
3D Views of Traditional 2D
Hatching Illustrations using

Layering
Bachelor Thesis

Tijmen Klein (S1755250)

July 15, 2010

Abstract

Traditional hatching illustrations are 2D representations of a 3D scene. This
thesis is concerned with the creation of 3D views based on such illustrations. A
Java application is developed that allows the user to interactively select layers
in an illustration, which can be enhanced by snakes. The selected layers are
automatically extracted, placed into a 3D scene and modified, by scaling and
positioning, to match the perspective of the original illustration. The user is able
to adjust the depth of each individual layer. Finally, an anaglyphicly rendered
output scene is created, that allows the viewers to perceive the image as a spatial
scene.

Contents

1 Introduction 3

2 Related Work 7
2.1 Layer extraction . 7
2.2 Lighting of objects . 8
2.3 Extraction of 3D shapes from sketches 9
2.4 Layering . 9
2.5 Active contour model . 10

3 Concept & Realization 11
3.1 Platform & Language . 11
3.2 Extraction & Layering . 12

3.2.1 Guided selection of layers 12
3.2.2 Background layer . 13
3.2.3 Layering in 3D . 13

3.3 Perspective . 14
3.3.1 Determining the center point 15
3.3.2 Move the center point toward the eye-positions 16
3.3.3 Scale the layer down . 16

3.4 Anaglyphic rendering . 17
3.5 Summary . 17

4 Evaluation & Results 19

5 Conclusion & Future Work 25

1

2

Chapter 1

Introduction

Throughout human history, people have generated a lot of two-dimensional
(2D) illustrations of historic events and places, these are 2D representations
of a three-dimensional (3D) scene. An example of such an illustration can be
seen in Figure 1.1, which shows a scene of the murder on Willem of Orange.
Currently there are many techniques to generate 3D images, for example using a
3D camera system or a 3D modeling computer program. Unfortunately, we can
not go back in time to regenerate the old images using these modern equipment
to get a similar 3D impression. This makes it impossible to appreciate the
original 3D scene, unless we use a technique to extract information about the
third dimension (depth) from the old illustrations.

Figure 1.1: An example of an old hatching illustration, showing the murder on
Willem of Orange by Balthasar Gérard on 10 july 1584, source: http://en.
wikibooks.org/wiki/File:Moordwillemzwijger2.jpg.

3

http://en.wikibooks.org/wiki/File:Moordwillemzwijger2.jpg
http://en.wikibooks.org/wiki/File:Moordwillemzwijger2.jpg

CHAPTER 1. INTRODUCTION

The scene depicted in a illustration consists of implicit layers; these layers
are an abstraction of the true 3D scene and are perspectively projected in the
illustration. Thus, in order create a 3D scene, these layers need to be extracted
and they need to be modified so that the perspective is corrected, as can be
seen in Figure 1.2a and 1.2b. This assumes that each scene consists of a limited
amount of implicit layers. Furthermore, it is not possible to extract the actual
depth of each layer, so these need to be guessed and adjusted by the user.

When these layers have been extracted, they can be placed into a 3D scene.
This enables the possibility to move a virtual camera around the scene, or to
create a stereoscopic rendered image based on the scene, which will allow the
viewer to perceive the depth. This makes old illustrations more interesting for
the viewer. This thesis examines how to extract layers from traditional illus-
trations with the support of precise selection using snakes. A method is provided
to place these layers into a 3D view at different depths while maintaining a cor-
rect perspective. Furthermore, a possibility is added to create an anaglyphicly
rendered image from this 3D scene.

The result of this process is a Java program, that can be executed using Web
Start, and is able to create a 3D scene with only a small effort of the user. For
example, Figure 1.2c shows the anaglyphic rendering of an old illustration from
a manuscript of military designs.

The remainder of this thesis first discusses some work that is related to the
problems that need to be solved for this project. Next, the research issues and
realization of the project are presented. This is followed by an evaluation of
the results that are obtained. Finally, the conclusion and some optional future
work is presented.

4

(a) Original. (b) Extracted layers.

(c) Anaglyph.

Figure 1.2: Example input image, the extracted layers shown in third per-
son perspective, and an anaglyphicly rendered image, source: http://en.
wikipedia.org/wiki/File:Camera_obscura2.jpg.

5

http://en.wikipedia.org/wiki/File:Camera_obscura2.jpg
http://en.wikipedia.org/wiki/File:Camera_obscura2.jpg

CHAPTER 1. INTRODUCTION

6

Chapter 2

Related Work

The conversion of 2D material to a 3D scene is possible through many different
approaches. In this chapter a few of these approaches are mentioned by dis-
cussing some related work in the fields of layer extraction, lighting of objects,
the extraction of 3D shapes from sketches, layering and active contours. All
these fields propose several techniques to solve (parts of) the 2D-3D conversion
problem.

2.1 Layer extraction

Most research on layer extraction focuses on multiple input images, for example
2 frames from a video. For example, Ke and Kanade [7] present a subspace
approach to extract the layers from a sequence of images. In Figure 2.1 the re-
sults of this method are shown. Figure 2.1a and 2.1b show two frames from the
input sequence, Figures 2.1c to 2.1f show the 4 automatic extracted layers. This
kind of extraction requires accurate calibration; in the work of Uriol et al. [12]

(a) Input I0. (b) Input I1. (c) Layer 1.

(d) Layer 2. (e) Layer 3. (f) Layer 4.

Figure 2.1: Input images and results of automatic layer extraction (from [7]).

7

CHAPTER 2. RELATED WORK

Figure 2.2: Results of Lumo: normal image illuminated by a diffuse spheremap,
base palette cat, cat scaled by illumination, final cat (from [4]).

different calibration techniques and their applications are reviewed. This shows
that the automatic extraction of layers from a sequence of images is possible.

These techniques are not usable in this project because the input illustrations
that are used do most of the time not exist of multiple images from different
camera positions, which is a requirement for the techniques described. Another
issue that complicated the automatic extraction of layers if the fact that many
old illustrations are drawn with the use of hatching (or cross-hatching) tech-
niques. By making parallel lines, this technique can be used to create shading
effects. All these individual lines make it harder to find the actual edge of an
object.

The industry-standard way to extract layers from an illustration is the ‘Pen
tool’ from Adobe Photoshop [2], which is a manual way to create straight or
curved paths based on anchor points. While this is a good technique to extract
layers, it is completely manual, and therefore slower than (semi) automatic
layer extraction techniques. This project provides a simplified version of the
‘Pen tool’, that will be used to create the basic outlines of the layers.

2.2 Lighting of objects

3D information about objects is essential for lighting a scene. However, when
real scenes are combined with cel animation, like in the movie “Space Jam”, this
is a problem for the flat cel animation part. Lumo is a method to approximate
lighting on 2D cel animation, it derives approximate normal vectors based on
the edges [4]. This method assumes that the surfaces are smoothly curved, and
within this limitation the results achieved are visually appealing, as can be seen
in Figure 2.2. However, the assumption that the surfaces are smoothly curved
does not hold true for the illustration that are used in this project. While in
some illustrations all surfaces might be smoothly curved, this is definitely not
true for all illustrations.

Another downside of Lumo is that it creates depth in a single object rather
than in the whole scene. This means that individual objects may appear to be
3D, while the remainder of the scene is flat. This might be a good addition
for the application developed in this project, but the primary goal is to create
depth in the whole scene. Therefore, this technique is not used in this project.

8

Figure 2.3: Some of the results obtained by FiberMesh (from [9]).

2.3 Extraction of 3D shapes from sketches

Both SmoothSketch [5] and FiberMesh [9] are systems for inferring 3D free-from
shapes from contour-based sketches. System like this allow a user to create
simple 3D shapes in a quick and simple manner. A set of output images from
FiberMesh can be seen in Figure 2.3. These systems, however, all focus on
creating a single 3D objects, not a whole 3D scene.

The input for systems like these only exists of simple contour-based sketches.
For illustrations, however, we do not know what the contours of the objects are.
This means that the mentioned systems are unable to deduct 3D shapes from
the illustrations. Furthermore, when an illustration would be given as input
to these systems, the whole illustration would be seen as a single object. This
results in one big 3D output object, which is in contrast with the desired result:
a scene with individual objects at different depths.

2.4 Layering

The most common way to achieve a 3D effect is by using Adobe After Effects [1].
This method is often combined with layer extraction using Adobe Photoshop
(as described in Section 2.1). After the extraction of layers in Adobe Photo-
shop, the project is imported in Adobe After Effects, where each layer is placed
into a 3D space. The positioning and scale of the individual layers can then be
adjusted manually to adjust the perspective. A demonstration of this method
is given in the tutorial written by Kramer [8], an example of the effects that
can be achieved when the camera is moved can be seen in Figure 2.4. As can
be observed, these 2 images still look similar; the Adobe After Effects approach
works best for creating videos.

This approach has an obvious downside, all the steps that are required to
create a 3D scene need to be performed by the user, it is completely manual. In
consequence, this approach is time intensive and placing the layers in the correct
perspective is not trivial. In fact, there is no guarantee that this manual per-
spective will be correct. The aim of this project is to provide a semi-automatic
alternative to the Adobe After Effects approach, with an automatically correct
perspective.

9

CHAPTER 2. RELATED WORK

(a) Default view. (b) Changed view, by moving the camera
position.

Figure 2.4: An example from the tutorial of Kramer [8], showing the result of
layering with Adobe After Effects.

2.5 Active contour model

The layer selection with a simplified pen tool, that is described in Section 2.1,
works best for making rough outlines of the layers. These layers need to be
enhanced with an with an automatic method. One method that is capable of
this, is the active contour model. The principle of active contours, or snakes, is
used to find edges of objects in an image. The technique dates back to 1988,
when it was introduced by Kass et al. [6], and it used a lot in the field of
biological imaging. The snake is a spline that attempts to minimize the energy
that is associated with it by internal and external forces that that push and pull
it towards the contours and edges of an image. If the position of the snake is
v(s) = (x(s), y(s)), then the energy function of the snake can be written as

E∗
snake =

1∫
0

Esnake(v(s)) ds (2.1)

=

1∫
0

Einternal(v(s)) + Eimage(v(s)) + Econ(v(s)) ds (2.2)

where Einternal is the internal energy of the snake due to bending, Eimage gives
rise to the image forces and Econ gives rise to the external constraint forces.

Different methods have been proposed to improve the snake, for example,
to make it more robust against noise. One of these proposals is to make the
snake adaptive, so that the stiffness of the snake it adjusted during the process
of finding the contour Andrey and Boudier [3]. This adaptive method is used
in this project to help the user in making a layer selection.

10

Chapter 3

Concept & Realization

The development of this project brings several problems that need to be solved.
In this chapter these problems and their solutions are discussed. Furthermore,
important design decisions concerning the development of the applications are
justified. First, the platform and language of choice are discussed, this is fol-
lowed by an explanation of the techniques used for the extraction and layering.
Next is an clarification of placing the layers into perspective, and finally the
creation of an anaglyphicly rendered image will be discussed.

The program provides different views in its interface, that all serve a differ-
ent purpose. The selection of the layers is done in a standard 2D view, where
each layer can be highlighted. A third person based 3D view is used to adjust
the depth of the layers, since it is easier to see the adjustments of depth in this
camera position. Another two views are provided to watch the end results of the
3D scene: a normal first person based 3D view, and an anaglyphicly rendered
first person based 3D view.

3.1 Platform & Language

The program resulting from the project should be able to run on as many plat-
forms as possible with the least amount of effort. Therefore, the program is writ-
ten in the Java programming language, which is architecture-independent. Java
3D, an application programming interface (API) for OpenGL and Direct3D, is
used for the rendering of the 3D scenes. Java 3D tries to wrap the the graph-
ics programming in an object orient way, it uses a scene graph to represent all
objects. This should facilitate the programming of 3D graphics. Java 3D is
currently a community source project, and not part of the default Java Devel-
opment Kit or Java Runtime Environment, thus it needs to be downloaded and
installed separately. This, however, is not necessary a downside, since Java 3D
also provides a Java Web Start release, which means that programs depending
on Java 3D can be executed from the web without any installation of Java 3D.
The support of Web Start is one of the main reasons for choosing Java 3D as an
graphics API. To create a Web Start application that needs 3D rendering, Java
3D needs to be added as an extension to the resource section of the web start
launch file, an example of this is shown in Listing 3.1. The use of Web Start
makes it possible to start the application directly on any computing using only

11

CHAPTER 3. CONCEPT & REALIZATION

a web browser.

Listing 3.1: Sample Web Start file using Java 3D

1 <resources >
2 <j2se version="1.6+"/>
3 <jar href="Hatching_Layers.jar" main="true"/>
4 <extension href="http:// download.java.net/media/

java3d/webstart/release/java3d -latest.jnlp"/>
5 </resources >

3.2 Extraction & Layering

The process of extraction and layers consists of multiple steps. The first step
is the selection of the layers, after which they can be extracted. After this a
separate background layer is added. Finally, a 3D scene can be build from these
layers.

3.2.1 Guided selection of layers

The layers are selected by the user in a simple 2D environment using a selection
method that is inspired by Adobe Photoshops ‘Pen Tool’. A layer is created by
defining a number of points that are connected by straight lines, once the first
point is clicked on for the second time the layer is considered to be completed
(see Figure 3.1). When a layer is completed it can be used in the 3D view.

Active contours (snakes) are used to automatically increase the precision of
the selection of a layer that has been defined by a user, since the snakes are
not able to find the edges completely automatically. Andrey and Boudier [3]

Figure 3.1: A layer is defined by a number of points.

12

Figure 3.2: A background layer with the holes of other layers.

proposes a adaptive snake method for the ImageJ library, which is used in this
project. The method of Andrey and Boudier has originally been published as
a standalone plugin for ImageJ, but it can also, without any modifications, be
used as a snake library based on ImageJ.

However, using the snakes with hatching illustrations is not easy. Since these
illustration consists of many parallel lines, the snakes have trouble to find the
actual edges of the object in the scene. Unfortunately, this makes the use of the
snakes quite limited in this application.

3.2.2 Background layer

There is always an extra layer that will be added next to the layers that are
defined by the user, this is the background layer. The background layer consists
of all sections that are not selected in any of the other layers. If the user would
not select a single layer, the background layer covers the whole illustration. This
background layer is added so that it is guaranteed that every part of the original
illustration will always end up in the 3D view.

One of the problems that occurs after the extraction of layers are the “holes”
that can appear in the background layer when an objects is moved forward, an
example of such a background layer can be seen in Figure 3.2. These holes
can be seen when the camera is not exactly in front of the scene. In order to
get a background layer without any flaws, the background layer will have to be
restored by inpainting the holes. While there are very complex and accurate
inpainting techniques, this project uses a very simple inpainting method. Every
pixel in the background layer that would be empty gets assigned the average
color of all non-empty pixels from the background layer. The reason for this
simple method is the scope of the project: going for a complex method would
expand the project too much in comparison with the added results.

3.2.3 Layering in 3D

For the 3D views each layer is drawn on a single quad using a transparent tex-
ture. This makes the drawing of the layers very easy, since no complex shapes
are needed. However, the downside of this approach is that the creation of the
transparent textures is slow. These textures are drawn once when a 3D view is

13

CHAPTER 3. CONCEPT & REALIZATION

Figure 3.3: Adjusting the depth of a layer in third person view.

opened, and can not be adjusted while the user is in a 3D view.
In the third-person based 3D view it is possible to adjust the depth of the

individual layers, an example of this can be seen in Figure 3.3. This is the only
parameter that can be adjusted in the third-person view and this is a deliberate
choice to keep the user interaction fairly simple. By limiting the freedom of the
user in positioning the layers the program can guarantee a correct perspective.

3.3 Perspective

When the layers are selected and their depths are adjusted, they can be placed
into a 3D space to be able to render a 3D view. The placement of the layers
into a 3D scene brings a problem concerning the perspective, if the layers would
only be moved on the z-axis, then the perspective would get distorted, since the
original illustration is already in the correct perspective. This would make a
layer appear to be on the wrong location, and the object in the layer would be
to large, as can be seen in Figure 3.4. Solving this problem requires a number
of steps:

1. Determine center point of the layer,

2. Move the center point of the layer towards the eye-position, based on the
depth defined by the user, and

3. Scale layer down (or up) based on the depth.

When these steps are followed, the 2D view should look exactly the same as the
starting position of the first-person 3D view. Only when the camera is adjusted,
either by position or angle, the depth can be seen. If the first-person view is
adjusted to use a true 3D view using, for example, an anaglyphic view, the

14

Figure 3.4: A 3D scene without any perspective adjustments.

Center

Figure 3.5: The average point of a polygon.

depth can always be seen.

The steps that are needed to get the correct perspective require some extra
explanation, which are provided as follows.

3.3.1 Determining the center point

Since the selection of a layer only consists of straight lines between a number of
points, it is actually an irregular polygon. In this project a very simple method
is used to determine the center point of the layer. The center point is determined
by calculating the average of all the points that define the layer (see Figure 3.5),
which is a fast and plain method to determine a center point.

While this method does not give the true mathematical centroid of a poly-
gon, there are two reasons for using this method instead of the normal method
for calculating the centroid of a irregular polygon. First, the normal method
assumes that the polygon is non-self-intersecting. While this might be true for
most layers that are selected, there is no guarantee that this holds true for all
layers. Second, the use of the average-method gives results that work really well
with the positioning of layers.

15

CHAPTER 3. CONCEPT & REALIZATION

Figure 3.6: The viewer’s eye is at e and the gaze direction g. The new depth
of a layer is d, and original depth is z (from [11, p. 166]).

3.3.2 Move the center point toward the eye-positions

After the center point is determined, the layer can be placed at the right position
in the 3D space. If a layer would only be moved on the z-axis, it would appear
to the user that the layer has moved to a different position in comparison with
the original illustration. Therefore, the layer needs to be moved towards the
eye-position of the viewer. The background-layer is chosen as the default layer,
all calculations are done with respect to the background layer. The center point
of the layer is moved on the line between the eye-position of the viewer and the
center point of the layer on the background layer (Figure 3.6).

3.3.3 Scale the layer down

When a layer has been moved towards the viewer it will appear to be larger
than it should. This is because the original illustration is already in the right
perspective, objects that are closer are drawn larger. If these objects are ac-
tually moved closer they get oversized, and therefore should be scaled down to
perspective. When a layer is closer to the viewer than the background layer they
should be scaled down, and when a layer is further away it should be scaled up,
as can be seen in Equation 3.1:

scale =
ld + cd

bld + cd
(3.1)

where ld is the depth of the layer, cd is the depth of the camera and bld is the
depth of the background layer.

While the use of this scaling results in perfect perspective, this might not be
what everyone wants. Slightly blowing up the layers can give a nice effect, it
allows slight perspective changing without introducing any holes. Therefore, a
parameter is introduced that allows the user to set a scaling factor. When this
factor is exactly 1 it results in correct scaling, a factor of 0 would result in not
scaling the layer at all. This gives Equation 3.2:

scale = sf × ld + cd

bld + cd
+ 1.0− sf (3.2)

where sf is the scaling factor, that is defined by the user.

16

Figure 3.7: Anaglyph glasses, source: http://en.wikipedia.org/wiki/File:
Anaglyph_glasses.png

3.4 Anaglyphic rendering

In this project, an anaglyphic render of the 3D scene is used to provide a stereo-
scopic view. The anaglyph consists of two superimposed renders of the scene,
with a slightly offset eye position. These two renders are filtered through
contrasting colors, one using a red filter and the other using a cyan filter.
Anaglyphic renders can be viewed using anaglyph glasses (Figure 3.7).

For the implementation of the anaglyphicly rendered view, the “Anaglyph
Canvas3D” library [10] is used. This library provides an anaglyph extension,
AnaglyphCanvas3D, to the Java Canvas3D class. This class, by default, acts as
a normal Canvas3D, but can also render an anaglyph based on the same data.
To make this anaglyphic render two calls are needed: one to set the eye-distance
and another set the colors of the filters that are used. This simplicity makes the
“Anaglyph Canvas3D” library an ideal choice.

3.5 Summary

With the implementations that are mentioned in this chapter, the user is able
to start the Java application using Web Start. An illustration can be opened
in this application, and a number of layers can be selected. These layers can be
enhanced with the use of snakes, however, this does not always give the desired
results. The selected layers are extracted and placed into a 3D scene, where the
user can change the depth of the individual layers. The scaling and positioning
of the layers is automatically adjusted, so that the perspective matches the
original illustration. Finally, a anaglyphicly rendered 3D scene is used to let the
user actually perceive the depth that has been created.

17

http://en.wikipedia.org/wiki/File:Anaglyph_glasses.png
http://en.wikipedia.org/wiki/File:Anaglyph_glasses.png

CHAPTER 3. CONCEPT & REALIZATION

18

Chapter 4

Evaluation & Results

In this chapter some input and output images are presented, showing the results
of this project. The steps that are needed to achieve these results are explained
and evaluated.

Figure 4.1: A rendered 3D output of the selected layers in Figure 4.2, the camera
is moved slightly so that the depth can be seen.

Four different layers have been selected for the first example, which can be
seen in Figures 4.2a to 4.2d. Creating rough selections can be done very quickly,
especially when most edges are straight and long. The first and second layer
(Figures 4.2a and 4.2b) contain the two ships in the front of the scene. Selecting
both boats in a different layer has two reasons: they can be placed at different
depths, and it is not possible to select one layer consisting of multiple polygons.
The third layer (Figure 4.2c) consists of the sea, and the fourth layer (Figure
4.2d) contains the hull of the ship in the back. The masts, sails and ropes of
the ship have not been added to any layer, and therefore will be added to the

19

CHAPTER 4. EVALUATION & RESULTS

(a) First Layer. (b) Second Layer.

(c) Third Layer. (d) Fourth Layer.

Figure 4.2: The four different layers that have been selected, source of orig-
inal input image: http://commons.wikimedia.org/wiki/File:Verne-M%C4%
9Bsto2.jpg, from “Une Ville flottante” by Jules Verne.

background layer. Selecting complex shapes like the masts is currently really
difficult. The selected layers have not been enhanced with the snakes, using the
snakes results in worse selections with each of these four layers.

After selecting these layers, the depths of the layers are adjusted. A 3D
version of this scene can be seen in Figure 4.1a, where the camera is slightly
moved from the first-person based view. A large anaglyphicly rendered version
from the default first-person view can be seen in Figure 4.3, which clearly shows
that even with only four simple layers a nice perception of depth can be given.
The creation of this example only took 10 minutes.

20

http://commons.wikimedia.org/wiki/File:Verne-M%C4%9Bsto2.jpg
http://commons.wikimedia.org/wiki/File:Verne-M%C4%9Bsto2.jpg

Figure 4.3: A front-view anaglyphicly rendered output image from the layers in
Figure 4.2.

21

CHAPTER 4. EVALUATION & RESULTS

Another example can be seen in Figures 4.4 and 4.5. This example is created
by a person who has no experience with image editing software, and was created
in 15 minutes. Before creating this example, the person tried the program for
about 10 minutes. Five different layers have been selected (Figure 4.4). The
selection of the two men in front (Figures 4.4a and 4.4b) took the most time,
selecting smooth shapes with only straight lines requires adding many points to
the layer. The selection of the windmill and the logs (Figures 4.4c to 4.4e) took
less time.

Some adjustments were made to the depths of the layers in the third person
perspective, for example, the two men in the front were given the same depth.
An output image from first-person perspective, with a rotated camera, can be
seen in Figure 4.5a; the depths can clearly be seen in this image. Furthermore,
an anaglyphicly rendered output image has been created, which can be seen in
Figure 4.5b.

(a) First Layer. (b) Second Layer. (c) Third Layer.

(d) Fourth Layer. (e) Fifth Layer.

Figure 4.4: Layers selected by a person who has no experience using image
editing software.

22

(a) Perspective. (b) Anaglyph.

Figure 4.5: Rotated first-person and anaglyphicly rendered results based on the
selected layers from Figure 4.4.

The selection of the layers is a considerably harder with complex shapes, for
example, a group of people. The snakes can sometimes assist in these situations,
but with hatching illustrations they are most of the time unable to find the edges
of objects. The current selection tool also is a limitation when selecting smooth
surfaces or round objects, since the layers can only consist of straight lines.
This could be solved by added the possibility to create curved lines, for example
using Bézier curves.

The results of the simple inpainting method are demonstrated in Figure 4.6.
For this example all objects in the original illustration have been selected in
layers (Figure 4.6a). The background layer which shows the inpainting method
is shown in Figure 4.6b, none of the selected layers are visible in this figure.
The example image has a monochromatic background colour, which lends itself
to the use of this simple inpainting method.

23

CHAPTER 4. EVALUATION & RESULTS

(a) The original file, with highlighted layers

(b) Background layer, with inpainting

Figure 4.6: The inpainting method demonstrated, all missing pixels in the back-
ground layer get the average color of all other pixels.

24

Chapter 5

Conclusion & Future Work

The goal of this project was the semi-automatic extraction of 3D views from
traditional illustrations. When the resulting images are observed, it is possible
to conclude that this extraction is able to produce good results. One of the
major advantages of this project, when compared to the After Effects method,
is the guarantee that the perspective will always be correct. This advantage is
extra useful when someone wants to create a realistic 3D rendered scene from
an old illustration, for example of an historical scene. This forced perspective,
on the other hand, is also one of the limitations of this project. If one would like
to move objects around, or create an other non-realistic effect, then this project
would not be an ideal tool.

The basic inpainting method that is used in this project provides the best
results in the default camera position in an anaglyphic render. In this case you
only see a marginal part, with each eye on an other side, behind the layer. The
fact that the inpainting is not very accurate gets compensated by the fact that
only a very small inpainting part can be seen. When a normal 3D view is ren-
dered from a camera position that allows a clear view behind the layers, then
the inpainting method achieves poor results. This is even more emphasized if
the background layer consists of a complex multi colored texture.

Unfortunately, the snakes are not usable to reliably enhance the selection of
the layers. Therefore, the layer selection is mostly manual instead of guided, as
the intention of this project was. With all the parallel lines in hatching based
illustrations, snakes are not able to find accurate edges. At this moment, no
clear solution for the problem exists. However, a possible solution may involve:
preprocessing the illustration so that the snakes work better, improving the
snakes function to work better with hatching, or using an other technique for
edge detection.

In the current implementation all layers are flat, each and every layer is a
simple quad with a transparent texture placed in a 3D scene. While the overall
effect created is 3D, all objects are still 2D. This could be enhanced by adding
automatic bump mapping to the layers or approximating the lightning of the
objects with a technique as described by Johnston [4]. This could really improve
illustrations that contain large objects with a lot of depth, for example, the ship
in Figure 4.3.

Possible application areas for this project include, but are not limited to: his-
toric documentaries, interactive illustration viewing, and educational programs.

25

CHAPTER 5. CONCLUSION & FUTURE WORK

A 3D view of a old illustration is more interesting to watch, and may even give
new insights to historic events that are depicted in a scene. A rendered movie
of a 3D scene, where the camera movies around, might be interesting for a doc-
umentary; it would be more attractive than a static illustration.

Overall, this project shows that it is possible to interactively extract layers
from a traditional illustration to create a 3D view. In its current form, the
program created is able to quickly generate a anaglyphic render from a 2D il-
lustration. However, the selection of the layers is still somewhat coarse and the
inpainting method is not optimal. For integrating 3D views of 2D illustrations
into movies, one is still better of with a traditional Adobe After Effects based
approach. For the creation of quick 3D (anaglyphic) renders of illustrations,
this project is ideal.

26

Bibliography

[1] Adobe Systems. Adobe After Effects CS3. Software Tool, February 2008.

[2] Adobe Systems. Adobe Photoshop CS3. Software Tool, April 2007.

[3] P. Andrey and T. Boudier. Adaptive active contours (snakes) for the seg-
mentation of complex structures in biological images. In ImageJ Confer-
ence, 2006.

[4] Scott F. Johnston. Lumo: illumination for cel animation. In NPAR ’02:
Proceedings of the 2nd international symposium on Non-photorealistic an-
imation and rendering, pages 45–52, New York, USA, 2002. ACM Press.

[5] Olga A. Karpenko and John F. Hughes. SmoothSketch: 3D free-form
shapes from complex sketches. ACM Transactions on Graphics, 25(3):
589–598, July 2006.

[6] M. Kass, A. Witkin, and D. Terzopolous. Snakes: Active contour models.
Internation Journal of Computer Vision, 1(4):321–331, 1988.

[7] Qifa Ke and Takeo Kanade. A subspace approach to layer extraction.
In Conference on Computer Vision and Pattern Recognition (CVPR’01),
volume 1, pages 255–262. IEEE Computer Society, December 2001.

[8] Andrew Kramer. Virtual 3d photos, September 2007. URL http:
//www.videocopilot.net/tutorials/virtual_3d_photos/. Web page,
accessed 2-June-2010.

[9] Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc Alexa. Fibermesh:
designing freeform surfaces with 3D curves. ACM Trans. Graph, 26(3):41–
48, 2007. URL http://doi.acm.org/10.1145/1276377.1276429.

[10] Hendrik Rohn. Anaglyph canvas3d. Software Tool, http://
anaglyphcanvas3.sourceforge.net/.

[11] Peter Shirley, Michael Ashikhmin, Michael Gleicher, Stephen Marschner,
Erik Reinhard, Kelvin Sung, William Thompson, and Peter Willemsen.
Fundamentals of Computer Graphics, Second Ed. A. K. Peters, Ltd., Nat-
ick, MA, USA, 2005. ISBN 1568812698.

[12] Maria-Cruz Villa Uriol, Gautam Chaudhary, Falko Kuester, Tara Hutchin-
son, and Nader Bagherzadeh. Extracting 3d from 2d: selection basis for
camera calibration. In 7th IASTED International Conference on Computer
Graphics and Imaging (CGIM 2004), pages 315–321. ACTA Press, 2004.

27

http://www.videocopilot.net/tutorials/virtual_3d_photos/
http://www.videocopilot.net/tutorials/virtual_3d_photos/
http://doi.acm.org/10.1145/1276377.1276429
http://anaglyphcanvas3.sourceforge.net/
http://anaglyphcanvas3.sourceforge.net/

	Introduction
	Related Work
	Layer extraction
	Lighting of objects
	Extraction of 3D shapes from sketches
	Layering
	Active contour model

	Concept & Realization
	Platform & Language
	Extraction & Layering
	Guided selection of layers
	Background layer
	Layering in 3D

	Perspective
	Determining the center point
	Move the center point toward the eye-positions
	Scale the layer down

	Anaglyphic rendering
	Summary

	Evaluation & Results
	Conclusion & Future Work

