. On the left we see Protégé,

Protégé is a free, open-source platform that provides a suite of tools to construct domain

models and knowledge-based applications with ontology‟s [37]. The GRIFFIN project used

protégé to build their domain model in OWL format, which could be inserted into the Sesame

repository. This OWL file is inserted through the Sesame web interface that Sesame provides

for apache tomcat. The client allows the uploading of OWL files, explore, export and insert

the data inside the repository. On the right side of Figure 1 we see a Sun Application Server;

this server is used to host the Knowledge Server Implementation (KSI). The KSI is developed

by the GRIFFIN project it was a layered java application that provided the connection with

Sesame, the logic to handle the data for insertion and retrieval, and an interface that could be

accessed by client programs. Jax-ws was used to make this possible, Jax-ws is a Java API for

XML web services, it provides an XML interface which allows for connecting remote clients

[38]. The choice for Jax-ws was needed to connect the Document Knowledge Client (DKC) to

the knowledge hub. Since the DKC was programmed in .NET and Sesame is written in Java

web services are ideal to connect different technologies and languages. The other client that

was connected to the Knowledge Hub was the Knowledge Explorer.

Sun Application Server

Knowledge Server

Implementation Jax-ws

Sesame 1

Document

Knowledge

Client

Knowledge

Explorer

Appache Tomcat

Sesame 1Protege
OWL file

MySQL

Figure 1 The existing knowledge hub

Internally Sesame is able perform RDF Schema inferencing. Inferencing is one of the new

technologies that the Semantic Web offers, it is like automated deductive reasoning, it

Maturing and Versioning an Architectural Knowledge Repository

~ 12 ~

deduces (inferres) new information from information that is already known. Sesame comes

with its own basic inferencing engine, it infers new data from the data that is inserted into the

repository and the data already present in there. The initial choice was to use this inferencing

engine in the first system.

3.2 Requirements of the Knowledge Hub

The existing system, as described above, fulfills some of the use cases as seen in section 1.3.2,

others are not supported because the tools, for those use cases, where not developed at that

moment. At this point the only interest lies with the use cases that involve the Knowledge

Hub itself and not the connecting client programs. These are the following use cases:

1. Share AK

2. Integrate AK

3. Add/Store AK

4. Search/Retrieve AK

5. Check completeness of AK

So what we expect from our Knowledge Hub is that it allows for storing and retrieving

(sharing) AK, it integrates this knowledge based upon a common domain model. For these

use cases the following prioritized requirements where defined:

1. Performance

2. Reliability

3. Transparency

4. Maintainability

Performance

Performance was identified first, without a good performance users would never use the

system. While working with the system the users should have a good response time of the

system. This is why performance has the highest priority, because if no one wants to work

with the system, it is useless.

Reliability

Reliability ensures that the system handles errors correctly instead of crashing and data

inserted or retrieved from the system may not be corrupted. A high reliability is needed.

Corrupted data is of no use to anybody and a error prone system is never used. Therefore this

property gets the second priority.

Transparency

Transparency had the third priority; it means that users do not need to have knowledge about

the system to be able to work with it. The provided tools must be easy and intuitive to use.

Secondly it means that the system must also be transparent for developers, it must be clear to

see where to adapt the system and what parts of the system provide which functionality. If

these requirements fail, users will not be able to work with the system correctly and

developers will have a hard time developing or adapting the system.

Maintainability

Maintainability was identified, because the development for new tools for the KA tool suite is

an ongoing process. It stands to reason that the Knowledge Hub also has to be adapted or

evolved from time to time. Therefore a good maintainability is needed, it ensures that code is

well written, structured and documented and the architecture of the Knowledge Hub allows

for easy integration of new clients.

Maturing and Versioning an Architectural Knowledge Repository

~ 13 ~

3.3 Maturity problems of knowledge grid

At the start of the project the requirements where defined. Later the first knowledge hub was

build and it fulfilled those requirements in most ways, performance and reliability where

good. The transparency was ok but could be improved. Maintainability was poor and

implementation was good, since most technologies used where off the shelve components.

Also the querying mechanism in Sesame was very good. All together the first knowledge hub

fitted the demands needed from the system. The problems started emerging when more tools

where developed for the KA tool suite and more complex queries where required. Three

maturity problems (MP) where identified:

MP1: Error prone code

The first problem emerged after the need for some complex queries. Data was corrupted and

the system was not able to handle errors. The indentified cause was the poorly written code in

the knowledge server implementation. In total about 30 issues were identified. This violated

the reliability and maintainability requirements and in the long run could also affect the

performance.

MP2: Faulty data

Secondly after a thorough inspection of the inserted data, some of the expected inferenced

data was not present. There were three possible causes identified; the OWL model build in

protégé was not complete, The inserting code contained errors, and the Sesame inferencing

engine was not good enough. This posed a serious problem to our reliability constraint.

MP3: Complex queries crash MySQL

With one of the new case studies there was a need for very complex queries. These queries

degraded performance and some crashed the MySQL database. The where two possible

causes identified; the first was that the queries where formulated wrongly, and secondly that

MySQL just was not able to cope with such complex querying. This problem also relates to

the reliability but it also affected the performance.

Maturing and Versioning an Architectural Knowledge Repository

~ 14 ~

4 Maturing to the knowledge hub
In the previous section, the maturity problems and their possible causes to the existing server

where identified. This section explores those causes, seeks, and implements the solutions to

results in a more mature knowledge hub. The improvements to the hub where done in an

iterative way following the identified problems. Figure 2 shows the iterative steps that were

taken. In section 3.3, three problems were identified but there are four iterative steps; this is

because the third step raised a problem that is addressed in the fourth iteration step.

Initial

Knowledge Hub

Source code

fixed

Improved

Inferencing

Step 1 Step 2

Memory storage

Http

Connection /

Matured System

Step 3

Step 4

Figure 2 The Iterative Maturing Steps

4.1 Step one: Error Prone Code

The first identified problem of the Knowledge Hub was the error prone code. After a thorough

review of the available code several problems were identified:

- Methods not always produced the expected result;

- The system was not able to handle errors and crashed;

- The code was devided into three layers; database connection, logic and interface, but

the different roles of the layers where intertwined;

- There was almost no documentation in the code.

The first implemented solution was the development of unit tests. Trough these tests problems

in the code could be identified and addressed. The unit tests constantly check if the methods

produce the expected results, positive and negative unit tests were used. The code was

refactored and rewritten until all unit tests succeeded. To enable the system to handle errors

java exceptions were added to the code. Try and catch statements intercepted the errors and

gave the user a proper notification of what went wrong. Through the catching of errors the

system stayed in running order after an error instead of crashing. Next the code was

restructured, all methods and source code was moved to the correct layer to improve the

overall understanding of the code. During all the previous fixes to the code Javadoc was

added to the fixed areas and the rest of the code. Figure 3 shows the Knowledge Hub, the

structure did not change. The red highlighted area shows the part of the hub were all the

problems were located and fixed.

Maturing and Versioning an Architectural Knowledge Repository

~ 15 ~

Sun Application Server

Knowledge Server

Implementation Jax-ws

Sesame 1

Document

Knowledge

Client

Knowledge

Explorer

Appache Tomcat

Sesame 1Protege
OWL file

MySQL

Figure 3 Result of Step One

4.2 Step two: Faulty Data

After inspecting the data inside the repository through the Sesame web interface provided by

Tomcat, we found that some data was not inferenced correctly. Three possible causes where

identified for this problem. The first was a possible fault in de code. The inserting queries

where tested through the web interface, they seemed to be working correctly. The second

possible cause was a fault in the OWL file. The OWL file was reviewed and using protégé

some fine tuning was done, it made some improvements, but still faulty data emerged. The

last cause that was considered was that the sesame inferencing engine was not robust enough.

Sesames architecture allows for attaching different inferencing engines. The default Sesame

inferencing engine only allows RDF Schema inferencing but cannot handle full OWL, but it

was thought to be sufficient at the start of the project. After reviewing several inferencers, the

best replacement seemed to be OWLIM an inferencing engine that can be connected to

Sesame that allows for RDF Schema and OWL inferencing. Figure 4 shows where the

OWLIM inferencing engine was placed.

Sun Application Server

Knowledge Server

Implementation Jax-ws

Sesame 1

Document

Knowledge

Client

Knowledge

Explorer

Appache Tomcat

Sesame 1
Protege

OWL file

MySQL

OWLIM
OWLIM

Figure 4 Upgrade With The OWLIM Inferencing Engine

4.3 Step three: Complex Queries Crash MySQL

The development of new tools for further case studies demanded complex queries on the data

inside the repository. MySQL seemed to crash on these queries. There were two possible

causes identified, the first assumption was that the involved queries where formulated

incorrectly and the second was that MySQL was just not able to cope with such complex

querying. After validating and optimizing the queries it was obvious that the fault lay with

MySQL. Sesame offered the possibility to store the data in several ways, MySQL was chosen

since it has good scalability. But it also proved to be a bit low on performance after inserting a

few million triplets. We needed a replacement for MySQL with a faster repository that would

Maturing and Versioning an Architectural Knowledge Repository

~ 16 ~

not crash on our queries, the choice was made to enable the Sesame Memory Store. Sesame

has an integrated memory store that is optimized for triplet storage; it stores all the triplets

into the memory, skipping slow mechanisms like hard drives. The memory store synchronizes

to a local file storage to save the data on a shutdown. This implementation proved to work

with our queries but meant a change in the system architecture. Figure 5 shows the new

system architecture. Tomcat has been removed, since the memory store is not a shared

repository and has to be initialized locally. It makes the architecture cleaner however it raised

another problem. The sesame web interface is not accessible anymore so developers and users

are no longer able to inspect the data inside.

Sun Application Server

Kowledge Server

Implementation Jax-ws

Sesame 1

Document

Knowledge

Client

Knowledge

Explorer
Protege

OWL file

Memory

Database

OWLIM

Figure 5 System With the Memory Store Upgrade

4.4 Step four: No Inspection Mechanism

The last step in addressing the maturity problems of the Knowledge Hub introduced a new

problem in our Knowledge Hub; the ability to inspect data inside the Knowledge Hub through

the Sesame web interface. For users this is no problem but it was for developers. To solve this

problem the repository was moved back to Tomcat with the preservation of the previously

introduced memory store. This was done using a HTTP connecting that Sesame offers. Figure

6 shows this final upgrade to the system. Sesame with an OWLIM inferencer and a memory

store is loaded in Tomcat providing us with the web interface. The Application Server makes

a HTTP connection to Sesame and forwards all requests to Tomcat.

Sun Application Server

Matrix Server

Implementation Jax-ws

Sesame 1

Matrix Word

Client

Matrix Explorer

Appache Tomcat

Sesame 1

Protege
OWL file

Memory

Database

OWLIM HTTP Connection

Figure 6 The Final Matured System

Maturing and Versioning an Architectural Knowledge Repository

~ 17 ~

5 Maturity Evaluation
The final research question connected to the first problem statement was, did the upgrades

solve our maturity problems. In this sections the implemented solutions, chapter four, and

their impact on the requirements is evaluated.

The first problem, MP1, see chapter 3.3, was the error prone code which had a very negative

impact on the maintainability, the transparence, and reliability. The upgrade of the code

solved those problems. The implementation of the unit tests ensured a better maintainability

since every test can be run again after changing the source code to check if everything is still

in working order after the changes. Then the exceptions where implemented to improve

reliability, good error handling and avoid the crashing of the system. The division into a three

layered structure greatly improved the transparency for developers. To improve the

performance some of the queries where combined, each time a query is run the inferencer was

triggered and this slowed the repository. The combining of queries improved performance.

And finally adding documentation throughout the code improved its maintainability and

transparency.

The second problem, MP2, see chapter 3.3, in the Knowledge Hub was the faulty data after

insertion. Several causes where identified but the final solution proved to be the

implementation of the OWLIM inferencing engine. The implementation of OWLIM

improved the reliability of the data and as a side effect also boosted the overall performance.

The review and optimization of the existing queries also boosted the performance slightly.

The final identified problem, MP3, see chapter 3.3, was that complex queries seemed to crash

MySQL. The cause seemed to be MySQL which could just not handle large amounts of data

and those complex queries. MySQL was switched for the Sesame Memory store. The

implementation of the memory store did not only improve the reliability but also made a

significant boost in performance. The memory store is optimized for triplets, which MySQL

is not. In the old system deleting took about 50 seconds, the memory store boosted that to 0.5

seconds, a factor 100 performance increase. On the downside the ability to inspect the data

present in the Knowledge Hub through the web interface was lost, sacrificing maintainability.

To counter this problem the HTTP connection was implemented. It sacrificed a bit in

transparency for the developers but the improved maintainability was deemed more

important.

Looking at the overall picture the implemented solutions solved the maturity problems and

the Knowledge Hub is much more mature in its final form. Through the upgrades not only the

identified problems with their related requirements where solved but also a significant gain in

performance was achieved.

When looking at the future of the system we can conclude that it has become much more

transparent, through the HTTP connection multiple clients can connect directly to the

Knowledge Hub skipping the resource consuming Application Server. The Document

Knowledge Client is the only one that needs the Application Server due to interoperability

between .NET and Java. The Knowledge Explorer at the moment is connected through the

Application Server but can be adapted to work with a HTTP connection.

Maturing and Versioning an Architectural Knowledge Repository

~ 18 ~

6 Storing Architectural Evolution
The knowledge architect tool suite is in ongoing development, it is driven by needed

functionality of different case studies. One of the desired case studies was tracing of the

evolution of software architecture documentation. To see how an software architecture

documentation evolves over time could give insights into the architecting process. The idea

was to store the evolutionary data inside the Knowledge Hub. However the existing repository

was not able to store this evolutionary data, this lead to the formulation of the second problem

statement: “The repository is not able to store the evolution of a software architecture”. This

chapter goes into the first two research questions that followed from that problem statement:

RQ5, “Why is the repository not able to store this data?” and, RQ6, “how to store this kind of

data?”. Before we can answer these questions we first need a better understanding what

evolutionary data is.

Architectural evolution can be seen as the evolution of the software document. At the start of

the architecting effort the architect makes an initial document which is refined (evolves) over

time. This initial document changes: parts are added, rewritten, changed, or even removed. To

store the evolution of the document all those changes have to be stored somewhere. So why is

the Knowledge Hub not able to store this evolutionary data (RQ5)? First let‟s take a look at

the inner workings of the repository i.e. Sesame.

6.1 RDF

The core of the Sesame repository is RDF. RDF stands for Resource Description Framework

and it is the basis for the semantic web. RDF was created in 1999 as a standard, which

extended XML for encoding metadata. A later released version of RDF provided the means to

create relations between things in the real world: People, places, concepts, etc. An RDF

statement is composed of three parts, Subject, Predicate, and Object, also called a triple.

Every sentence describing things can be decomposed into a triple,. For example if we take the

sentence, “Hubert is studying computer science” it translates to the following triples: The

subject is Hubert, the predicate is studies, and the object is Computer science. Everything in

an RDF repository is modeled using statements. RDF ontology‟s describe these relations

between high level things so applications know how to interpret them. Later RDF Schema (S)

was introduced it extended RDF with classes and allowed the user to specify a domain or

range for predicates. Another extension to RDFS was OWL, this allowed the user to specify,

symmetric, transitive, functional and inverse properties to predicates. These properties allow

computers to interpret the available data even better and with the use of inferencing generate

new data.

A software architecture document, also called an Artifact, consists of many separate pieces of

knowledge we call Knowledge Entities. In RDF, this oversimplified domain would be

described by the following triples:

Subject Predicate Object

Artifact owl Thing

Artifact documentName String

Artifact consistsOf KnowledgeEntity

Artifact ID integer

KnowledgeEntity owl Thing

KnowledgeEntity ID integer

KnowledgeEntity partOf Artifact

Maturing and Versioning an Architectural Knowledge Repository

~ 19 ~

The table shows that an artifact consists of Knowledge Entities and has three other properties

one of which is owl Thing, which is a default property for OWL. It has an ID and a

documentName. The KE has the same reverse relation in that is part of an Artifact and has

also a owl Thing property and it has an ID. Of course in a real scenario there would be much

more properties and relations between more classes than just Art and KE. But for this

example this is enough. When this is loaded into the repository we can insert the following

triples.

Subject Predicate Object

Art_123 type Artifact

Art_123 ID 123

Art_123 documentName Example.xls

After committing the previous triple, the repository knows, though the first triple that Subject

Art_123 is of the type Artifact. Then we will insert the following triples

Subject Predicate Object

KE_432 type KnowledgeEntity

KE_432 ID 432

KE_432 partOf Art_123

The first triple again makes from Subject KE_432 a Knowledge Entity. The second triple sets

its ID property and the final triple connects the KE to the object Art_123 which the

inferenecer knows is an artifact. And through the rules described in the table above the

inferencer creates the following triple in the repository.

Subject Predicate Object

Art_123 consistsOf KnowledgeEntity_432

Of course all sorts of triples can be inserted into the repository, but the inferencer cannot do

anything with them since it has no knowledge of their domain. We can now query the

repository and ask it, which knowledge entities are connected with Art_123. Through the

inferenced triple the repository knows that it is KE_432.

6.1.1 Inferencing

Inferencing is also called truth maintenance; it is a process that draws conclusion through

applying rules. The conclusion that the system draws is called an inference. There are two

types of inferences that can be made, deductive and inductive, Sesame‟s inferencer is

deductive. So for the scope of this thesis inferencing can be seen as deductive reasoning. A

simple example suffices to see the working of our inferencer. Say we have the following two

statements:

- All knowledge entities are objects

- KE_432 is a knowledge entity

We know now through deductive reasoning that KE_432 is an object. The first statement “All

knowledge entities are objects” is one of the rules that is contained in our OWL file. The

second one is a typical statement that can be inserted into the repository. When the inferencer

is triggered it creates a new statement that says KE_432 is an object and stores that into the

Maturing and Versioning an Architectural Knowledge Repository

~ 20 ~

repository. This is a very simple example but the workings of the inferencing engine are clear.

All statements that are inserted are validated against the rules of the model and are defined in

our OWL file.

6.2 Unable to store architectural evolution

Looking at the basics of RDF, it is composed of triples, namely: Subject, Predicate, and

Object, it must be clear that we cannot assign a versioned property to a single statement; there

is just no room for it. The other problem is that our OWL is also build out of triples, we could

assign a version property to the classes in our OWL model, like the artifact or knowledge

entity class, but we would be unable to query for them since everything is still stored in

triples. Example: The Artifact class has a predicate version that contains its version and it has

a predicate hasText that contains some text. The following statements are then added to the

Artifact model.

Subject Predicate Object

Artifact version Integer

Artifact hasText String

Lets assume there is an Art_123 is inside the repository and it‟s version is three. The

repository would then contain the following triples.

Subject Predicate Object

Art_123 type Artifact

Art_123 ID 123

Art_123 documentName Example.xls

Art_123 version 3

Art_123 hasText “original text”

Art_123 hasText “changed text”

Art_123 hasText “rechanged text”

It can be clearly seen that the artifact is in version three, but which triple is assigned to this

version can never be determined. Single triples have the same problem since it is a triple it

cannot be assigned an extra property like a version number. A query requesting the text of

Art_123 will have three results instead of the desired one result, which is the latest change of

Art_123. We could remove the older versions of the text, but then they could never be

retrieved. Therefore the current repository is not able to store versioning information.

6.3 What is needed to store the architectural evolution

The need of the GRIFFIN project and the solution to the second problem statement is

versioning. So how can the Knowledge Hub store evolutionary data (RQ6), by adding

functionality to store versioning data or integrating an existing versioning system. In the

following chapters the search for such a system to integrate into our knowledge hub is

described. First, in chapter seven, we address the requirements needed for such a system

(RQ7). Chapter eight then reviews the potential solutions for such a system (RQ8). In chapter

nine and ten, a quantitative and qualitative evaluation is performed to see which solution is

the best (RQ9). Chapter eleven evaluates the chosen solution with respect to our requirements

Maturing and Versioning an Architectural Knowledge Repository

~ 21 ~

from chapter eight (RQ10) chapter twelve discusses the related work and we conclude our

work and elaborate on future work in chapter thirteen.

Maturing and Versioning an Architectural Knowledge Repository

~ 22 ~

7 Requirements for storing evolutionary data
In the previous chapter, it was made clear that the current repository is not able to store the

evolutionary data. To enable the repository to store the data there was the need for some sort

of a versioning system. To select the needed system, a good understanding of the

requirements is needed (RQ7). The basic system at least supports storing and retrieving of

(versioned) data. Branching, merging and locking are optional and not required for the initial

system. In section 3.2 the use cases for a Knowledge Hub where stated, some of these original

use cases have to be adapted somehow to fit the versioning system. Sharing, Integrating and

the Checking of the completeness of AK stay the same. The ones that change are the storing

and retrieving of AK. From these use cases the following functional requirements of the

system are defined:

- Storing

- Retrieving

- Implementation

- Querying

Storing

The original use cases already provided this requirement, but the versioning part of the system

needs some more specifics in the storing functionality. Not only must the Knowledge Hub be

able to store this information, but it must also provide means to automatically version the data

that is stored inside.

Retrieving

As was the case with storing, also retrieving is seen in a different way when there is a

versioning system in place. The standard way to retrieve data stayed the same, it retrieved the

data of the current version. But functionality must be implemented to allow for the retrieval of

older revisions. The user must be able to retrieve older versions of complete artifacts and of

single knowledge entities.

Implementation

Implementation was identified as a property to keep in mind the available tools instead of

developing to much own code. Implementation refers to the effort it will take the developer to

implement the solution. Is there an off the shelf piece of software that can be used? Is there

one place in the system that has to be adapted, or do we need to change and add code all over

the system?

Querying

The final property was querying, it is the means of communication with the collected data. Is

there a query language available to communicate with the repository and access our data? Or

does the developer needs to program his own code? Does the query language allow for a

simple query procedure or is there a need for a difficult and adapted process? A good

querying mechanism ensures that queries are validated, and is powerful enough to retrieve

only the desired data instead of having to parse the retrieved data afterwards.

In section 4.2, the non functional requirements for the Knowledge Hub where defined. These

requirements, of course, still apply to the entire system. The final system should also fulfill

these requirements. The potential solutions must then confirm to the following set of

requirements:

Maturing and Versioning an Architectural Knowledge Repository

~ 23 ~

1. Storing

2. Retrieving

3. Performance

4. Reliability

5. Implementation

6. Querying

7. Transparency

8. Maintainability

The first two properties; storing, and retrieving are a must for the system for without them the

system will never function. After that, performance is the most significant property and on the

second place is reliability. A system that has a bad performance and is not reliable will never

be used! The other properties are listed in order of importance.

Maturing and Versioning an Architectural Knowledge Repository

~ 24 ~

8 Potential Solutions
Now that we know the requirements, potential solutions can be sought that fulfill this set of

requirements. The first part of this chapter gives an overview of those potential solutions. The

first one is OMM, an extension for Sesame that tracks changes. Secondly, DBMS‟s are

considered, Sesame by default can use a few of them. Finally two custom solutions are

introduced, one adapts existing versioning systems like SVN the other is a custom build into

the Sesame architecture. The second part of the chapter reviews the potential solutions in

depth.

8.1 The Solutions

Since ontology‟s and RDF(S)\OWL are a rather new and emerging field within software

engineering there is not much software written for them at the moment. Most software is still

in alpha or beta stage, and the available software is still at the early stages of development

with still lots of features to add. The ideal solution is a system that integrates versioning for us

with Sesame or extends Sesame. OMM is such a tool, which stands for Ontology Middleware

Management and extends the Sesame repository with the ability to track changes. Next to

OMM Sesame can store it‟s data inside DBMS‟s, namely MySQL PostgreSQL and Oracle,

each of them can be equipped with versioning capabilities. Another solution that would

require some customization are existing versioning systems like SVN, are they adaptable to

work with Sesame. Finally a fully custom solution is proposed that extends the Sesame

architecture with versioning.

8.1.1 OMM

OMM is an extension for the Sesame RDF repository; it supports tracking of changes, meta-

information, fine grained access control and multi-protocol client access [10]. OMM‟s ability

to track changes is a form of versioning, OMM stores the changes made to the triplets inside

the meta-information, to be able to do this it upgrades the default Sesame triples with two

extra properties. OMM creates an update ID inside the meta-information each time an insert

or remove is performed on the repository. To retrieve older versions, OMM branches the

current repository and calculates backwards to the selected update ID. Also there is the

possibility to assign a version number to an update ID through the Sesame web interface!.

OMM seems like the perfect solution for our problem, it integrates with Sesame, it provides

versioning functionality and is as fast as Sesame itself. But a closer look at the workings of

OMM shows that it cannot be used. OMM is an extension to the Sesame triple store, in which

it stores its adapted triples. But instead of versioning on triple or even object level OMM

versions on the entire repository. Meaning that for a user it is virtually impossible to work

with versioning, since for each version of an object or triple the state of the entire repository

has to be calculated at that version. It is not only a very time consuming process, but the

repository will contain more than one model. And OMM is not capable of distinguishing

between models since it versions the entire repository. Adapting OMM is not possible since

the idea behind the system, versioning on the entire repository, is fundamentally different

from what we need, triple of object based versioning.

8.1.2 DBMS

Sesame can connect to various DBMS systems: MySQL, PostgreSQL and Oracle, these

DBMS systems can be equipped with versioning systems. MySQL has the PBXT storage

engine [42], PostgreSQL has Post Facto [43], and Oracle also has several version control

Maturing and Versioning an Architectural Knowledge Repository

~ 25 ~

systems [44]. Looking at different performance test available online we can conclude that the

performance of MySQL, Postgres, and Oracle is not far apart [45][46][47]. Some test

conclude that MySQL is faster some say Postgres is faster, Oracle is always considered fast

but only if you have serious hardware. The difference in performance between the three

DBMS systems is at maximum factor two. In chapter 4.3, the MySQL DBMS was removed

from the knowledge hub to solve some problems and improve the performance of the overall

system, the result was that the default Sesame memory store was 100 times faster than

MySQL. Thus integrating an DBMS with versioning capabilities would imply at drop in

performance of 5000%. The conclusion was that hard disk based DBMS systems simply

would not provide us with enough performance, which is our main requirement, thus ruling

them out as potential solutions.

8.1.3 Sesame with version control system

A custom solution that uses a version control system to handle versioning, while Sesame is

used for the most current version. The triples for each object are put into a separate file, those

files will be inserted into the version control system, letting it handle the versioning.

8.1.4 Extending Sesame

The idea is to extend Sesame itself with versioning capabilities. To do that a new

implementation of the Sesame Memory Store is developed that will handle the versioning.

The versioning information is then stored inside the context, a fourth property added to the

default Sesame triple that is introduced in Sesame two.

8.2 Scoping Solutions

The previous section started out with four possible solutions, OMM and RDBMS were ruled

out. This section focuses on the remaining two solutions and provides in-depth views of both

solutions. First a closer look at integrating Sesame with a version control system like SVN,

secondly, extending Sesame with versioning capabilities.

8.2.1 Sesame with a version control system

Version control systems manage changes to documents, source code, and other files. Some

well knows systems are CVS, SVN and GIT, but much more exist [40]. Most of these systems

have a similar inner working; they calculate deltas for each updated or changed file that is

inserted. A delta contains the information about the changes made to the file and through this

information the older states of the file (version) can be calculated. All of these systems

provide an interface to access and retrieve those stored versions of a file.

8.2.1.1 Using SVN as a versioning system

The idea was to equip Sesame with some form of versioning layer that directly connects to a

version control system. The choice for SVN as a version control system was made because it

is well know, developed, stable and has a Java API. The basic idea was to export the data into

files and insert them into SVN letting SVN deal with the versioning. This is modeled in

Figure 7, here the Knowledge EXtractor (KEX) parses all knowledge from the inserted

models and creates a collection of files from them, next to that it inserts the knowledge into

Sesame, updating the current version that is kept inside the repository. The collection of files

is inserted into SVN, letting SVN deal with the versioning of those files. Other programs of

the KA tool suite, like the Matrix Explorer (MEX), can then connect to the SVN to work with

the versioned data. The data for the current version the MEX, and the other clients, retrieve

Sesame, for the versioned data they need a connection with the SVN, through a custom layer.

Maturing and Versioning an Architectural Knowledge Repository

~ 26 ~

The retrieved data is stored in a small local Sesame memory repository on which the MEX is

able to perform the same queries as the remote repository. The MEX is then able to present

the user with a visual representation of the current and versioned data. When working with the

current version the user is able to update certain relationships that KE‟s have. This

information is stored locally during the session of the user and when he commits these

changes, they are stored within Sesame and the SVN versioning information is updated.

KEX

SVN

Sesame Repository

Inside the MEX

Collection of Files

Build

Insert Into

Matrix Explorer

Update data retrieved

From SVN.

Query for visualization

Get data of current version

Get Versioning info out of

SVN to show changes

Insert a file with relationship data

Figure 7 The SVN solution

8.2.1.2 Potential Pitfalls

Although the basic idea is good, and provides an easy way to handle versioning, it does have

some potential pitfalls that have to be taken into account:

- When generating files from sesame we do not know in which order the triples are

written to the files, it must be check if SVN can handle this instead of marking a file

changed when it is only ordered in a different way.

- The generation of files is an IO process; IO considerably degrades performance.

- There is no query language for SVN. A custom versioning layer has to be developed

for all clients.

8.2.2 Extending Sesame

The second custom solution was based on the current Sesame repository. Since the repository

is already the center of the knowledge hub a direct integration of a versioning system would

be the logical choice. The existing knowledge hub works on Sesame 1 which is a triple store,

the solution proposed here works with Sesame 2 a quad store, it adds an extra property to the

triples named context. This extra property is used to build a versioning system based on

Maturing and Versioning an Architectural Knowledge Repository

~ 27 ~

triples within Sesame 2. To be able to explain this properly let‟s first take a look at the inner

workings of Sesame 2.

8.2.2.1 The inner workings of Sesame

In Figure 8, the Sesame 2 Architecture is shown [41]. On the lowest layer we see the RDF

Model; this model is the foundation of the Sesame framework. Because Sesame is an RDF-

oriented framework, all of its parts are in some way dependent on this RDF model. The model

defines the interfaces and contains implementation for all basic RDF entities.

On top of the RDF Model we find RIO, RIO stands for RDF I/O. It consists of a set of parsers

and writers for the RDF file formats. These parsers are used to translate RDF files to sets of

statements, the writers perform the reverse.

Next to RIO we find the Sail API, which stands for Storage And Inferencing Layer. This is a

low level System API that is used for RDF stores and inferencers. The memory store that is

used in the current system is an implementation of the Sail API, as is OWLIM.

The HTTPClient layer is used to communicate with a HTTP Server which is found in the

upper layer. This allows for the remote HTTP connection that is used in our current

Knowledge Hub.

The third layer is the Repository API, it is a high level API that offers developers a number of

methods for handling RDF data. It offers methods for uploading data files, querying,

extracting and manipulating data. This layer has various implementations, the two most

common are the SailRepository and the HTTPRepository. Sail translates all calls to access the

Sail implementation; the HTTP translates and transports those calls over HTTP.

Figure 8 The Sesame 2 Architecture

8.2.2.2 Our Solution

In the current knowledge hub clients, like the Knowledge EXtractor (KEX), connect to the

Knowledge Hub through a HTTP connection. The idea was to implement version control

inside Sesame on the server side making it directly available to all clients. The challenge is

not to harm the original working of the repository. The version control system will be a new

implementation of the Sail API. A versioned remake of the existing “Sesame Memory store”.

The original SailRepository is left untouched hiding the implementation of the versioning

systems for the clients. Figure 9 shows the proposed solution, the client application

implements a HTTP connection to the Knowledge Hub where the data passes through the

internal layers of Sesame.

Maturing and Versioning an Architectural Knowledge Repository

~ 28 ~

RDF Model

VersionedMemoryStore

SailRepository

Client
HTTP

HTTP Server

Figure 9 The Layers of the Proposed Versioning System

The SailRepository will give us the proper means to insert, update and delete (versioned) data.

This layer will then forward these requests to the VersionedMemoryStore where the

versioning system will be located. This versioned memory store will intercept all Insert and

Delete operations that are sent to the repository and will use that data to construct insert and

delete deltas in a similar way that versioning systems like SVN do. To store these deltas

inside Sesame, Sesame was upgraded to Sesame version 2.

Sesame 2 uses quads instead of the triples to store the data. The original triple, containing,

subject, predicate, and object, is replaced with a quad that adds a fourth property called

context. The context part is what we are going to use to enable the repository to store our

versioning information. Like SVN, Sesame needs to store the constructed deltas somewhere,

with the use of contexts the repository is segmented into “four” parts, see Figure 10. The

current context contains the current status of all the triplets inside the repository. The

versioning context contains the administration part of the versioning system; it contains data

that describes the version of all the objects and where the deltas of those previous versions

can be found. These deltas are stored in the last two segments, divided into a delete and insert

contexts, one context for each delta created.

 SESAME

Current
This context contains the

full current status of all

triplets

VERSIONING
This context contains

information about the

versioning information. It

links the Insert and Delete

deltas.

Insert
Contexts with insert delta

Delete
Contexts with delete delta

Points to

Points to

Figure 10 The context segments in Sesame

The impact client side is as small as possible, the client can access all data inside the

repository through the default Sesame querying languages, SeRQL and SpaRQL. The client

will probably get a layer that handles the connecting with Sesame and here extra queries have

to be implemented that enable the client to query for versioned data. The final system will

look something like Figure 11. The client has a layer which will handle all data, this layer

communicates with the Sesame HTTP layer for accessing the Knowledge Hub. In the

Maturing and Versioning an Architectural Knowledge Repository

~ 29 ~

knowledge Hub, the HTTP layer accepts the calls from the client application and passes them

through Sesame‟s layers into the versioned memory store. These layers update the current

context and the versioning context and create contexts for the insert and delete deltas.

Client Application

Client Versioning Layer
Server

Versioning Repository

HTTP

HTTP Data

Sesame HTTP

Current

Context

Versioning

Context

Update Create

Insert

Delta’s

Delete

Delta’s

Figure 11 Final Proposed Versioning System

8.2.2.3 The required system

The implementation of this all requires also a change in the current Knowledge Hub which

can be seen in chapter 4.4 were the result of the maturing of the existing system is concluded.

This is also the starting point of the needed system for our versioning proposal. Figure 12

shows the required system, which in a lot of ways still looks like the system in chapter 4.4

with two exceptions. Sesame 1 is replaced with Sesame 2 through the need of the quadruplets.

And more important the application server is removed. It is not needed since it was only

required for the DKC. This leaves us with a system with the same specifications but with a

better performance and an improved transparency since the slowing application server was

removed.

Knowledge Extractor (KEX)Appache Tomcat

Sesame 2

Protege
OWL file

Memory

Database

Sesame 2
HTTP Connection

OWLIM

Figure 12 Final system for the start of the versioning project

8.2.2.4 Potential Pitfalls

The following pitfalls where identified and need to be taken into account:

- Duplicate Triplets

- Querying

- Locking Of Data

- Inferencing

Maturing and Versioning an Architectural Knowledge Repository

~ 30 ~

Duplicate Triplets

When inserting new triplets into Sesame, the checks that no duplicate triplets are versioned

have to be thorough. Sesame checks somewhere that duplicate triplets are not inserted, so here

we must extend it and make sure that these triplets are not versioned. If this happens there will

be a considerable amount of wrong deltas created.

Querying

The querying of the repository is very powerful and gives us lots of control over the versioned

data. Since we can query over different contexts and construct sub queries, there is a lot of

information that we can retrieve. Do we need to adapt the complete Sesame querying

mechanism in order to let this solution work?

Locking of Data

How do we handle locking of the data? What is done when for example the following

situation, Sam checks out some data from the repository, Lisa also checks out the same data.

Lisa makes some changes and commits, then Sam makes some changes and commits. This is

a classic problem that has two strategies to solve it. The first strategy is a lock-modify-unlock

mechanism. The second strategy is the cope-modify-merge, both solutions are good and can

be implemented fairly easy using transaction level locking.

Inferencing

How will the inferencer handle all the versioned data that is inside the repository? Since this

data does not comply anymore to the original OWL model. Some checks need to be made

how the repository deals with these things.

Maturing and Versioning an Architectural Knowledge Repository

~ 31 ~

9 Quantitative Evaluation
In quantitative research the central process is measurement; the quantitative evaluation

performed for this thesis focuses on measuring the performance of the proposed solutions.

Performance was identified as the most important, measurable, requirement in chapter seven.

Therefore it was decided to do a performance analysis of the proposed solutions. A thorough

method for performance testing [11] was adapted to suit the needs of the testing effort. It

provided a structured test plan, which consisted of the following steps:

1. Identify Test Environment

2. Identify Performance Acceptance Criteria

3. Plan and Design Tests

4. Configure Test Environment

5. Implement Test Design

6. Execute Tests

7. Analyze, Report and Retest

These steps follow a logical order, step one provides a better understanding of the

environment that the test needs model, the focus lies with the user interaction, the non user

initiated processes and the architecture of the system. In the second step, the metrics needed to

measure the performance are captured. The third step, “plan and design tests”, identifies the

needed use cases based on the system interactions found in step one, from those use cases the

tests are designed to mimic the production system as closely as possible. Step four describes

how to configure the test environment, the closer the test environment matches the production

environment the better the results. The fifth step focuses on the implementation of those

designs; it describes the choices made needed to implement the tests. In step six the tests are

executed, it describes how the metrics from step two are measured and collected. The final

step, seven, analyses and presents the results found in step six. Retesting of all the tests is also

done to validate the findings.

The chapter is divided according to these steps. Each step has its own sub chapter, and some

sub chapters are then again divided into sub steps. This chapter gives an overview of the

complete performance report which can be found in appendix I. The chapter ends with a

conclusion on the found results.

9.1 Identify the test environment

Identifying the test environment explores and evaluates the system, to support and guide

performance testing. According to [11]; “The intent of system evaluation is to collect

information about the project as a whole, the functions of the system, the expected user

activities, the system architecture, and any other details that are helpful in guiding

performance testing to achieve the specific needs of the project”. So evaluating the system on

forehand gives a better understanding of the system as a whole and results in a better test

design. It is essential for good performance testing. Evaluating the system is composed of the

following activities:

1. Identify the user-facing functionality of the system.

2. Identify non–user-initiated (batch) processes and functions.

3. Determine expected user activity.

4. Develop an exact model of both the test and production architecture.

5. Description of the test system

Maturing and Versioning an Architectural Knowledge Repository

~ 32 ~

The first steps, 1, 2 and 3 provide answers to the following questions: How do the users work

with the system, what other processes are there and what is the frequency of these interactions

with the system? With these answers better estimates of the load of the system and the impact

of the accompanying use cases can be made. From these simple questions the basic

architecture of the system was derived, Figure 13 shows the models of the test and production

architecture, step 4. Users interact with the system from two different points, through

interaction with the SVN and through the MEX. However the core of the system, marked with

the red dotted line, shows us that the KEX and MEX are the only ones with direct contact

with the knowledge hub. The test environment will then only model the retrieval and insertion

of data from the knowledge hub automating all user input and SVN triggers. Step five

describes the test environment; this can be found in appendix I

Commit to SVN
SVN

KEX

Launch KEX

SVN Database

Insert into SVN

Insert Data into Hub

Knowledge Hub

Parse Data from Exel File

View Knowledge
MEX

Retrieve data from Hub

Insert Data into Hub

Knowledge Hub

Retrieve data from Hub

Figure 13 The System Architecture

9.2 Identify performance acceptance criteria

Identifying the performance acceptance criteria is necessary to get a better understanding of

the critical areas in an application and to what criteria these areas must comply. It consists of

the following tasks:

1. where do we want to get performance measurements from?

2. what criteria do apply to these measurements?

3. which metrics do we use for them?

Maturing and Versioning an Architectural Knowledge Repository

~ 33 ~

Meier and Fare [11] describe them as following:

1. Determine the objectives of the performance-testing effort.

2. Capture or estimate resource usage targets and thresholds.

3. Identify metrics.

The objective, step one, of this performance testing effort, is to get a better view of the

performance of the proposed solutions. These results will support the decision making process

that chooses the solution that will be implemented.

Targets and thresholds, step two, are needed to check if the system operates within the given

parameters and if the tests are executed within optimal circumstances. The idea is that a target

identifies the optimal resource usage of a system, and a threshold indicates where the

performance of the system is affected if the system reaches or crosses a threshold. For SVN

the targets and thresholds for CPU usage will be set to respectively 70 and 80%. The I/O

aspect of SVN is expected to be the bottleneck of the application. 70% of CPU usage or

below is when a CPU functions optimal and will not affect the I/O bottleneck, thus the target

is set to 70%. Above 80% the performance of a CPU will play a role in the overall system

performance, therefore the threshold is set to 80%. Sesame does not have the I/O bottleneck

that SVN has since most operations are in memory. Therefore we expect the CPU to be at

100% all the time. However available memory does affect Sesame‟s performance, the

available memory is measured using the size of the data inside the repository minus the total

available memory for Sesame. If the available memory for sesame is below 50% the

performance degrades, below 75% it degrades significantly. The target for Sesame is to keep

its memory footprint below 50% and a threshold is set at 75%.

To be able to quantify the performance these metrics need to be defined, step three. These

metrics give us means to measure and compare. The above defined targets and threshold will

be measured using the “Windows Task Manager”. The memory usage of Sesame cannot be

simply checked using the task manager, to measure it the entire contents of the repository is

exported after each test, the file size of the exported file represents the actual size of the

contents inside the repository. The most important requirement was performance;

performance can be measured in time. The performance of the solutions will be measured in

the total time it takes to complete one test.

9.3 Plan and Design Tests

With the metrics identified the planning and designing of the needed tests can start. The tests

have to simulate the behavior that the system will have during normal operation. To let the

test results reflect the final production system as closely as possible. If the test environment

deviates from the production environment to much the results are useless. The process that is

used to identify the usage profiles that will be used in the performance testing is known as

workload modeling [11]. Workload modeling is done using the following steps:

1. Identify the objectives.

2. Identify key usage scenarios.

3. Determine individual user data and variances.

4. Determine the relative distribution of scenarios.

5. Identify application load distribution.

The first step is identifying the objectives of the testing process; it is always good practice to

know what we want out of the performance testing effort. The global objective of the

performance tests is to compare the different proposed solutions based on their performance.

Maturing and Versioning an Architectural Knowledge Repository

~ 34 ~

To be able to do that, accurate measurements of inserting, updating and retrieving models

inside the repository are needed. A secondary objective is looking at the impact of the data

inside the repository and its effect on the performance, so estimates can be made about the

scalability of the system.

There were six usage scenarios identified for the given objectives, step two. The first two are

for the SVN solution and the others address the Sesame solution. Sesame supports three

different methods that can be used for inserting of retrieval. Use cases 3, 4 and 5 test those

different methods. The fastest of the methods is then used for use case 6. The usage scenarios

identified where the following:

1. Committing a new model into the SVN

2. Updating an existing model inside the SVN

3. Committing a new model into Sesame using ELMO

4. Committing a new model into Sesame using a RDF-File

5. Committing a new model into Sesame using SeRQL

6. Updating an existing model inside Sesame using the fastest method

Individual user data and variances, step three, are not taken into account during the

performance testing effort. Of course in the real production environment there is variation in

model size. But for the testing effort it was decided to test using an average sized model.

Examining the models produced at Astron we found that the average model consists of 1000

elements and that a change in the model leads to 20% of change inside the total model. The

tests are implemented using this average model of 1000 elements and change is set to 20%.

Step four, determines the scenario distribution. There are six use cases identified, but these

fulfill only two scenarios, committing and updating a new model. Updating is identified as the

most used scenario; a model is only created once but updated more.

Finally there has to be an estimate of the load levels of the application, step six. The trigger is

the commit into the repository. Every user commits their work at different points during the

day, however, expected is that there will be peak levels around office breaks, most users

commit their work before the break and the highest peak is expected at the end of the working

day.

9.4 Configure test environment

To be able to run the tests correctly not only the test design needs to be good, also the

environment must be configured correctly. All unnecessary services where shutdown for all

tests; it was assured that for all tests the environment was the same. The JVM was set to use

500MB of memory instead of the default 300, higher would be better, but the test machine

was not able to handle this so it was kept at 500. SVN needed the 500MB to prevent an “Out

of memory error” and for the Sesame testing more available memory would be better for

testing due to the memory targets and threshold identified in chapter 9.2 which affect

performance. However allocating more memory to the JVM than 500MB produced undesired

results, probably due to the use of swapping since windows did not have enough available

memory.

9.5 Implement test design

The implementation of the test design is done in Java using eclipse. Java was the most

obvious choice for Sesame, since it is written in Java, as was the existing Knowledge Hub.

Maturing and Versioning an Architectural Knowledge Repository

~ 35 ~

For SVN the Java SVNKit was used. When implementing the model the following points

need to be taken into account [11]:

1. Do not change the model without serious consideration simply because the model is

difficult to implement.

2. Implement the model as designed, if there have to be changes make sure you record

them in detail.

3. Think about the metrics that have to be recorded and how to implement the recording

of those metrics.

Java classes will be created for each of the defined use cases, see 9.3. When looking at the

detailed description of use cases in appendix I we see that the first two steps are similar for all

use cases and therefore will not be implemented into the tests. The time for step one and two

will always be the same for each model and use case, leaving them out will not affect the

overall performance. Normally, SVN triggers the KEX instance. The start of the tests now

simulates this behavior. The metrics that the tests will gather also have been defined in 9.3. A

log class is made which the test notifies at certain points during the testing, collecting data

needed to satisfy the pre defined metrics. At the end of the test, the performance class outputs

a performance log generating data collected during the tests.

All of the classes are configurable so we have some control over the testing, we can adjust

variables as the amount of data present in the repository, how much data needs to be inserted,

what connection type is needed and some more. This gives some flexibility when testing and

may help to specify some tests on crucial points.

Tests are always run more than once. A parameter can be set that defines how many times a

test should run. This is done to get an average time to counter the problem of an erratic

sample.

Sesame allows the use of three different connection types, default, augur, and read ahead,

these connection types are optimized for storing and retrieving scenarios. The default

connection type processes each request and does not cache anything; an augur connection

type tracks the requests and anticipates related information. It is best used when the results are

expected to fit into memory and not all properties will be read [7]. The read ahead connection

type reduces the number of hits to the repository for the same subject. It is used when the

complete results may not fit into memory and most of the concept properties will be retrieved

[7]. The different connection types are used in the tests for the use cases of ELMO and

SeRQL. When inserting files nothing is or can be cached so testing the different connection

types is useless the default connection will be used for the file tests.

9.6 Execute Tests
Before executing the tests, checks were made to see if the test environment mirrored the

execution environment. Concluded was that for testing purposes the environment was a good.

Then all tests where run for the first time and each tests was monitored step by step for

validation and was checked for unexpected behaviour. Not only where the tests checked, also

random samples of data where checked to see if the tests did not transform them in any way.

The tests and the environment where accepted as valid for the performance testing effort.

The SVN tests and the Sesame tests where all run and repeated 10 times. The average values

of those 10 runs were taken. All test where done with an increment of 50 models inside the

Knowledge Hub, starting with zero models and ending at 300 models. One model consists of

Maturing and Versioning an Architectural Knowledge Repository

~ 36 ~

approximately 9500 triples or 1000 files. So after the final test there would be 2.850.000

triples inside the Sesame repository and 1000 files inside the SVN.

A special constructed log class, was used to log the time of all the different operations during

the tests, and at the end of the testing plotted the results.

The other metrics that had to be recorded where done so using the data presented in the

“Windows Task Manager”. This could just be monitored while the test was running. System

outs indicated what part of the testing process was running.

9.7 The Results

In appendix I, the complete results per use case can be found, as can the results of all the

independent tests. Here only the combined results of the tests are presented. The results are

split into the two different scenarios, the committing and updating use cases.

9.7.1 The committing use cases

The first graph below here shows the result of all the use cases that commit models into the

repository. Use case three, ELMO, was left out of this graph for scalability reasons. The first

performance test of ELMO with zero models inside the repository took almost two hours of

time, see appendix I for further explanation and test results for ELMO. Testing was done from

0 – 300 models, the graph below shows only the result until 200 models for scalability and

comparability reasons. After 200 models SVN became much slower. Instead of three lines for

the two remaining use cases, five lines can be seen. A line is plotted for each Sesame

connection type using the SeRQL use case.

Use Case 1,4 and 5

0

50

100

150

200

250

300

350

400

0 50 100 150 200

Models inside the repository

T
im

e
 i

n
 s

e
c

o
n

d
s

SVN File SeRQL Default SeRQL Augur SeRQL Read Ahead

9.7.1.1 Analysis

As can be clearly seen, Sesame outperforms SVN by far. Looking at the Sesame results we

see that File insertion is the slowest, which was expected since the file needs to be generated

locally which takes extra time. The default repository connection type is the fastest, augur,

and read ahead make no real difference.

9.7.2 The updating use cases

The second graph shows the test results of the updating use cases. Again SeRQL is split over

the three different repository connection types. Here we scale until 250 models, with the

Maturing and Versioning an Architectural Knowledge Repository

~ 37 ~

exception of the SeRQL Read Ahead connection type, which goes only to 200, for scalability

reasons.

Use Case 2 and 6

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250

Models inside the repository

T
im

e
 i
n

 s
e
c
o

n
d

s

SVN SeRQL Default SeRQL Augur SeRQL Read Ahead

9.7.2.1 Analysis

As was the case with inserting, Sesame also outperforms SVN on updating, with the

exception of the read ahead connection type. The augur connection type is faster here than the

default which can be explained since the augur connection type is optimized for retrieving

data which is part of the updating process.

9.7.3 Other metrics

The above sections focus on the performance with respect to the time it takes to complete a

test. Next to the time metric other metrics where measured. Targets and thresholds were

measured using the windows task manager. The memory usage of Sesame was measured

using through the export of the data inside the repository.

The average CPU usage of SVN during the tests was between 60 and 70%, with a target of

70% this is good. The average CPU usage of Sesame was 100% this was also the expected

result.

Sesame seemed to use all the available memory when around 200 models where inserted into

the repository. An export revealed that at that moment only 300MB of actual data was

present, the rest was used for inferencing purposes. After the 200 models we inserted and

tested with 250 models, the available memory stayed the same, due to Java VM constraints

(500MB) and the resulting performance drop was not really noticeable. When scaling up to

300 models the performance dropped fast, after an export it showed that there was almost

500MB of actual data inside the repository leaving almost no memory left for inferencing and

other operations, which must lead to swapping.

9.8 Retesting and validating

After all test where run and the results plotted, all tests where run again to see if the results

could be reproduced. The tests were already accepted as valid; reproducing the results cancels

out test failure and is a form of result validation.

Maturing and Versioning an Architectural Knowledge Repository

~ 38 ~

9.9 Conclusion
Looking at the combined results it can clearly be seen that Sesame has the upper hand when it

comes to performance. SVN does outperform Sesame when Sesame runs low on available

memory; however this can be countered by adding more memory to the system. The results

came from the limitations of the testing system, and where expected by the defined targets

and thresholds. So if a system can be outfitted with enough memory, which is easy to do with

modern servers, Sesame is definitely the best solution.

The secondary concern was the scalability of the system; it is obvious that SVN can scale

very high since disk space nowadays is cheap and very large. Scalability for Sesame on a

desktop is not so good due to memory limitations; however modern servers can be equipped

with large amounts of memory improving Sesame‟s performance. Sesame also has a built in

functionality to create a federation; this combines multiple sesame stores through the SAIL

layer acting as one large data store [51] boosting performance and creating huge scalability.

Maturing and Versioning an Architectural Knowledge Repository

~ 39 ~

10 Qualitative Evaluation
The quantitative evaluation in chapter nine tested the performance of the different solutions.

In this chapter, performance and the remaining requirements are graded aiding the selection

between the proposed solutions. First an evaluation framework is presented; the framework

provides a basis for the comparison of the solutions. The second part of this chapter focuses

on the grading process, each requirement is graded and a rationale for the grade is given. The

final part of this chapter inserts the grades into the framework and based on that the optimal

solution is chosen.

10.1 Evaluation Framework

The evaluation of the proposed solutions was done using a grading framework. In this

framework the solutions are graded on the requirements, indentified in chapter seven. Here an

overview of those requirements:

1. Storing

2. Retrieving

3. Performance

4. Reliability

5. Implementation

6. Querying

7. Transparency

8. Maintainability

The framework will look as tTable 1 The Evaluation Framework, where Rqx equals

requirement X and A, B are the proposed solutions. The first two requirements from the above

list will not receive a grading, as they are only required to be present, an OK is assigned. The

remaining requirements will be graded using the following table:

 Very Good = ++

 Good = +

 Average = +/-

 Bad = -

 Very Bad = --

Table 1 The Evaluation Framework

 A B

Rq1

Rq…

Rqn

Maturing and Versioning an Architectural Knowledge Repository

~ 40 ~

10.2 Qualification of the requirements

In this section, the requirements for the SVN and the Sesame solution are graded. Each

solution is grades the identified requirements one by one. Advantages and disadvantages of

each requirement are identified, combined with a rationale this lead to the grade the

requirement received.

10.2.1 Sesame with SVN

Storing & Retrieving: OK

Storing and retrieving was not a requirement that had to be graded, it was only required of

the application. In respect to SVN we can say that is has storing and retrieving capabilities

conform the requirements so this was checked as ok.

Performance: --

Looking at the previous chapter, the performance of SVN was pretty bad. A single

commit with no files present in the repository took around five minutes; this does not fall

within the acceptable performance range. Updating models using SVN was faster but still

took 1.5 minutes with an empty repository; with 50 models inside the time also dropped to

three minutes. The proposed performance upgrades, will not boost the performance

enough to get SVN performing within acceptable speeds. Therefore performance gets

graded very bad for the SVN solution.

Reliability: ++

Our definition of reliability, chapter 3.2, stated that a system must have correct handling

of errors and that it must prevent data corruption.

Advantages

- SVN is a well developed solution that, in industry, has proven to be very reliable when

it comes to data corruption.

- SVN has a rollback functionality that is triggered upon failed insert. This prevents the

crashing on errors and ensures reliability.

SVN is a proven solution that is very reliable in both aspects. It is a mature and well tested

system in business solutions. It has no disadvantages in respect to reliability. SVN as a

solution received a grade of very good on reliability.

Implementation: +

The requirement of implementation, chapter seven, refers to the effort it will take the

developer to implement the solution.

Advantages

- SVN is an existing and stable solution that handles versioning very good

- The versioning is taken care of by SVN the developer simply calls the SVN API to

store the files there.

Disadvantages

- In order to implement SVN there has to be a Sesame repository inside the client

programs.

- An SVN layer has to be developed that understands the versioning and needs to be

implemented on the client side, communicating with SVN and the local Sesame

repository.

Maturing and Versioning an Architectural Knowledge Repository

~ 41 ~

- The clients still need SeRQL/ SpaRQL queries to access the remote Sesame repository

that contains the current version.

SVN has some clear advantages and disadvantages in respect to implementation. It is an

existing and stable solution that is proven in industry. The developer gets a clean interface

and needs no programming effort to implement versioning, but has to build a custom

backend for each client to be able to work with the system. The system also makes use of

both SVN and Sesame and offers no integrated solution. Nevertheless, the effort to

implement this is reasonably low and therefore it is graded good.

Querying: +

Querying was a requirement (see chapter seven) that checks if there is an available query

language / mechanism for the solution or that the developer needs to implement his own

querying mechanism.

Advantages

- Java provides an API for SVN that allows for easy retrieval of the versioned files, it is

publically available and easy to use.

Disadvantages

- Next to SVN, there is also the need to query Sesame using SeRQL, thus making use of

two querying mechanisms instead of one.

- The retrieval of the SVN files cannot be directly used within the complete system, the

data still needs to be parsed from the files in some way. This must be done client side,

adding to the querying mechanism.

Although SVN, through the use of the Java API allows for easy querying and retrieval of

the versioned files, there still is the need for SeRQL to query the current data from

Sesame. Also the retrieved files from the SVN need to be parsed to get the data out of

them in a usable format. This can be implemented fairly easy by importing the data into a

local Sesame repository. Therefore querying from SVN is graded good.

Transparency: +/-

Transparency was a twofold requirement (see chapter 3.2), looking from the perspective

of the users as well as for the developers. For the users it meant that they should be able to

work with the system without in-depth knowledge of the system. For the developers

transparency meant that for them it should be clear which parts of the system provide

which functionality, making it easier to understand the system as a whole.

Advantages

- SVN is clear and understandable for developers. It comes with a well defined API and

is widely known in the industry.

Disadvantages

- The SVN is another component in the overall system architecture, adding to the

complexity of the architecture.

- The Roles of Sesame and SVN are intertwined, Sesame hold the current version and

SVN the older versions, which is confusing when trying to understand the system.

Maturing and Versioning an Architectural Knowledge Repository

~ 42 ~

Although SVN is an off the shelve component. The integration of SVN with the

Knowledge Hub adds an extra component to the architecture. Another consequence is that

it distributes the data over two different data repositories. This is very confusing for

developers wanting to understand the workings of the system. Taking this into account we

grade SVN average on transparency.

Maintainability: +/-

Maintainability refers to the ease of maintaining the application, chapter 3.2. How easy is

it to connect new clients that have to use the versioning system, to the Knowledge Hub?

How difficult is it to implement new functionality without altering too much throughout

the system. A maintainable system is needed to easy the effort of implementation of these

new clients or functionality.

Advantages

- The Java SVN API is well documented and new releases can be easily integrated with

the system.

Disadvantages

- Through the use of SVN there is more code needed in the clients for retrieving data

from the SVN and parsing it into understandable data.

- Adaptation of the system must be done in all clients.

SVN is easily maintained, however SVN puts some effort into maintaining the rest of the

system. When a developer wants to add new functionality to the Knowledge Hub or even

when the data changes in the hub, all clients have to be adapted. Because SVN always

functions in the same way, the parsing and handling of the data is programmed client side,

this is bad for maintainability. Therefore SVN is graded average for maintainability.

10.2.2 Extending Sesame

Storing & Retrieving: ok

As was the case with SVN, Sesame also has storing and retrieving capabilities, conform

the requirements. Therefore Sesame also gets an OK.

Performance: ++

Looking at the performance of Sesame in the previous chapter we can see that it

outperforms SVN easily. Inserting and updating with 0 – 50 models inside the repository

is very fast and stays under 30 seconds per model. With the proposed upgrades to the

memory it can only be assumed that the Sesame solution will become even faster,

therefore Sesame is graded very good on performance.

Reliability: +

Our definition of reliability, chapter 3.2, stated that a system must have correct handling

of errors and that it must prevent data corruption.

Advantages

- The available rollback mechanism ensures a reliable insertion of data.

- The maturing in chapter four, made the current system much more reliable, the final

system at the ends of that chapter is the basis of the proposed system.

Maturing and Versioning an Architectural Knowledge Repository

~ 43 ~

Disadvantages

- The existing system also had some reliability problems, using sesame and developing

a custom solution can make these problems resurface or introduce new problems.

- Sesame and RDF are still in early development and have no proven track record.

Sesame has some advantages, and the rollback ensures some reliability. But a lot depends

on the implementation of the solution, and since Sesame is still not widely used in the

industry problems can still emerge. However the testing and stabilizing done in chapter

four made the overall system pretty stable thus we grade Sesame with a good on

reliability.

Implementation: +

The requirement of implementation, chapter seven, refers to the effort it will take the

developer to implement the solution.

Advantages

- The solution integrates with the existing system

- The Sesame core is very extendible

- The implementation is in the back end, the implementation client side is minimal.

Disadvantages

- It is a custom solution that needs to be developed.

- A good understanding of the complete Sesame architecture is needed in order to

implement the solution correctly; this implies a lot of research.

Although the Sesame architecture allows for easy extension, the implementation is a

difficult one. The developer needs in-depth knowledge of the architecture of Sesame and

must implement one or two extra layers. The plus side is that the client side

implementation is almost effortless, only some more advanced queries are needed to

retrieve the data from the repository. So Sesame is graded good for implementation.

Querying: ++

Querying was a requirement (see chapter seven) that checks if there is an available query

language / mechanism for the solution or that the developer needs to implement his own

querying mechanism.

Advantages

- The querying is the same as in the current knowledge hub, only queries to retrieve the

versioned data must be written.

- The querying mechanism in Sesame allows the retrieval of multiple versions in one

query.

Disadvantages

- The queries can become very complex.

The querying mechanism of Sesame can be used without an adaptation. It even allows for

querying over multiple versions, although these queries can become very complex.

Sesame was graded very good for querying.

Maturing and Versioning an Architectural Knowledge Repository

~ 44 ~

Transparency: +

Transparency was a twofold requirement (see chapter 3.2), looking from the perspective

of the users as well as for the developers. For the users it meant that they should be able to

work with the system without in-depth knowledge of the system. For the developers

transparency meant that for them it should be clear which parts of the system provide

which functionality, making it easier to understand the system as a whole.

Advantages

- The system architecture does not change.

- Adaptation is done in the server and not the clients, these just have to adapt the queries

where needed.

- All data is stored in a single repository.

Disadvantages

- Very complex queries can be misunderstood by developers.

The main advantage of Sesame over SVN is that everything stays in one repository; this

not only keeps the system architecture clean but also stores all of the data in a single

Sesame repository instead of Sesame and SVN. Complex queries stay a problem and need

to be documented good in order to be reused. Nevertheless the system is transparent and

adaptable and therefore is graded good.

Maintainability: +

Maintainability refers to the ease of maintaining the application, chapter 3.2. How easy is

it to connect new clients that have to use the versioning system, to the Knowledge Hub?

How difficult is it to implement new functionality without altering to much throughout the

system. A maintainable system is needed to easy the effort of implementation of these

new clients or functionality.

Advantages

- Adapting the versioning system does not affect the clients.

- Connecting new clients is easy, since the current version and older versions are all

accessible by the Sesame query language.

- Changing the data that clients use is done by formulation new queries.

- Adding more functionality to the system does not directly affect the clients

Disadvantages

- Complex queries are hard to change if a developer has no good understanding of them.

- Added functionality must be queried, to use it all queries client side have to be

adapted.

Sesame has some advantages when it comes to maintainability, most of the adaptations

are done in the server and do not affect the clients. With the exception of the complex

queries this solution is very maintainable therefore Sesame is graded good on

maintainability.

Maturing and Versioning an Architectural Knowledge Repository

~ 45 ~

10.3 Conclusion

In the above section, the grading of the different requirement for the proposed solutions was

done. The resulting grades were collected and inserted into

Table 2. The first two properties, storing and retrieving, are graded with present or not

present. The other six have been graded from very good to very bad. The performance

property, since it is so important, was counted double. The average score for each solution

was calculated and the highest average was chosen as the optimal solution.

 SVN Sesame

Storing OK OK

Retrieving OK OK

Performance -- ++

Reliability ++ +

Implementation + ++

Querying + +

Transparency -/+ +

Maintainability -/+ +

Table 2 The Evaluation Framework

Average score for SVN: Average (--, --, ++, +, +, +/-, +/-)

Average score for Sesame: Very good / Good (++, ++, +, ++, +, +, +)

Sesame has the highest average score, scoring a Very good / good, SVN scores average. The

score of Sesame is substantially higher than SVN; the main reason for this is the performance

of SVN, which is far worse than Sesame. Since performance was the main requirement it

counted double giving Sesame a good lead. SVN is more reliable than Sesame, a careful

implementation and a thorough checking can boost the reliability of the Sesame solution.

SVN is the winner for this requirement being proven in the industry for years now. Sesame on

the other hand outperforms SVN on; implementation, querying, transparency and

maintainability. Therefore Sesame was selected as the optimal solution to use as a versioning

system inside the knowledge hub.

Maturing and Versioning an Architectural Knowledge Repository

~ 46 ~

11 Validation / Re evaluation
The previous chapter concluded with the optimal solution for versioning inside the knowledge

hub. In this chapter a prototype is described that was build using that solution. The prototype

contains the basic functionality of the proposed versioning system. Artifacts can be inserted

and will automatically be versioned and the versions can be retrieved from the repository

through the standard sesame query language.

11.1 The prototype

When we look back at the inner workings of Sesame (chapter 8.2.2.1), the current repository

uses a memory store, which is an extension of the sail repository. This class, where all the

storage logic is located, is extended and equipped with methods and logic for versioning. An

extra class is added which holds the logic for the versioning system. This class calculates the

delta‟s and inserts them into the repository.

11.1.1 The inner workings

The Sesame architecture and the versioning system architecture, see chapter eight, presented

the idea where the extension would be implemented. This architecture however told nothing

about the workings of the versioning system only it‟s place inside the architecture.

Figure 10 (chapter eight) showed that the repository contents will be divided into sections

using the context property. Sesame 2 introduced this fourth property, named context, making

quads from the triples in Sesame 1. This context is used to divide the statements over the

sections. All of the statements that are in the so called “head” version are placed into the

current context. The versioning system calculates from the new inserts which statements are

added and which are deleted. These statements are put into delta contexts. These contexts

contain only the statements that where added or removed not the complete state of the object

to save space and improve speed. The reference to these delta contexts is stored inside the

system context. There is only one kind of statement inside this context and it looks like the

following triple:

Subject / versionedAt / delta contex

But actually inside the repository is the following quad

Subject / versionedAt / delta contex / versioning

This allows for a very natural querying, the system context can be queried using the subject

that is found in the current context. The result is a list of statements that contain the delta

contexts of that particular subject. The delta context property is structured as followed:

- The versioning system URI.

- The subject

- A keyword ADD or REMOVE

- A date and time stamp

The URI is general over the entire versioning system and is of no concern. The subject is

needed to assign the delta to the subject. The ADD or REMOVE tells the user if the

statements where added or removed from the repository in that version and the date and time

stamp tells when the version was created. Below we see an example of a statement from the

versioning system.

http://www.archium.net/AstronGriffin/versioning#KE1000000

http://www.griffin.nl/versioning#versionedAt

http://www.archium.net/AstronGriffin/versioning#KE1000000/ADD/2010-01-28/09:40:46

Maturing and Versioning an Architectural Knowledge Repository

~ 47 ~

The workings of the versioning system and the implemented prototype are explained using the

sequence diagram from Figure 14. This diagram shows on the left a random client application,

the application inserts a collection of statements into the Sesame repository using the

addGraph() method. The workings of Sesame are left out, there is a lot going on there but it is

of no interest to us. Only the relevant calls to the versioned memory store are shown. There

are other calls to the memory store like a statement lock and more, but for a better uncluttered

view they are left out. There are only two calls from the client application the first call that

adds new statements and the second one that commits the inserted statements.

The first call that is of interest is startTransaction(), this reinitializes the statement cache to

ensure that it is cleaned of all statements. Next, the addStatement() method is called for each

statement that has to be added. The statements that are added will be put into a local cache

instead of inserting them into the repository.

The second call, the commit() normally would add all the inserted statements into the

repository. In the prototype, the versioning system is triggered from within the commit

operation and runs before the actual commit. The first thing that is done is a calculation, on all

the triples inside the cache using the logic defined in 11.1.2. This calculation results in two

sets of triples: one set that are new and one set of triples that are removed, these triples

represent the add and remove deltas. The triples are inserted into the versioning system class.

The buildVersionedStatements() method operates on these two sets of triples and creates the

add and remove deltas and puts those delta statements into a list. It also creates a list of

statements that will be removed from the current context. The versioned memory store

retrieves both lists, the delta statements are added to the repository and the other statements

are removed from the current context. Finally, after clearing the caches and the versioning

system the original commit is performed.

Maturing and Versioning an Architectural Knowledge Repository

~ 48 ~

Client Application Sesame Layers
Versioned

Memory Store

Versioning

System

StartTransaction()

Reinitialize Caches

addStatement()

addGraph()

Cache statement

Commit()
Commit()

insertStatements()

Calculate()

buildVersionedStatements()

buildAddstatements()

buildRemovestatements()

getAddStatements()

insertAddStatements()

getRemoveStatements()

removeRemoveStatements()

clearStatements()

Commit()

Figure 14 Versioning System Sequence Diagram

11.1.2 The Logic

The logic that will be implemented into the versioning system is a simple one. To be able to

version the data we need to know the new and the old versions. So let‟s say the new version is

a collection of statements called N and the old version is a collection of statements called O.

Calculation then can show which statements are new and which are removed. The following

two formulae are needed:

 N – O = A

 O – N = B

By subtracting O from N the newly added statements remain (A) and by subtracting N from O

the removed statements are found (B). So by implementing the following two formulae the

versioning system knows which statements to version and remove;

Maturing and Versioning an Architectural Knowledge Repository

~ 49 ~

11.1.3 Rules for usage

The versioning system works from the principle that a unique subject is seen as an object in

our repository. The repository versions on objects using this understanding of subjects and not

on triples. Therefore four rules have to be taken into account when using this versioned

memory store:

1. Only insert collections of statements, and not single statements.

2. Do not use the removal methods, removal is done through insertion.

3. When querying always query the current context, unless access to versioned data is

required

4. The fourth property, context, may not be used, this is reserved for the versioning

system.

The first rule is needed because of the workings of the versioning system. If only a subset of

the statements of an object is inserted the repository thinks, through calculation, that the other

statements have been removed from the object and versions them as deleted. This is also the

reason for the second rule. Through insertion of the complete new status of an object we can

calculate what has been deleted, thus a delete/remove function is not needed unless we want

to fully delete an entire object/artifact from the repository. It is still possible to use the

removal methods, but the removed data is not versioned and there is no way of retrieving the

data. The removal methods can be used to remove complete artifacts from the repository and

also removing all the versioned data.

The third and fourth rule are also intertwined, a normal repository operation operates on the

current context instead of the sesame default. The prototype is built in such a way that all

inserted statements automatically are put into the current context. Thus queries have to be

formulated using only the current context. To retrieve versioned data, the queries should

access to the versioning system context, from where they can retrieve the contexts that contain

the deltas of the different versions of objects. This automatically leads to the fourth rule, since

the versioning system uses the context property the user is not allowed to do so.

11.1.4 The test cases

To validate the prototype test cases were formulated and implemented. The test cases cover

the different scenarios that are possible for the knowledge hub. The test cases are modeled

using a sub model (see Figure 15) of the LOFAR domain model (See appendix II), and the

higher meta-model (See appendix III). There are three test cases, simulating the normal

evolution of a software architecture documentation. The first test case inserts the smallest

model possible into the repository; the next two test cases make changes to that model and

add or remove objects from it.

Test case one

The first test case inserts three Knowledge Entities (KE) into the repository, a concern, a

decision topic, and a quick decision. This represents the smallest complete and correct model

possible. According to the meta-model each KE has an Artifact Fragment (AF) and are

connected to an Artifact. The test case inserts seven objects, three KE‟s, three AF‟s and one

Artifact. The system should insert them normally without triggering the versioning system,

because they are new objects and do not exist inside the repository.

Test case two

The second test case uses the same model as the first test case. Some random changes are

made inside the KE‟s, AF‟s and Artifact and a new KE and AF are added. To ensure a correct

Maturing and Versioning an Architectural Knowledge Repository

~ 50 ~

model the inserted KE will be of the type decision and the existing quick decision is changed

to an alternative. To each KE also a second set of notes is added. The versioning system

should recognize all these changes and build the correct deltas accordingly. Also the new KE

and AF should be inserted without being versioned.

Test case three

The third and final test case tests the removing of a complete KE and some notes from

existing KE‟s. To do this the original model is reinserted, making the versioning system

believe that one of the KE‟s is removed and that the extra notes also are removed from the

KE‟s. Also some random changes are made to the KE‟s, AF‟s and Artifact. The alternative is

changed back to a quick decision and the decision is removed. The versioning system should

build the new deltas and remove the obsolete statements from the repository.

Decision

Topic

Concern

Alternative

Decision

originates from

raises

creates

adresses

chooses
Quick

Decision

Figure 15 A Sub Model of the LOFAR Domain Model

11.1.5 Queries

The test cases described in the section above also have to be tested. For that purpose some

queries where designed. These queries validate that we can access the current data and

retrieve versions from the repository using Sesame‟s querying language SeRQL. Each query

is presented here, to get a better understanding of the SeRQL query language see the Sesame

documentation [7]. To test the working of the system the following four queries where

formulated:

1. Retrieve a KE from the current repository

2. Retrieve ALL KE‟s that are connected to the Artifact

3. Retrieve all delta‟s from the versioning system

4. Retrieve all changes that are stored in a certain the delta.

Query one

The query retrieves a KE from the repository and queries only the current context as can be

seen on line one of the query. This should return the KE and all its connected properties from

the repository. This query answers three questions:

1. Is the inserted data put into the current context?

2. Can the data be retrieved from the current context?

Maturing and Versioning an Architectural Knowledge Repository

~ 51 ~

3. Is the inferencer working?

Querying the current context answers the first two questions. However by querying for a KE

from the repository the working of the inferencer is also checked. The inserted type was not a

KE but a subtype of KE from the Astron model, see Figure 15, through that model we know

that a concern is a KE. So by querying for a KE instead of a concern we also check that the

inferencer is working properly.

The expected result of the query is the correct retrieval of the KE after each test case.

Query two

The second query check if we can retrieve all the KE‟s that are connected to an artifact. The

test cases remove and add KE‟s to the artifact this query tests after each test case how many

KE‟s there are connected. As can be seen it also queries the current context.

The expected result of this query after test one and three is to retrieve three KE´s after the

second test it should receive four KE´s.

Query three

The third query is executed only after the second and third test case. It queries the versioning

system and retrieves all contexts that contain deltas. Running it after the first test would return

nothing since no data should be present in the versioning system at that moment. Looking at

the first line of the query, it can be seen that it now connects to the system context. All deltas

can be found in this context.

The expected result is to retrieve a different add and remove delta´s from the versioning

system for each of the KE´s and AF´s and Artifact inserted. Unless there have been no

changes to that object.

Query Four

The fourth and final query retrieves a delta from the repository. One of the retrieved delta

contexts of the third query is used and inserted into the query on line one. Then all data from

that context is retrieved.

SELECT * FROM CONTEXT <http://www.griffin.nl/versioning#current>
{ke} rdf:type {ma:Knowledge_Entity}; y {z}

 WHERE ke LIKE *KE1000000

USING NAMESPACE ma = <http://www.archium.net/AstronGriffin#>;

SELECT ke FROM CONTEXT <http://www.griffin.nl/versioning#current>

{A} rdf:type {ma:Artifact};
 mv:describes_knowledge_entity {ke}

 USING NAMESPACE ma = <http://www.archium.net/AstronGriffin#>,

 mv = <http://www.archium.net/AstronGriffin/versioning#>"

SELECT * FROM CONTEXT <http://www.griffin.nl/versioning#system>
 {sub} pred {obj}

 USING NAMESPACE mv = <http://www.archium.net/AstronGriffin/versioning#>";

SELECT * FROM CONTEXT < --- insert context here --- >

 {sub} pred {obj}

 USING NAMESPACE ma = <http://www.archium.net/AstronGriffin#>

Maturing and Versioning an Architectural Knowledge Repository

~ 52 ~

The result of this query should be the contents of a delta; it depends on the delta inserted.

Expected is to see some statements that where added or removed from the repository.

The queries are run after each test case. Obviously queries one and two have no result after

test case one since the versioning system is empty at that moment. The third query is run once

to check if the versioning system is empty as is expected query for cannot run since there

should be no context available to query.

11.2 Validation

For the validation the test cases, from the previous section, are implemented and executed.

The validation of those test cases is done in two parts; first we will inspect the data inside the

repository manually. To confirm that the versioning system is working as expected. Secondly

the queries are used to check if the data inside the repository can be retrieved and that the

versioning system is working.

The manual checks of the repository showed that the versioning system was working

correctly. The expected KE‟s and AF‟s where present in the current context and the delta

contexts where created. Also the inferencer was working, since lots of generated statements

were also found in the repository. Therefore the versioning system is accepted as working as

far as manual testing goes.

The second part of the validation discusses the queries that are run on the repository. The

previous section described four queries and the order in which they were executed after the

test cases. The results will be presented for each test case and checked if they match the

expected results. A short overview of the results is given here, the full results of the queries

can be found in appendix IV.

Test case one

The first test case inserted the smallest possible complete model. After the test, the first three

queries where run on the repository. The first query returned a KE as was expected. This

answered the first three questions and confirms that the prototype is inserting all statements

into the current context, that the querying of that context is possible and that the inferencer is

working correctly. Not only could the inserted statements of the KE be retrieved but there

were also a few inferenced statements returned with the query.

The second query consisted of an initial check to see if the inserted artifact and KE‟s where

present. The actual test was to see if we could query for the KE‟s connected to the artifact and

if the inferencer was working. The test returned the three inserted knowledge entities as

expected.

The third test was done as a formality, the versioning context should contain nothing, the

query should return nothing. This was the result when it was run, so the versioning system is

behaving properly when new data is added.

Test case two

The second test case inserted some changes and a new KE. This was the first time the

versioning system was triggered. After which the four test queries where executed. The first

query was run again to see if the current context only contained the new changed statement

and not the old. The test showed that the notes attached to the KE where changed and that a

Maturing and Versioning an Architectural Knowledge Repository

~ 53 ~

new note also was added to the KE. The second query‟s result showed that now there were

four KE‟s connected to the Artifact, as was expected.

The third query, checked to see if the versioning system context contained the newly created

statements that provide the links to the delta contexts. The query result showed that each

changed object was present in the system.

The fourth query took one of the returned delta‟s from the third query and retrieved the

statements inside that context. This context should contain the added or removed statements.

The selected context was the add context of the KE from test case two. It showed that two sets

of notes were added in this version. The changed notes and the new notes, a quick manual

check shows also a remove delta that contains the old notes that where connected to the KE.

Test case three

The third and final test case removes a KE from the repository and makes some changes to the

existing KE‟s and AF‟s. The first query checked the KE to see if the changes are inserted; this

was the case. The second test, queried for the KE‟s that are connected to the Artifact, three

KE‟s where returned. This is the expected result since one was removed. The third query

checks if the versioning system contains the new deltas. The data showed that for each

changed KE a new delta was created. The fourth and final query also succeeded and retrieved

the data from one of the delta‟s

The above test cases and queries show that the versioning system is working correctly. As

long as the rules for usage are followed, there should be no problem. Models can be inserted

into the system and through the use of standard Sesame queries the versioned data can be

retrieved.

11.2.1 Storing Architectural Evolution

In chapter two the second problem statement and the derived research questions can be found.

The problem statement was formulated as following:

The repository is not able to store the evolution of a software Architecture

The research questions were answered in the previous chapters and from the potential

solutions the optimal solution was selected, which lead to the building of the prototype. The

test cases simulated the behavior of the production system and the manual inspection and the

queries checked if the test cases produced the expected results. All of the tests and the

inspection and queries succeeded validating the prototype providing an answer to the second

problem statement.

11.3 Re-evaluation

The prototype validation was done in the previous section; this section re-evaluates the

prototype using the requirements formulated in chapter seven and the grading in chapter ten.

This section re-evaluates the requirements using the prototype. One of the performance tests

from chapter nine was redone to check the actual performance. The table below shows the

requirements as they were graded in chapter ten.

Maturing and Versioning an Architectural Knowledge Repository

~ 54 ~

 Sesame

Storing OK

Retrieving OK

Performance ++

Reliability +

Implementation ++

Querying +

Transparency +

Maintainability +

11.3.1 Storing and retrieving

The first two requirements where a must for the system, looking at the test cases and queries

these requirements are met. The repository is able to store and retrieve not only the current

data but also the versioned data.

11.3.2 Performance

The same test case that was used in the original performance test was rerun on the prototype.

The test case was configured so that the repository would contain 10 models and then 10

random models would be versioned. The average time of inserting a versioned model was 32

seconds. The original test case was two times faster and averaged on 15 seconds. Since it is a

prototype optimizations and tweaks still need to be done. On the other hand the speed of the

prototype is already faster than the SVN solution.

11.3.3 Reliability

The rollback features in Sesame provide reliability, the prototype left this rollback

functionality intact. The implementation was the main concern for the reliability. The ease of

implementation and the small impact on the architecture left the original sesame

implementation fully intact. At the moment not much can be said about the reliability, field

testing it must provide more results. Since it is still a prototype probably some issues will

emerge.

11.3.4 Implementation

As was expected the ease of implementation was good. The MemoryStore and

MemoryStoreConnection classes of the Sesame implementation had to be extended and one

other classes that contains the versioning system had to be made. A reasonable understanding

of the workings of Sesame and the Inferencer was enough to do the implementation. The

implementation only affected one location in the Sesame architecture making the ease of

implementation very good.

11.3.5 Querying

Querying was available in Sesame and the design of the versioning system did not damage its

functionality allowing full querying capabilities. The queries from the previous section

showed that the queries can easily be used to retrieve information from the system. However

the original concern that graded the querying with a + and not a ++ is still in place. Some

queries can become very complex, especially when we want to retrieve multiple objects and

their version information in one query.

Maturing and Versioning an Architectural Knowledge Repository

~ 55 ~

11.3.6 Transparency

Transparency remains good, the sesame architecture is not affected by the prototype and the

only concern was that more complex queries would be needed. The test cases and queries

show that normal queries are not overly complex. But the need for complex queries is still

there.

11.3.7 Maintainability

The systems maintainability is good; no structural changes to the architecture of Sesame had

to be made. The system logic is contained in one simple class that is called from only one

point in the Sesame code. Thus changes that have to be made are local and not system wide.

This makes maintainability good. Javadoc is added to the prototype to support the

maintainability.

Maturing and Versioning an Architectural Knowledge Repository

~ 56 ~

12 Related work
This section explores the related work for this thesis; however, since most work has been

done in a very specialized niche field, no specific related work is available. The work has

been done inside the context of the Semantic web, section one, a lot of the used technologies

can be derived from the semantic web and its vision lies in line with the vision of the

GRIFFIN project which sees the repository as an openly available intelligent collection of

architectural knowledge [30] present on the (Semantic) web for everyone. The second section

discusses RDF Repositories, which we used to store our data in. The third section gives an

overview of the inferencers that are available nowadays. The thesis and technologies all

operate in the field of architectural knowledge which is addressed in section four. Section five

focuses on versioning systems, versioning systems where proposed as the solution for our

second problem statement. Finally, an overview is presented of existing versioning systems

and the developed prototype.

12.1 The Semantic web

The Semantic Web is an evolving development of the World Wide Web in which the

semantics of information and services on the web is defined, making it possible for the web to

understand and satisfy the requests of people and machines to use the web content [25]. It

derives from World Wide Web Consortium director Sir Tim Berners-Lee's vision of the Web

as a universal medium for data, information, and knowledge exchange [26.]

 “I have a dream for the Web [in which computers] become capable of analyzing all the data

on the Web – the content, links, and transactions between people and computers. A „Semantic

Web‟, which should make this possible, has yet to emerge, but when it does, the day-to-day

mechanisms of trade, bureaucracy and our daily lives will be handled by machines talking to

machines. The „intelligent agents‟ people have touted for ages will finally materialize.”

Tim Berners-Lee, 1999

The semantic web includes at its core a set of design principles, collaborative working groups

and a variety of enabling technologies. Some of these technologies include the Resource

Description Framework (RDF), several data interchange formats (e.g. RDF/XML, N3, Turtle,

NTriples), and notations such as RDF Schema (RDFS) and the Web Ontology Language

(OWL), all of these provide a formal description of concepts, terms, and relationships within a

given knowledge domain [28].

12.2 RDF Repositories

RDF repositories are data sources capable of storing RDF data. Most of these repositories

come with their own framework that lets the user connect different data stores and sometimes

also reasoners that are capable of handling RDF(S) or OWL. The repository that the GRIFFIN

project uses is Sesame. Other repositories with similar functionality are Jenna [48], and

BOCA [49]. Jenna and Sesame look very similar; both come equipped with different data

stores, and provide an interface to connect different reasoners. BOCA is limited in that it only

has a DB2 data store and no inferencing capabilities. Emerging in the field of RDF

repositories are the distributed repositories, they provide higher performance and fault

tolerance. RDFPeers is a P2P based repository [50], Sesame 3 will come with a concept called

federation [51] it allows, through a specialized SAIL layer, the connection of multiple Sesame

stores over HTTP. The prototype build for this thesis extends Sesame with versioning

Maturing and Versioning an Architectural Knowledge Repository

~ 57 ~

capabilities adding to its feature set. It was build in such a generic way that it is not specific

for the GRIFFIN project but it could be implemented everywhere.

12.3 Inferencers

Inferencers are also called truth maintenance systems; in short this exactly describes what

they do. They maintain the “truth” in a system of statements based on the model inserted in

the system. At the moment two systems or repositories can be identified, RDF (S) and OWL

systems. OWL is an extension for RDF and has more descriptive power to model a specific

domain. Through the logic defined in the RDF or OWL model deductions can be made to

inference data. This is in basic how an inferencer works. There are different algorithms and

implementations for inferencing. Two classes of inferencers can be distinguished: Forward

chain and backward chain inferencing. Forward chain inferencers, inference data upon

insertion, and backward chain inferencers when querying for data. Our focus lies with forward

chain OWL inferencers, Sesame, standard, comes equipped with a forward chaining RDF

inferencer [7]. This can be used but will not fully make use of our model. Sesame offers a

clean interface to connect RDF(S) / OWL inferencers. There are multiple OWL inferencers

available; F-OWL is a forward chain inferencer that is based on F-Logic [60]. PELLET is

forward chain inferencer that works on descriptive logic [52]. OWLIM also is based on

descriptive logic and forward chaining and comes in two flavors swift OWLIM and big

OWLIM [8]. Swift is the fastest inferencer available, to date. OWLIM is the best choice to

combine with the versioning sytem, according to the predicted size of the repository a choice

for swift or big can be made.

12.4 Architectural Knowledge

The main driver behind this thesis was the facilitation of further research into architectural

knowledge (AK) through stabilizing the current environment and developing new

functionality. The research done by the GRIFFIN project was driven through different

architectural knowledge tools. These AK tools support the architect in the architecting

process. Different tools and tool suites have been developed, supporting different architecting

processes [54].

ADkwik is a collaborative platform based on a wiki, although it is not a standard wiki but an

application wiki [55]. At the Carnegie Mellon University they also use a wiki-based

collaborative environment in the master software engineering program [56]. ADDSS is a

webbased tool that stores manages and documents architectural design decisions [57].

Archium, is a tool that provides tracability among different AK concepts such as

requirements, decisions, architecture and implementation. It can resolve conflicts and

synchronize various parts during the life cycle of the system. The concepts can be expressed

using a specialized archium language [58]. AREL is a UML-based tool it creates and

documents architectural designs and focuses on decisions and rationale [59].

The Knowledge Architect (GRIFFIN) is a tool suite that is designed to capture, translate,

share, use and manage AK. It is based around a central repository that is accessed by different

clients. The prototype developed in this thesis enables the central repository to manage

versioning. It allows the retrieval of versioned information about the stored architectural

knowledge.

Maturing and Versioning an Architectural Knowledge Repository

~ 58 ~

12.5 Versioning systems

Versioning systems where proposed to solve our second problem statement. Different types of

versioning systems exist today; three are viewed as a possibility for the problem statement in

this thesis. The first is the Ontology Middleware Module (OMM) [27]. OMM extends the

Sesame RDF(S) repository [7]; it adds functionality like tracking changes, adding meta-

information and improved access functionality. It provides versioning functionality, that is, it

stores versioning information over the entire repository. The second are file based versioning

systems like SVN and related versioning systems like CVS, GIT. SVN versions files by

calculating deltas, deltas contain information about the changes made to a file. Through those

deltas we can calculate older versions of the files inside the SVN. File versioning systems are

not specifically an extension of the GRIFFIN repository but may be adapted to fit. Another

possibility are RDBMS‟s, Sesame can use MySQL and postgress. MySQL does not have

version control but postgress has a version control system called Post Facto [43] however it

tracks data schema changes and not data. The prototype developed in this thesis is based on

SVN versioning systems, it calculates and stores deltas and integrates into the existing

knowledge hub. It was written as an extension of the Sesame Memory Store implementation.

The developed prototype is not specific for the griffin project but can be used by everyone, as

long as they follow the rules for usage.

Maturing and Versioning an Architectural Knowledge Repository

~ 59 ~

13 Conclusion
The focus of this thesis revolved around the two problem statements defined in chapter two.

Chapter three and four described and addressed the first problem statement and the results

were presented in chapter five. Here it was concluded was that the first problem was solved

through the upgrades made to the system.

Chapter six described the second problem statement followed by chapter‟s seven to nine,

which addressed the problem and looked into potential solutions. Those solutions were

compared using a framework in chapter ten and the optimal solution was selected. From this

solution a prototype was build which was validated and reevaluated in chapter eleven. The

prototype was graded using the framework from chapter eleven and the performance was

tested. As was to be expected, the results of the performance test could be improved. But

keeping in mind that this was just the prototype and some of the code needs to be optimized,

the results looked good. Both problem statements have been addressed and solved. The first

problem statements solution is working for a while now, the prototype, which is the solution

to the second problems statement, needs some more work before it is ready to take into

production.

13.1 Future work

At this moment the repository is running in a mature environment (PS1) and the prototype is

working (PS2). However before the prototype can be taken into production some more work

has to be or can be done, namely the following:

- Maturing the prototype;

- Implementing the prototype into the current repository;

- Adding extra functionality to the prototype;

- Inferencing on current context;

- Publish the new versioning repository and get it accepted into Sesame.

The current prototype works and performs reasonably well, however it still is two time as

slow as predicted. There are two main concerns that have to be addressed, at the moment

OWLIM is still in beta release and for that reason it was not tested. The final release of

OWLIM should be connected with the prototype; this can be done without programming it is

just a configuration of Sesame.

Secondly for the logic of the versioning system, the current version inside the repository must

be compared with the new data. At the moment the implementation of the retrieval of the old

statements is the most costly method inside the versioning system. Improving this method will

improve the overall speed of the system greatly.

The prototype is an extension of the already used Sesame repository, implementing it into the

current server should be no problem. However some of the clients may have to be adapted

slightly to be able to work with the server. The main thing is connecting them to the current

context so they query for the correct data.

Functionality that could be added is branching and merging and locking of data. However the

adding of extra functionality lies out of scope for the prototype and therefore is future work.

Maturing and Versioning an Architectural Knowledge Repository

~ 60 ~

There are some rumors about Sesame three that it will provide some functionality to inference

only certain contexts. This could speed up the repository greatly, it works by adding the OWL

model to a certain context and the inferences should only work on that context. At the

moment the OWL model is added to the current context however the inferencer still works on

the entire repository. Keeping an eye out for this could improve the speed of the application

greatly.

Maturing and Versioning an Architectural Knowledge Repository

~ 61 ~

Literature
[1] The SVN website, http://subversion.tigris.org/

[2] D. Marjanovic, Developing a Meta Model for Release History Systems, H. Gall, M.

Pinzger, January 2006

[3] The CVS website, http://www.nongnu.org/cvs/

[4] P. Liang, A. Jansen, P. Avgeriou, Knowledge Architect: A Tool Suite for Capturing

and Managing Software Architecture Knowledge, 2009

[5] P. Liang, P. Avgeriou, Tools and Technologies for Architecture Knowledge

Management, In Software Architecture Knowledge Management: Theory and

Practice, pages 91–111. Springer, 2009.

[6] The SVNKIT website, http://www.svnkit.com

[7] The Sesame website, http://www.openrdf.org/doc/sesame/users/ch01.html

[8] The OWLIM website, http://www.ontotext.com/owlim/index.html

[9] The ELMO website, http://www.openrdf.org

[10] The OMM website, http://www.ontotext.com/omm/

[11] Meier, Farre, Bansode, Barber, Rea, Performance Testing Guidance for Web

Applications, August 2007

[12] P. Avgeriou, P. Kruchten, P. Lago, P. Grischam and D. Perry, Sharing and Reusing

Architectural Knowledge – Architecture, Rationale, and Design Inten,. Shark 2007

Report

[13] J. Bosch, Software Architecture: The Next Step in Software Architecture, First

European Workshop (EWSA), vol. 3047 of LNCS, pp. 194 – 199, Springer, May, 2004

[14] D. Falessi, G. Cantone, and M. Becker. Documenting design decision rationale to

improve individual and team design decision making: an experimental evaluation. In

proceedings of the 2006 ACM/IEEE international symposium on International

symposium on empirical software engineering (ISESE ’06), pages 134-143, New

York, NY, USA, 2006, ACM Press.

[15] R.C. de Boer, R. Farenhorst. In Search of „architectural knowledge‟. In SHARK ’08:

Proceedings of the 3
rd

 international workshop on Sharing and reusing architectural

knowledge, pages 71-78, New York, NY, USA, 2008. ACM

[16] P. Kruchten, P. Lago, and H. van Vliet. Building up reasoning about architectural

knowledge. In Procedings of the Second Internation Conference on the Quality of

Software Architectures (QoSA 2006), June 2006.

[17] I. Habli and T. Kelly. Capturing and replaying architectural knowledge through

derivational analogy. In SHARK-ADI ’07: Proceedings of the Second Workshop on

SHAring and Reusing architectural Knowledge Architecture, Rationale, and Design

Intent, page 4, Washington, DC, USA, 2007. IEEE Computer Society.

[18] R.C. de Boer, R. Farenhorst, P. Lago, H. van Vliet, and A.G.J. Jansen. Architectural

knowledge: Getting into the core. In Proceedings of the Third International

Conference on the Quality of Software Architectures (QoSA 2007), volume 4880 of

LNCS, pages 197-214, july 2007.

[19] I. Nonaka and H. Takeuchi. The Knowledge-creating Company: How Japanese

Companies Create the Dynamics of Innovation. Oxford University Press Inc, USA,

1995.

[20] J. Tyree and A. Akerman, Architecture Decisions: Demystifying Architecure, IEEE

Software 22 (2005), no. 2, 19-27.

[21] J. S. van der Ven, A. G. J. Jansen, J. A. G. Nijhuis and J. Bosch, Design Decisions:

The Bridge between Rationale and Architecture, in Rationale Management in

Maturing and Versioning an Architectural Knowledge Repository

~ 62 ~

Software Engineering, A. H. Dutoit, R. McCall, I. Mistrik and B. Paech, eds., ch. 16,

pp. 329{348. Springer-Verlag, March, 2006.

[22] A. Tang, M. A. Babar, I. Gorton and J. Han, A survey of architecture design rationale,

Journal of Systems & Software 79 (2006), no. 12, 1792-1804.

[23] A. G. J. Jansen and J. Bosch, Software Architecture as a Set of Architectural Design

Decisions, in Proceedings of the 5th IEEE/IFIP Working Conference on Software

Architecture (WICSA 2005), pp. 109-119. November, 2005.

[24] H. Zhuge, The Knowledge Grid. 2004. World Scientific Publishing Co.

[25] T. Berners-Lee, J. Hendler, O. Lassila, The Semantic Web, May 2001

[26] Herman, Ivan (2008-03-07). "Semantic Web Activity Statement". W3C.

http://www.w3.org/2001/sw/Activity.html. March 2008.

[27] A. Kiryakov, D. Ognyanov, B. Popov,Ontology Middleware System Documentation,

September 2009

[28] The Semantic Web Wikipedia, http://en.wikipedia.org/wiki/Semantic_Web

[29] P. Liang, A.G.J. Jansen, P. Avgeriou, Knowledge Architect: A Tool Suite for

Managing Software Architecture Knowledge, RUG-SEARCH-09-L01, February 2009

[30] P. Lago, R. Fahrenhorst, P. Avgeriou, R.C. de Boer, V. Clerc, A. Jansen, and H. van

Vliet, The GRIFFIN Collaborative Virtual Community for Architectural Knowledge

Management,

[31] The Astron website, http://www.astron.nl/, the Dutch institute for radio astronomy.

[32] The GRIFFIN project website, http://www.rug.nl/informatica/onderzoek/

programmas/softwareengineering/griffin/ProjectDescription.

[33] The OWL website, http://www.w3.org/2004/OWL/

[34] The OWL Features website, http://www.w3.org/TR/2004/REC-owl-features-

20040210/#s1

[35] The Wikipedia Knowledge Management Entry,

http://en.wikipedia.org/wiki/Knowledge_management

[36] P. Liang and P. Avgeriou, Tools and Technologies for Architecture Knowledge

Management, 2009

[37] The Protege website, http://protege.stanford.edu/overview/index.html.

[38] The jax ws website, http://java.sun.com/developer/technicalArticles/J2SE/jax_ws_2/

[39] J.broekstra and A. Kampman, Inferencing and Truth Maintenance in RDF Schema.

[40] List of revision control systems,

http://en.wikipedia.org/wiki/List_of_revision_control_software

[41] The Sesame 2 website, http://www.openrdf.org/doc/sesame2/2.3-

pr1/users/userguide.html

[42] The PBXT website, http://www.primebase.org/, PBXT, MySQL version control

[43] The post-facto website, http://www.post-facto.org/, Postgres version control

[44] The Oracle version control systems website, http://www.dba-

oracle.com/t_version_control_change_control.htm

[45] MySQL, Postgres and Oracle Benchmarks,

http://phplens.com/phpeverywhere/node/view/23

[46] Postgres and Oracle benchmarks,

http://www.informationweek.com/news/software/linux/showArticle.jhtml?articleID=2

01001901

[47] MySQL and Postgres benchmark, http://www.randombugs.com/linux/mysql-

postgresql-benchmarks.html

[48] The Jena website, http://jena.sourceforge.net/tutorial/RDF_API/index.html

[49] The Boca website, http://ibm-slrp.sourceforge.net/wiki/index.php/BocaUsersGuide-

2.x

Maturing and Versioning an Architectural Knowledge Repository

~ 63 ~

[50] M. Cai, M. Frank, RDFPeers: A Scalable Distributed RDF Repository Based on a

Structured Peer-to-Peer Network, 2004

[51] The Sesame Federation website, http://wiki.aduna-

software.org/confluence/display/SESDOC/Federation

[52] The pellet website, http://www.mindswap.org/2003/pellet/

[53] J. Rasmussen, Understanding Software Architectures: Tracing Architectural

Knowledge In Software Architecture Documentation, 2009

[54] P. Liang, A. Jansen, P. Avgeriou, Knowledge Architect: A Tool Suite for Capturing

and Managing Software Architecture Knowledge, 2009

[55] N. Schuster, O. Zimmermann, C. Pautasso, ADkwik Web2.0 collaboration system for

architectural decision engineering, Proceedings of the19th International Conference

on Software Engineering & Knowledge Engineering (SEKE), pp.255–260 (2007)

[56] F. Bachmann, P. Merson, Experience using the web-based tool wiki for architecture

documentation. Tech.Rep.SEI-2005-TN-041, Carnegie Mellon University (2005)

[57] R. Capilla, F. Nava, S. P´erez, J.C. Due˜nas, AWeb-based Tool for Managing

Architectural Design Decisions. 1
st
 ACM Workshop on Sharing Architectural

Knowledge (SHARK). Torino,Italy(2006)

[58] A. Jansen, J. Bosch, Software Architecture as a Set of Architectural Design Decisions,

Proceedings of the 5
th

 IEEE/IFIP Working Conference on Software Architecture

(WICSA), pp.109–119.IEEE Computer Society(2005)

[59] A. Tang, Y. Jin, J. Han, A Rationale-Based Architecture Model for Design

Traceability and Reasoning. The Journal of Systems and Software (2007)

[60] The F-OWL website, http://fowl.sourceforge.net/

Maturing and Versioning an Architectural Knowledge Repository

APPENDIX I The Performance Testing Report

A Quantitative Analysis report: Performance Testing SVN and Sesame

1

A Quantitative Analysis report
Performance Testing SVN and Sesame

Hubert ten Hove
University of Groningen

14 January 2010

A Quantitative Analysis report: Performance Testing SVN and Sesame

2

1 Introduction ... 4
2 Identify the test environment .. 5

2.1 Identify the user-facing functionality of the system... 5

2.2 Identify non-user-initiated (batch) processes and functions 5
2.3 Determine expected user activity ... 6
2.4 Develop an model of both the test and production architecture 6

2.4.1 The test system .. 7
3 Identify performance acceptance criteria .. 9

3.1 Determine the objectives of the performance-testing effort................................. 9
3.2 Capture or estimate resource usage targets and thresholds. 9
3.3 Identify metrics. ... 10

4 Plan and Design Tests ... 12
4.1 Identify Objectives ... 12
4.2 Identify key usage scenarios .. 12

4.3 Determining Individual User Data and Variances ... 15
4.4 Determine the relative distribution of scenarios. ... 15

4.5 Identify Target Load Levels ... 15
5 Configure test environment... 16
6 Implement test design ... 17

7 Execute Tests .. 18
8 Analyze, Report and Retest... 20

8.1 SVN .. 20
8.1.1 Use Case 1: Committing a new model into the SVN.................................. 20

8.1.1.1 Results ... 20
8.1.1.2 Analysis ... 21

8.1.2 Use Case 2: Updating an existing model inside the SVN 21
8.1.2.1 Results ... 21
8.1.2.2 Analysis ... 22

8.1.3 Improvements ... 23
8.2 Sesame .. 23

8.2.1 Use Case 3: Committing a new model into Sesame using ELMO 23
8.2.1.1 Results ... 23

8.2.1.2 Analysis ... 23
8.2.2 Use Case 4: Committing a new model into Sesame using an RDF-file 24

8.2.2.1 Results ... 24

8.2.2.2 Analysis ... 25
8.2.3 Use Case 5: Committing a new model into Sesame using SeRQL............. 25

8.2.3.1 Results ... 25
8.2.3.2 Analysis ... 26

8.2.4 Use Case 6: Updating a model inside Sesame using SeRQL 27
8.2.4.1 Results ... 27
8.2.4.2 Analysis ... 27

8.2.5 Improvements ... 28
8.3 The Combined Results ... 28

8.3.1 The committing use cases ... 28

A Quantitative Analysis report: Performance Testing SVN and Sesame

3

8.3.1.1 Analysis ... 29
8.3.2 The updating use cases.. 29

8.3.2.1 Analysis ... 29
8.4 Retest .. 29

9 Conclusion .. 30
10 Literature ... 31

Appendix I Complete Test Results

A Quantitative Analysis report: Performance Testing SVN and Sesame

4

1 Introduction
This report was written to support the decision making process between different

proposed solutions for a versioning system. For that system several options were

presented and for those options properties were selected. One of those properties was the

performance of those solutions. A performance test was done on the proposed solutions.

This report shows the results and the process of the testing effort. At the end of the report

we make some conclusions about the best model to use in respect to the performance.

In the paper Performance Testing Guidance for Web Applications [1], they provide a

thorough method for performance testing. This method is followed in this report;

however some parts are left out or slightly adapted to suit the needs for our specific

performance tests. Also some parts are added to provide the possibility to make some

predictions. It provides a structured test plan, for each step there is a chapter in this

report, the steps are:

 Identify Test Environment

 Identify Performance Acceptance Criteria

 Plan and Design Tests

 Configure Test Environment

 Implement Test Design

 Execute Tests

 Analyze, Report and Retest

A Quantitative Analysis report: Performance Testing SVN and Sesame

5

2 Identify the test environment
Identifying the test environment can be seen as evaluating the system to increase

performance testing. Why is there the need to identify the test environment, according to

[1]; “The intent of system evaluation is to collect information about the project as a

whole, the functions of the system, the expected user activities, the system architecture,

and any other details that are helpful in guiding performance testing to achieve the

specific needs of the project”. So evaluating our system on forehand gives a better

understanding of the system as a whole and results in a better test design. This is essential

for good performance testing. Evaluating the system is composed of the following

activities:

 Identify the user-facing functionality of the system.

 Identify non–user-initiated (batch) processes and functions.

 Determine expected user activity.

 Develop an exact model of both the test and production architecture.

 The test System

2.1 Identify the user-facing functionality of the system.
This means what does a user need to know of the functionality of the system and how

does he/she interact with the system and what actions can be performed. This can be

divided into two parts since the system will be used by two different applications. The

Knowledge EXtractor (KEX) and the Matrix EXplorer (MEX).

When looking at the KEX the user does not have much functionality, it is expected that

the user has some sort of SVN client, like tortoise [7], which is used to commit all of the

users files. Expected is that users commit and update their files several times a day. After

a commit the SVN triggers the KEX, the user has no control over this process.

A Second system is het MEX, the MEX is used to explore all of the architectural

knowledge inside the repository, and therefore will also be used to check the versioned

data. Here the user can checkout different artifacts or knowledge entities and check their

version history. A checkout of an artifact is important for the performance, but working

with knowledge entities only is a small amount of data. This is then also not tested in the

performance tests.

2.2 Identify non-user-initiated (batch) processes and
functions

After the user performs a commit to the SVN a trigger inside the SVN launches the KEX

(Error! Reference source not found.). The KEX intercepts the files that contain the

models, and parses the required data from those files. This data is then stored in the

Repository of the versioning system. This can be seen as both a user functionality or a

batch process. The user has nothing to do with it and also has no knowledge of how it is

done. Thus we speak of a non-user-initiated process, keeping in mind that actually the

commit to the SVN is the user trigger that activates this process on the side.

A Quantitative Analysis report: Performance Testing SVN and Sesame

6

2.3 Determine expected user activity
It is expected that most of the systems load comes from the users committing new and

changed model into the repository, which is done through the trigger in the SVN. Also it

is expected that load will come from users navigating through the data using the MEX. At

the moment it is unknown how many users will actually use this functionality. This may

be reevaluated after the system is in place. However the MEX mostly is just checking out

data from the repository, which is also part of the updating process. Thus the performance

of checkouts is measured.

2.4 Develop an model of both the test and production
architecture

To get a better understanding of the system and the test system an exact model of the

logical architecture is made and is shown in Figure 1. The user commits his files to the

SVN, while SVN inserts the files into the SVN database a trigger launches the KEX. The

KEX then parses the architectural knowledge from the files and commits or updates those

files inside the repository. In case of the MEX , Figure 2, the user asks for a view of a

certain object inside the repository, the MEX retrieves this data, and commits if the user

makes changes to the data. The dotted area is the testing architecture. The SVN trigger

has nothing to do with the performance of the application since it will be the same for

every solution. The KEX and MEX both retrieve and commit data to the repository so

that can also be combined into the same tests.

Commit to SVN
SVN

KEX

Launch KEX

SVN Database

Insert into DB

Insert Data into DB

Database

Parse Data from Exel File

View Artifact
MEX

Get data from DB

Insert Data into DB

Database

Get data from DB

Figure 1 The logical architecture of the KEX production system

A Quantitative Analysis report: Performance Testing SVN and Sesame

7

Commit to SVN
SVN

KEX

Launch KEX

SVN Database

Insert into DB

Insert Data into DB

Database

Parse Data from Exel File

View Artifact
MEX

Get data from DB

Insert Data into DB

Database

Get data from DB

Figure 2 The logical architecture of the MEX production system

Next to the logical architecture there is also the physical architecture. Figure 3 shows this

architecture for the production systems. The client performs a commit on his pc and the

files are send to the SVN server. Here the trigger to the KEX is made, at the moment it is

unclear if the KEX and the SVN will run on the same machine, for convenience we

assume they are. There is also the case of the MEX where the MEX runs on the user

system and communicates with the repository server. Since in the test environment there

are limited resources it will consist of a single computer where everything is run. But the

test environment does not include the SVN as can be seen in Figure 1, so a single pc is

sufficient for testing.

User System SVN

Commit to SVN

Repository Server

Trigger KEX

User System Repository Server

Retrieve & Commit

Figure 3 The physical architecture of the production systems

2.4.1 The test system

It would have been better to use a complete desktop system or even better a server for the

testing environment. But due to limited resource availability we were only able to test

everything using a laptop. In Tables Table 1 and Table 2 is the hardware and software

specification of the test system. The production system will have better performance, but

all tests are run on the laptop so we can make assumptions for the same tests running on a

dedicated server.

A Quantitative Analysis report: Performance Testing SVN and Sesame

8

Table 1 Hardware Specification of the test system

Table 2 Software Specification of the test system

Hardware specification

System: Dell latitude D600

Processor: Intel Pentium Mobile (Centrino) 2.0 GHz

 32Kb L1 Cache

 32Mb L2 Cache

Front side Bus: 400 MHz

Memory: 1024Mb

 266 MHz

Hard disk: ATA 100

 8Mb Cache

 60Gb

 5400 rpm

 Average seek time 12.5 ms

Software specification

Operating System: Windows XP sp3

Java runtime: JRE 1.6

SVN: Visual SVN Server v1.0.1

Tools: SVNKit 1.1.4

 Sesame 2.0.1

 ELMO 1.0 RC1

IDE: Eclipse

A Quantitative Analysis report: Performance Testing SVN and Sesame

9

3 Identify performance acceptance criteria
Identifying the performance acceptance criteria is necessary to get a better understanding

of the critical areas in an application and to what criteria these areas must comply. It can

be seen as follows, where do we want to get performance measurements from, what

criteria do apply to these measurements and which metrics do we use for them.

Determining performance-testing objectives can be thought of in terms of the following

activities [1]:

 Determine the objectives of the performance-testing effort.

 Capture or estimate resource usage targets and thresholds.

 Identify metrics.

3.1 Determine the objectives of the performance-testing
effort.

The Objective of this performance-testing effort is to get a better view of the difference in

performance of our proposed solutions. By testing the performance of the different

proposed solutions, results can be compared to find the fastest solution. This comparison

gives us one of the needed variables which will help us decide which solution will be

implemented in the final system.

There are some bottlenecks that have to be kept in mind. For the SVN solutions this will

probably be the I/O that will determine the maximum speed. For Sesame this will be the

memory, the speed of the memory but also the available amount of memory is crucial for

performance [2].

Models will be committed and updated inside the repository. This will be reflected in the

objectives, tests have to be designed that commit new models into the repository, other

tests update files models the repository. For updating models it is necessary to know how

much change there is so we can design tests that approach a real life scenario. During his

work at Astron [6] found that the average change that is made to model is about 20% of

the total model. This is explained by the fact that changing a minor value below in the

calculation, values throughout the entire model change.

3.2 Capture or estimate resource usage targets and
thresholds.

It is important to capture or estimate some of the usage targets and thresholds. These

targets and thresholds will keep the performance of the system optimal if they are met.

The target is what the system does under normal circumstances and the threshold is

where the system may peek to. One of the most common targets is the use of processing

power. At it is generally accepted that a computer performs worse when it’s CPU usage

rises above 80%, we the define the following:

CPU Usage Target 70%

 Threshold 80%

A Quantitative Analysis report: Performance Testing SVN and Sesame

10

In our testing environment, everything runs on one system. In the production

environment this will be different. The client will send the data to the server over the

network. For the network I want to define a target of 80%, more load will result in slower

speeds and this is not advised, and a threshold of 90%. This cannot be tested in our

testing environment but must be taken into account when developing the production

environment.

The system will be tested for SVN and Sesame implementation. Below for both

implementations specific thresholds are defined.

SVN

The most crucial thing when using an SVN is the I/O performance. This is also the

Bottleneck of the application so it will have no use to define Targets and Thresholds here

since it will be performing at 100% all the time, if the speed of the CPU allows it. So the

main thing we have to be aware of during the SVN testing is the CPU Usage to maximize

our speed through the bottleneck. As defined above it is not preferable if the CPU usage

rises above 80%. So the target will be set to 70% to increase maximum efficiency and not

use an overpowered system. The threshold is 80% since above that the system performs a

bit worse.

Sesame

The most crucial variable for Sesame is its memory usage. When more than 50% of

memory is used the performance of Sesame will degrade [2] so therefore we set the

Target to 50%. Nevertheless the system response time will still be good, so the Threshold

will be a lot higher and can be set to 75%. Since all operations will be performed in the

memory we expect the CPU to perform at 100% or near 100%.

3.3 Identify metrics.
Above defined are objective target and thresholds, but to be able to meet those proposed

variables some metric need to be assigned to all of them. These metrics give means to

measure and compare the results. All of the metrics apply to resource utilization and are

fairly easy to measure.

For the threshold and target of CPU usage the “Windows Task Manager” is kept open

during testing. From this the average CPU usage during the test can be read and noted

down. We look at the average CPU usage during the different stages of the tests. If a

threshold is needed peeks can also be recorded.

The task manager is also used for the targets and thresholds associated with memory. At

the start and end of the performance test the memory of the application can be recorded

from the task manager. To get even a better view of the memory usage, before and after

each test we export all data from the Sesame repository. This way we get a better idea of

how much memory is used for inferencing and how much is used to store data.

The metric that is most interesting is “time”. To be more precise the total time it takes for

the system to perform one of the designed tests.

A Quantitative Analysis report: Performance Testing SVN and Sesame

11

These tests are modeled for different proposed solutions. The results of those

measurements can then be used to compare the performance of the different proposed

solutions. To measure time, upon start of the test the system time is recorded. At the end

of the test the time is recorded again. Subtract the start time from the end time and the

result is the total time the test took.

Next to the metrics of time it is also preferable to check for scalability. Meaning, what is

the effect of the growth of the repository has on the time it takes for a test to complete.

And how large can our repository get before the performance is not acceptable anymore.

We can calculate the scalability by doing performance testing with different repository

seizes, and then make some predictions about it’s behavior.

A Quantitative Analysis report: Performance Testing SVN and Sesame

12

4 Plan and Design Tests
With the metrics designed the planning and designing of the needed tests can start. The

tests will simulate the same behavior as the system will have during normal operation.

These tests give results that will reflect the final production system. Therefore the tests

have to reflect the reality as closely as possible else the results will be useless. The

process that is used to identify the usage profiles that will be used in the performance

testing is known as workload modeling [1]. We will do the workload modeling following

the following steps:

 Identify the objectives.

 Identify key usage scenarios.

 Determine individual user data and variances.

 Determine the relative distribution of scenarios.

 Identify application load distribution.

4.1 Identify Objectives
The objective of the performance testing effort is to get an idea how the different

proposed solutions perform. Two programs where considered to use as a repository, SVN

and Sesame, to store the architectural versioning info in. The performance tests perform

measurements during the testing of these two programs and their proposed solutions. The

key objective is to get accurate measurements about how long it takes to insert, update or

retrieve models from the repository. Also important is looking at the impact of the

amount of data that is inside the repository and its effect on the performance.

4.2 Identify key usage scenarios
In our current test environment we identify six usage scenarios. The first two scenarios

are for the SVN solutions, the last four are concerned with the Sesame solutions. The

ones that use the SVN are; “Committing a new model into the SVN” and “Updating an

existing model inside the SVN”. For sesame we have defined four use cases.

- Committing a new model into Sesame using ELMO

- Committing a new model into Sesame using a RDF-file

- Committing a new model into Sesame using SeRQL

- Updating an existing model inside Sesame using SeRQL

The first three use cases test the speed for the different connection types we can have

with Sesame, the fourth test is the update test done only with the fastest connection type

from the first three tests! The connection types tested are:

- ELMO

- File Insert

- SeRQL

A Quantitative Analysis report: Performance Testing SVN and Sesame

13

Use Case 1 Committing a new model into the SVN

Description After the architect makes a new model he commits everything into the SVN. A
trigger launches the KEX. The KEX parses the data from the model and after
updating, inserts this into a local SVN repository. The entire model is than
committed from the local repository into the SVN.

Actor Architect of the model

Precondition Connection with the SVN

Post condition Model is present in the SVN

Steps

1. User inserts a new model into the SVN

2. KEX parses the data from the model

3. KEX updates the local repository

4. KEX inserts the data into the local repository

5. KEX commits the changes from the local repository into the SVN

Use Case 2 Updating an existing model inside the SVN

 Description The architect edits an existing model and commits it to the SVN. A trigger
launches the KEX. The KEX parses the data from the model and after
updating, inserts this into a local SVN repository. The changes from the model
are then committed from the local repository into the SVN.

Actor User who changes the model

Precondition Connection with the SVN

Post condition Model is present in the SVN

Steps

1. User inserts a updated model into the SVN

2. KEX parses the data from the model

3. KEX updates the local repository

4. KEX inserts the data into the local repository

5. KEX commits the changes from the local repository into the SVN

Use Case 3 Committing a new model into Sesame using ELMO

Description After the architect makes a new model he commits everything into the SVN. A
trigger launches the KEX. The KEX parses the data from the model and makes
ELMO objects from each KE. These are automatically inserted into the remote
Sesame repository by ELMO.

Actor Architect of the model

Precondition Connection with the SVN

Post condition File is present in the SVN and model is present in Sesame

Steps

1. User inserts a new model into the SVN

2. KEX parses the data from the model

A Quantitative Analysis report: Performance Testing SVN and Sesame

14

3. KEX makes ELMO objects

Use Case 4 Committing a new model into Sesame using a RDF-file

Description After the architect makes a new model he commits everything into the SVN. A
trigger launches the KEX. The KEX parses the data from the model and makes
ELMO objects from the KE’s these objects are stored in a local Sesame
Repository. The KEX extracts all data from the local repository into a file. The
file is uploaded into the remote Sesame repository

Actor Architect of the model

Precondition Connection with the SVN

Post condition File is present in the SVN and model is present in Sesame

Steps

1. User inserts a new model into the SVN

2. KEX parses the data from the model

3. KEX makes ELMO objects

4. KEX extracts all statements from the local Sesame Repository into a

file

5. KEX commits the file into the remote Sesame repository

Use Case 5 Committing a new model into Sesame using SeRQL

Description After the architect makes a new model he commits everything into the SVN. A
trigger launches the KEX. The KEX parses the data from the model and inserts
this data into a local constructed graph structure, this structure is then
committed into the SVN.

Actor Architect of the model

Precondition Connection with the SVN

Post condition File is present in the SVN and model is present in Sesame

Steps

1. User inserts a new model into the SVN

2. KEX parses the data from the model

3. KEX updates the local graph

4. KEX inserts the graph into the remote Sesame repository

Use Case 6 Updating an existing model inside Sesame using SeRQL

Description After the architect makes a new model he commits everything into the SVN. A
trigger launches the KEX. The KEX parses the data from the model and inserts
this data into a local constructed graph structure, this structure is then
committed into the SVN.

Actor Architect of the model

Precondition Connection with the SVN

Post condition File is present in the SVN and model is present in Sesame

A Quantitative Analysis report: Performance Testing SVN and Sesame

15

Steps

1. User inserts a new model into the SVN

2. KEX parses the data from the model

3. KEX updates the local graph

4. KEX inserts the graph into the remote Sesame repository

4.3 Determining Individual User Data and Variances
The individual user data and variance is not taken into account during the performance

testing. Each user will make their own models and commit them to the system. However

since the interest lies on time we can just as easily take an average model and perform all

test with that. An average model consists of 1000 elements and change concerns about

20% of the elements. So an average model is used which represents these numbers. The

tests generate data according to these values, so the tests are representative of the

production environment negating the effect of individual user data and variances in that

data. Of course the data in the production environment is not average, but by taking the

averages the measurements that need to be done produce average results.

There is variation into the number of commits a user makes during the day, but this value

has nothing to do with the performance of the system. It may only be relevant if we look

at peak hours of committing, the numbers for committing of different users are not know

so we cannot take them into account.

4.4 Determine the relative distribution of scenarios.
There are two scenarios that have to be taken into account, committing a new model or

updating an existing model. Obviously updating is the scenario that is executed more

often than committing. A user commits his files even when models are not totally

finished at the end of the work day. Thus the next day there is an update, next to that

slight changes are always made to models. We know that slight changes produce 20% of

change inside a model. Assumed is that changing a model is done much more frequent

than making new ones. This makes updating the most used scenario.

4.5 Identify Target Load Levels
At this moment we can only make some predictions about the load of the application. We

know that the trigger is the commit operation on the SVN. Everyone will have a different

point to commit and synchronize with the SVN. Depending on the time of committing

and activity in the repository the load will be high. Assumed is that the most active point

will be the end of the work day, everyone will commit their files at that point. Also

before the afternoon break we assume an above average number of users will do a

commit. However the users committing will notice nothing of this, and the users that are

using the MEX will have their break during the assumed peak periods. The only time a

user encounters speed problems is when he is retrieving data to explore using the MEX

and another user insert a large amount of files into the SVN that triggers the KEX.

A Quantitative Analysis report: Performance Testing SVN and Sesame

16

5 Configure test environment
To be able to run the tests correctly not only the test design needs to be good, also the

environment must be configured correctly. For our tests the configuring of the

environment was a fairly easy task. First look at all the services that are running on the

test machine, and make sure that it is stable and the same over all the tests. Disabling the

screensaver so that is does not start running during a test is always a good thing. Also kill

and remove all applications and processes that have nothing to do with the testing. And

turn of the virus scanner so that it does not interfere with actions that write to the disk or

to the active memory.

Having taken those things into account also the “Java Virtual Machine” (JVM) needed

some tweaking to ensure optimum performance. Default the JVM takes 300 Megabyte of

memory. After a few tests SVN crashed due to an out of memory error. The option –

Xmx500M was added to the run target of eclipse which ensured that the JVM had

500MB of available memory. This speeded up the performance a bit. 500 was the

maximum since the machine only had 1 GB available and eclipse also took some of the

memory the system as well. Above 500MB we found that performance dropped due to

swapping with the hard drive. For the Sesame tests the same was then done, only we now

gave tomcat 500MB instead of the default 300MB.

A Quantitative Analysis report: Performance Testing SVN and Sesame

17

6 Implement test design
The implementation of the test design is done in Java using eclipse. Java has to be used

for Sesame, since it is written in Java. For SVN we use the Java SVNKit to. Eclipse is

used mainly because it is one of the best Java IDE’s around and it is free. We take the

following points into account [1] when we are implementing the model:

 Do not change your model without serious consideration simply because the

model is difficult to implement in your tool.

 If you cannot implement your model as designed, ensure that you record the

details about the model you do implement.

 Implementing the model frequently includes identifying metrics to be collected

and determining how to collect those metrics

Java classes will be created for each of the, in chapter 3, defined use cases. When looking

at the use cases we see that steps one and two are similar for all use cases and therefore

will not be implemented into the tests. Since the time for steps one and two will always

be the same for each model the overall performance will not be affected. Normally the

SVN triggers the KEX to activate, the start of the test now does this. The metrics that the

tests will gather have been defined in chapter 4. A log class is made which the test

notifies at certain points during the testing, collecting data needed to satisfy the pre

defined metrics. At the end of the test, the performance class outputs a performance log

generating data collected during the tests.

All of the classes are configurable so we have some control over the testing, we can

adjust variables as the amount of data present in the repository, how much data needs to

be inserted, what connection type is needed and some more. This gives some flexibility

when testing and may help to specify some tests on crucial points.

Tests are always run more than once. So there is also a parameter that sets how many

times a test should run. This is done to get an average time instead of running the test

only once. The average time counters the problem of an erratic sample.

A Quantitative Analysis report: Performance Testing SVN and Sesame

18

7 Execute Tests
Before the execution of the test, check the test environment. The goal of the test

environment is to mirror the execution environment as close as possible. The test

environment is not a complete match for the production system as in respect to the full

functionality. But the test environment is a good simulation of the actual processes that

are going on in the execution environment. They simulate the most performance

consuming processes and leave out the small one. The processes of updating and

inserting complete models is simulated, however the KEX will update some minor things

like one KE. This has no effect on performance and the user will not notice much when

doing small stuff like this. This is then also not embedded in the performance tests. We

can assume that our test environment matches our production environment close enough

to produce the needed results.

Finally you can simulate some background activity to approach a real world scenario. In

our case this was not necessary. We assume that the production environment will be run

on a standalone server, so there will be no background activity.

Next to checking the test environment we also have to validate the tests. Instead of

blindly accepting the outcomes of the test we make sure that the generated values are

correct. Run a single test and inspect it step by step to see if the test does what is expected

of it. System outs can be used to print intermediate data or an object inspector. System

out where used for our test validation. Data validation is also a very good way to check if

the tests perform as expected, this way it is made sure data is not transformed in some

way during the testing. For SVN and Sesame all tests were done in a single run, for SVN

we used the visual SVN program to inspect the data inside and compare it to the inserted

data. For Sesame we used the web interface to randomly check some KE’s after the

inserting. Values were checked for consistency and compared with the input values. The

inspections showed correct values so the tests were accepted as valid.

Here a short description how the SVN tests were executed. First I decided to run all tests

20x but after seeing the performance of the system and amount of time it would take I

decided to bring this back to 10x. Also the original plan was to test with 0, 100, 500 and

1000 models inside the SVN. But the second test with 100 models already indicated that

Java was out of memory. So we decided to allow 500Mb of memory. The decision was

made then to take an increment of 50 from 0 – 300 and test all the values in between. The

first given values where retested with the 500Mb of memory so see if this would make a

performance difference. This was not the case but for consistency the new results were

kept.

In the initial tests we did a complete commit of the entire local SVN directory.

Committing only the directory where the new files of changed files are inserted seemed

to increase the performance. So all tests where retested with this method.

In the Sesame we immediately took the 50 models increment that was changed in de

SVN test. In the tests Tomcat was configured to run with 300Mb of available memory

A Quantitative Analysis report: Performance Testing SVN and Sesame

19

space. After inserting 50 models it was obvious that this was not enough, so Tomcat was

configured to use 500Mb of memory space. This allowed for more testing and a faster

performance. This allowed for testing up to 250 models inside the repository. We

exported the data from the repository before and after the test to see if it did not exceed

the maximum amount of available memory.

The other metrics that had to be recorded where done so using the data presented in the

“Windows Task Manager”. This could just be monitored while the test was running.

System outs indicated what part of the testing process was running.

A Quantitative Analysis report: Performance Testing SVN and Sesame

20

8 Analyze, Report and Retest
Below the results of the six use cases has been plotted into graphs. The complete results

can be found in appendix I. The results are divided over SVN and Sesame, Sesame is the

sub divided over the ELMO, File and SeRQL use cases. First the results of the SVN tests

are presented followed by the results of Sesame. Each section is divided into a result,

analysis and improvements section. Finally the results are combined into two graphs. One

for inserting and one for updating. All of the graphs show the average results over ten

tests. The tests where done using an increment of 50 models inside the repository, this is

plotted on the X-axis. On the Y-axis we see the time in seconds.

8.1 SVN
The SVN results are composed of two use cases. Use case 1: “Committing a new model

into the SVN” and use case 2: “Updating an existing model inside the SVN”. Below the

results of both use cases is presented. Finally there is an improvements section that

describes some methods to improve the speed.

8.1.1 Use Case 1: Committing a new model into the SVN

8.1.1.1 Results

The use case consists of three actions; Update, Insert and Commit. First the local

repository has to be updated, the files have to be inserted there and then the repository

has to be committed. Figure 4 shows the results of all three processes and the total time

for all processes combined. Table 3 shows the CPU usage during the different processes.

Table 3 Task Manager Results Use Case 1.

CPU Usage

 Average Peak

Update 25% -

Insert 35% -

Commit 60% 100%

A Quantitative Analysis report: Performance Testing SVN and Sesame

21

UC1 Average Results, SVN Commit

0

100

200

300

400

500

600

700

800

0 50 100 150 200 250 300

Number of Models inside Repository

T
im

e
 I
n

 S
e

c
o

n
d

s

Update Insert Commit Total

Figure 4 Use Case 1: Committing new models into the SVN

8.1.1.2 Analysis

Looking at the results it can be seen that the insert and commit operations stay constant

over all the tests. This can be explained since the insert is done in the local directory

which is the later committed to the SVN. This means that each test 1000 files get written

to the hard drive, it was expected that there would be not much variance in time. As for

the commit each test a commit of 1000 files is done, since this number of files is constant

the time also is constant. The number of files inside the repository has no effect on the

commit time. We do see that a commit operation takes a considerable amount of time. A

single commit consists of 1000 files (KE’s) for each file SVN has to make a new version

log, thus taking a long time. It has nothing to do with the amount of data pushed into the

SVN since one commit consists of about 4 – 5 MB of data. The only changing factor is

the update, the more models inside the repository the longer an update takes, and this was

expected. Since the SVN has to check for all files inside the repository which ones are

changed.

Looking back at the set targets and thresholds from chapter 3 and comparing them with

Table 3 the requirements are more that met. The update takes 25% of CPU and the

commit is 60% on average. We see a peak of 100% on the commit operation, this only

lasted for a few seconds during the start of the test and can be explained by the caches of

the hard drive and the buffer of the SVN. It was only such a short amount of time it

would have little effect on the overall performance.

8.1.2 Use Case 2: Updating an existing model inside the SVN

8.1.2.1 Results

This use case also consists of three actions; Update, Insert and Commit. First the local

repository has to be updated, the changed files have to be inserted there and then the

A Quantitative Analysis report: Performance Testing SVN and Sesame

22

repository has to be committed. Figure 5 shows the results of all three processes and the

total time for all processes combined. Table 4 shows the CPU usage during the different

processes.

UC2 Average Results, SVN Update

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300

Number Of Models Inside Repository

T
im

e
 i
n

 S
e

c
o

n
d

s

Update Insert Commit Total

Figure 5 Use Case 2: Updating an existing model inside the SVN

Table 4 Task Manager Results Use Case 2.

8.1.2.2 Analysis

As mentioned in Use Case 1 the insert and commit operations stay constant and the

update is the only changing factor. The insert operation is so fast that the time can almost

not be measured. In respect to Use Case 1, we now insert only 20% of change instead of

the full 1000 KE’s. The commit is about the same size, since everything has to be

committed and SVN has to calculate what is changed and what stays the same.

Here we also take a look at the targets and thresholds and comparing with the results in

Table 4. As with use case 1 the conclusion is that everything is ok. We only see here that

the commit operation takes 75% instead of 60% after the second test. This however stays

within the range of our target. The update did not peak it stayed stable around 25%.

CPU Usage

 Average Peak

Update 25% -

Insert - -

Commit 60% 75% 100%

A Quantitative Analysis report: Performance Testing SVN and Sesame

23

8.1.3 Improvements

In this section there are some remarks how to improve the performance of the SVN tests.

This must be seen as recommendations since no official tests where do to validate the

impacts to the performance of these improvements. Expected is that the biggest

improvement in speed would be a faster hard drive. The test environment had a hard

drive of 5400 rpm, a normal desktop or even a server can be equipped with drives that

have 7200 or even 10 to 15K hard drives. Those drives have much better performance

and seek times. Also a solid state disk could be used with an even better seek time and

performance. Secondly a switch from windows to linux could improve performance,

since it is known that windows sandboxes Java. Finally compiling the Java code to run

native instead of inside the JVM increases performance.

8.2 Sesame
This section contains the results of the four Sesame use cases:

- Committing a new model into Sesame using ELMO

- Committing a new model into Sesame using an RDF-file

- Committing a new model into Sesame using SeRQL

- Updating an existing model inside Sesame using SeRQL

At the end there is an improvements section, here some improvements are given which

make the solutions perform better.

8.2.1 Use Case 3: Committing a new model into Sesame using ELMO

8.2.1.1 Results

In Table 5 the results of the first test with ELMO

are presented. The test consisted of inserting 10

models into an empty repository. The average speed

is so slow that the remainder of the tests is not

executed. Inserting into an empty repository takes

on average 100 minutes per model. In practice we

are not able to work with these numbers.

8.2.1.2 Analysis

Described her is an explanation why ELMO seems

to be so slow. The test was done using all of the

different repository connection types. It made not

much difference. The remote connection might be

the slowing factor. But inserting the KE’s into a

local repository was also slow. This ruled out the

connection as the problem area. Adding one artifact

seemed to be relatively fast, but when the second one was inserted speeds dropped

considerably. Everything seemed to point at the inferencer, disabling the inferencer

speeded up the process very much. When looking at ELMO objects, they are in direct

connection with the repository. Each time we make an KE, we open a connection to the

Test 1

Test Number Time to add 1 Artifact

1 2566

2 6503

3 5649

4 8276

5 7688

6 7422

7 5024

8 4759

9 4488

10 4437

Average time 5681.2

Table 5 ELMO Results

A Quantitative Analysis report: Performance Testing SVN and Sesame

24

repository and each time we add a value the inferencer is triggered. Assumed this is the

slowing factor. ELMO also used 100% of CPU, 90% was used by Tomcat and 10% by

the test application Therefore it is decided that ELMO is not usable for inserting lots of

data into a repository. For editing objects it is very handy.

8.2.2 Use Case 4: Committing a new model into Sesame using an
RDF-file

8.2.2.1 Results

Committing a file into the repository is a fast process. The process consists of three

actions, inserting the data into the local repository, exporting it into a file and then

committing that file into the remote repository. Figure 5 shows the results.

UC4 Average Result, Sesame file import

0

20

40

60

80

100

120

140

0 50 100 150 200 250

Models inside the repository

T
im

e
 i
n

 s
e

c
o

n
d

s

Insert Local Export to File Insert Remote Total

Table 6 Use Case 4: Committing a new model into Sesame using and RDF-File

Table 7 Task Manager Results Use Case 4.

CPU Usage

local insert 100%

remote insert 100%

A Quantitative Analysis report: Performance Testing SVN and Sesame

25

Memory Usage

 Before After Exported

Test 1 35 75 19

Test 2 219 251 110

Test 3 355 360 202

Test 4 372 438 294

Test 5 509 509 387

Test 6 508 540 479

Table 8 Task Manager Results Use Case 4.

8.2.2.2 Analysis

File importing far out performs ELMO. The inserting into the local repository is bit slow

but stable process. This is because it is always the same amount of data. The same goes

for the export; it is always the same amount of data so the results are expected to be

stable. The only changing variable is the inserting into the remote repository. We see that

it takes more time as there are more models inside the repository. This is the result that

was expected.

After the fourth test the memory target has been reached, the threshold is reached after

the fifth test. However Sesame still has some memory left for inferencing after test 6,

since the export from the repository only shows 480MB of data, which leaves 20MB for

inferencing. When inserting a few more models Sesame is out of memory and then the

speed goes way up. So testing was stopped after 250 models inside the repository. As for

the CPU usage it was 100% as expected.

8.2.3 Use Case 5: Committing a new model into Sesame using
SeRQL

8.2.3.1 Results

Committing a new model consists of two processes, inserting the data into a local graph

and committing that graph into the remote repository. Figure 6 shows the result of the use

case, it shows only the result of the three different connection types not for the individual

processes, for those results look in appendix I. Also the CPU and memory usage results

are presented.

A Quantitative Analysis report: Performance Testing SVN and Sesame

26

Use Case 5 Inserting using SeRQL - Combined Results

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200

Models inside the repository

T
im

e
 i
n

 s
e
c
o

n
d

s

Default Augur Read Ahead

Figure 6 Use Case 5: Committing a new model into Sesame using SeRQL

CPU Usage

local insert 100%

remote insert 100%

Table 9 Task Manager Results Use Case 5

Memory Usage

 Before After Exported

Test 1 36 84 18

Test 2 207 250 109

Test 3 377 386 202

Test 4 509 461 296

Test 5 510 510 388

Table 10 Task Manager Results Use Case 5.

8.2.3.2 Analysis

Above was mentioned we left out the processes individually, however the insert takes

about zero time and all time comes from the commit operation. The results of the sixth

test where left out intentionally for the scalability of the graph. The graph shows that the

default connection type is the fastest of the three. The default connection processes each

request and does not cache anything; an augur connection type tracks the requests and

anticipates related information. It is best used when the results are expected to fit into

memory and not all properties will be read [2]. The read ahead connection type reduces

the number of hits to the repository for the same subject. It is best used when the

complete results may not fit into memory and most of the concept properties will be

retrieved [2]. It is obvious that the augur and read ahead connection type are optimized

for retrieving data instead of sending it. This is why we also see that the default

connection type outperforms them easily.

The same targets and thresholds apply here as in use case 4, the results are very similar.

The export is actually the same, since the repository contains the same data. Memory

usage differs somewhat but also is close to each other.

A Quantitative Analysis report: Performance Testing SVN and Sesame

27

8.2.4 Use Case 6: Updating a model inside Sesame using SeRQL

8.2.4.1 Results

Updating a model consists of three processes instead of the two needed for inserting. First

we have to retrieve the data from the repository, then the change has to be calculated and

then the changes have to be committed to the repository. Figure 7 shows the results for

this use case, as use case 5 not the full results are shown only the totals from the three

different connection types.

Use Case 6 Combined

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250

Models inside the repository

T
im

e
 i
n

 s
e

c
o

n
d

s

Default Augur Read Ahead

Figure 7 Use Case 6: Updating a model inside Sesame using SeRQL

Memory Usage

 Before After Exported

Test 1 46 178 19

Test 2 204 221 111

Test 3 248 265 203

Test 4 341 516 294

Test 5 439 454 386

8.2.4.2 Analysis

The Read Ahead connection type is clearly the slowest of the three in this process. The

sixth test of the Read Ahead is left out for scalability of the Graph. Default and Augur in

the beginning show about the same speeds. Default has a slightly faster commit and

Augur a faster retrieve process, this is where Augur wins in the later tests. The augur and

read ahead connection types are optimized for retrieving data. Here it then also shows

that we do see a big difference between them. Read ahead performs the worst, it is

supposed to reduce the number of hits for the same subject; however each subject is only

called once. So it does not apply and probably the read ahead caches to much unneeded

stuff. The auger does outperform the default connection. It tracks requests and anticipates

CPU Usage

local insert 100%

remote insert 100%

Table 11 Task Manager Results Use Case 6. Table 12 Task Manager

 Results Use Case 6.

A Quantitative Analysis report: Performance Testing SVN and Sesame

28

on them. This probably improves the performance when checking out one complete

model, since it is build up of 1000 KE’s .

The same targets and thresholds apply here as in use case 4, the results are very similar.

The export is actually the same, since the repository contains the same data. Memory

usage differs somewhat but also is close to each other.

8.2.5 Improvements

As was said for the improvement section for SVN we have no actual results of how much

the performance will improve. Sesame relies for its most part on memory since the

repository is memory based. So the main point of focus for upgrading the performance is

installing faster memory. DDR3 is now getting on the market so this would greatly

improve performance due to faster access and read times. Increasing the amount of

available memory gives us a higher target and even higher threshold and leaves Sesame

with more working memory. And as said for SVN we could migrate to Linux since Java

is sandboxed inside Windows and compiling to native code could also increase the

performance.

8.3 The Combined Results
Above the results for all the separate use cases was plotted. The first graph below here

shows the result of all the use cases, with the exception of use case three, which commit

models into a repository. The second graph does the same for all use cases that update

models inside a repository. The first graph scales until 200 models this is done for

scalability reasons. For the second graph only the results of the read ahead with 250

models is left out.

8.3.1 The committing use cases

Use Case 1,4 and 5

0

50

100

150

200

250

300

350

400

0 50 100 150 200

Models inside the repository

T
im

e
 i

n
 s

e
c

o
n

d
s

SVN File SeRQL Default SeRQL Augur SeRQL Read Ahead

A Quantitative Analysis report: Performance Testing SVN and Sesame

29

8.3.1.1 Analysis

Clearly it can be seen that SVN is outperformed by Sesame. And looking at Sesame the

file inserting is the slowest as was expected from the results. The inserting into the local

repository was the slowing factor. From the three different repository types the default is

the fastest.

8.3.2 The updating use cases

Use Case 2 and 6

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250

Models inside the repository

T
im

e
 i
n

 s
e
c
o

n
d

s

SVN SeRQL Default SeRQL Augur SeRQL Read Ahead

8.3.2.1 Analysis

For updating Sesame is also faster than SVN. Unless for the case of the read ahead

repository after the fourth test. This is due to a lack of memory and a wrong repository

type. Default and Augur go head to head until the fourth use case then augur becomes

faster since it has a faster retrieve than sesame.

8.4 Retest
Retesting some of the results is done to validate our results. If the test show about the

same results as before, the results would be repeatable and therefore valid. Random tests

were selected from all of the use cases, with the exception of use case three. All found

measurements where comparable with our previous results. Therefore the results are

accepted as valid.

A Quantitative Analysis report: Performance Testing SVN and Sesame

30

9 Conclusion
Looking at the combined results it can be clearly seen that Sesame has the upper hand

when it comes to performance. What not can be seen is that SVN out performs Sesame

when Sesame runs out of memory. Those tests were not completed since they just took so

much time. Sesame is the better option but make sure that there is enough available

memory. This can be clearly seen when looking at the used memory. For the connection

type default is recommended, it performs the best when seen over the combined results.

Better would be to have a system that can switch between both connections. Then default

can be used for committing and augur for updating. Keep in mind that switching

connection types also takes some time.

One of the other things to look at was scalability. When we compare both options,

Sesame and SVN we see that SVN can be scaled up much further than Sesame. It can

easily handle thousands of models, since it stores everything on the hard drive. But the

system will be notoriously slow. Sesame scales up pretty good as long as there is a

machine with lots of available memory like a big server. For production uses it is also

possible to have a per project repository so overall speeds can even be increased more.

A Quantitative Analysis report: Performance Testing SVN and Sesame

31

10 Literature

1. Meier, Farre, Bansode, Barber, Rea, Performance Testing Guidance for Web

Applications, August 2007

2. The Sesame website, http://www.openrdf.org/doc/sesame/users/ch01.html

3. The ELMO website, http://www.openrdf.org

4. The Open RDF website, http://www.openrdf.org

5. J. Rasmussen, Understanding Software Architectures: Tracing Architectural

Knowledge In Software Architecture Documentation, 2009

6. T. de Vries, Architectural Knowledge in Quantitative Architecture Analysis, 2008

7. The Tortoise Website, http://tortoisesvn.tigris.org/

8. The SVN website, http://subversion.tigris.org/

A Quantitative Analysis report: Performance Testing SVN and Sesame

Appendix I Complete Test Results
Use case 1 Inserting a new model into the SVN

Test 1 Committing 0 - 10 models Test 2 Committing 50 - 60 models

Test Nr Update Insert Commit Total Time Test Nr Update Insert Commit Total Time

1 1 65 226 292 1 12 62 172 246

2 0 61 228 289 2 10 57 180 247

3 0 60 213 273 3 9 60 178 247

4 1 67 214 282 4 9 58 176 243

5 0 67 200 267 5 11 57 174 242

6 1 61 208 270 6 9 58 178 245

7 2 56 193 251 7 11 60 168 239

8 2 58 208 268 8 12 56 175 243

9 2 61 183 246 9 10 57 178 245

10 2 53 173 228 10 12 55 171 238

Averages 1,1 60,9 204,6 266,6 Averages 10,5 58 175 243,5

Test 3 Committing 100 - 110 models Test 4 Committing 150 - 160 models

Test Nr Update Insert Commit Total Time Test Nr Update Insert Commit Total Time

1 43 65 175 283 1 118 62 221 401

2 39 53 166 258 2 89 60 182 331

3 23 53 169 245 3 31 60 182 273

4 21 50 152 223 4 32 58 179 269

5 21 50 155 226 5 29 58 177 264

6 21 51 163 235 6 31 53 178 262

7 21 51 157 229 7 114 53 169 336

8 23 55 167 245 8 122 51 160 333

9 44 51 160 255 9 118 53 174 345

10 45 55 164 264 10 136 53 163 352

Averages 30,1 53,4 162,8 246,3 Averages 82 56,1 178,5 316,6

Test 5 Committing 200 - 210 models Test 6 Committing 250 - 260 models

Test Nr Update Insert Commit Total Time Test Nr Update Insert Commit Total Time

1 118 62 171 351 1 269 60 162 491

2 145 50 170 365 2 238 52 170 460

3 151 55 168 374 3 381 55 161 597

4 153 54 225 432 4 395 50 161 606

5 155 52 110 317 5 334 50 157 541

6 156 50 137 343 6 303 53 160 516

7 145 52 171 368 7 353 54 185 592

8 154 47 186 387 8 423 52 156 631

9 159 50 169 378 9 361 53 159 573

10 164 47 175 386 10 267 50 156 473

Averages 150 51,9 168,2 370,1 Averages 332,4 52,9 162,7 548

Average CPU Usage

Update 15 - 30%

Insert Too fast to measure

Commit 50 - 70%

A Quantitative Analysis report: Performance Testing SVN and Sesame

Use case 2 Updating an existing model inside the SVN

Test 1 10 models inside the SVN Test 2 50 models inside the SVN

Test Nr Update Insert Commit Total Time Test Nr Update Insert Commit Total Time

1 2 0 95 97 1 4 0 172 176

2 3 0 88 91 2 14 1 171 186

3 3 0 83 86 3 10 1 164 175

4 2 0 84 86 4 10 0 112 122

5 3 0 85 88 5 11 1 167 179

6 2 0 87 89 6 10 1 168 179

7 2 0 84 86 7 11 0 173 184

8 3 0 82 85 8 11 0 161 172

9 3 0 82 85 9 10 0 157 167

10 2 0 82 84 10 9 0 112 121

Averages 2,5 0 85,2 87,7 Averages 10 0,4 155,7 166,1

Test 3 100 models inside the SVN Test 4 150 models inside the SVN

Test Nr Update Insert Commit Total Time Test Nr Update Insert Commit Total Time

1 48 0 168 216 1 34 0 160 194

2 115 1 103 219 2 43 1 166 210

3 43 1 191 235 3 29 0 156 185

4 45 0 175 220 4 31 1 165 197

5 63 1 110 174 5 31 0 167 198

6 46 1 153 200 6 39 2 156 197

7 44 0 163 207 7 73 1 157 231

8 43 1 164 208 8 64 1 155 220

9 19 1 110 130 9 64 0 159 223

10 22 0 161 183 10 64 0 160 224

Averages 48,8 0,6 149,8 199,2 Averages 47,2 0,6 160,1 207,9

Test 5 200 models inside the SVN Test 6 250 models inside the SVN

Test Nr Update Insert Commit Total Time Test Nr Update Insert Commit Total Time

1 135 2 171 308 1 314 1 161 476

2 126 0 166 292 2 186 0 183 369

3 112 0 121 233 3 292 3 167 462

4 112 1 168 281 4 334 2 187 523

5 112 1 179 292 5 334 0 157 491

6 100 1 143 244 6 273 1 168 442

7 106 0 175 281 7 292 1 176 469

8 114 0 135 249 8 348 1 163 512

9 113 1 175 289 9 274 1 172 447

10 114 0 179 293 10 171 1 165 337

Averages 114,4 0,6 161,2 276,2 Averages 281,8 1,1 169,9 452,8

Average CPU Usage Test 1 & 3

Update 15 - 30%

Insert Too fast to measure

Commit 50 - 70%

Average CPU Usage Test 2, 4, 5 & 6

Update 15 - 30%

Insert Too fast to measure

Commit 70 - 85%

A Quantitative Analysis report: Performance Testing SVN and Sesame

Use case 3 Inserting a new model into Sesame using ELMO

Test 1 0 - 10 models

Test Number Time to add 1 Artifact

1 2566

2 6503

3 5649

4 8276

5 7688

6 7422

7 5024

8 4759

9 4488

10 4437

Averages 5681,2

Data read from the Task Manager

Average CPU usage during tests 100%

Use case 4 Inserting a new model into Sesame using a RDF-file

Test 1 Commit 0-10 models Test 2 Commit 50 - 60 models

Test Nr
Insert
Local

Export to
file

Insert
Remote Total Time Test Nr

Insert
Local

Export to
file

Insert
Remote

Total
Time

1 39 0 3 42 1 43 1 18 62

2 38 0 3 41 2 39 1 18 58

3 38 0 3 41 3 39 1 18 58

4 38 0 3 41 4 39 0 19 58

5 38 0 4 42 5 39 1 19 59

6 38 0 4 42 6 39 1 20 60

7 38 0 4 42 7 46 1 20 67

8 38 0 4 42 8 39 1 21 61

9 38 0 5 43 9 39 1 20 60

10 38 0 5 43 10 39 1 21 61

Averages 38,1 0 3,8 41,9 Averages 40,1 0,9 19,4 60,4

A Quantitative Analysis report: Performance Testing SVN and Sesame

Test 3
Committing 100 –

110 models Test 4
Committing 150 - 160

models

Test Nr
Insert
Local

Export to
file

Insert
Remote

Total
Time Test Nr

Insert
Local

Export
to file

Insert
Remote

Total
Time

1 44 1 35 80 1 45 1 51 97

2 40 1 35 76 2 39 1 50 90

3 40 1 35 76 3 39 1 50 90

4 40 1 35 76 4 39 1 51 91

5 40 1 36 77 5 39 1 51 91

6 39 1 36 76 6 38 1 51 90

7 60 1 36 97 7 38 1 52 91

8 55 1 37 93 8 38 1 52 91

9 40 1 37 78 9 38 1 52 91

10 39 1 37 77 10 38 1 54 93

Averages 43,7 1 35,9 80,6 Averages 39,1 1 51,4 91,5

CPU Usage

local insert 100%

remote insert 100%

Memory Usage

 Before After Exported

Test 1 35 75 19

Test 2 219 251 110

Test 3 355 360 202

Test 4 372 438 294

Test 5 509 509 387

Test 6 508 540 479

Test 5
Committing 200 -

210 models Test 6
Committing 250 - 260

models

Test Nr
Insert
Local

Export to
file

Insert
Remote

Total
Time Test Nr

Insert
Local

Export to
file

Insert
Remote

Total
Time

1 43 1 67 111 1 42 1 76 119

2 40 1 66 107 2 40 1 77 118

3 40 1 66 107 3 40 1 78 119

4 40 1 67 108 4 44 1 78 123

5 39 1 67 107 5 43 1 79 123

6 39 1 67 107 6 41 1 80 122

7 39 1 68 108 7 40 1 80 121

8 39 1 72 112 8 39 1 81 121

9 40 1 69 110 9 39 1 82 122

10 39 1 69 109 10 39 1 83 123

Averages 39,8 1 67,8 108,6 Averages 40,7 1 79,4 121,1

A Quantitative Analysis report: Performance Testing SVN and Sesame

Use case 5 Inserting a new model into Sesame using SeRQL

Default Connection Type

Test 1
Committing 0 - 10

models Test 2
Committing 50 - 60

models

Test Nr Insert Commit Total Time Test Nr Insert Commit Total Time

1 0 2 2 1 0 14 14

2 0 2 2 2 0 14 14

3 0 3 3 3 0 15 15

4 0 3 3 4 0 15 15

5 0 3 3 5 0 15 15

6 0 3 3 6 0 15 15

7 0 3 3 7 0 15 15

8 0 4 4 8 0 17 17

9 0 4 4 9 0 16 16

10 0 4 4 10 0 16 16

Averages 0 3,1 3,1 Averages 0 15,2 15,2

Test 3
Committing 100 - 110

models Test 4
Committing 150 - 160

models

Test Nr Insert Commit Total Time Test Nr Insert Commit Total Time

1 0 26 26 1 0 44 44

2 0 26 26 2 0 38 38

3 0 26 26 3 0 39 39

4 0 26 26 4 0 39 39

5 0 27 27 5 0 39 39

6 0 27 27 6 0 39 39

7 0 27 27 7 0 40 40

8 0 27 27 8 0 40 40

9 0 28 28 9 0 40 40

10 0 28 28 10 0 40 40

Averages 0 26,8 26,8 Averages 0 39,8 39,8

Test 5
Committing 200 - 210

models Test 6
Committing 250 - 260

models

Test Nr Insert Commit Total Time Test Nr Insert Commit Total Time

1 0 51 51 1 0 63 63

2 0 54 54 2 0 77 77

3 0 54 54 3 0 63 63

4 0 51 51 4 0 76 76

5 0 55 55 5 0 63 63

6 0 56 56 6 0 124 124

7 0 52 52 7 0 64 64

8 0 52 52 8 0 79 79

9 0 63 63 9 0 78 78

10 0 56 56 10 0 140 140

Averages 0 54,4 54,4 Averages 0 82,7 82,7

A Quantitative Analysis report: Performance Testing SVN and Sesame

Results using Augur Connection Type

Test 1
Committing 0 - 10

models Test 2
Committing 50 - 60

models

Test Nr Insert Commit Total Time Test Nr Insert Commit Total Time

1 0 2 2 1 0 15 15

2 0 2 2 2 0 14 14

3 0 3 3 3 0 15 15

4 0 3 3 4 0 15 15

5 0 3 3 5 0 15 15

6 0 3 3 6 0 15 15

7 0 3 3 7 0 15 15

8 0 4 4 8 0 15 15

9 0 4 4 9 0 15 15

10 0 4 4 10 1 64 65

Averages 0 3,1 3,1 Averages 0,1 19,8 19,9

Test 3
Committing 100 - 110

models Test 4
Committing 150 - 160

models

Test Nr Insert Commit Total Time Test Nr Insert Commit Total Time

1 0 28 28 1 0 38 38

2 0 27 27 2 0 38 38

3 0 28 28 3 0 38 38

4 0 48 48 4 0 39 39

5 0 27 27 5 0 59 59

6 0 27 27 6 0 108 108

7 1 28 29 7 1 115 116

8 1 28 29 8 1 52 53

9 1 28 29 9 0 123 123

10 1 95 96 10 0 111 111

Averages 0,4 36,4 36,8 Averages 0,2 72,1 72,3

Test 5
Committing 200 - 210

models Test 6
Committing 250 - 260

models

Test Nr Insert Commit Total Time Test Nr Insert Commit Total Time

1 0 50 50 1 0 77 77

2 0 50 50 2 0 77 77

3 0 50 50 3 0 168 168

4 0 51 51 4 1 108 109

5 0 54 54 5 0 196 196

6 0 62 62 6 2 117 119

7 1 168 169 7 0 989 989

8 1 61 62 8 0 1308 1308

9 0 145 145 9 0 1740 1740

10 0 170 170 10 0 1376 1376

Averages 0,2 86,1 86,3 Averages 0,3 615,6 615,9

A Quantitative Analysis report: Performance Testing SVN and Sesame

Results using Read Ahead Connection Type

Test 1
Committing 0 - 10

models Test 2
Committing 50 - 60

models

Test Nr Insert Commit Total Time Test Nr Insert Commit Total Time

1 0 2 2 1 0 14 14

2 0 2 2 2 0 14 14

3 0 3 3 3 0 14 14

4 0 3 3 4 0 16 16

5 0 3 3 5 0 15 15

6 0 3 3 6 0 15 15

7 0 4 4 7 0 15 15

8 0 4 4 8 0 15 15

9 0 4 4 9 0 16 16

10 0 4 4 10 0 16 16

Averages 0 3,2 3,2 Averages 0 15 15

Test 3
Committing 100 - 110

models Test 4
Committing 150 - 160

models

Test Nr Insert Commit Total Time Test Nr Insert Commit Total Time

1 0 26 26 1 0 38 38

2 0 26 26 2 0 38 38

3 0 26 26 3 0 39 39

4 0 26 26 4 0 39 39

5 0 27 27 5 0 39 39

6 0 27 27 6 0 42 42

7 0 27 27 7 0 40 40

8 0 27 27 8 0 119 119

9 0 102 102 9 1 159 160

10 3 142 145 10 1 169 170

Averages 0,3 45,6 45,9 Averages 0,2 72,2 72,4

Test 5
Committing 200 - 210

models Test 6
Committing 250 - 260

models

Test Nr Insert Commit Total Time Test Nr Insert Commit Total Time

1 0 49 49 1 0 594 594

2 0 49 49 2 0 977 977

3 0 233 233 3 0 1145 1145

4 1 52 53 4 1 1751 1752

5 0 50 50 5 0 1508 1508

6 0 50 50 6 0 1513 1513

7 0 50 50 7 0 1392 1392

8 0 51 51 8 0 1347 1347

9 1 257 258 9 0 1307 1307

10 1 52 53 10 0 1426 1426

Averages 0,3 89,3 89,6 Averages 0,1 1296 1296,1

A Quantitative Analysis report: Performance Testing SVN and Sesame

Memory usage only recorded for the default test cases

Memory Usage

 Before After Exported

Test 1 36 84 18

Test 2 207 250 109

Test 3 377 386 202

Test 4 509 461 296

Test 5 510 510 388

Use case 6 Updating an existing model inside Sesame using SeRQL

Results using Default Connection Type
Test 1 Committing 0 - 10 models Test 2 Committing 50 - 60 models

Test Nr Retrieve Calculate Commit Total Time Test Nr Retrieve Calculate Commit Total Time

1 1 4 3 7 1 2 1 11 12

2 1 3 2 5 2 1 1 11 12

3 1 3 3 6 3 2 0 12 12

4 1 3 3 6 4 2 1 12 13

5 1 0 5 5 5 2 0 12 12

6 2 3 3 6 6 2 1 12 13

7 2 3 3 6 7 2 0 12 12

8 2 3 3 6 8 2 1 12 13

9 2 3 3 6 9 2 0 12 12

10 2 3 3 6 10 2 1 12 13

Averages 1,5 2,8 3,1 5,9 Averages 1,9 0,6 11,8 12,4

Test 3 Committing 100 - 110 models Test 4 Committing 150 - 160 models

Test Nr Retrieve Calculate Commit Total Time Test Nr Retrieve Calculate Commit Total Time

1 15 3 24 27 1 49 3 39 42

2 14 0 27 27 2 49 3 39 42

3 14 3 24 27 3 49 3 39 42

4 14 3 24 27 4 49 3 39 42

5 14 3 24 27 5 49 3 39 42

6 14 3 24 27 6 50 3 39 42

7 14 3 24 27 7 50 3 39 42

8 14 3 25 28 8 50 3 39 42

9 14 3 24 27 9 50 3 39 42

10 15 19 96 115 10 51 3 39 42

Averages 14,2 4,3 31,6 35,9 Averages 49,6 3 39 42

CPU Usage

local insert 100%

remote insert 100%

A Quantitative Analysis report: Performance Testing SVN and Sesame

Test 5 Committing 200 - 210 models Test 6 Committing 250 - 260 models

Test Nr Retrieve Calculate Commit Total Time Test Nr Retrieve Calculate Commit Total Time

1 62 3 52 55 1 89 3 61 64

2 62 3 51 54 2 90 3 62 65

3 62 3 51 54 3 90 3 61 64

4 62 3 51 54 4 110 20 127 147

5 62 3 51 54 5 91 3 61 64

6 62 3 51 54 6 91 3 61 64

7 62 21 123 144 7 92 3 61 64

8 63 3 51 54 8 105 14 163 177

9 63 3 51 54 9 93 3 61 64

10 63 3 51 54 10 109 22 193 215

Averages 62,3 4,8 58,3 63,1 Averages 96 7,7 91,1 98,8

Results using Augur Connection Type
Test 1 Committing 0 - 10 models Test 2 Committing 50 - 60 models

Test Nr Retrieve Calculate Commit Total Time Test Nr Retrieve Calculate Commit Total Time

1 1 3 3 6 1 7 3 12 15

2 1 3 3 6 2 7 3 12 15

3 1 3 3 6 3 7 3 12 15

4 2 3 3 6 4 7 3 13 16

5 2 3 3 6 5 7 3 12 15

6 2 3 3 6 6 7 3 12 15

7 2 3 3 6 7 7 3 12 15

8 2 3 3 6 8 7 3 12 15

9 2 3 3 6 9 7 3 12 15

10 2 3 3 6 10 7 3 12 15

Averages 1,7 3 3 6 Averages 7 3 12,1 15,1

Test 3 Committing 100 - 110 models Test 4 Committing 150 - 160 models

Test Nr Retrieve Calculate Commit Total Time Test Nr Retrieve Calculate Commit Total Time

1 16 3 25 28 1 24 3 36 39

2 16 3 24 27 2 21 3 36 39

3 16 3 24 27 3 21 3 36 39

4 16 3 25 28 4 21 3 36 39

5 16 3 25 28 5 21 3 42 45

6 16 3 25 28 6 124 3 36 39

7 16 3 25 28 7 21 3 36 39

8 16 3 25 28 8 135 3 36 39

9 17 3 26 29 9 21 15 36 51

10 17 10 94 104 10 22 3 37 40

Averages 16,2 3,7 31,8 35,5 Averages 43,1 4,2 36,7 40,9

A Quantitative Analysis report: Performance Testing SVN and Sesame

Test 5 Committing 200 - 210 models Test 6 Committing 250 - 260 models

Test Nr Retrieve Calculate Commit Total Time Test Nr Retrieve Calculate Commit Total Time

1 32 3 50 53 1 41 3 62 65

2 30 3 49 52 2 39 3 62 65

3 30 3 50 53 3 39 3 62 65

4 30 3 50 53 4 40 3 62 65

5 30 3 50 53 5 40 59 76 135

6 30 3 50 53 6 44 3 62 65

7 30 3 50 53 7 40 22 126 148

8 30 22 180 202 8 40 3 62 65

9 32 3 51 54 9 40 3 62 65

10 31 3 50 53 10 40 90 75 165

Averages 30,5 4,9 63 67,9 Averages 40,3 19,2 71,1 90,3

Results using Read Ahead Connection Type
Test 1 Committing 0 - 10 models Test 2 Committing 50 - 60 models

Test Nr Retrieve Calculate Commit Total Time Test Nr Retrieve Calculate Commit Total Time

1 1 3 2 5 1 7 3 12 15

2 1 3 6 9 2 7 3 12 15

3 1 3 3 6 3 8 3 13 16

4 2 3 3 6 4 8 3 13 16

5 2 3 3 6 5 8 3 13 16

6 2 3 3 6 6 8 6 48 54

7 2 3 3 6 7 50 24 15 39

8 2 3 3 6 8 8 3 12 15

9 2 3 3 6 9 8 3 13 16

10 2 3 3 6 10 57 26 49 75

Averages 1,7 3 3,2 6,2 Averages 16,9 7,7 20 27,7

Test 3 Committing 100 - 110 models Test 4 Committing 150 - 160 models

Test Nr Retrieve Calculate Commit Total Time Test Nr Retrieve Calculate Commit Total Time

1 13 3 24 27 1 24 3 37 40

2 13 3 24 27 2 24 3 38 41

3 13 3 24 27 3 24 3 37 40

4 13 3 24 27 4 24 3 127 130

5 13 3 24 27 5 24 3 136 139

6 14 11 118 129 6 35 3 143 146

7 105 3 24 27 7 65 3 345 348

8 14 3 24 27 8 32 3 146 149

9 14 23 120 143 9 34 3 264 267

10 148 45 119 164 10 32 3 152 155

Averages 36 10 52,5 62,5 Averages 31,8 3 142,5 145,5

A Quantitative Analysis report: Performance Testing SVN and Sesame

Test 5 Committing 200 - 210 models

Test Nr Retrieve Calculate Commit Total Time

1 31 3 50 53

2 31 3 50 53

3 31 21 1387 1408

4 33 3 160 163

5 130 21 1505 1526

6 172 3 50 53

7 31 19 185 204

8 74 3 50 53

9 31 3 54 57

10 183 3 50 53

Averages 74,7 8,2 354,1 362,3

Memory usage only recorded for the default test cases

Memory Usage

 Before After Exported

Test 1 46 178 19

Test 2 204 221 111

Test 3 248 265 203

Test 4 341 516 294

Test 5 439 454 386

Test 6 485 512 478

CPU Usage

local insert 100%

remote insert 100%

Maturing and Versioning an Architectural Knowledge Repository

APPENDIX II The LOFAR Domain Model

Decision

Topic

Concern

Alternative

Decision Specification

originates from

raises

creates

adresses

chooses

Risk

Requirement

Quick

Decision

Maturing and Versioning an Architectural Knowledge Repository

APPENDIX III the Meta model

Maturing and Versioning an Architectural Knowledge Repository

APPENDIX IV Query results of the prototype repository

TESTCASE ONE
** Inserting artifacts, KE's and AF's
** AF Added: 1050000

** KE Added: 1000000

** AF Added: 1050001
** KE Added: 1000001

** AF Added: 1050002

** KE Added: 1000002

QUERY ONE

http://www.archium.net/AstronGriffin/versioning#KE1000000
 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

 http://www.archium.net/AstronGriffin#Concern

http://www.archium.net/AstronGriffin/versioning#KE1000000

 http://www.archium.net/AstronGriffin/versioning#ID

 "1000000"^^<http://www.w3.org/2001/XMLSchema#int>

http://www.archium.net/AstronGriffin/versioning#KE1000000
 http://www.archium.net/AstronGriffin/versioning#Name

 "KE_1000000"^^<http://www.w3.org/2001/XMLSchema#string>

http://www.archium.net/AstronGriffin/versioning#KE1000000
 http://www.archium.net/AstronGriffin/versioning#status

 "Checked"^^<http://www.w3.org/2001/XMLSchema#string>

http://www.archium.net/AstronGriffin/versioning#KE1000000
 http://www.archium.net/AstronGriffin/versioning#Notes

 "NOTES THAT GO WITH KE: 1000000"^^<http://www.w3.org/2001/XMLSchema#string>

http://www.archium.net/AstronGriffin/versioning#KE1000000
 http://www.archium.net/AstronGriffin/versioning#described_by_Artifact_Fragment

 http://www.archium.net/AstronGriffin/versioning#AF1050000

http://www.archium.net/AstronGriffin/versioning#KE1000000
 http://www.archium.net/AstronGriffin/versioning#described_in_Artifact

 http://www.archium.net/AstronGriffin/versioning#ARTIFACT_1000000

http://www.archium.net/AstronGriffin/versioning#KE1000000

 http://www.archium.net/AstronGriffin/versioning#raises_DecisionTopic

 http://www.archium.net/AstronGriffin/versioning#AF1000001

http://www.archium.net/AstronGriffin/versioning#KE1000000
 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

 http://www.w3.org/2000/01/rdf-schema#Resource
http://www.archium.net/AstronGriffin/versioning#KE1000000

 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

 http://www.archium.net/AstronGriffin#Knowledge_Entity

QUERY TWO

http://www.archium.net/AstronGriffin/versioning#KE1000000
http://www.archium.net/AstronGriffin/versioning#KE1000001

http://www.archium.net/AstronGriffin/versioning#KE1000002

TESTCASE TWO
** Inserting artifacts, KE's and AF's

** AF Added: 1050000

** KE Added: 1000000
** AF Added: 1050001

** KE Added: 1000001

** AF Added: 1050002
** KE Added: 1000002

** AF Added: 1050003

** KE Added: 1000003

QUERY ONE

http://www.archium.net/AstronGriffin/versioning#KE1000000
 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

 http://www.archium.net/AstronGriffin#Concern

http://www.archium.net/AstronGriffin/versioning#KE1000000
 http://www.archium.net/AstronGriffin/versioning#ID

 "1000000"^^<http://www.w3.org/2001/XMLSchema#int>

http://www.archium.net/AstronGriffin/versioning#KE1000000
 http://www.archium.net/AstronGriffin/versioning#Name

 "KE_1000000"^^<http://www.w3.org/2001/XMLSchema#string>

http://www.archium.net/AstronGriffin/versioning#KE1000000
 http://www.archium.net/AstronGriffin/versioning#status

 "Checked"^^<http://www.w3.org/2001/XMLSchema#string>

http://www.archium.net/AstronGriffin/versioning#KE1000000

Maturing and Versioning an Architectural Knowledge Repository

 http://www.archium.net/AstronGriffin/versioning#described_by_Artifact_Fragment

 http://www.archium.net/AstronGriffin/versioning#AF1050000

http://www.archium.net/AstronGriffin/versioning#KE1000000
 http://www.archium.net/AstronGriffin/versioning#described_in_Artifact

 http://www.archium.net/AstronGriffin/versioning#ARTIFACT_1000000

http://www.archium.net/AstronGriffin/versioning#KE1000000
 http://www.archium.net/AstronGriffin/versioning#raises_DecisionTopic

 http://www.archium.net/AstronGriffin/versioning#AF1000001

http://www.archium.net/AstronGriffin/versioning#KE1000000
 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

 http://www.w3.org/2000/01/rdf-schema#Resource

http://www.archium.net/AstronGriffin/versioning#KE1000000
 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

 http://www.archium.net/AstronGriffin#Knowledge_Entity

http://www.archium.net/AstronGriffin/versioning#KE1000000
 http://www.archium.net/AstronGriffin/versioning#Notes

 "THESE NOTES THAT GO WITH KE: 1000000 are

CHANGED!"^^<http://www.w3.org/2001/XMLSchema#string>
http://www.archium.net/AstronGriffin/versioning#KE1000000

 http://www.archium.net/AstronGriffin/versioning#Notes

 "EXTRA NOTES: THESE NOTES THAT GO WITH KE: 1000000 are
CHANGED!"^^<http://www.w3.org/2001/XMLSchema#string>

QUERY TWO

http://www.archium.net/AstronGriffin/versioning#KE1000000

http://www.archium.net/AstronGriffin/versioning#KE1000001

http://www.archium.net/AstronGriffin/versioning#KE1000002
http://www.archium.net/AstronGriffin/versioning#KE1000003

QUERY THREE

http://www.archium.net/AstronGriffin/versioning#KE1000000

 http://www.griffin.nl/versioning#versionedAt
 http://www.archium.net/AstronGriffin/versioning#KE1000000/ADD/2010-01-28/09:40:46

http://www.archium.net/AstronGriffin/versioning#AF1050000

 http://www.griffin.nl/versioning#versionedAt

 http://www.archium.net/AstronGriffin/versioning#AF1050000/ADD/2010-01-28/09:40:46

http://www.archium.net/AstronGriffin/versioning#AF1050002

 http://www.griffin.nl/versioning#versionedAt
 http://www.archium.net/AstronGriffin/versioning#AF1050002/ADD/2010-01-28/09:40:46

http://www.archium.net/AstronGriffin/versioning#AF1050001
 http://www.griffin.nl/versioning#versionedAt

 http://www.archium.net/AstronGriffin/versioning#AF1050001/ADD/2010-01-28/09:40:46

http://www.archium.net/AstronGriffin/versioning#KE1000001
 http://www.griffin.nl/versioning#versionedAt

 http://www.archium.net/AstronGriffin/versioning#KE1000001/ADD/2010-01-28/09:40:46

http://www.archium.net/AstronGriffin/versioning#ARTIFACT_1000000
 http://www.griffin.nl/versioning#versionedAt

 http://www.archium.net/AstronGriffin/versioning#ARTIFACT_1000000/ADD/2010-01-28/09:40:46

http://www.archium.net/AstronGriffin/versioning#KE1000002
 http://www.griffin.nl/versioning#versionedAt

 http://www.archium.net/AstronGriffin/versioning#KE1000002/ADD/2010-01-28/09:40:46

http://www.archium.net/AstronGriffin/versioning#KE1000000
 http://www.griffin.nl/versioning#versionedAt

 http://www.archium.net/AstronGriffin/versioning#KE1000000/REMOVE/2010-01-28/09:40:46

http://www.archium.net/AstronGriffin/versioning#AF1050000
 http://www.griffin.nl/versioning#versionedAt

 http://www.archium.net/AstronGriffin/versioning#AF1050000/REMOVE/2010-01-28/09:40:46

http://www.archium.net/AstronGriffin/versioning#AF1050002
 http://www.griffin.nl/versioning#versionedAt

 http://www.archium.net/AstronGriffin/versioning#AF1050002/REMOVE/2010-01-28/09:40:46

http://www.archium.net/AstronGriffin/versioning#AF1050001
 http://www.griffin.nl/versioning#versionedAt

 http://www.archium.net/AstronGriffin/versioning#AF1050001/REMOVE/2010-01-28/09:40:46

http://www.archium.net/AstronGriffin/versioning#KE1000001
 http://www.griffin.nl/versioning#versionedAt

 http://www.archium.net/AstronGriffin/versioning#KE1000001/REMOVE/2010-01-28/09:40:46

http://www.archium.net/AstronGriffin/versioning#ARTIFACT_1000000
 http://www.griffin.nl/versioning#versionedAt

 http://www.archium.net/AstronGriffin/versioning#ARTIFACT_1000000/REMOVE/2010-01-28/09:40:46

http://www.archium.net/AstronGriffin/versioning#KE1000002
 http://www.griffin.nl/versioning#versionedAt

 http://www.archium.net/AstronGriffin/versioning#KE1000002/REMOVE/2010-01-28/09:40:46

Maturing and Versioning an Architectural Knowledge Repository

QUERY FOUR

http://www.archium.net/AstronGriffin/versioning#KE1000000

 http://www.archium.net/AstronGriffin/versioning#Notes
 "THESE NOTES THAT GO WITH KE: 1000000 are CHANGED!"^^<http://www.w3.org/2001/XMLSchema#string>

http://www.archium.net/AstronGriffin/versioning#KE1000000

 http://www.archium.net/AstronGriffin/versioning#Notes
 "EXTRA NOTES: THESE NOTES THAT GO WITH KE: 1000000 are

CHANGED!"^^<http://www.w3.org/2001/XMLSchema#string>

TESTCASE THREE
** Inserting artifacts, KE's and AF's

** AF Added: 1050000

** KE Added: 1000000
** AF Added: 1050001

** KE Added: 1000001

** AF Added: 1050002
** KE Added: 1000002

QUERY ONE

http://www.archium.net/AstronGriffin/versioning#KE1000000

 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

 http://www.archium.net/AstronGriffin#Concern
http://www.archium.net/AstronGriffin/versioning#KE1000000

 http://www.archium.net/AstronGriffin/versioning#ID

 "1000000"^^<http://www.w3.org/2001/XMLSchema#int>
http://www.archium.net/AstronGriffin/versioning#KE1000000

 http://www.archium.net/AstronGriffin/versioning#Name

 "KE_1000000"^^<http://www.w3.org/2001/XMLSchema#string>
http://www.archium.net/AstronGriffin/versioning#KE1000000

 http://www.archium.net/AstronGriffin/versioning#status

 "Checked"^^<http://www.w3.org/2001/XMLSchema#string>
http://www.archium.net/AstronGriffin/versioning#KE1000000

 http://www.archium.net/AstronGriffin/versioning#described_by_Artifact_Fragment

 http://www.archium.net/AstronGriffin/versioning#AF1050000
http://www.archium.net/AstronGriffin/versioning#KE1000000

 http://www.archium.net/AstronGriffin/versioning#described_in_Artifact

 http://www.archium.net/AstronGriffin/versioning#ARTIFACT_1000000
http://www.archium.net/AstronGriffin/versioning#KE1000000

 http://www.archium.net/AstronGriffin/versioning#raises_DecisionTopic
 http://www.archium.net/AstronGriffin/versioning#AF1000001

http://www.archium.net/AstronGriffin/versioning#KE1000000

 http://www.w3.org/1999/02/22-rdf-syntax-ns#type
 http://www.w3.org/2000/01/rdf-schema#Resource

http://www.archium.net/AstronGriffin/versioning#KE1000000

 http://www.w3.org/1999/02/22-rdf-syntax-ns#type
 http://www.archium.net/AstronGriffin#Knowledge_Entity

http://www.archium.net/AstronGriffin/versioning#KE1000000

 http://www.archium.net/AstronGriffin/versioning#Notes
 "NOTES THAT GO WITH KE: 1000000"^^<http://www.w3.org/2001/XMLSchema#string>

QUERY TWO

http://www.archium.net/AstronGriffin/versioning#KE1000000

http://www.archium.net/AstronGriffin/versioning#KE1000001

http://www.archium.net/AstronGriffin/versioning#KE1000002

QUERY THREE

http://www.archium.net/AstronGriffin/versioning#KE1000000

 http://www.griffin.nl/versioning#versionedAt

 http://www.archium.net/AstronGriffin/versioning#KE1000000/ADD/2010-01-28/09:40:46
http://www.archium.net/AstronGriffin/versioning#AF1050000

 http://www.griffin.nl/versioning#versionedAt

 http://www.archium.net/AstronGriffin/versioning#AF1050000/ADD/2010-01-28/09:40:46
http://www.archium.net/AstronGriffin/versioning#AF1050002

 http://www.griffin.nl/versioning#versionedAt

 http://www.archium.net/AstronGriffin/versioning#AF1050002/ADD/2010-01-28/09:40:46
http://www.archium.net/AstronGriffin/versioning#AF1050001

 http://www.griffin.nl/versioning#versionedAt

 http://www.archium.net/AstronGriffin/versioning#AF1050001/ADD/2010-01-28/09:40:46
http://www.archium.net/AstronGriffin/versioning#KE1000001

 http://www.griffin.nl/versioning#versionedAt

 http://www.archium.net/AstronGriffin/versioning#KE1000001/ADD/2010-01-28/09:40:46
http://www.archium.net/AstronGriffin/versioning#ARTIFACT_1000000

 http://www.griffin.nl/versioning#versionedAt

 http://www.archium.net/AstronGriffin/versioning#ARTIFACT_1000000/ADD/2010-01-28/09:40:46

Maturing and Versioning an Architectural Knowledge Repository

http://www.archium.net/AstronGriffin/versioning#KE1000002

 http://www.griffin.nl/versioning#versionedAt

 http://www.archium.net/AstronGriffin/versioning#KE1000002/ADD/2010-01-28/09:40:46
http://www.archium.net/AstronGriffin/versioning#KE1000000

 http://www.griffin.nl/versioning#versionedAt

 http://www.archium.net/AstronGriffin/versioning#KE1000000/REMOVE/2010-01-28/09:40:46
http://www.archium.net/AstronGriffin/versioning#AF1050000

 http://www.griffin.nl/versioning#versionedAt

 http://www.archium.net/AstronGriffin/versioning#AF1050000/REMOVE/2010-01-28/09:40:46
http://www.archium.net/AstronGriffin/versioning#AF1050002

 http://www.griffin.nl/versioning#versionedAt

 http://www.archium.net/AstronGriffin/versioning#AF1050002/REMOVE/2010-01-28/09:40:46
http://www.archium.net/AstronGriffin/versioning#AF1050001

 http://www.griffin.nl/versioning#versionedAt

 http://www.archium.net/AstronGriffin/versioning#AF1050001/REMOVE/2010-01-28/09:40:46
http://www.archium.net/AstronGriffin/versioning#KE1000001

 http://www.griffin.nl/versioning#versionedAt

 http://www.archium.net/AstronGriffin/versioning#KE1000001/REMOVE/2010-01-28/09:40:46
http://www.archium.net/AstronGriffin/versioning#ARTIFACT_1000000

 http://www.griffin.nl/versioning#versionedAt

 http://www.archium.net/AstronGriffin/versioning#ARTIFACT_1000000/REMOVE/2010-01-28/09:40:46
http://www.archium.net/AstronGriffin/versioning#KE1000002

 http://www.griffin.nl/versioning#versionedAt

 http://www.archium.net/AstronGriffin/versioning#KE1000002/REMOVE/2010-01-28/09:40:46
http://www.archium.net/AstronGriffin/versioning#KE1000000

 http://www.griffin.nl/versioning#versionedAt

 http://www.archium.net/AstronGriffin/versioning#KE1000000/ADD/2010-01-28/09:40:49
http://www.archium.net/AstronGriffin/versioning#AF1050000

 http://www.griffin.nl/versioning#versionedAt

 http://www.archium.net/AstronGriffin/versioning#AF1050000/ADD/2010-01-28/09:40:49
http://www.archium.net/AstronGriffin/versioning#AF1050002

 http://www.griffin.nl/versioning#versionedAt

 http://www.archium.net/AstronGriffin/versioning#AF1050002/ADD/2010-01-28/09:40:49
http://www.archium.net/AstronGriffin/versioning#AF1050001

 http://www.griffin.nl/versioning#versionedAt

 http://www.archium.net/AstronGriffin/versioning#AF1050001/ADD/2010-01-28/09:40:49

http://www.archium.net/AstronGriffin/versioning#KE1000001

 http://www.griffin.nl/versioning#versionedAt

 http://www.archium.net/AstronGriffin/versioning#KE1000001/ADD/2010-01-28/09:40:49
http://www.archium.net/AstronGriffin/versioning#ARTIFACT_1000000

 http://www.griffin.nl/versioning#versionedAt
 http://www.archium.net/AstronGriffin/versioning#ARTIFACT_1000000/ADD/2010-01-28/09:40:49

http://www.archium.net/AstronGriffin/versioning#KE1000002

 http://www.griffin.nl/versioning#versionedAt
 http://www.archium.net/AstronGriffin/versioning#KE1000002/ADD/2010-01-28/09:40:49

http://www.archium.net/AstronGriffin/versioning#KE1000000

 http://www.griffin.nl/versioning#versionedAt
 http://www.archium.net/AstronGriffin/versioning#KE1000000/REMOVE/2010-01-28/09:40:49

http://www.archium.net/AstronGriffin/versioning#AF1050000

 http://www.griffin.nl/versioning#versionedAt
 http://www.archium.net/AstronGriffin/versioning#AF1050000/REMOVE/2010-01-28/09:40:49

http://www.archium.net/AstronGriffin/versioning#AF1050002

 http://www.griffin.nl/versioning#versionedAt
 http://www.archium.net/AstronGriffin/versioning#AF1050002/REMOVE/2010-01-28/09:40:49

http://www.archium.net/AstronGriffin/versioning#AF1050001

 http://www.griffin.nl/versioning#versionedAt
 http://www.archium.net/AstronGriffin/versioning#AF1050001/REMOVE/2010-01-28/09:40:49

http://www.archium.net/AstronGriffin/versioning#KE1000001

 http://www.griffin.nl/versioning#versionedAt
 http://www.archium.net/AstronGriffin/versioning#KE1000001/REMOVE/2010-01-28/09:40:49

http://www.archium.net/AstronGriffin/versioning#ARTIFACT_1000000

 http://www.griffin.nl/versioning#versionedAt
 http://www.archium.net/AstronGriffin/versioning#ARTIFACT_1000000/REMOVE/2010-01-28/09:40:49

http://www.archium.net/AstronGriffin/versioning#KE1000002

 http://www.griffin.nl/versioning#versionedAt
 http://www.archium.net/AstronGriffin/versioning#KE1000002/REMOVE/2010-01-28/09:40:49

QUERY FOUR

http://www.archium.net/AstronGriffin/versioning#KE1000000

 http://www.archium.net/AstronGriffin/versioning#Notes

 "THESE NOTES THAT GO WITH KE: 1000000 are
CHANGED!"^^<http://www.w3.org/2001/XMLSchema#string>

http://www.archium.net/AstronGriffin/versioning#KE1000000

 http://www.archium.net/AstronGriffin/versioning#Notes
 "EXTRA NOTES: THESE NOTES THAT GO WITH KE: 1000000 are

CHANGED!"^^<http://www.w3.org/2001/XMLSchema#string>

