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Abstract 
 

Can we optimize learning efficiency by modifying the order of items in a learning session? 

 

By taking into account well-known memory phenomena, we can improve learning. However, 

in practice, learning methods that take into account memory effects such as primacy, recency 

and spacing are not often used. Especially the characteristics of the spacing effect, which 

refers to enhanced learning when trials are spaced over time instead of massed in a short time, 

are only rarely applied. This study proposes an adaptive cognitive model that takes these 

effects into account and is easily applicable in practice. This model lets people learn facts 

effectively and is a refined version of models from previous research by Van Woudenberg 

(2008) and Pavlik and Anderson (2008). Just as in these studies, the new model keeps a 

representation of the strengths of items in memory. As in the study of Van Woudenberg 

(2008), the memory strengths are based on response times of the user, but now based on a 

more direct and continuous measure. On the basis of the strength representations and a 

forecast of the development of these strengths, the model optimizes the word order. This 

model is compared to a standard teaching schedule in an experiment done with three 

Havo/VWO classes. In a learning session of fifteen minutes, students studied twenty Dutch-

French word pairs. The next day, performance of these word pairs was tested. The training 

data of the experiment showed that the model’s prediction of response times, e.g. its 

representation of strength of items in memory, improved as repetition increased. Analyses of 

the test data showed that participants in the adaptive condition scored on average 1.1 point 

higher on a scale of 1 to 10 than the control condition. Although more refinements are still 

possible, this work confirmed that spacing through adaptation based on reaction times yields 

an effective learning method. 

  



3 

 

Acknowledgement 
 

First of all I would like to thank my supervisor, Hedderik van Rijn, for his support. He was 

always willing to answer questions when possible, took the time for every discussion until 

both parties understood and agreed with the decisions made and always respected personal 

circumstances. Secondly, I would like to thank Wim Woudman and Fred Stevens (dr. Aletta 

Jacobs College) who enabled me to conduct my research experiments. Without their help I 

would not have been able to apply this research in a real-life setting. 

  



4 

 

Contents 

 

 

Abstract ..................................................................................................................................... 2 

Acknowledgement .................................................................................................................... 3 

1. Introduction ....................................................................................................................... 5 

2. Introduction of a latency-based ACT-R model .............................................................. 7 

2.1 Spacing in ACT-R ......................................................................................................... 7 

2.2 Comparison of two ACT-R models .............................................................................. 8 

2.2.1 User adaptation/model ............................................................................................... 8 

2.2.2 Determining the word order ....................................................................................... 9 

2.3 Implementation of latency-based spacing ................................................................... 12 

3. Experiment ...................................................................................................................... 17 

3.1 Method ........................................................................................................................ 17 

3.4 Results ......................................................................................................................... 18 

3.5 Conclusion ................................................................................................................... 20 

4. Discussion ......................................................................................................................... 21 

References ............................................................................................................................... 24 

Appendix A: Word lists ......................................................................................................... 26 

Appendix B: Derivation of decay .......................................................................................... 27 

Appendix C: More analyses .................................................................................................. 28 

Correctness on activation ................................................................................................. 28 

Frequency effect ............................................................................................................... 28 

Number of words seen ...................................................................................................... 29 

  



5 

 

1. Introduction 
 

In 1885, Hermann Ebbinghaus taught himself lists of nonwords and discovered that he 

remembered them better when learning them over a period of time, known as spaced 

presentation, instead of memorizing them intensively over a short period, known as massed 

presentation (1964, 1885). This phenomenon is called the spacing effect, and refers to 

enhanced learning when (study) trials are spaced. 

Spaced learning is often compared with massed learning, which occurs when trials of one 

item are presented without interruption of either a time interval or other trials (e.g. 

aaabbbccc). In spaced learning, an item always has an interval that consists of a pause, other 

trial sessions – or both – before it is rehearsed again (e.g. abc abc). When spacing multiple 

sessions over time, distinction is made between interstudy interval (ISI) and retention interval 

(RI). The ISI is the interval between study sessions of the same material. The RI is the time 

separating the last study session and the test moment.  

Thanks to extensive studies, it is now known that the spacing effect occurs in different task 

types, such as in the learning of vocabulary, facts and motor tasks (Cepeda et al., 2006; 

Donovan & Radosevich, 1999). Prior to the current decade, the effect had not yet been 

demonstrated in more complex tasks or tasks with perceptual properties (Donovan & 

Radosevich, 1999; Rickard et al., 2008). However, tasks such as the learning of vocabulary or 

facts are very common in daily practice, especially for students. Many students could 

therefore benefit from spaced learning, although it is rarely applied.  

In his case study, Dempster (1988) listed several reasons why application of the spacing effect 

failed in practice. He states for instance that ‘the phenomenon has not been demonstrated 

satisfactorily in the classroom’ and that ‘the phenomenon cannot be linked to issues of current 

concern to educators’. The first argument no longer holds true since recent successful 

demonstrations of learning with spaced methods in classrooms (Van Woudenberg, 2008; 

Bloom, K.C. & Shuell, T.J., 1981). Neither is the second argument completely valid because 

the rise of computerization in education has made it easier to use computer programs which 

take the spacing effect into account. But the arguments of Dempster still hold true in the sense 

that all results combined do not provide teachers with a method that can easily be 

implemented in classroom settings. 

Finding an application that exploits the spacing effect and is easy to use in real-life situations 

is complex. Firstly, the effect does not follow a consistent pattern. The optimal spacing 

depends on the number of training sessions, the study time per session, and on the moment 

that the knowledge is needed for recall. For example, when the retention interval lengthens, 

there is more benefit if the ISIs are also longer (Pavlik & Anderson, 2008). On the other hand, 

the effect decreases when intervals are too long (Capeda et al., 2006). Furthermore, when the 

test is conducted directly after a learning session, spaced presentations offer no advantage at 

all (Dempster, 1988). 

Secondly, data results can differ because of heterogeneity in tasks, number of learning 

sessions, amount of knowledge, study intervals, session lengths and retention intervals. This 

makes it complex to draw a one-size-fits-all conclusion. Although some researchers are 

attempting to create a model of long-term memory that fits the results of more studies (Mozer, 

Pashler, Lindsey & Vul, submitted), they do not account for all specifications above and are 

therefore only applicable to a limited extent. 

Thirdly, if a formula that takes these specifications into account were to exist, it would still be 

a generalization that does not match individual characteristics per se. 

Lastly, even if a model could account for tasks and individual specifications, this does not 

mean that the model would, in practice, produce useful schedules. After all, not all individuals 

are able to adapt their real-life situations to a learning schedule, however optimal. 
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In conclusion, finding an optimally spaced schedule seems possible only if specifications for 

the task, the individual and the practice situation are given. However, the length and number 

of training sessions are decided by the individuals themselves and are possibly not known in 

advance. Should individuals not incorporate a practice scheme into their daily routine, the 

quality of their learning will depend on the quality of the learning sessions and their number. 

The only benefit achievable would then depend on the order of study trials in a learning 

session itself. This can be done with a model that is a good representation of the strength and 

speed of decay of items in memory. Predictions about the strength of the items in memory 

made according to such a representation allow one to anticipate which item(s) need to be 

learned to prevent forgetting. The representation should additionally adapt to individual 

characteristics. These adaptable models were only created during this decade (De Boer, 2003; 

Van Woudenberg, 2008; Pavlik & Anderson, 2005; Pavlik & Anderson, 2008), and showed 

promising results.  

The models of Van Woudenberg (2008) and Pavlik and Anderson (2008) create user-

dependent representations of the strength of items in memory and attempt to optimize the 

word order in study sessions. They are similar and robust, but can still be further improved on. 

This thesis proposes a more flexible and refined model for the learning of word pairs based on 

earlier work by Van Woudenberg (2008) and Pavlik (2005, 2008). It tries to answer the 

question of whether these refinements lead to representations that can make accurate 

predictions about the strength of items in memory and whether modifying the word order can 

further optimize retention. 
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2. Introduction of a latency-based ACT-R model 
This chapter describes the means used to optimize the word order in a session. We aim to 

develop a cognitive model that captures memory effects, adapts to users and thus is able to 

modify the word order with better retention. The cognitive model is based on the ACT-R 

architecture. This architecture can capture memory effects, which will be explained in section 

2.1. Existing cognitive models of Van Woudenberg (2008) and Pavlik and Anderson (2008) 

had promising results and will therefore be compared to define advantages and disadvantages 

of these models for further optimization. Section 2.3 introduces a revision of the dynamic 

spacing/reaction time condition of Van Woudenberg (2008).  

 

 2.1 Spacing in ACT-R 
ACT-R (Adaptive Character of Thought - Rationale) is an architecture of cognition (Anderson 

2007, 2004). It describes the process of acquiring and reproducing knowledge based on prior 

practice. The architecture is extensive, but this research focuses only on the equations for 

storing facts to memory and retrieving facts from memory, e.g., the basis of the declarative 

memory. Anderson and Schooler (1991) proposed the first equations based on characteristics 

found after analysis of human memory behaviour. One can, they theorized, calculate the 

activation with these equations. This activation represents the strength of an item in memory. 

The main characteristics found were that this strength is a distribution that can vary within an 

infinite domain (1). The strength of each individual encounter or presentation decays as a 

power function over time (2) and summed together produce a total strength, e.g., its activation 

(3). To account for the spacing effect, they proposed separate decays for each encounter since 

the previous presentation as a function of time. A big interval between the presentations 

would then lead to a low decay, so that the presentation has a greater effect on the strength in 

memory than a presentation after a short interval.  

The activation function as it is nowadays in ACT-R (1) corresponds with assumptions 1-3. 

The function returns an activation value of an item for the current time (t). A high activation 

means that recall of an item will be accurate and fast. A low activation means that the recall 

will be slow or might not happen at all. The activation is based on the summation of the 

individual practice events. Each practice event is based on the difference between the current 

time and moment of practice (tj) in seconds. The strength of these practice events decreases as 

this interval grows with a rate of forgetting, the decay –di,j, where i stands for the item and j 

for the number of repetitions. The total activation is then the natural logarithm over the 

summation of these individual practice events. 

 

����� = ln 	 
  �� − ������,��;����
��� �                                                �1.1� 

 

In 2005, Pavlik and Anderson introduced the decay function of (2) to create unique decay 

values for the individual encounters and dependent on the time interval between the 

encounters.    ��,� = � !����� + #                                                               �1.2� 

 

It determines the decay of an item (i) for a practice event (j) on its activation at the moment of 

the event (tj), scaled with the scaling parameter c and added to a constant parameter, α. The 

constant α also designates the minimum decay value; the scaling factor determines the 
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spacing effect. By using individual decays, a distinction can be made between the impact on 

learning brought about by the individual encounters. As a result, repetition in short intervals 

gives repetition on high activations, which leads to higher decays. This implies that many 

rehearsals or practice events of an item over a short period lead to high decay rates for the 

individual encounters. Over time, this leads to relatively fast forgetting. However, a longer 

retention interval, or more spacing, leads to a lower decay, which creates benefit in the long 

term.  

Both the models of Van Woudenberg (2008) and of Anderson and Pavlik (2008) are based on 

these two equations and achieved promising retention results. Before introducing the model 

used in this research, the next section will compare these models as to how they adapt to users 

and determine their word order.  

2.2 Comparison of two ACT-R models 
Both Van Woudenberg (2008) and Pavlik and Anderson (2008) have created ACT-R-based 

models which adapt to users in different ways. In Van Woudenberg, pupils learned the Dutch 

translation of twenty French words during class in a fifteen-minute training session. One day 

later, all participants received a pencil-and-paper test to see which words they still 

remembered. Pavlik and Anderson taught participants 180 Japanese-English word pairs, in 

three learning sessions of one hour each, on days one, three and five. An assessment session 

was done a week later. Although the participants in both studies learned word pairs, the 

studies are not comparable because of the differences in the learning sessions, retention 

intervals, session lengths and the numbers of words used. Furthermore, it is doubtful whether 

the tasks are comparable because it tends to be more difficult for native English speakers to 

learn Japanese words than it is for native Dutch speakers to learn French words. The French 

words which are learned come from a language with which there is some acquaintance. This 

will bring more foreknowledge and background information that can be used during the 

learning. And when participants have foreknowledge, differences in individual performances 

will be greater, because besides the learning capacity some will have more benefit from their 

foreknowledge than others. However, both models are based on the ACT-R equation of 

memory strength including the decay function as discussed earlier. Therefore, it is possible to 

compare these models with each other.  

In the next section, we will compare the different types of adaptations for optimizing the word 

order and the consequences of these adaptations. Based on this analysis and the results of 

these studies, we have determined the adaptation method for the model used in this research. 

And, because the activation and decay formulas do not directly determine which word should 

be rehearsed next, the section ‘Determining the word order’ describes and analyzes the 

different ways of modifying the word order.   

 2.2.1 User adaptation/model 
When no prior knowledge about a user is known, adaptation to the user’s performance is only 

possible by using the correctness or reaction time of the response. There are no other relevant 

measurements that lead to adaptation in the ACT-R formulas that discriminate between the 

capacity of the users. Pavlik and Anderson only adapt for correctness, whereas Van 

Woudenberg implements a condition that adapts for correctness and a condition that adapts 

for both correctness and reaction time. This section compares the different ways in which 

these measurements are processed. 

Pavlik and Anderson (2008) introduce three new parameters in the activation function to 

capture item, participant and item-participant differences. The three parameters βi (item 

difference), βs (participant difference) and βsi (participant-item difference) are additional 

values in the activation equation, see 2.1. 
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  ����..�� =  %& + %� +  %&� + ln '
  �(��)
�

(�� *                                   �2.1� 

 

The βs and βi are updated every 300 trials while the βsi is updated after every response based 

on the success or failure performance with a Bayesian algorithm. Unfortunately, exactly how 

this is done remains unclear. However, the parameters are additional to the old activation 

formula (1) and this creates, as noted earlier (Van Rijn, 2009), a minimum activation of an 

item. As a result, and independent of how much time passes, the activation will never drop 

below this level. Also, since decay and activation are recursive functions, the chosen β values 

will influence the decay positively. A higher decay will lead to faster forgetting and will 

influence the activation both indirectly and negatively over time. In their paper, only the 

standard deviations of βs and βsi are given, but it is unclear what the range of these 

parameters is. Therefore, it is difficult to estimate the real influence. However, the question 

still remains of whether these side effects are desirable.  

In the work of Van Woudenberg (2008), only the alpha in the decay is adapted for each 

participant-item combination. By influencing the rate of forgetting separately, the recursive 

side effect on the longer term has less impact. Of course, the activation for the next encounter 

is influenced, but this time not in a counter-productive manner. In addition, no extra 

parameters are required. The only disadvantage is that no foreknowledge regarding the item 

or participant is used. However, a concrete value judgment cannot be made since it is unclear 

how this is done in the work of Pavlik and Anderson, and which benefits are reached. 

Van Woudenberg (2008) decided to adapt the alpha parameter of the decay function in a 

robust way, with a maximum of 0.01 per trial. The adjustment made is based either on the 

correctness of the response or a combination of correctness and reaction time. The condition 

that adjusts on correctness is called the dynamic spacing - response condition. When the 

model predicts a correct response but an incorrect response is given, the alpha value increases 

by 0.01. Or, when the subject unexpectedly answers correctly, the alpha decreases by 0.01. 

The adjustment based on correctness and latency is called the dynamic spacing - reaction time 

condition and adapts the alpha after each response, depending on correctness or the difference 

between expected and observed reaction time. After an incorrect answer, the alpha is raised 

by 0.01. The difference between the measured reaction time and the expected reaction time is 

calculated after an incorrect answer. If this difference is larger than 0.5s, the alpha is adjusted 

according to the difference, with a maximum adjustment of 0.01. 

Although both Van Woudenberg’s adaptive conditions scored better then a non-adaptive 

condition, only the reaction-time condition scored better then the control condition, which 

was a flashcard method that will be explained later. Pavlik and Anderson (2008) had already 

stated that adaptation based on latency might be useful to describe learning processes, but 

chose otherwise because failure latencies do not correlate with learning. Given this argument, 

it seems that a combination of correctness and latency is not considered as an option for their 

model. However, the Van Woudenberg results indicate that the combination of latency and 

correctness could be a good measure to which to adapt.  

  

 2.2.2 Determining the word order 
As noted in the introduction of this chapter, activation values and decays do not directly 

determine which word should be repeated next. Determining the next word pair directly by 

the lowest activation is not a realistic option. This method is naive because the application 

would offer all words once before rehearsal takes place. After this, irrespective of the 

adaptation, there is no real optimization process. Adaptations made can increase or decrease 

activation values, but this does not by definition lead to a situation in which all activations 
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will be above a forgetting threshold at the end of a learning session. Finding the optimal word 

order thus takes more thoughts. 

  

Pavlik and Anderson chose to optimize according to their self-defined learning rate. This 

learning rate is the gain in activation over nine days when rehearsing a word now divided by 

the time it took to practise the item, see formula 2.2: 

 + ,-./.0 -,� � =  12��31��4� 51�� 1� 67�7���4� �7&� 846 ��7!9��!7 24&� �4: �4 ;612��&7 ��7!9             �2.2� 

 

The time cost in a recall-or-restudy is defined as: the time cost for latency times the chance of 

a correct response added to the time cost of a failed trial times the chance of an incorrect 

answer. They plotted the results of the gain depending on the present activation, see Figure 

1.1. The black line denotes the gain for a recall trial, the dotted line for a study trial. From 

these results they concluded that when the activation is below -0.63, there is more gain in 

offering a study trial. Optimum benefit can be reached when the activation is at -0.33. For the 

algorithm, see Figure 1.2. When determining which word to recall or restudy next, these 

values are used as reference. Pavlik and Anderson claim that this model aims at a global 

optimum policy instead of local optimum policy, because it is not the maximum learning rate 

of each item on each trial that is used, but the overall maximum learning gain that can be 

attained by the independent items. To optimize for gain at retention is an excellent 

consideration, because performance at the moment of retention is used to measure model 

performance. However, the straightforward implementation raises some questions. 

Firstly, calculating activation (gain) over a longer time interval causes loss of accuracy. For 

the intersection interval, a psychological time parameter is used. In between sessions and over 

longer intervals, when the subject is engaged in other activities and the working memory is 

not being trained continuously, less forgetting takes place. 

 

 

Figure 1.1: Efficiency functions for recall-or-restudy trials and study-only trials as a 

function of current activation for a retention interval of 9 days (the mean expected retention 

interval in the current experiment). (Pavlik & Anderson, 2008) 
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Therefore, the time in between these intervals is scaled down with a scaling parameter h. In 

this way, time is scaled so that it proceeds at a slower rate compared to real time or the time 

taken during training sessions. Even though Pavlik and Anderson use a psychological time 

parameter for the intersection time, noise influence will increase and predictability will 

decrease over time. Hence, one can ask how plausible or realistic it is to optimize for small 

activation differences over a time interval of seven, nine, or eleven days. Pavlik and Anderson 

already average these different retention intervals because of the small differences. Thus, to 

optimize for a study trial instead of a recall because the gain in nine days will be one 

thousandth higher lacks real persuasiveness. Thereby, the activation gain in the learning rate 

is calculated based on the derived activation values generalized over a complete data set 

without accounting for different decays or number of rehearsals of the items learned. This 

means that the found range for optimal learning rate is also generalized and does not account 

for individual differences in, for example, the rate of forgetting. Nonetheless, these 

differences can also lead to other optimal ranges in learning rate. 

Secondly, Pavlik and Anderson state that this results in global optimization instead of finding 

the maximum gain for the individual items. However, by directly implementing activation 

values for modifying word order in their formulas, they did not account for any rate of 

forgetting belonging to the individual items. However, the decay influences the activation 

over time and determines how much influence the separate rehearsals have over time. So, by 

generalizing the maximum gain on activation values, the influence of a forgetting rate is not 

considered. Thus, the statement that this algorithm optimizes globally is very general because 

it does not take into account influences of item-specific decays or user characteristics of 

retention. 

Nevertheless, with the choice of rehearsing a word when the activation is in a certain range, 

Pavlik and Anderson’s method does not differ much from the method used in Van 

Woudenberg (2008). Van Woudenberg uses a look-ahead time, which means they calculate 

activation not on the current time, but on a fixed interval in the future to predict whether a 

word pair would be below the threshold several seconds after a given moment. When 

 

 

Figure 1.2: Schedule optimization algorithm flowchart. (Pavlik & Anderson, 2008) 
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comparing the algorithms, one sees that both Pavlik and Anderson’s algorithm and that of 

Van Woudenberg offer the word before it reaches a certain activation value. For Van 

Woudenberg, this is before the threshold of -0.5 is reached. Pavlik and Anderson found an 

optimum gain at an activation of -0.33, but waited until the activation dropped below this 

value and tried to rehearse the items before they reach -0.63. In a sense, this could be 

interpreted as a threshold.  

Or, it can be interpreted as a threshold in combination with a look-ahead time. Pavlik and 

Anderson used a threshold of -0.704 and found the optimum learning rate at -0.33. Thus, 

recalling a word between -0.63 and -0.33 is comparable with a threshold of -0.73 and a non-

fixed look-ahead time. Pavlik adds an additional nuance to his work by presenting a study 

trial instead of a rehearsal because calculation shows a more effective time investment. This 

means that the chance of an incorrect answer – and the possible extra time costs – cannot 

compensate for the smaller impact of the short duration of a single study trial. This trade-off is 

not present in Van Woudenberg’s (2008) implementation. However, Van Woudenberg does 

take decay into account when calculating activation with a look-ahead time. In this way, the 

rehearsed word pair is not chosen based only on the activation, but on a combination of 

activation value and decay. When more items drop below the threshold in fifteen seconds, the 

one with the lowest activation in fifteen seconds is rehearsed. It is likely that this is the item 

with the highest decay. The fifteen-second period might look like a local optimum, but over a 

longer period of time, rehearsal of the items with the highest decay has a higher priority. As 

Pavlik and Anderson’s graph indicates, this surpasses the gain that can be achieved. Or, as 

reasoned in Van Woudenberg and in this paper, this will increase the chance of forgetting. 

This, in turn, would lead to incorrect trials, extra-time costs and a possible decrease in 

efficiency. In conclusion, the method used by Van Woudenberg, in which the word order is 

determined by using a combination of a threshold and a look-ahead time has similarities with 

the determination based on optimal gain as indicated by Pavlik and Anderson, but takes into 

account the rate of forgetting of the individual items. 

 

 2.3 Implementation of latency-based spacing 
With a maximum adjustment of 0.01 made according to only one response, Van 

Woudenberg’s type of adjustment is unsubtle and slow. This means, firstly, that more 

repetitions are needed to create a real distinction between the participant-item combinations, 

and secondly, due to adaptation being only on a local scale, the influence of a single alpha is 

limited. The revised model also adjusts alpha values to minimize the difference between the 

measured reaction time and the calculated reaction time based on activation. The revised 

model is more subtle, because it optimizes every time for all encounters. It is faster because 

there is no maximum adjustment value. In this section, we will explain how we implemented 

adaptation of the alpha value. Next, we will explain how the word order is determined. This 

section explains how the alpha value is determined after repetition based on the reaction times 

of the user. After measuring the reaction time, some manipulations are made before the 

optimization process starts. We will explain these manipulations first. Thereafter, the 

optimization is explained. 

Unfortunately, reaction times contain a great deal of noise. A small distraction can influence 

the reaction time by seconds. The noise is asymmetric because it will always influence the 

reaction time in a positive way. Therefore, we maximized the reaction times. Although it is 

uncertain whether these responses are slow due to noise, these reaction times influence the 

adaptation heavily. For example, a reaction time of 11 seconds corresponds to an activation of 

-2.37 in the latency formula, which is far below the threshold. This suggests that these 

reaction times are not solely determined by the activations of the related chunks. The 
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maximum reaction time used is determined with the latency formula 2.3. For consistency, 

latency is from now on called ‘reaction time’ and refers to the first key press of the user, so 

Li,j is now RTi,j  – see formula 5. The i and j refer to the item and the number of repetitions.   <�,� =  = �!�,���� +  >/? � �/�  �@A�  

 BC�,� =  = �!�,���� +  >/? � �/�  �@A�                                        �2.3� 

This formula consists of a fixed time and a part depending on the activation at the time of 

item i for encounter j. The part depending on the activation determines how quickly 

something can be retrieved from memory. A highly activated item will be recalled faster than 

an item with low activation. For example, your first name is highly activated in memory, so 

recall should be fast. On the other hand, the name of your old neighbour is less activated and 

recall should take more time. The F parameter scales this. The fixed time cost refers to the 

time of perception and motor actions needed to respond. The F and fixed time values are fixed 

at 1 and 300ms. The values are taken from Van Woudenberg (2008). Normally, this equation 

predicts the reaction time based on the activation of an item. We determined the fixed 

maximum reaction time at 3788ms, which corresponds to one-and-a-half times the reaction 

time of the threshold value, see equation 2.4, where τ is the threshold and i is the item and j 

the encounter. The threshold value is changed compared to Van Woudenberg from -0.5 to  

-0.8, because a pilot study showed that a threshold of around -0.8 still gave an 80% chance of 

a correct answer.   

  BC�,� = Min�BC!1G, BC�,�  �                                               �2.4� 
with:  BC!1G = 1.5 �= �J + >/? � �/�  �@A��                                       
 

Next, when an incorrect response is given, the measured reaction time does not necessarily 

give information about the strength of the item in memory. Therefore, we did not derive the 

activation from the reaction time of these trials directly. However, since we adapted the alpha 

based on reaction times, we replaced the reaction times of incorrect answers with the 

maximum reaction time. In this way, the model can also adapt to incorrect answers 

irrespective of the applicable response time.   

Before calculating the optimal alpha we used the manipulated reaction times to make an 

estimation of the strength of an item in memory. Again, we used the equation for latency 

retrieval to derive an activation from a measured reaction time.  

So, recalling the latency formula: BC�,� =  = �!�,���� +  >/? � �/�  �@A�  
Now instead of deriving a reaction time from this activation, we derived the activation from 

the reaction times. For this, we rewrote the latency formula. The first step is subtracting the 

fixed-time cost from the observed reaction time: BC�,� −  >/? � �/�  �@A� =  = �!�,���� 
 

Then divide this value by the F and swap:  �!�,���� =  KBC�,� −  >/? � �/�  �@A�= L 

 

Then, to get the activation value, take the natural log and multiply it by -1: ������, =  −ln KBC�,� −  >/? � �/�  �@A�= L 
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Now we can derive an activation, or strength of an item in memory, corresponding with a 

measured reaction time.  

To prevent confusion, in future we will call the activation derived from the latency formula 

the derived activation, m_derived_i,j. 

So: 

 ��76�37��,�  , =  −ln KBC�,� −  >/? � �/�  �@A�= L                            �2.5� 

 

 

Figure 2.1: Example of activation after four encounters. The gray line denotes the activation 

without the fourth encounter. 

Now we have measured strengths of items in memory. This derived activation is used to 

calculate an optimum alpha that minimizes the difference in measured and calculated reaction 

times, e.g. an alpha that minimizes the differences in derived and calculated activation. This 

optimization is done by first fitting the alpha of the latest decay. Figure 2.1 shows an example 

to clarify this optimization step. The figure shows the activation after four rehearsals. The 

fifth rehearsal takes place at t=60s. At this point a new reaction time is observed. Now, a new 

alpha is calculated that best fits all derived activations. To do so, first an alpha is calculated 

fitting only the latest decay, this is the decay belonging with the activation from t=45 till t=60 

but without the activation of the first three encounters. The activation of these previous 

rehearsals is the dotted line, the difference between the black and gray line denotes the 

activation difference belonging with the fourth rehearsal. Notice that the picture is simplified 

because all decays are equal and optimize according to minimal differences. This means that 

activations derived for each encounter can be below or above these plotted activations. The 

alpha fitting this decay is the alpha in the decay of item i and encounter j=n at the time tj=n. 

We can rewrite the activation formula (2.6) and separate decay di,j=n in the formula.  

 

 ������ = ln M	 
  �� − ������,����;����
��� � +  �� − ������NO,PQR  S                   �2.6� 
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Now the first part is the summation of all encounters except the last, e.g. the activation of the 

first three rehearsals or the dotted line in the example. The second part will create the delta 

activation in the figure. This decay can be mathematically derived. How this is done is 

explained in appendix B.  

With this decay, we can rewrite the decay function already known,  

 ��,� = 0.25 !����� + #�,� 

 

To get the alpha: #�,���  = ��,��� −  0.25 !����� 
This alpha is now optimized for the last encounter (j=n), thus only on the latest reaction time.  

To find an alpha that fits best for all encounters, we search between the last optimized alpha 

and the alpha just calculated and fitting the latest decay. Therefore, a binary search, explained 

in the flowchart in Figure 2.2. is used. After each trial, the algorithm starts at the top of this 

flowchart. First, the number of rehearsals is raised. Then, after the first rehearsal, which takes 

place directly after a study trial, a standard alpha of 0.3 is returned. After the second rehearsal, 

an alpha that fits the decays of the first and second rehearsal is searched for. This is done by 

taking an interval with a minimal alpha of 0.01, a maximal alpha of 0.5 and the mean 0.2505. 

Then, for both alphas and with the moment of rehearsals, the activations of these moments 

and corresponding reaction times are calculated. Next, the difference between these reaction 

times and the measured reaction times are summed together. After that, the summed 

differences per alpha are compared with the mean. If the error of the smallest alpha is smaller 

than the error of the mean, the new interval will be between the small alpha of 0.01 and the 

mean alpha of 0.2505. If the error of the large alpha is smaller than the error of the mean, the 

 

Figure 2.2: Flowchart of binary search to alpha 
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new interval will be  between the mean alpha of 0.2505 and the 0.5. With this new interval, 

this process of calculating the summed differences is repeated. This is done six times. The 

difference in error decreases until all alpha values are very close together and the last mean 

value is returned. After the third rehearsal this process is done with the optimal alpha of the 

previous repetition and with the new calculated alpha.  

Lastly, there is a difference between the model of this study and that used in Van Woudenberg 

(2008) by which one of the recommendation of Van Woudenberg (2008) is indirectly met. He 

argued that a distinction should be made between active and passive rehearsal, because ‘active 

rehearsals are more beneficial and this will separate the difficult from the easy items. 

Increasing the activation of a correct rehearsed item more than a studied item, for example, 

will result in remembering this item for a longer time period. This does not only increase the 

spacing of that item, but it will also help to present new word pairs earlier in the sequence of 

repetitions.’ Although we did not distinguish between active and passive rehearsals, we did 

remove the second rehearsal of the study trial after an incorrect trial. Instead of one encounter 

at the attempt to recall and one at the rehearsal, we only implemented one rehearsal. More 

distinction can be made, but it is also reasonable to argue that a study rehearsal can consist of 

more (weak) repetitions in a row, particularly after an incorrect rehearsal. So, the decision was 

made not to change the implementation of Van Woudenberg any further. 

 

 

 

 

  

Model parameters α=0.3 

c=0.25 

τ=-0.8 

Fixed time cost =0.3s 

F=1 

Program parameters  Study time = 5s 

Rehearsal time = 0 to 15s  

Feedback time =2s 

Look-ahead time=15s  

Table 2.1: Overview of model parameters 
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3. Experiment 
 

In this study, we wanted to test whether we could develop a user-adaptive cognitive model 

that captures memory effects and modifies the word order for better retention results. This is 

done with an experiment. These retention results are compared with a standard learning 

method, e.g., the flashcard condition. This section has three subsections: the method, the 

model results and the test results. The method describes the experiment; the model results 

cover an analysis to see whether the model meets our expectations of the training session. It 

contains an analysis of the model’s adaptability to individuals and its accuracy on the strength 

of items in memory. The results of the pencil-and-paper test of both conditions are compared 

in the test results. We were interested whether learning with the model improved retention, 

e.g., whether the group of participants in the spacing condition scored better at the test than 

the participants in the control condition.  

 3.1 Method 

Participants 
All participants were students from the dr. Aletta Jacobs College in Hoogezand. We tested 

two third-year classes – one havo and one VWO – and one fifth-year VWO class. We collected 

training and test data of 40 participants. Data from five participants were rejected for model 

and test results analysis. Three participants did not remember more than six words on the test 

set. Compared to the other participants, these participants were considered to have found the 

task too difficult to be representative. Two participants were rejected because of doubts as to 

the degree of serious effort they had invested as they came up with silly answers during study 

trials. A possible reason was a low level of concentration, since another lesson took place in 

the same room during one of the training sessions. This clearly led to problems in focusing on 

the task for some of the participants.  

Materials 
Two lists of twenty French-Dutch word pairs were compiled and approved by the teacher – 

one for the third-year students and one for the fifth-year students (see Appendix A). All words 

were selected from a chapter’s word list that was to be discussed in the weeks after the 

experiment.  

Design and procedure 
The program let the students learn the Dutch translation of the French words. The learning 

program had two different type of trials: study or test. A study trial consisted of a five-second 

display of both French and Dutch words. A test trial only showed the French word and the 

participant had 15 seconds to type the Dutch translation. After a subject pressed Enter or the 

15 seconds had passed, feedback appeared for two seconds. This was either Correct, Almost 

Correct if the Levensthein distance between the given and expected response was smaller 

than three, or Not Correct in all other incorrect cases. An almost correct or incorrect answer 

was always followed by a study or restudy trial of five seconds.  

All students were randomly divided into two conditions: the spacing and the control 

condition. The order of the presentation of the words in the spacing condition was determined 

by the model described in section 2.2.2. The control condition was based on the flashcard 

method. This method is used more often as a control condition (Bahrick, 1797; Van 

Woudenberg, 2008; Pavlick & Anderson, 2007). In this condition, the word list is divided into 

sets of five cards. The first five words are stacked. If a word pair has never been studied 

before, a study trial takes place first, followed by a rehearsal. If the word has already been 

shown, the event is a rehearsal trial. If an item is recalled incorrectly, this item is put on the 
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bottom of the stack, so an extra rehearsal takes place following the rehearsal of the five 

words. When the stack is exhausted, it is filled with a new set of five word pairs. When the 

entire set has been rehearsed, the program starts over again with the first five word pairs.  

After the fifteen minutes of learning had passed, the subjects were thanked for their 

participation, not knowing that another test moment was to follow later. On the following day, 

all words were tested with a traditional pencil-and-paper test. The subjects did not receive any 

feedback regarding these test results and were told that the results would not be graded by the 

school.   

 3.4 Results 

Model results 
This paragraph evaluates the predictions of the algorithms discussed in 2.3. The model creates 

representations of the strength of items in memory. These strengths give an indication of 

whether and how fast an item can be retrieved. When an item drops below the threshold, this 

implies that it cannot be retrieved and it is indicated as having been forgotten. The algorithm 

attempts to prevent this from happening. The model attempts to prevent items being forgotten 

by rehearsing the items before they drop below the threshold. This should lead to less 

incorrect responses and improvement of the predictions of the reaction time. 

Firstly, we will address whether the model accurately adjusts itself to differences associated 

with participants and items by adjusting the alpha value. Figure and 3.1 show the mean and 

standard errors of the alpha values per participant and per word pair. The graphs indicate that 

the model adapts to the participants and words, because of the differences in alpha values and 

because the differences in alphas are bigger than their standard errors. Although this does not 

mean that the model fits the participants or words correctly, it does show that it discriminates 

between participants and between words. For example, the model can indicate a user as being 

a poor learner or a word as being harder to remember than others. 

Secondly, the model tries to prevent that activation of items drops below the threshold with 

the look-ahead-time. Absolute prevention of incorrect responses is not possible, since 

(temporary) forgetting or typing errors can occur even if items are highly activated in 

memory. In addition, we did not define a concrete proportion of incorrect responses to be 

acceptable or not. Therefore, we used the control condition as the baseline.  

 

Figure 3.2: Mean and standard error of 

alpha value per word pair. Values calculated 

for all encounters n>2 and sorted by means. 

 

 

Figure 3.1: Mean and standard error of 

alpha values per participant. Values 

calculated for all encounters n>2 and sorted 

by means. 
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As a result, it is possible to compare the number of errors with the control condition. A one-

sided t test on the mean percentage of correct trials per participant confirms this difference 

with t(25,81) = 3.3716, p< 0.01. In addition, as noted earlier, preventing incorrect trials from 

happening yields a time advantage, because less study trials or repeated study trials are 

necessary (Pavlik & Anderson, 2008). This time can be invested in more test trials. Therefore, 

we also looked at the difference in the number of trials. Participants in the spacing condition 

had on average 122 trials; participants in the control condition 108. The one-sided t test also 

shows a significant difference with t(30,40) = 2.9553, p<0.01. Hence, the model meets our 

expectations in the prevention of forgetting, so less incorrect trials need take place. The time 

saved is used to study new items or rehearse previously presented items. 

Thirdly, it is possible to examine the accuracy of the representations of the items in memory. 

The prediction is that the model’s representation of the strength of items should become more 

accurate after increased repetition. Reaction times do contain noise, but when more trials of 

the same item have been presented, the alpha fitting the rehearsals will be less sensitive for 

noise in the separate trials. Therefore, the representation of the strengths in memory at any 

given moment in the training session should become more reliable. This should lead to more 

accurate predictions of the reaction times. The means and standard errors of the absolute 

difference between prediction and measured reaction times are plotted in figure 3.4. Five trials 

in which no response was given after 15 seconds were removed from this representation. It is 

unknown why no response was given in these trials, but they are not representative when 

testing the prediction of our model. Since the first adaptation of alpha takes place after the 

third encounter, prediction can only be made at the beginning of the fourth encounter. We also 

cut the graph at thirteen repetitions because fewer than ten items were presented more then 

thirteen times. The graph shows a decrease in the difference between prediction of the latency 

at the moment of retrieval and measured latency. Hence, the model’s representations become 

more accurate after optimizing the alpha value, especially during the first four adaptations. 

After the seventh repetition, the mean absolute difference stagnates at around 1000ms. This is 

still a relatively large difference, because the mean reaction time over all trials was 2661ms. 

However, as figure 3.3 shows, the trials contain many high differences in reaction times, 

which makes more accurate prediction difficult. 

 

Figuur 3.3: Absolute differences between 

predicted and measured reaction times. The 

line represents the regression line. 
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Figuur 3.4: Mean and standard error of the 

absolute differences between predicted and 

measured reaction time. 
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Test results 
Although the results of the model of the training data look promising, the results of the post-

test are the most important to evaluate. Figure 3.5 shows a box plot of the results of the two 

conditions. Both conditions lead to a wide spread in the results. To test whether there is a 

difference between the two conditions, we did a test with a binomial linear mixed effect 

model. We did not use an Anova test to test differences in the condition. This test cannot cope 

with the binary ‘Correct’/ ‘Incorrect’ results, so only the score of the test can be included in 

the test. As a result, correction of word difficulties are not possible. However, there were 

differences in word difficulty that did influence test results. Because we wanted to calculate 

only the effect of the condition on the test results, we chose a binary model that could correct 

for this effect. When corrected for words and tested for better performance in the spacing 

condition, the test shows a significance level of p<0.01 (SE = 0.1736, z=-3.402). This means 

that the participants in the spacing condition performed better than in the flashcard condition.  

 

 3.5 Conclusion 
As discussed above, the model matches the predictions. The alpha value is adjusted to each 

participant-item combination. With the look-ahead time to prevent forgetting, less incorrect 

trials take place compared to in the control condition. This leads to less time being required to 

restudy items, making it possible to do more test trials in the same session. Another advantage 

is that the adjustments of the alpha values improve the accuracy in the prediction of the 

reaction times. A more accurate representation of the strengths in memory thus develops. The 

post-test results indicate that latency-based spacing, as in our model, gives better retention 

than the flashcard method with a retention interval of one day.  

 

 

 

  

 

Figuur 3.5: Boxplot of percentage correct trails on test per condition 
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4. Discussion 
This thesis describes the study leading towards a user-adaptive system for optimizing the 

learning of word pairs. The system used is an activation-based model working with ACT-R 

equations. It adapts each participant-item combination by using the reaction time and the 

correctness of the responses. The results indicate that, in addition to correctness, reaction time 

is also a useful measurement to which to adapt the model. This was already demonstrated in 

Van Woudenberg (2008), but has been further refined in this study. 

However, the present results do not show whether the success of the spacing model is due to 

more trials, the word order or a combination of both. Participants in the spacing condition did 

significantly more trials compared to the participants in the control condition. This means that 

more repetition of the items could occur, which enhances the strength of the items in memory. 

The number of trials is a consequence of the chosen algorithm, since users make less errors in 

the spacing condition, which yields time efficiency. By changing the design of the 

experiment, one can study whether better retention results can be made independent of the 

number of trials. For example, by equalizing the number of trials at 110. Nevertheless, the 

study time of participants in the control condition will most likely be higher. In addition, 

probably not all participants in the spacing condition trials will study all words, since the 

algorithm only allows a user to learn a new word pair after other words have been sufficiently 

studied to be remembered for at least fifteen seconds. One could also shorten the study time, 

e.g. the time to restudy an item after an incorrect response. This would mean that errors are 

less influenced by time, allowing more rehearsals even if many trials are answered 

incorrectly. The differences in the test results would then be less dependent on the difference 

in the number of trials, but more certainly in the order in which the items are presented. 

The next question is whether one can generalize this model’s results for retention over a 

longer time period, to other types of participants or other types of tasks. This research only 

had a retention interval of one day. The retention interval can be increased, but must not be 

lengthened by too much. When time passes, more forgetting takes place and, without 

rehearsal, less items will be remembered. To prove a difference in method, the retention 

interval must be limited to an interval that allows some remembering to still be possible. 

Otherwise, no differences will be found,. because when time increases, less items tend to be 

remembered, which makes it harder to annotate a difference in study method. As to the 

participants: we used a relatively homogenous group with regard to properties such as age and 

facility in learning. It is unknown how well the model will adapt to other types of learners. 

Nevertheless, it seems plausible to reason that this model is at least useful for the task in this 

study and for other tasks entailing the learning of facts, for example, history facts, since the 

spacing effect is proven to appear often in these simple tasks and in many different conditions 

(Capeda et al., 2006).  

Before more research is done, further refinement of the model may be considered. Some 

suggestions would be: 

• Currently, the model is optimized by minimizing the difference in measured and derived 

reaction time for all reaction times. However, the first reaction time is not representative 

because it appears directly after a study trial. By removing the difference in this 

calculation, the alpha is adjusted to more reliable reaction times and can therefore become 

more accurate.  

• Secondly, the model only adapts by adjusting the alpha value per participant-item 

combination. Pavlik and Anderson (2005, 2008) used foreknowledge in specific 

participant variables in the activation formula. Adaptation according to specific participant 

features is plausible and can make adjustments to items faster and more accurately. But 

adaptation directly in the activation formula has some side effects, as is explained in 2.2.1. 

However, it is possible to make adaptations to account for foreknowledge, such as in the 
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fixed-time parameter. This is the minimum time needed for motor actions and visual 

processing to respond. The data of the experiment and data of an earlier pilot experiment 

indicated that the shortest response in fifteen minutes can differ over 500ms per 

participant. Some can respond in 300ms, others never respond faster than 1000ms. These 

relatively slow responses are interpreted by the model as low activation. The model would 

then adapt alpha as if the participant in question has more problems remembering items 

than a user who can respond more quickly. But this is not sound reasoning. Therefore, an 

adjustment of the fixed-time value would be more consistent.  

• Thirdly, the threshold represents the boundary of forgetting. Of course there is no distinct 

boundary between remembering and forgetting and it is even more unlikely that this 

boundary is the same for everybody. Although our estimation proved to be a robust 

estimation, more examination can possibly refine this.  

• Fourth, we used a maximum reaction time corresponding to 1.5 times the reaction time 

belonging to latency based on the activation of the threshold (see Formula 2.4). This value 

automatically changes when the fixed time becomes user-specific. However, when the 

fixed time is changed, an extra effect in the maximum reaction time is noticeable. For 

example, if somebody has a fixed time of 0.8s, the maximum reaction time becomes 

4538ms. This will influence the activation and alpha values. The alpha values will 

increase and the activation values will decrease. This is a negative side effect of the 

adjustment of the fixed time, because a higher fixed time does not indicate that the 

participant forgets items faster. A more accurate situation is created by adapting only the 

part of the reaction time based on the activation value. Another possibility is to adapt the 

maximum reaction times personalized at a maximum of twice the standard deviation 

above the mean (for example).  

• Lastly, in this research, the same algorithm in determining the next word pair is used as in 

Van Woudenberg (2008). However, when all words are still above the threshold value 

after fifteen seconds, the item with the longest spacing will be rehearsed. Although this 

situation does not appear often, it would be more consistent to increase the look-ahead 

time. Then optimization takes place based on retention over longer time. This is a more 

plausible solution.  

• When implementing this algorithm for to use for actual practice purposes, some changes 

can be made to improve the didactic properties of the program. For example, as is also 

done in an often-used program (www.wrts.nl): when the answer is incorrect but the 

Levensthein distance is below a certain value, students are given the opportunity to correct 

their answer. This can improve motivation or save frustration compared to a condition in 

which these trials are assessed incorrectly and rehearsed more often. 

A more general statement for further research is choice of a control condition. The flashcard 

method is an often-used method and seems to be a good control condition. It is not totally 

naive since it rehearses incorrect responses, but is very robust since it does not take into 

account any other measurements. Two variables can be chosen for this method. The first 

parameter is after how many trials the first repetition will take place and the second is after 

how many trials an incorrect item will be rehearsed. These parameters can greatly influence 

performance with this method. For example, if the first repetition of an item takes place only 

after 30 trials, as is done in Pavlik and Anderson (2008), one is unlikely to remember the 

time. This would lead to many incorrect answers, which makes the condition harder to 

perform with a normal learning curve. A consistent control method can offer a solution to 

finding a proper comparison of different methods over different studies.  

To summarize, after the work of Van Woudenberg (2008) and Pavik and Anderson (2008), 

we created a more refined though robust cognitive model that captures memory effects (1) 

such as frequency, recency and spacing, that adapts to users (2) and uses this to modify the 
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word order in a session for better retention (3). Although some refinements are still possible 

and further research is necessary to show possible better retention over longer time intervals, 

for other types of users and different tasks, this study again shows that with a cognitive model 

one can enhance retention performance. With these models, application for actual practice 

purposes in class or for individuals becomes easy and practicable. There is no need for a 

specific schedule, so users can decide themselves how much time they spend learning and 

when they study and still benefit from these learning advantages compared to with a standard 

learning method.    
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Appendix A: Word lists 

 

 

French Dutch 

feindre   doen alsof 

épanouissement   ontwikkeling 

gaieté   vrolijkheid 

murmure   geruis 

ininérant   rondtrekken 

arbitrairement   willekeurig 

négligeable   onbelangrijk 

rabattre   verminderen 

avidité   hebzucht 

invresse   dronkenschap 

faucher   jatten 

aspirateur   stofzuiger 

devoir   verschuldigd zijn 

faire les frais de   opdraaien voor 

franc   openhartig 

tandis que   terwijl 

vacarme   herrie 

indulgence   toegeeflijkheid 

esclavage   slavernij 

équitablement   eerlijk 

Table A.2: Wordlist 5 VWO 

 

French Dutch 

fier trots 

volontaire vrijwilliger 

une ampoule een gloeilamp 

environ ongeveer 

rater missen 

depuis sinds 

doué begaafd 

drôle grappig 

développer ontwikkelen 

néanmoin toch 

ailleurs elders 

l'amélioration de verbetering 

un nuage een wolk 

en revanche daarentegen 

le ciel de lucht 

mignon schattig 

une voix een stem 

dès que zodra 

coller na laten blijven 

le brouillard de mist 

Table  A.1: Wordlist 3 Havo and 3 VWO 
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Appendix B: Derivation of decay 
 

 

To calculate the decay of di,j=n we can split the summation in a part with the already optimized 

decays and the latest decay: 

 

   ������ = ln M	 
  �� − ������,�
���;����

��� � +  �� − ������NO,PQR  S 

 

Then, we remove the natural logarithm by using the inversed exponential function on the 

activation: 

 

  !�����  =  M	 
  �� − ������,�
���;����

��� � + �� − ������NO,PQR  S 

 

Then subtract the summation since the latest repetition from the exponential function: 

 

 !����� −  	 
  �� − ������,�
���;����

��� �  = � �� − ������NO,PQR  � 

 

Now the decay can be derived (formula swapped): 

 

�O,P�R = − M log ����Q9  	  !���� −  	 
  �� − ������,�
���;����

��� � �S 

 

With this decay, we can derive an alpha using the decay equation: 

 ��,� = 0.25 !����� + #�,� 
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Appendix C: More analyses  

 

Correctness on activation  

The figure shows the mean percentage correctness based on activation ranges of 0.15, 

calculated with the previous alpha. The new alpha is already optimized on the corrected alpha 

and therefore not representative. This activation is the activation at the moment of rehearsal. 

The graph shows a strong rise in correctness between the third and fourth range. The vertical 

line indicates the threshold value. The drop at the -0.5 activation is because of the second 

rehearsal. This always takes place around the same time interval because all items still have 

the same alpha then.  

 

Frequency effect 

In this figure, the frequency effect is visible. More repetition means more chance of a correct 

answer. The first repetition is a study trial, so correctness can not be given. Again, a drop at 

the second rehearsal is visible, but after that an increase in percentage of correctness is visible. 

Because the frequency effect creates an increase in correctness over more repetitions, this can 

lead to lower alpha values. This means that the alpha value does not have to be a static value 

per combination of item and participant, but can change according to the number of 

repetitions, even though the activation formula accounts for the number of repetitions.  

 

 

 

Figure C.1: Percentage correct of 0.15 

activation ranges 

 

 

Figure C.2: percentage correct based on the 

number of rehearsals. Only the experimental 

data is used for this plot. 
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Number of words seen 
The flashcard condition starts repeating items after an incorrect trial or when all items have 

been seen. The spacing condition only presents new items when all words seen in fifteen 

seconds stay above the threshold. This means that it is possible that not all words will be seen. 

It is a consequence of the method that when it adapts to users it will be better for some users 

to learn less words better instead of all words without remembering them. Table B.1 shows 

the number of words seen by the participants.  

 

Participant Number of words 

seen 

1 11 

2 16 

3 17 

4 20 

5 20 

6 20 

7 20 

8 20 

9 20 

10 20 

11 20 

12 20 

13 20 

14 20 

15 20 

16 20 

17 20 

18 20 

Table C.1.: Number of different words seen in fifteen minutes per participant 


