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Chapter 1

Introduction

In computing science, computer vision is a field of study that is concerned with
automatically extracting information from images. For example, a prominent
application field is medical computer vision, where an artificial system may ex-
tract information from a medical images, such as microscopy images or X-ray
images. The extracted information can then be used to aid or speed up the
work of the medical staff.
A typical process found in many computer vision systems is image segmenta-
tion. This process partitions an image into multiple regions, where each region
contains pixels that share a certain visual characteristic.
An important step in many image segmentation methods is the watershed trans-
form. This report introduces a parallel algorithm for the topological watershed
transform, which is a variant of the watershed transform.

First, Section 1.1 will give an introduction to the watershed transforma-
tion. Section 1.2 will introduce to topological watershed, and Section 1.3 the
parallelization of the topological watershed.

Chapter 2 will give some definitions of concepts used throughout this report.
Chapter 3 will describe how the existing sequential implementation works and
Chapter 4 will describe the new parallel implementation. Chapter 5 will show
some test results of the parallel implementation, and finally Chapter 6 contains
some conclusions and discussion on the results.

1.1 Watershed transformation

The watershed transformation is a tool for segmenting grayscale images, intro-
duced by S. Beucher and C. Lantuéjoul [3]. It can be used to segment an image
into regions with similar gray values. To achieve this, the watershed transfor-
mation is usually applied to the gradient of the image. The gradient image will
have higher gray values where different regions from the original image meet.
The watershed transformation puts watershed lines in these lighter areas. The
watershed lines can then be used in the original image as the borders between
the segments. This concept is illustrated in Figure 1.1.

When the watershed transformation is applied to the gradient of an image
and not the image itself, like in the example in Figure 1.1, the image itself is
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Figure 1.1: The watershed transformation. From top to bottom and from right
to left: a) an image b) gradient of the image c) watershed transform applied
to the gradient (white shows watershed lines) d) watershed result shown on the
original image, where the watershed lines mark the borders of different regions
in the image

actually irrelevant to the computation of the watershed. Because this report is
about the computation of the watershed transform (or, rather, the topological
watershed transform), we will only consider the image on which the process is
applied, usually being a gradient image. Any original images will be omitted in
the remainder of this report.

1.1.1 The flooding paradigm

To explain what the watershed transform does exactly, the flooding paradigm
(L. Vincent and P. Soille, [13]) is often used. In this paradigm, the input image
is considered as a height map of a topographical landscape. In a height map,
the gray value of each pixel represents the height of a point in the landscape, a
higher gray value representing a higher point. For example, Figure 1.3(a) shows
the landscape that emerges when Figure 1.2(a) is used as a height map.

In the flooding paradigm, the topographical landscape is then slowly flooded,
as if the landscape was punctured in the local minima and is lowered into a body
of water. This causes the lowest points to be submerged first, with the water
level rising slowly.
As the water keeps on rising, more and more points become submerged and
the different bodies of water (called basins) become larger and larger. At some
point, different existing bodies of water will meet. Instead of merging the bodies
of water into one large basin, a dam is built between them. The water keeps on
rising, and every time different basins meet a dam is built. When the landscape
is completely submerged, only basins and dams remain.
If we convert these dams and basins back to an image, we get the watershed
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(a) (b)

Figure 1.2: An image (a) and its watershed (b).

transform of the input image, with the dams representing the watershed lines
and the bodies of water representing the watershed basins. The flooding process
is illustrated in Figure 1.3, which shows the flooding paradigm for the image
from Figure 1.2(a), eventually resulting in the watershed of that image, as shown
in Figure 1.2(b).

1.2 The topological watershed transform

The watershed transform as described in the previous section has a number of
drawbacks. One these drawbacks is that oversegmentation may occur, where re-
gions that should have been one segment are segmented themselves. In general,
we only want to keep the watershed lines that correspond to the most significant
contours of the original image.
An approach to achieve this was given by J. Angulo and D. Jeulin [1], who pro-
posed a stochastic watershed segmentation. In this approach, the landscape is
not punctured at the local minima, but at random locations. The water flowing
from a puncture may flood several local minima before meeting another body
of water, causing the dams to be built at different locations. This process is
repeated several times with punctures at different random locations each time.
Some watershed lines will appear in most iterations, while other watershed lines
only appear in some of them. Only the watershed lines that appear most often
are kept for the final result. This results in watershed lines that lie mostly on
significant contours. However, this approach needs to compute the watershed
several times, causing the amount of work to increase linearly with the number
of iterations.

The approach used in this report is the topological watershed [2], [4]. In
the topological watershed, some of the grayscale information from the original
image is preserved, which may be useful for further processing, such as recon-
nection of corrupted contours. Also, this grayscale information can be used to
determine the significance of watershed lines. For example, because both basins
and watershed lines are assigned gray values, two basins that are separated by a
watershed line that has a similar gray value may be merged together, removing
the watershed line.
Specifically, the topological watershed preserves the pass values [7] between all
minima: the heighest point of the lowest path between two minima. This also
has the consequence that the connectivity of each lower cross-section is pre-
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served. The concepts of connectivity and lower cross-sections will be further
explained in Chapter 2.

The pass value of two points in the image is also called the separation of the
points. The points p and q are said to be k-separated if the following conditions
apply:

• There exists a path from p to q with maximum value k − 1

• There exists no path from p to q with a maximum value lower than k− 1

• Both p and q have a value lower than k − 1

A path that satisfies the first two conditions for some k is called a lowest path
in this report. If a lowest path from p to q contains no value that is higher
than both p and q, then p and q are not separated, but linked. Separation is
illustrated in Figure 1.2.

The topological watershed is similar to the normal watershed; the locations
of the basins and watershed lines are the same. However, the result of the
topological watershed is not a binary image, but a grayscale image. The gray
values of the pixels are defined as follows:
All pixels in a basin have the same gray value, namely the value of the minimum
from the input image that is contained within the basin.
The values of the pixels on the watershed lines are as low as possible, without
changing the separation relations between the basins. If two pixels from different
basins were k-separated in the input image, they should still be k-separated in
the topological watershed of the image.
Both the watershed and the topological watershed of the image from Figure
1.4(a) are shown in Figure 1.5.

1.3 Parallelization of the topological watershed
transform

This report proposes a parallel algorithm for the topological watershed. A
sequential algorithm has already been implemented by Couprie et al. [5], on
which the parallel algorithm will be based.
Also, J.B.T.M. Roerdink and A. Meijster [9] already proposed parallelization
strategies for several related watershed transformation variants.

The existing sequential algorithm uses only one processor to compute the
topological watershed of the input image. The parallel algorithm will use several
processors at the same time, distributing the work over these processors, which
should speed up the computation. Ideally, the total running time of the parallel
algorithm will be tp = ts/np, where tp is the execution time of the parallel
algorithm, ts is the execution time of the sequential algorithm and np is the
number of processors used. In this case the speedup, defined as ts/tp will be
equal to the number of processors. In practice however, this optimal speedup is
rarely achieved.
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(a)

(b)

(c)

(d)

Figure 1.3: The flooding paradigm. (a) shows the landscape that emerges when
Figure 1.2(a) is used as a height map. When this landscape is flooded, the lower
areas are filled up first, forming basins, as shown in (b). When two different
basins meet, a dam is built between them, as illustrated in (c). Finally, (d)
shows the fully submerged landscape, where only basins and dams are left at
the surface. Viewed from above, this situation corresponds to the watershed of
the image that was used as a height map, as shown in Figure 1.2(b).
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(a) A digital grayscale image (b) Lowest paths between three
pairs of pixels.

Figure 1.4: Separation. The top path in (b) connects two 5-separated pixels.
The left path connects pixels that are not separated (but linked). The right
path connects two 3-separated pixels.

(a) Watershed of Figure
1.4(a)

(b) Topological watershed of
Figure 1.4(a)

(c) Lowest paths between the
separated pairs of pixels from
Figure 1.4(b)

Figure 1.5: Watershed and topological watershed. Figure (c) shows that the
separated pixel pairs from Figure 1.4(b) are still respectively 5-separated and
3-separated. The third pair is not shown as it was not separated.
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Chapter 2

Definitions

This chapter will introduce some important concepts that we will need to com-
pute the topological watershed. Section 2.1 is about connectivity. Section 2.2
will introduce lower cross-sections, that will be used in Section 2.3 to give a def-
inition of W-destructibility. Section 2.4 will introduce the component tree and
the component map, and finally Section 2.5 will introduce the lowest common
ancestor.

2.1 Connectivity

The connectivity defines for each pixel which pixels in its neighbourhood are
its neighbours. The examples in this report will use 4-connectivity, meaning
that only its 4 nearest pixels are the neighbours of a pixel. The supported
connectivities for the algorithms described in this report are 4 and 8 for 2D
images and 6, 18 and 26 for 3D volumes. These connectivities are illustrated in
Figure 2.1. In the case of border pixels, some neighbours will be absent.

Figure 2.1: Different connectivities: 4 and 8 (2D) and 6, 18 and 26 (3D)

2.2 Lower cross-sections

A lower cross-section of an image is a binary image that shows which pixels in
the original image have a value lower than some threshold k. The pixels with
a value lower than k result in a value of 0 in the lower cross-section, while the
pixels with a value equal or higher than k result in a 1. An example is shown
in Figure 2.2.
Note that lowering the value of a pixel by 1 would add the pixel to the lower
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cross-section for k equal to the old value of the pixel. For example, lowering a
pixel with value 4 to value 3 would add a 1 on the location of that pixel in the
lower cross-section for k = 4.

(a) (b) (c)

(d) (e) (f)

Figure 2.2: An image (a) and its lower cross-sections for k = 1 (b), 2 (c), 3 (d),
4 (e) and 5 (f). White pixels have a value of 1, dark pixels have value 0.

2.3 W-destructibility

In the lower cross-sections, we will call a connected region of pixels with value
1 a connected component. For example, in Figure 2.3 we have two connected
components: A and B.
As described in Section 2.2, lowering the value of a pixel by one will add the
pixel to a lower cross-section. Lowering certain pixels can merge different con-
nected components into one connected component. This is illustrated in Figure
2.3.
If multiple connected components are merged, the number of connected compo-
nents is decreased. However, lowering a pixel can also cause a new component
to be formed, causing the number of connected components to be increased.
If a pixel can be lowered without changing the number of connected components
at all in any lower cross-section, the pixel is called W-destructible.

Figure 2.3: A lower cross-section. Pixels a and c can be added to the lower
cross-section without merging the connected components A and B, while pixels
b and f can not. Either pixel d or e can be added as well, but not both.
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After iteratively lowering W-destructible pixels in an image, a W-thinning
of the image is obtained. A W-thinning of an image that has no W-destructible
pixels left, is a topological watershed of the image.

2.4 Component tree & component map

Component trees [6] are based on Max-trees, introduced by P. Salembier et
al. [10]. The component tree of an image is an abstraction of the landscape
that is defined by the image if it is regarded as a heightmap. The root of the
component tree represents the entire landscape at its lowest level. At higher
levels, the landscape may consist of separate landmasses, which are then rep-
resented as different branches in the component tree. Each of these branches
may contain its own branches, if there are several smaller landmasses on top of
the landmass it represents. The leaves of the tree represent the local maxima
or peaks of the landscape. Figure 2.4(g) shows the component tree of Figure
2.4(a). The components of the component tree are shown in Figures 2.4(b) to
2.4(f).
However, for the computation of the topological watershed, we don’t need to
look at the landscape itself, but at the bodies of water that will form on top of
the landscape when it is flooded. Fortunately, we can easily resolve this issue by
just computing the component tree of the inverted image (also called the min-
tree of the image), which gives us the component tree of the body of water that
covers the entire landscape when it is completely flooded. Figure 2.4(a) shows
the inverse of the image that we used before. Also note that the components of
the inverse image shown in Figures 2.4(b) to 2.4(f) are equal to the connected
components in the lower cross-sections of the original image (shown in Figure
2.2).
The components of the component tree are stored as a component map. The
component map stores for each pixel the highest component that contains the
pixel. The other components that contain the pixel are the ancestors of the
stored component in the component tree. An example of a component map is
shown in Figure 2.4(h).

Because the component tree is computed on the inverted image, the levels of
the components naturally correspond to the inverted images values. However,
we want to use the obtained component tree in combination with the original
non-inverted image, so we will invert the component levels to make them cor-
respond to the original image values.
The inverted image and its corresponding component levels only appear during
the computation of the component tree and component map, they will not be
used in any other step in the computation of the topological watershed.
The levels of the components in the component tree from Figure 2.4(g) are
shown in Figure 2.5.

2.5 Lowest Common Ancestor

The Lowest Common Ancestor (or LCA) of a set of nodes within a tree is the
lowest node in the tree that either has all those nodes as its descendants, or is
one of the nodes itself and has all the other nodes as its descendants. Although
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(a) image (b) level 4 (c) level 3 (d) level 2

(e) level 1 (f) level 0 (g) component tree (h) component map

Figure 2.4: An image and its components, component tree and component map.
Shown are: (a) the image, which is the inverse of the image shown in Figure
2.2; (b) to (f) the components of (a) on heightlevels 4 to 0; (g) the component
tree of (a); (h) the component map of (a).

Figure 2.5: The component tree of Figure 2.4(g) with the levels of the compo-
nents indicated. The values that we will use are shown on the left, the values
corresponding to the inverted image are shown on the right.

the LCA is defined for an arbitrary number of nodes, we will only look at the
Binary Lowest Common Ancestor (or BLCA), which is the LCA of exactly two
nodes. Some examples of lowest common ancestors are shown in Figure 2.6
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Figure 2.6: A tree. The LCA of i and j in this tree is d, the LCA of b and k is
b and the LCA of f and m is c.
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Chapter 3

Sequential implementation

In this chapter we will describe the sequential implementation as proposed by [5].
First, we will describe how the sequential algorithm for the topological watershed
is implemented, in Section 3.1. This algorithm makes use of the component tree
and component map, as well as the BLCA algorithm. Section 3.2 describes
how the component tree and component map are computed, and Section 3.3
describes the BLCA implementation.

3.1 Sequential topological watershed

The algorithm that computes the actual topological watershed of an image is
described in Section 3.1.3. This algorithm transforms the input image into its
topological watershed by lowering the values of W-destructible pixels. To be
able to do this, it needs to detect whether or not a pixel is W-destructible. This
detection is performed by the W-Destructible function described in Section
3.1.2. This function in its turn needs the function HighestFork to operate,
which we will describe first in Section 3.1.1.

3.1.1 HighestFork function

The function HighestFork takes a component tree C and a set of components
V from C as its input, and returns the highest component in the input tree
that has at least two children that are either one of the input components or
an ancestor of one of the input components. If no such component exists, ∅ is
returned. Figure 3.1 shows some examples of highest forks.
The pseudocode of the algorithm is given below.

Function HighestFork (Input C, V )
01. c1 ← min(V ); let c2...cn be the other components from V
02. c← c1

03. For i From 2 To n Do
04. cblca ← BLCA(C, c, ci)
05. If cblca 6= ci Then c← cblca

06. If c = c1 Then Return ∅ Else Return c

On line 01, the lowest input component is obtained and stored as the inter-
mediate result in line 02. The loop in lines 03 to 05 loops through the other
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components and computes for each one the lowest common ancestor with the
intermediate result. If the LCA is not equal to the component itself, it is stored
as the new intermediate result.
Finally, if the intermediate result is still equal to the lowest input component,
∅ is returned. Otherwise, the intermediate result is returned as the final result.

Figure 3.1: A component tree. The highest fork for {i, j, k} is b, the highest
fork for {c, f, g} is c and the highest fork for {a, c, l, m} is g. {b, d, j} has no
highest fork.

3.1.2 W-Destructible function

The function W-Destructible determines whether a pixel is W-destructible or
not. If the pixel is W-destructible, the function returns the component to which
the pixel can be added. If the pixel is not W-destructible, it returns ∅.
As its input, the function needs a map F that maps each pixel to its value, the
pixel p that is to be tested for W-destructibility, the component tree C(F ) of the
inverse image and the component map Ψ, that maps each pixel to a component
in C(F ).

Function W-Destructible (Input F, p, C(F ), Ψ)
01. V ← the components pointed at by Ψ for all lower neighbours of p
02. If V = ∅ Then Return ∅
03. c← HighestFork(C(F ), V )
04. If c = ∅ Then Return min(V )
05. If level of c < F (p) Then Return c Else Return ∅

In line 01 of the algorithm, the components of all neighbouring pixels that
have a value strictly lower than the value of p, are obtained using the component
map. If there are no lower neighbours, and therefore no corresponding compo-
nents, ∅ is returned in line 02, signifying that the pixel is not W-destructible.
Otherwise, the highest fork of the obtained components in the component tree
is computed in line 03. If they have no highest fork, this means that p is not a
watershed pixel and that it can be lowered to the level of its lowest neighbour,
so the component of the lowest neighbour is returned (line 04).
If there is a highest fork, p is a watershed pixel. In this case, the highest fork is
returned if its level is lower than the value of the pixel, or ∅ is returned if it is
not.
The four different cases of this algorithm are illustrated in Figure 3.2.
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(a) An image with four pixels
and their neighbours marked

(b) The lower neighbours
from (a) marked in the com-
ponent map of the compo-
nent tree in (c)

(c) The component tree of
the inverse of the image in
(a), with the levels inverted
back

Figure 3.2: The four cases of the W-Destructible algorithm. The top example
shows a pixel that has no lower neighbours and is therefore not W-destructible.
The lower neighbours of the bottom example map to components f and l, that
have no highest fork in the component tree, so the lowest component is returned,
in this case component f . The right example has lower neighbours that map to
components f , h and o. Their highest fork is component o, of which the level
is lower than the level of the pixel, so component o is returned. Finally, the
left example has lower neighbours that map to components a and j, that have
highest fork n. However, the level of component n is not lower than the level of
the pixel itself, so the left example is not W-destructible.

3.1.3 TopologicalWatershed procedure

Now that we have the W-Destructible algorithm, we could just loop through
all pixels, lowering them if they are W-destructible. However, since the W-
destructibility of a pixel is dependent on the values of its neighbours, a pixel
that is not W-destructible may become W-destructible if one or multiple of its
neighbours are lowered. Also, a pixel that has already been lowered may become
W-destructible again if one of its neighbours is lowered afterwards. To reduce
the time-complexity of the algorithm, we want each pixel to be lowered at most
once. This can be achieved by giving the highest priority to W-destructible
pixels that may be lowered down to the lowest possible value.
The procedure TopologicalWatershed implements this idea, using priority
queues to determine which W-destructible pixel should be lowered next. The
procedure takes the map F that holds the pixel values of the image, the compo-
nent tree C(F ) of the inverse image and the corresponding component map Ψ
as its input, and it produces a modified version of the map F , that then holds
the pixel values of the topological watershed of the image.

Procedure TopologicalWatershed (Input F, C(F ), Ψ; Output F )
01. For k From kmin To kmax − 1 Do Lk ← ∅
02. For All pixels p Do
03. c← W-Destructible(F, p, C(F ), Ψ)
04. If c 6= ∅ Then
05. i← level of c; Li ← Li ∪ {p}
06. K(p)← i; H(p)← pointer to c
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07. For k From kmin To kmax − 1 Do
08. While ∃p ∈ Lk Do
09. Lk = Lk\{p}
10. If K(p) = k Then
11. F (p)← k; Ψ(p)← H(p)
12. For All q ∈ neighbourset of p, k < F (q) Do
13. c← W-Destructible(F, q, C(F ), Ψ)
14. If c = ∅ Then K(q)←∞
15. Else
16. i← level of c
17. If K(q) 6= i Then
18. Li ← Li ∪ {q}; K(q)← i
19. H(q)← pointer to c

First, an empty priority queue L, which uses the graylevels as the priorities,
is created in line 01. Then, the algorithm loops through all pixels and runs
the function W-Destructible on each one. If the pixel turns out to be W-
destructible, it is added to the priority queue with its priority set to the level
to which the pixel may be lowered. Also, this new level is stored in the map K
and a pointer to the component to which the pixel may be added is stored in
the map H. The pixel itself is not lowered yet.
Next, the algorithm runs through the priority queue, starting with the priority
that corresponds with the lowest graylevel, in the loop that starts on line 07. A
pixel is removed from the queue in line 09, and the algorithm checks whether
the pixel should still be lowered to the level of the current priority, using the
map K. If the map K holds a different value for the pixel than the level of the
current priority, this means that the situation of the pixel has changed since
the beginning of the algorithm, and its value should no longer be changed to
the graylevel that corresponds to the current priority. No actions need to be
performed in that case. If the map K still holds the value of the current priority,
the pixel is updated with its new value in the map F , and the component map
is updated accordingly, using the pointer stored in the map H (line 11).
Now the image has changed, the W-destructibility of each possibly affected pixel
(i.e. the neighbours of the changed pixel) is recomputed. If a neighbour is not
W-destructible, this is stored in the map K on line 14, as it may have been
W-destructible before. Otherwise, the algorithm checks whether the neighbour
is already to be lowered to the correct level using the map K. If it is not, the
maps K and H are given their new values and the pixel is added to the priority
queue with its priority equal to the level to which it may be lowered.
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3.2 The component tree

The sequential component tree algorithm described here is the algorithm pro-
posed by L. Najman and M. Couprie in [8], which runs in quasi-linear time. This
algorithm is based on the Union-find algorithm proposed by R.E. Tarjan [12],
that will be described first.

3.2.1 Tarjan’s Union-find

The Union-find algorithm is used to label the connected components in a graph,
making it possible for a vertex in the graph to quickly determine to which
connected component it belongs. Each connected component in the graph is
represented by one of its vertices, called the canonical element of the component.
The vertices in a connected component are stored as a tree, where each vertex
has a parent. The canonical element is the root of the tree, being its own parent.
An example input graph and the corresponding output trees resulting from the
Union-find algorithm are shown in Figure 3.3.

(a) A graph (b) Result of Tarjan’s Union-find on
the graph of (a)

Figure 3.3: Input and the corresponding output of Tarjan’s Union-find algo-
rithm. Figure (a) shows a graph with 5 separate connected components. Figure
(b) shows the vertices from (a) organized in trees, where the root or canoni-
cal element of each tree functions as the label of its vertices. The connected
components from (a) now have labels a, b, i, j and k.

The first step in computing the result of the Union-find algorithm is to create
a single-vertex tree out of every vertex from the input graph. This is done using
the procedure MakeSet. Each vertex has a parent, which is stored in the map
Par. The map Rnk stores the rank of each vertex, although only the rank of
vertices that are canonical nodes is used. Ranks will be discussed later in this
section.
The procedure MakeSet is shown below. The input of the procedure is the
vertex that is to be represented as a tree.

Procedure MakeSet (Input x)
01. Par(x) ← x; Rnk(x) ← 0

The parent of the vertex is set to the vertex itself, making the vertex a root
and therefore a canonical node. The rank is initially set to zero.
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Now that each vertex is represented as a tree, we want to be able to merge
trees that contain vertices of the same connected component. Merging two trees
X and Y is done by making the root of Y the parent of the root of X. This
means that each vertex from X is now part of Y , with the depth of each vertex
increased by one. The depth of the vertices in Y does not change, so the new
depth of Y is equal to the maximum of the depth of X plus one and the old
depth of Y . Because we want to keep the depth of our trees as small as possible
for speed reasons, we want X to be the input tree with the smallest depth.
In the implementation, we determine which input tree to take for X and which
for Y based on the rank of each tree. The rank of a tree is initially equal to
the depth of the tree, but we will see that the depth of individual vertices may
decrease during run-time, so the depth of the tree may actually be smaller than
its rank.
The merging of two trees is implemented with the function Link. Its input
consists of two vertices x and y, being the roots of the two trees. Vertex y is
returned at the end, which is then the root of the merged tree.

Function Link (Input x, y)
01. If Rnk(x) > Rnk(y) Then exchange(x,y)
02. If Rnk(x) = Rnk(y) Then Rnk(y) ← Rnk(y) + 1
03. Par(x) ← y
04. Return y

On line 01, the algorithm makes sure that the root of the tree with the
smallest rank is stored in the x variable.
Assuming that the ranks are still equal to the depths of the trees, the depth of
the tree of y can only increase if the two trees have equal depths, so the rank
of y is increased in line 02 if they have the same ranks.
Line 03 sets the parent of x to y, and y is returned on line 04.
The function Link is illustrated in Figure 3.4.

Figure 3.4: Some examples of the Link function. Top: two single-vertex trees
with rank 0 are merged, the result has rank 1. Middle: a tree with rank 0 is
merged with a tree with rank 1, resulting in a tree with rank 1. Bottom: two
trees with rank 1 are merged, the result has rank 2.
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For determining to which tree a vertex belongs, we use the function Find.
The function needs a vertex x for its input, and returns the vertex that is the
root of the tree that contains x.

Function Find (Input x)
01. If Par(x) 6= x Then Par(x) ← Find(Par(x))
02. Return Par(x)

The function Find is a recursive function, that calls itself unless the input
vertex is a root. In that case, it can just return the input vertex (or its parent,
since a root is its own parent). In any other case it sets its parent, as well as
the parent of all its ancestors, to be the root, and returns this root as the result
of the function.
The effect of this function is illustrated in Figure 3.5.

Figure 3.5: Some examples of the Find function. Top: the function is called
on vertex d, and is recursively called on c and a. The parent of both c and d
is set to a, and a is returned. Bottom: the function is called with vertex d as
its argument. Recursively, the function is also called with arguments c, b and
a. The function sets the parent of the vertices b, c and d to a and vertex a is
returned. The parent of vertex e remains unchanged.

With the procedure MakeSet and the functions Link and Find, we can define
the Union-find algorithm, that creates trees from an input graph, where the
root of each tree functions as its label, as was shown in Figure 3.3.
The procedure Union-find needs a graph (V,E) as its input, where V is the set
of vertices and E the set of edges stored as tuples (p, q), where a tuple (p, q) ∈ E
means that there is an edge between the vertices p and q.

Procedure Union-find (Input (V,E))
01. For All p ∈ V Do MakeSet(p)
02. For All p ∈ V Do
03. treep ← Find(p)
04. For All q with (p, q) ∈ E Do
05. treeq ← Find(q)
06. If treep 6= treeq Then treep ← Link(treep, treeq)

The algorithm first creates single-vertex trees for all vertices in V using
MakeSet on line 01. For every vertex it then finds the root of the tree it belongs
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to in line 03 and the root of the tree of each of its neighbours in line 05. If two
vertices are connected with an edge but they are not part of the same tree, then
the roots of their trees are linked in line 06.

When the Union-find procedure is done, the label of each vertex can simply
be found using the Find function with the vertex as its argument.

3.2.2 Computing the component tree

The Union-find algorithm maintains a collection of sets of vertices, in which
some sets may be merged during the execution of the algorithm, as described
in the previous section. The algorithm from [8] that is described here, uses two
such collections: Qnode and Qtree.
Qnode will contain the actual component tree. Each set in Qnode will represent
a node in this component tree. To make a set into a node, its children in the
component tree need to be stored, as well as its level. The function MakeNode is
used to initialize a node. It needs the level of the node as its input, and creates
a new node with the given level and an empty list of children.

Function MakeNode (Input level)
01. Allocate a new node n with an empty list of children
02. n.level ← level
03. Return n

The nodes created with the function MakeNode are stored in the array nodes.
This array is constructed in such a way that the node with index x will belong
to the set in Qnode with the same index or label x.
When two sets in Qnode are merged, the corresponding nodes need to be merged
as well. This is done with the function MergeNodes, that is shown below. The
input consists of the two array indices of the nodes that need to be merged.

Function MergeNodes (Input node1, node2)
01. node ← Linknode(node1, node2)
02. If node = node2 Then
03. Add the list of children of node1 to the list of children of node2
04. Else
05. Add the list of children of node2 to the list of children of node1
06. Return node

On line 01, the corresponding sets in Qnode are merged using the function
Link. The subscript node indicates that the function Link only operates on the
collection Qnode, and not on Qtree. Because the indices of the nodes correspond
to the indices of the sets, there is no need to differentiate between them.
On line 02, the function checks if the canonical node of the merged set cor-
responds to the canonical node of the set of the second input node. If they
correspond, the lists of children of the two input nodes are merged and stored
in the second input node. Otherwise, the lists are merged and stored in the first
input node.
Finally, the merged node is returned in line 06. There is no need to change the
level of the node, because only nodes of the same level will be merged in the
BuildComponentTree algorithm.

The other collection of sets that the algorithm uses is Qtree. This collection
is used to determine which nodes need to be merged.
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The sets in Qtree are constructed just like in the unmodified Union-find, with
the image as its input graph, where the pixels are the vertices and the edges
connect each pixel with its neighbours. However, the sets in Qtree are merged
in a specific order. The pixels are visited in decreasing order of level, and each
pixel is only merged with neighbours that have been visited before. This causes
the highest peaks in the image to merge into multiple-vertex sets first, and the
lower pixels are added to them gradually. In the end, the entire graph will be
merged into one set. This process resembles an inverted flooding process, where
the water level is slowly decreasing. First only the peaks appear, then more and
more land emerges and finally the entire landscape is visible.

The procedure BuildComponentTree is shown below. It needs a vertex-
weighted graph (V,E, F ) as its input. For this graph, the pixels of the image
are used for the vertices V , E contains all tuples (p, q) where p and q are
neighbours in the image and the map F contains all image values, where F (p)
gives the value of pixel p.
Internally the procedure also uses the array of nodes called nodes and a map
lowestNode, that stores the index of one of its lowest nodes for each set in
Qtree.
In the final lines of the algorithm, the root of the component tree is stored in
Root and the component map is stored in the map M.

Procedure BuildComponentTree (Input (V,E, F ))
01. Sort the points in decreasing order of level F
02. For All p ∈ V Do
03. MakeSettree(p); MakeSetnode(p)
04. nodes[p]← MakeNode(F (p)); lowestNode[p]← p
05. For All p ∈ V in decreasing order of level F Do
06. curTree ← Findtree(p)
07. curNode ← Findnode(lowestNode[curTree])
08. For All already processed neighbours q of p with F (q) ≥ F (p) Do
09. adjTree ← Findtree(q)
10. adjNode ← Findnode(lowestNode[adjTree])
11. If curNode 6= adjNode Then
12. If nodes[curNode].level = nodes[adjNode].level Then
13. curNode ← MergeNodes(adjNode, curNode)
14. Else
15. nodes[curNode].addChild(adjNode)
16. curTree ← Linktree(adjTree, curTree)
17. lowestNode[curTree] ← curNode

18. Root ← lowestNode[Findtree(Findnode(0))]
19. For All p ∈ V Do M(p)← Findnode(p)

The BuildComponentTree algorithm first sorts the pixels in decreasing order
of value in line 01, and initializes the sets in Qtree and Qnode. Line 03 initializes
the nodes with their levels set to their corresponding values in the image, and
fills the lowestNode map with its initial values.
The main loop starts on line 05. In each iteration of the loop, one pixel is
processed. The pixels are processed in decreasing order.
First, the set in Qtree that the pixel belongs to is found on line 06. Then, the set
from Qnode that belongs to the lowest node of the set we just found is computed
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on line 07. The same is done for each already processed neighbour on lines 09
and 10.
If the two sets from Qnode of a pixel and its neighbour are not the same (line
11), the levels of the corresponding nodes are checked. If they are the same,
then the two nodes are merged (line 13). Otherwise, the node that belongs to
the neighbour is added to the children of the node that belongs to the currently
processed pixel (line 15). Finally, the two sets in Qtree are merged and the
lowest node of the merged set is set to the node that is being processed in lines
16 and 17.
Two examples of an iteration of the main loop are illustrated in Figures 3.6 and
3.7.

On line 18, the root of the component tree is obtained by finding the tree
that belongs to the node of an arbitrary (in this case: the first) pixel, and
looking up its lowest node. The component map can be computed by finding
for each pixel the node that it belongs to.
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(a) image

Situation before main loop iteration:

(b) Qtree (c) Qnode (d) component tree

Situation after main loop iteration:

(e) Qtree (f) Qnode (g) component tree

Figure 3.6: The initial and final situation of an iteration of the main loop
of the BuildComponentTree algorithm. (a) The input image. (b) Qtree at the
beginning of the loop iteration. White and light gray nodes have been processed
by the algorithm, dark nodes have not. Connected nodes belong to the same
sets in Qtree, with the light gray node being the lowestNode of the set. The
node marked with a circle around it is the node that will be processed in this
iteration. (c) Qnode at the beginning of the iteration. Nodes with the same label
belong to the same set in Qnode. (d) The component tree at the beginning of the
iteration, here consisting of four partial trees. The nodes in the tree correspond
to the sets with the same label in (c). (e) Qtree at the end of the loop iteration.
The node that was marked in (b) is now merged with the set next to it, and the
newest node in the set is marked as the lowestNode. (f) The old lowestNode
of the newly merged set (marked light gray in (b)) and the new node do not
match in value (see (a), where they have values 4 and 3), so the new node is
not merged with set a of the old lowestNode in Qnode. Instead, set a becomes
its child in the component tree, as shown in (g).
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(a) image

Situation before main loop iteration:

(b) Qtree (c) Qnode (d) component tree

Situation after main loop iteration:

(e) Qtree (f) Qnode (g) component tree

Figure 3.7: The initial and final situation of another iteration of the main loop
of the BuildComponentTree algorithm. The same example from Figure 3.6 is
used here, at a later iteration. See the caption of Figure 3.6 for more details. In
the initial situation, Qtree contains two processed sets, each with its own lowest
node, as shown in (b). Because the node that is to be processed has both sets as
its neighbours, we need to look at the sets in Qnode that contain the two lowest
nodes: set x with level 0 and set o with level 1. (Sets shown in (c), levels shown
in (a).) The node we are processing has level 0, just like set x, so we merge the
node with set x into set p (shown in (f)). Set o has a different level, so set o is
added to the children of set p (shown in (g)). Finally, the new node is set as the
lowest node of the merged set in Qtree, as shown in (e). Note that the result
of the algorithm does not contain component m, that was previously shown in
the component tree of this image between components o and h. This is because
there are no pixels that map to component m. Because the component tree is
only used in combination with the component map, the absence of component
m has no effect on the output of the algorithm.
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3.3 Lowest Common Ancestor

The lowest common ancestor (see Section 2.5 for its definition) is needed in the
HighestFork function that was described in Section 3.1.1. In this function, we
need to compute the LCA of two different components in the component tree.
Because the level of each component is stored as well, we can easily find the
LCA by comparing the ancestors of the two components at each level. The
lowest component that is an ancestor of both components is the lowest common
ancestor of the two.
The method for finding the LCA that is described in the previous paragraph is
easy to implement, but its execution will have a time complexity that is linear
to depth of the component tree. Since the LCA algorithm is needed very often,
a faster implementation will have a large impact on the overall performance of
the algorithm.
Fortunately, faster algorithms are available. Because the component tree is
only computed once and does not change afterwards, we can preprocess the tree
to make it easier to find the LCA of its components. A very straightforward
preprocessing would be to precompute the LCA of all pairs of components, so the
HighestFork function can obtain the LCA of any two components in constant
time. However, just storing the LCA of all pairs of component will take an
amount of storage space that is quadratic to the number of components. This
is a problem especially with larger images.
Schieber and Vishkin [11] found an algorithm that can compute the LCA in
constant time as well, but needs only linear computation time and storage.
Their algorithm will be described here.

The algorithm of Schieber and Vishkin makes use of two special kinds of
trees, in which the LCA can be computed in constant time: simple paths and
complete binary trees. Both are illustrated in Figure 3.8.
If a tree is a simple path, we can traverse the tree during preprocessing in linear
time, storing the level of each pixel. To compute the LCA of two nodes at a
later time, we only have to compare the levels of the nodes and return the node
with the lowest level value as the lowest common ancestor. See Figure 3.8(a)
for an illustration.
For a full binary tree the computation is a bit more complex. The method
described by Schieber and Vishkin is explained in the next section.

3.3.1 Computing the LCA in a full binary tree

Before we start computing lowest common ancestors, we need to label the nodes
with their inorder number. These numbers can be computed in linear time dur-
ing preprocessing. We then need to look at the binary representations of these
inorder numbers (see Figure 3.8(b)). To find the lowest common ancestor of two
nodes, we will compute three bit positions: i1: the position of the rightmost 1
in the first number; i2: the position of the rightmost 1 in the second number
and i3: the position of the leftmost bit that is different in both numbers. The
bit positions are numbered from right to left, with the rightmost bit having
position 0. We take the leftmost of the three positions we just computed, which
is the maximum of i1, i2 and i3, and store it as i. Now that we have i, we can
obtain the LCA of the two nodes by taking either one of their inorder numbers,
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and then adapt it by setting the bit at position i to 1 and the bits at positions
0 to i − 1 to value 0. The bits i + 1 and above remain equal to the bits at
the corresponding positions in the inorder numbers of both input nodes (both
nodes have the same bit values at those positions). The resulting number is
the inorder number of the LCA of the two nodes. Some examples are shown in
Figure 3.8.

(a) (b)

Figure 3.8: Two trees in which the the LCA can be computed in constant time.
(a) shows a tree that is a simple path, with the level of each node computed.
The LCA of any two nodes is the node that has the lowest level. (b) shows a
full binary tree, with the inorder number of each node shown in both decimal
and binary notation. If we want to know the LCA of nodes 18 and 29, we have
i1 = 1, i2 = 0 and i3 = 3, so i = 3. This means that bits 0, 1 and 2 of the LCA
have value 0, bit 3 has value 1 and the value of remaining bit 4 is equal to the
value of bit 4 in both 18 and 29: 1. Together this produces the binary number
11000, that corresponds to node 24: the LCA of nodes 18 and 29. For nodes
12 and 15, we have i1 = 2, i2 = 0 and i3 = 1, so i = 2. This gives us value 0
at bits 0 and 1, value 1 at bit 2 and values 1 and 0 at bits 3 and 4. Together
they become binary number 01100, or node 12, which is the LCA of nodes 12
and 15.

To implement a function that computes the LCA of two nodes in a tree in
constant time, we need a machine that can perform multiplication, division,
powers-of-two computation, bitwise AND, base-two discrete logarithm, and bit-
wise exclusive OR in constant time. If these operations can not be computed
in constant time, look-up tables for the missing operations can be computed in
linear time.
With the ability to perform these operation in constant time, we can construct
the following functions that will perform some basic operations, that we will
need in our implementation.

The first one is the function RightmostOne, that returns the position of the
rightmost 1 in the binary representation of the number x:
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Function RightmostOne (Input x)
01. Return blog2(x− (x AND x− 1))c

For example, if x is 44, or 101100 in binary representation, the rightmost
1 is computed as follows. First, the binary AND of 44 and 44 − 1 (43, in
binary: 101011) is computed: 101100 AND 101011 gives 101000. This number
is then subtracted from x: 101100 - 101000 gives 000100, which is 4 in decimal
representation. The log2 of this number is computed, giving 2.0 as a result. The
floor of 2.0 is 2, our final result. The rightmost 1 in 101100 is the third bit from
the right, which has position number 2, so this result is correct.

The next function we will use is the function LeftmostDiff, that returns
the leftmost differing bit of the numbers x and y:

Function LeftmostDiff (Input x, y)
01. Return blog2(x XOR y)c

If, for example, x and y are 44 and 37, or 101100 and 100101 in binary, the
following steps are performed. First, we take the binary exclusive OR of the
two numbers: 101100 XOR 100101 gives 001001 (9 in decimal). The log2 of
9 is approximately 3.2. The function returns the floor of this number: 3. The
leftmost bit that does not correspond in x and y is indeed the bit at position 3,
the fourth bit from the right.

The third function, ZeroRightBits, sets the n rightmost bits of the number
x to zero:

Function ZeroRightBits (Input x, n)
01. Return 2nbx/2nc

Note that dividing a number by 2n (and taking the floor of the result) is
equal to shifting its bits n places to the right, and multiplying a number by
2n is equal to shifting its bits n places to the left. So if, for example, x is 43
(101011) and n is 3, x is first divided by 23 = 8, giving 43/8 ≈ 5.4. The floor of
this result is 5, or 000101 in binary. Finally we multiply this result again with
23, giving 5 ∗ 8 = 40, or 101000 in binary. This result is equal to x with the 3
rightmost bits set to zero.

Using the three functions we just defined, we can now implement the function
FullBinaryTreeLCA, that computes the LCA of two nodes x and y in a full
binary tree in constant time:

Function FullBinaryTreeLCA (Input x, y)
01. i1 = RightmostOne(x); i2 = RightmostOne(y)
02. i3 = LeftmostDiff(x, y)
03. i = max(i1, max(i2,i3))
04. Return ZeroRightBits(x, i + 1) + 2i

The first three lines do exactly what was described before in this section:
they compute the positions of the rightmost 1 in x and y, and the position of
the leftmost bit that does not correspond in x and y. The maximum of these
three positions is stored as i.
In line 04, the bit at position i and the bits on the right of bit i are set to zero.
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After that, bit i is set to one by adding 2i to the result of the ZeroRightBits
function. The resulting number is then returned as the LCA of x and y.

3.3.2 Computing the LCA in arbitrary trees

Now we know how to compute the LCA in constant time in trees that are simple
paths or full binary trees, we can use this to compute the LCA in arbitrary
trees in constant time as well. This section will describe how. Throughout this
section, variables like inlabel, ascendant, level and head will be used. All
these variables are computed during the preprocessing stage in linear time. The
next section will describe how the preprocessing stage is implemented. In this
section, we can just assume that the values for all these variables are available
for use in constant time.

The general idea is to merge paths in our tree in a way such that the result
resembles a full binary tree. We will only merge paths between a node and one
of its descendants. Merging paths like this does not change the lowest common
ancestors of nodes, as shown in Figure 3.9.

(a) (b)

Figure 3.9: Merging paths from nodes to their descendants in a tree. (a) shows
a tree with three paths marked, (b) shows the same tree with the paths merged
into one node each. The LCA relations between nodes remain intact after the
paths have been merged. For example, nodes 11 and 17 had LCA 6. Nodes 6
and 17 have been merged into node B, so both node 17 and 6 have been replaced
by node B. For the LCA relation to remain intact, nodes 11 and B should have
LCA B, which is the case in the tree shown in (b). The same goes for nodes 12
and 19 that had LCA 7. Node 19 is merged into node C, but nodes 12 and C
still have LCA 7. This holds for all combinations of nodes.

Before we decide which paths to merge, we label each node with its preorder
number. We then assign an inlabel to each node, which is defined as the
preorder number of its descendant that would come the highest in the full binary
tree. If the node has no descendant that would come higher in the full binary
tree than the node itself, then the inlabel is set to its own preorder number.
Note that nodes that have the same inlabel always form a path. These paths
are shown in Figure 3.10(a), their inlabel values are shown in Figure 3.10(b).
See Figure 3.8(b) for a full binary tree.
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(a)

(b)

Figure 3.10: (a) A tree. Every node is labelled with its preorder number
followed with its level. Every marked path contains nodes with corresponding
inlabels, being the preorder number of the lowest node in the path. All nodes
that are not part of a marked path have an inlabel that is equal to their own
preorder number. (b) The tree of (a), where all nodes with the same inlabel
have been merged. Every node (or group of merged nodes) is labelled with its
inlabel in decimal notation, its inlabel in binary notation and the value of
its ascendant variable, respectively. The nodes are located at the place where
their inlabel value would be in a full binary tree (see Figure 3.8(b)). Note
that the tree of (b) is never actually stored in memory. Instead, every node in
the tree of (a) stores its own inlabel and ascendant values, where all nodes in
a marked path have the same inlabel and ascendant values. This figure is a
modified version of Figure 3.1 from [11]
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If we would merge all nodes with the same inlabel, we would get an
inlabel-tree, as shown in Figure 3.10(b). An especially useful property of
this inlabel-tree is that for every node in this tree, its set of ancestors is a
subset of the set of ancestors of that same node in the full binary tree. For
example, the set of ancestors of node 5 in the full binary tree in Figure 3.8(b) is
{16, 8, 4, 6, 5} (ordered from top to bottom), and the set of ancestors of node 5
in our inlabel-tree is its subset {16, 8, 4, 5}. Note that each node is part of its
own ancestor set. We can store the ancestors of each node in the inlabel-tree
as a binary number, where each bit represents the presence of a node from the
ancestor set of the full binary tree. In the example of node 5, the first three
elements in both ancestor sets (nodes 16, 8 and 4) correspond, which is stored
as three ones. The fourth element of the ancestor set in the full binary tree,
node 6, is missing in the ancestor set of the inlabel-tree, which is stored as a
zero. The final element, node 5, corresponds again, so another 1 is stored. To-
gether, this produces the binary number 11101, which we store in node 5 as its
ascendant variable. Other nodes, for example node 12, have smaller ancestor
sets in the full binary tree and therefore need less bits to store their ancestors.
In those cases, the leftmost bits are used to store which ancestors are present,
while the other bits are set to zero. In the case of node 12, the first three bits
store its ancestor set, while the other two are set to zero, giving its ascendant
variable the value 10100. The ascendant values of all nodes in the inlabel
tree are shown in Figure 3.10(b).

Note that in the full binary tree, the position of the rightmost 1 in the
inorder labels is unique for each level. If the rightmost 1 is at position 0 (the
rightmost position), the node is at the lowest possible level in the tree, and if the
rightmost 1 is at the leftmost bit position, the node is the root, at the highest
level in the tree. Because the ancestors of a node all have a different level, they
also all have their rightmost 1 at a different position. The ascendant variable
uses this fact to store at each bit position whether the ancestor that has its
rightmost 1 at that same bit position is still an ancestor in the inlabel-tree.
For example, node 5 in Figure 3.8(b) has ancestors 16, 8, 4 and 6, with their
rightmost 1s at positions 4, 3, 2 and 1. Node 5 itself has its rightmost 1 at
position 0. In the inlabel-tree of Figure 3.10(b), it only has ancestors 16, 8
and 4 left, with rightmost 1s at positions 4, 3 and 2. Node 5 itself still has its
rightmost 1 at position 0, so its ascendant variable has 1s at positions 4, 3, 2
and 0, producing ascendant value of 11101.

The next step in computing the LCA of two nodes in our original tree of
Figure 3.10(a), is finding the LCA of their inlabels in the inlabel-tree. To
do this, we first want to know the level of their LCA in the full binary tree. We
computed this level before in the FullBinaryTreeLCA algorithm, where it was
stored as i: the rightmost 1 of the LCA. Because the LCA of the two nodes in
the full binary tree has its rightmost 1 at position i, we can look at the bit at
position i in the ascendant values of both nodes to find out if this LCA is still
an ancestor of both nodes. If the ascendant values of both nodes have a 1 at
position i, then the LCA of the two nodes in the inlabel-tree is equal to the
LCA of the two nodes in the full binary tree. However, if one of them has a 0 at
position i, the full binary tree LCA is no longer an ancestor of both nodes and
therefore can not be the lowest common ancestor either. The bits to the left
of bit i represent the other common ancestors of the two nodes, so if we take
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the closest bit to the left of bit i that has value 1 in both ascendant values,
we have the bit that represents the LCA of the two nodes in the inlabel-tree.
We store the position of this bit as j. This position j stores, just like position
i did for the full binary tree, the position of the rightmost 1 of the LCA in the
inlabel-tree. We can now use j to construct the label of the LCA in the same
way we used i in the FullBinaryTreeLCA algorithm: take the label of one of
the two nodes, set bit j to 1 and bits 0 to j − 1 to value 0.
As an illustration, we will compute the LCA of nodes 9 and 10 in the inlabel-
tree of Figure 3.10(b). First we find i, the rightmost 1 of the LCA in the full
binary tree. The LCA of nodes 9 and 10 in the full binary tree is node 10, which
has its rightmost 1 at position 1 in binary notation. So we have i = 1. We then
look at bit 1 in the ascendant values of both nodes 9 and 10, that have values
0 and 1, respectively. They do not both have value 1, so we look at the first
bit to the left of bit i that does have value 1 for both nodes, which is bit 3. We
therefore set j to 3. Finally, we have to take the binary number of either two
nodes, 01010 for node 10 or 01001 for node 9 and set bits 0 to j − 1 to value 0
and bit j to 1, i.e. bits 0, 1 and 2 to value 0 and bit 3 to value 1. This results
in the binary number 01000, or the number 8 in decimal notation, which is the
LCA of nodes 9 and 10 in our inlabel-tree.

For two nodes in our original tree, we can now find the LCA of their inlabels
in the inlabel-tree. Because the inlabel-tree is the original tree with some
paths merged, and merging paths in a tree does not change LCA relations as
shown in Figure 3.9, this LCA in the inlabel-tree should be the inlabel of
the actual LCA of the two nodes in our original tree. To find this final LCA of
our two nodes, the only thing we still have to do is finding which node in its
inlabel-path is our LCA.
The first step in finding our LCA in its inlabel-path is finding for both input
nodes their lowest ancestor in the inlabel-path. For example, for nodes 5 and 9
in Figure 3.10(a), the inlabel of their LCA is 01000, or 8 in decimal notation.
The path of nodes that has inlabel 8 contains the nodes 2, 3, 7 and 8. For
node 5, its lowest ancestor in this path is node 3, and for node 9 it is node 8.
With these lowest ancestors in the inlabel path known, we have reduced the
problem to finding the LCA in a tree that is a simple path. The LCA is simply
the node with the lowest level value, node 3 in this case.
However, finding the lowest ancestor in the inlabel-path for both input nodes in
constant time is not that easy. To achieve this, we will first, for both ancestors,
find the son that is also an ancestor of the corresponding input node. In our
last example, the son of node 3 that is also an ancestor of node 5 is node 4, and
the son of node 8 that is also an ancestor of node 9 is node 9 itself.
To find these sons, we will first compute their inlabels, using the ascendant
variables of the input nodes themselves and the position of the rightmost 1 in
the inlabel of their LCA, which we stored before as j. We are looking for the
highest ancestor of a node in the inlabel-tree that is still below the calculated
LCA in the inlabel-tree. We can find the rightmost 1 in the inlabel of this
ancestor by taking the leftmost 1 that is still to the right of bit position j. We
store the position of this bit as k. With k, we can construct the entire inlabel
of the son we are looking for using the method we used before: by taking the
inlabel of the node itself, setting bit k to value 1 and the bits to the right of
bit k to value 0. For example, if one of the input nodes would be node 21 from
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Figure 3.10(b) and the LCA of both input nodes would be node 16, we would be
looking for the highest ancestor of node 21 that is still below node 16. To find
it, we first need j, the position of the rightmost 1 in the inlabel of node 16,
which has value 4. So we look at the position of the leftmost 1 to the right of bit
4 in the ascendant value of node 21, and store it as k. Node 21 has ascendant
value 10101, so k gets value 2. We then construct the inlabel we are looking
for by taking the inlabel of node 21, which is also 10101, setting bit 2 to value
1 and the bits right of it to value 0. The obtained inlabel is 10100, which is
the inlabel of node 20, the highest ancestor of node 21 below node 16.
Now we know how to compute the inlabels of the sons we are looking for, we
need to find the sons themselves. Because both sons have an inlabel that is
different from that of its parent (that has the inlabel of the LCA), they should
both be at the head of their inlabel-path. For this purpose we compute the
head of each inlabel-path during preprocessing (in linear time) and store it in
a look-up table called head. We can then use this table to find the sons we are
looking for. Once we have both sons, we can find the lowest ancestors of the
two input nodes in the inlabel-path of their LCA simply by taking the parents
of the sons we just found.

As a final example, we will now find the LCA of nodes 10 and 19 in the tree
of Figure 3.10(a). Their inlabels are 10 and 20, that have node 16 as their
LCA in the inlabel-tree. For this LCA, j, the position of it rightmost 1, has
value 4.
The first 1 right of bit 4 in the ascendant value of node 10 (11010) is bit 3
so k = 3 for the first son. By taking the inlabel of node 10 (01010) and
transforming it to have its rightmost 1 at position 3, we obtain the inlabel
01000, or 8, the inlabel of the first son. In the look-up table head we find that
the head of its inlabel-path is node 2: the first son.
The first 1 to the right of bit 4 in the ascendant value of node 19 (10100) is bit
2, so k = 2 for the second son. We then transform the inlabel of node 19 (also
10100) to have the rightmost 1 at position 2, obtaining the inlabel 10100, or
20. We find the second son by finding the head of the inlabel-path with value
20, which gives us node 18.
Finally, we take the parents of both sons, i.e. the parents of nodes 2 and 18,
giving us the lowest ancestors of nodes 10 and 19 in their inlabel-path: nodes
1 and 15. We then only have to compute the LCA of nodes 1 and 15 within the
inlabel-path, which we do simply by looking at their level-values. This gives
us the LCA of nodes 10 and 19: node 1.

3.3.3 Implementation of the LCA

The implementation of the LCA for arbitrary trees uses the same functions that
were used by the implementation of the LCA in full binary tree: the functions
RightMostOne, LeftmostDiff and ZeroRightBits. These functions have not
changed and will therefore not be described again here.
In addition to those functions, the function FirstOneRightOf is used, that
computes the position of the leftmost 1 right of position p in the binary number
x. It is implemented as follows:

Function FirstOneRightOf (Input x, p)
01. Return blog2(x AND 2p − 1)c
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If, for example, x = 43 and p = 3, we are looking for the first 1 right of bit
3 in the binary number 101011. We first calculate 23 − 1, which is 7 or 000111
in binary notation. We then compute the binary AND of x and this number:
101011 AND 000111 produces 000011, or 3 in decimal notation. The log2 of 3
is about 1.6, and the floor of 1.6 is 1. This 1 is returned, so the leftmost 1 to
the right of bit 3 in 101011 should be at position 1, which is correct.

Finally, the function that computes the LCA of two nodes x and y in an
arbitrary tree looks as follows:

Function ComputeLCA (Input x, y)
01. If inlabel[x] = inlabel[y] Then
02. If level[x] ≤ level[y] Then Return x Else Return y
03. i1 = RightmostOne(inlabel[x]); i2 = RightmostOne(inlabel[y])
04. i3 = LeftmostDiff(inlabel[x],inlabel[y])
05. i = max(i1, max(i2,i3))
06. common = ZeroRightbits(ascendant[x] AND ascendant[y], i)
07. j = RightmostOne(common)
08. inlabelz = ZeroRightBits(inlabel[x], j + 1) + 2j

09. If inlabel[x] = inlabelz Then x̂ = x Else
10. k = FirstOneRightOf(ascendant[x], j)
11. inlabelw = ZeroRightBits(inlabel[x], k + 1) + 2k

12. x̂ = parent(head[inlabelw])
13. If inlabel[y] = inlabelz Then ŷ = y Else
14. k = FirstOneRightOf(ascendant[y], j)
15. inlabelw = ZeroRightBits(inlabel[y], k + 1) + 2k

16. ŷ = parent(head[inlabelw])

17. If level[x̂] ≤ level[ŷ] Then Return x̂ Else Return ŷ

On line 01, the function checks if the inlabels of x and y are equal. If this
is the case, the problem is reduced to finding the LCA in a simple path, and
the result of this LCA is returned in line 02.
Otherwise, the position of the rightmost 1 of the LCA of x and y is computed
in lines 03 to 05, and stored as i. These lines are exactly the same as lines 01
to 03 in the FullBinaryTreeLCA algorithm that was described before.
The rightmost 1 of the LCA of inlabel[x] and inlabel[y] is then computed
in lines 06 and 07 and its position is stored as j. In line 06, the common
ancestors of inlabel[x] and inlabel[y] are found by computing the binary
AND of ascendant[x] and ascendant[y] and setting the bits that represent
ancestors below their full binary tree LCA (i.e. the i rightmost bits) to zero. In
line 07, the bit that represents the lowest common ancestor is stored as j.
The LCA of inlabel[x] and inlabel[y] in the inlabel-tree, which is equal to
the inlabel of the LCA of x and y (called z), is then constructed from j on
line 08. This is done by taking the inlabel of x, setting bits j and the bits
right of it to zero and then adding 2j , setting bit j to 1.
Lines 09 to 12 compute x̂: the lowest ancestor of x that has its inlabel equal
to inlabel[z], the inlabel of the LCA of x and y. Line 09 checks if inlabel[x]
is equal to inlabel[z]. If so, x̂ is simply x. Otherwise, the inlabel of w is
computed, where w is the son of x̂ that is an ancestor of x. The rightmost 1 of
this inlabel is computed in line 10 by finding the leftmost 1 right of position

33



j in ascendant[x]. Line 11 then constructs inlabel[w] from this position and
inlabel[x]. Finally, w is found in line 12 by looking up the head of its inlabel-
path, and its parent is stored as x̂.
Lines 13 to 16 do exactly the same for ŷ: the lowest ancestor of y that has its
inlabel equal to inlabel[z].
Line 17 returns ŷ as the LCA of x and y if ŷ is higher up in the tree (i.e. has a
lower level value) than x̂, or returns x̂ otherwise.

3.3.4 The preprocessing stage

Before we can perform the computations described in the previous section, we
need to do the preprocessing. The preprocessing algorithm takes a tree T as
its input and produces four arrays as its output. For each node, its inlabel,
ascendant and level values are stored in the corresponding arrays. The array
head stores the head of each inlabel-path.
The implementation of the preprocessing stage is shown below:

Procedure PreprocessLCA (Input T ;
Output inlabel, ascendant, level, head)

01. Compute preorder and size by preorder traversal of T

02. For All nodes v Do
03. i← LeftmostDiff(preorder[v]− 1, preorder[v] + size[v]− 1)
04. inlabel[v]← ZeroRightBits(preorder[v] + size[v]− 1, i)

05. Compute level by breadth-first traversal of T

06. ascendant[root(T )] ← 2l−1

07. For All nodes v, in breadth-first traversal order Do
08. If inlabel[v] = inlabel[parent(v)] Then
09. ascendant[v]← ascendant[parent(v)]
10. Else
11. i← RightmostOne(inlabel[v])
12. ascendant[v]← ascendant[parent(v)] + 2i

13. head[inlabel[v]] ← v
14. head[inlabel[root(T )]] ← root(T )

First, two additional arrays, preorder and size, are created to store the
preorder number and size of each node, where the size of a node is defined as the
number of its descendants including the node itself. The values of both arrays
can easily be found by a preorder traversal of T .
In lines 02 to 04, the inlabel of each node is computed. The inlabel of a
node v in a preorder numbered tree is defined as the number of its descendant
that would come the highest in a (inorder numbered) full binary tree, or, equiv-
alently, the number of its descendant that has the most rightmost zeroes. The
descendants of node v range from preorder[v] (node v itself) to preorder[v] +
size[v]− 1. In line 03 we find i, the position of the rightmost 1 of the number
with the most rightmost zeroes in that range. Bit i has value 0 in all numbers
before the number we are looking for, and value 1 in the number itself and the
numbers after it. All bits left of bit i should have values that remain equal in
all numbers in the range we are looking at, so we can find bit i by looking at
the leftmost bit that changes in that range. In the case that node v itself has
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the rightmost zeroes, bit i will have value 1 in all numbers, so we add the node
before v to be sure at least one node will have value 0 at bit position i. For
example, in Figure 3.10(a), the node with preorder number 15 has size 8. For
this node, preorder[v]−1 = 01110 (14) and preorder[v] + size[v]−1 = 10110
(22). The leftmost differing bit is bit 4, so i = 4. The node with preorder num-
ber 8 has size 2. For that node, preorder[v]− 1 = 00111 (7) and preorder[v]
+ size[v] − 1 = 01001 (9), so i = 3. Line 04 constructs the inlabel from
i and the descendant of v with the highest preorder number (preorder[v] +
size[v] − 1). Because we are already sure that bit i in this highest preorder
number has value 1, we only have to set the bits to the right of it to value 0.
In line 05, the values of the level array are found by traversing T in breadth-
first order. This traversal may be combined with the loop that starts in line 07.
The ascendant array is computed in lines 06 to 12. In line 06, the ascendant
value for the root is constructed by setting the leftmost bit, bit l − 1, to value
1, while the others remain zero. The variable l (length) represents the total
number of bits needed to represent the labels of T . With the ascendant value
of the root known, the loop in line 07 visits all nodes in T in breadth-first order.
If the inlabel of the node is equal to the inlabel of its parent, the ascendant
values should be the same as well, so the ascendant value of the node is set
to the value of its parent (lines 08 and 09). Otherwise, the bit position that
represents the current node (i.e. the position of its rightmost 1) is set to value
1 in its ascendant value, as shown in lines 11 and 12.
The values of the head array can be found by setting each node that has an
inlabel that is different than the inlabel of its parent to be the head of its own
inlabel-path. Because this condition corresponds to the condition of the Else
branch that starts in line 10, the initialization of the head array is combined
with it, as shown in line 13. The only exception in calculating the heads of the
inlabel-paths this way is the inlabel-path of the root, because the root has
no parent with a different inlabel (since the root is defined as its own parent).
However, we already know that the head of this inlabel-path should be the
root itself, so this is implemented in line 14.
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Chapter 4

Parallel Implementation

This chapter will describe the proposed parallel algorithm for the topological
watershed. The new parallel algorithm is based on the sequential algorithm
from Chapter 3, the parallel Max-tree implementation by Wilkinson et al. [14]
and the parallel LCA implementation by B. Schieber and U. Vishkin [11].

The sequential implementation of the topological watershed, as described in
Chapter 3, used the function W-Destructible to determine in constant time
whether a pixel was W-destructible. For this function to operate, it needed a
component tree and some preprocessing on this component tree to be able to
find the lowest common ancestor of any two of its components. To parallelize
the computation of the topological watershed, we need a parallel version of all
these elements: the main algorithm, that uses the W-Destructible function, the
computation of the component tree and the preprocessing stage of the LCA.
Section 4.1 will describe the parallel version of the main algorithm, Section
4.2 will describe the parallel component tree algorithm and finally the parallel
implementation of the preprocessing will be explained in Section 4.3.

4.1 Parallel topological watershed

The key element of the sequential topological watershed algorithm is the func-
tion W-Destructible. The algorithm, described in Section 3.1, basically just
calls this function for all pixels in the image, using a specific order to keep the
execution time linear. Because the function W-Destructible is a local function
(it only needs information from one pixel and its neighbours), we can parallelize
the sequential topological watershed algorithm for n threads simply by dividing
the image into n tiles and assigning one tile to each thread. An example division
for a 2D image is illustrated in Figure 4.1(a) and a division for a 3D volume is
shown in Figure 4.1(d).
However, since the W-Destructible function is dependent on the neighbours
of the pixel it is examining, problems may arise when examining border pixels,
because their neighbours in other tiles can be changed at any time by their
assigned threads, which may produce incorrect results. To prevent this from
happening, we need to prevent adjacent pixels in different tiles to be processed
at the same time. We can achieve this by letting each thread process its tile
in different stages, and synchronizing all threads after each stage. Each tile is
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divided into subtiles, and a different subtile is processed in each stage. The tiles
are divided in such a way that no two adjacent subtiles need to be processed
at the same time. Whether or not two subtiles are adjacent depends on the
connectivity (described in Section 2.1). Subtile divisions for each connectivity
are shown in Figure 4.1.

(a) 2D image (b) 4-connectivity (c) 8-connectivity

(d) 3D volume (e) 6-connectivity (f) 18-connectivity (g) 26-connectivity

Figure 4.1: (a) shows an image divided into 12 tiles for 12 threads. With 4-
connectivity, each tile should be divided into 2 subtiles, as shown in (b). The
dark subtiles represent the subtiles that are processed in the first stage. Note
that no two dark subtiles are neighbours of each other. However, they would
be neighbours with 8-connectivity, so 4 subtiles are used for 8-connectivity, as
shown in (c). (d) shows a 3D volume divided into 8 ‘tiles’ for 8 threads. For
6-, 18- and 26-connectivity, 2, 4 and 8 subtiles are needed, respectively. This
is illustrated in Figures (e), (f) and (g). Again, the dark subtiles represent the
subtiles to be processed in the first stage.

Now each thread knows which subtile it should process in each stage, an
algorithm much like the sequential topological watershed algorithm from Section
3.1 can be used to process each subtile. However, a few adjustments have to be
made.
For example, a certain pixel x may need to be lowered to the value of some local
minimum y to obtain a topological watershed of the input image. However, if
pixels x and y are part of different subtiles, it is possible that pixel x will not
get the value of y the first time its subtile is processed. Multiple iterations may
be needed to obtain the desired result, as shown in Figure 4.2.

The sequential main topological watershed algorithm from Section 3.1 pro-
cesses all pixels in the order that is determined by the priority queue. In the
beginning of the algorithm, all pixels are added to this priority queue. In the
parallel implementation, this may be a good approach when the pixels are pro-
cessed for the first time, but visiting each pixel in every later iteration as well is
not necessary. Instead, we will keep track of the pixels that have been changed
in the most recent iteration, and only add those pixels to the priority queue that
are adjacent to pixels in other subtiles that changed recently. For this purpose
we will use the binary map pxChanged, that will store for each pixel whether or
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(a) before process-
ing

(b) first iteration,
first stage complete

(c) first iteration,
both stages com-
plete

(d) second iter-
ation, first stage
complete

Figure 4.2: An example where multiple iterations are needed. The original
image, divided into two subtiles, is shown in (a). The left subtile is processed
in the first stage. Only pixels from the left subtile are changed, but values
of adjacent pixels from the right subtile may be used to determine if a pixel
in the left subtile is W-destructible. (b) shows the result after the first stage.
The right subtile is processed in the second stage, completing the first iteration.
However, as displayed in (c), the result is not yet a topological watershed. A
second iteration is needed to obtain a correct result, as shown in (d).

not its value has changed recently. The use of this map is illustrated in Figure
4.3.

Figure 4.3: An example of a pxChanged map in an iteration after the first. The
white pixels in the four adjacent subtiles are pixels that are marked as ‘changed’
in the pxChanged map. The pixels in the current subtile that are adjacent to
such a changed pixel, marked with x in this figure, are added to the priority
queue of the sequential algorithm.

The TopologicalWatershed procedure from Section 3.1 roughly consists of
two parts: first the priority queue L is initialized (lines 01 to 06) followed by
the main loop of the algorithm (lines 07 to 19). The parallel version of the
algorithm is a bit more complex, so the algorithm is distributed over two proce-
dures: the procedure InitializeQueue, which corresponds to the first part of
the sequential algorithm, and the procedure TopologicalWatershedTile, that
corresponds to the second part. Both procedures are given below.

The InitializeQueue procedure needs the image F , the component tree of
its inverse C(F ) and the corresponding component map Ψ as its input, just like
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in the sequential algorithm. Additionally, it also needs the subtile T in which
it should operate, and the current state of the pxChanged map. The output
consists of the priority queue L, the maps K and H as explained in Section 3.1,
and the updated pxChanged map. The queue L and the maps K and H are all
local, but the map pxChanged is global, and may be read and modified by other
threads while this procedure is being executed. However, each thread will only
write in the part of the pxChanged map that corresponds to its current subtile,
and will only read in adjacent subtiles that are processed in a different stage,
so no conflicts will emerge.

Procedure InitializeQueue (Input F, C(F ), Ψ, T , pxChanged;
Output L, K, H, pxChanged)

01. For k From kmin To kmax − 1 Do Lk ← ∅
02. For All pixels p ∈ T Do pxChanged[p]← false
03. If first iteration Then
04. For All pixels p ∈ T Do
05. c← W-Destructible(F, p, C(F ), Ψ)
06. If c 6= ∅ Then
07. i← level of c; Li ← Li ∪ {p}
08. K(p)← i; H(p)← pointer to c
09. Else
10. For All border pixels p of T Do
11. addP ← false
12. For All neighbours q of p Do
13. If pxChanged[q] = true Then addP ← true
14. If addP = true Then
15. c← W-Destructible(F, p, C(F ), Ψ)
16. If c 6= ∅ Then
17. i← level of c; Li ← Li ∪ {p}
18. K(p)← i; H(p)← pointer to c

The algorithm starts by initializing the priority queue L in line 01. It then
proceeds by setting the pxChanged map to false for every pixel in subtile T .
If the procedure is run during the first iteration, then lines 04 to 08 are exe-
cuted. In the first iteration, L is initialized exactly like in the original sequential
algorithm, apart from the fact that only the pixels within T are processed in-
stead of all pixels in F .
If the procedure is called after the first iteration, lines 09 to 18 are executed. In
these lines the algorithm checks all border pixels for changed neighbours, and
tests the pixels for W-destructibility if any changed neighbours are found. If a
pixel turns out to be W-destructible, it is added to the priority queue, and the
maps K and H are updated as before.

The second procedure, TopologicalWatershedTile, needs the same input
as the procedure InitializeQueue. The output consists of the updated image
F , the update pxChanged map, and the binary variable anyChanges. The vari-
able anyChanges is used to quickly determine if any changes have occurred in
the subtile during the execution of this procedure.
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Procedure TopologicalWatershedTile (Input F, C(F ), Ψ, T , pxChanged;
Output F , pxChanged, anyChanges)

01. anyChanges ← false
02. InitializeQueue(F, C(F ), Ψ, T , pxChanged)
03. For k From kmin To kmax − 1 Do
04. While ∃p ∈ Lk Do
05. Lk = Lk\{p}
06. If K(p) = k Then
07. F (p)← k; Ψ(p)← H(p)
08. pxChanged[p]← true; anyChanges ← true
09. For All neighbours q of p within T , with k < F (q) Do
10. c← W-Destructible(F, q, C(F ), Ψ)
11. If c = ∅ Then K(q)←∞
12. Else
13. i← level of c
14. If K(q) 6= i Then
15. Li ← Li ∪ {q}; K(q)← i
16. H(q)← pointer to c

The procedure TopologicalWatershedTile starts by initializing the value of
anyChanges. The function call on line 02 produces an initialized priority queue
L, as well as initialized maps K and H. The rest of the function is mostly the
same as the second part of the TopologicalWatershed procedure from Section
3.1. Line 08 is added, where the pxChanged map and the anyChanges variable
are updated. Also, a new restriction is added to line 09, saying that only
neighbours of p that lie within the subtile T should be added to the priority
queue.

With the procedure TopologicalWatershedTile implemented, we can now
define the main parallel algorithm: the procedure ParallelTW. It needs the pixel
mapping F , the component tree of the inverse image C(F ) and the corresponding
component map Ψ as its input, just like the sequential algorithm. Because each
thread will run this procedure independently, the global map pxChanged needs
to be provided to each thread as well. However, no initial values need to be
stored in it. Additionally, each thread is provided its identifier id. The first
thread gets id value 0, the second gets value 1 and so on. The output of the
procedure is the updated map F , that now contains the topological watershed
of the input image.

Procedure ParallelTW (Input F, C(F ), Ψ, pxChanged, id; Output F )
01. done ← false
02. While done = false Do
03. anyChangesThr[id] ← false
04. For All stages s Do
05. T ← current subtile, based on id and s
06. TopologicalWatershedTile(F, C(F ), Ψ, T , pxChanged)
07. If anyChanges = true Then anyChangesThr[id] ← true
08. Barrier()
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09. If id = 0 Then
10. anyChangesAtAll ← false
11. For All threads t Do
12. If anyChangesThr[t] = true Then
13. anyChangesAtAll ← true
14. Barrier()
15. If anyChangesAtAll = false Then done ← true

The algorithm keeps looping until a topological watershed of the input image
is found. In each iteration, the loop that starts on line 02 is executed once by
each thread. Line 04 starts a loop that visits all stages. The number of stages is
equal to the number of subtiles assigned to each thread, as shown in Figure 4.1.
Line 05 then determines the location and dimensions of the subtile that should
be processed by the current thread in the current stage. Some examples of the
subtiles that should be processed by each thread in the first stage are displayed
in Figure 4.1. In the other stages the subtiles that are processed should have a
similar pattern, always assuring that no two adjacent subtiles are processed at
the same time.
The topological watershed of the tile is then computed on line 06. If the al-
gorithm returns that there have been some changes, then this is stored for the
current thread in the (global) anyChangesThr array. After this, a standard bar-
rier function is called, that just waits until all threads have reached this barrier
and then lets all thread continue. This is done to ensure that no thread will
start with the next stage until all threads are done with the current one.
When all threads have finished processing all their subtiles, the first thread will
check if there have been any changes in any of the threads. If there have not
been any changes at all, a topological watershed has been found and all threads
will terminate. Otherwise, each thread will go to the next iteration by starting
again with the main loop from line 02.

4.2 The component tree

Wilkinson et al. [14] described how to parallelize the computation of a compo-
nent tree, their method will be described here. Because the algorithm from [14]
also deals with features of the component tree that we won’t use, its implemen-
tation is simplified somewhat in this report.
Basically, the sequential algorithm is parallelized by letting multiple threads
each compute the component tree of a different part of the input image, and
merging the component trees of the parts afterwards. The actual connecting
of component trees is done with the procedure Connect. The main algorithm,
the procedure ParallelComponentTree, uses the procedure Connect to merge
all component trees into one component tree, which also happens in parallel.
Finally, the component tree and component map are simplified with the pro-
cedure CompressTree. But first of all, we will look at an additional function,
called LevelRoot.

The function LevelRoot returns the level root of a component, which is de-
fined as the highest ancestor of that component in the component tree that still
has the same level as the component itself. For example, if both a component x
and its parent y have the same level, but z, the parent of y has a different level,
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then y is the level root of x, and y is also its own level root. Initially, each node
in a component tree is its own level root, but while merging two component
trees this may change, as we will see in the implementation of the procedure
Connect.
The function LevelRoot needs a component c, the map F and the component
tree C(F ) as its input, and returns the level root of c. It is implemented as
follows.

Function LevelRoot (Input c, F , C(F ))
01. If c = root(C(F )) ∨ F (c) 6= F (parent(c)) Then
02. Return c
03. Else
04. parent(c) ← LevelRoot(parent(c), C(F ), F )
05. Return parent(c)

Line 01 checks if the component c is the root, or if the parent of c has a
different level than c itself. In both cases, c is returned as its own level root.
Otherwise, the level root of the parent of c is computed recursively, stored and
then returned.
Technically, the map F maps pixels to their corresponding gray levels, so using
the map to retrieve the level of a component should technically be impossible.
However, all pixels in a component have the same level and the component is
represented by a canonical element (which does correspond to one pixel), using
the map F to obtain the level of the component c should not be a problem in
practice.

With the LevelRoot function defined, we can now implement the procedure
Connect. This procedure takes two components x and y as its input, and merges
the path from x to the root of its tree with the path from y to the root of its
tree. To do this, it uses three iterators: x, y and z. Initially, iterator x points
to component x and iterator y points to component y. The rest of the input
consists of the map F , the component tree Cx that contains the component x
and the component tree Cy that contains the component y. The output of the
algorithm is the merged component tree, that contains both component x and y.
Also note that this algorithm uses a different way of handling roots of trees than
we did before. Here, the root has parent ⊥, instead of being its own parent.
This difference has no significant impact on how the algorithm works, but is
kept here to keep the code consistent with the code from [14]. The algorithm is
implemented as follows:

Procedure Connect (Input x, y, F , Cx, Cy; Output Cx,y)
01. x← LevelRoot(x, F, Cx); y ← LevelRoot(y, F, Cy)
02. If F (y) > F (x) Then swap(x, y)
03. While (x 6= y) ∧ (y 6= ⊥) Do
04. If parent(x) 6= ⊥ Then z ← LevelRoot(parent(x)) Else z ← ⊥
05. If z 6= ⊥ ∧ F (z) ≥ F (y) Then
06. x← z
07. Else
08. parent(x) ← y
09. x← y; y ← z

On line 01, the iterators x and y are set to the level roots of the components
they were pointing to. Line 2 makes sure iterator x has the highest level by
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swapping the iterators if y has a higher level initially. Again, the map F is used
to obtain the level of a component instead of the level of a pixel, as explained
before in this section. The algorithm then starts looping until either y has
reached the root of its tree or x is equal to y. Each loop iteration starts with z
being set to the level root of the parent of x, unless x is the root of its tree, in
which case z is set to ⊥. If the value of the component pointed at by z is higher
than or equal to that of y, then x is set to z. Otherwise, the component of y is
set to be the parent of the component of x, x is set to y and y is set to z. What
this means in practice is illustrated in Figures 4.4 and 4.5.

(a) (b) (c) (d)

(e) (f) (g)

Figure 4.4: The Connect procedure for components b and c from different com-
ponent trees. In (a), x is first set to the component that has the highest level
of the two, in this case c. (Because the root is at the top of the image, the
components with the highest levels are at the bottom of the image.) At the
start of the first iteration, z is set to the level root of the parent of x (which
is the parent itself, in this case). The level of z is not greater than or equal to
the level of y, so y is set as the parent of x, x is set to y and y is set to z, as
shown in (b). Also z is set again to the level root of the parent of x in the next
loop iteration, also displayed in (b). Now the level of z is equal to the level of
y, and z 6= ⊥, so x is set to z and y remains unchanged. The result is shown
in (c), again with z set to be the level root of the parent of x. This process is
continued until finally y = ⊥ in (g), and the loop is terminated.

We now want to use the Connect procedure to merge the component trees
of two adjacent partial images. To achieve this, we take all pixel pairs (p, q)
with p in one of the partial image, q in the other and p and q adjacent to each
other. We then find the corresponding component pair (x, y) for each pixel pair
by using the component map Ψ. Finally, we execute the Connect procedure for
each pair of components, which should result in the component tree of the two
partial images combined when the last pair is ‘connected’. This is illustrated in
Figure 4.6.
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(a) (b) (c) (d)

Figure 4.5: The Connect procedure for components in the same component
tree. (a) shows the case where (the level roots of) the two input components
are both g, in which case x = y and the loop is terminated immediately. Figures
(b) to (d) show the Connect procedure for components i and j. After two loop
iterations x = y, as shown in (d), which terminates the loop.

Now we know how to merge the component trees of two adjacent partial
images, we can implement the main algorithm: the ParallelComponentTree
procedure. This procedure divides its input image into a number of slices that
is equal to the number of threads. First each thread will then compute the
component tree for its slice. After this, all component trees will be merged
together into the component tree of the entire image, which also happens in
parallel, in multiple iterations. In the first iteration, the slices are grouped
into pairs, and the component trees of each pair are merged. The merging of
a pair is performed by a single thread, so only half the amount of available
threads can be used in the first iteration, since the number of pairs will be at
most half the number of slices and therefore half the number of threads. In
the second iteration, the merged slices are grouped into pairs again and then
merged. Because the total number of pairs will be only half the number of pairs
of the previous iteration, only a quarter of the available threads will be used in
the second iteration. This merging process continues until the final iteration,
in which the component trees of the final two merged slices will be merged
into the component tree of the entire image. Since the merging of a single pair
is performed by a single thread, the final iteration is performed by only one
thread.
To coordinate which slices should merge in each iteration, and which thread
should perform this merging, the following system is used. In the first iteration,
each thread that has an identifier that is a multiple of 2 (i.e. an even number),
merges its slice with the next adjacent slice, that has the identifier that is equal
to its own identifier plus 1. This means that slices {0, 2, 4...} merge with slices
{1, 3, 5...}, respectively. In the next iteration, the slices that have identifiers that
are multiples of 2*2 merge with the slices that have their identifier plus 1*2,
meaning that slices {0, 4, 8...} merge with slices {2, 6, 10...}, respectively. In the
third iteration, the multiples of 2*2*2 merge with the slice that has their own
identifier plus 1*2*2, and so on. This merging process is illustrated in Figure
4.7. If the total number of threads is not a power of two, the system still works,
but some threads will be inactive during some iterations. For example, we could
remove threads and therefore slices 6 and 7 from Figure 4.7. In that case, the six
remaining threads would still react the same, except the thread responsible for
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Figure 4.6: Merging the component trees of two partial images. The partial
images are shown in the top row, the middle row shows the level roots of the
components in the component maps of the images and the bottom row shows
the component trees during the process. The leftmost column shows the initial
situation, the other columns show the situation after the marked pairs have been
connected. Because the Connect procedure only looks at the level roots of the
components, the components that are not level roots (i.e. components f and h
after the first pair is merged) are not shown in this figure for clarity. The steps
of the Connect procedure for the first pair is shown in Figure 4.4. Figure 4.5(a)
shows the Connect procedure for the second pair and Figures 4.5(b) to 4.5(d)
show the Connect procedure for the third pair. Just like in this figure, Figure
4.5 does not show the components that are not level roots. The final component
tree in this figure, where all pairs have been connected, is the component tree
of the two partial images combined.

slice 4, which would now be inactive in the second iteration instead of merging
slices 4 and 6.

The procedure ParallelComponentTree uses binary semaphores to synchro-
nize the threads. Each thread has two own semaphores: sa and sb. The value
of sa of a thread is set to 1 with the atomic action V when its tree is ready to
be merged into the tree of another thread. When a thread wants to merge its
tree with the tree of another thread, it first waits until the semaphore of that
other thread is set to 1, using the action P . Similarly, if a thread is done with
merging its tree with other trees, it calls P on its semaphore sb. This causes
the thread to wait until its value of sb is set to 1 after thread 0 has called V on
it.
The ParallelComponentTree procedure needs, just like the sequential compo-
nent tree implementation, a vertex-weighted graph (V,E, F ) as its input, where
V contains all pixels, E contains all pairs of pixels from V that are neighbours
in the image and F maps each pixel to its value. Additionally, each thread gets
its own identifier id. When all threads have finished executing, the output of
the algorithm will be the component tree C(F ) and the component map Ψ.
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Figure 4.7: A 3D volume divided into eight slices, with the arrows indicating
the merging process of the component trees of the slices. For 2D images the
merging process stays the same, the image can simply be considered as a 3D
volume with depth 1, represented by the front face of the block in this figure.
In the first iteration, thread 0 merges its component tree with the component
tree of thread 1, thread 2 merges its tree with the tree of thread 3, thread 4 its
tree with the tree of 5 and thread 6 with the tree of 7. In the second iteration,
thread 0 merges its (merged) tree with the tree of thread 2 and thread 4 merges
its tree with the tree of thread 6. Finally, in the third iteration thread 0 merges
its tree with the tree of thread 4, resulting in the final component tree.

Procedure ParallelComponentTree (Input (V,E, F ), id; Output C(F ), Ψ)
01. C[id] ← component tree of slice id; update Ψ for the pixels in slice id
02. Barrier()
03. step ← 1; id2 ← id
04. While (id + step < K) ∧ (id2 MOD 2 = 0) Do
05. P(sa[id+step]) (* wait to connect with next neighbour *)
06. For All edges (p, q) between tree id and tree (id+step) Do
07. Connect(Ψ(p), Ψ(q), F , C[id], C[id+step])
08. step ← step * 2; id2 ← id2 / 2
09. If id = 0 Then
10. For All threads t Do V(sb[t]) (* release the waiting threads *)
11. Else
12. V(sa[id]) (* signal previous neighbour *)
13. P(sb[id]) (* wait for thread 0 *)
14. CompressTree(F , C[0], Ψ, id)
15. Barrier()
16. If id = 0 Then C(F )← C[0]

In line 01, each thread calculates the component tree of the slice that was
assigned to that thread, using the pixels from V that lie within the slice, the
pairs from E that connect pixels in the slice and the map F . All threads use
the same component map Ψ to store the component maps of their component
trees, but all use different parts of this map, so no conflicts will emerge there.
The barrier in line 02 waits until all threads have finished computing their com-
ponent tree, before continuing with the rest of the algorithm.
On line 03 the two local variables step and id2 are initialized. The variable
id2 is used to determine if the thread should still do something in the current
iteration. Its value is initially equal to the identifier of the thread, but is divided
by 2 after each iteration. The variable step is used to calculate the index of
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the tree that the thread should merge its own tree with.
The main loop of each thread starts on line 04. The first condition of the loop
checks if the tree the thread wants to merge with its own tree exists, by checking
if id + step < K, where K is the total number of threads or slices. The second
condition checks whether id2 is a multiple of 2.
On line 05, the thread calls P on the semaphore sa of the thread that is re-
sponsible for the tree it wants to merge with. This causes the thread to wait
until V has been called for that same semaphore. When this has happened, the
thread moves on to the loop that starts on line 06. In this loop the thread loops
through all edges or pairs from E that have one pixel in both trees that are to
be merged. On line 07, the components of both pixels are obtained using Ψ,
and the resulting components are connected using the procedure Connect. On
line 08, at the end of the loop, the step variable is multiplied by two. Also,
the id2 variable is divided by two, causing the second condition of the loop to
check if id is a multiple of 4 in the second iteration, a multiple of 8 in the third
iteration, and so on.
After the loop has terminated, the behaviour of the thread depends on the
value of its identifier. If the thread is not thread 0, the thread calls V on its
own semaphore sa signifying that its tree is ready to be merged into another
tree. Then it calls P on its semaphore sb, causing the thread to wait for thread
0. If the thread has identifier 0, it calls V on the semaphore sb for all other
threads, enabling all threads to continue to line 14.
On line 14, each thread calls the CompressTree procedure, which will be de-
scribed next. When all threads have finished executing this procedure and have
passed the barrier in line 15, finally thread 0 sets its component tree as the final
component tree C(F ).

The procedure CompressTree that was mentioned before in the procedure
ParallelComponentTree compresses the component tree by removing all com-
ponents that are not level roots.
To be able to compress the tree in parallel, we will divide the component tree
and component map into segments, and let the threads process one segment
each. When a thread would call our current LevelRoot function on one of the
components in its segment, it may also change the parent of one of the ances-
tors of the component. However, if that ancestor is part of a segment that is
processed by another thread, this may cause conflicts between the threads. To
prevent this, we will use a slightly modified function to obtain the level root of
a component, called LevelRoot2. This function is implemented as follows:

Function LevelRoot2 (Input c, F , C(F ))
01. If c = root(C(F )) ∨ F (c) 6= F (parent(c)) Then
02. Return c
03. Else
04. Return LevelRoot2(parent(c), C(F ), F )

This function is almost identical to the original LevelRoot function, apart
from the fact that it only returns the level root of its parent in line 04, instead
of storing it first and then returning it.

The procedure CompressTree needs a map F , a component tree C(F ) and a
corresponding component map Ψ as its input, as well as the identifier id of the
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thread that executes it. The output of the procedure consists of the compressed
component tree and map.

Procedure CompressTree (Input F , C(F ), Ψ, id; Output C(F ), Ψ)
01. For All components c ∈ segment id of C(F ) Do
02. parent(c) ← LevelRoot2(parent(c), F , C(F ))
03. For All pixels p ∈ segment id of F Do
04. Ψ(p)← LevelRoot2(Ψ(p), F , C(F ))

In the first two lines, the algorithm loops through the components in the
segment of the component tree that is assigned to the current thread, and sets
the parent of each component to be the level root of that parent.
The last two lines loop through the segment of the component map that is
assigned to the thread, and sets each component in the component map to be
the level root of that component.
When this process is completed, all components that are not level roots are no
longer used and may be deleted from the memory.

4.3 Lowest Common Ancestor

The sequential version of the LCA implementation of Schieber and Vishkin [11],
as described in Section 3.3, consists of a preprocessing stage and a part where the
actual LCA of two tree nodes is computed. Fortunately, this computation part
is already in constant time and therefore does not need to be parallelized. For
the preprocessing stage, which their sequential algorithm performs in sequen-
tial time, Schieber and Vishkin introduced a parallel algorithm. The method
described here is based on their algorithm.

The sequential LCA preprocessing algorithm made use of preorder and breadth-
first traversal of the tree, to compute the values needed for the inlabel, ascendant,
level and head arrays. However, we can not use these methods in the parallel
algorithm, because letting one thread traverse the entire tree would already take
linear time. Instead we will use the so-called Euler tour technique.
In the Euler tour technique we add for each edge (u → v) in the tree its an-
tiparallel edge (v → u). In the graph that results, the indegree of each vertex is
equal to its outdegree, the graph has an Euler path that starts and ends in the
root, meaning that we can traverse the entire graph visiting each edge exactly
once, starting and ending in the root vertex. Because we also want to visit each
vertex exactly once, we will add new vertices at nodes that have an indegree
higher than 1. For example, if a vertex b has indegree 3, we will split up vertex
b into three vertices b0, b1 and b2, each with indegree (and outdegree) 1. For a
vertex c with indegree 1 however, we will only keep one vertex, called c0.
To make sure that all vertices in the graph remain connected, we will distribute
the incoming and outgoing edges for a vertex v as follows:

• the incoming edge from the parent of v will point to v0

• if v has children, v0 will have an outgoing edge to the first child, v1 will
have an outgoing edge to the second child, etc.

• again if v has children, the incoming edge back from the first child will
point to v1, the incoming edge from the second child will point to v2, etc.
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• vi, where i is the number of children of v, points back to the parent of v

An example of a tree transformed into a graph like this is shown in Figure
4.8. The graph that emerges is path-shaped. If we would consider this path
as a list and assign a weight to each edge, we can compute for each vertex the
distance to the end of the list using list ranking. Using this technique it is not
hard to compute the preorder number or the level of each vertex from the tree,
as illustrated in Figure 4.8.

(a)

(b)

Figure 4.8: Illustration of the Euler tour technique. (a) shows a tree with the
antiparallel edges added. (b) shows an Euler tour through this tree that visits
all edges exactly once. The edges directed to the root are displayed as dashed
arrows, the edges directed from the root are displayed as solid arrows. The first
line of numbers shows the total distance to the end of the list for each vertex if
the solid arrows represent a distance of 1 and the dashed arrows a distance of
0. The second line shows the distance to the end of the list if the solid arrows
represent a ‘distance’ of −1 and the dashed arrows a distance of 1. The preorder
number of a vertex v from the tree of (a) can be found by computing 10 (the
number of tree nodes) minus the distance of v0 from the first line. The level of
each vertex v can be found by simply taking the distance of v0 from the second
line. For example, vertex d from (a) has preorder number 10− 6 = 4 and level
2.

To construct this ‘Euler tour’-list in parallel, we first take the complete
set Q of all vertices in our input tree T . We then divide this set Q into as
many intervals as there are threads. Each thread is assigned its own interval
I. Because vertices in the tree that have children will produce multiple vertices
in our final list, we have an additional set R to store these vertices. Note that
each child always causes exactly one additional vertex to appear for its parent.
Since all vertices except for the root are children of another vertex, the size of
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set R will therefore be equal to the size of set Q minus one. If we store set Q in
an array, we can create an array for R with the same size, where the position of
each vertex in Q corresponds with the position of the vertex it causes to appear
in R. Using this approach, we can use the same interval I for both Q and R.
For each list vertex, both in the sets Q and R, a pointer to the next vertex in
the list is stored. Also, for each vertex in Q, a pointer to the last vertex that
belongs to the same tree node is stored in the variable lastPart. For a vertex
v with i children, the lastPart variable of v0 should eventually point to vi.
The algorithm that constructs the Euler tour, ParallelEulerTour, makes use
of barriers like before, and of mutual exclusion (mutex) objects. A mutex works
similar to a binary semaphore. A mutex can be used to make sure certain
variables will never be written to by two threads at the same time. If a thread
wants to modify such a variable, it first tries to lock the responsible mutex. If
it is already locked, the thread will wait until the mutex becomes unlocked and
then obtain the lock itself. The thread can then be sure no other threads have
access to the variable and safely modify it. Afterwards, the thread needs to
unlock the mutex again so other threads can modify the variable.
The algorithm needs the tree T , the set of vertices in the tree Q and the interval
of the current thread I as its input, and as its output it updates the set Q and
initializes its part of the set R. Additionally, a mutex object for each element
of Q is needed.

Procedure ParallelEulerTour (Input T , Q, I; Output Q, R)
01. For All vertices v in Q(I) Do
02. v.lastPart ← v; v.next ← −1
03. Barrier()
04. For All vertices v in Q(I) Do
05. If v 6= root(T ) Then
06. u← parent(v)
07. mutex lock(u); mutex lock(v)

08. Add new vertex w to R(I)
09. w.next ← u.lastPart.next
10. u.lastPart.next ← v
11. v.lastPart.next ← w
12. u.lastPart ← w

13. mutex unlock(v); mutex unlock(u)
14. Barrier()

In the first two lines, the vertices from Q that lie within the interval I are
initialized. The lastPart variable is set to the vertex itself, and the next
variable is set to −1, meaning that there is no next vertex (yet). All threads are
then synchronized in line 03. Line 04 loops through all vertices in the interval I
of Q again, and unless the vertex is the root, a number of actions are performed
for each vertex. As an example, we will look at node d being added to node b,
as shown in Figures 4.9(c) (before adding node d) and 4.9(d) (after adding).
First, the node and its parent are locked using the corresponding mutex objects,
in this case the objects for d0 and b0. Vertex b1 does not need to be locked,
as it is part of R and not of Q. Then a new vertex, b2 is created. The next
variable of b2 is set to b0.lastPart.next, which is b1.next, which is a1. The
next variable of b1 is then set to d0, and the next variable of the lastPart of
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d0, d0 itself, is set to b2. Finally, the lastPart variable of b0 is set to b2.

(a) (b) (c) (d)

Figure 4.9: The evolution of the vertices that belong to tree node b during the
parallel construction of the Euler tour. (a) shows the initial vertex, with just
b0. b0 has a lastPart-pointer that points to b0 itself. (b) shows tree node b
after it has added itself as a child to tree node a. This caused a new vertex, a1

to appear. The next variables of vertices a0 and b0 are set as indicated by the
arrows, and the lastPart variable of a0 is set to the new vertex a1. (c) shows
the situation after vertex c has added itself as a child to tree node b, causing b1

to appear. The next variables of b0, c0 and b1 are updated, and the lastPart
variable of b0 is set to b1. Finally, (d) shows the situation after vertex d has
added itself as a child to tree node b, causing b2 to appear. The next values for
b1, d0 and b2 are updated, and the lastPart value of b0 is set to b2.

With the Euler tour constructed, we now need to perform the list ranking.
A list ranking algorithm takes a linked list as its input, with a weight assigned
to each link. The algorithm then computes the sum of all weights of the links
it has to pass through to reach the end of the list. An example of such a list
is shown in 4.10(a), where each link has a weight of 1. After the list ranking
algorithm, each item knows its ‘distance’ to the end of the list, or its ‘rank’, as
shown in 4.10(f).
A simple parallel list ranking algorithm, loosely based on an algorithm described
in [15], is described below. In our case, the list consists of two parts: the sets Q
and R. Before the procedure is called, each item in the sets Q and R needs to
have its distToNext variable initialized to the weight of the edge between the
item itself and the item it points to. Each thread is assigned its own interval I in
the sets Q and R, just like in the ParallelEulerTour procedure. Running the
procedure results in all items in the sets Q and R having their ranks computed,
based on the weights that were stored in the distToNext variables. The rank of
the list items can be obtained from the same distToNext variables after running
the procedure. Again barriers are used to synchronize the threads. A mutex
object is used for each object in Q and R, to make sure that the pointer and
distance variable of each list item are updated atomically.
The algorithm is implemented as follows:
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Procedure ParallelListRanking (Input Q, R, I; Output Q, R)
01. For All vertices v ∈ Q(I) ∪R(I) Do v.next2 ← v.next
02. Barrier()
03. For All vertices v ∈ Q(I) ∪R(I) Do
04. While v.next2 6= −1 Do
05. mutex lock(v.next2)
06. nextnext ← v.next2.next2
07. nextdist ← v.next2.distToNext
08. mutex unlock(v.next2)
09. mutex lock(v)
10. v.next ← nextnext
11. v.distToNext ← v.distToNext + nextdist
12. mutex unlock(v)
13. Barrier()

Each list item has a variable next2 that stores the item it currently points to,
and a variable distToNext that stores the distance to that item. Each thread
initializes the next2 variables of the items in its interval I to the next variables
that were computed in the ParallelEulerTour procedure. The threads are
then synchronized in line 02 to make sure all list items are initialized before
starting the main loop.
Each thread then loops through all list items in its assigned interval in line 03.
For each item it starts another loop in line 04, which loops until the next2

variable does not point to a list item anymore, which means the end of the
list has been reached. In this loop, first the item that is pointed at by next2

is locked, to make sure no values change while they are read. The next2 and
distToNext values of that list item are then read and stored in temporary
variables. After the list item has been unlocked, the current list item is locked
to make sure no other threads read its values while they are changed. Then, the
next2 value of the current item is set to the item that the other item pointed to,
and the distance that was just found is added to the distance that was already
stored in the distToNext variable of the current item. The current item is then
unlocked and the next iteration starts, until the rank of the list item is found.
While this algorithm does work, a lot of performance may be lost or gained
depending on the order the vertices in Q(I) and R(I) are processed by the
thread that is responsible for them. If at some point the current item from
Q(I) ∪ R(I) points to another item in Q(I) ∪ R(I), it may be wise to process
that other item first, and resume processing the current item later, to prevent
the thread from computing the same steps multiple times.
The parallel list ranking algorithm is illustrated in Figure 4.10.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Parallel list ranking on a list with eight items with four threads.
The lower case letters represent the list items, the upper case letters represent
the threads. The list items are assigned to the threads randomly. In each
successive image, each thread will perform one loop iteration for the item it
is currently processing. In reality however, some threads may perform more
loop iterations than others in the same time interval, as the threads are not
synchronized during the process. The number below each list item shows the
distance to the item it is currently pointing to. As an example of what happens
in each loop iteration, we will look at thread A in Figures (c) and (d). Thread
A processes item a which points at item d in (c), with distance 3. Item d in its
turn points at item g which is at a distance of 3 from d. Thread A then lets
item a point at g and adds the distances: 3 + 3 = 6. The result is shown in (d).
Thread A only modified list item a, and did not change d. However, thread B
did modify item d, the result of which is also visible in (d). Gradually more and
more items point to nothing, meaning that they have found their final rank.

Now we have the procedures ParallelEulerTour and ParallelListRanking
available, we can implement the parallel LCA preprocessing algorithm. As its
input it takes a tree T , as well as the identifier of the current thread id. The
output of the algorithm consists of the arrays inlabel, ascendant, level and
head, just like the sequential implementation. The algorithm is pretty long, but
the basic idea is quite similar to the sequential implementation. An explanation
is provided below it.
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Procedure ParallelLCAPreprocessing (Input T , id;
Output inlabel, ascendant, level, head)

01. Q← the vertices of T
02. I ← the interval of Q that is assigned to thread id
03. ParallelEulerTour(T , Q, I)

04. For All vertices v ∈ Q(I) ∪R(I) Do
05. If v.next ∈ Q Then v.distToNext ← 1
06. Else v.distToNext ← 0
07. ParallelListRanking(Q, R, I)
08. For All vertices v ∈ Q(I) Do
09. preorder[v] ← N − v.distToNext
10. size[v] ← v.distToNext − v.lastPart.distToNext + 1
11. i← LeftmostDiff(preorder[v]− 1, preorder[v] + size[v]− 1)
12. inlabel[v]← ZeroRightBits(preorder[v] + size[v]− 1, i)

13. For All vertices v ∈ Q(I) ∪R(I) Do
14. If v.next ∈ Q Then v.distToNext ← −1
15. Else v.distToNext ← 1
16. ParallelListRanking(Q, R, I)
17. For All vertices v ∈ Q(I) Do
18. level[v] ← v.distToNext

19. For All vertices v ∈ Q(I) ∪R(I) Do v.distToNext ← 0
20. Barrier()
21. For All vertices v ∈ Q(I) ∪R(I) Do
22. If v.next ∈ Q Then
23. If inlabel[v.next] 6= inlabel[parent(v.next)] Then
24. i← RightmostOne(inlabel[v.next])
25. v.distToNext ← −2i

26. v.next.lastPart.distToNext ← 2i

27. head[inlabel[v.next]] ← v.next
28. ParallelListRanking(Q, R, I)
29. For All vertices v ∈ Q(I) Do
30. ascendant[v]← v.distToNext + 2l−1

31. If (id = 0) Then
32. head[inlabel[root(T )]] ← root(T )

In the first three lines, Q and I are initialized and the Euler tour is computed.
Lines 04 to 06 initialize the weights of the links. Links that lead to items from Q
(the vertices with subscript 0, the solid arrows in Figure 4.8(b)) are initialized
with weight 1, the others with weight 0. After the parallel list ranking has
completed, the preorder number of each vertex is found by subtracting the rank
of the vertex in Q from the total number of tree nodes N . The size of a vertex
can be found by subtracting the rank of the last part of the vertex from the
rank of the first part of the vertex and adding one. For example, the rank of b2

in Figure 4.8(b) is 4 and the rank of b0 is 8. 8− 4 + 1 = 5, which is the size of
tree node b in Figure 4.8(a). With the preorder number and size of each vertex
known, the inlabel of the nodes can be computed for each node in the same
way as in the sequential algorithm.
The level of the vertices is computed in lines 13 to 18. First the weights are
initialized, now −1 and 1 instead of 0 and 1, and the parallel list ranking is
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performed again. The level of a tree vertex can then easily be obtained by just
taking the rank of the corresponding vertex from Q, as illustrated in Figure
4.8(b). Note however, that the rank of vertex a3 will not get the value 0 in our
implementation, as it is displayed in the figure, but will get the value 1 instead.
This will not cause problems because the rank of a3 will never be used.
When computing the level of a vertex, each edge directed towards the root has
weight 1, because each vertex is one level further away from the root than its
parent. Similarly, each edge directed from the root has weight −1, because the
level of each vertex is one level closer to the root than its child. The ascendant
value of a vertex was defined in the sequential procedure PreprocessLCA from
Section 3.3 as the ascendant value of its parent, unless the vertex had a different
inlabel than its parent. If the inlabels were different, the ascendant value
of the vertex was defined as the ascendant value of the parent plus 2i, where i
was the position of the rightmost 1 in the binary representation of the inlabel
of the vertex. In our parallel algorithm, we only have to store the difference
in the values from the parent to its child and the other way around, just like
with the computation of the level values. So if the inlabel of a vertex and its
parent are the same, both differences will be 0, as defined in line 19. If they are
different however, the differences are −2i and 2i. Therefore the weight of the
edge from parent to child is set to −2i in line 25, and the weight of the edge back
from the child to its parent is set to 2i in line 26, where i is the rightmost one of
the inlabel of the child. As an illustration to this, we will look back at Figure
3.10. In this figure, node 6 has inlabel 00110, while its parent, node 4, has
inlabel 00100. The inlabels are different, so we set the difference between the
ascendant values of the two to 2i (or −2i for the other way around). Here i is
the rightmost 1 in the inlabel of node 6, which is at position 1. The difference
between the ascendant values should therefore be 21 = 2 or 00010 in binary
notation. In Figure 3.10 we can see that the ascendant values of the nodes are
11110 and 11100, which indeed have a difference of 00010.
After the list ranking in line 28, we can find the ascendant value of each vertex
by taking its list rank and adding the ascendant value of the root, which is
2l−1, as defined before in the sequential algorithm.
The only thing left to do is filling the head array. A vertex is the head of its
inlabel path if its inlabel differs from the inlabel of its parent. So if this is
the case, we set the vertex to the head of its inlabel path in line 27. Finally,
thread 0 sets the root of the tree as the head of its inlabel path on line 32, to
complete the head array.
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Chapter 5

Results

The implementation was tested on the following four different input images:

• a satellite image of an airfield, with a size of 4000 × 4000 pixels

• a random image of 4000 × 4000 pixels, in which each pixel has a random
gray value

• an image with a spiral shaped plateau of 1000 × 1000 pixels

• an angiogram with dimensions 256 × 256 × 128

The images are displayed in Figure 5.1.

The topological watersheds of these images were computed on a machine
with four 6-core Opteron processors in the following ways:

• of the satellite image with 4-connectivity using 1 to 24 threads

• of the satellite image with 8-connectivity using 1, 8, 16 and 24 threads

• of the angiogram with 6-connectivity using 1, 8, 16 and 24 threads

• of the angiogram with 18-connectivity using 1, 8, 16 and 24 threads

• of the angiogram with 26-connectivity using 1, 8, 16 and 24 threads

• of the random image with 4-connectivity using 1, 8, 16 and 24 threads

• of the spiral image with 4-connectivity using 1, 8, 16 and 24 threads

Also, the previously existing sequential algorithm by Couprie et al. [5] and
the newly implemented parallel algorithm were run on the same machine with
the same input (the satellite image, with 4-connectivity using 1 thread) to com-
pare the two versions.

The total wall-clock time of the algorithm consists of four stages: the con-
struction of the component tree, the compression of this component tree, the
preprocessing for the LCA and finally the computation of the topological wa-
tershed of the image. The contribution of each of these stages while processing
the satellite image with 4-connectivity on 1 to 24 threads is displayed in Fig-
ure 5.2. Their individual speedups are shown in Figure 5.3. The construction of
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(a) (b)

(c) (d)

Figure 5.1: The four test input images. (a) shows a satellite image, (b) an image
with random pixel values, (c) an image with a spiral-shaped plateau and (d) an
angiogram, which is a 3D volume.

the component tree and the final stage that computes the topological watershed
parallelize quite well, while the tree compression and the LCA preprocessing
parallelize rather poorly. Fortunately, the tree compression takes up only a
small percentage of the total wall-clock time, even when 24 threads are used.
However, this percentage will probably increase when more threads are used.
The LCA has a larger impact on the total wall-clock time of the algorithm, and
will cause the speedup of the total algorithm to decrease more severely when
using a larger number of threads.

The speedups for the total wall-clock times for the previously listed tests are
displayed in Figure 5.4. In this figure we can see that the speedup when using
24 threads is around 11 on average, not considering the special case with the
spiral-shaped plateau. This means that the wall-clock time with 24 threads is
about 11 times shorter than when only a single thread is used. The shape of the
graphs suggest that an even better speedup may be obtained when more than
24 threads are used.
However, these speedups are relative to the wall-clock times of the parallel
algorithm using one thread. In practice, the previously existing sequential im-
plementation performs about 1.5 times faster than parallel algorithm when only
one thread is used. Further optimizations in the parallel algorithm, for example
by using a better tree compression method, may reduce this difference.
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Figure 5.2: The contribution of the four stages to the total wall-clock time
of the algorithm, when computing the topological watershed for the satellite
image with 4-connectivity. The bottom layer represents the time consumed
by the construction of the component tree, the second layer from the bottom
represents the time taken to compress the component tree, the third layer shows
the time it takes to perform the preprocessing for the LCA, and finally the
remaining layer on top represents the time consumed by the final stage which
produces the topological watershed.

The results for the spiral image show that in that case the parallel algorithm
does not perform well at all. This is due to the large spiral shaped plateau in
the image, that has a minimum on both ends. The plateau needs to be shrunk
into a single watershed line. This is done by lowering the pixels of the plateau,
starting at the minima and traversing the entire spiral until only a line is left.
However, when many threads are used, the plateau lies in many different tiles.
Each time the current border of the plateau reaches a new tile, the thread re-
sponsible for that tile needs to take over the lowering of the plateau pixels, but
not before the next iteration has started. Therefore a lot of communication be-
tween threads and a lot of iterations are needed to obtain the final result, which
causes the bad performance. In practice however, the unlikely requirements for
this situation will probably not occur very often.
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(a) Top: component tree construction, bottom: tree compression

(b) Top: topological watershed computation, bottom: LCA preprocessing

Figure 5.3: The speedups of the four stages of the algorithm. The diagonal lines
show the ideal speedup, where the speedup is equal to the number of threads.
The speedup of each stage is represented by a black line and a gray area, where
the line shows the speedup of that stage when computing the satellite image
with 4-connectivity. The corresponding gray area represents the results of the
remaining tests, except for tests on the spiral image. The top and bottom of
the gray areas are defined as the average speedup of their stage plus and minus
the standard deviation, respectively.
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Figure 5.4: The total speedups in the performed tests, relative to the wall-clock
time for a single thread with the same input. The diagonal line shows the ideal
speedup, the line at the bottom shows the speedup for the spiral image. The
line through the gray area shows the speedup for the satellite image with 4-
connectivity, which is computed for each number of threads individually. The
gray area again represents the results of the remaining tests, with its boundaries
defined as in Figure 5.3, but now for all four stages combined.
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Chapter 6

Conclusions and Discussion

This report described a way to parallelize the computation of the topological
watershed. An implementation that was created according to this description
showed that a reasonably good speedup could be achieved while using up to 24
threads, and the trend in the results suggests that even better speedups may be
achieved when more than 24 threads are used.

The parallel implementation may be improved further by creating a more
compact component tree in the component tree construction or compressing it
more in the tree compression stage. For example, each node in the component
tree that has only one child can be merged with that child, setting all pixels
belonging to its component to the gray level of its child, and setting the parent
of its child to be the parent of the node itself. This simple improvement could
significantly reduce the LCA preprocessing time, and may also have positive
effects on the wall-clock time of the last stage where the topological watershed
is computed.
Another improvement could be to use a more sophisticated method of paral-
lel list ranking. Better performing algorithms already exist, the algorithm in
this report was used for simplicity reasons only. A list ranking algorithm that
parallelizes better and has higher speedups, may significantly reduce the to-
tal wall-clock time of the algorithm, especially when using larger numbers of
threads.
Furthermore, the image is now divided into tiles which are each processed by
their own thread. This division is only based on the image dimensions and
the number of threads, not on the contents of the image. Taking into account
the contents of the image, maybe in combination with the component tree and
component map, while dividing the image among the threads may reduce the
communications needed between the different threads, which could lead to a
faster algorithm.

In short, there is still room for improvement in the parallel algorithm pro-
posed in this report, but in its current form it can already be used to greatly
speed up the computation of the topological watershed, compared to the previ-
ously existing sequential algorithm.
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