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Abstract

The effect of classical gravity on spin dynamics is studied. Normally,
focusing magnets keep the particles from falling down. However, the mag-
netic fields from these focusing magnets influence the spin dynamics. This
is calculated for EDM experiments. Also the gyroscopic effect of the ro-
tation of the earth on spin dynamics is studied; a particle at rest on the
earth actually finds itself in a rotating system and this has influence on
the spin dynamics. An object moving with respect to the earth also ex-
periences the so called Coriolis force. A corrected equation of motion for
the intrinsic spin, which takes into account the gyroscopic effect and the
Coriolis force, is obtained. Two other, less relevant, effects due to gravity
and the fact that experiments take place on the rotating earth are also
discussed. These are the centrifugal force and spin-gravity coupling.
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1 Introduction

Many present-day experiments in particle physics are based on measurements of
intrinsic spin of particles. Because the experiments get more and more precise,
effects from the rotation of the earth and gravity could start to play a role within
these experiments.

An example of such an experiment is the search for electric dipole moments
(EDM’s) of elementary particles. The Standard Model predicts EDM’s to be
very small, much smaller than one would be able to measure in the near future
(e.g., it predicts the electron EDM to be < 10−38 e · cm [1]). However, some new
theories like Multi-Higgs models, Left-Right Symmetric models or SUSY claim
the EDM’s to be many orders of magnitude greater [2]. At the moment, it seems
possible to measure EDM’s as small as 10−29 e · cm [3], this is well within the
range of the predictions of these new theories. Thus, if one would really measure
an EDM at such a high level, it would be an indication for physics beyond the
Standard Model.

In one group of EDM experiments [4, 5] one stores particles (e.g., deuterons
or muons) in a storage ring for 10–1000 seconds. These particles rotate in
the ring with the cyclotron frequency. The intrinsic spin precesses, due to the
magnetic dipole moment, in the horizontal plane around the vertically directed
magnetic field. Because the magnetic field transforms under a Lorentz transfor-
mation and the particles rotate with very high velocities, the particles experience
a very high electric field. This electric field is higher than any directly applied
electric field that would be practical to use. If the particles possess an EDM,
there will be an additional precession around this radially directed electric field.
This precession is very small, between 10−5 and 10−7 rad/s. During the time
the particles are stored in the ring, this precession leads to a vertical polariza-
tion of intrinsic spin. This polarization increases linearly with time and is a
measurement for the EDM. However, the intrinsic spin behaves just like a ‘clas-
sical’ gyroscope and thus also changes direction due to the rotation of the earth.
In Section 3 this gyroscopic effect on this kind of experiments is discussed.

This article starts with a discussion of the effect of gravity on this kind of
experiments. The particles don’t just fall down when they are injected into
the storage ring, because the particle beam is focussed by quadrupole magnets.
However, this leads to a non-zero average radial magnetic field felt by the par-
ticles, which causes an additional precession in the vertical plane and thus gives
a false EDM signal.

Because the experiment takes place in a noninertial frame, namely the rotat-
ing earth, the particles in the storage ring seem to be affected by some fictitious
forces. These forces arise from the fact that Newton’s second law F = ma is
only valid in an inertial frame. For a particle in a non-inertial frame this equa-
tion takes the form Feff = maf + non-inertial terms. Here maf is the ‘real’
force. To see what the non-inertial terms are, consider an arbitrary vector G in
a rotating reference system. The time rate of change of this vector seen from a
fixed reference frame is [6](

dG
dt

)
f

=
(

dG
dt

)
r

+ Ω×G, (1)

where the first term on the right-hand side is the time rate of change in the
rotating reference frame and Ω is the angular velocity of the rotating frame.
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The idea is to apply this equation first to the postion vector r and then another
time to the velocity vector v = dr

dt . When this is done, the following equation
for the acceleration in a frame fixed on earth arises (for a detailed calculation
see [6])

ar = af − 2Ωe × v −Ωe × (Ωe ×R). (2)

The (non-relativistic) force in this frame can be written as

Feff = maf − 2mΩe × v −mΩe × (Ωe ×R). (3)

The second term on the left-hand side in this equation is the so called Coriolis
force and the third term is the centrifugal force. Both these terms were first
derived by the French mathematician Gaspard Gustave de Coriolis (1792-1843)
[7]. In Section 3, where the particle and spin dynamics are studied, the Coriolis
force is taken into account. As will be shown in Section 4.1 the centrifugal force
can be neglected. The question may be raised whether the Coriolis force disturbs
the experiments in the same way as gravity does. This is not the case, because
the vertical component of the Coriolis force averages to zero over one orbit.
The radial component of the Coriolis force leads to an extra vertically directed
magnetic field felt by the particles and therefore only affects the precession in
the horizontal plane.

Finally, in Section 4.2 an effect arising from general relativity, namely spin-
gravity coupling, is discussed. As will be shown, this effect can be neglected for
EDM experiments. This is not a surprise, since one is performing a large-scale
experiment just to measure this effect anyway (see for example [8]).

2 Effects of classical gravity

Consider the motion of a moving charged particle in a vertically directed mag-
netic field Bz. This particle rotates, due to the Lorentz force FL = qv × B,
around the direction of Bz with the cyclotron frequency ωc = −qBz/γm. The
radius R0 of the particle’s orbit can be obtained by setting the centripetal force
equal to the Lorentz force:

γmv2

R0
= evBz −→ R0 =

γmv

eBz
. (4)

For convenience, define a rotating coordinate system which origin moves
along the orbit with radius R0. Assume the particle is positively charged, so
the system rotates clockwise. The vector ρ̂ points radially inward, the vector
φ̂ is parallel to the momentum and ẑ is in the vertical direction. In this frame
the particle will be at rest if there are no disturbances. Therefore, this frame is
called the particle’s rest frame.

If the particle is out of the original orbit, i.e. ρ or z is non-zero, it will
experience a magnetic field from the the quadrupole magnets in the storage
ring. Because of this magnetic field an additional Lorentz force will act on the
particle, which traps the particle back into the original orbit. In the particle’s
rest frame the Lorentz force is given by

FL = q(v ×B) = qvφ(Bz,trap ρ̂−Bρ,trap ẑ). (5)
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Gravity pulls the particle down and the particle gets to the place where the
Lorentz force opposes the gravitational force:

Fg + FL = −mgẑ + qvφ(Bz,trap ρ̂−Bρ,trap ẑ) = 0. (6)

From this equation it can be seen that to hold the particle in a stable orbit, the
average magnetic field the particle experiences must be

〈Bρ,trap〉 = −mg

qvφ
. (7)

Now the influence of this magnetic field on a deuteron EDM experiment
will be discussed. Suppose the deuterons are injected with v = vφ = 0.7c.
The deuteron mass md = 3.34 × 10−27 kg. Further g = 9.81 m/s2 and q =
1.60 × 10−19 C. With eq. (7) it can be seen that the average radial magnetic
field is

〈Bρ,trap〉 = −9.8× 10−16 T. (8)

The spin precession about the radial direction for a particle in an electromag-
netic field is given by [5]

ωρ = − e

m

[
aBρ,trap +

η

2
(β ×B)ρ

]
. (9)

The magnetic anomaly a for the deuteron is −0.143, so the first term between
brackets is 1.4 × 10−16. Suppose the magnetic field B is Bz = 2 T. This gives
for the second term 0.7η. The electric dipole moment is given by [4]

d = η
eh̄

4mc
= ηe

1.05× 10−27 erg · s
4× 3.34× 10−24 g × 3.0× 1010 cm/s

= η × 2.6× 10−15 e · cm. (10)

An EDM of 1.0 × 10−28 would give η = 3.8 × 10−14. Therefore the real EDM
signal is about (0.7× 3.8× 10−14)/(1.4× 10−16) = 1.9× 102 times greater than
the false signal.

3 Effects of earth’s rotation

3.1 Particle dynamics

The particles in the storage ring move under the influence of the Lorentz force.
However, as seen in the introduction, the particles are also affected by the
Coriolis acceleration aC = −2Ωe × v. In classical mechanics the force F is just
ma. To get the relativistically correct Coriolis, the following relation between
force and acceleration can be used

F =
dp
dt

= γm0a + γ3m0
v · a
c2

v. (11)

The last term in this equation vanishes, because the Coriolis acceleration is
perpendicular to the velocity. Therefore the Coriolis force is

FC = −2γmΩe × v. (12)
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The earth rotates exactly one time around its own axis in one sidereal day,
so

Ωe =
2π

23h56′ = 7.29× 10−5 rad/s. (13)

In a Cartesian coordinate system (with x̂ in the longitudinal direction toward the
equator, ŷ in the lattitudinal direction toward the east and ẑ perpendicular to
the surface), placed at lattitude λ in the Northern Hemisphere, the components
of the vector Ωe are

Ωx = −Ωe cos λ,

Ωy = 0,

Ωz = Ωe sinλ.

(14)

With the relativistic momentum p = γm0v, the equation of motion can be
written as

dp
dt

= ev ×B− 2γmΩe × v

=
[
−e

γm
B− 2Ωe

]
× p

= ω
′

c × p, (15)

where the effective cyclotron frequency

ω
′

c =
−e

γm

[
B +

2γm

e
Ωe

]
=
−eB

′

γm
(16)

is the frequency at which the particle rotates around the vector B
′
. The plane of

the particle motion becomes tilted, making a small angle α with the horizontal
plane. The angle α ≈ tanα can be obtained by dividing the vertical by the
horizontal component of B

′
:

α ≈ 2γmΩe cos λ

eBz + 2γmΩe sinλ
≈ 2γmΩe cos λ

eBz
. (17)

In these calculations trapping forces are not taken into account. When these
are added to eq. (15), the following equation of motion is obtained:

dp
dt

= ev ×B− 2γmΩe × v + ev ×Btrap. (18)

However, Btrap is only known in the particle’s rest frame. Therefore effects in
that frame will be searched for. The magnetic fields from the quadrupole mag-
nets, in the particle’s rest frame, are given by Bρ,trap = kz and Bz,trap = −kρ,
where k is the magnetic gradient. Besides the effect of the radial component
of the Coriolis force, the vector ρ is non-zero, because it is impossible to inject
the particles with exactly the right momentum for the given configuration (and
thus, from eq. (4), the orbital radius R 6= R0). Because cos α = 1, neglecting
second and higher order terms, the true orbital radius R can be found with:

γm(v + δv)2

R
= e(v + δv)Bz + 2γmΩe sinλ(v + δv) + e(v + δv)(Bz,trap). (19)
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With ρ = R0−R, and R0 = γmv/eBz from eq. (4), this equation can be written
as a second order polynomial:[

ek(v + δv)
]
R2 +

[
e(v + δv)Bz + 2γmΩe sinλ(v + δv)− e(v + δv)kR0

]
R

− γm(v + δv)2 = 0. (20)

It can easily be seen that the change of the orbital radius R, due to δv ∼ 0.01v,
completely overwhelms the effect of the radial component of the Coriolis force.

To see the effect of the trapping force on the angle between the particle orbit
and the vertical plane, consider the vertically directed forces in the particle’s
rest frame. To get the Coriolis force in the particle’s rest frame, first calculate
the components of this force in the frame fixed on earth. The velocity v in this
frame can be approximated by (suppose at t = 0 the particle is at x = R, y = 0)

vx = −v sinωt,

vy = −v cos ωt,

vz = 0,

(21)

where ω = v/R. With this expression for v and eqs. (12, 14), the Coriolis force
in the frame fixed on earth can be calculated. When the transformation

ρ̂ = − cos ωtx̂ + sinωtŷ,

φ̂ = − sinωtx̂− cos ωtŷ,

ẑ = ẑ,

(22)

is used to switch from the frame fixed on earth to the particle’s rest frame, the
Coriolis force in the particle’s rest frame is obtained:

Fρ = 2γmvΩe sinλ,

Fφ = 0,

Fz = −2γmvΩe cos λ cos ωt.

(23)

By taking the z-component of the Lorentz force eq. (5), the total force in the
vertical direction becomes known. By dividing the force by γm, the following
equation of motion in the vertical direction is obtained:

z̈(t) = −2vΩe cos λ cos
(

vt

R

)
− evk

γm
z(t). (24)

Because the trapping forces increases linearly with z, the particle’s orbit isn’t
just tilted any more, but now it is flattened in some sense. However, suppose
the orbit is just tilted, then the maximum value of z gives the tilt.

Now that the real radius and the real tilt are known, the equation of motion
eq. (15) can be replaced by the real equation of motion. In this article the old
equation of motion will be used (see eq. (32)).

As said in the introduction, the vertical component of the Coriolis force
averages to zero over one orbit, this can now easily be seen from eq. (23).
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3.2 Spin dynamics

The equation of motion for the intrinsic spin of a particle, in its rest frame, is
given by [9]

ds
dt

=
1
γ
F

′
+ ωT × s + ωedm × s. (25)

Here the first two terms on the right-hand side involve the BMT-equation. The
last term is a consequence of the particle’s EDM. However, because of the rota-
tion of the earth, an extra term has to be added to eq. (25) to get the rest-frame
equation of motion for the spin as seen from the earth. As already seen in the
introduction, the time rate of change of a vector G seen from a fixed reference
frame is (

dG
dt

)
f

=
(

dG
dt

)
r

+ Ω×G, (26)

where the first term on the right-hand side is the time rate of change in the
rotating reference frame and Ω is the angular velocity of this rotating system.
The spin vector s keeps the same direction seen from a fixed frame of reference:(

ds
dt

)
f

= 0. (27)

It is quite difficult, not to say impossible, to indicate an absolutely fixed frame
of reference in the universe. By approximation, this could be a reference frame
fixed with respect to the stars. The fact that the spin vector s remains the same
in a fixed reference frame is completely analogous to the case of a ‘classical’
gyroscope.

A reference frame fixed on earth rotates, with respect to the ‘fixed’ reference
frame, with an angular velocity of Ωe. Therefore the time rate of change of the
particle its intrinsic spin, in a reference frame fixed on earth, is(

ds
dt

)
r

= −Ωe × s = s×Ωe (28)

and the rest-frame equation of motion for the spin on earth seems to be

ds
dt

=
1
γ
F

′
+ ωT × s + ωedm × s + s×Ωe. (29)

The first term on the right-hand side of this equation contains the transforma-
tion of the EM-fields, and is explicitely (for E = 0)

1
γ
F

′
=

ge

2m
s×

[
B− γ

γ + 1

(
β ·B

)
β

]
. (30)

The second term is the Thomas precession, where the Thomas frequency ωT is
given by

ωT =
γ2

γ + 1

[
dβ

dt
× β

]
. (31)

As can be seen from eq. (15) the acceleration of a moving charged particle in a
uniform magnetic field is

dβ

dt
=

e

γm

(
β ×B

′
)

, (32)
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where
B

′
= B +

2γm

e
Ωe. (33)

Now the Thomas frequency can be written as

ωT =
γ2

γ + 1

[
e

γm

(
β ×B

′
)
× β

]
=

eγ

m(γ + 1)

[
β2B

′
−

(
β ·B

′
)β

]
=

e

m

[(
1− 1

γ

)
B

′
− γ

γ + 1

(
β ·B

′
)

β

]
, (34)

where in the second line use was made of the following relation from vector
calculus

a× (b× c) = (a · c)b− (a · b)c (35)

and in the third line use was made of the relation

γ

γ + 1
β2 = 1− 1

γ
. (36)

The contribution of the particle’s EDM is explicitely (again suppose E = 0)

ωedm × s = − eη

2m

(
β ×B

)
× s. (37)

For the relation between η and the electric dipole moment d, see eq. (10). When
eqs. (30, 34, 37) are inserted into eq. (29) the equation of motion for the rest-
frame spin s, as seen from the earth, becomes

ds
dt

=
ge

2m
s×

[
B− γ

γ + 1

(
β ·B

)
β

]
− e

m
s×

[(
1− 1

γ

)
B

′
− γ

γ + 1

(
β ·B

′
)

β

]
+ s×Ωe + ωedm × s

=
e

m
s×

[(
g

2
− 1 +

1
γ

)
B−

(
g

2
− 1

)
γ

γ + 1

(
β ·B

)
β

]
− e

m
s×

[
2γm

e

(
1− 1

γ

)
Ωe −

γ

γ + 1

(
2γm

e
Ωe · β

)
β

]
+ s×Ωe + ωedm × s

= (ωBMT + ωedm + ωearth)× s, (38)

where

ωBMT = − e

m

[(
g

2
− 1 +

1
γ

)
B−

(
g

2
− 1

)
γ

γ + 1

(
β ·B

)
β

]
(39)

and

ωearth =
[(

2γ − 3
)
Ωe −

γ

γ + 1

(
2γΩe · β

)
β

]
. (40)
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3.3 Combined particle and spin dynamics

The spin precession with respect to the particle its orbit can be obtained by
substracting the effective cyclotron frequency eq. (16) from the apparent rest-
frame spin precession (see eq. (38)):

ω
′

a = (ωBMT + ωedm + ωearth)− ω
′

c

= − e

m

[(
g

2
− 1

)
B−

(
g

2
− 1

)
γ

γ + 1

(
β ·B

)
β

]
− eη

2m

(
β ×B

)
+

[(
2γ − 1

)
Ωe −

γ

γ + 1

(
2γΩe · β

)
β

]
. (41)

4 Other effects

4.1 Centrifugal force

A particle on earth also experiences a centrifugal acceleration due to the earth’s
rotation. This accleration is given by (see eq. (2))

ac = −Ωe × (Ωe ×R) = Ω2
eR⊥. (42)

Here R is the position vector of the particle as seen from the center of the
earth and R⊥ = |R| cos λ is the component of R perpendicular to the rotation
axis. The vector Ωe is given by eq. (14). A relativistic centrifugal force can be
obtained in the same manner as was done for the Coriolis force: Fc = γmΩ2

eR⊥.
This force splits up into a vertical component and a component longitudinally
directed toward the equator:

Fx = γmΩ2
eR cos λ sinλ,

Fz = γmΩ2
eR cos λ cos λ.

(43)

With |R| = 6, 36 × 106 m, it can be seen that these forces are much smaller
than gravity and the Coriolis force, so they can be neglected. In reality the
x-component of the centrifugal force is even much smaller than these calcula-
tions show. The earth after all is not a perfect sphere, but an ellipsoid. Of
course, this is due to the centrifugal force. Therefore gravity is not exactly di-
rected perpendicular to the eart’s surface any more, but there is also a small
longitudinal component directed toward the poles. This component cancels the
longitudinal component of the centrifugal force [7].

4.2 Spin-gravity coupling

A gravitomagnetic field is produced by a massive spinning body [10]. It is the
same as a charged spinning body produces a magnetic field. Not surprisingly, a
particle tries to align its spin with the gravitomagnetic field, just like it has the
tendency to align its spin with the magnetic field [11]. This effect, also known as
the Lense-Thirring effect, comes from general relativity. The gravitomagnetic
field of the earth makes a reference frame on earth appear to be rotating with
an additional frequency −Ωd, this is called frame-dragging. Thus, in the same
manner as was done for the earth rotation, a term Ωd × s should be added to
eq. (29). However, Ωd ∼ 10−14 rad/s, this is much smaller than Ωe, so the term
Ωd × s can be neglected.
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