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Abstract

An important function of our auditory system is it’s capability of deter-
mining the direction of an incoming sound. Several parts of the auditory
system are involved in this task, one of which is the cochlear nucleus. If
one where to build a complete model of the sound localization capabilities
of the auditory system a model of the cochlear nucleus, and hence the
neurons in the cochlear nucleus.

Current models for the cochlear nucleus neurons are variations of
Hodgkin-Huxley conductance-based models. While being very accurate
and biologically plausible they also rely on extensive intimate knowledge
of the biophysical properties of the cell. This, combined with their com-
putational costs, makes them impractical for constructing larger systems.
A different model would be needed.

The model needed would have to be simple enough to be created with-
out to much intimate knowledge about the biophysical properties of the
cell, and preferably be computationally fast. Also it would have to be
extensive enough to duplicate all possible behaviors of the cell. Standard
leaky integrate-and-fire neuron models won’t suffice. Although simple and
fast enough, they are not capable of reproducing the complete behavior
of biological neurons in the cochlear nucleus.

The Izhikevich model however claims to be a fast model for spiking
neurons which is capable of demonstrating all desired behaviors of biolog-
ical neurons. Also only very limited knowledge of the cell’s biophysical
properties are needed to create a model for this cell. This would make the
Izhikevich model ideal for modelling neurons in the cochlear nucleus.

1 Introduction

It is hard to imagine a proper functioning intelligent being in a real-world
environment without some form of sensory perception. Most prominent of
the sensory systems, at least for humans, would be vision. There has been
a lot of research to this aspect of perception, but it is of course not the
only means we have to perceive our surroundings. A lot of information
can also be gathered from the auditory system.
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Figure 1: A very simplistic overview of the role of the Cochlear Nucleus in the
auditory system. The first stage of audio processing occurs in the Auditory
Nerve, which maps to the Cochlear Nucleus. The Cochlear Nucleus then maps
onto the Medial- and Lateral Superior Olives (among others) where respectively
the interaural time- and intensity differences are processed to determine the
direction of the incoming sound.

1.1 Sound localization

One of the aspects of our auditory system is it’s ability do determine the
direction of an incoming sound signal[2][12]. This can be done by two
methods. One is by the interaural time difference[10] which works by the
time difference, and hence phase difference, between the signal arriving at
the left ear and the signal arriving at the right ear. The other is by the
interaural intensity difference which works by the difference of intensity
between the two sound signals at both ears. For low-frequency sounds the
former method is used. For high-frequency sounds the lather method has
to be used, due to the small wavelength compared to the distance between
the ears, and because of the dampening effects of the skull.

In the auditory system, the first stage of processing an audio signal is
done by auditory nerve which connects the hair fibers in the ear to the
cochlear nucleus (see figure 1). The cochlear nucleus in turn maps to other
parts of the auditory system, including the medial superior olive where
the interaural time difference is processed|[1], and the lateral superior olive
where interaural intensity difference is processed[18]. Thus the cochlear
nucleus is the first step in the processing chain of localization information
of an audio signal.



1.2 Modelling sound localization

If one where to build a model of the localization ability of the auditory
system it is necessary to model the different parts of the auditory system
involved in the toolchain of sound localization. Work has been done to
model the interaural time difference processing in the medial superior olive
[9]. For the auditory nerve models exist as well [17].

This research however focuses on the cochlear nucleus, and in partic-
ular the neurons in the cochlear nucleus. For this, models of individual
neurons do exist [16], but they have downsides. This model is an im-
plementation of the Hodgkin-Huxley model [5] in the Neuron software
package. This model, while biologically accurate, may not be the best
option for use in a more complete model of the auditory system. Besides
being relatively slow, it also suffers from the downside that a lot of ex-
perimental data is needed to construct a single neuron, which would be
impractical to do for larger systems containing lots of neurons.

A much simpler solution would be the use of leaky integrate-and-fire
neurons. While simpler, they are however not sufficient to capture all
possible behaviors of the neurons in the cochlear nuclear, as described by
Evans [3]. It can for example not display bistability of phasic spiking [7].

Another type of neuron model is the Izhikevich model [8]. This re-
markably simple model has the advantage that only very few physiologi-
cal aspects of a neuron are needed to model the neuron by fitting it using
experimental data. Also it claims not to suffer from the limitations of the
leaky integrate-and-fire neurons [6].

In this research an attempt will be made to use the Izhikevich neuron
model to simulate the neurons found in the cochlear nucleus.

2 Background

2.1 Types of neurons in the cochlear nucleus

In research done by Evans [3] several different types of neurons in the
cochlear nucleus are identified (see figure 2). Each of these types have
their own pattern of excitatory or inhibitory response to sound stimuli of
different frequencies and intensities. As information about the frequency
or intensity of a stimulus is needed to determine the interaural time dif-
ference or interaural intensity difference respectively this is an important
step in determining the direction of the stimulus.

Several implementations for models in the cochlear nucleus can be
found on the model database for the Neuron modelling software
(http://senselab.med.yale.edu/modeldb/). These models are based on the
Hodgkin-Huxley model. One of the models, which is used in this research,
is the model created by Rothman and Manis [15]. This model is an im-
plementation of the octopus-cells, or in the terminology of Evans, the
’On’-cell.
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Figure 2: The types of neuron cells found in the cochlear nucleus, as identified
by Evans. The images in the left-hand column show the response of the neuron
type depending on the frequency and intensity of the stimulus, which can be
excitatory (stippled) or inhibitory (shaded). The images in the right-hand col-
umn show the number of spikes related to the tone used for input. Next to the
left-hand images are the nicknames Evan’s gave to the several types of neurons
he identified. Image taken from [3].



2.2 Neuron models

2.2.1 Leaky integrate-and-fire

The leaky integrate-and-fire neuron is a very simple and computationally
efficient model for a spiking neuron. Probably because of it being simple
and fast it is also one of the most widely used models. The equation for
the leaky integrate-and-fire model is:

v =14 a—bv,if v > Vgnres, then v < ¢ (1)

Where v is the membrane potential, I is the input current and a, b, c
and vinres are parameters. When a sufficiently large input current is given
the membrane potential will increase until it reaches vinres, it’s threshold
value. At this time a spike is fired and the membrane potential is reset to
.

As the only variable in this model is the membrane potential v this
model is not sufficient to display all characteristics found in biological
cells. For example bistability or rebound responses [7]. This makes this
model unsuitable for our purpose of modelling the neurons in the cochlear
nucleus.

2.2.2 The Hodgkin-Huxley model

The Hodgkin-Huxley model [5] is a far more complex model then the
leaky integrate-and-fire model. In it’s essence it is a description of the
separate Na and K ion-channels in a neuron. For this model the current
through each ion-channel, and hence the conductance of each ion-channel,
is a parameter that has to be determined to create a model. This has the
advantage that each parameter has a clearly identifiable physical meaning,
which makes this type of model of great use for biological research.

However, having to determine all the conductances of all ion-channels,
this means a lot of time-consuming measurements would have to be done
to model a given neuron in the cochlear nucleus. Another disadvantage
of this model is the computation needed. Where as the leaky integrate-
and-fire model would only need a handful of floating-point operations at
each time step the Hodgkin-Huxley model would need an approximate
120 floating point operations [7].

2.2.3 The Izhikevich model

The leaky integrate-and-fire being to simple to display all desired charac-
teristics and the Hodgkin-Huxley model being to slow and impractical for
use in larger systems one would like an alternative. Izhikevich claims to
have such a model presented in [6] and [8]. While slightly more complex
then the leaky integrate-and-fire model, his comparison of different types
spiking neuron models shows it to be still very computationally efficient
[7]. At the same time the claim is also maid that the model is biologi-
cally plausible enough to display all characteristics needed for modelling
cortical neurons. (It should be noted however that Izhikevich takes bio-
logically plausible to mean that the model is capable of demonstrating all



C=100; vr=-60; vt=-40; k=0.7; % parameters used for RS

a=0.03; b=-2; c=-50; d=100; % neocortical pyramidal neurons
vpeak=35; % spike cutoff

T=1000; tau=1; % time span and step (ms)
n=round(T/tau) ; % number of simulation steps
v=vr*ones(1,n); u=0%v; % initial values

I=[zeros(1,0.1*n),70%ones(1,0.9%n)];% pulse of input DC current

for i=1:n-1 % forward Euler method
v(i+1)=v(i)+tauw*(kx(v(1)-vr)*(v(i)-vt)-u(i)+I(i))/C;
u(i+1)=u(i)+taura* (b*(v(i)-vr)-u(i));

if v(i+1)>=vpeak % a spike is fired!
v(i)=vpeak; % padding the spike amplitude
v(i+l)=c; % membrane voltage reset
u(i+1)=u(i+1)+d; % recovery variable update
end;
end;
plot(tau*(1:n), v); % plot the result

Figure 3: Matlab-code for the Izhikevich model for spiking neurons in all it’s
glory. Taken from [8].

the characteristics of a biological neuron, not that the model is an accu-
rate description of a biological neuron where all or most parameters have
a clear physical meaning.)

The Izhikevich model is described by two differential equations.

Cv k(v—v)(v—v) —u+1T (2)
w = af{b(v—ov,)—u},if v > Vpeax,then v+ cu+u+d (3)

In these equations k is the input resistance v, the resting membrane poten-
tial, v; the threshold potential, C' is the cell’s capacity and I is the input
current. The parameters a, b, ¢ and d are dimensionless parameters.

To demonstrate the relative simplicity of this model the Matlab source
code for this model, in all it’s glory, is listed in figure 3.

For this model four parameters, being k, v., v+ and C, would have
to be determined by biological data about the to modelling cell. The
a, b, ¢ and d parameter could be fit to the experimental data about the
input-output relation of the cell. Note that for this it is not necessary to
examine all the inner details about the cell, just the input-output relation.

3 Methods

3.1 Software systems

Our little neuron is not meant to live by itself. The ultimate purpose of it
would be to act in a complete system for sound localization. Therefore it
would be best to place it among existing models. Best would be to make
the model in such a way that it integrates well with existing models of the



auditory nerve and possibly the medial- and lateral superior olives. Of
these especially integration with an auditory nerve model would be useful
as it would make the model capable of directly responding to arbitrary
real-world sounds as opposed to abstract input currents.

Models of the auditory nerve exist which are implemented in the dsam
auditory modelling software [11]. The dsam software has already been
successfully combined with the csim neural circuit simulator [4]. The
csim software package also has an implementation of the Izhikevic neuron
model. This would make the csim package ideal for usage in the experi-
ments.

However if one is to fit the model one needs experimental data to fit
it with. As ’experimental data’ the model of an octopus cell by Rothman
and Manis is used (see section 3.2.1). This existing model is implemented
in the Neuron software package and is a model of the neuron cell only.
It is not connected to the auditory nerve or even a synapse and uses a
current clamp for it’s input.

If one where to match the output of the Rothman and Manis model
against the Izhikevich model given an arbitrary input sound one would also
need to equip the Rothman and Manis model with an equal or equivalent
auditory nerve model and synapse model. After all: the neuron model
needs to be fitted, not the synapses. Alternatively one could take the
easier approach of feeding the current clamp directly to the Izhikevich
model instead of an arbitrary sound to the auditory nerve model. For now
the easier approach of feeding the current clamp directly to the Izhikevich
model is chosen.

Once a current clamp, as opposed to a sound, is used as input for the
Izhikevic model the need to use the dsam auditory nerve, and hence the use
of the csim Izhikevich implementation, disappears. The simple Matlab-
implementation by Izhikevich himself can be used [8](listed in figure 3),
with some small adaptions to allow for an arbitrary current clamp.

3.2 Data Fitting

The construction of the Izhikevich neuron model for a cochlear nucleus
neuron ultimately boils down to fitting the four non-physical parameters of
the Izhikevich model. The four physical parameters: the input resistance
k, the resting membrane potential v,, the threshold membrane potential
v and the cell’s capacity C' are taken from the existing model by Rothman
and Manis described in the next section.

3.2.1 Data

For data fitting one needs data. To model the behavior of a neuron one
needs to know how the neuron is supposed to behave. Ideally one would
like some actual experimental data. In this research for practical reasons
an existing model is chosen. It’s input is duplicated and it’s output is
recorded. This output is then for all practical purposes regarded as ex-
perimental data. As the internal details of the model are ignored and
only the input and output is considered the techniques used would work
equally well on true experimental data.
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Figure 4: The input stimuli used for fitting. A block stimulus (top) and a ramp
stimulus (bottom). Note that the stimuli do not stop immediately after the
input current is gone, but a ’0-signal’ is continued for another 45 ms.

For their researches ([15], [13], [14]) Rothman and Manis have devel-
oped a model of the octopus cell in the cochlear nucleus. This model is
implemented using the Neuron modelling software. As a stimulus a cur-
rent clamp is used which can be duplicated. During running the model
the cell’s membrane potential over time is recorded.

As the cell’s membrane potential is continues data. Ultimately however
we want to model the cell’s behavior and not every little fluctuation in it’s
membrane potential. That is: we want to match the cell’s spike trains. For
this the membrane potential data needs to be converted to the matching
spike train. This is done by recording all time indices where the membrane
potential crosses a given threshold value.

For the input stimuli a block stimulus and a ramp stimulus is provided
(see figure 4). Both the stimuli have an onset delay of 5 ms, a duration of
100 ms. After the stimulus ends a current of 0 A is presented for another
45 ms. This is important because not only the starting of a spike train
but also it’s stopping needs to be modelled.

3.2.2 Genetic algorithm

The eventual data fitting can be viewed as a function optimization prob-
lem. Given an input (current clamp) and a reference output, how can
we tune the parameters of the model such that the difference between
it’s output and the reference output is minimal. This difference is to be
determined by an error function (or fitness function), see section 3.2.3 for
details.

There exist many different approaches for optimization problems. Here
a genetic algorithm is chosen. This because by more direct approaches
like gradient descent there is a hight probability of getting stuck in a local



minimum. The implementation of the genetic algorithm used is the one
present in Matlab’s global optimization toolbox.

The initial conditions for the four parameters to be fit are derived from
figure 8.8 in Izhikevich book [8]. In this figure several different types of
spiking neurons are displayed and their corresponding values for the a, b, ¢
and d parameters can be found in the source code published on the website
www.izhikevich.org. By eyeballing the graphs the initial conditions for the
parameters are chosen.

Once the genetic algorithm is finished it’s solution is fine-tuned by
using it as the initial value for a gradient descent algorithm. The imple-
mentation for this gradient descent is the fminsearch function in Matlab.

3.2.3 Fitness function

For a genetic algorithm to work, or for that matter any function mini-
mization algorithm, a function is needed. This fitness function, or error
function, has to be constructed in such a way that it yields a high value
for a bad fit and a low value for a good fit and is more or less continuous.

In our context it would be natural to take the membrane potential
over time of the Rothman and Manis reference model and the Izhikevic
model. The time integral of the squared difference between both would
be the return value of the error function. However, because we want to
model the cell’s behavior and hence it’s spike pattern as opposed to the
membrane potential this is not really suitable. The spikes can be seen in
the membrane potential but because they are, though very high, also very
thin. This means they have only have a small contribution to the time
integral and there would be hardly any penalty for missing the spikes. In
fact a fit which would yield a flat line at the cell’s resting potential would
only yield a small error but would model the cell’s behavior at all!

We would like to use the actual spike pattern in our fitness function.
One problem with this is that a spike pattern is not in any way a con-
tinuous function. Also we would like our function to have the following
characteristics. It should yield a high error if a spike is missed. It should
yield an error if a spike is not fired at the correct time. On the other hand,
it should not be judged to harshly if a spike is missed in some distant past,
i.e. if all spikes but one match perfectly we are reasonably happy.

To achieve this the following function is defined for both spike patterns

on each time index t:
Fy =Y et (4)

ts<t
Where the t; denote the time indices of the spikes and d is a small but
positive decay parameter. This value should not be chosen to large as the
penalty for missing spikes would become to small. Also it should not be
chosen to large as the penalty for not firing at the right time would become
to small. Finally, as this is a exponentially decaying function the error of
a missed spike won’t 'remain in memory’ forever. The decay parameter
d is chosen bye eyeballing the graphs like those in figure 5. Note that
equation 4 is technically not a continuous function, but it will do for our
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Figure 5: Visualization of the error functions. The blue line is error function
of the reference spike pattern. The green line is the error function of the spike
pattern of model. Each peak indicates a spike being fired after which it slowly
decays. The area which makes up the difference of the two lines would be the
error. Note that this achieves all of yielding a big penalty of missing a recent
spike, a little penalty for missing a not so recent spike and a penalty for not
having a spike at the right time.

current purposes. Now our error function can be defined as:

o= / (1 (6) - fa()) at (5)

Where f; is the function f, as in equation 4, corresponding to the data and
f2 the same function corresponding to the output of the model. This error
function achieves all of the aforementioned characteristics. A visualization
of this can be seen in figure 5.

4 Results
4.1 Block stimulus

The Izhikevich model is fitted using a current clamp in the form of a block
stimulus as shown in the top image of figure 4. Some physical parameters
are taken from the existing Rothman and Manis model of the cochlear
nucleus cell, being the input resistance k, the resting potential v,, the
threshold potential v; and the cell’s capacitance C. Their values can be
seen in table 1.

The genetic algorithm is then used to find the four non-physical di-
mensionless parameters for the model, being the a, b, ¢ and d parameters.
The values found can also be found in table 1.

In figure 6 a comparison between the ’experimental data’ from the
Rothman and Manis model and the fitted Izhikevich model can be seen.
The spike pattern for the Rothman and Manis model is in the middle
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Table 1: The parameters for the Izhikevich model for the block stimulus.

k 0.7
v (mV) | -63.9
vy (mV) | -40.0
C (pF) | 120
a 0.716742
b 23.155029
c 37.622159
d 374.404241
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Figure 6: Graphs of the result of the model when fitted to a current block. The
top image shows the input current clamp. The middle image shows the spikes
fired by the existing model by Rothman and Manis. The bottom image shows
the result of the Izhikevic model. As can be seen the Izhikevich model is a
near-exact match with the existing model.
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Table 2: The parameters for the Izhikevich model for the ramp stimulus. Note
that only the a, b, ¢ and d values differ from those in table 1.

k 0.7
vy (mV) | -63.9
v (mV) | -40.0
C (pF) | 120
a 0.007580
b -1.229707
c -162.805298
d 67.928863

image and the pattern for the Izhikevic model is in the bottom image. It
should be clear that they are near-identical. They both have the same
number of spikes and the spikes are being fired at the same time. More-
over in both case spikes are no longer being fired after the input current
disappears.

4.2 Ramp stimulus

The Izhikevich model is also fitted on the current clamp in the form of a
ramp stimulus like the one in the bottom image of figure 4. As only the
non-physical dimensionless parameters are fitted the other parameters are
equal to the ones used for the block stimulus.

Again the genetic algorithm is run to find suitable values for the a, b,
c and d parameters. The results can be seen in table 2.

The comparison between the ’experimental data’ and the Izhikevich
model can be seen in figure 7. All spikes from the data save one are
reproduced by the model. It should be noted that their timing is not
exact and the Izhikevich model completely misses the first spike.

4.3 Block and ramp stimulus

Finally the model is fitted using the block and ramp stimuli simultane-
ously. This is done by evaluating the error function of equation 5 for both
the block spike pattern and the ramp spike pattern and adding them up.
The found parameters can be seen in table 3.

Once the model is fitted on both the block and ramp stimulus it can
be tested against the block or ramp stimulus. In figure 8 the comparison
with experimental data for the block stimulus is shown. Only two spikes
match.

The comparison between the Izhikevich model and the experimental
data for the ramp stimulus can be seen in figure 9. Here one spike is
matched at 35 ms. Two spikes are fired in rapid succession by the Izhike-
vich model at 82 ms. Both of these can be said to match the spike in the
experimental data with explicitly noting that the experimental data only
has one spike at this time.

12
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Figure 7: Graphs of the result of the model when fitted to a current ramp. The
top image shows the input current clamp. The middle image shows the spikes
fired by the existing model by Rothman and Manis. The bottom image shows
the result of the Izhikevic model. It can be seen that the Izhikevich model is
capable of reproducing all spikes save the first.

Table 3: The parameters for the Izhikevich model fitted on both the block and
the ramp stimulus simultaneously

k 0.7
v (mV) | -63.9
vy (mV) | -40.0
C (pF) | 12.0
a -0.117710
b 0.006190
c 0.480803
d 6.892889
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Figure 8: Graphs of the result of the model when fitted to both the current and
the block stimuli and tested against the block stimulus. Again, the top image
is the input current, the middle image is the spike pattern of experimental data
and the bottom image is the spike pattern of the Izhikevich model. Only two
spikes are matched.
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Figure 9: Graphs of the result of the model when fitted to both the current and
the block stimuli and tested against the ramp stimulus. As before the top image
is the input current, the middle image is the spike pattern of experimental data
and the bottom image is the spike pattern of the Izhikevich model. One spike
at 35 ms is matched. The Izhikevich model fires two spikes in rapid succession
at 82 ms, both of which can be considered to match with the experimental data.
None of the other spikes are matched.
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5 Discussion

5.1 Matching the stimuli
5.1.1 Block stimulus

The approach of using the genetic algorithm to fit the Izhikevich model
works remarkably well when using the block stimulus. As can be seen
in figure 6 the behavior of the Izhikevich model is nearly identical to the
behavior of the existing Rothman and Manis model. The differences in
the timing of the spikes are very small. Because the Rothman and Manis
model runs on a higher time resolution than the Izhikevich model used this
difference in time can be attributed to this difference in time resolution
and can be neglected. As the Izhikevich model makes no use of the internal
details of the Rothman and Manis model it can only be assumed that the
same results will be obtained when fitting on real experimental data.

5.1.2 Ramp stimulus

Also on the ramp stimulus the fitting of the Izhikevich model works almost
as desired. The fit as can be seen in figure 7 is however not as clean
is it is with the block stimulus. One spike is missed, and some other
spikes show differences in the timing. Though these differences are small
they are to large to be simply be the result of different time resolutions.
Nevertheless the behavior of the Izhikevich model is nearly identical to
the existing Rothman and Manis model. So far this also looks promising
for the Izhikevich model and this approach of fitting it’s parameters.

5.1.3 Block and ramp stimulus

However one disturbing fact arises. When comparing the parameters of
the block stimulus found in table 1 with the parameters of the ramp
stimulus in table 2 it shows that they are very different. To model the
behavior of a cell it is not enough to just model the behavior given an
input, but the behavior given any input should be modelled.

Therefore a good model for a neuron should not only give a good
match with the experimental data for the block stimulus or the ramp
stimulus. It should also give a good match when fitted on both the block
and ramp stimulus. Sadly as can be seen in figures 8 and 9 results are not
so encouraging. The genetic algorithm fails to find a solution which yields
the correct behavior for both the block and ramp stimulus and ends up
with a solution which yields correct behavior on neither of them.

The fundamental question in this issue is who is to blame? Is this
perhaps a limitation of the Izhikevich model which perhaps is capable of
demonstrating nearly every possible behaviors biological neurons but not
with the same set of parameters. Or is this a limitation to the approach
of trying to find these parameters using a genetic algorithm. Does there
exist a combination of parameters which does reproduce all behaviors of
the cell but is unlikely to be found by these means?
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5.2 Limitations of scope

This research has only used a limited set of stimuli. Even if both the block
and ramp stimulus could be matched simultaneously only a limited set of
input’s a real-world neuron would encounter would be accounted for. A
chopper pattern would be a good next step.

Ultimately one would like to take it to a higher abstraction level how-
ever. One would like to match the firing pattern of the cell not to an
abstract input current clamp but to actual sound. One would like to cre-
ate a model capable of reproducing and identifying the cell types as by
the taxonomy by Evans [3], as seen in figure 2. For this one would need to
connect the model to a model of the auditory nerve capable of processing
arbitrary sound, or at least sounds of an arbitrary frequency and intensity.
Also a model for the synapses for the cochlear nucleus would be needed.

If these models of the auditory nerve and the synapse would exist in a
suitable manner they could be connected to Izhikevich model as well as to
the Rothman and Manis model. This way the Rothman and Manis model
could serve as ’experimental data’ the same way it did in this research.

Another limitation of this research is that only one of the types of
neurons in the cochlear nucleus is examined. There are however no good
reasons not to assume that the same techniques could be used to model
the other types of neurons in the cochlear nucleus. A prerequisite for this
would be of course the availability of existing models or experimental data
on these types of neurons.

6 Conclusion

The Izhikevich model is very capable of simulating the neurons in the
cochlear nucleus when tested on a block stimulus. To a lesser extent this is
also true when tested on a ramp stimulus. This is promising as the Izhike-
vich model is computationally much faster then existing conductance-
based models. Moreover this model does not require extensive knowledge
of the physiological aspects of the cell.

However when the Izhikevich model has to reproduce the behavior of a
neuron on different stimuli given the same set of parameters the approach
of finding the parameters using a genetic algorithm breaks down. The
parameters found no longer enable the Izhikevich model to give the correct
behavior on all input stimuli.

The important and as yet unanswered question is wether this is a
fundamental limitation of the Izhikevich model or whether the correct set
of parameters does exist but is unlikely to be found using these methods.
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