WORDT
NIET UITGELEEND

Free Surface Flow in
Three-Dimensional Complex
Geometries

Erwin Loots

Department of
Mathematics RuG

Master's thesis

Free Surface Flow in
Three-Dimensional Complex
Geometries

Erwin Loots

Fveuniversitolt Greningen

C-listheek

\“-xunde ! informatica / Rekencentrum
5

€70 /Y Croningsn

University of Groningen

Department of Mathematics

P.O. Box 800

9700 AV Groningen August 1997

Contents

1 Introduction 3
2 Mathematical model 5
2.1 The Navier-Stokes equations ¢ . v v v v v i v v it o m o e 5
2.2 Boundary conditionso 6
22:n Solidsboundanys 1 & (e s 455 TN« G I W SEIE spb-aus ENT o o0 @ - 6

229 Freesurface o o o i e e 7

2:2:3 In—andoutflow 2 mard o o s el Eaals 6 e - | B E Be - o B G 7

3 Numerical model 8
3 Apestures o Ems 4% B Afue «ieTne s DI EE @I 19318 159 3E 8
32 Labeling 8
3.3 The Navier-Stokes equations discretized 10
3.3.1 The pressure Poisson equation 10

3.3:2] FreesSurface 33 . 3 o8 o5 - aie J g &l wd J T T T Y cm opoa 11

3.3.3 SOR-iteration L. PP AT A7 Na PEATE S 5 12

334 In-andoutfow . wrq 35 o°d 0 F 35 - & a8 383 : 390 95 3= © @ pa s 13

3.3.5 The Donor-Acceptor algorithm 14

3.4 Determining the timestep 6t 14

4 Pre- and postprocessing 16
4.1 CSGtrEES . . o o o e e e e e e e e 16
dilnl Attributes torprimitives * Sa'da . 4f 4% L @ w0 8F L F @ eld 13 16

4.1.2 Performance of the algorithm 18

412 2D=rotation ry. me = 5. . 8 se WA sAPUAL Acds cif aif 3 L8 5§ ER o] 21
4.3 Combination« o o i e e e e e e e e e e e e e e e e e 21
44 Postprocessing] o . w. s sl sle b oo Jd el dd o - andic e dian 21
441 MOVIES . . o o o o e e e e e e e e e e e e 21

442 Streamlines .z koo boa o o en s B dha's o« o BuE - 4 BT - @ e e G 22

443 FIUXES . . .« o o e e e e e e 23

44 Billing ratios ® 4w o 4w wd 08 59 8w JAB S0 I AE G bE B 09 7 23

4.4.5 Monitor points 24

44.61 Forces 74 fmgrviase DEE s iabe e I 5 BT A L B PS 24

447 Other information i e 25

5 Results

51 Dambreakinaball « « « v o oo v v wig oo = o 5w aw o & D BE D W SRR
5.2 Fallingdrop/ s v en s s s e adaa os wd s 4 ws =5 8 3 a0y S S EUPENEE
553 nToticellilm ' e JFiara wEN AWH A 4 51 44 § 4 a0 »e hlelble' o B ol EE
5.4 In- and outflow ima 2D-cylinder +ou .o o0l 0N O, L
55 Demonstrations s o o « « @ = & a'e o g 674 o de 25 HTE e BiRTE L

55.1 Dambreak in ball = « « % o™ wd o . vw s s 1 e ets T B IE S

552 Y-junctioh & s: o «oiv wewws Fdoaed s o AN SNIG

5.5.3 Moving spheres-cylinders combination

6 Conclusions

A Program description
Al Calling sequence . . 4 reppspvrenasoygasr= sawah ML
A.2 Common block variables . v 54 . @ o 5o a8 56w ole Heiels e s
A3 Subroutines oi 1L sa s o bd se 5270 e @ s s g ilenrneraniiaianhl « Y

B Pre- and postprocessing

B.l Main calling SeqUence + = ro o wincoecd s o4 080 L rw du @a AR o
B.2. SubroMtines ¢g me #'g ne g« 8@ pabc as'annsans dawe d6 oa nre o
B3 Files . uwa - mma a0 9 5g 59 5 ap mee e oo 29 08 ecm g
B3l Inpubtifiles . 5 «2 no bo s d saedaendon e ¢ i =T
B.32 Outputfilesd sa o4 ba s barase - smsnnhba’s doag da na
B.4 Postprocessing tools « e« « = s w s o s mam s s mr s o mmomem o s g A g
BAdl AVUS v a'i'd'edlad cc s ainh roe abaphlodnds aa gu 4)a

B.452. MATLAB, % ¥% 6% fa oe fa pa ks oAl sl W e e

Chapter 1

Introduction

Fluid dynamics plays an important role in our daily existence: blood flows in our bodies,
air streams around wings of aircraft, ships wrestling through high waves and shaking cups of
coffee are just a few examples.

In the science field of Computational Fluid Dynamics (CFD) these phenomena are examined
in several ways. First, the physics behind fluid flows are translated into a mathematical model.
Since 1845 the Navier-Stokes equations provide this model. After that, these equations are
discretized (both in space and in time) to form a numerical model (solving analytically is only
possible in very simplified cases).

The (approximate) solving of these discretized equations is generally done by a computer
program which uses extensive iterative methods. The fourth step is the validation of the
obtained data, usually done by comparison with theoretical and experimental results.

The bottleneck is usually the third step, since both memory and speed of even the most
sophisticated computers were (and still are, in many aspects) not able to meet the demands.
However, the last decade(s) significant improvements have been made. What generally is less
known, though, is the even greater progress in the algorithms that currently happens.

Now, living in the end of the nineties, we have reached a stage where computer science
meets a significant part of the wishes: to perform more or less simple 3D-calculations with
free surfaces.

Thereto, in 1995 at the RuG , the development of a computer program called ComFlo has
been started that solves fluid flow (without and with free surfaces) in 3D-complex geometries.
Here the Navier-Stokes equations are solved on a Cartesian (rectangular) grid (see [3], [4],
2).

This report describes the extension of this previous work in fields considering preprocessing,
increasing the possibilities to define complex flow domains; postprocessing, to handle and
evaluate the large amount of data that is created; other features that were implemented in
the still developing program like in- and outflow; and several other actions to bring ComFlo
to a stage where possibilities for the non-academic world appear.

In the following chapters, the theoretical model is explained (chapter 2). Then the numer-
ical model, as implemented in ComFlo, is partly explained with aspects including apertures,
labeling and the pressure Poisson equation in chapter 3 (for more detailed information about

this model, see [3] and [4]).

Afterwards, issues like pre- and postprocessing are handled, including the introduction of
CSG-trees (chapter 4), followed by some results consisting of test cases and demonstrations
of the present capabilities of ComFlo (chapter 5).

Also, in Appendix A, the structure of the main program (i.e. ComFlo) is explained. Finally,
in Appendix B, detailed information about the pre- and postprocessing is given, including
the structure of input files, a short description of the preprocessing program, and the wide
variety of output files. These appendices can help new users of ComPFlo to get started.

Chapter 2

Mathematical model

2.1 The Navier-Stokes equations

The motion of a viscous, incompressible fluid is governed by the unsteady, incompressible
Navier-Stokes equations. For this report we assume that the pressure is scaled by the density
p- Then the equations are:

= By o & 2)
Gt g Oy OE . S L JJOER 62—”+@+§2—u +F; + f (2.2)
ot 7] dy 9z 0Oz 0r?2 Oy? 022 % ’
Jv Ov Ov ov Op Pv v %
e T T et (W“‘&Tz*@ th+S, @9
ow ow Ow ow Op Pw *w F*w
py o8 ow o "+ f. (24
5t T "%z TVoy TV 92" (az2+ay2+az2 TR 24

Here u,v,w are the velocity components in each direction (z-, y-, and 2-) and p is the
pressure. The symbol v is the kinematic viscosity.

Fy fz
Further, F = | F, | is an external bodyforce (such as gravity), while f =1} f, | isa
F, [z

virtual body force upon the fluid caused by geometry motion (by Newton’s third law, there is
no problem introducing this force). Note that the coordinate system containing the geometry
is therefore relative to an inertial coordinate system. For instance, having g the absolute
velocity of the relative system, w its angular velocity about the absolute origin and on the
other hand z and u being the position and velocity of a fluid particle with respect to the
relative origin, the virtual body force yields

dg

f=_d_t_wx(wx:c)—%‘:—xx—2wxu (2.5)

Equation (2.1) says that mass is conserved in every volume, and equations (2.2) to (2.4)
express conservation of momentum in each of the three directions.

Using the vector notation (with u = (u,v, w)T) and the divergence and gradient operators,
the equations can be written simply as

V-u = 0, (2.6)

E+(u-V)u = —-Vp+v(V-V)u+F+f (2.7)
Here the term (u - V)u can be replaced by V - (uuT) due to the fact that the velocity is
divergence-free. Notice further that diffusive terms are represented by second order deriva-
tives, while convection is expressed in first order derivatives.

2.2 Boundary conditions

The whole region where fluid is allowed to flow will be called €; the subset containing fluid is
denoted by Q. Q is constant in time, £ is not. Boundary conditions have to be described at
the boundary of Q. The solid boundary, 9 (1 9§, is handled in a different way than the free
surface, 99\ (99 N dN). Moreover, a third kind of boundary condition occurs at inflow and
outflow areas, which deals with interaction with respect to fluid outside the computational
domain.

50 y

Figure 2.1: The flow domain and edges

2.2.1 Solid boundary

There are two forms of solid boundary: 99, and 9Sy,, meaning respectively no-slip walls
and free-slip walls.

The conditions are:

u = 0 on O,
u, = 0 and 7=0 on JQys.

where 7 = %—"rf represents the tangential stress. u, = u-n is the velocity component perpen-
dicular to the surface, just as uy = u - t is the tangential velocity component.

This means that in both cases the normal component of the velocity equals zero (simply
forbidding fluid to move through solid walls), whereas in the former case also the tangential
velocity component is equal to zero, expressing the fact that fluid sticks to the wall due to the
viscosity. The second condition at free-slip walls, 7 = 0, conversely, expresses that u; does
not decay when approaching the wall.

2.2.2 Free surface

The boundary with respect to the free surface needs additional boundary conditions. These
are:

Oun
—p+2u 8111 = —po+27H (2.8)
Ou, OJu
H(Frra) =0 29

where pg is the reference pressure outside the fluid (the atmospheric pressure), v the
surface tension and 2H = RL; + 7{1; is the total curvature of the surface. u = pv is the dynamic
viscosity. R; and Ry denote the curvatures of the intersection of the free surface with two
planes, orthogonal with respect to each other, through the normal; the total curvature is
independent of the choice of the two planes.

2.2.3 In- and outflow
At an inflow area the velocity u is given: u = w;,. This velocity can, of course, be time-
dependent.

In outflow areas usually a homogeneous Neumann condition for all velocity components is
prescribed: % = 0 instead of a similar Dirichlet condition in order to prevent the creation of
a boundary layer. It is also convenient to set the pressure at its atmospherical value: p = po.

In the following chapter the discretization of the above model is discussed.

Chapter 3

Numerical model

After having handled the mathematical model, now the numerical model is studied. For
readability purposes, only graphics of two-dimensional geometries are shown; extension to 3D
is straightforward.

3.1 Apertures

We start with laying a rectilinear (Cartesian) grid over the three-dimensional flow domain .
Since the form of is generally not rectilinear, and neither is the (time-varying) configuration
of the fluid (£2s), the grid cells (boxes in 3D) cut the boundaries in several ways. To order
the possibilities, apertures are introduced.

Apertures are divided into two classes: First the volume apertures. In each cell, the geometry
aperture F; defines the fraction of the cell volume in which fluid should be able to flow, i.e.
the part of the cell contained in . On the other hand, the fluid aperture Fs indicates the
fraction of the cell which is indeed occupied by fluid. Note that the latter aperture is time-
dependent. Obviously, 0 < Fy < F, < 1.

The other class of apertures is the edge-aperture. At every cell surface, the part of the surface
contained in § is called Az, A, or A, (dependent of the orientation of the surface). Thus an
edge-aperture between two cells indicates the part of the dividing surface open to flow.
Edge-apertures with respect to the fluid itself are not defined. Figure 3.1 shows an example
of apertures defined in a part of .

Note that, in the computation, Q is only represented by F, and A;, A, and A, while the
original notice of the geometry has been lost. This approach allows to handle arbitrary
complex forms of 2, as shown in chapter 4.

3.2 Labeling

Now the equations (2.1), (2.2), (2.3) and (2.4) must be discretized. This is done on a so-called
totally staggered grid, which means that the velocity components are located in the middle of
cell faces, between two cell centres (although not necessarily equally distanced from them),
and the pressure is situated in cell centres.

The different treatment of pressure inside cells and velocities between cells is expressed in
the labeling of these cells and velocities. With respect to the time-dependency there are

T T I T
| 00 0.0 0.0 0.0 00 |00
10 10 1.0 1.0 1.0 5
T] :
0.0 0.0 00 | 0.1 0.0
10 1.0 1.0 1.0 /}m(/ 0.3
ot 1
0.2 0.2 0.8 0.8
10 i 10 08 02 0.0
1.0 1.0 0.9
1.0 1.0 0.9 0.0 0.0 0.0
1.0 1.0 0.9
1.0 1.0 0.9 0.0 0.0 0.0

Figure 3.1: Geometry apertures Fy and (in italics) fluid apertures Fy (rounded to one decimal
place)

two classes of labeling, each consisting of cell labels and velocity labels; the latter ones are
acquired from the former.

Labels based on the geometry are time-independent. First F-(flow) cells are all cells with
F, > % After that, all cells with city-block distance 1, meaning cells sharing a cell face with
an F-cell (and, consequently, F; < %) are labeled as B-cells. The remaining (exterior) cells
are called X-cells; they are not interesting.

Velocity labels are a combination of the labels of the cells where these velocities lie between.
There are five combinations: FF, FB, BB, BX, and XX. The combination FX does not
occur because of the sequence of labeling.

The second labeling class, being time-dependent, is that of free-surface labels. The cell labels
here are a subdivision of F-cells (the other two geometry labels represent cells which are less
than half-filled and therefore neglected for this purpose). First, cells with F; = 0 are obviously
empty: they become E-cells. After that, cells having city-block distance 1 from E-cells are
called S-(surface) cells. The remaining F-cells keep their F-label, but now in the sense of
‘Auid’ instead of flow’. After that eight free-surface velocity labels can be recognized: FF,
FS, SS, SE, EE, FB, SB and EB.

Note that the geometry labeling uses decreasing Fy, while free surface labeling uses increasing
F;.

A final labeling step is the mutation of specified B- cells into I-(inflow) cells and O-(outflow)
cells.

Figure 3.2 shows the obtained labels of the geometry drawn in figure 3.1.

9

T /
SIS yp/
) E+ F ¥ B| x
F F F
F F BRH XWX
F F F

F F F B| X xJ

Figure 3.2: Geometry labels and (in italics) free-surface labels

3.3 The Navier-Stokes equations discretized

As the described labeling method does not cause any stability problems (see (3]), the Navier-
Stokes equations can be discretized explicitly in time. The well-known first-order Forward-
Euler method yields

Voultl = 0 (3.1)
u"tl — " 4 6tVp" Tl = GtR" (3.2)

where R" contains all internal, external and body forces:
R"= (vV-Vu" - V(u"u"T) + F" + 7%

Here n and n + 1 denote the old and new time level, respectively. ét is the time step; it
can vary in time.

3.3.1 The pressure Poisson equation
By substituting (3.1) into (3.2) we get
n

vV.Uptl=v. (1—(‘57 +R") (3.3)

which is called the Poisson equation for the pressure. However, boundary conditions for
(3.3) are not yet available, since they only involve u. A better strategy is to discretize and
substitute boundary conditions first, and manipulate equations afterwards.

10

Therefore we use the discrete operators Dy and G, the analogons of V- and V, respec-
tively. Further we split the divergence operator in Df , operating on the inner domain, and
DE, operating on the boundary. Thus (3.1) becomes DFyn+! = —DBy"+!, However, we do
not know the boundary velocities at the new time step yet; in fact, they should be computed
from the internal velocities at the new time step. That is why we simply set u"*! = u™ on
the boundary; the error introduced here is of the same order (dt) as already caused by the
Euler discretization.

So the full discretization of (3.1) and (3.2) is

DFy"#! = —DPu" in F-cells (3.4)
ut! = u" + StR} — 5tGrp™ ™! on (3.5)

By substituting the latter into the former at this point we get
Ve ™
DEGup™*! = D,f'(—(g + R+ D,?(E) in F-cells.

Now this Poisson equation can be solved. The operator D,f G}, is a seven-point molecule in
the grid, consisting of a central (C,) and six other coefficients (Cy, Ce, Cn, Cs, Cy and Cy) at
city-block distance one. But first we take a look at the treatment of the free surface.

3.3.2 Free surface

Near the free surface, the equations (2.8) and (2.9) must somehow be discretized.

First we take a look at the velocities. The FF-, FS- and SS-velocities near the free surface
are obtained by solving the momentum equations. In the discretization molecules for the
derivatives SE- and EE-velocities appear. They are obtained in the following way:

e EE-velocities. Here discrete versions of (2.8), considered on surfaces parallel to the
z = 0-, y = 0- and z = 0- planes, are used, taking some equations out of

Ju Bw_o Ov Bu_o ow Bv_o

s Tt Moy e

dependent on the exact configuration of adjacent SS velocities. If an EE-velocities has
no SS-neighbour, there is likely to be not much fluid there, and the EE-velocity is taken
zero. The method is more explicitly treated in [4].

However, a neighbouring velocity can be SE, which has not been accounted for yet.

e SE-velocities. These velocities can appear in the momentum equations or in the equa-
tions needed for EE-velocities. Thus, there are a lot of possible configurations. In
the corresponding S-cell V - u = 0 is demanded. The discretization uses (in 3D) six
velocities: " Lo

Ue — Uy Un — Vs u — Wd
+ + =
he hy by,
with one of them being the desired SE-velocity. If the other five are known, which is
the case if they are computed from the momentum equations (FS- and SS-velocities)
or from the boundary conditions (BS), the SE-velocity is easily solved. However, if one
or more of the other five is SE, other measures have to be taken, see [4].

0

11

Now we consider the conditions for the pressure. In E-cells, the pressure is set to its atmo-
spheric value. The pressure in S-cells is less easily obtained.

Considering equation (2.8), the pressure p; on the free surface is taken to be py = po — 27H,
neglecting the term “%1“' Because pressures are described in cell centra, py is considered to
be linearly interpolated between pr and ps, the pressures in the F- and S-cell, respectively
(see figure 3.3):

h
ps+(n—1)pr=mnp;, where 7= (3.6)

Figure 3.3: Pressure locations at free surface and in the neighbouring cells

This equation can easily be combined with the Poisson equation in the F-cell as follows:
Using the introduced coefficients and not using C, and Cjy in this 2D-example,

Copp + Cepe + Cppn + Cypw + Csps = [, becomes
(Cp +(1—n) Cs)pp + Cepe + Cnpn + Cupw = fp—1C; pf

Now the Poisson equation can be solved; this is done by SOR-iteration.

3.3.3 SOR-iteration

Using a relaxation parameter w, SOR for the pressure yields

k41 k
ittt = (1-wpptt +

w 1* k k k41 k41 k41

Ep‘ (_Cnp2+ - Cep:;l+l - Cup;l+l = CsP?+l = prZ“ = Cdp2+l + fp)
where f, = V- (%‘; + R"). Here w can be varied automatically to obtain rapid convergence
(see {1]).

12

The advantage of SOR, besides its simple implementation, is the ease with which it vectorizes
and parallellizes. The independence of the vector elements is attained by using Red-Black
ordening, dividing the cells into two groups, like a (3D equivalent of) checkerboard.

However, to avoid if-statements in this part of the code, the Poisson equation should not only
hold for F-cells, but for all other cells as well. This demand can be fulfilled relatively easily:

e E,X and B- cells: Here the central coefficient (C,) is set to unity while all other are
zero. fp is set equal to po, causing the Poisson equations in these cells to be redundant.

e S-cellss Here the equation (3.6) is used: According to figure 3.3, for the molecule in
the S-cell p, = ps and p, = pr holds. Setting C, =1, Cp, =n — 1, f, = npy and other
coefficients at zero, the molecule becomes

1-ps+(n—1)-pr=n-ps
what was needed.

Having performed the SOR-iterations, the pressure at the new time step is entirely known.
The new momentum velocities are simply found from

u™t! = u" + 6t(-Vp"*t! + R}) (3.7)

Hereafter the other velocities near the solid wall (see [3]) and the free surface can also be
computed.

3.3.4 1In- and outflow

In- and outflow cells are mutated B-cells restricted to different conditions. They are treated
separately after the pressure Poisson equation has been solved.

The velocities between an inflow cell and a regular F-cell get a distinct (FI-)label. Indepen-
dent of the fluid configuration, these velocities always get a prescribed value. These values
are set together with the other boundary velocities.

F B X
F B

FEU 1 i - 0_L X
ox
B X B X X

Figure 3.4: inflow cell (left) and outflow cell (right)

Outflow cells are controlled less easy. Consider the triplet of F-,0-, and an X- cell next
to each other (Configurations where the other side of the O-cell is not an X- cell (rather

13

rare) are not yet supported by the program code). Between the first two cells, a momentum
equation is solved; hence that FO-velocity is treated like FF and FS.

To ensure that fluid flows through the cell smoothly, the outflow condition %—g— =0 is
discretized by setting the OX-velocity equal to the FO-velocity. Finally, the pressure in the
outflow cell is set to pg.

Although there are other possible implementations (prescribing second derivatives of the
velocity, for example), this way turned out to be practical.

3.3.5 The Donor-Acceptor algorithm

After the new velocity field has been computed entirely, the free surface is likely to be moved.
Therefore the free-surface labeling must be adjusted; and, before this, the fluid aperture F;.
A natural way to achieve this is by computing fluxes between cells. They are computed out
of the velocity, the area of the cell surface between the two cells and the edge apertures (since
a solid wall is inpenetrable the flux is lineary dependent of the non-boundary area of a cell
face). A nonzero flux indicates that fluid is to be transported from a donor cell to an acceptor
cell. However, there are a few restrictions to be considered:

- The donor cell may not loose more fluid than it already contains, so the maximum
amount is F - Vo). Note that an E-cell cannot be a donor cell.

- The acceptor cell cannot receive more fluid than the amount of available void space, so
the maximum amount is (F, — Fs) - Vo))

- In a surface cell, the position of the fluid is important; to anticipate the creation of
*holes’, the fluid must be 'tamped’ towards F-cells.

- Rounding effects can cause that 0 < F, < F}, not longer holds; in that case F; has to be
adjusted.

Fluxes that are computed out of a momentum velocity do generally not suffer of violations
of the first two points mentioned. However, particularly at the solid boundary, several adjust-
ments are needed to prevent the change of the total amount of fluid in £ due to cumulative
effects.

Having computed all new fluid apertures, the free surface labels for the next time step can
be adjusted. This operation marks the end of a single time cycle.

3.4 Determining the time step 6t

A significant speed boost can be achieved by permitting a varying time step, just as the
grid supports stretching. In calm intervals, when the fluid is hardly moving, this time step
should easily be increased while during more violent fluid motion a reduction is necessary.
The above considerations are quantified in the CFL-number: the Courant-Friedrichs-Levy
number, defined as

CFL=MAX(|""& | v] -6t |w|-6t>

he ' hy ' ks

14

where hz, hy and h, are the distances between two cell centra in each direction. Fourier
analysis shows that this number must not exceed 1.
This criterium can also be explained by looking at the Donor-Acceptor algorithm: if the
CFL-number is less than 1, then the movement of the fluid towards a cell does not exceed
the width of that cell; in other words, each time step the fluid is transported over no more
than one cell. Therefore changes in the free surface labeling are limited; moreover, the precise
transportation of fluid in the donor-acceptor algorithm does not allow a trans-cell movement;
a too large CFL-number will be the cause of fluxes which are too large and would ’overfill’
destination cells. On the other hand, one must not be too severe; the overall CFL-number is
only computed out of velocities where fluxes are defined.

In the program, the overall CFL-number is taken to be the maximum over all cells of the
number defined above.
The time step is doubled if the CFL-number is small enough for a few consecutive cycles. On
the other hand, if it turns out to be larger than a certain constant C in the present cycle, the
time step is immediately halved. The present cycle is not repeated since it is rather awkward
to reset all variables. For safety reasons, therefore, the threshold constant C should be taken
less than 1.

15

Chapter 4

Pre- and postprocessing

A main characteristic of more industrial applications is the presence of geometries that cannot
mathematically be described in a simple way: the problem doesn’t fit in a cube, is not exactly
axisymmetrical or has other special features.

Therefore, a method is needed that handles geometries which are complex in the full sense
of the word. Also, this method must allow easy insertions in and adaptations of existing
geometries. Moreover, a nontrivial initial configuration of the liquid could be needed in the
same manner as the geometry.

In the following, two different -and complementing- methods are discussed: CSG-trees and
2D-rotation.

4.1 CSG-trees

CSG stands for constructive solid geometry. The idea of this method is relatively simple:
a new object is created by applying the union, intersection, or difference operation to two
previously specified objects. This operation can be repeated, thus creating a complex object
out of simple primitives. More specified, the process is:

1. Define two primitives and drag them, eventually rotated, to specified places.
2. Choose an operator to create a new object.
3. Continue with this object and other primitives until the final shape is reached.

An object designed with the procedure above is called a CSG-tree, and since the operators
are binary, the tree is a binary one.
The leaves of the tree contain the primitives, while in each internal node one of the three set
operations is placed. This means that an object built up from N primitives is represented by
a tree of exactly 2N — 1 nodes (which is easy to see with induction), having a depth of at
least ?log V.

4.1.1 Attributes to primitives

A primitive object is described by a number of parameters. The challenge is to use as few
as possible primitives with as few as possible parameters and yet allowing a wide range of

16

possibilities. The primitives used by the program are only the box, cylinder, cone and ellipsoid
(planes must be represented as thin boxes).

All the primitives have at least three parameters giving a reference position (e.g. for an
ellipsoid: the centre), a few parameters for other aspects like radius or length, and two or
three describing a rotation. That is, a primitive object is assumed to be laid along the z-axis.
Rotation parameters describe a sequence of an z-axis, y-axis and z-axis rotation; objects with
z-axis symmetry, like a cylinder, therefore only need two rotations. The rotation is described
using a 4 x 4 rotation matrix.!

For example, a rotation around the z-axis is described as

z' 1 0 0 0

T
y | | 0 cosf —sing O y
Z | | 0 sin@ cosf@ O z
1 0 0 0 1 1

The matrix will be called R;(6). The other two rotations are obtained by shifting the z-,
y- and z-coordinates around(see [5]). Subsequent rotations are obtained by multiplying the

matrices, where the last rotation is set at the front of the concatenation. So the result, namely
Rz(w)Ry(¢)Rz(0)’ is:

coswsin ¢sin b cos w cos ¢ cos 8

€OS w Cos ¢ . . . 0

—cosfsinw +sinwsinf

. cosw cos § —coswsin@

cos ¢sinw . . .
+ sinwsin ¢sinf + cos w cos ¢ cos 8

—sin¢ cos ¢sin 8 cos ¢ cos 8 0
0 0 0 1

The question arises if this rotation is powerful enough; indeed, the standard form is
described as a rotation around a single arbitrary axis. However, it is rather difficult to specify
an axis given the position the object should be set to, as we will show below.

Let us assume we have an object, laid along the z-axis. The farthest point on the T-axis,
P, is (d,0,0)7 and O also belongs to the object. The question is by which rotation axis [the
object will be laid with P placed to @ = (a, b, c)¥;

Since O stays the same, the axis is in a plane V through O (I goes through O as well),
equally distanced from P and Q. It is easy to see that the two generating vectors are

v = (a +d,b,)T and v = (0,—c, »T

'In computer graphics, one of the aims is to describe general transformations in a standard way. To
include transformations such as scaling and translation in a single operator (matrix), a fourth vector element
is introduced, called the homogeneous coordinate; this is in practice set to 1. E.g., a translation in z-direction

1 0 0 ¢t
over a distance t is written as z' = 1-z + ¢ 1, giving a matrix 0 (1) (: g
0 0 01

17

(d,0,0)

Figure 4.1: rotation of object around rotation azis !

expect for d = —a, when, using d? =a? +b* + 2,
v =(0,1,007 and vy = (0,0,1)7

suffices.
The point K on ! which rotates P onto Q is of the form Avy + pve. This rotation has the
property that OK LK P and OK LKQ. Writing out the inner product, the former restriction
leads to

X ((a+d)? + 0 +¢2) + A(—d(a + d)) + 4 (6 +¢*) =0 (4.1)

while the latter turns out to deliver, after some algebra, the same equation.

For example, let P = (1,0,0)7 and Q = (0,1,0)7, solving for X gives A = ﬁ—"i_s“z. Having
v = (1,1,0)T and vy = (0,0,1)7, solutions in the ground plane (u = 0) are (0,0, 0)T from
an axis prependicular to V and (%, %,O)T on an axis in V while u is generally restricted to
[< —‘1—5. The elevation of [w.r.t. the ground plane determines the body rotation of objects
not symmetrical in z-direction. This makes the choice of a single rotation axis, not even
mentioning (4.1), quite difficult.

Therefore, we have decided to perform the rotation in three steps, namely by using the
three main rotation axes. This method is easier (see figure 4.2):
Rotation around z-axis (0): gives the desired angle with ground plane of an object not
axisymmetrical around its body axis (the z-axis, initially), like a box .
Rotation around y-axis (¢): gives the height above the ground plane: sin¢ = §.

Rotation around z-axis (w): gives the direction when projected on the ground plane: tanw =
b

2,
4.1.2 Performance of the algorithm

The tree scan algorithm checks for every point if it is in the desired geometry, that is, if it
is in the root of the tree (see figure 4.3 for an example). Unfortunately, we cannot use the

18

Figure 4.2: rotation of object using three rotation azes

sophisticated procedures used by red-black trees or even binary search trees.

Figure 4.3: An ezample of a CSG-tree

Suppose a tree, build up out of M nodes, contains N primitives in the leaves. All M
nodes have to be examined. For each point the following steps must be taken:
1. call left branch
2. call right branch
3. in-tree := left operator right, i.e. if the point P satisfies P € left branch operator right
branch, it is in the tree.
Hence in each internal node, after two recursive calls only one statement is needed. For the
leaves, where the primitive is, it is less simple:

19

1. Translate the point back according to the given translation parameters

of the tree.

2. Rotate the point back using the rotation matrix.
3. Check if it is in the original object, laid along the z-axis.

Having a the time needed for these three leave actions, and b the time to perform the set
operation, the total time is T = aN + b(M — N), b € a. Since M = 2N — 1, the total time
satisfies T = aN + b(N — 1) = aN.

Hence attention should be paid to methods which are smart enough to not further descend
when not necessary, i.e. are able to skip some of the leave actions (which take the most time).
It follows also that a balanced tree is not necessarily profitable; it depends on the specified
geometry which choice is the smartest, i.e. skips the greatest parts of a subtree most often.

The algorithm can be slightly modified to get the result faster:

The geometries consist in the program in a mere vage form: not the object itself is
described, but the fraction of each cell and cell face: the apertures. If per cell only the
eight vertices are examined, and they all return ’out’ or ’in’, assuming this result for
the whole cell and walls is not too risky.

Often only one of the two branches of a subtree needs to be examined; this follows from
the following logical expressions, where the left branch has already returned a boolean
value, and the right branch (denoted by 7 right) is still unknown :

IN U tright = IN;
OUT () tright = OUT,
OUT \ tright = OUT

Similar expressions hold when the right branch is examined first.

A bounding box can be attained at each primitive; combined bounding boxes can then
be set automatically in each node while building up by:

1. The vertices of the bounding box of a primitive are rotated; the rotated primitive
is contained in the rotated box;

2. The bounding boxes of two subtrees A and B are combined to a bounding box C
by examining the three directions, for example in the z-direction, where A; and
A, are the left and right coordinates of bounding box A, respectively:

union: C, = min(4,B)); C,= max(4,,B;);
intersection: C; = max(A;,B)); C,= min(4,,B;);
difference: if A; > B,
then C, = max(B;, A))
else C = Ap;
if A <B,
then C, = min(B,A4,)
else Cp= A

3. A simple check while scanning the tree is in this way: If a point is outside the
bounding box then further descending is not necessary.

20

4.2 2D-rotation

This method simply means that plain objects, defined in a 2D-plane, are rotated by a specified
angle around the z-axis. In an input file simple 2D-objects are specified while the program
(GeoMake) cares for the exact locations in 3D.

At an earlier stage it has been found that a description of rather diverse figures in 2D can
be reached using only lines (which allow triangles and rectangles) and circle segments (which
allow disk segments) (see [7]). This idea has been developed further.

The user defines the amount of arcs and lines and specifies thereafter all parameters (begin-
and end coordinates, begin- and end angles and filling parameters (to obtain 2D-areas out of
these 1D-varieties)) that are needed. The obtained areas are cut out of the z-z-plane, thus
indicating the area which is open for flow. Now the entire plane is rotated by a quarter, a
half, or for the whole. An example of an input file is described in Appendix B.

4.3 Combination

The two methods just described can easily be combined. In practice, this is mostly done by
creating a super-tree with the CSG-tree as the left branch and the rotated combination as
the right, having a union in the root. It can also be handy to incorporate the rotated 2D-
combination, interpreted as a single object, in the CSG-tree. This combination is adequate
to describe a lot of industrial-applicated configurations. As suggested before, not only a
geometry can be created, but also the fluid configuration. However, the fluid is bounded by
the part of the geometry that is open to flow. So the geometry data (i.e. the apertures) is
used to satisfy the invariant Fy > F.

Of course, degenerated cases are also possible: if the problem does not call for the use of a
tree or a 2D-rotation, these parts are used as neutral elements in the union of the super-tree.
The specification of dummy input files suffices in that case.

In figure 4.4, an example of the possibilities of a combination is found. The ’rings’ parallel
to the ground plane are created from 2D-structures; the rest consists of a nine-node tree.
The input files used to create this figure are found in Appendix B, together with a short
explanation.

4.4 Postprocessing

The final step of the computation procedure is to process and to interpret the enormous
amount of data. Below a list of the methods, as implemented in ComFlo, is discussed.

4.4.1 Movies

At equidistant time intervals, the whole state of the system (i.e. liquid configuration, velocities
and pressure) is written to file. Using the visualization system AVS, resulting images from
each state can be combined, thus creating movies. It is for example possible to read F}, once
at the beginning, while for every frame only F; and the pressure and velocities are read. All
large Fs-values can then be displayed, coloured according to pressure or velocity values.

In the case of motion with respect to an inertial reference system, the frames are combined
with the right translations or rotations relatively to each other.

21

Figure 4.4: Ezample of a combined geometry

4.4.2 Streamlines

Methods to describe the motion of a fluid include following particle tracks: streamlines. Note
that for unsteady flows, these streamlines are not closed varieties in 3D, thereby forcing the
program to take care of this by itself instead of having the work done by an external package.
To compute the movement of a particle, ordinary Euler time integration is used:

t T2—6t
:c(t2)=/2u(r)dr+:c(t1) or, discrete: @(Ty) = 3. u(t) - 6t +z(T1)
tl Tl

This involves an accurate computation of the velocity (u,v,t)! in each time cycle. This is
done by interpolation. However, the set of velocities which are to be interpolated is different
for each octant the concerned particle is in at that time step, as shown in figure 4.5.

Here the point P is somewhere in the upper(z) left(y) back(z) octant of cell (z, j, k). Then
the interpolated velocity in z-direction of a particle in point P is:

Us - hap + Up - hayy

A = Az;
i
-h -h
where Uf = Uf’i(A:u:va“ z,d
2 k Zk+1)
3 = Ub.d ¢ hz,u + Ub'u - hz.d
by = _

H(Azk + Azgyr)

22

¥or
hYsI -
"1 -'k .
L(l & i-1
| | ,
h, b1 u(i-lj‘j-l,k) lu(i-l, j, k
P. 2
i
h X,f \ ‘
u(i, j}l, k) j
u(i, j, k)
w_ 3
Figure 4.5: Interpolating u in the z,y plane
] — 1L,k)-h 5,5, k) - h
where again Uf,d _ u(z,])) yr t “(1).7)1‘:) y,l

3 (Ayj—1 + Ay;)
u(i,j— 1L,k+1)-hy, +u(i,j,k+1)-hy,

Urn =
£ L1(Ayj—1 + Ayj)
w(i — 1,7 — 1,k) - hyr +u(i = 1,5,K) - hyy
Ub,d = 1
5(Ayj—1 + Ay;)
U u(i— 1,7 — Lk+1) - hy, +u(@ —1,5,k+1) hy,
bu —

3(Ay;_1 + Ay;)

4.4.3 Fluxes

Fluxes are defined through planes in the geometry. Since the fluxes have already been com-
puted to be used by the donor-acceptor algorithm, implementation of this aspect is quite
straightforward.

4.4.4 Filling ratios

In order to get knowledge about the fluid configuration in time, fill boxes are a quantita-
tive alternative to movies. In interesting areas (more exactly, boxes surrounding them), the
amount of fluid is recorded. This is also handy to obtain fluid heights at certain points, by
taking fill boxes with width and length equal to zero.

23

4.4.5 Monitor points

Often information in points which are a priory known is needed. Therefore it is possible for
the user to define certain points, called monitor points, where at equidistant time intervals
physical information is recorded (velocities and pressure; this data is also obtained by inter-
polation). To make things easier, these points may also be described as grouped on lines and
circles.

4.4.6 Forces

Forces resulting by the fluid pushing the walls (called F' to distinguish them from body
and external forces) are often interesting features. Because they are described by pressure
times area, it is natural to compute them using the pressure and the apertures. Namely, by
resolving the force F!into (F., Fé, F!)T, they are easily combined with wall apertures Az, Ay
and A,, as shown in the figure.

Ay

Figure 4.6: This figure shows in what way the forces are computed

In this 2D-example, F! = (F}, FJ)T, and the force in the positive z-direction is computed
by
F.=F'cosa=(p-(AB))cosa=p- ((AB)cosa) =p-(BC) =p- (1 — A;)

In this case, the force in negative z-direction is zero, since there is not a wall on the left. The
total force in z-direction is obtained by taking the sum over all cells of the force in positive
z-direction minus the force in negative z-direction in each cell (using the two z-edge apertures
at the left and right of the cell). Note that in- and outflow areas do not endure fluid forces
on the geometry.

24

4.4.7 Other information

Other interesting features include data about numerical aspects and safety measures.

Defragmentation

Often it is interesting to know if an initially connected fluid configuration remains connected
or if it breaks down into several smaller parts and drops. The labeling method gives a simple
aid to determine this: namely, to look at the number of S-cells at a certain time.

Time step evaluation

Another numerical quantity is the varying value of the time step. Changes in 6t due to
controlling the CFL-condition are registered. It is found that such data indicates quite directly
in which state (wild, quiet) the fluid is moving through the geometry.

Autosaving an restarting

It is unevitable that sometimes something may go wrong during a multiple hour calculation.
Therefore an autosave routine has been implemented: at equidistant simulation time inter-
vals, the whole state of the system (that is, the subset of variables at the end of a time cycle
that is needed to begin the next cycle) is written to file. After a crash the computation can
be continued, starting from the last autosave action. It is also necessary that all secondary
files, where postprocessing results are stored, do not remain open during the computation.

As this autosaving occurs also automatically after the computation has ended in a regular
way (at T = TMAX), an interesting consequence is that prolongation after TMAX is possible.

25

Chapter 5

Results

5.1 Dambreak in a ball

To test the postprocessing options together with some numerical aspects, a dambreak in a
ball (radius %m) has been simulated. The centre of the ball is at the Cartesian origin. At
¢t = 0, the ball is filled with fluid for £ < 0 and y < 0; the only force is a gravitation in z—
direction of 5m s~2.

The simulation has been performed for a mesh of N3 cells, where N was 20,40 and 80;
the latter grid required some 20 hours CPU time on a Cray J90 (effective performance: 40

Mflops).

When finally a stationary condition has been achieved, the pressure at the ’south pole’
should satisfy the hydrostatic pressure p, = po + pgh, where pg is the atmosperhic pressure
(= 1), g the gravitational force and the density p set, as always, on unity. The height h is
analytically computed, given that a quarter of the sphere is filled, from below, with liquid:

4
% 37R = L = 2 Rt (1 &) rdzdrdd (5.1)
3 1h
= 27 - %RQ [Z = —3%2_7] —h (52)
= 27 R? (h — -3’%7) (5.3)

Solving for h with R = 0.5 we get h = 0.167 and thus the height of the fluid is R —h =
0.333. As shown in figure 5.1, the liquid height above the south pole indeed converges to this
value. The pressure at the south pole also satisfies the hydrostatic pressure, but tends to stay
under the predicted value for a long time due to the non-steadiness of the flow.

Another postprocessing option tested was the flux computation. To that purpose the
filling degree of the ball under the equator, i.e. the bottom half, was measured, together with
the flux through the plane z = 0. Because the wall is inpenetrable, the following holds:

Vo—Vo= [Q(t)dt
J

where Vj and V, are the amount of liquid under the equator at the ¢ = 0 and t = 5, respectively,
and @ the flux.

26

Force in z—direction

| —— fluid height)
|e——= (p-p0)/g at bottom

— N=80
--+ N=40
N=20
10 -« real
ti !
M=E 0 2 4 i) 8 10
ime(s

Figure 5.1: Liquid height and mazi-

mum pressure on the vertical NS-azis Figure 5.2: Force in the ball in z-direction

After having integrated the obtained flux numerically between t = 0s and t = 5s, which
turned out to be —0.0622 m3, the fluid difference of the bottom half of the ball was computed,
giving —0.0631 m3. This small difference can be explained by the various rounding actions
along the walls and the free surface.

Finally, the force as computed in section 4.4.6 has been measured. In the steady-state situation

(t — o00), the force in 2-direction should be: Fl'= [gh(z,y)dz dy where h(z,y) =
z24+y2<R?

VRZ =22 — 42 + hg — R, and hq being the steady-state height as computed above. Taking

the right integration limits and in polar coordinates the integral is simply computed as

Vho—h?

F! =2ng / (\/i—r2+hg—%)-rdr

0

which is approximately 0.67N. However, this value is rather dependent of the precise value
of hg as obtained in the simulation. The graph of figure 5.2 shows the forces for N = 20,40
and 80. Although the oscillations begin to differ for larger values of ¢, the convergence with
respect to the real value is apparent. The difference at t =10s between N = 20 and the real
value is less than 13% while the difference with respect to N = 80 is only 2% .

5.2 Falling drop

In this section we simulate the fall of a small amount of fluid (a drop) in order to test either
the outflow characteristics and the force implementation.

At the top of a long, small rectilinear cylinder a drop (in this case a ball) of fluid is posi-
tioned at ¢t = 0. The bottom of the cylinder consists of an outflow opening. With a normal
gravitational force of g = 9.8m s~2 it is to fall through the cylinder, while when reaching the
outflow opening, it should still be accelerating until it has totally disappeared through the

27

t =0.03s t =0.43s t=0.77s
Figure 5.3: snapshots of the fall of a drop a liquid

opening.
The formula for the height of the drop is

y(t) = y(0) +v(0) -t + 5 g2 (5.4)

where y(0) is the initial height (here 4.0m), v(0) the initial velocity (zero in this case) and ¢
the time.

Falling drop
4 . ; —

height (m)

—— traject of drop
—— traject according to formula

1o 0.2 0.4 0.6 0.8 1
time (s)

Figure 5.4: Movement of a particle in the drop.

The physical sizes are 1 m x 1m x 4.5m, while the covering grid consisted of 16 x 16 x 90
cells. The drop itself has a radius of 0.2m. It is of course not necessary to simulate for more
than one second.

Particles have been released at several places in the ball; the following figure (5.4) shows
the movement of a particle, set in the center of the ball at ¢ = 0, together with the position
according to formula (5.4).

Because the fluid moves through a lot of computational cells, a slight deformation of the drop
occurs.

Due to the sparse fluid distribution, this computation could be done in less than five minutes
on a moderate workstation, meaning ten minutes on a Pentium 200 personal computer.

Note that the height of the centre of the drop is not becoming negative due to the fact
that the interpolated velocity in the B-cell at the bottom is zero.

5.3 Toricelli

ComFlo is also capable of handling two-dimensional problems; this is done by setting one
(inner) dimension to 1, for example the y-dimension (this means that through the whole grid
only one F-cell in y-direction is used; the B-cells before and behind have F, = 0) and setting
the z-z-walls to free-slip. Indeed, the v velocity is zero, due to the condition un, = v = 0.
Furthermore two outer coefficients (out of six) in the left hand side of the pressure Poisson
equation are now zero.

Toricelli’s theorem, assuming potential flow, states that having a box filled with fluid and an
opening at height h under the free surface, the velocity with which the fluid goes out of the

box satisfies
u = \/2gh

where ¢ is the gravitational acceleration. Indeed, if no energy is lost, a particle having a
potentional energy of mgh at the top of the fluid column, has this totally converted into
kinetic energy %—va. Therefore all the walls in the box must be set to free-slip to support
this total conversion.

Figure 5.5: snap shot of Toricelli

29

velocity vs. height

2.5¢ — —
/ 25r s Y - -i
| [2 ‘
: \ V2gh
2t 2t \\ e gRRs-
I by -
=15 P —_
e A §1.5L =Y
_é' -
g 7 z | 1
[:3]
> 3 1t
// ————— | > \
i
ost ¥ . |
29 05
00 0.1 0.2 03 0.4 05 ot J
height (m) 0 1 2 3 4 5 6
time (s)

Figure 5.6: Here the velocity and the

i . Fi T ...and h inst time.
height are plotted against each other BUISSIE o, GGLTERS agaR SRS

The simulation was performed with a grid of 60 x 1 x 60 cells and lasted only a quarter
of an hour on a Pentium 200. The bottom of the box on the right part consists of an outflow
area (see figure 5.5). The following two figures show the velocity at the opening (measured by
a monitor point) versus the height of the fluid (acquired from a fill box around the left part).
The differences can be explained by the fact that the numerical model does not use potential
theory but the unsteady Navier-Stokes equations instead, which include viscous dissipation
and transient effects.

Bo o000 |

Figure 5.8: 2D-cylinder, normal (left) and rotated (right)

5.4 In- and outflow in a 2D-cylinder
Another two-dimensional example is the motion of fluid through a cylinder. The profile of the

velocity field in the direction of the length of the cylinder will be a parabolical one, according
to the well-known Poseuille-Hagen formula:

30

12uLQ
Y = o 5.
P=P2= (5.5)

where p; and p; are pressures at the begin and the end of the considered cylinder, L the
length, @ the flux through the cylinder (evidently constant), p the density of the fluid and h
two times the radius of the cylinder.
This formula is tested with the lower seventy percent of the cylinder initially filled with fluid,
using an outflow opening at the top and an inflow area (with a constant velocity w = 1.0
prescribed) at the bottom. After some time the filling degree of the cylinder reaches 1.0.
The grid consisted of 20 x 1 x 80 cells, while the physical sizes where 1m x 9m (the h above
equals 1).

velocity profiles velocity profiles
1.6 L 1.5 ——
- W
@
@ E
i3 =
¥ 2
2
" I- , I " 1 0.5 reference J
' — z=45 \ n=96
o.2|h, B e =
« -« inflow velocity n=24
{ : :
T 0 0.5 85 0 0.5
x(m) x(m)
Figure 5.9: Velocity profiles at different Figure 5.10: Velocity profiles with rotated
distances grid

It is seen that the velocity profile soon turns into the desired parabolic one (in figure 5.9
one sees that this may be assumed from z = 4). Note that the area under the graph stays the
same, indicating a constant flux. Measuring the pressure at two such parabolic profiles at a
distance of L = 4 (where the profile doesn’t change anymore, of course) gives Ap = 0.468.
With Q,h and p equal to unity and g = 0.01, these values clearly satisfy equation (5.5) up
to a reasonable degree.

Now the same computation is done on a grid, rotated by %w (in practice, of course, only
the geometry is rotated since the grid is rectilinear). It is clear that the number of cells is
increased since the bounding box of § is larger. The simulation has been repeated on a grid
of k x 1 x k cells, k = 24,48,96. The results of the velocity at the end of the cylinder are
shown in figure 5.10, together with the velocity of the first simulation. For the coarser grids,
several manipulations had to be carried out to get the inflow velocity right (since the number
of inflow cells is difficult to define here and the velocity consists of two nonzero components).

31

5.5 Demonstrations

Now a few demonstrations follow, giving an indication of ComFlo’s current capabilities.

5.5.1 Dambreak in ball

An AVS-movie has been made from the dambreak-in-ball computation (with N = 80) in
section 5.1. The simulation time was 4.5s, while 120 frames have been made. At the top
of most of the right pages in this report, a subset of these frames is shown; the frames are
equidistant in time.

¥jrction mpe

T t=428s
Figure 5.11: Snapshots of a dambreak in a Y-junction

t=149s T t=248s

5.5.2 Y-junction

A nontrivial complex geometry is the union of three cylinders forming the character Y (That is
the way it was created: a five-node tree with unions in the internal nodes and three cylinders,
rotated by %w, —%w and —%w around the y-axis). It can also be regarded as two blood veins
combined to form a third.

In the top of the two upper branches an amount of liquid is positioned, kept in place by a
dam. At ¢ = 0, the dam is removed and the liquid streams downward by a gravitation of % g-
In figure 5.11, snapshots of the movie made by AVS give an indication of this simulation.

32

5.5.3 Moving spheres-cylinders combination

Up to now all examples of liquid sloshing appeared in non-moving geometries. However, using
formula (2.5), rotations and oscillations can be included. The movement parameters, as set

in the input file, are used by the postprocessing tools in order to visualize those movements.

Here is an example of two balls connected with two cylinders. The gravitation is 5ms2

in z-direction. The geometry is oscillating in z-direction with a frequency of 0.25 s~! and an
amplitude twice the length of the object. The grid consisted of 40 x 40 x 80 cells and the
computation took five CPU-hours on a Cray J90.

33

34

t=00s

t=040s
t=1.00s
t=206s
t=2.80s
t=373s
t=25.87s

Chapter 6

Conclusions

In the previous chapters we have seen that, using a simple Cartesian grid and a sophisticated
labeling system, free-surface flow in 3D-complex geometries can easily be simulated; results
show a good accuracy, even with fairly coarse grids.

The adding of in- and outflow, the flow domain describing method using trees and 2D-rotation
and several posprocessing possibilities makes the current program suitable for industrial prob-
lems, especially when the high performance on supercomputers such as the Cray J90 and the
production facilities of movies is considered.

At this stage (summer 1997) still a lot can be done. Extensions for the near future could
be:

e Dynamical interaction: the moving fluid in the geometry exerts forces on the geometry
wall. This directly influences the motion of the geometry itself, thus causing a feedback
process. Examples are spacecraft and tanks in vehicles.

e Diversifying the B-cells: it has been noticed that boundary cells near a free surface need
another treatment than 'normal’ boundary cells.

o Local grid refinement, making it possible to pay attention to interesting parts of the
flow domain, in first instance near the boundary of €.

e Further enhancement of pre- and postprocessing features. Although at this stage almost
all forms of geometries can be drawn, a WYSIWYG-system by constructing geometries
is desireable (an import function for data out of drawing packages would also be handy).
Another never ending goal is to further enhance the 'backside’ of the program and supply
highly sophisticated graphical output.

e Heat transfer, further increasing the industrial applications.

e More robust implementation of, and diversifying the possibilities with virtual body
forces.

35

Appendix A

Program description

The numerical model has been implemented in a program called ComFlo. This appendix
gives more detailed information about the calling sequence and the several variables and
subroutines.

A.1 Calling sequence

The following scheme indicates the order in which the various subroutines are called. Routines
in italics are not completely necessary or represent a compulsary choice out of more possibil-
ities; they can be controlled by setting the right parameters in the input file Comflo.in.

Initialization SETPAR

GRID
BNDLAB BNDDEF / GETGEO
IOLAB
SETFLD AUTOSV / SURDEF
SURLAB
BC I0BC
VELBC
begin LOOP INIT IOBC
TILDE BDYFRC
SOLVEP COEFL
COEFR
PRESBC
PRESIT SLAG
BC I0BC
VELBC

VFCONV SURLAB

36

CFLCHK

PRNT

MATLAB

FILLBX

FLXOUT

FRCBOX

MPTOUT INTERP
STREAM INTERP
AUTOSV

end LOOP
In the LOOP sequence, the time integration is executed; the loop continues while the

maximum simulation time has not been reached.
The named subroutines are described in section A.3.

A.2 Common block variables

The globally used variables are defined within the common blocks structures in Fortran. All
but a few uninteresting are listed here, with short descriptions.

e /ADAMS/
Extra variables used for Adams-Bashforth time integration.
UNN(I,J,K), VNN(I,J,K), WNN(I,J,K) These are the old velocities in cell (, j, k).
COEF1,COEF2 These coefficients describe in what way the velocities at the "intermediate’
time level are defined: WN = COEF1 W + COEF2 WNN.
The combination (COEF1,COEF2) = (1,0) defines forward Euler, the combination (1.5, —0.5)
Adams-Bashforth.

s /APERT/
The volume and edge apertures.
AX(I,J,K) Edge aperture between cell (1,7, k) and cell (i + 1, j, k)
AY(I,J,K) Edge aperture between cell (3,7, k) and cell (i,5 + 1,k)
AZ(I,J,K) Edge aperture between cell (i, j, k) and cell (3,j,k + 1)
FB(I,J,K) Volume aperture w.r.t. the geometry of cell (3,7, k).
FS(I,J,K), FSN(I,J,K) Volume apertures w.r.t. the free surface of cell (z, j, k), at new
and old time level, respectively.

e /COEFP/
The coefficients in the pressure Poisson equation.
DIV(I,J,K) The right hand side of the equation in cell (3, j, k)
CC(I,J,K) Coefficient of p; j in left hand side.
CXL(I,J,K),CXR(I,J,K) Coefficients of pi+1,jx in left hand side.
CYL(I,J,K),CYR(I,J,K) Coefficients of p; j+1 in left hand side.
CZL(I,J,K),CZR(I,J,K) Coefficients of p; jr+1 in left hand side.

37

e /FLUID/

Characteristics of the fluid.

NU Kinematic viscosity number (v)
SIGMA Surface tension parameter
THETA Contact angle RHO Density

J/FORCE/
Characteristics of the external and body forces.

AMPL, FREQ Amplitude and frequency of the oscillation used in the subroutine BDYFRC
GRAV (i) Gravitational acceleration in direction ¢, i = 1,3.

/GRIDAR/
Positioning and distances of the cartesian grid.
IMAX, JMAX, KMAX Number of cells in the three directions

X(I), Y(J), Z(K) Coordinates of grid lines; cell (i, j, k) lies between
z(i — 1),2(2),y(j — 1), y(j), 2(k — 1) and z(k).
DXP(I),DYP(J),DZP(K) Sizes of each cell: DXP(I)=X(I)-X(I-1)
DXU(I),DYV(J),DZW(K) Distances between cell centres:

DXU(I) = (DXP(I) + DXP(I+1))*0.5

/LABELS/
Cell and velocity labeling.

PLABEL(I,J,K) Cell label based on the geometry only.

PLABFS(I,J,K), PLABFSN(I,J,K) Cell label based on the free surface, at new and old
time levels, respectively.

ULABEL(I,J,K), ULABFS(I,J,K) Velocity labels for u based on the geometry and free
surface, respectively, between cells (7, 7, k) and (i + 1,5, k).

VLABEL(I,J,K), VLABFS(I,J,K) Velocity labels for v based on the geometry and free
surface, respectively, between cells (¢, j, k) and (¢,j + 1,k) .

WLABEL(I,J,K), WLABFS(I,J,K) Velocity labels for w based on the geometry and free
surface, respectively, between cells (¢, j,k) and (¢,5,k +1) .

/NUMER/
Numerical parameters.

EPS Allowed error in pressure Poisson SOR-iteration process.

OMSTART Relaxation factor in SOR-iteration process at ¢t =0

OMEGA Relaxation factor (adjusted to improve convergence).

ITER, ITMAX Amount of SOR-iterations in a time cycle; divergence occurs when ITER
exceeds ITMAX.

NOM Counter for amount of time steps with constant OMEGA.

ITTOT Cumulative number of iterations.

ALPHA Upwind parameter: ALPHA= 1: full upwind

38

e /PHYS/
These are the variables characterizing the physics of the system.

U(I,J,K),UN(I,J,K) Velocity u between cells (¢, j,k) and (i + 1,3, k) at new and old
time level, respectively.

V(I,J,K),VN(I,J,K) Velocity v between cells (7,,k) and (¢,j + 1,k) at new and old
time level, respectively.

W(I,J,K),WN(I,J,K) Velocity w between cells (i, j,k) and (i, j,k + 1) at new and old
time level, respectively.

P(I,J,K) Pressure p in cell (¢, j,k) at new time level.

/PLOTS/
Specification parameters for the data being written to file to produce primary flow
information: plots and movies.

MATLDT, MATLNR Every MATLDT simulation seconds data for Matlab plots is written to
file, where MATLNR is the amount of times this has been done sofar.

AVSDT, AVSNR Every AVSDT simulation seconds data for Matlab plots is written to file,
where AVSNR is the amount of times this has been done sofar.

/PRT/
Specification parameters for numerical data written to screen and files.

PRTDT, PRTNR Every PRTDT simulation seconds numerical data is written to screen and
files, where PRTNR is the amount of times this has been done sofar.

/SAFETY/
Autosave parameters.

AUTONR, AUTODT Every AUTODT simulation seconds all simulation information is written
to file, where AUTONR is the amount of times this has been done sofar.
RESTART Check box indicating if the autosave file has to be used instead of the regular
initialization actions.

/SPACE/
Information about the geometry size and kind of flow domain.

DOMAIN Type of domain the fluid is set in (cube, cylinder, etc. or a user-specified
domain)

XMIN, XMAX Mesh size in x-direction: XMIN=X(0), XMAX=X(IMAX)

YMIN, YMAX Mesh size in y-direction: YMIN=Y(0), YMAX=Y (IMAX)

ZMIN, ZMAX Mesh size in z-direction: ZMIN=Z(0), ZMAX=Z(IMAX)

/TIME/

Variables about the discrete time.

T, TMAX Current and maximum simulation time, respectively.
DT Current time step 6t.

CYCLE Current time cycle.

39

e /TSTEP/

Parameters specifying the variable time steps.
CFLON Parameter indicating whether variable time steps are used
CFL Current CFL-number
CFLMIN Low reference CFL-number: if CFL stays under CFLMIN, DT can be doubled.
CFLMAX High reference CFL-number: if CFL jumps above CFLMAX, DT must be halved.
SMALLCFL Counter for number of cycles with low CFL-numbers

NRDTCHANGE Counter for amount of times the timestep has been halved or doubled so

far.

A.3 Subroutines

e AUTOSV

In: T, DT,CYCLE,AUTODT, AUTONR,U,V,W,P,FS and all other necessary variables.
Out: File autosav.dat

Description: At equal time intervals (every AUTODT simulation seconds), the whole state
of the computation is saved, which can be restarted after a crash. Moreover, since this
routine is called after the regular computation, it can be used to continue after TMAX.

e AVS

In: FB, FS, IMAX, JMAX, KMAX,U, V, W, P, AVSDT, AVSNR, T, DT
Out: Files comflo###.1d and comflo###.dat

Description: At equal time intervals (after every AVSDT seconds), files for visualizing
(3D) data in AVS are created.

e BC

In: AX, AY, AZ, FB, IMAX, JMAX, KMAX,

DXP, DYP, DZP, U, ULABEL,V, VLABEL, W, WLABEL
Out: U, V, W
Description: The four solid boundary velocities, namely BB,FB,SB and EB are com-
puted using the apertures and the boundary conditions (no-slip or free-slip). The veloc-
ity labels define the precise computation of these velocities. Finally, the routines IOBC
and VELBC are called to determine the free surface and in- and outflow velocities as
well (see sections 3.3.2 and 3.3.4).
Note that boundary velocities use internal velocities from the previous time step.

e BDYFRC

In: AMPL, FREQ, DOMAIN, GRAV, T
Out: DQDT, OMET, DOMEDT, GRAV

40

Description: This routine is called from TILDE in order to determine the virtual body
force, described by %% (DQDT), w (OMET) and %’ (DOMEDT). It is also possible to prescribe
or adjust the external body force F' (GRAV).

BNDDEF

In: DOMAIN, ILOC, JLOC, KLOC, NRINTP

Qut: AX, AY, AZ, FB

Description: For each cell this subroutine is called from BNDLAB to compute the
apertures in the case that DOMAIN # 0, i.e. if only a standard geometry is needed.
The cell is divided into (NRINTP)3 points (where each cell wall gets (NRINPT)? points)
and the fraction of the points in the cell or cell wall that belong to the interior of the
geometry is exactly the value of the volume and edge apertures, respectively.

BNDLAB

In: DOMAIN, IMAX, JMAX, KMAX

Qut: AX, AY, AZ, PLABEL, ULABEL, VLABEL, WLABEL

Description: First, either GETGEO or BNDDEF is called to obtain the apertures.
Second, using these apertures, the cells are labeled F,B and X. Third, the geometry-
based velocity labels are set. Fourth, these labels are adjusted to involve free slip and
in- and outflow velocity labels.

CFLCHK

In: CFLMIN, CFLMAX, DT, U, Vv, W, DXU, DYV, DZW

Out: DT

Description: Each time step the CFL-value (see section 3.4 is computed. If this value
is small enough (< CFLMIN) a few consecutive cycles, the time step is doubled. On
the other hand, if it is larger than CFLMAX, the time step is immediately halved.

COEFL

In: IMAX, JMAX, KMAX, DXP, DYP, DZP, DXU, DYV, DZW,

PLABFS, ULABFS, VLABFS, WLABFS

QOut: CC, CXL, CXR, CYL, CYR, CZL, CZR

Description: The coefficients (namely one central and six neighbour coefficients (city
block distanced)) of the matrix on the lefthand side of the Poisson equation are com-
puted in F-cells every time cycle. In other cells the coefficients are set in a different
way: see section 3.3.3.

41

COEFR

In: IMAX, JMAX, KMAX, DXP, DYP, DZP, PLABFS, U, V, W, DT

Out: DIV

Description: The righthand side of the Poisson equation in F-cells is computed every
time cycle. In other cells the righthand side is computed in a different way: see séction
3.3.3.

FILLBX

In: DXP, DYP, DZP, FB, FS, NRBOXES, FILLDT,FILLNR, FCOORD1, FCOORD2

Out: files fill###.dat

Description: This subroutine produces during the computation every FILLDT seconds
information about the filling degree of boxes specified with FCOORD1 and FCOORD2.

FLXOUT

In: DXP,DYP,DZP, XFLUX,YFLUX,ZFLUX,NRFLUXES,FLUXDT,FLUXNR,FLCO1,FLCO2
Out: files flux###.dat

Description: Here the value of the fluxes through planes specified with FLCO1 and FLC02
is written to file every FLUXDT seconds.

FRCBOX

In: DXP, DYP, DZP,FB,FS,P, NRFBXS,AX,AY,AZ, FCO1, FC02, FRCNR, FRCDT
Out: files force###.dat

Description: Here the forces on the wall in boxes specified with FCO1 and FCO2 are
written to file every FRCDT simulation seconds.

GETGEO

In: IMAX, JMAX, KMAX, files geodata.dat and liqdata.dat

Out: AX, AY, AZ, FB, FS

Description: If DOMAIN = 0, this routine is called by BNDLAB to obtain the geometry
and initial liquid configuration from files made by the preprocessing programs.

GRID

In: IMAX, JMAX, KMAX
QOut: X, Y, Z, DXP, DYP, DZP, DXU, DYV, DZw
Description: A uniform grid is created.

42

o INIT

In: COEFi, COEF2, CYCLE, FS, IMAX, JMAX, KMAX, U, V, W

Out: CYCLE, FSN, U,UN,UNN, V,VN,VNN, W,WN,WNN

Description: This routine begins a new time cycle. Here the cycle is increased by one,
U,V,W are saved in UNN,VNN,WNN and reset; and UN,VN and WN are computed according
to the time integration coefficients COEF1 and COEF2. Finally FS is copied to FSN.

INTERP

In: I,J,K, XPT, YPT, ZPT, DXP,DYP,DZP,DXU,DYV,DZW

Out: PI, UI, VI, WI

Description: The pressure and velocities are computed at coordinates
(XPT,YPT,ZPT) in cell (5,5,k). This is done by interpolating neighbouring values
using the location of the point in the cell.

I0BC

In: IMAX,JMAX,KMAX, ULABEL,VLABEL,WLABEL
Out: P, U, V, W
Description: Boundary conditions with respect to in- and outflow cells are set.

IOLAB

In: IMAX, JMAX,KMAX,PLABEL

Out: PLABEL

Description: In- and outflow cells are labeled by changing boundary cells, i.e. cells with
PLABEL=2.

LIQPCT

In: DXP, DYP, DZP, IMAX,JMAX,KMAX, FB, FS
Out: LIQUID, VOLUME
Description: Computes the amount of liquid and writes the liquid percentage to screen.

MATLAB

In: FB, FS, IMAX,JMAX,KMAX, X,Y,Z, U,V,W,P, MATLNR,MATLDT, T, DT

Out: files comflo###.m and file coord.m

Description: Every MATLDT seconds files are created to visualize the geometry, the free
surface, the velocity field and the pressure in certain planes in Matlab.

43

e MPTOUT

In: U,V,W,P,NRMPTS,NRLINES,MPDT,MPNR,FCOORI,FCOORQ,ﬁks mpoints.dat

Out: files speed.###.dat and lines###.dat

Description: in mpoints.dat, monitor points and monitor lines are defined. This
routine writes the pressure and velocities on those positions, as computed by INTERP
to the specified files every MPDT simulation seconds.

e PRESBC

In: IMAX,JMAX,KMAX, PLABEL, PLABFS, SIGMA, THETA

QOut: P,CXL,CXR,CYL,CYR,CZL,CZR,CC

Description: Here the free surface condition is applied to S-cells; See section 3.3.2 for
further information.

At the end the coefficients of the pressure Poisson equation are scaled by the central
coefficient.

¢ PRESIT

In: IMAX,JMAX,KMAX, PLABFS, PLABFSN, EPS, OMSTRT, OMEGA,

CYCLE, ITER, ITMAX, NOM
Out: P
Description: This routine solves the pressure Poisson equation using SOR. Starting with
OMSTRT, the relaxation parameter w (OMEGA) is, when possible, changed to obtain the
highest convergence ratio. The routine SLAG is called for every individual SOR-sweep
while a certain error (DELTA) exceeds EPS and the number of iterations ITER stays less
than ITMAX. If the second guard is not longer the case, the program terminates because
of an apparent non-convergence.

e PRNT

In: IMAX,JMAX,KMAX, U,UN,V,VN,W,WN,PLABEL, PLABFS,PRTDT,PRTNR, T,DT

Out: screen information, file comflo.out, file nriter.dat, file defrag.dat
Description: This subroutine handles the more general output to screen and files, which
is done every PRTDT seconds. First, information like time, iterations and changes in ve-
locities and pressure is printed. The file nriter.dat shows the relation between timesteps
and total amount of SOR-iterations versus the simulation time. The file defrag.dat
gives an indication of the defragmentation (breaking up) of the fluid.

e SETFLD

In: IMAX,JMAX,KMAX, RESTART
QOut: U,V,W, P
Description: Here the state of the fluid is initialized. If RESTART equals one (in case

44

of a restart or a continuation) the routine AUTOSYV is called to obtain the necessary
information and a call to SURLAB sets the labeling. At this point all data to continue
has been acquired.

Otherwise, in an ordinary startup, SURDEF and SURLAB are called to set the initial
liquid configuration and labels. Also the velocities are initialized (usually to zero) and
the atmospheric pressure is defined in the whole grid. At last BC is called to obtain
the initial boundary conditions.

SETPAR

In: file comflo.in, file mpoints.dat

Out: XMIN,XMAX,YMIN,YMAX,ZMIN,ZMAX,IMAX,JMAX,KMAX,NRINTP,TMAX,DT,
CYCLE, SIGMA,THETA, NU,DOMAIN, AMPL,FREQ,GRAV,ALPHA,EPS,OMSTRT,
OMEGA,ITMAX,NOM,CFLON,CFLMIN,CFLMAX,NRPRNT,PLOT23,NPMATL,
MATLDT,NPMATH,MATHDT,PRTNR,PRTDT

and all other postprocessing information (more than 50 variables)

Description: All variables given above are read or initialized. Moreover, all information

about the postprocessing (frequence of writing, location of boxes, planes, lines and

points) is read. For more information see the input files.

SLAG

hrIMAX,JMAX,KMAX,DIV,CXL,CXR,CYL,CYR,CZL,CZR,ITER,OMEGA,PLABFS,P
DELTA,ITER,P

QOut: DELTA, ITER, P

Description: Here one SOR-sweep is executed using a red-black ordening. The relax-
ation factor is OMEGA. An adjusted pressure field P is returned, together with the norm
DELTA of the difference with the previous P.

SOLVEP

In: IMAX,JMAX,KMAX,ULABFS,VLABFS,WLABFS,U,V,W,P,DT,DXU,DYV,DZW

Out: U,V,W,P

Description: This is the main routine to solve the pressure and obtain new velocities
as described in chapter 3. First, COEFL and COEFR are called; then the pressure
Poisson equation is solved by calling PRESBC and PRESIT. The new momentum
velocities are computed according to formula (3.7); BC is called to adjust the boundary
velocities.

STREAM

huIMAX,JMAX,KMAX,NRPART,STRMDT,STRMNR,XPART,YPART,ZPART,DT
Out: files partic###.dat

45

Description: This routine produces files containing streamlines. Every cycle, the velocity
of each particle is computed by INTERP and the position of the particle is computed
using forward Euler. The files are adjusted every STRMDT simulation seconds.

SURDEF

In: DOMAIN,FB, IMAX,JMAX,KMAX,X,Y,Z
Out: FS
Description: The initial fluid configuration, described by FS, is defined.

SURLAB

In: IMAX,JMAX,KMAX, PLABEL, PLABFS, FS, ULABEL,VLABEL,WLABEL

Out: ULABFS, VLABFS, WLABFS, PLABFS, PLABFSN

Description: Here the free-surface labels (F, S, and E and the various velocity labels)
are set at every time step (since the fluid configuration is time-dependent).

TILDE

In: IMAX,JMAX,KMAX, X,DXP,DXU,Y,DYP,DYV,Z,DZP,DZW,
GRAV,DQDT,DOMETDT,OMET,DT,UN,VN,WN ,ULABFS,VLABFS,WLABFS

Out: U,V,W

Description: Here the term u™ + §t R" as described in section 3.3.1 is computed. Since

R" contains all internal, external and body forces, the routine BDYFRC is called for

each grid point.

VELBC

In: IMAX,JMAX,KMAX,FS, DXP,DXU,DYP,DYV,DZP,DZW,U,V,W,

ULABFS,VLABFS ,WLABFS

QOut: U,V,W

Description: In this routine the free-surface velocities EE and SE are computed using
the free-surface labels and the discretized free-surface boundary conditions.

VFCONV

In: IMAX,JMAX,KMAX, FB,FS,FSN,AX,AY,AZ,DXP,DYP,DZP,

DT,PLABEL ,PLABFS ,ULABFS,VLABFS,WLABFS,U,V,W
Out: FS, XFLUX,YFLUX,ZFLUX
Description: Here the donor-acceptor algorithm is performed. First the fluxes between
F-, S- and E-cells are computed. In these cells the values of F; are recomputed using
those fluxes. Since after that the labeling is obsolete, SURLAB is called to set the new
labels.

46

Appendix B

Pre- and postprocessing

To initialize the geometry and liquid configuration, a program called GeoMake, respectively
LigMake has been written. In the following sections we will discuss the the main calling se-
quence, the routines of this program, the necessary input files and postprocessing possibilities.

B.1 Main calling sequence

To run a complete computation, the sequence is:

geomake in2D_1.txt intree_1.txt
ligmake in2D_2.txt intree_2.txt

comflo

It is noted that the input file comflo.in, which is not stated here, is used by all three programs.

B.2 Subroutines

Since GeoMake and LigMake are mostly the same, we will only discuss the former one.
Because FORTRAN does not support recursive functions (which are used to descend and
ascend the binary tree) the program was written in ANSI-Pascal.
¢« MAIN
readin; makegrid; init;
arcsscan ; linesscan;
scangeo ;

writegeo

e procedure arcsscan
In: all parameters of all arcs
Out: A subset of the z-z domain indicating which regions w.r.t. the arcs are inside the
geometry.

47

procedure init

In: ANGLE,IMAX,JMAX,KMAX

Qut: FB,AX,AY,AZ ,MAT,XCEN, YCEN

Initializes the apertures, the 2D-description matrix and the rotation center (the latter
is determined by ANGLE, which indicates an entire, a half, or a quart rotation).

function inner

In: tree

Out: TRUE/FALSE

The actual tree-descending function. Called by placecell with the root of the tree, it
recursively calls itself at every branch, while at the leaves it calls the several functions
that handle the primitives.

function inrot

In:XPT,YPT,ZPT

Out: TRUE/FALSE

This function, called from placecell, determines if

the point(XPT,YPT,ZPT) belongs to the rotated 2D-geometry.

procedure linesscan

In: all parameters of all lines

Out: A subset of the z-z domain indicating which regions w.r.t. the lines are inside the
geonetry.

procedure makegrid

In: IMAX,JMAX,KMAX

QOut: X,Y,Z, DXP,DYP,DZP,DXU,DYV,DZW

This is the analogon of the subroutine GRID in ComPFlo.

procedure placecell

In: I,J,K,NRINTP

Out: FB,AX,AY,AZ

Here the apertures for each cell are returned. First a number of points in the cell
(influenced by NRINTP) are defined, whereafter for each point inner and inrot are
called. According to the number of times when TRUE is returned, the apertures are
computed.

procedure readin

In: files comflo.in, intree_1.txt and in2D_1.txt

Out: IMAX,JMAX,KMAX,NRINTP,LEFT, ANGLE, tree, lines, arcs

Handles reading in the user- defined input files containing domain information, the tree
and the 2D-description.

48

s procedure scangeo
In: tree, IMAX, JMAX ,KMAX,X,Y,2
Out: TRUE
Here the routine placecell is called for every cell, taking the domain of the tree into
account.

e procedure writegeo
In: FB,AX,AY,AZ
Out: files geodata.dat, fbdata.fld and fbdata.dat
Writes apertures to file to be used by ComFlo, while fbdata.fld and fbdata.dat are
created to view the geometry in AVS.

B.3 Files

ComPFlo needs in essence only one file, comflo.in, but can produce hundreds of output files,
though many of them have the same characteristics. Furthermore, GeoMake also needs two
input files. Here is a description of them:

B.3.1 Input files

comflo.in

The file comflo.in is the main input file. An example:

domain parl par2 par3 par4d parb. par6 slip
4 -0.3648 0.3648 -0.2508 0.2508 -0.2508 0.2508 O

0 0.0 0.0 0.0 0.0 0.0 0.0

rho nu sigma theta

1.0 1.0E-6 7.3E-5 0.0

imax jmax kmax sX sy sz xc yc zc

64 44 44 1.0 1.0 1.0 0.0 0.0 0.0
eps omega itmax alpha orde4 feabl feab2 nrintp exact
1.0E-5 1.3 10000 1.0 0 0.0 0.0 1 0

49

dt tmax cfl cflmin cflmax
0.001 0.001 1 0.1 0.5

0.0 0.0 0.0

amplx freqx amply freqy amplz freqz w0 v0 w0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
omex omey omez tup tdown x0 y0 z0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

load nsave

0 0

npavs tbavs comavs npmatl tbmatl nprnt

0 0.0 0 1 0.0 100
mpt ntmpt
0 0

0 0

x1 x2 y1 y2 zl z2
nfrc ntfrc

0 0

x1 x2 y1 y2 Zz1 z2

nflux ntflux
0 0
x1 x2 y1 y2 z1 22

A more detailed description is found at the end of the file itself.

50

in2D.txt
An example of the file in which the initially 2D-object (before rotating) is described, follows.

angle left
1 0
narcs nlines
21

arcs:

xm zm
0.45 0.9
0.45 -0.9
lines:

x1 z1
0.4

Angle gives the rotation angle: 1 means 2w, 2 means , while 3 indicates a rotation of a
quarter. Note that the centres of rotation depend on this angle. A degenerated state is
represented by an angle of 0, which means that the z,z pattern obtained by the arcs and
lines holds for each value of y.

Left is a check box indicating if the arcs and lines are situated on the left of the rotation
center.

After the number of arcs and lines is specified, they are listed by their parameters. For the
arcs, xm and zm denote the center, r the radius, and t1 and t2 the begin- and end angle of
the arc, in radians. If side equals one, the part at the side of the center is taken, if it is two,
the other side is added to (2.

Line segments are described by their begin point (x1,2z1) and their end point (x2,z2). side
= 1 denotes the rectangular triangle under the line segment, side = 2 the upper triangle. If
side = 3, the end points are the opposites vertices of a rectangle. Note that horizontal and
verticle line segments do not contribute to €.

intree.txt

An example of the CSG-tree description is the following input file. Note that before the tree
is defined, all primitive objects are listed.

nprims

5

nr; ptype ; parameters
!

00.0-0.90.51.0-1.57 0.0

4
0.
2
4
0.

00.00.90.51.01.57 0.0

3

1

-0.5 -0.05 -0.05 1.00.10.10.00.00.0
4

2

-0.45 0.0 -1.0 2.0 0.05 -1.57 0.0

5

2

0.45 0.0 -1.0 2.0 0.05 -1.57 0.0

ntrees

1

length x1 yi z1 x2 y2 z2
9 -0.5-0.5-1.00.50.51.0

nr ; op/prim left right

1

=1 23

After the amount of primitive objects has been specified (using nprims), they are listed by
their number, object type (where 1 is a box, 2 a cilinder, 3 an ellipsoid and 4 a cone). Each type
has a (different) amount of parameters. The first three always indicate the reference point
from which the object is laid in z—direction. Then several object properties are specified
(length,radius etc.) while the last parameters are the rotating angles (@, ¢,w) around the
axes (see chapter 4). However, cone, ellipsoid and cilinder do not need a rotation around the
T —axis.

After the tree check box is set to one, the number of nodes (1ength) is specified, together
with the bounding box of the tree. Then the list of nodes follows, beginning with the number
and after that the type of the node:

A value smaller than zero represents a set operation: —1 for union, —2 for intersection and
-3 for difference. The other two values are the node numbers for which the operator holds,
i.e. they are the roots of the subtrees.

52

When the type value exceeds zero, the node is a leaf and the type value is just the object
number listed above the tree. Since a leaf has no subtrees, the other two values may be set

as dummy num

bers.

It is noted that the files intree.txt and in2D.txt may be dummy files, consisting only of
zeros at places where the number of arcs, lines, objects and trees is to be found. For example,
it is possible to run ligmake with two dummy files and specify the fluid configuration in the
subroutine SURDEF in ComFlo.

B.3.2 Output files

e AVS files
comflo.###.Ad describes the structure of the corresponding comflo.###.dat file stating
the dimensions, coordinates, vector length, and so on. An example:

AVS fi
ndim = 3
diml = 8
dim2 = 8
dim3 = 3
nspace =
veclen =
data = f
field =
label =
label =
label =
label =
label
#
variable

variable
variable
variable
variable

eld

6
6

3

5

loat
rectilinear
fluad
x-velocity
y-velocity
z-velocity
= pressure

1 file=comflo101.dat filetype=unformatted
2 file=comflol01.dat filetype=unformatted
3 file=comflol101.dat filetype=unformatted
4 file=comflo101.dat filetype=unformatted
5 file=comflo101.dat filetype=unformatted

skip= 0
skip= 946688
skip= 1893376
skip= 2840064
skip= 3786752

coord 1 file=coordx.dat filetype=ascii skip=1 offset=0 stride=1
coord 2 file=coordy.dat filetype=ascii skip=1 offset=0 stride=1
coord 3 file=coordz.dat filetype=ascii skip=1 offset=0 stride=1

stride=1
stride=1
stride=1
stride=1
stride=1

The data in comflo.###.dat is binary formatted; however, on different machines binary
data is not compatible, forcing to make a different comflo.###.fld according to the
current machine.
The files coordx.dat, coordy.dat, coordz.dat contain all coordinates.

e MATLA
coord.m

B files

53

comflo###.m
See below.

s speed#it#.dat
Contains columns with time,velocity (u,v,w) and pressure in specified point.

o fill###.dat
Contains columns with time, amount of liquid and liquid percentage in specified box.

s force#it#.dat
Contains columns with time and forces in z,y- and z direction in specified box.

o flux###.dat
Contains columns with time and flux through specified plane.

s partic###.dat
Contains columns with time and position (in z,y, z-coordinates) of a specified particle.

e nriter.dat
Contains columns with total number of cycles and SOR-iterations at certain time levels.

s dt_hist.dat
Contains the cycles where time step is changed, denoted by +1 if doubled or —1 if
halved in the second column.

o defrag.dat
Contains columns with time and absolute and relative number of S-cells.

s autosav.dat
The restart file containing all information to continue a stopped calculation. Is auto-
matically compressed because of the great size.

B.4 Postprocessing tools

B.4.1 AVS

The files comflo###.fld and comflo###.dat are used together in AVS-networks. A network
consists of several modules attached to each other. After data has been read in by the Read
Field module, several operations on the multi-vector filed are performed when finally part of
the data (e.g. the free surface coloured with a velocity) is visualized in the Geometry Viewer
module. AVS has been a powerful tool to visualize the 3D-aspects of the generated data.

B.4.2 MATLAB

The files coord.m and comflo###.m, as created by ComFlo, can straightforward be read
into Matlab. coord.m contains only data of the grid (vectors z,y, z) while a file of the other
kind defines matrices which values are physical (including the free surface) data in a plane of
the geometry at one time step. Using commands like contour (for the free surface), quiver
(for velocity fields) and surf (for the pressure), this data is visualized.

For the other aspect, information about evolution in time instead of place, a menu system has

54

been written with which graphs of velocities and pressure in points or on lines, filling degrees
in certain boxes, forces in certain boxes, fluxes through certain planes and streamlines can be
made. The concerned data files cannot be read in directly, but with commands like fscanf.
It is also quite easy to process the data files containing numerical data. For more information
we refer to the concerning routines in ComFlo and the Matlab help functions.

Bibliography

(1] E.F.F Botta (1992) Eindige differentiemethoden, Lecture notes RuG.

[2] J. Dijkstra (1997) Simulation of Flow past Complex Geometries using Cartesian Grids,
Master’s thesis RuG.

[3] J. Gerrits (1996) Fluid Flow in 3-D Complex Geometries - A Cartesian Grid Approach,
Master’s thesis RuG.

[4] J. Gerrits (1996) Three-Dimensional Liquid Sloshing in Complex Geometries, Master’s
thesis RuG.

[5] D. Hearn and P. Baker (1994) Computer Graphics, Prentice Hall.
[6] H.W. Hoogstraten (1992) Stromingsleer, Lecture notes RuG.

[7] B. de Groot (1996) SAVOF’96 — Simulation of free-surface liquid dynamics in moving
complex geometries, Master’s thesis RuG.

[8] A.E.P. Veldman (1994) Numerieke stromingsleer, Lecture notes RuG.

56

