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Chapter 1

Introduction

Mathematics as a purely theoretical science wouldn't have had such an impact
øn society if it had not been used in the applied sciences. Even the Egyptians
used mathematics to calculate all sorts of things. Nowadays mathematics is

used in all branches of science, for example in those areas where fluid mechan-
ics is involved. The analytical equations which describe the evolution of fluid
flow in time were presented by Navier and Stokes halfway the previous century.
Solving them however is not a trivial thing to do, even with the modern day

computers. First of all the equations have to be discretised. With computer aid
a solution in a discrete number of points can be obtained. Discretising involves
choosing a computational grid covering the flow domain. There are two types
of grids we can use: structured and unstructured grids. Structured grids are
much easier to produce than unstructured grids but when dealing with complex
shaped domains the latter can be made fitting the boundaries exactly. So when
using a structured grid, which we will use, special attention must be paid to
the boundary handling.

Figure 1.1: Strtzctured, Cartesian
grid grid

In this thesis a refinement is presented of a numerical method using structured
Cartesian grids as presented by Gerrits [2]. The cry for more accuracy re-
sulted in a better boundary handling while more stability in time and space
was obtained by a adding a higher (4t!) order method. Theoretical aspects are
explained in chapter 3.

3

Figure 1.2: Example of unstructured



Chapter 4 deals with results, starting with exploring several parameters using
flow problems which have an analytical solution. This is followed by examining
flow around a circular cylinder, in 2D as well in 3D, at Re =20, creating recir-
culating eddies behind the object, as well at Re= 100 where these eddies are
shed off with a characteristic frequency. We will compare the new method for
boundary treatment with the old method in combination with a comparison in
results using a 2" and a order method.
Chapter 4 continues with a 2D turbulent pipe flow, a problem which was brought
forward by the Gasunie (Dutch gascarrier) who wanted to know the pressure
drop in gaspipes as a result of surface roughness such as welch ribblets. Due
to the high Re-number, which is about i04, special attention had to be paid to
stability at the outflow region, a common problem with DNS-solvers.
Conclusions and future developments are discussed in chapter 5 which formally
ends this thesis.
The Appendix deals with details about the computerprogram CoinFlo which
was written by J.Gerrits and which was extended in the current research project
with inflow and outflow, refined boundary treatment and higher-order discreti-
sation.

4



Chapter 2

Mathematical Model

2.1 The Navier-Stokes Equations
Consider a complex shaped domain l filled with an incompressible fluid. The
equations describing the evolution of this system are

(2.1)

9u2 9u2 1 Op O2u— +u— = ——— +zi—- (2.2)
Ox, p Oxi Ox

In these equations p stands for the pressure and u1 are the velocity components
in the three directions. The kinematic viscosity v is equal to where is

the dynamic viscosity. The equations (2.1) and (2.2) are the local volume,
momentum and mass balances in the bulk of the liquid. Written in vectorform

they look like this:
div u = 0 (2.3)

Ou 1
+ (u . grad)u = —— grad p+zi div grad u (2.4)

with u = (ui, u2, 3)T. The above equations can be made dimensionless by
scaling the lengths with a characteristic length L and the velocities by a char-
acteristic velocity U. Furthermore, we will normalize p to one and we will use

the conservative form of the equations since our numerical model is convervation

based. Then (2.3) and (2.4) can be written as

dlv u = 0 (2.5)

+ div(uu7') = —grad p + — div grad u (2.6)

With the introduction of the dimensionless quantities another quantity is in-
troduced, the Reynolds number Re = !4. This number represents the relative
importance of the convective term in relation to the diffusive term.
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2.2 Boundary Conditions
Next we specify the boundary conditions for the velocity at the walls. The
stress at a wall is composed of two components, a tangential part and a normal
part. A wall is called stress-free or free-slip if the tangential stress vanishes
at the wall. Further, the normal velocity always has to be zero due to the
inpenetrability of the wall. Hence the conditions are given by

u = 0 on no-slip part of Oci (2.7)

au, = 0, Ut = 0 on free-slip part of I91Z (2.8)

Inflow is defined by Dirichlet boundary conditions on the inflow part F,, c 311

u = U at F7 (2.9)

In case of outflow, many conditions are possible (compare [1])

•

• =0, Q1a=0
•

• + c = 0 (Sommerfeld radiation condition)

Depending on the numerical method it's a matter of trial and error to find
out what works best. Since we have to define both the velocity and pressure
conditions at the outflow boundary, we have chosen for

-!i=0andp=0onFoutCO1 (2.10)

These turned out to work very well in all problems we encountered.
Another combination of in- and outflow boundary conditions is given by

atm
p = p, -b—— = 0 at (2.11)

oun
P=Pout, --—=0atFma (2.12)

In this case the fluid will be driven by a pressure difference. Note that the
inflow becomes a "negative" outflow (p > pout).
In the tangential direction we will always use a free-slip condition:

a = 0.
on

Now the mathematical model is complete we will show in the next chapter the
numerical model based on the given equations.
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Chapter 3

Numerical Model

In this chapter we will deduce the numerical model. Due to presentation reasons
this is done in 2D, extension to 3D is straightforward.

3.1 Apertures
Since our domain 1 is covered with a structured Cartesian grid it is difficult to
represent the curved boundaries in the numerical method. Boundaries can cross
the gridlines at all places so it's important to represent this fact in a numerical
method. Therefore we introduce apertures which were intended to be useful
when discretising the equations, a method explained in [2]. We however will
use them to estimate a distance from velocities to boundaries. In the middle of
each cell a volume-aperture is placed which indicates the fraction of fluid in this
cell. In the middle of each cell-face an edge-aperture is placed which indicates
how much of the cell-face is open. All apertures take values between 0 and 1.

3.2 Labeling

Each cell will receive a label which indicates the function of this cell in the
numerical method. How this works is made clear in later sections, for now we
will only describe these labels. Based on their volume-apertures and those of
their neighbours (6 in 3D) cells can be labeled a Fluid cell (F-cell), a Boundary
cell (B-cell) or an Xterior cell (X-cell). A cell is called an F-cell when it has
a volume-aperure � 1/2. A cell is called a B-cell when it is not an F-cell but
has at least one neighbour F-cell. All other cells become an X-cell but they
don't have any use. These labels are enough to make a model for flow inside
geometries work. When inflow and ouflow is needed some cell labels can be
changed. An I-cell indicates an inflow cell and is usualy positioned near an
F-cell. The same can be said about an 0-cell which represents outflow. When
dealing with an incompressible fluid it is very common to use a staggered grid.
This means positioning the pressure in the middle of a cell and the velocities in
the middles of the cell-faces. However, we will only place a pressure in an F-cell.
Pressures in B or I cells are not needed since they are eliminated by using a
boundary velocity (see section 3.5) while the pressure in 0-cells is given as part

7
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Figure 3.1: Cellnames and positioning of the velocities

of the outflow condition. Velocities are only placed between combinations of
F,O,I and B-cells. The labels of the velocities are formed with the 2 cell labels
adjacent to this velocity. This results in the following variety of labels:

• FF,FO-velocities are computed from the momentum equation

• BF and FB velocities are computed from the boundary conditions, see
section 3.6

• Fl velocities are given by means of Dirichlet conditions

• BB velocities are also computed from boundary conditions

• OB velocities have to be set to an appropriate discretised outflow condi-
tion

• FX velocities cannot appear since there must always be a B-cell in be-
tween

• BX velocities don't have to be computed because they are not in the
domain of our discretised equations

Figure 3.2 shows a sample grid with inflow and outflow. Note that the inflow
cells are treated as B-cells, while the outflow cells are treated as F-cells and
as B-cells, that is. FO velocities are solved from the momentum equation,
while 00 velocities are boundary velocities, in particular a free-slip condition
is applied here.
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Figure 3.2: Control volumes for continuity and momentum equations

3.3 D iscretised Navier-Stokes Equations

The governing equations were given in chapter 2. In order to solve them we
have to discretise them in time as well in space. How this works is explained in
the next section.

Time Discretisation
The equations (2.5) and (2.6) are discretised explicitly in time. If we use the
xiiost elementary explicit time integration method Forward Euler we get:

div u'1 = 0, (3.1)

U U
+ gr&l pfl+l = —div (ununT) + v div grad u (3.2)

where the superscript n indicates the quantity at t = not. The pressure gradient
is discretised at the new time t1 to ensure that the new velocity field is
divergence free.

Spatial Discretisation
In this subsection the spatial discretisation is explained. Formulae are valid
for situations when all occuring velocities are FF-velocities. In the vicinity of
boundaries a modified scheme is used which is explained in the next section.

Continuity equation

We will begin with discretising the continuity equation. This is done in a
standard manner, dividing the difference of velocities by the distance between

9
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them f"--' v'÷1 _n+1\
div u — I

e W + S (3.3)
hx hy j

Momentum equation - convective terms

Next we have to discretise the momentum equations. For both the convective
and diffusive terms a small conservation cell is used, contrary to the one which
was used in the old method. This is because we don't have problems with the
volume-apertures now. Furthermore, it's essential to use a small cell when we
also want to make use of the 4th order method discussed later on. It uses a
three times larger control volume which would otherwise become too large. If
we take u, as a weighted average of N and uc and so on we can discretise the
convective ternis like (3.3)

div(
I

(((ue+uc)2_(uc+uw)2) +' (34)u v ) (hxw+hxe) hy

Momentum equation - diffusive terms

The pressure gradient is discretised in the standard manner, i.e.

n+1 n+l n+1
P .Pe Pw _..çv n+1, C—1 —'-'hPux (hxw+hxe)

with Gh being the discretised grad operator. Furthermore,

div grad u" Ic hxeUw — (hx + hxe)u2. + hXwUe

+ hxe)hxwhxe

+
(hy + hy5)u — (hy + 2hy + hy3)u + (hy + hy)t42

+ hy)(hy + hy3)hy

3.4 Near Boundaries
When discretising near boundaries the standard method can be used, using
virtual velocities on the 'missing places'. In the search for higher accuracy
another method was implemented. The idea is to use the 'exact' given boundary
condition directly in the numerical scheme. To that purpose we have to give
the molecule a more flexible form, it has to reach towards a boundary. This
is illustrated in figure 3.4. The left figure shows the changed control volume
for the div operator. The control volumes for the momentum equations are
changed too. This is shown in the right part of figure 3.4. The combinations
between exact velocites and operators are the following:

continuity: exact boundary conditions are used in all directions

10
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Figure 3.3: Estimating distances with apertures

• convective terms only make use of exact conditions in the longitudinal
direction. In the other directions they make use of virtual velocities.
This is because these velocities are used to calculate derivatives in other
directions than the directions they were extrapolated in

• diffusive terms make use of all the exact velocities in all directions

In very rare cases it might happen that a boundary is too far away to use
the exact boundary velocity. But since we can't stretch the molecule into the
infinite we will use a virtual velocity. This can only happen for the momentum
equations discretised in the other 2 than the longitudinal directions, e.g. when

discretising in x-direction the 82y and i92z might give problems (diffusive terms).
Returning to our discretised operators, this means that hx, hy,.. are changed
according to the distance towards a boundary. These distances are calculated
with the help of apertures. This is shown in figure 3.3. The distance from U1

towards U2 is estimated with the help of volume-apertures:

distance = hx2 * F + hx3 * F
The distance between U1 and U4 is given by

distance 0.5 * hyi * + hy2 *

where we make use of the edge-apertures.

3.5 Solution Method
In this section we will explain how the discretised equations are solved. First
we introduce some notation. Let be points in the computational grid (FF-

11
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velocities) and let 11 be the set of boundary velocities (FB,BF and BB-
velocities). Furthermore let Uexacf be the given exact boundary condition. The
initial velocity u0 is given on followed by computing the boundary velocities
on Q, eventually followed by setting Uexoct. Next step is to compute the new
velocity field and a new pressure distribution. To do that, we first construct
a temporary vector field ii (not velocity field) by integrating the momentum
equations without the pressure gradient

i := — ötDh(u'uT
) — ,iDhGhu' on (3.6)

where Dh is the discretised divergence operator. At this stage we can use the
exact boundary velocities and/or the virtual velocities. For notational conve-
nience the same Dh is used. Now it remains to solve

Dhu'' = 0, (3.7)

+ ötGhp' = ü (3.8)

Substituting (3.7) in ( 3.8) requires the pressure in the boundary cells because
Dh works on the entire grid. Therefore we split Dh into two parts:

Dh=Dh'+D (3.9)

This results in
(D + D)u = 0, (3.10)

+ tGñp' = ü (3.11)

We cannot compute DuT2+ since the new velocity field on 1h is yet unknown
so we will use the exact boundary conditions and/or the virtual velocities, the
latter based on a velocity field u. Then it remains to solve:

Du' = —Dub, (3.12)

12
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+ 8tGhp' u (3.13)

Now we can substitute (3.13) in (3.12) from which we get the Pressure Pois-
son equation:

DGhp'' = (DÜ + Deract) (3.14)

From (3.14) we can compute the new pressure distribution pfh which leads

with
= ü — ötG,p' on (3.15)

to new velocities on ci. Finally the new boundary velocities are computed
after which we have the velocity field on the entire grid 1h

3.6 Boundary Velocities
Next we will briefly explain how the boundary velocities are computed from the
new velocity field. For more information we refer to [2]. The general principle is
that au FB or BB-velocity is calculated based on interpolation or extrapolation
of the desired condition on the wall with an FF-velocity. An example is shown
in figure 3.5 with a no-slip boundary condition.
Inflow velocities are Dirichlet conditions and can be set easily to the desired
value(s). With the help of Il-velocities the direction can be changed but they
can also be made free-slip so the inflow becomes more flexible when e.g. pressure
waves bounce into the inflow area.
At the outflow region we have two types of conditions. The first concerns the

normal part of the flow and is = 0, the actual outflow condition. The second
is a free-slip condition in both tangential directions in outflow cells. Here the
BB-velocities are set equal to their neighbour FF-velocities.

Figure 3.5: Principle of extrapolation

3.7 Higher Order
In section 3.4 is explained how to solve the equations. This was done by applying

a control volunie for integrating the momentum equations. To elmuiuiate the
leading term of the truncation error of the second order method the monuenturn
equations are also integrated over a three times larger control volunie. This

13



Figure 3.6: velocities occuring in Figure 3.7: velocities used in 4th or-
2nd order scheme der scheme

second integration has a truncation error which is exactly 9 times larger than
the error when using a small control volume. By substracting 1/8 of the larger
volume from 9/8 times the small cell eliminates the second order term of the
truncation error resulting in a fourth-order spatial discretisation. By using a
three times larger volume we don't have problems with missing velocities in the
vertical directions. This method can also be applied on weakly stretched grids.
In the vicinity of boundaries the three times larger cell does not fit into the flow
domain. Hence we will not use the larger cell here so near boundaries we still
have a second order method which is justified by the fact that the boundary ô1
is of lower dimension than Il itself. This approach in very common for higher
order methods yet still resulting in largely improved results when compared to
second order methods. More details of this approach can be found in [10].

3.8 2D Problems
Since most problems concerned with fluid flow past an object are 2D because of
lack of computing power, we have to make clear how to compute 2D problems
in a 3D environment. This is done by extending the 2D problem to 3D by using
1 cell in the 3rd direction and apply free-slip conditions on the two velocity
components in the third direction. Hence no force is exerted on the velocity
components in the 2D-plane. Furthermore, we set the velocity in the third
direction equal to zero. Combined with the free-slip condition this guarantees
a 3D flow which is in fact 2D.

14



Chapter 4

Results

4.1 Simple Testcases

In order to test the new implementations concerning inflow, outflow and free-
slip and to determine the values of some important parameters we selected the
following problems:

1. tube with uniform inflow and no-slip walls

2. tube with pressure difference on both ends with no-slip walls

3. tube with uniform inflow and free-slip walls

4. tube with pressure difference on both ends with free-slip walls

Since we can analytically calculate the velocity at the ouflow for all four prob-
lems it's easy to check if the results are of satisfactory accuracy. A tube was
chosen to demonstrate the capability of computing flow in a round object on
a (rectangular) Cartesian grid. In the first case the tube has diameter 1 and
length 2 situated on a uniform grid of 15x15x30 (grid 1) and 30x30x60 (grid
2). In the other cases the tube has length 1 where the grids were also halfed
in length direction. The finer grid was chosen in order to see the effects of the
discretisation error.

Case 1

We expect the flow to become a Poiseuille flow, that is, the outflow velocity
profile should be parabolic with a maximum velocity being twice the average
inflow velocity, in this case W = —1. This follows from conservation of flux:

flux out = ir / a2 (/') 2d = ira2b a2ir = flux in b = 2

As can be seen in table 4.1 grid 1 differs 2.3% from the desired value. The
second grid however is more accurate. A decrease of eps to 1 * iO didn't
change anything. Because of friction with the wall the velocity profile at the
beginning of the tube won't be parabolic, it takes a long distance to become so.
For this reason the tube was taken twice as long.

15



grid 1 grid2

______________________________

W,7zar 1.9533 1.9855
expected 2.0000 2.0000
deviation 2.3 % 0.72 %

___________________________

Next we prescribe on both ends a (different) pressure. In our case, p = 2

and p = 0. The velocity profile at a random cross-section of the tube has to
satisfy ([7])

w = __(R2 — r2) (4.1)

with R the diameter of the tube and r the distance from the center of the tube.
The outflow profile became parabolic with maximum velocities at the center of
the ouflow area. Results are shown in table 4.2. Analytically we expect the
foliwing values for Wmax (v=0.04, R = , dz measured from the centers of the
cells)

•d1 — 1 —2 1--33482• gri 4*0.04 2*29/30 4 —

d2 —
I —2 1-.32328• gri 40.042*59/604 —

Case 3

Since we have free-slip nothing should happen to the fluid since no force is
exerted on it. Therefore we expect the ouflow-velocity to be the same as the
inflow-velocity. The second grid differs 0.03% (with eps=1 * 10—) from the

eps=le-4 eps=le-5
- grid 2 grid 1 grid 2

-0.9997 -1.0000 -0.9999
-1.0000 -1.0000 -1.0000

Table 4.3: Results case 3

desired value at the first timestep which can be explained by local differences in
flux combined with the large grid and the initial velocity field of u = v = w = 0.

When the iteration error is decreased the results become more accurate.

Case 4

As in case 3 we prescribe different pressures on both ends of the tube. Because
of the free-slip walls the fluid should not reach a steady velocity but should
accelerate uniformly. The velocity of the flow is given by

w(t) = at with w(0) = 0; u(t) = v(t) = 0 (4.2)

16

gridi grid 2
Wmax 3.3382 3.2339
expected 3.3482 3.2328
deviation 0.299 % 0.034 %

Table 4.1: Results case 1

Case 2

Table 4.2: Results case 2

grid 1
t=Os -1.0000
t > Os -1.0000



grid 1 grid 2

time w a w a
0.Os 0.00000 0.00000
0.ls -0.21428 -2.1428 -0.20689 -2.0689
0.5s -1.071428 -2.14286 -1.03448 -2.06896
1.Os -2.14285 -2.14285 -2.06896 -2.06896

Table 4.4: Restzlts case 4

The acceleration a is given by:

F ma pAha
A

=ha=.a=j
Note that p was normalized to one. Furthermore h is the length of the tube
measured from the centers of the cells at inflow and outflow. The results can be
found in table 4.4. The iteration error was eps=106 to show that the results
can be as precise as wanted. When eps was taken to be i0 only the first three
digits would be significant, now this applies for the first 5 digits. Analytically
we expect the following values for a

• Grid 1: a = T7i5 = —2.14285

• Grid 2 : a = 7O = —2.06896

Since the correct results are produced we can conclude that the program has
passed this test as well.

4.2 2D Flow past a Circular Cylinder
In this section we consider one of the fundamental problems of fluid flow namely
that of flow past an object. This has been examined in both computational
and experimental studies and is considered a stringent test for flow solvers. We
consider a flow past a cylinder at Reynolds numbers 20 and 100 with Re based
on the diameter of the cylinder. For lower Re-numbers we expect the flow
to become stationary creating recirculating eddies behind the cylinder. When
Re is increased the flow may become unstable above some cirital value of Re,
usualy around 45. Numerical errors are big enough to create disturbances in
the flow. These will cause the flow to become chaotic. A well known property
is vortex shedding where the eddies are shed off from behind the object with a
certain frequency. Our first goal is to check several characteristic lengths and
frequencies. Part of these computations was an analysis concerning the effects
of varying meshsizes and numerical enhancements. We shall compare our data
with that obtained from a workshop [8]. Furthermore, we shall compare the
results using different numerical models or modifications on them. The inflow
profile is parabolic and given by

u = 4.0 * U * (xp — 0.41)/(0.41 * 0.41)

17



Re=20 Re=100
Length cell Strouhal number

grid standard 'exact' standard 'exact' 4th order both
20x100
40x200
80x400

0.07 0.07
0.079 0.082
0.080 0.083

0.278 0.286 0.287 0.283
0.285 0.283 0.302 0.299
0.297 0.294 0.304 0.300

where U is given by U = 0.3 in case of Re = 20 and U = 1.5 when Re = 100.

The Reynolds numbers are based on the average inflow velocity.

Re = 20

With Re=20 we are well below the critical Re-number marking the border
between steady and unsteady flow. As mentioned above recirculating eddies are
formed behind the object and don't change in time after arriving at their steady
size which can also be seen in figure 4.2 where velocities in the two directions at a
point behind the cylinder are plotted versus time. A characteristic length could
be the length of this cell, made dimensionless by dividing it by the diameter
of the object. Comparing many results contributed to the workshop a range
of [0.084,0.085] was determined to be the interval in which the 'exact' value
could be found. Comparing this with our result we may conclude that though
not exactly in the right interval, the "exact" boundary treatment does a better
job than the standard one though not dramatically. Furthermore we can see a
change for the better by taking a finer grid which was to be expected.

Re = 100

Comparing this situation with the one described above we see that the recir-
culating eddies are shed off. Due to the higher inflow velocity the eddies are

Table 4.5: Comparison between different models at different Re-numbers

2.2

INFLOW 0.41

1 0.2
V 'V

OUTFLOW

. I
0.2

Figure 4.1: Situation for flow past circular cylinder
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Figure 4.2: Evolution of velocities in Figure 4.3: Velocities versus time at
time at Re = 20 Re = 100

becoming larger than in the Re = 20 case. Because they are larger they be-
come sensitive for disturbances which are usualy caused by numerical errors.
One eddie starts to grow more than the other eddie thus leaving less space for
the latter. It will not grow into infinity but starts to move away from the object
after a while giving the other eddie an opportunity to grow, and to move away
and the whole process will start all over. This shedding has a characteristic
frequency f. The Strouhal number is a dimensionless version of this frequency
and is defined as fD

St

where D the diameter of the cylinder and U a characteristic velocity, in this case
the avarage inflow velocity. As in the Re = 20 situation, we will compare the
results from different models and a higher order method with results obtained
from the workshop ([8]) which gave values of St in the range of [0.299,0.301].
In table 4.5 we show the results using the standard method and modifications.
First we notice the improvement in results when using the exact boundary
treatment. The higher order method pushes the St-number further into the
desired direction, sometimes causing an overshoot. When both methods are
combined we see an almost perfect result, even on relatively coarse grids. Com-
paring "standard" with "both" we see we can win a factor 2 in every direction.
Combined with the factor time we may conclude we can win at least a factor
2*2*2 = 8 to achieve the same results, in 3D this may even be larger.
Finally in figure 4.3 the evolution of the two velocities in time are shown at
some point behind the cylinder. After approximately 2 seconds the flow be-
comes periodic. With help of this data it is easy to calculate the frequencies.

4.3 3D Flow past a Circular Cylinder
The 2 dimensional cases described above are good enough to test programs for

accuracy. Most problems though arise from the 3D world so the next is to
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show that the method also works with 3D flow problems. We selected the same
problem as above but now, surprise, the 3D case. The cylinder however was
moved so the distance between inflow and center cylinder became 0.5. Again
we prescribe a (3D)-parabolic inflow profile yielding a Re-number of 100. Due
to instability of the problem we did not even try it without the higher order
method. We will only show the possibility of 3D calculations at low Reynolds
numbers. The grid we used was 40*40* 200 yielding a total number of 320.000
cells. On a normal workstation the calculation time was 13h with a timestep
dt = 5 * i0 and a simulation time of 6 sec. The obtained Strouhal number
was St = 0.352 which is not exactly in the interval of [3.1900,3.2100], again
results from a workshop [8] but considering the grid a very good answer.
When looking at figure 4.3 we can clearly see that the vortices are bending when
dragged along with the flow, a typical 3D effect. Eventually they will collapse
and disappear, in contrary to the 2D situation where the vortices don't seem to
disappear after some time. This is partly due to the free-slip condition in the
third direction so no force is exerted on the vortices.

4.4 Industrial Problem
Next step in our development process was to examine whether it was possible to
do industrial problems with Re numbers in the range of i04 till 108. A problem

was supplied by the Gasunie, the Dutch gascarrier. They make use of pipes to
transport the gas. These pipes are welded together causing a little bump inside
the pipes. The question was how these bumps influence the transportation of

gas.
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First of all, considering speed of gas, pressure and density, the normal Re-
number for this problem would be around 106 till 108. Because it's a realistic
problem it would be nice to do the simulations in 3D. This however is not
yet possible with the modern computers in combination with our numerical
method which is called DNS or Direct Numerical Simulation. The idea behind
this is that the Navier Stokes equations are believed to be correct for every
scale of length in the problem, even when the flow becomes very turbulent thus
possessing very small scales. But unfortunately, a very fine grid has to be used
to catch these details which automatically results in a huge number of grid
points and very small timesteps. In order to 'ontlopen' these fine grids the
turbulence can be modelled thus "simulating" it on a coarser grid which is time
consuming but less acurate. Various methods have been developed according to
this idea. We didn't use any turbulence models so we had to restrict our testcase
to 2D with Re = i04, yet causing enough problems. Goal was to explore the
problem regarding parameters (gridsize, timestep,etc) and possibilities of the
numerical method for use in future research.
Empirically we can say a few things. First of all there is a formula deduced by
Dean:

dx h

with C1 defined as
C1 = 0.073Re0'25

which gives a relation between the Re-number and the pressure drop. With p,
U,, and h all iiormalized to 1 we get

= —0.0073
dx

Another relation, also deduced by Dean, is given by

Umai = 1.28Re0'°"6
Ub

which gives a relation between the ratio of the maximum and average velocity

and the Re-number.
When dealing with Re-numbers in the turbulent region it is very common to

use a buffer zone at the end of the channel/pipe to reduce the effect of pressure
waves bouncing back towards the inflow. This causes numerical instability of
the worst kind. Therefore the Re-number is reduced by linearly increasing the
viscosity in this buffer zone to 10—2 yielding a Re-number of 100 at the outlet.
The buffer had a length of 16.6% compared to the total length. An overview of

the situation is given in figure 4.4.
As a grid we used 60x480 with large stretching (a = 10) towards the middles
of the bumps. As timestep we used dt = i04. The inflow profile was uniform

U = 1. Due to the no-slip on the wall the flow has to adjust to this which
takes three times the diameter of the inflow. First of all a comparison can be
made by an actual 3D flow profile as was measured and the computed 2D profile
(see 4.6). A striking difference is the flat middle part of the computed profile
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Figure 4.5: Overview of the situation (with bump)

compared to the measured profile. This is probably due to 3D effects which
we didn't have with our 2D simulation. Several 2D calculations can be found
in literature which are all flat. When looking at the pressure drop without the
bump we see it isn't linear as it was with the low Re-cases. We can calculate
the drop of pressure per unit of length

=
0.0098

where is 8.16 is the length of the tube without the buffer zone. Compared to
the predicted value of 0.0073 we are about 34% higher. This could be explained
by the use of a relative coarse grid, new calculations on a much finer grid should
prove this. And one can only speculate about the effect of the buffer zone on
the results. It's evident that it disturbs the flow, it acts like a semi-permeable
cork. Comparing the pressure drop without the bump and with the bump one
can clearly see that the pressure has dropped a little. This bump in 2D has a
smaller area than compared with the 3D situation so it is to be expected that
3D calculations show more effect of the bump on the pressure drop. In figure 4.7
we see plots of the pressure avareged in time along several slices in z-direction
plotted in one figure. Note the non-linear drop of the pressure. Again several
plots combined in one can be seen in figure 4.8, this time with a bump inside
the channel. A snapshot can be seen in figure 4.9 where a contour plot of the
vorticity and a vector (velocity) field are plotted. From this it is clear that
vortices are shed off from behind the objects.
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Figure 4.7: Pressure drop in channel without bump
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Chapter 5

Conclusions

5.1 Results

Low Re cases

Evaluating the results from the previous chapter considering flow past a circu-
lar cylinder we may conclude that ComFlo has become an accurate solver for
instationairy flow problems at low Reynold numbers. In particular the easy-
to-implement 4 order method does a great job. This in combination with the
"exact" treatment of the boundaries ensures very good results. Another way
to use the apertures is to use them in the discretisation. This was done in the
previous version of ComFlo but was eliminated due to inaccuracy. A combina-
tioii of apertures and exact boundary conditions could be better than the last
one alone, see next section.

High Re cases

The industrial problem turned out not as good as we wanted. Problems with
numerical stability could be handled with a buffer zone at the end of the canal
but the results concerning drop of pressure were not in accordance with ana-
lytical results. So some further investigation has to be done. Other things of
interest could be

• 2D canal flow at Re = 100.000

• 3D flow at Re = 10.000

The 3D case is of very much interest because it's still not known how the 2D
canal and 3D tube are related to each other. Furthermore the use of different
outflow (and inflow) conditions should be investigated because this is the only
thing that can be changed without wrecking the numerical method itself. Sug-
gestions in literature are for example periodic conditions imposed on inflow and
outflow regions.

5.2 Future Development
As for future development the following features could be added
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• Heat transfer

• Turbulence models

• Graphical User Interface

We remark that a version with free surface flows has been completed but still

needs perfection.

Further Improvement of Boundary Handling

New ideas concerning accuracy are explained here. The idea to use apertures
by means of actual flow (aperture times velocity) seemes very natural. But
when using extrapolation we should not use apertures since the extrapolated
velocity has no physical meaning so multiplication with an aperture has no
physical meaning either. We suggest the following. Try to move the veloci-

ties to places where they actually mean something, so move them to a place
between a gridline and the boundary. Now it's relevant to use apertures. A
velocity disappears when an aperture of the concerning cell-face equals zero.

As could be seen when using the exact treatment we didn't have any stability
problems due to moving certain velocities so we don't expect this to happen
with the new method.

Comparing this to the previous methods, the BB-velocities disappear. Instead

we introduce node-velocities, indicating a pair u,v,w situated in a node-point

(small black dots) which provide information needed in the discretisation. Near
boundaries we will use discretisation formulas as explained in [2] which make

use of apertures, also the volume-apertures. Since it is difficult to make use of a

small conservation cells due to problems with calculating the volume-aperure of

a small cell, large conservation cells are used near boundaries. The discretisa-

tion of the diffusive terms remains the same, though experimenting with the use

of apertures is an option. When no boundary velocities of any kind are needed

we will use the discretisation discussed in this report (with small conservation

cells) so we can still make use of the higher order method.
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Appendix A

Program Description

The previous chapters dealt with the theoretical aspects of a numerical method.
This method was implemented in the program ComFlo. The structure and
subroutines of ComFlo are discussed in the next chapter.

A.1 Flow-chart

The program ComFlo consists of several subroutines which are called in the fol-
lowing order.

setup/pre-processing SETPAR

GRID

LABEL BDNDEF

BNDDEFIO

SETFLD or LDFLD BCIO

BC

COEFL

time integration INIT
TILDE

SOLVE? COEFR

PRESIT SLAG

BCIO

BC

MATLAB

SAVEFLD

post-processing SAVEFLD

For a description of these subroutines we refer to section A.3
The program starts with initializing the apertures, labels and the velocity field.
This can be done by using a previous field or by setting it to the desired values.
Furthermore, the coefficients needed in the left side of the Poisson equation are
calculated. The time integration is repeated until tmax is reached. This is the
actual calculation of fluid motion evolving in time. Starting with initializing
the flow field, this means copying the flow field to a temporary field followed

by calculating the vector field ü. The subroutine SOLVE? calculates the new
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pressure field from which the new velocity field is calculated. Boundary/virtual
velocities are calculated from this new field and we're back at start. The pro-
gram ends with saving the complete velocity and pressure field so it can be used
to restart the calculation.

A.2 Labels

Velocity labels

In order to determine how the velocities in each cell have to be computed
the velocites have a label. The various labels are given below. In case of a
boundary velocity the neigbours used to extrapolate or interpolate are given.
In comparisson with the previous version of ComFlo 6 labels have been added.

velocity
label type

u(i,j,k) v(i,j,k) w(i,j,k)
needs needs needs

1 FF - - -

2 FF suitable for 4th order
3 FF suitable for exact boundary handling
11 Fl inflow in negative direction
12 IF inflow in positive direction
13 FO outflow in negative direction
14 OF outflow in positive direction
21 FB i-i j-i k-i
22 FB i+1 j+1 k+i
30 BB - - -

31 BB j-i i-i i-i
32 BB k-i k-i j-i
33 BB j+1 i+1 i+i
34 BB k+1 k+1 j+1
35 BB j-i, k-i i-1,k-i i-i, j-i
36 BB j-1, k+1 i-1,k+1 i-i, j+1
37 BB j+i, k-i i+1, k-i i+i, j-1
38 BB j+i,k+1 i+1,k+1 i+i,j+i

Table A. 1: Defintion of the velocity labels

As with all labels the main information they contain is their relative position on
the grid with respect to velocites needed in boundary conditions. Labels 2 and
3 are to indicate where to use the higher order method or the exact handling
of the boundary respectively.

pressure labels

In the calculations only cells filled with fluid and boundary cells are taken into
account. To make it easier to determine wether a cell contributes or not the
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pressures are also labeled. These labels are defined in the following way

pressure
label description

0 obstacle cell
1 fluid cell
2 no-slip boundary cell
3 inflow cell
4 outflow cell
5 free-slip boundary cell

Table A.2: Definition of the pressure labels

A.3 Subroutines

The program consists of several subroutines whose functions are described be-
low.

AVS produces data files for the post-processing program AVS
BC computes the new boundary velocities and sets the exact boundary conditions
BCIO sets velocities labeled as inflow or outflow velocities with the given conditions
BNDDEF defines the domain and object and calculates the apertures.
BNDDEFIO defines the inflow and outflow boundaries. They can be set by adjusting

the PLABEL to the desired value.
COEFL computes coefficients of left hand side of the Poisson equation
COEFR computes coefficients of right hand side of the Poisson equation
FREESLIP sets PLABEL to 5 when a wall and/or object is free-slip.

They can be set independent of each other.
GRID produces a stretched grid
INIT initializes velocities for new time step
LABEL gives each cell u,v,w and p-labels.
LDFLD loads a backup field stored in comflo-fld
MATLAB produces data fields for post-processing with MATLAB. It calculates the vorticity.

PRESIT computes new pressure field
SAVEFLD saves a velocity and pressure field to a backup file called comflo-fld
SETFLD initializes the velocity and pressure field at t = 0

SETPAR reads the inputfile comf 10-in and sets the parameters
SOLVEP calls PRESIT and calculates the new velocity field
TILDE computes a temporary vector field

A.4 Common Blocks
Variables that belong together are grouped in a common block. ComFlo consists

of several common blocks which are presented next.
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ADAM
UNN(I,J,K) ,VNN(I,J,K) ,WNN(I,J,K) arevelocities used inthe Adams-Bashforth

method

COEF1, COEF2 are coefficients indicating which time integration is used (see
comf b—in)

APERT

AX(I,J,K) ,AY(I,J,K) ,AZ(I,J,K) are the edge-apertures inx,y and z-direction
respectively.
FB(I ,J,K) are the volume aptertures

COEFP

DIV(I,J,K),CC(I,J,K),CXL(I,J,K),CXR.(I,J,K),CYL(I,J,K),CYR(I,J,K),CZL(I,J,K),
CZR(I,J,K) are coefficients used in the Poisson equation
UEX(I,J,K),VEX(I,JK),WEX(I,J,K) are the exact boundary conditions

GRIDAR

IMAX, JMAX, KMAX number of cells in each direction
X(I) ,Y(J) ,Z(K) position of the gridlines in the three directions
DXP(I) ,DYP(J) ,DZP(K) distance between gridlines, e.g. DXP(I)=X(I)-X(I-l)
DXU(I) ,DYV(J) ,DZW(K) distance between velocities e.g. DXU(I)=O.5*(DXP(I)+DXP(I+1))

LABELS

ULABEL(I,J,K) ,VLABEL(I,J,K) ,WLABEL(I,J,K) ,PLABEL(I,J,K) velocity and

pressure labels

NEW

HIGH, EXACTB indicate whether or not to use 4tI&order and boundary handling
DIM indicates the dimension of the problem. When DIM =2 a free-slip condition
is applied in the third direction to ensure 2D flow.

NUMER

EPS is the allowed error when solving the Poisson equation OMEGA, OMSTRT are
respectively the current and the starting relaxation parameter used to solve the
Poisson equation
ITMAX, NOM is the total number of allowed iterations Cl , C2 are the starting
parameters regarding the method of time integration to be used
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PHYS

UN(I,J,K),VN(I,J,K),WN(I,J,K)velocitiesatprevioustimestept=(n—1)t
U(I,J,K) ,V(I,J,K) ,W(I,J,K) new velocities at t = not P(I,J,K) pressure at

t = nOt

ROTATE

VOR, VORX , VORY , VORZ are the magnitude of the vorticity vector and its three
components.

SPACE

DOMAIN indicates the flow domain
XMIN , XMAX,YMIN , YMAX , ZMIN , ZMAX are the (dimensionless) sizes of the flow do-
main

SMALL

HX,HY,HZ are the smallest cells in each direction, used to calculate the CFL-
number

STRGRD

XP , YP , ZP is the concentration point of the grid
ALFAX, ALFAY, ALFAZ is the stretching of the grid in the three directions

TIME

TMAX, T, DT are the total (dimensionless) calculation time and current time
t = n * dt. CYCLE indicates which cycle is going on
ITERTOT contains the total number of iterations from the beginning
FRTOT, TSTART are the number of frames and when to start producing them
LDFLD indicates loading a previous field to start with

VAR

OBJECT indicates which object to be used
VAR1, VAR2, VAR3 are parameters used to define the object. They can have
different purposes when used with different objects.
FS , FSOBJ free-slip of walls respectively the object
NRINTP is the number of points in each direction used to calculate the apertures
POSX,POSY,POSZ is the position of the object on the grid

A.5 Input and Output
The input file Conif b-in consists of the following parameters
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xmin, xmax, ymin, ymax, zmin, zmax
0.0 0.41 0.0 0.41 0.1 1.1

imax, j max, kmax dim
30 1 90 2

tmax, dt, fr—tot tstart
5.0 1E-3 10 0.0

.freeslip.
flu, domain, f domain fobject

1E-3 11 0 0

eps, omega, itmax, coef 1, coef 2

1E-4 1.7 100000 1.0 0.0

object, radius, angle var3

3 0.05 0 0.0

posx, posy, posz

0.20 0.20 0.9

px, py, pz, bifstrt avgstart

20 20 100 4.0 16.0

xp, yp, zp

0.0 0.0 1.1

alf ax, alfay, alfaz

1.0 1.0 1.0

#ip 0(4) exact loadfld

8 1 1 0

• xmin, xmax, ymin, ymax, zmin, zmax define the dimensionless coordi-
nated between where the domain � is situated.

• tmax, dt, fr-tot define the maximum calculation time, time step and
total number of data files to be written to disk

• flu is the viscosity of the fluid

• omega, itmax are parameters for SOR-iteration where omega is the start-
ing relaxation parameter and itmax the maximum number of iterations

• domain, object are the parameters to choose several programmed do-
mains and objects
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• fdomain, fobj ect define wether the wall and object are no-slip (0) or
free-slip (1)

• vail, var2, var3 are variables that can be used throughout the pro-
gram, for example the size of objects, rotationspeed,...

• pox, posy, posz define the position of the object on the grid

• aif ax, alfay, alfaz are the factors between the sizes of cells near tthe
walls and those near the concentration point in the three directions re-
spectively

• #ip is number of points in one direction to be used for calculating the
apertures

• 0(4) and exact define whether or not to use the higher order method
and the exact treatment of the boundaries

• loadfld uses comfio—fld to start a new calculation with

A.6 Domain Definition with Inflow and Outflow

In order to define the geometry a function f(x, y, z) is needed which has the
property that f(x, y, z) <0 when (x, y, z) lies in a solid part of the geometry
and f(x, y, z) > 0 when it is situated in the fluid, e.g.

F(X.Y,Z)=0.5—SQRT((X-XP)**2+(Y—YP)**2+(Z-ZP)**2))

defines a sphere filled with fluid with radius 1/2 and center (xp, yp, zp). The
program makes a distinction between domain and object, so two functions are
needed to describe the geometries. With the operators mm and max we can
combine both functions to get one function which describes the complete do-
main.
Next step is to show how to define an inflow or outflow part. As can be seen
in earlier tables, an inflow cell is defined with a plabel = 3, an outflow cell has
plabel = 4. In the subroutine BNDDEFIO one can choose the cells which need
to get the desired property. When BNDDEFIO is called the cells are only labeled
o or 1, based on their level of filling. One can change both cells into inflow
or outflow cells, but it is highly recommended to have inflow and outflow cells
situated next to F-cells. After this the procedure LABEL generates the velocity
labels fully automatically so no corrections have to be made.
Boundary velocities can be set in BNDDEFIO. This time you have to know which
velocity labels are concerned due to the orientation. It's also possible to produce
a flow driven by a pressure difference. Then the inflow becomes a "negative"
outflow.
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A.7 Outputfiles and Postprocessing
Visualisation of data can give a lot of information about the fluid flow. Several
programs can be used to visualise the data, we used Mat lab when dealing with
2D flow problems and switched to AVS when the problem became 3D. These
programs require a different approach concerning their input files so different
subroutines were written to produce these files.
The number of data files to be generated can be adjusted in the file comflo-in.
Based on the total simulation time tmax, the starting time tstrt and the
number of files up the program generates data files on uniform time intervals
between tstart and tmax.

Mat lab-files

coord . m

This MATLAB-file contains the gridpoints and information about numerical quan-
tities which don't change in time e.g. apertures and labels. This information
can be helpful when debugging the generated domain.

comflo .xxx

These files contain the velocity, vorticity and pressure information of the en-
tire flow domain at a certain time. xxx is a number starting from 100 till
100 + np. The first frame (comf 10. 100) is the initial frame at t = 0 (or the
starting time when the ComFlo is started with a backup file). Furthermore, a
file coord.m is produced for use with MATLAB and contains grid coordinates.
The AVS-versions of this file are coordx .dat, coordy .dat, coordz .dat and
geometry .dat. The ComFlo procedure MATLAB can be adjusted to write the
desired data to a file.

bif.m
This file contains the velocities and pressure at some grid point (px,py,pz).
This data is written to bif .m starting at t=bif start. When for example the
x-velocity is plotted versus time in a periodic flow the period can be easily
determined. When dealing with 2D-flow py = 4 due to expanding the grid with
3 cells in each direction. To extract the data from bif .m it has to be loaded
into MATLAB followed by
u=bifdata(: ,1); v=bifdata(: ,2); w=bifdata(: ,3);
p=bifdata(: ,4); t=bifdata(: ,5);

comflo-avg . m

It contains the averaged velocity and pressure field in time. Averaging is started
at t=avg—start. Furthermore, it has the same structure as the comflo.xxx
files.
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AVS-files

coordx.dat /coordy.dat /coordz .dat /geometry.dat

These files are the AVS-equivalent of the MATLAB-file coord.ni described above.
They contain the grid information and the geometry information (the latter
based on the volume-apertures).

Backup-file

comflo—fld

contains the complete velocity and pressure field at some time t and is used for
back-up and/or as a start-up file when further calculation is needed but tmax
has been reached.
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