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1 Introduction

Ideas regarding the shape of the universe are probably as old as humanity. At
least since ancient Greek times, people have wondered whether space is finite
or infinite in extent. Since only Euclidean geometry, describing an unbounded
space, was known at the time, it was tacitly assumed that finiteness implied
the existence of a boundary. Although these matters were of some philosophical
interest, the constraints of technological and mathematical possibility would
render them inaccessible to physical inquiry for centuries to come. Luckily,
around 1830 non-Euclidean geometry was discovered and with the formulation
of Riemannian geometry in 1854, the theoretical framework was finally present
to describe spaces and their shapes.

The course of history seems to prove a striking human preoccupation with
flat Euclidean space over curved non-euclidean spaces. During the 20th cen-
tury, the discovery of General Relativity inspired great skepticism toward the
Euclidean model, though in the end it seems to have managed to withstand all
attempts at its falsification. Recent empirical methods, especially the WMAP,
have ruled out more and more possible curvature, but Euclidean space remains
safely inside of our confidence intervals. The evidence in favor of flat space is
at best as compelling as the evidence against it, however, and the only thing
we can be certain of is that our space is very close to being flat (compared to
what?).

In 2003, an analysis of periodicity in the cosmic microwave background
(CMB) led Jean-Pierre Luminet to suggest that the universe is a topological
space known as the Poincaré dodecahedral space (PDS). As will be shown, this
implies a spherical geometry, in stark contrast to the concordance model of
cosmology.

In this thesis, I will explore the credibility of the Poincaré dodecahedral space
as a model for our universe and I will also attempt to illuminate the methods by
which such a model can be verified, or more realistically falsified. To accomplish
these goals, section 2 will be a quick introduction to 3-dimensional topology and
its geometries. For the sake of brevity, this thesis will then focus on the Poincaré
dodecahedral space, disregarding all other geometries and manifolds. Section 3
is dedicated to proving that the Poincaré dodecahedral space does in fact result
from identifying faces of a dodecahedron in a certain way. To do this, I will
systematically rule out all other possibilities for the shape of the tessellation of
S3 representing the PDS. In section 4, I will try to explain the merits of the
PDS model in explaining physical data, meaning mostly the WMAP data on the
CMB. During this section, four known ways of detecting cosmic topology will
be addressed; searching for duplicates, circles in the sky, cosmic crystallography,
and the CMB quadrupole. This This section will be the climax to my argument
and will hopefully put the previous sections to good use. The main results and
lack thereof will, as per convention, be stated in section 5, which will conclude
the paper.
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2 Geometries on 3-Manifolds

This section will treat the different homogeneous geometries possible on 3-
manifolds and the manifolds that allow them. To enable a treatment of these
subjects, a number of definitions must first be stated.

First of all, the meaning of the term geometry should be established. Choos-
ing a suitable definition for geometry is vital here, as different approaches exist.
Due to the differential geometric nature of general relativity, the mathematical
results will ultimately have to be stated in terms of Riemannian geometry. To do
this, a metric has to be introduced, which is mathematically much to stringent
to describe manifold geometries. For example, scaling the metric should not
affect the perceived geometry, whereas in a Riemannian sense it does. A more
natural notion in this case is given by Kleinian geometry, which presupposes
isometries, rather than metrics. Luckily, Kleinian geometry, though weaker
in its assumptions, is often equivalent to Riemannian geometry up to scaling.
For the sake of readability, the term geometry will therefore be taken to imply
Kleinian geometry.

Definition 1. A geometry is a tuple (S,G), consisting of a space S and a
group G working transitively on S. Furthermore, ∀x ∈ S, the point stabiliser
Gx = {g ∈ G|gx = x} of x under G must be compact.

In definition 1, G is implied to be the group of isometries of S. Notice that
if, for x ∈ S, φx : G→ S : g 7→ gx is defined to be a group homomorphism (by
defining the suitable group operation on S) and the stabilizer Gx = {g ∈ G :
gx = x}, we get G/Gx = φx/ kerφx ∼= imφx = S by transitivity of G on S. Also,
as this definition requires G to be transitive on S, geometries in the Kleinian
sense are always homogeneous. From a mathematical point of view, this is
somewhat restrictive compared to general Riemannian geometry, but from a
physical point of view, this is a very natural constraint. Note also that, although
the definition requires all stabilizers to be compact, it is in fact sufficient for
the stabilizer of one individual point to be compact, since all geometries are
homogeneous.

For the definition of a manifold, I will closely follow Thurston [10]. A mani-
fold will be a structure locally resembling Rn, for some fixed n. The exact form
of this local resemblance determines the intrinsic structure of the manifold.

Definition 2. An n-dimensional manifold is a tuple (M, A), where M is a
topological space and the atlas A is a collection of coordinate charts (Ui, φi).
Furthermore ∪iUi =M and φi : Ui → Rn are all homeomorphisms.

Note that according to this definition, different atlases on the same spaceM
always define different manifolds. It should be clear, however, that a manifold
can be given many atlases, while retaining essentially the same structure. Also,
this definition allows manifolds of very general structure, most of which will not
be able to carry a geometry at all.
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The first problem is mainly a technical detail, and will not be very relevant in
this paper. To address it, we have to specify what exactly is meant by essential
structure, which brings us to the second problem.

In this article, geometries on manifolds will be considered, so the essential
structure mentioned before should clearly be geometrical. To establish this, the
definition of a general manifold needs to be narrowed down a little to the notion
of a geometric manifold.

Definition 3. An n-dimensional geometric manifold is a 3-tuple (M, A,G),
such that (M, A) is a manifold and gi,j : φ−1

i (Ui ∩Uj)→ φj(Ui ∩Uj) : φi(x) 7→
φj(x) = g|Ui∩Uj

for some g ∈ G, for all i, j.

Where again G is implied to be the group of isometries, but of the geometry
as modelled in Rn. Finally, there is need for a definition stating what it means
for a manifold to admit a certain geometric structure.

Definition 4. A model geometry is a geometry (S,G), where S is a simply
connected space and G is no proper subgroup of any group H for which (S,H)
is a geometry.

Definition 5 will now state what is meant by admitting a geometry.

Definition 5. A manifold F is said to admit a geometry modelled on some
model geometry (S,G) if ∃Γ < G : S/Γ ∼= F and S → S/Γ is a covering map.

The condition that S → S/Γ is a covering map leads to the more practical
condition that Γ must be properly discontinuous and act freely on S, which for
compact S reduces to Γ being finite. Now the stage is set for a look at the
different kinds of geometries that occur in 3-dimensional manifolds.[9]

To examine the possible model geometries, we need to examine the possible
groups G that can occur. Here we have great advantage of the local euclidean
nature of manifolds. Since G is defined to consist locally of isometries on the
parameter space R3, we already know that the point stabilisers of G are point
stabilisers of R3. Specifically we see that the stabiliser Gx has to be a subgroup
of O(3), so it needs to be the product of O(1), O(2) or O(3) by some finite
group.

In the case of O(3) itself, we have an isotropic geometry.

2.1 Isotropic Geometries

The first case to consider is the case where Gx is O(3). In this case the resulting
geometry is by definition isotropic. Since any two planes in the tangent space
are equivalent under SO(3) symmetry, the metric must be a constant. The
metric can then be scaled to −1, 0, 1 according to it’s sign, leading to the three
well-known homogeneous isotropic spaces.
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2.1.1 E3

First of these homogeneous isotropic geometries is Euclidean 3-space E3. The
group of isometries of E3 is aptly called the Euclidean group, which will be
denoted by I(E3). I(E3) can be equated to R3 o O(3) were R3and O(3) are
taken to act canonically on E3and the action of O(3) on R3 is also taken to be
canonical.

As it turns out, there are exactly ten manifolds admitting E3geometry. To
find these manifolds, one must find freely acting discrete subgroups of I(E3).
This can easily, but laboriously be done by simply trying all 230 crystallographic
groups, as seems to have been done by Werner Nowacki.[10]

These ten manifolds can be conveniently described as fibre bundles over 2
dimensional orbifolds[9], but this would take us to far astray.

2.1.2 H3

Second of the homogeneous isotropic geometries is H3. To find the isometries of
H3, consider the upper half space representation of H3. The isometries of H3are
generated by reflections in geodesics, which are represented as circles orthogonal
to the horizontal plane (vertical lines being considered as an extreme case).
By definition, a reflection in a circle is an inversion and the transformations
generated by these inversions are the Möbius transformations. In other words,
I(H3) = PSL(2,C), the Möbiusgroup.

The manifolds admitting a H3 geometry are as diverse as they are numerous
and their classification is an ongoing process.

2.1.3 S3

Last of the homogeneous isotropic geometries is S3. As opposed to H3, S3 can be
embedded in R4, which saves some effort in describing its geometrical properties.
S3 is described by the unit sphere in R4, so I(S3), its group of isometries is O(4).

Like the hyperbolic case, spherical geometry has infinitely many manifolds
admitting its structure. Spherical geometries are a lot better behaved, though,
as they can be divided into five families.

Lens spaces are the manifolds S3/Γ, were Γ is a cyclic subgroup of SO(4).
The element of Γ would then take the form

cos(2πi/p) − sin(2πi/p) 0 0
sin(2πi/p) cos(2πi/p) 0 0

0 0 cos(2πiq/p) − sin(2πiq/p)
0 0 sin(2πiq/p) cos(2πiq/p)


for some relatively prime p, q, as operators on S3 embedded in R4. These spaces
can be acquired by identifying the ’northern’ and ’southern’ hemihyperspheres
along the boundary after turning them q/p relatively.
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Prism manifolds are manifolds S3/Γ for which Γ is one of certain metacyclic
groups.

Polyhedral manifolds are manifolds S3/Γ for which Γ = P × Cn, for a
binary polyhedral group P and certain cyclic groups Cn. A binary polyhedral
group is the preimage of the corresponding polyhedral group under the two to
one surjective homomorphism SU(2)→ SO(3) Since there are three polyhedral
groups T , O, and I, this leads to three more families of spherical 3-manifolds.

Lens spaces, Prism manifolds and three kinds of Polyhedral manifolds lead
as claimed to exactly five families of spherical 3-manifolds. The most important
spherical manifold for the purposes of modelling actual space is one of these
prism manifolds. This manifold is called the Poincar’e Dodecahedral Space
(PDS) or the Poincaré Homology Sphere and is given by S3/I∗, where I∗ is a
central extension of the icosahedral group I by two. Section 3 will be dedicated
to proving that the fundamental domain for this space is in fact dodecahedral.

2.2 Fibred Two-Dimensional Geometries

As mentioned, another possibility for the stabiliser group of a geometrical man-
ifold is O(2). O(2) as a subgroup of O(3) is characterised by a one dimensional
invariant subspace of TxM , on which O(3) acts. These invariant vectors in the
tangent bundle of M define a unit vector field, which is G-invariant. The flow
of this vector field defines integral curves which foliate M , as every point x ∈M
has such an invariant vector and no two flows can cross. Since neighbourhoods
of points on these curves are invariant under O(2) perpendicular to the curve,
there can not be two distinct points on the curve arbitrarily close perpendicu-
larly. If this were the case, then the orbits of these points under O(2) should be
circles, and by continuity we would have a 2 dimensional tube-like structure, not
a curve. This means that the leaves of this foliation are 1 dimensional subman-
ifolds of M , i.e. R or S1. If the foliation described here is factored out, what is
left is a two-dimensional manifold B that inherits the Riemannian metric of M
in a natural way. The integral curves described are now interpreted as fibres,
leaving M a fibre bundle over B.

The connection on this bundle now determines the type of manifold de-
scribed. This connection has a curvature form, which must be constant, since
the group of isometries preserves it and acts transitively. By scaling and choos-
ing orientation for the fibre, the curvature can, without loss of generality, be
assumed to be either zero or one.

For a vanishing curvature, the bundle becomes trivial and there remain but
three possibilities.

2.2.1 S2 × R

Firstly, the quotient space given by dividing the fibre out of the manifold could
be S2. The fibre is, as stated, given by R or S1, leaving S2 ×R and S2 × S1 as
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our manifolds. The second is covered by the first, leaving the geometry to be
S2 × R.

This immediately leads us to a compact manifold admitting this geometry,
namely S2 × S1.

2.2.2 H2 × R

Secondly, the base space of our fibre bundle could be H2. The fibre bundle
would then of course be H2×R or H2×S1, where again the case of the S1 fibre
is covered by the R bundle.

Examples of compact manifolds admitting H2 × R include products of any
compact hyperbolic surface with S1.

For the third case mentioned the base space has to be E2. This base space,
however, fibred by E in a trivial way leads to R3. R3 is of course a degenerate
case, as it ’accidentally’ has O(3) stabilisers instead of merely O(2). This is by
definition equivalent to the isotropy of R3, which means that this geometry was
already covered, and further digression is redundant.

This leaves us with three more cases to consider for which the connection on
M has non-zero curvature. Let’s start again by considering S2 as a candidate
base space for the fibre bundle. For reasons going beyond the scope of this paper,
the resulting group of symmetries is not maximal with compact stabilisers. This
means that no model geometry can be constructed this way

2.2.3 SL2R

Taking the base space to be H2 will prove a more fruitful endeavour. Now, the
unit tangent bundle is PSL(2,R), the orientation preserving subgroup of the
isometry group of H2. The universal cover of this group will be called SL2R and
is thus the desired geometry.

As is shown by the construction above, the universal cover of the unit tan-
gent bundle of any compact hyperbolic surface is a manifold admitting SL2R
geometry.

2.2.4 Nil

Finally, also E2 must be considered as a base space. The way to construct a non
trivial fibre of R over R2 is to consider the geometry of the Heisenberg group.
The Heisenberg group is given by 1 x y

0 1 z
0 0 1


for x, y, z ∈ R.

Manifolds admitting this geometry can be classified neatly as Seifert fibre
spaces.
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2.3 Solve geometry

Left to consider is the possibility of trivial point stabilisers. Now, it is clear
that since G acts transitively and has trivial stabilisers it can be identified with
the manifold M . This means that the remaining cases, or case actually, can be
found examining all Lie groups not covered by the previous seven geometries.

Consider some basis (e1, e2, e3) of the Lie algebra of the Lie group under
consideration. The Lie bracket is a linear map on the Lie algebra that turns out
to be Hermitian with respect to the cross product. A well known result from
linear algebra then tells us that this operator representing the Lie bracket has
three orthonormal eigenvectors. Taking these orthonormal vectors as a basis
(e1, e2, e3) it will be clear that:

[ei, ej ] = L(ei × ej) = L(±ek) = ±λkek

where i 6= j 6= k 6= i, L is the operator identified with the Lie bracket and λk is
the eigenvalue of L corresponding to the eigenvector ek. By scaling the basis to
(a1e1, a2e2, a3e3), the previous result becomes:

[ei, ej ] = L(ei × ej) = L(±aiaj
ak

ek) = ±λk
aiaj
ak

ek

So that the structure constants can effectively be rescaled to zero or plus or
minus one. Also, the elements of the basis may be freely permuted, permuting
also the structure constants. Odd permutations will change some signs though,
due to the anti-symmetry of the operations involved.

This leaves us with a small number of cases to consider.
λ1 = λ2 = λ3 = 1. This leads to the Lie algebra of S3, and does not produce

any new geometry.
λ1 = λ2 = −λ3 = 1. This gives the Lie algebra of the previously found

S2 × R geometry, nothing new either.
λ1 = 1, λ2 = λ3 = 0. This gives the Heisenberg group, which was seen to

correspond to Nil geometry.
λ1 = λ2 = λ3 = 0. This is of course the well known E3 case, which has also

previously been encountered.
λ1 = 1, λ2 = 0, λ3 = −1. This combination of structure constants produces

no geometry.

2.3.1 Sol

The last possibility and the only one leading to a new and valid geometry is
λ1 = λ2 = 1, λ3 = 0. The geometry thus formed is called solve geometry.
λ3 = 0 essentially means that e1 and e2 commute. Therefore e1 and e2 must be
acting on some copy of R2 as a subgroup of the Lie group. The quotient must
be R, so that the Lie group must be R2 o R.
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3 The Poincaré Dodecahedral Space

As suggested when first introduced, the PDS is a 3-manifold, admitting a geom-
etry modelled on the 3 sphere. This means that there is some group of isome-
tries of S3, I∗ < O(4), such that PDS ∼= S3/I∗, which was called the binary
icosahedral group. This binary icosahedral group, I∗ was the preimage of the
icosahedral group under the 2:1 SU(2)→ SO(3) homomorphism. This group is
finite and therefore properly discontinuous and also acts freely, so indeed S3/I∗

is a well-defined spherical manifold. Since the homomorphism along which the
icosahedral group is pulled back is 2:1, #I∗ = 2#I. Since #I = 20 ∗ 3 = 60,
this means #I∗ = 120.

The course of action taken in the remainder of this section will be to show
that there must be a tessellation of S3 by fundamental cells of S3/I∗. Once this
is established, the number of possible fundamental cells will be systematically
reduced until only four are left. At this point, an upper bound will be set for
the number of cells in a tessellation by each of the fundamental cells, at which
point only one tessellation remains possible.

The first thing to notice, though, is that I∗ 6∼= C120, which is left as an
exercise to the reader. Therefore, the degenerate case of a lens space can be
dismissed, and the fundamental cells are truly polyhedra.

3.1 Voronoi cells

Consider picking an arbitrary point e on S3, and consider its orbit O under T .
Any point in O can be written uniquely as te, since if te = se, e = t−1se, which
since T acts freely implies t−1s = 1 or t = s. So acting on e provides a bijection
between T and O, where 1 7→ e. This fact will be utilised by writing p̂ for the
unique element in T carrying e to p.

Definition 6. Vp =
{
x ∈ S3

∣∣∀q ∈ O : d(x, p) ≤ d(x, q)
}

is called the Voronoi
cell of p.

Lemma 1. The Voronoi cells of some finite O ⊂ S3 tessellate S3. Also, these
Voronoi cells are convex polyhedra and in the case that O is the orbit of a single
point under a group of isometries, all Voronoi cells are congruent.

Proof. Since every point in S3 has at least one nearest neighbour inO,
⋃
p∈O Vp =

S3. Furthermore, Vp ∩ Vq ⊂
{
x ∈ S3

∣∣d(x, p) = d(x, q)
}

, which is a plane. So
the intersections of two cells is at most a face, as it should be in a tessellation.
This proves that the Voronoi cells provide a tessellation for S3. Notice that{
x ∈ S3

∣∣d(x, p) ≤ d(x, q)
}

is a half-space and a Voronoi cell can be viewed as
a finite (since O is finite) intersection of such sets. Thus, the Voronoi cells are
convex polyhedra.
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Vp =
{
x ∈ S3

∣∣∀q ∈ O : d(x, p) ≤ d(x, q)
}

=
{
x ∈ S3

∣∣∀p̂−1q ∈ p̂−1O : d(x, p) ≤ d(x, p̂p̂−1q)
}

=
{
x ∈ S3

∣∣∀r ∈ O : d(x, p̂e) ≤ d(x, p̂r)
}

=
{
p̂x ∈ p̂S3

∣∣∀r ∈ O : d(p̂x, p̂e) ≤ d(p̂x, p̂r)
}

=
{
p̂x ∈ S3

∣∣∀r ∈ O : d(x, e) ≤ d(x, r)
}

= p̂Ve

Since p̂ ∈ T < O(4) implies p̂−1O = O, p̂S3 = S3, and d(p̂x, p̂y) = d(x, y). This
means that all Voronoi cells are congruent to Ve, and thus congruent to each
other.

So, now we have a tessellation of S3 by congruent convex polyhedra. S3/I∗

is exactly one such polyhedron, but with its faces identified accordingly. Left to
show is, that these polyhedra are indeed regular dodecahedra. Opposing faces
of such a dodecahedron should also be identified with a minimal twist of π

5 .

3.2 Topological constraints

Not all regular polyhedra can be used to tile S3. Firstly, some topological
considerations.

Definition 7. When a small sphere is taken around a vertex of the tessellation,
the intersection of the sphere and an edges becomes a point on the sphere and
the intersection of the sphere and a face becomes a geodesic on the sphere.
Replacing these geodesics between points are by straight lines through the same
endpoints results in a regular polyhedron called a vertex figure.

Lemma 2. There are exactly 11 tessellations of regular polyhedra:

• A tessellation by tetrahedra, cubes, or dodecahedra with tetrahedral, octa-
hedral, or icosahedral vertex figures.

• A tessellation by octahedra with cubic vertex figures.

• a tessellation by icosahedra, with dodecahedral vertex figures.

Proof. It is easily seen, and was so by Euler, that if we call the number of vertices
of such a tiling V , the number of edges E, the number of faces F and the number
of cells C, we must have V −E+F −C = 0. Call the number of vertices of each
cell VC , the number of cells that intersect in one vertex CV , and likewise for
edges and faces. We have symbolically XYX = Y XY for X,Y ∈ {V,E, F,C},
thus:

0 = V − E + F − C

= C

(
VC
CV
− EC
CE

+
FC
CF
− 1
)

1 =
VC
CV
− EC
CE
− FC
CF

11



But, surely each face is shared by 2 cells, so CF = 2, and within one cell we
have VC − EC + FC = 2, so FC − 2 = EC − VC . Define Q = 2EC

VC
, which is the

number of edges joining in each vertex in a single cell. Note that this is always
larger than 2, so that Q− 2 can never be zero.

1 =
VC
CV
− EC
CE

+
FC
CF

0 =
VC
CV
− EC
CE

+
FC − 2

2

=
VC
CV
− EC
CE

+
EC − VC

2

= VC

(
1
CV
− Q

2CE
+
Q− 2

4

)
0 =

1
CV
− Q

2CE
+
Q− 2

4

=
Q− 2

4CV CE

(
4

Q− 2
CE −

2Q
Q− 2

CV + CV CE

)
0 =

4
Q− 2

CE −
2Q
Q− 2

CV + CV CE

= −
(

4
Q− 2

+ CV

)(
2Q
Q− 2

− CE
)

+
8Q

(Q− 2)2

So ultimately: (
4

Q− 2
+ CV

)(
2Q
Q− 2

− CE
)

=
8Q

(Q− 2)2
(1)

The tetrahedron, cube, and dodecahedron all have Q = 3. The octahedron has
Q = 4, and the icosahedron has Q = 5. For Q = 3, equation 1 becomes:

(4 + CV ) (6− CE) = 24

CV and CE must always be greater than 2 to get a genuine polychoron. This
leaves 24 = 8 · 3 = 12 · 2 = 24 · 1, leading to (CV , CE) = (4, 3), (8, 4), (20, 5)
respectively. For Q = 4, equation 1 becomes:

(2 + CV ) (4− CE) = 8

Leaving 8 = 8 · 1, corresponding to (CV , CE) = (6, 3) Finally, for Q = 5,
equation 1 becomes: (

4
3

+ CV

)(
10
3
− CE

)
=

40
9

which is more conveniently written as:

(4 + 3CV ) (10− 3CE) = 40
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With only solution 40 = 40 · 1, meaning (CV , CE) = (12, 3).
These combinatorial properties provide some information about the vertex

figures. The vertex figures of a tessellation with (CV , CE), will have CV faces
and CE faces per vertex. So, what has in fact been established through topo-
logical means, is that tetrahedral, cubic, and dodecahedral tessellations have
tetrahedral, octahedral, or icosahedral vertex figures. Octahedral tessellations
will have cubic vertex figures, and an icosahedral tessellation will have dodeca-
hedral vertex figures.

3.3 Geometrical constraints

Not all of these tessellations are tessellations of S3, some might tile euclidean
or even hyperbolic space. The dihedral angle of spherical polyhedron is always
greater than the dihedral angle of their euclidean equivalent, which in turn is
greater than a hyperbolic one. To see which are spherical, we can therefore
calculate the dihedral angle, which is 2π

CE
.

Lemma 3. Of the 11 topological tessellations from section 3.2, the following
correspond to the following spaces:

Cells Vertex figures
Spherical: Tetrahedral Tetrahedral

Tetrahedral Octahedral
Tetrahedral Icosahedral
Cubic Tetrahedral
Dodecahedral Tetrahedral
Octahedral Cubic

Euclidean: Cubic Octahedral
Hyperbolic: Cubic Icosahedral

Dodecahedral Cubic
Dodecahedral Icosahedral
Icosahedral Dodecahedral

Proof. Euclidean tetrahedra have a dihedral angle of arccos
(

1
3

)
≈ 1.231, which

is smaller than 2π
CE

for CE = 3, 4, 5. So all tetrahedral tessellations, having
tetrahedral, octahedral, or icosahedral vertex figures, tile S3.

Euclidean cubes have a dihedral angle of π2 , which is equal to 2π
CE

for CE = 4.
So the cubic tessellation having tetrahedral vertex figures tiles S3. The cubic
tessellation having octahedral vertex figures tiles R3. And the cubic tessellation
having icosahedral vertex figures can only tile H3.

Euclidean dodecahedra have a dihedral angle of arccos
(
− 1

5

√
5
)
≈ 2.034,

which is smaller than 2π
CE

only for CE = 3, and larger than 2π
CE

for CE = 4, 5. So,
like the cubic tessellation, the dodecahedral tessellation with tetrahedral vertex
figures tiles S3. The dodecahedral tessellations with octahedral or icosahedral
vertex figures tile H3.

Euclidean octahedra have a dihedral angle of arccos
(
− 1

3

)
≈ 1.911, which is

smaller than 2π
3 . This means that the only octahedral tessellation, with cubic

vertex figures, tiles S3.
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Euclidean icosahedra have a dihedral angle of arccos
(
− 1

3

√
5
)
≈ 2.412, which

is larger than 2π
3 . So the only icosahedral tessellation, with dodecahedral vertex

figures, tiles H3.

3.4 Symmetry constraints

Not all of these tilings can be constructed as the orbit of a fundamental domain
under some I∗ < O(4).

Lemma 4. I∗ < O(4), and P some polyhedron such that the orbit of P under I∗

tessellates some space. Then this tessellation has CF |FC , CE |EC , and CV |VC .

Proof. If this is to be the case, then the different cells in the tessellation can be
identified as can their faces, edges, and vertices. Choose a cell and a face, edge,
or vertex on this cell shared by CF , CE , or CV cells respectively. Under I∗, this
face, edge, or vertex will be equivalent to another face, edge, or vertex in all of
the other cells sharing it. In one fundamental cell, all these different images of
one face, edge, or vertex are identified, creating equivalence classes of CF , CE ,
or CV elements respectively. So the number of faces, edges, or vertices, FC , EC ,
or VC , must be divisible by CF , CE , or CV .

The result that CF |FC does not contribute anything, however since CF = 2,
and 2|FC for all regular polyhedra. The results that CE |EC and CV |VC do
contribute, though their contributions are the same.

Corollary 4.1. Of the 11 tessellations of section 3.2, the following four are not
the orbit of a cell under some group:

• The tetrahedral tessellation with octahedral vertex figures

• The tetrahedral tessellation with icosahedral vertex figures

• The cubic tessellation with icosahedral vertex figures

• The dodecahedral tessellation with octahedral vertex figures

Proof. Tetrahedra have (EC , VC) = (6, 4), so the octahedral and icosahedral
vertex figures, leading to (CE , CV ) = (4, 8), (5, 20) can by lemma 4 not lead to
a tessellation, which is the orbit of some group.

Cubes have (EC , VC) = (12, 8), so the icosahedral vertex figure, leading to
(CE , CV ) = (5, 20) cannot produce a valid tessellation.

Dodecahedra have (EC , VC) = (30, 20), so octahedral vertex figures, leading
to (CE , CV ) = (4, 8) cannot produce a valid tessellation as well.

3.5 Cell counting

At this point there are four tessellations left which are both spherical and the
orbit of a group. Further reduction of the number of possible tessellations
seems possible nor necessary. The only bit of information left unused is that
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C = #I∗ = 120, so the next step to take is to calculate the number of cells in
each of these tessellations. To accomplish this, one has to calculate the volume
of one cell and compare it to the volume of S3, which is 2π2 in units of the
radius of curvature. Calculating the volume of a spherical polyhedron is rather
tedious, though, so instead the area will be calculated. The area will then be
used to estimate the volume of the cell, and as it turns out, a lower bound can
be found.

The dihedral angles, which we will call θd of the fundamental polyhedra of a
tiling of space are very straightforward to determine. Since a closed loop around
any edge should represent a total angle of 2π, the dihedral angle of 1 of the CE
cells meeting there should be 2π

CE
. To calculate the area of a face of a spherical

polyhedron, we needs the angles between meeting edges in the face, call these
θf , or face angles.

The face angle of a spherical polyhedron should be completely determined
by the dihedral angle. To find the dependence we consider the tangent space to
S3 in a vertex of the polyhedron. The different edges meeting in the vertex can
now be identified with their (one-sided) derivatives in the vertex. The angles
between the tangent vectors will by definition give the angle between the edges.
It should be clear that the set of these tangent vectors is closed under rotations
of 2π

Q around the direction given by their sum. Thus, these vectors must form
a Q-gonal pyramid, where the height of the pyramid is related to the curvature
of the ambient space containing the polyhedron in question.

To our great fortune, only two different values of CE remain possible for any
quotient like tessellation of S3. These values are as mentioned before 3 and 4,
so for the sake of definiteness, assume Q = 3.

Figure 1: Construction for the determination of the functional relationship be-
tween θd and θf in a triangular pyramid

Q=3 If Q = 3, a triangular pyramid must be considered, which is depicted
in figure 1. Since the goal of our endeavour concerns solely angles, the scale is
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free to choose. For convenience, I have chosen the distance between any two
non-top vertices of the pyramid to be

√
3. Figure 1 shows clearly that

sin(φ) =
1
2

√
3 cot

(
θd

2

)
3
2

=
1
3

√
3 cot

(
θd
2

)
as well as

cos(φ) =
1

1
2

√
3 csc

(
θf

2

) =
2
3

√
3 sin

(
θf
2

)
The elaborate fractions in between the equality signs are meant to guide the
reader as to which triangles should be considered to arrive at these expressions.
These expressions can be combined using the famous identity cos2(θ)+sin2(θ) =
1, which will eliminate ϕ, to obtain the following.

1 =
(

1
3

√
3 cot

(
θd
2

))2

+
(

2
3

√
3 sin

(
θf
2

))2

=
1
3

cot2
(
θd
2

)
+

4
3

sin2

(
θf
2

)
To make this expression even more appealing to the eye and easier to evaluate,
I will use some slightly more obscure trigonometric identities, which can easily
be confirmed using the complex form of sin and cos. First of these identities is
2 sin2

(
θ
2

)
= 1− cos(θ) and the second is cot2

(
θ
2

)
= 1+cos(θ)

1−cos(θ) .

1 =
1
3

cot2
(
θd
2

)
+

4
3

sin2

(
θf
2

)
=

1
3

1 + cos(θd)
1− cos(θd)

+
2
3

(1− cos(θf ))

cos(θf ) = 1− 1
2

(
3− 1 + cos(θd)

1− cos(θd)

)
So for a Q = 3 tiling of S3, we have obtained the following relation between the
dihedral and face angles.

cos(θf ) =
cos(θd)

1− cos(θd)
(2)

Q=4 If Q = 4, a square pyramid is to be considered, which is depicted in
figure 2. For convenience, choose the sides of the base square to be of length 2.
Then it should be clear from figure 2, that

cos(φ) =
√

2

csc
(
θf

2

) =
√

2 sin
(
θf
2

)

As opposed to the approach used in the Q = 3 case, we now use another
construction to determine the functional relation between ϕ and θd. The figure
associated with this approach is figure 3, where the horizontal and vertical line
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Figure 2: Construction for the determination of the functional relationship be-
tween θf and ϕ in a square pyramid

contain sides of the square that is the base of the pyramid. The scale of the
picture is not really relevant, as long as it is clear that the lines denoted by
perpendicular strokes share a single length, say 1. Due to this relative small
dependence on the actual pyramid it might not be entirely clear why the angle
denoted as θd is in fact θd. This is the case however, since it is an angle between
lines on a face (since their endpoints are), perpendicular to the edge in which
they meet. With this knowledge it is easily seen that

sin(ϕ) = cot
(
θd
2

)
The remaining procedure is entirely equivalent to the Q = 3 case, so I will allow
myself to skip some of the intermediate steps this time.

1 = cot2
(
θd
2

)
+ 2 sin2

(
θf
2

)
=

1 + cos(θd)
1− cos(θd)

+ 1− cos(θf )

So for a Q = 4 tiling of S3 we have obtained the following relation for the face
angle as a function of the dihedral angle.

cos(θf ) =
1 + cos(θd)
1− cos(θd)

(3)

Equations 2 and 3 allow us to determine the face angle of the fundamental
cell of a tiling of S3, but the real information sought is the volume of such a
cell. Since deriving the second from the first seems to require very painstaking
calculations, another approach will be taken. Remarkably, the area of a spherical
polygon can be determined from its face angles with great ease. A spherical
triangle on the sphere with radius 1 and with the sum of its angles being Σθ,
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Figure 3: Construction for the determination of the functional relationship be-
tween θd and ϕ in a square pyramid

will have an area of exactly Σθ−π. Any spherical n-gon, with angle sum Σθ on
the same sphere can be considered a union of n−2 triangles. The angle sums of
these individual triangles are unknown but the sum of their angle sums should
equal Σθ. Therefore the total area of such an n-gon should be Σθ − (n − 2)π,
or somewhat more nicely, employing some abuse of notation 2π − Σπ−θ.

If S3 is imagined to be embedded in R4, the faces, being geodesic planes,
are in fact intersections of S3 with R4 subspaces. Such an intersection is an
embedding of S2, and since these euclidean subspaces contain the origin, these
S2 are in fact of the same radius as the original S3.

If we are to evaluate the area of a polyhedron, we should have a convention
as to which units to use. For the sake of simplicity, I will define the radius of
curvature of the ambient space S3 to be 1. Using the argument just given, this
means that the faces of a fundamental cell lie on a sphere of radius one, which
using the previous argument means that their area is given by 2π −Σπ−θ. The
θ here are of course just the θf , that have painstakingly been calculated. Due
to the symmetry of the faces in their vertices and the polyhedron in its faces,
the total area of the entire polyhedron is given by

A = FC (2π − VF (π − θf )) (4)

Where θf is to be determined from θd = 2π
CE

by equation 2 or 3.
The calculation of the area of a fundamental cell is thus completely solved

now, but this was not really the question at hand. Luckily we are but one
observation away from an estimate of what we set out to calculate. The obser-
vation to be made is that a spherical polyhedron of area A has volume V at
least as large as the volume of the corresponding euclidean polyhedron of area
A. The effect is actually twofold, since as the curvature increases, not only will
the boundary resemble a sphere more and more, but also the interior will be-

18



come increasingly displaced from the euclidean 3-space containing the vertices,
effectively gaining volume in the fourth euclidean dimension.

At this point all the tools are in place to produce lower boundaries to the
volume of a spherical polyhedron based on its dihedral angle. A lower boundary
for volume is equivalent to an upper boundary for number of cells, since V ·C =
2π2, the volume of S3 (with radius of curvature 1).

Tetrahedron The first of the geometrically possible tessellations of S3 was a
tetrahedral tiling with tetrahedra as vertex figures. Tetrahedra, as the vertex
figure have Q = 3, so CE = 3 and θd = 2

3π. In fact the only geometrically
possible vertex figures, the tetrahedron and the cube, both have Q = 3, so
θd = 2

3π for all other tessellations as well. Since tetrahedra are also the cells,
the cell-Q is also 3 and equation 2 has to be used to obtain θf .

cos(θf ) =
cos
(

2
3π
)

1− cos
(

2
3π
) = −1

3

Since cos(π − θ) = − cos(θ), π − θ = arccos
(

1
3

)
and using equation 4

A = 8π − 12 arccos
(

1
3

)
> 10.361

For a euclidean tetrahedron V 2 =
√

3
648A

3, so V ≥
√√

3
648A

3 > 1.724 and finally
for a tetrahedral tiling.

C =
2π2

V
<

2π2

1.724
< 12

Cube Another geometrically possible tessellation is one by cubes, with tetra-
hedra as vertex figure. As stated θd = 2

3π, and since cubes also have Q = 3,
equation 2 has to be used again. The same equation with the same θd, means
that again π − θf = arccos

(
1
3

)
. This time the area becomes

A = 12π − 24 arccos
(

1
3

)
> 8.156

For a euclidean cube V 2 = 1
216A

3, so V ≥
√

1
216A

3 > 1.584 and finally for a
cubic tiling of S3.

C =
2π2

V
<

2π2

1.584
< 13

Dodecahedron The third possible tessellation of S3 is the tessellation by
dodecahedra called the PDS. Like the previous two possibilities, the PDS also
has tetrahedra for vertex figures. Also, like the previous cases the dodecahedron
has Q = 3, so again equation 2 should be used, leading to π − θf = arccos

(
1
3

)
.

The area becomes

A = 24π − 60 arccos
(

1
3

)
> 1.540
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For a euclidean dodecahedron V 2 = (15+7
√

5)2

432
√

25+10
√

5
3A3 > 2669

400000A
3, so V >√

2669
400000A

3 > 0.156 and finally for a dodecahedral tiling of S3.

C =
2π2

V
<

2π2

0.156
< 127

Octahedron The last tessellation of S3 under consideration is the tessellation
by octahedra with cubical vertex figures. In this case, although the cube has
Q = 3, and therefore θd = 2

3π, the octahedron has Q = 4 and thus equation 3
must be used. The result of this is that

cos(θf ) =
1 + cos

(
2
3π
)

1− cos
(

2
3π
) =

1
3

Differing exactly a sign with the Q = 3 case. The total area is still provided by
equation 4, and turns out to be

A = 24 arccos
(

1
3

)
− 8π > 4.410

For a euclidean octahedron V 2 =
√

3
324A

3, so V ≥
√√

3
324A

3 > 0.677 and finally,
the octahedral tiling of S3 has.

C =
2π2

V
<

2π2

0.677
< 30

3.6 Conclusion

Combining the results of the previous subsections, it has been shown that there
might exist 4 tessellations of S3 by regular polyhedra, of which only one could
have 120 elements. The space S3/I∗ must therefore be equal to the space
resulting from identifying the sides of a fundamental cell of this tessellation, a
dodecahedron. There are in fact two ways to identify faces of a polyhedron, one
can identify opposite sides with a 1

5π twist, or with a 3
5π twist. The resulting

spaces are shown in figure 4 and 5 respectively.
To see which one corresponds to the PDS, one counts CE . Firstly, count

CE for the minimal twist space, seen in figure 4. Start one the centre face
A near side 15 and walking through the dodecahedron towards face D side
34. 1 dodecahedron has now been traversed and one can pass through the
identification to the other side D. Here, traversing the dodecahedron leads to face
B side 15, two dodecahedra have now been traversed. Again passing through the
identification to the other side B, one can once more traverse the dodecahedron
leading to face A side 15. 3 dodecahedra have now been traversed and if one
passes through the identification once more, one arrives at the starting point.
So a loop around the A15 edge in the minimal twist space taken one through 3
dodecahedra, meaning that for this space CE = 3.
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Figure 4: Schlegel diagram of the dodecahedron with sides identified with min-
imal twist

For the maximal twist space, seen in figure 5, again start near A15. Travers-
ing the first dodecahedron again takes one near D34. Using the identification,
one arrives in the other D34, and traversing the second dodecahedron takes
one to E15. The identification is used and the third dodecahedron is traversed
leading to B23. Once more, one can use the identification to travel through the
fourth dodecahedron leading to C45. After using the identification, finally the
fifth dodecahedron is traversed leading to A15, which after one more identifi-
cation takes one to the starting point. So in the maximal twist space, a small
loop around the A15 side takes one through 5 different dodecahedra, meaning
CE = 5.

As was seen in section 3.3 this means that the minimal twist space is a
spherical dodecahedral space with tetrahedral vertex figures and the maximal
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Figure 5: Schlegel diagram of the dodecahedron with sides identified with max-
imal twist

twist space is thus a hyperbolic dodecahedral space with icosahedral vertex
figures. Using this information it is clear that the spherical PDS must be the
minimal twist space, that is, the space obtained by identifying the opposite sides
of a dodecahedron with a twist of 1

5π.
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4 Physical Topological Phenomena

As promised, this section will explore some of the physical consequences of
non-simply connected spherical space in general and especially the PDS as a
model for our universe. Before this is attended to, some explanation may be in
place regarding the credibility of the model. The first apparent mistake in the
claims made by this article concerns the dimension of the model used. After all,
since the subject of cosmology is so intimately connected to general relativity,
especially in the non-flat case, space-time should be considered in its entirety,
leaving us to model a 4-dimensional manifold instead of a 3-dimensional one,
such as the PDS. Fortunately, the universe is as usual stranger and more kind
than näıvely suspected, providing us with what is known as Weyl’s principle[8].

Theorem 5. The world lines of galaxies, or ‘fundamental particles’, form (on
average) a spacetime-filling family of non-intersecting geodesics converging to-
wards the past.

What Weyl is asserting here is that the world lines of the universe, basically
the geodesics, foliate it, at least if we forget about the initial singularity. This
means, that the time of an event may be defined to be the proper time on the
unique world line containing it. We can now define the spatial part of the uni-
verse at some time t to be the collection of events with that time associated
to it by the previous method. By hypothesis and smooth dependence on initial
conditions, this will provide us with a smooth 3-dimensional manifold associated
with each time. By continuous dependence on initial conditions, time-evolution
as well as time-devolution, being essentially the same thing, by some fixed time
τ is a continuous operation. Thus, geodesic time-evolution provides homeomor-
phisms between the universe at any time, meaning that its topology is constant
in time. So, in conclusion the space-time manifold can on cosmic scales be in-
terpreted as a product space of a 1-dimensional time line and a 3-dimensional
”space”-space, it is of course this latter space in which we are really interested.

The first thing we assume now, is homogeneity of space. This is by no means
a reasonable assumption, although it is backed by some empirical evidence.
Physical theories certainly seem to be invariant under spatial translations, in
fact this is equivalent to conservation of momentum, which is one of the pillars
of modern physics and extremely well tested as such. Although this is a clear
indication of the homogeneity, it is not proof. In fact, most of this section has
so far been dedicated to proving that a theoretical invariance can be broken
by reality. Regrettably, since we can only directly observe our immediate sur-
roundings, our hand is forced in this matter and we will have to accept spatial
homogeneity for its symmetry if we are to say anything about space as a whole.

Another assumption that is canonically made in cosmology is isotropy. Since
homogeneous spaces are fairly limited in number, the additional assumption of
isotropy is not strictly necessary. Isotropy is, however, in contrast to homo-
geneity, quite convincingly confirmed. Therefore, and because it will simplify
matters considerably, the universe will at least be considered locally isotropic.
Local isotropy is understood here to imply geometric isotropy, but not neces-
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sarily topological isotropy. From the considerations in section 2 it is clear that
there are 8 different homogeneous 3-dimensional geometries of which exactly
3 are isotropic. These three geometries are of course exactly the ones singled
out by the Friedman-Robertson-Walker metric. In contrast to the models ac-
counted for by this metric, the topology of our model will not be assumed simply
connected leaving us with some additional possible spaces to consider.

With the assumptions in place, now is the time to start considering how
to eliminate possibilities based on empirical evidence. Since there are three
geometries left, all representing many manifolds, the nicest thing to do would
be to try and eliminate one or two geometries. Conveniently, Einstein provided
the world with a theory describing exactly the geometry of space as a function
of its energy content. As it turns out, under the assumption of isotropy and
homogeneity, the geometry of the universe is governed by a single parameter,
the curvature, which is completely governed by the mean energy density. A
constant Ω = ρ

ρc
is customarily defined, where ρ is the energy density and

ρc is the energy density needed for space to be exactly flat. This way Ω = 1,
clearly indicates a flat space, whereas Ω > 1 means that an abundance of energy
will contract space, giving it spherical geometry, finally Ω < 1 occurs in very
low-energy space leaving it hyperbolic in its geometry.

Considerable effort has of course been put in trying to determine the value
of Ω. Currently Ω = 1.005± 0.006, sadly not even eliminating one of the three
geometries, although hyperbolic geometry should be considered unlikely. For
the sake of the argument, the flat case is discarded for now. If one considers
the energy content of the universe to forego its curvature, which is a highly
metaphysical and perhaps rather dubious claim, this case very unlikely anyway.

The first observation the reader will have made, is that any manifold, admit-
ting the empirically favoured spherical geometry, is bounded. In this scenario,
there is certainly a possibility that by a stroke of good fortune we find ourselves
in a universe smaller than our horizon. If this is indeed the case, we ought to
be able to detect it. A number of ways to do so have been conceived, and I will
treat all of which I am aware.

4.1 Searching for duplicates

When one suspects to be in a hall of mirrors, a natural cause of action would
be to search for one’s mirror images. Sadly a cosmic mirror image is very hard
to find. The first problem one encounters in this course of action is the fact
that we, and therefore our mirror images, are quite small compared even to
a plausible finite universe. In addition to this, there is no preferred way to
look, so the whole operation would be something of a needle in a haystack
search. Additional complications stem from the fact that our images might
be considerably obscured by other celestial bodies, or intergalactic gas. To
complicate things even further we don’t know from which angle we would view
ourselves, nor do we know the distance to these images we would be looking for.
This last problem is not much of a problem in an actual hall of mirrors, but on
cosmic scales space separation means time separation due to the finite speed of
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light. So what we are looking for is a picture of ourselves from any angle, from
any time in the distant past, anywhere in a universe full of noise.

The problem is twofold: not only don’t we know where to look and if our
image is even visible to us, but we probably wouldn’t even be able to recognize
our picture if we saw it.

4.2 Circles in the sky

Another approach would be to search for other objects occurring twice within
the visible universe. This largely has the same problems as the search for mirror
images, except for the fact that in this way, one would only hav to look half
as far, effectively reducing the curvature by a factor of two. The approach can
be generalized in another way, though, by realizing that it is not really double
objects we’re looking for, but double space. This means that any phenomenon
occurring in space can be used to search for ”duplicates”. In particular the CMB
might be used. The CMB is far easier to detect than actual objects, especially
since it’s time-evolution is far more predictable. The disadvantage here is that
the CMB is fairly homogeneous, so only the fluctuations, which have a relative
magnitude of about 1 in 105, can really be used.

If our visible universe were exactly as big as a fundamental domain of space,
we would see equal points in different directions on our horizon. If the universe
is any older or smaller, a somewhat more complicated situation occurs, where
the sphere making up our horizon crosses a face of the fundamental domain.
Wherever these intersections occur, they do so from both sides, and therefore
define events observed simultaneously from two directions. The faces of the
fundamental domain are sections of spheres, so the intersection with the horizon
will consist of diametrically opposed circles.[2]

Hence, another test for multiply-connected space models is to search for dia-
metrically opposed equal circles, which due to random noise should in reality be
a search for correlated diametrically opposed circles. Searches for these ”circles
in the sky” have been proposed in since 1996 and have been used to test the
PDS model at least since 2003[5]. In 2003 the method found no correlated dia-
metrically opposed circles, but the correlations sought for were only in unturned
circles. As seen in section 3 the PDS space has neighbouring copies differ by a
twist of 36◦ along the common axis. Even when these relative rotations were
taken into account no correlations were found, until the search was repeated by
Boudewijn Roukema in 2004. Astonishingly, this time correlated circles were
found in six diametrically opposed pairs forming an icosahedral pattern in the
sky. The angular sizes of these circles were found to be 11±1◦. A full description
of the methods used and the results obtained is found in [7].

4.3 Cosmic Crystallography

A completely different way to determine the multiply connectedness of space
is to analyse the distribution of distances between randomly chosen objects in
the sky. In an infinite space this distribution should be essentially uniform, but
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cut off by the horizon. In a finite space of significantly smaller radius than the
observable universe, however, there are also non-zero distances from an object
to itself. These distances occur at least once for each object in the sky close
enough to show its next ”copy” and would therefore produce a peak in the
distance distribution[3]. The exact location of this peak will even contain infor-
mation regarding the size of the universe. There is a slight catch to this method,
in that these peaks will only occur if the symmetries of space producing ghost
images are Clifford translations (translations followed by a rotation around the
direction of translation). The relevant symmetries are Clifford translations in
both Euclidean and spherical space, though, so this catch can largely be ignored
here. If one is to investigate the possibility of multiply connected hyperbolic
space, some adaptation to the method have to be made, complicating the pro-
cedure and rendering it unstable to measurement error[4].

This measurement technique has, like the circles in the sky method, been
used in practice to determine the topology of space. The results of this actual
search were rather lacking though, since reliably measured distances are scarce
for objects more distant from earth than about 600 Mpc. This does provide a
lower limit for the radius of space, but this lower bound had by 1996, when the
search was done, already been reached by other methods. Concludingly, this
method will only be able to contribute to the determination of the topology
of comoving space if space is non-hyperbolic and if sufficient distance measure-
ments become available in the future.

4.4 Suppression of the CMB quadrupole and the Eigen-
modes of Space

Another very significant effect of multiply connected space lies in the boundary
conditions it sets for global fields and waves. For this effect to be noticeable,
a field needs to be found which behaves essentially as a closed system and the
waves of which have had the time to cross space in its entirety. Preferably the
waves of this field needs to be governed by some simple differential operator,
ideally a Laplacian. Luckily such a field can be found in the CMB, the fluctu-
ations or waves of which have been produced by acoustic perturbations of the
primordial matter. These sound waves have had plenty of time to circumnav-
igate space, if it is multiply connected, and will therefore neatly be described
in terms of standing waves of the space manifold. The boundary conditions
completely govern the shape of these standing waves, and vice versa the shape
of these standing waves can be used to determine the shape of space.

Waves in a multiply connected space can be described as lying on a fun-
damental domain of the space. From this fundamental domain description, it
is clear that waves can only exist with wavelengths smaller than the diameter
of such a domain. In the limit of a very large fundamental domain, multiply
connected space should on small scales behave like its universal cover. This also
means that the small wavelength waves of a multiply connected space should
be very much like the small wavelength waves of the universal cover. This be-
haviour is clearly illustrated by the 1 dimensional case. The eigenfunctions of
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the Laplacian on R are e±ikx for eigenvalue −k2. On the circle S1 ∼= R/Z, we
only have the solutions e±ikx for which e±ik1 = e±ik0 or k = 2πn. So whereas
clearly any wave on a multiply connected space is a wave on its universal cover,
only ”universal” waves with the symmetry of the space itself are waves in this
space. In the 1 dimensional case these are the waves with wavelength 1

2πn for
any n ∈ N, which is a far smaller set than R>0 but does have 0 as a limit point.
The point here is that the main difference in the spectra lies in the waves cor-
responding to wavelength of order 1. This means that a cut-off in waves down
from a certain frequency is a clear sign of multiconnectedness of space. A fact,
that to the author’s knowledge has not been explained beyond direct computa-
tional confirmation, is that this surpression of low order moments in multiply
connected spaces exists only in what are called well proportioned spaces[12].
For badly proportioned spaces, were the width of the space depends heavily on
the direction, a surpression of high order moments occurs. This surpression can
even outperform the surpression of lower order terms due to muliconnectness,
in extreme cases. This means that a cut-off of low order moments in the CMB
is a feat, not of general multiply connected spaces, but of a subclass thereoff, a
member of which is the PDS.

Surprisingly, a cut-off of this sort does occur in the CMB. The explanation is
generally sought in measurement errors like unaccounted for beam asymetries[1],
as opposed to cosmological factors. The fact remains however, that no satis-
fying non-cosmological explanation exists at this moment, so explaining this
anisotropy is a real merit for any model of the universe.

Different spaces are different quotients of their universal cover, so they also
allow different subsets of functions on this universal cover. This means that there
would be different patterns of waves allowed in different spaces. Jean–Pierre
Luminet and others have calculated the temperature fluctuations expected for
some different spaces, both simply and multiply connected, and have found the
best fit to be the PDS.

The parameters of the PDS were fitted to the temperature fluctuations in
the l = 4 term, the results are shown in figure 6. Two terms, disregarding
the term used to provide the parameters, in the Fourier expansion of the CMB
seem to be significantly better fitted by the PDS than by the Euclidean model.
Two terms is a rather small amount, and one could certainly hope for another
explanation for their deviance from the concordance model. Still, as long as this
explanation is not provided, the PDS model does manage to explain data the
Euclidean model cannot, which is, to be honest, its first real scientific merit.
A further complicating factor is that the curvature used by Luminet to fit the
PDS to the data lies almost 2 standard deviations from the currently accepted
curvature of space[6]. If this deviation from the mean increases any further by
more precise measurements of the curvature of space, this fit will quickly become
useless.

Making up the odds, the physical evidence for multiply connected space
rests on fitting the CMB quadrupole. Where the circles in the sky method has
only produced some very controversial, and all other tests have failed to provide
any results in favour of multi connected space, the CMB quadrupole remains
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Figure 6: The fluctuations in temperature as a function of angle, or equivalently
mode. The red line is the simply connected Euclidean fit, the blue line the PDS
fit. This picture has been taken from [5]

anomalous in any simply connected case. While fitting the CMB anisotropies
the best we can leads to the PDS as the most well-proportioned space, this is
really the one and only argument there is.
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5 Conclusion

The aim of this thesis has been to explore the possibility of multiconnectedness
of space and to see whether physical traces can be found of such topologies. In
section 2 a quick survey was given of the different topologies possible on geo-
metric 3 manifolds. It turned out that 8 homogeneous geometries were possible
of which only 3 are geometrically isotropic, being the well-known spherical, Eu-
clidean, and hyperbolic spaces. Hyperbolic space allows the broadest range of
quotient spaces to be formed, but is slightly disfavoured by curvature measure-
ments. From a topological point of view there are quite a lot of hyperbolic 3
manifolds, which can therefore all be rejected as models for the universe. His-
tory seems to have chosen Euclidean space to be the space that we inhabit as
is expressed in the concordance model of cosmology. Whereas the concordance
model assumes a simply connected space, there are actually 10 topologically
different 3 manifolds admitting Euclidean geometry. Since evidence seems to
indicate a slightly spherical universe, though, this case was most extensively
studied. Spherical manifold are much more abundant than Euclidean mani-
folds, but only the Poincaré Dodecahedral Space was given extensive treatment
in section 3. In section 3, a proof was given for the correctness of the gener-
ally used construction or description of the PDS. The PDS is described as the
quotient of the sphere by the action of the binary icosahedral group, which is
shown to be equivalent to identifying faces of a dodecahedron with minimal
relative twist. In section 4, a variety of ways was discussed for testing for mul-
ticonnectedness in general, but PDS topology in particular. Most of the actual
measurements done are inconclusive at best, and the last decade has seen a
perpetual reduction of the possibility of multi connected space, at least with a
characteristic length smaller than the observable universe. In conclusion to this,
the PDS is far from proven to be shape of the universe, but should be considered
the best bet, as long as it explains the CMB quadrupole anomaly better than
any other space.
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