Variation in Intake Rate of Brent Geese, *Branta bernicla*, depending on plant biomass and quality of the vegetation.

D 617

Emmanuelle Gros Ecole Superieure d'Agriculture Angers, France Supervisor: Dr Maarten Loonen Zoological laboratory, University of Groningen The Netherlands 1998

ABSTRACT

Food depletion is a common phenomena in nature, however it is hard to measure in the field. In the case of the foraging behaviour of a herbivore, a decrease of intake rate is due depletion. In this project, intake rate has been measured in relation with biomass and quality of the vegetation. Intake rate can be measured by offering turves to the Brent Geese, *Branta bernicla bernicla*, and by measuring the weight loss of the turf when the geese are feeding. Peck rate and bite size, components of the intake rate, have also been measured in order to determine which variable influences mainly the intake rate.

When depletion occurred, a decrease of the intake rate has been measured. A positive relation links the intake rate with the biomass. The intake rate is also dependent on the quality of the vegetation, in this study defined as fertilization of the turves. For a higher quality of the vegetation, the intake rate is higher.

Rijksunlversiteit Groningen Bibliotheek Biologisch Centrum Kerklaan 30 – Posthus 14 9750 AA HAREN

CONTENTS

Abstract	2
Contents	3
	4
Introduction	
Materials and Methods	5
Geese	
Turf	
Set up of the intake experiment	
Analyzing the tape	
Sum up of the data	
Results	8
Relation with the biomass	
Schiermonnikoog	
North Coast of Groningen	
Different quality of the vegetation	
Schiermonnikoog	
North Coast of Groningen	
Discussion	25
Relation with the biomass	
Different quality of the vegetation	
Conclusions	
Relevance of the results	28
Recommendations	29
Acknowledgments	30
References	31
List of appendixes	32

3

INTRODUCTION

Optimal foraging theory assumes that herbivores feed first in the patch with highest food density. Once the food density in that patch has been depleted and become less profitable, the herbivores should switch to the next highest density patch (Schneider 1984, Sutherland and Anderson, 1993).Depletion phenomena are hard to measure because food availability is not only food dependent. The food preference of the herbivore is also based on the vegetation type and quality. In fact, food preference is defined in relation with biomass, quality of the vegetation and intake rate. Estimates of forage intake can be useful to gain a better understanding of a population's habitat requirements (Hupp, White, Sedinger and Roberstson, 1996, Sutherland and Allport, 1994). The assumption tested during this investigation is that the intake rate has a positive relation with biomass and food quality (Porp and Loonen, 1986, Tolsma, 1998).

The main goal of the experiment is to measure intake rate and to relate it with biomass and quality of the vegetation. In order to measure intake rate, we offered turves of vegetation to the geese and we let them pecking an average of 50 pecks. The main measurements done were the intake, in gram, got from weighing the turf before and after the geese had fed on, the exact number of pecks done by each bird and the exact pecking time. These different measures permit to calculate the peck rate of each geese, the bite size and the intake rate. This investigation has been done in relation with field work done in Schiermonnikoog and the North Coast; the turves used came from these two areas. The herbivores used were Brent Geese, *Branta bernicla bernicla*, and the main vegetation presented was *Puccinellia maritima*. The *Puccinellia* is the principal food species in the diet of the geese. *Puccinellia* has a high protein content. Nevertheless, the diet of the Brent Geese is also based on *Plantago maritima*, *Triglochin maritima* and *Festuca rubra*. Due to their restricted distribution in the field, *Plantago* and *Triglochin* represent a limited part of the geese diet. *Festuca rubra* is mainly used by the geese as a substitute for *Puccinellia* (Prop and Deerenberg, 1991).

The first aim of the experiment is to measure the intake rate and to correlate it with variation in biomass. The addressed problem was (1) in which way intake rate varies according to biomass, (2) which factors (peck rate or bite size) influence mainly the variations of the intake rate. We expected that intake rate increase with the available plant biomass (Trudell and White, 1981).

The second aim of the experiment is to investigate additional effects of the quality of the vegetation (fertilized and non fertilized vegetation). We will investigate how the fertilization can influence intake rate. Food quality and intake rate are interrelated so intake declines as food quality declines (Trudell and White, 1991).

The third goal is to determine if intake rate is mostly affected by biomass or by quality of the vegetation.

MATERIALS AND METHODS.

Geese.

The birds, used during the experiment, were two Brent geese, *Branta bernicla bernicla* Brent Geese are an arctic species which used to spend the wintering time along the coast of Holland, Germany, England and France. In May, they migrate to Siberia for the breeding and moulting period.

For this experiment, a pair of geese have been chosen: the male was JA and the female JC. The couple has been kept in a small room from January to May. When this experiment started in April the couple was already used to live in this room and were not very afraid of humans.

The regular weighing permitted to check the health of the geese. In order to minimize the stress of the birds, they have been caught as less as possible. The weighing was effected by letting the geese go on the balance by their own. Day time was first from 8:00 to 19:00 and has been changed gradually to 9:00 to 24:00. The rhythm of the day has been switched in order to respect the natural change of the daylight which cause the need of moulting, breeding and migration.

The alimentation of the geese consisted of dry food and turves of grass; fresh water was brought every day. The cleaning of the room was done every morning.

Turf

The turves tested during this investigation came from the North Coast of Groningen and from Schiermonnikoog.

The experiment made on the salt-marsh of the North Coast of Groningen, by Monique Timmner, presented two blocks of six plots each. In each plot, on site was fertilized and the other exclosed from grazing in order to observe the food preference of the geese. Four geese were feeding for 24 hours on each plot and depleted the vegetation. During this experiment, for each plot two turves of each site for different time were tested; in total 131 turves have been tested.

The investigation made in Schiermonnikoog, by Daan Bos, presented four trays. In each tray there were four plots spread in the field. Each plot got a different treatment: the black one was grazed and not fertilized, the green one was ungrazed and fertilized, the red one was ungrazed and not fertilized and the yellow one was grazed and fertilized. In the field, the different plots were opened for wild geese and the behaviour (residence time, peck rate, step rate, fights) was recorded. In the laboratory, two turves of each plots of each tray have been tested for intake rate; so in total 32 turves have been tested.

The size of the turves was standard, 301 cm^2 . After their cutting, the turves were tested as soon as possible but in order to keep the vegetation in its initial form the turves were kept in a cold room, at 4° C.

Set up of the intake experiment.

The aim of this investigation was to measure the weight loss of by the turf during the feeding of the geese.

Before offering the turf to the geese the evaporation was measured during five or six minutes by weighing the turf twice. The time was also noticed in order to calculate the time spent between the end of the evaporation measurement and the end of the feeding trial.

After the evaporation measurement, the turf was offered to the geese. During the feeding time the geese were filmed with a video camera. After 50-60 pecks done by one or both of the geese, the feeding was stopped. The use of a constant and low number of pecks permits to assume that depletion can not occur. At the end of foraging, the turf and the spilled biomass were collected and weighed, the time was also noticed. In order to keep the same feeding motivation of the geese, the interval time between two foraging period was an average of twenty minutes.

After foraging, all green plants were clipped. The different vegetation type were separated between the main species, mostly *Puccinellia maritima*, the other minority species, mostly *Salicornia* and *Sueda maritima* and dead material. These different kinds of vegetation were washed separately and put in the oven during 48 hours or more at 70 degree Celsius. The weighing of the vegetation was done at the end of the drying. The weighing permitted to calculate the biomass available per square meter.

Analyzing the tape

For each bird and each turf, the following measurements were done:

-Feeding or foraging time: time spent between the first and the last peck.

-Pecking time: time during which the geese were only pecking.

-Processing Time: time during which the geese were only processing the grass.

-Number of head up: number of time when the geese raised their head up, this measurement gave some information about the feeding behaviour and the foraging motivation.

-Number of fights: estimation of the interaction between the geese.

-Number of pecks done.

Sum up of the data:

The data were organized as follows :

- Number of the turf, its origin and plot.

- Intake in gram: the intake has been calculated by subtracting the amount of grass lost and the evaporation during the feeding time from he weight loss of the turf during the feeding. The evaporation during the feeding has been calculated with the evaporation measured before the feeding and the time spent between the beginning and the end of the feeding.

- Number of pecks of each bird
- Feeding time
- Pecking time
- Processing time
- Number of head up

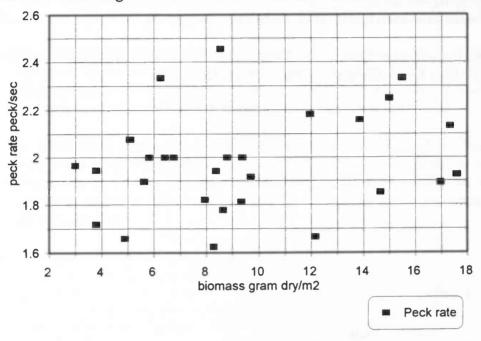
- Peck rate, in peck per second, of each bird calculated by dividing the number of peck by the pecking time. The pecking time has been used in order to get more precise data.

- Bite size, in gram per peck, calculated by dividing the intake, in gram, by the total number of pecks done by the two geese.

- Intake rate, in gram per second, calculated by dividing the intake, in gram, by the pecking time of the two birds

- Biomass, in gram dry per squared meter, was calculated with the weight of the dry grass.

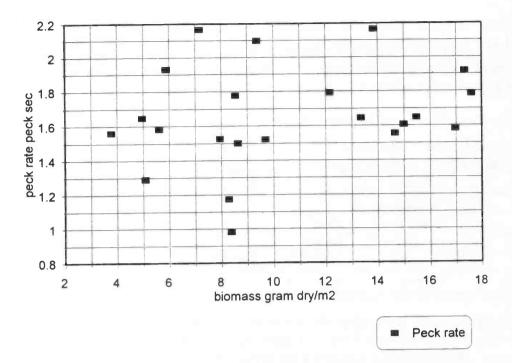
In order to analyze the peck rate in relation with the biomass, regression tests have been made.


For the calculation of the bite size and the intake rate, the total intake in gram, the number of pecks of the two birds and the pecking time of both of the birds have been used. To allow for potential differences in bite size and in intake rate the fraction of bites made by the male was included as potential variable in the model. The statistical test used was ANCOVA (procedure manova in spss) and the interaction between the plots, the biomass and the fraction of bites made by the male have been tested. Only significant interactions have been included in the final model.

For the turves coming from Schiermonnikoog, the mean, the standard error and the analysis of the variance have been calculated for the different treatments.

RESULTS

Relation with biomass


A relation between intake rate and biomass is expected, based on earlier results (Prop and Loonen 1986, Tolsma 1998, Trudell and White, 1981). In this section, we investigated this relation not only for the intake rate but also for the components determining intake rate (peck rate and bite size). These components are analyzed separately in relation with biomass. The results measured on turves from Schiermonnikoog and from the North Coast of Groningen are presented separately.

Schiermonnikoog

Figure 1: Peck rate of the female related to biomass.

No relation has been found between peck rate of the female and biomass

No relation has been found between peck rate of the male and biomass

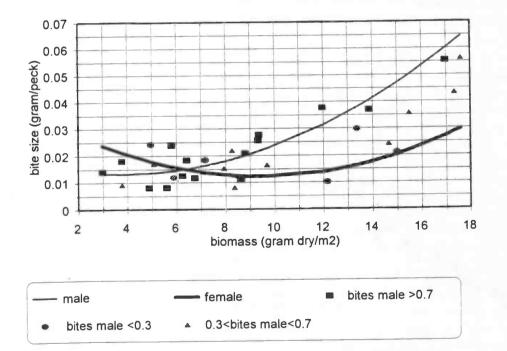
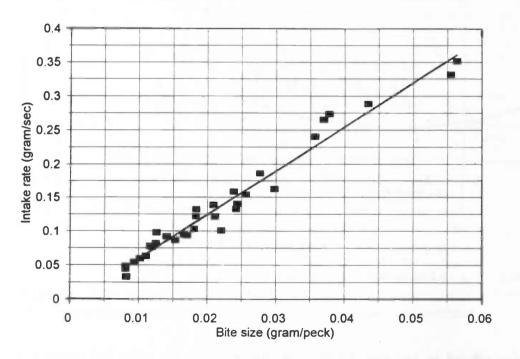


Figure 3: Bite size related to biomass, fraction of bite made by the male and interaction between those variables.


With the statistic test ANCOVA (procedure manova in spss), intake rate has been correlated with biomass, fraction of bite made by the male, interaction between these variables and square biomass. The table 2 gives the coefficients of the quadratic relation found.

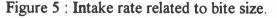

Variables	Coefficient	F	df	P
constant	0.222			
biomass	-0.0321	7.61	1,27	0.001
square biomass	0.00164	11.76	1,27	0.002
bite male	-0.127	4.45	1,27	0.044
Biomass*bite male	0.0219	10.44	1,27	0.003

Table 2 : Coefficients, F values, degrees of freedom and significance corresponding to the relation between intake rate and biomass (figure 4)

The rectangular points represent the intake rate when the male is mostly eating (fraction of bites made by the male > 0.7) and the circle one represent the bite size when the female is mostly eating (fraction of bites made by the male < 0.3). The value of intake rate used has been calculated in relation with the measures done during the investigation.

We tested if the intake rate is a function of the peck rate or of the bite size. Earlier results demonstrated that intake rate of herbivores increases asymptotically as a function of bite size (Gross, Shipley, Hobbs, Spalinger and Wunder, 1993). In this study, we also found that intake rate is only varied in relation to bite size Bite size is an useful predictor of short term intake rate of herbivores.

A positive relation links intake rate to bite size. The equation found is y = 6.51 x - 0.00604 with F(1,30)=856.17, p=0.000 and r²=0.982

With the statistic test ANCOVA (procedure manova in spss), bite size has been correlated with biomass, fraction of bites made by the male, interaction between these variables and the square biomass. The coefficients related to the quadratic relation found are given in the table 1.

Variables	Coefficient	F	df	P
constant	0.0366			
biomass	-0.00511	8.94	1,27	0.006
square biomass	0.000268	14.58	1,27	0.001
bite male	-0.0196	4.94	1,27	0.035
Biomass*bite male	0.00309	0.005	1,27	0.005

Table 1 : Coefficients, F values, degrees of freedom and significance corresponding to the relation between bite size and biomass (figure 3)

The rectangular points represents the bite size when the male is mostly eating (fraction of bites made by the male > 0.7) and the circle one represent the bite size when the female is mostly eating (fraction of bites made by the male < 0.3). The value of those bite size used has been calculated in relation with the measures done during the investigation.

For the figures 3 and 4, bite size and intake rate of the male has been calculated by the formula found and with the fraction of bites made by the male equal to one. Bite size and intake rate of the female has been calculated by the formula found and with the fraction of bites made by the male equal to zero.

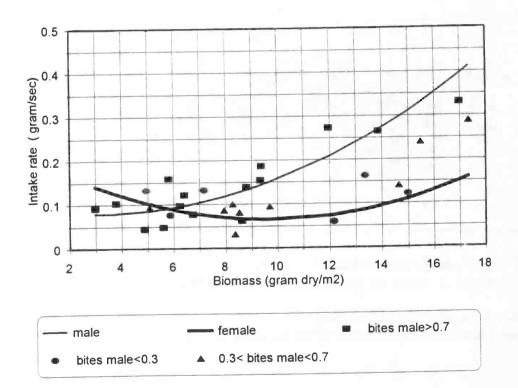


Figure 4 : Intake rate related to biomass, fraction of the bites made by the male and interaction between these variables.

North Coast of Groningen

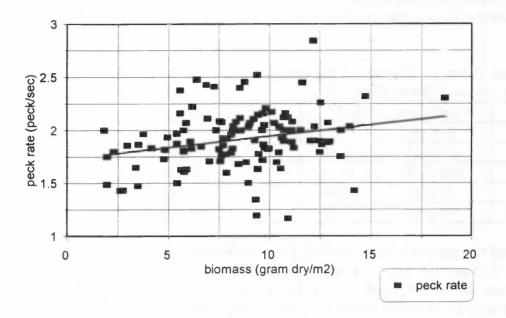


Figure 6 : Peck rate of the female related to biomass

The relation found between the peck rate of the female and biomass is a regression line whose equation is : y = 0.0214 x + 1.73, with F(1,117)=7.55, p=0.0069.

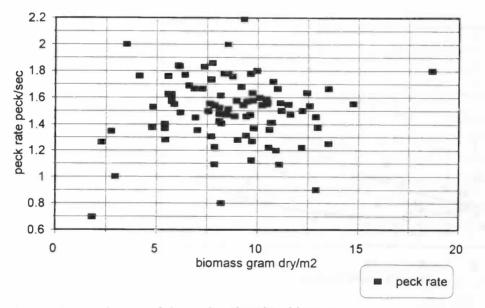
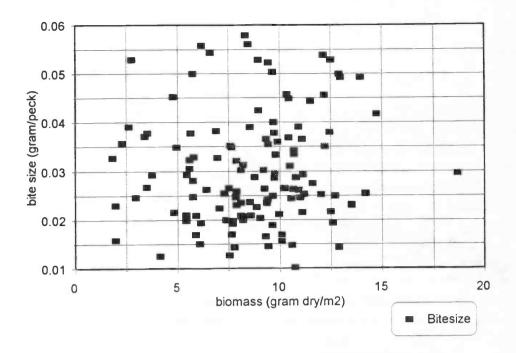



Figure 7 : Peck rate of the male related to biomass No relation has been found between peck rate of the male and biomass

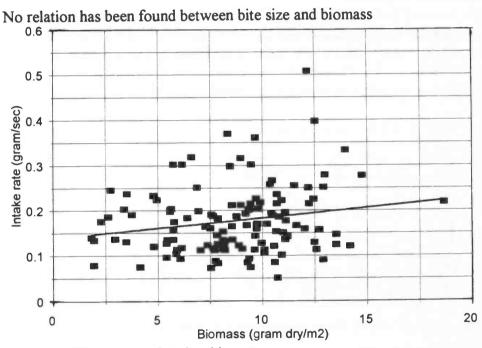


Figure 9 : Intake rate related to biomass

With the statistic test ANCOVA (procedure manova in spss), intake rate has been correlated with biomass. The equation of the positive relation found is y = 0.0045x + 0.1379 with F(1,123)=4.46 and p=0.037.

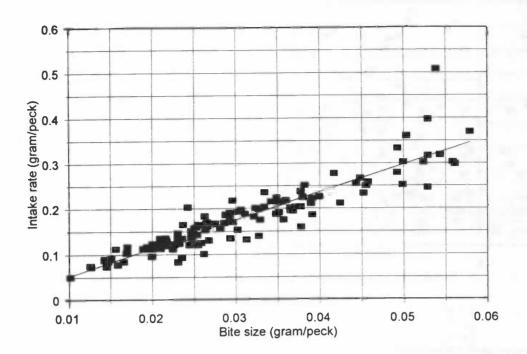


Figure 10 : Intake rate related to bite size.

The relation found between the intake rate and bite size is a regression line whose equation is : y = 6.12 x - 0.00853, with F(1,123)=678.18, p=0.0000.

Different quality of the vegetation

We expected an effect of the quality of the vegetation (Trudell and White, 1981). In this section, this relation is not only investigated for the intake rate but also for the peck rate and the bite size which define intake rate. These components are analyzed separately. The results measured on turves from Schiermonnikoog and the North Coast are presented separately. First the effect of biomass and quality is analyzed in a parametric ANCOVA to test significant effects. If there is no significant effect of biomass, the effect of treatment was again tested using a non parametric Kruskall Wallis ANOVA.

Schiermonnikoog

During the investigation in Schiermonnikoog, four treatments have been used:

Black : grazed and non fertilized

Green : ungrazed and fertilized

Red : ungrazed and non fertilized

Yellow : grazed and fertilized

As there is no significant effect of biomass on peck rate, bite size and intake rate (figure 11), when treatment was included in the model, the various treatments are compared non parametric with a Kruskall Wallis ANOVA.

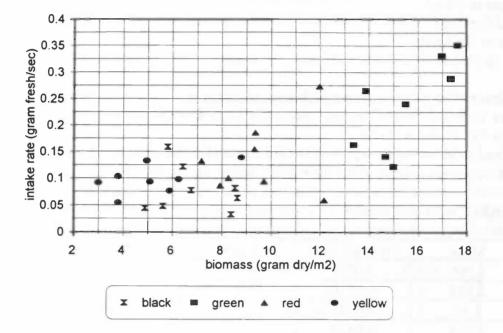
The tables 3, 4, 5 and 6 give the mean, the standard error and the number of cases for respectively the peck rate of the female, of the male, for bite size and intake rate.

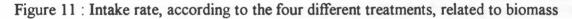
Table 3 : Mean, standard error and number of cases related to peck rate of the female for different treatments.

Treatments	Mean	Standard error	Cases
Black	1.966	0.0820	8
Green	2.078	0.0710	7
Red	1.86	0.0725	7
Yellow	2.006	0.0817	6

In fact, there is no significant difference in the peck rate of the female for the four different treatments (Kruskall Wallis : cases = 28, Chi-square = 3.66, p=0.299).

Table 4 : Mean, standard error and number of cases related to peck rate of the male for the different treatments.


Treatments	Mean	Standard error	Cases
Black	1.46	0.169	4
Green	1.73	0.0742	8
Red	1.71	0.155	6
Yellow	1.60	0.0131	4


In fact, there is no significant difference in the peck rate of the male for the four different treatments (Kruskall Wallis : cases = 22, Chi square = 2.48, p=0.478).

Treatments	Mean	Standard error	Cases
Black	0.0127	0.00201	8
Green	0.0379	0.00466	8
Red	0.0217	0.00304	8
Yellow	0.0160	0.00176	8

Table 5 : Mean, standard error and number of cases related to the bite size for the different treatments.

There is a significant difference between the bite size related to the vegetation belonging to the four different treatments (Kruskall Wallis : cases = 32, Chi square = 17.91, p=0.0005).

No relation has been found in order to relate the intake of the four different treatments to the biomass

Table 6 : Mean, standard error and number of cases related to the intake rate for the different treatments.

Treatments	Mean	Standard error	Cases
Black	0.0788	0.0150	8
Green	0.2378	0.0309	8
Red	0.1361	0.0242	8
Yellow	0.0987	0.00968	8

These last test shows that there is a significant difference between the intake rate for the four treatments (Kruskall Wallis : cases = 32, Chi square = 15.50, p=0.0014).

The treatment pairs green/yellow and black/red differ in biomass. So far this is not used in the analysis and no significant effect of biomass is found within the four treatments. Now we will lump the two pairs of treatment into two categories fertilized and unfertilized and analyze again the possible effect of biomass.

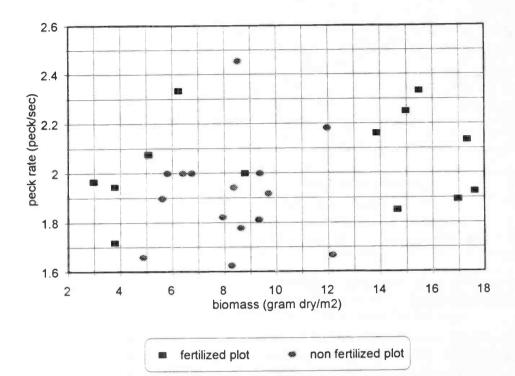


Figure 12 : Peck rate of the female, according to different quality of the vegetation (fertilized and non fertilized), related to biomass.

No relation has been found between peck rate of the female, according to the quality of the vegetation, and biomass. Table 7 gives us the mean, the standard error and the number of cases related to the peck rate of the female for the different quality of the vegetation.

Table 7 : Mean, standard error and number of cases related to peck rate of the female for the different quality of the vegetation.

Treatments	Mean	Standard error	Cases
Fertilized	2.04	0.0510	13
Non fertilized	1.91	0.0552	15

There is no significant difference between the peck rate of the female done on the fertilized vegetation and the one done on the non fertilized vegetation (Kruskall Wallis : cases = 28, Chi-square = 2.67, p=0.102)

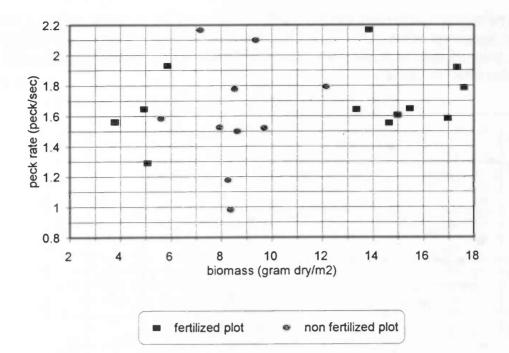


Figure 13 : Peck rate of the male, according to different quality of the vegetation (fertilized and non fertilized), related to biomass

No relation has been found between peck rate of the male, according to the different quality of the vegetation, and biomass. Table 8 gives us the mean, the standard error and the number of cases related to the peck rate of the female for the different quality of the vegetation.

Table 8 : Mean, standard error and number of cases related to peck rate of the male for the different quality of the vegetation.

Treatments	Mean	Standard error	Cases
Fertilized	1.695	0.0654	12
Non fertilized	1.612	0.116	10

There is no significant difference between the peck rate of the male done on the fertilized vegetation and the one done on the non fertilized vegetation (Kruskall Wallis : cases = 32, Chi-square = 0.8522, p=0.3559).

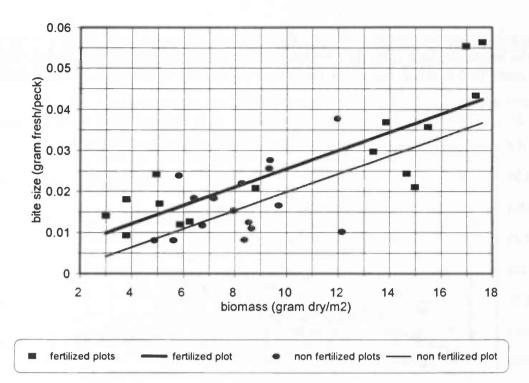


Figure 14 : Bite size, according to the different quality of the vegetation (fertilized and non fertilized), related to biomass and fraction of bites made by the male.

With the ANCOVA test (manova procedure in spss), for each quality of the vegetation, nearly significant positive relation (p<0.1) has been found relating bite size with biomass and fraction of bites made by the male. With a corresponding to biomass and b to the fraction of bite made by the male, the relations found are:

for the fertilized plot, y = -0.00343 + 00284 + 0.00223 a + 0.00753 b, for the non fertilized plot, y = -0.00343 - 00284 + 0.00223 a + 0.00753 b. The table 9 gives the coefficients related with the relations found.

Table 9 : Coefficients, F va	lues, degrees of	freedom and	significance	corresponding	to the	е
relation between bite size and	l biomass (figure :	14)				

Variables	Coefficient	F	df	P
Constant	-0.00343			
Biomass	0.00223	42.73	1,28	0.000
Bite male	0.00753	3.14	1,28	0.087
Fertilization factor		3.89	1,28	0.048
Fertilized plot	+0.00284			
Non fertilized plot	- 0.00284			

There is a significant difference between the bite size related to the fertilized and non fertilized plots (Mann and Whitney, cases=32, Chi-square=4.14 and p=0.0418)

The rectangular points represent the bite size for the fertilized vegetation and the circle one the bite size for the non fertilized vegetation. These bite size has been calculated according with the measurements done during the investigation.

For the graphs concerning the bite size and the intake rate (figure 13 and 14) and in order to simplify the lecture of the graphs, the lines have been created with the fraction of bites made by the male equal to 0.5, which mean that number of pecks done by the male and the female are equal.

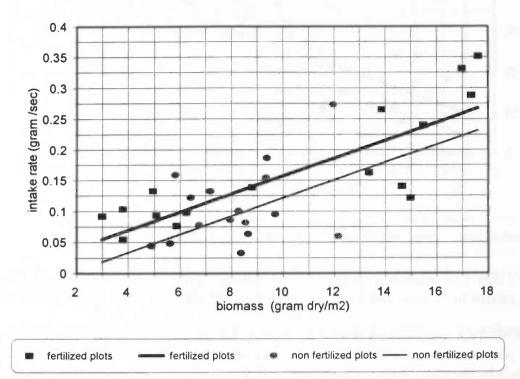
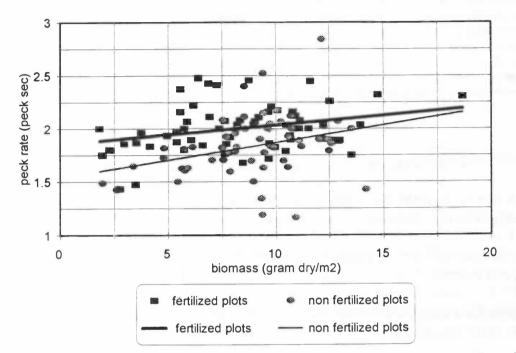


Figure 15 : Intake rate, according to the different quality of the vegetation (fertilized and non fertilized), related to the biomass and the fraction of bites made by the male.

With the ANCOVA test (manova procedure in spss), for each quality of the vegetation a nearly significant positive relation (p<0.1) has been found in order to correlate the intake rate with biomass and the fraction of bites made by the male. With a corresponding to biomass and b to the fraction of bite made by the male, the relations found are:


for the fertilized vegetation, y = -0.0391+0.0178+0.0146 a +0.0641 b, for the non fertilized plot, y = -0.0391-0.0178+0.0146 a +0.0641 bThe table 10 gives the coefficients related with the relations found.

Variables	Coefficient	F	df	P
Constant	-0.0391	1.53	1.28	0.226
Biomass	0.0146	40.45	1,28	0.000
Bite male	0.0641	4.99	1,28	0.034
Fertilization factor		3.37	1,28	0.077
Fertilized plot	0.0178			
Non fertilized plot	- 0.0178			

Table 10 : Coefficients, F values, degrees of freedom and significance corresponding to the relation between intake rate and biomass (figure 15)

There is a significant difference between the intake rate related to the fertilized and non fertilized plots (Mann and Whitney : cases=32, Chi-square=3.99 and p=0.0458).

The rectangular points represent the intake rate for the fertilized plot and the circle one the intake rate for the non fertilized plot. These intake rate has been calculated according with the measurements done during the investigation.

North Coast of Groningen

Figure 16 : Peck rate of the female, according to the different quality of the vegetation (fertilized and not fertilized), related to biomass.

The thicker regression line correlate the peck rate of the female for the fertilized plots with the biomass, its equation is : y = 0.0182 x + 1.851. The thinner one correlated the non fertilized plots with the biomass, its equation is : y=0.0331 x + 1.537.

The table 11 gives the coefficients related with the relations found.

Table 11 : Coefficients, F values,	degrees of freedom and	significance corresponding to the
relation between peck rate and bior	mass (figure 16)	A STATE OF STATE OF STATE

Variables	Coefficient	F	df	P
Fertilized plots				
Constant	1.851			
Biomass	0.0182	5.55	1,61	0.0213
Non fertilized plots				
Constant	1.537			
Biomass	0.0331	5.27	1,54	0.0255

The rectangular points represent the peck rate for the fertilized vegetation and the circle one the peck rate for non fertilized vegetation, they are both based on the measurements done during the investigation.

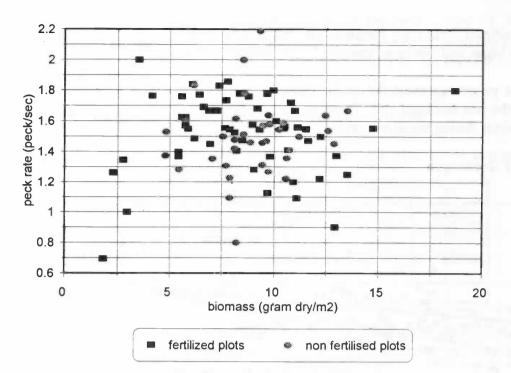


Figure 17: Peck rate of the male, according to the different quality of the vegetation (fertilized and not fertilized), related to biomass.

No relation has been found between peck rate of the male, according to the different quality of the vegetation, and biomass.

The table 12 gives the mean, the standard error related to the peck rate of the female for the different quality of the vegetation.

Table 12 : Mean, standard error and number of cases related to peck rate of the male for the different quality of the vegetation (figure 17).

Treatments	Mean	Standard error	Cases
Fertilized	1.52	0.0338	56
Non fertilized	1.48	0.0395	37

There is no significant difference between the peck rate of the male done on the fertilized vegetation and the one done on the non fertilized vegetation (Mann Whitney:U=871.5, W=1574.5, z = -1.29, 2-tailed p=0.1966).

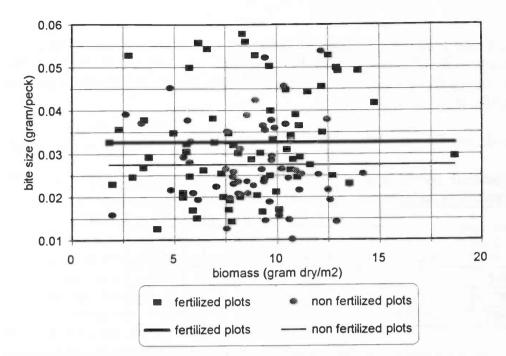


Figure 18 : Bite size, according to the different quality of the vegetation (fertilized and non fertilized), related to biomass

With the ANCOVA test (manova procedure in spss), for each quality of the vegetation a linear relation has been found in order to correlate the bite size with the biomass. For the fertilized plot, the relation found is : y=0.0301+0.00255; for the non fertilized plot the relation is y=0.00301-0.00255; with for the fertilization factor F(1,123)=6.76 and p=0.010,.

The rectangular points represent the bite size for the fertilized vegetation and the circle one the bite size for the non fertilized vegetation. These bite size has been calculated according to the measurements done during the investigation.

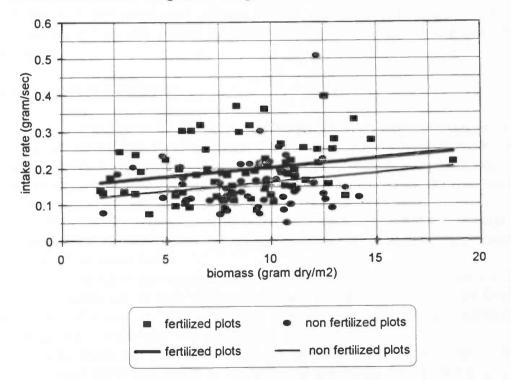


Figure 19 : Intake rate, according to the different quality of the vegetation (fertilized and non fertilized), related to biomass.

With the ANCOVA test (manova procedure in spss), for each quality of the vegetation a positive relation has been found in order to correlate the intake rate with the biomass. For the fertilized plot, the relation found is :y = 0.0049x+0.133+0.0199; for the non fertilized plot the relation is y = 0.0049x+0.133-0.0199

The table 13 gives the coefficients related with the relations found.

Table 13 : Coefficients, F values, degrees of freedom and significance corresponding to the relation between intake rate and biomass (figure 19)

Variables	Coefficient	F	df	P
Constant	0.133	47.56	1,122	0.000
Biomass	0.0049	5.56	1,122	0.0020
Fertilization factor		9.70	1,122	0.002
Fertilized plots	0.0199			
Non fertilized plots	-0.0199			

The rectangular points represent the intake rate for the fertilized vegetation and the circle one the intake rate for the non fertilized vegetation. These intake rate has been calculated according to the measurements done during the investigation. DISCUSSION

Relation with biomass Schiermonnikoog

During our investigation, contrary to our expectations, the peck rate of both of the geese did not depend on biomass (figures 1 and 2). This results is mainly due to the large variation in pecking behaviour of the geese.

The bite size is related to the biomass, the fraction of bites made by the male and the interaction between the biomass and the fraction of bites made by the male. As we expected, bite size presents a positive relation with biomass (figure 3). In deed, for the same pecking effort, a high biomass allows an higher intake. The individual feeding behavior, which is partially translated by the bite size, is worth noticing. [At low biomass the bite size of the male is lower than the one of the female, but at higher biomass the bite size of the male is the highest.] The male seems to be more sensitive to an increase on biomass At high biomass, he is able to get more grass than the female.

As J.Trudell and RG. White demonstrated and as we expected, the intake rate is dependent on biomass, the fraction of bites made by the male and the interaction between the biomass and the fraction of bites made by the male (figure 4). The intake rate of both of the birds presents a positive quadratic relation with the biomass, which is the expected relation. At low biomass, the intake rate of the male is lower than the intake rate of the female but at higher biomass the intake rate of the male is the highest one. At high biomass, geese are able to get more food in a shorter time.

The intake rate and its variations with biomass are caused by the bite size, which represents the quantity of food per unit of peck (figure 5). Intake rate of herbivores increases as a function of bite size(Gross, Shipley, Hobbs, Spalinger and Wunder, 1993). The range of biomass used does not permit to determine if the intake rate presents a optimum at high biomass

North Coast of Groningen

The peck rate of the female presents a positive relation with biomass, this correlation is the one expected. The pecking effort of the female is motivated by the biomass (figure 6). Contrary to our expectations, no relation has been found between peck rate of the male and biomass (figure 7). However it is important to know that during the investigation it has been noticed that the pecking behaviour of the male was very fluctuating.

We expected a positive relation between the bite size and the biomass but no relation has been found (figure 8). The quantity of food got per peck is not dependent on biomass in the range of variation used.

According to our expectations, the intake rate is positively related to biomass (figure 9). As we expected, at high biomass geese are able to get quickly more food, their pecking effort is higher and motivated by high biomass. Food intake rate increased linearly with standing crop (Trudell and White, 1981).

The intake rate and its variations are defined by the bite size (figure 10). The range of biomass used does not permit to determine if the intake rate presents a optimum at high biomass

Different quality of the vegetation

Schiermonnikoog

For the different qualities of the vegetation, the peck rates of both of the geese do not dependent on biomass (figure 12 and 13). The test of Kruskall Wallis demonstrates that there is no significant difference between the peck rate related with the fertilized and non fertilized vegetation. The quality of the vegetation does not influence the peck rate.

The bite size is nearly significantly related to biomass and to the fraction of bites made by the male for the two different qualities of vegetation (p<0.1, figure 14). As we expected, the fertilization of the vegetation brings about the increase of the bite size.

As we expected, for the two different qualities of the vegetation the intake rate presents a positive linear relation with the biomass and it is higher for the fertilized vegetation (figure 15). Our results correlated the one got by J. Trudell and RG. White who demonstrated that food quality and eating rate of herbivores are interrelated. Biomass has to be 2.5 gram higher in non fertilized plots to compensate for the fertilization effects. The intake rate of the geese is nearly defined by the fertilization and by the biomass. Nevertheless, there is no interaction between the quality and the biomass.

North Coast of Groningen

For the different qualities of the vegetation, the intake rate of the female presents a positive linear relation with biomass (figure 16). Moreover, according to our expectations, the peck rate of the female for the fertilized vegetation is higher. Nevertheless at high biomass (20 gram dry per square meter) the peck rate for fertilized and non fertilized vegetation are similar. This could mean that the high biomass satisfies to motivate the feeding effort of the geese; an other explanation can be that the difference between the fertilized and non fertilized vegetation is not sufficient. Contrary to our expectations, no relation has been found to relate the peck rate of the male with the biomass for the different quality of the vegetation (figure 17). The test of Mann and Whitney demonstrates that the peck rate is not significantly different between the fertilized and non fertilized plots.

A constant relation between bite size, on fertilized and non fertilized vegetation, and biomass has been found (figure 18). However, as expected, the bite size related to the fertilized vegetation is the highest one. The fertilization allowed the geese to improve their intake without increasing the pecking effort.

For each quality of the vegetation, a positive relation correlates the intake rate to the biomass (figure 19). According to our expectations, the intake rate related to the high quality of the grass is the highest one. Biomass has to be 7.5 gram higher in non fertilized plots to compensate the effects of the fertilization. The fertilization and plant biomass seem to determinate the level of the intake rate.

Intake rate declines as food quality declines. In this project, no quality measures have been done. However, we can apologize that fertilized turves presented a higher contain of protein and nitrogen. This nutritional characteristics probably motivate the geese feeding. On the other hand, it has been noticed that the color of the fertilized plots was darker than the non fertilized one.

The bite size done on the fertilized vegetation was higher and probably due to the structural characteristics of the leave which were softer. No conclusions can be given concerning this effects but an other project should be done to determine how the quality of the vegetation affects bite size and intake rate.

Conclusions

A positive relation links the intake rate with the biomass. As expected, when depletion occurred, a decrease of the intake rate has been measured. The variations of intake rate are mainly defined by the fluctuations of the bite size.

The intake rate is also dependent on the quality of the vegetation, in this study defined as fertilization of the turves. For a higher quality of the vegetation, the intake rate is higher. Nevertheless, the slopes of the lines, of fertilized and non fertilized plots, relating intake rate to biomass are similar.

Finally, it has not been possible to determine if intake rate is more defined by the biomass or by the quality of the vegetation.

RELEVANCE OF THE RESULTS

This experiment took place in a larger project which involves a lot of researchers and students. The aim of this global project is to define the carrying capacity of the Wadden Sea for the Brent Geese under different management regimes. Brent geese used several habitat types which have been changing in recent years. By using agricultural fields and arable lands, Brent geese are in conflict with farmers and a large range of money is paid to compensate the damage for crop loss (Dutch Society for the Preservation of the Wadden Sea, 1994). The aim of the project is to understand the habitat selection of the Bent Geese, based on the dynamic interplay between nutritional requirements, production and depletion over a large range of habitats (Drent and Bakker, 1996).

The choice of the habitat dependents on multiple factors as vegetation characteristics, disturbance, safety of the area, climatic conditions. The factor taken into account in this investigation is the vegetation and more precisely the intake rate. The intake rate is related to the vegetation species, the biomass available, the quality of the vegetation, the plant density and the vegetation structure. For this project, we only investigated the influence of the biomass and of the quality of the vegetation on the intake rate. The vegetation tested is the *Puccinellia maritima* from salt-marshes of Schiermonnikoog and the North Coast of Groningen.

RECOMMENDATION

During this research, the intake rate of the Brent Geese has been measured and put in relation with biomass and quality of the vegetation. Nevertheless, many other variables affect the intake rate. With the same method it will be relevant to investigate the influence of other variables as plant density, salt content, structure of the vegetation, amount of dead material and seasonal changes of the leaves. A very detailed investigation of quality on the vegetation should give more information about nutritional characteristics explaining food preferences of the geese. In this study the biomass and the fertilization were the key factors which explain the preference.

The plant species tested was *Puccinellia maritima* but it should be sensible to use the same method to test other species as *Festuca rubra*, *Triglochin maritima* or *Plantago maritima*. Variation in peck rate, bite size and intake rate between those species could be detected.

Fluctuations of intake rate are a complicated phenomena which is influenced by a large range of variables.

Recommendations about the set up of the research:

* The intake rate must be measured in a laboratory

* The turves must be more homogeneous : they must present only one species and have similar biomass and plant density. The size of the turves must always be exactly the same.

* The turves have to be tested as soon as possible otherwise, even by keeping them in the cold room, the vegetation characteristics change.

* The fights between the geese and the dominance phenomena should be avoid : a solution can be to run the experiment in double and to use one geese per room.

* To get good data, the characteristics which are tested should present a large range of variations and the researcher should increase the number of samples as much as possible.

* To get exact data to calculate the bite size and the intake rate of each goose, it is necessary to allow feeding only by one goose on each turf.

* A detailed study should be done to determinate which characteristics of the fertilized vegetation allow the increase of bite size and intake rate.

ACKNOWLEDGMENTS

First of all, I want to thank Maarten Loonen, my supervisor, for all his help, advise and support during the three months I worked at the Zoological Laboratory. Thanks to him, I learnt a lot about geese and statistical program.

I also want to thank Peter Tolsma who created the experimental method. Thanks Peter for explaining me how to use your method and how to take care of the geese.

Thanks to Daan Bos and Monique Timmner for getting the turves from the field.

The help of the people who take care of the animals was also very important, I would like to thank them.

Thanks to all the people forming the goose team for your friendly welcome. Sorry to oblige you to speak in English.

I really enjoy this experiment and its nice working atmosphere. I learnt a lot about the running of an experiment, Brent geese and statistical analysis.

REFERENCES

- Drent, R. & Bakker, J. 1996. What is the carrying capacity of the Wadden Sea foreshore for the Brent Goose under different management regimes. Project proposal to Stichting Technische Wetenschappen 1996.
- Dutch Society for the preservation of the Wadden Sea. 1994. Brent Geese in the Wadden Sea. Proceedings of the international workshop, Leeuwarden: pp. 216.
- Gross JE, Shipley LA, Hobbs NT, Spalinger DE and Wunder BA. 1993. Functional response of herbivores in food concentrated patches: tests of a mechanistic model. Ecology 74, 778-791.
- Hupp, JW., White, RG., Sedinger, JS. and Robertson, DG. 1996. Forage digestibility and intake rate by lesser snow geese: effects of dominance and resources heterogeneity. Oecologia 108,232-240
- Prop, J. & Loonen, M. 1986. Goose flocks and food exploitation: he importance of being first. In Acta XIX Congr. Int. Orn. 1986 Ottawa. Vol. 2:1878-1887.
- Prop, J. & Deerenberg, C.1991. Spring staging in Brent Geese, Branta bernicla: feeding constraints and the impact of diet on the accumulation of body reserves. Oecologia 87: 19-28.
- Schneider KJ. 1984. Dominance, predation and optimal foraging in white-throated sparrow flocks. Ecology 65, 1820-1827.
- Sutherland, WJ. and Allport, GA. 1994. A spatial model of interaction between bean geese and wigeon with the consequences for the habitat management. Journal of Animal Ecology 63, 51-59.
- Sutherland, WJ. and Anderson, GW. 1993. Predicting the distribution of individuals and the consequences of habitat loss: the role of prey depletion. Journal of Theoretical Biology 160, 223-230
- Tolsma, P. 1998. Determination of intake rate of captive Brent geese Branta bernicla to understand patch use. unpubliced

31

LIST OF APPENDIXES

Appendix 1 : Spread sheet of Schiermonnikoog

Appendix 2 : Spread sheet of North Coast of Groningen

M feed T	103	13	136			31	90	48		59	57	58	131	39	67			58	225		20	1118			104	35		59		27	82	54
M nb peck	48	13	43	0	0	28	29	56	0	53	21	40	54	28	35	0	0	48	26	0	6	51		0	19	25	0	50	0	19	47	56
Perc of # M nb peck M feed	18.67089	12.39496	0	27.38854	0	0	0	0	28.29268	0	11.59875	35.71429	15.43624	0	0	25.5618	9.326425	6.451613	14.96063	31.81818	2.985075	0	0	0	21.02804	3.284672	5.067568	6.557377	9.389671	0	13.84083	0
Dry W#2	0.59	0.59	0	0.43	0	0	0	0	0.58	0	0.37	0.85	0.46	0	0	0.91	0.18	0.36	0.38	0.42	0.08	0	0	0	0.45	0.18	0.15	0.08	0.2	0	0.4	0
Dry WG2	2.57	4.17	3.66	1.14	2.03	4.66	2.39	1.77	1.47	4.51	2.82	1.53	2.52	4.41	2.92	2.65	1.75	5.22	2.16	0.9	2.6	4.02	3.6	1.88	1.69	5.3	2.81	1.14	1.93	5.11	2.49	1.49
W bags	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	2.53	2.53	2.53	2.53	2.53	2.53	2.53	2.53	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55
Dry W#1	2.34	2.34	1.75	2.18	1.75	1.75	1.75	1.75	3.11	2.53	2.9	3.38	2.99	2.53	2.53	3.44	1.93	2.11	2.13	2.17	1.83	1.75	1.75	1.75	e	2.73	2.7	2.63	2.75	2.55	2.95	2.55
Dry W G1	4.32	5.92	5.41	2.89	3.78	6.41	4.14	3.52	4	7.04	5.35	4.06	5.05	6.94	5.45	5.18	3.32	6.97	3.91	2.65	4.35	5.77	5.35	3.63	4.24	7.85	5.36	3.69	4.48	7.66	5.04	4.04
Intake g	0.937645	2.476755	0.592182	1.213172	0.726056	2.750074	1.227	0.669604	0.55	1.4995	2.02	1.606883	0.714844	1.902701	1.343951	1.211693	0.860787	3.474867	0.478039	0.802835	0.630097	1.520251	0.905894	0.796461	0.599541	4.339706	1.486716	1.120185	1.06568	3.991633	2.183469	1.356364
otal evap	0.092355	0.213245	0.107818	0.106828	0.193944	0.139926	0.203	0.160396	0	0.1705	0.88	0.103117		0.127299	0.136049	0.128307	0.199213		-	0.177165	0.219903	0.509749	0.174106	0.023539	0.140459	0.290294	0.143284	0.199815	0.29432	0.318367	0.166531	0.193636
evap-fee	302	280	331	272	324	237	406	270	505	434	-	283	577	529	290	251	434	311	260	300	453	707	239	286	357	329	300	332	283	300	340	284
In.ev.los	1.03	2.69	0.7	1.32	0.92	2.89	1.43	0.83	0.55	1.67	2.9	1.71	0.92	2.03	1.48	1.34	1.06	3.62	0.58	0.98	0.85	2.03	1.08	0.82	0.74	4.63	1.63	1.32	1.36	4.31	2.35	1.55
Int.eva	1.03	3.03	0.76	1.32	0.94	3.76	1.51	0.88	0.73	1.83	5.35	1.77	0.98	2.59	1.48	1.77	1.13	3.89	0.58	1.06	1.02	2.23	1.15	0.88	0.9	4.87	1.89	1.38	1.5	4.55	2.65	1.59
Tevap	327	302	307	331	284	271	260	303	251	280	411	247	450	374	405	313	305	300	255	254	309	319	302	243	305	510	335	216	250	245	245	352
W evan	0.1	0.23	0.1	0.13	0.17	0.16	0.13	0.18	0	0.11	0.15	0.09	0.16	0.09	0.19	0.16	0.14	0.14	0.1	0.15	0.15	0.23	0.22	0.02	0.12	0.45	0.16	0.13	0.26	0.26	0.12	0.24
Nb of turf	1ba	103	1ra	1 va	fiba	flaa	f1ra	f1va	2ba	203	2ra	2va	3ba	30.9	3ra	3va	100	1ab	1rb	1vb	f1bb	f1ab	f1rb	f1vb	266	2ab	2rb	2vb	3bb	3ab	3rb	3yb

APPE NDIX

Biomass	8.538206	13.85382	12.15947	3.787375	6.744186	15.48173	7.940199	5.880399	4.883721	14.98339	9.368771	5.083056	8.372093	14.65116	9.700997	8.803987	5.813953	17.34219	7.17608	2.990033	8.637874	13.35548	11.96013	6.245847	5.614618	17.60797	9.335548	3.787375	6.41196	16.97674	8.272425	4.950166	
bites male	0.64	0.19403	0.741379	0	0	0.363636	0.3625	-	0	0.746479	0.287671	0.425532	0.62069	0.358974	0.432099	0	0	0.6	-	0	0.157895	-	0	0	0.256757	0.324675	0	0.416667	0	0.263889	0.474747	-	
rass intak	0.081976	0.265433	0.059618	0.103345	0.077811	0.240433	0.086732	0.07671	0.044567	0.121506	0.186416	0.093658	0.032985	0.140473	0.094999	0.138812	0.158875	0.28861	0.132348	0.091973	0.063435	0.162925	0.273601	0.098002	0.048581	0.351649	0.154352	0.054729	0.122085	0.331531	0.100751	0.132535	
Bite size	0.012502	0.036966	0.01021	0.018107	0.011711	0.035715	0.015338	0.011957	0.008088	0.02112	0.027671	0.017094	0.008217	0.024394	0.016592	0.020891	0.023911	0.043436	0.018386	0.014085	0.011054	0.029809	0.037746	0.012642	0.008102	0.05636	0.025633	0.009335	0.018374	0.055439	0.022055	0.024221	
Total peck	75	67	58	67	62	77	80	56	68	71	73	94	87	78	81	58	36	80	26	57	57	51	24	63	74	17	58	120	58	72	66	56	
Fpeckrate	2.454545	2.16	1.666667	1.717949	2	2.333333	1.821429	ERR	1.658537	2.25	2	2.076923	1.941176	1.851852	1.916667	2	2	2.133333	ERR	1.965517	1.77778	ERR	2.181818	2.333333	1.896552	1.925926	1.8125	1.944444	2	1.892857	1.625	ERR	
F head up	6	6	4	2	6	10	2		6	0	7	-	7	2	7	13	5	4		4	5		5	7	∞	e	4	e	4	-	6		
F proc T	3	9	0	ω	2	5	2		5	0	8	2	4	0	e	4	2	-		e	2		2	0	5	12	0	6	0	0	5		
F peck T	11	25	6	39	31	21	28		41	ω	26	26	17	27	24	29	18	15		29	27		11	27	29	27	32	36	29	28	32		
F feed T	60	39	21	49	89	29	67		145	ø	54	30	35	32	42	36	43	32		43	56		36	51	60	30	65	48	36	29	104		
F nb peck	27	54	15	67	62	49	51		68	18	52	54	33	50	46	58	36	32		57	48		24	63	55	52	58	70	58	53	52		
Mpeckrate F	1.77778	2.166667	1.791667	ERR	ERR	1.647059	1.526316	1.931034	ERR	1.606061	2.1	1.290323	0.981818	1.555556	1.521739	ERR	ERR	1.92	2.166667	ERR	1.5	1.645161	ERR	ERR	1.583333	1.785714	ERR	1.5625	ERR	1.583333	1.175	1.647059	
Head u	17	ო	24			6	13	4		18	12	13	28	8	13			14	20		4	16			12	6		6		80	12	7	
M proc T	5	-	9			ω	0	2		e	2	9	13	2	4			3	0		0	4			0	9		2		4	0	2	
M peck T	27	9	24			17	19	29		33	10	31	55	18	23			25	12		6	31			12	14		32		12	40	34	
Nb of turf	1ba	1ga	1ra	1ya	f1ba	figa	f1ra	f1ya	2ba	2ga	2ra	2ya	3ba	3ga	3ra	3ya	1bb	1gb	115	1yb	f1bb	f1gb	f1rb	f1yb	2bb	2gb	2rb	2yb	3bb	3gb	3rb	3yb	

Dry W#2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.62	0.2	0.17	0.02	0
Dry WG2	3.66	2.83	3.83	3.22	2.44	2.19	3.5	2.64	2.37	2.32	2.81	2.44	2.93	2.93	2.22	2.8	1.63	2.3	3.22	2.57	3.15	3.47	2.79	3.23	1.93	2.09	3.08	2.36	3.76	2.55	3.75	3.04	2.32	2.26	2.92	2.91
W bags	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	2.55	2.55	2.55	2.55	2.55	2.55	2.59	2.59	2.59	2.59	2.59	2.59
Dry W#1	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	2.55	2.55	2.55	2.55	2.55	2.55	2.59	3.21	2.79	2.76	2.61	2.59
Dry W G1	5.41	4.58	5.58	4.97	4.19	3.94	5.25	4.39	4.12	4.07	4.56	4.19	4.68	4.68	3.97	4.55	3.38	4.05	4.97	4.32	4.9	5.22	4.54	4.98	4.48	4.64	5.63	4.91	6.31	5.1	6.34	5.63	4.91	4.85	5.51	5.5
	2.907789	1.407486	1.325862	1.8804	1.753279	2.319301	2.807061	2.24792	3.183303	1.251587	3.398422	1.744647	3.29086	1.965265	1.82127	0.845282	1.335541		1.773333	2.415566	2.645083	3.991259	1.560868	0.631143	2.703705	2.813651	2.04472	1.356365	1.12912	4.489518	3.454545	0.782414	1.367455	+		2.718246
otal evap	0.172211	0.192514	0.444138	0.1096	0.196721	0.100699	0.182939	0.31208	0.136697	0.098413	0.161578	0.045353	0.10914	0.384735	0.13873	0.244718	0.184459	0.168136	0.216667	0.314434	0.184917	0.368741	0.299132	0.508857	0.056295	0.026349	0.04528	0.113635	0.09088	0.190482	0.145455	0.027586	0.072545	0.195349	0.201176	0.181754
evap-fee	409	303	690	274	300	288	319	503	298	310	314	283	268	235	276	254	325	248	260	347	253	262	381	411	267	267	283	297	284	255	240	200	210	280	285	185
In,ev,lo	3.08	1.6	1.77	1.99	1.95	2.42	2.99	2.56	3.32	1.35	3.56	1.79	3.4	2.35	1.96	1.09	1.52	1.12	1.99	2.73	2.83	4.36	1.86	1.14	2.76	2.84	2.09	1.47	1.22	4.68	3.6	0.81	1.44	1.55	2.72	2.9
Int,eva	3.23	1.75	1.89	2.7	2.07	2.61	3.39	2.77	3.61	1.66	4.09	2.29	3.87	2.6	2.06	1.12	1.69	1.14	2.13	2.81	3.37	5.6	2.05	1.24	3.26	3.74	2.6	1.68	1.56	5.14	4.61	0.95	1.52	1.7	2.94	2.99
T evap	285	362	435	600	305	286	279	274	218	252	583	312	442	226	378	301	370	295	420	309	301	270	242	315	332	304	250	575	250	415	330	290	550	215	255	285
W evap	0.12	0.23	0.28	0.24	0.2	0.1	0.16	0.17	0.1	0.08	0.3	0.05	0.18	0.37	0.19	0 29	0.21	0.2	0.35	0.28	0.22	0.38	0.19	0.39	0.07	0.03	0.04	0.22	0.08	0.31	0.2	0.04	0.19	0.15	0.18	0.28
E/F	ш	u	Ju				. u		. u	. ш	. ш	I LL	u	ш	L	. u	. և	. u	. u	J LL	IL	. u	. Ш	I			ш	ш	ш	L	ш	u	ш	ш	L	Ŀ
site	R	R)	-	10		-		-		10	l 2	R2	e la	82		10	1	10	1 E	R2	-	0	l a	R2		12	R1	R2		R2	!	12		12	1 in	R2
nb block	K2	Y S	2	22	2	Y S	Y S	Y S	EX S	K3	K3	Ka	K3	K3	K3	Ka	K3	K S	K3	K N	N N	K3	K3	× ×	K4	K4	K4	K4	K5	K5	K5	K5	K5	K5	K5	K5
Nh of turf		18	0	00	21	20	23	24	25	26	27	28	20	30	31	32	33	34	35	36	37	38	30	40	41	42	43	44	45	46	47	48	49	20	51	52

APPE NDIX 2

1

Enertrat 2	2 RADINE	2 521730	1 802857	1 806657		2 411766	241100	2 454545		1 857143	_		0	ERR	2	ERR	1875	2.074074	212	2.4	1.787879	2	1.903226	2	2.478261	2.111111	2.068966	1.774194	1.793103	1.677419	1.896552	2.173913	1.925926	1.821429	1 862069
Enerkrat1		2 071429	1 019231	1 410756		1 057381	2 120425	1 8	1.454545	1 44444	0.635135	1 382353	1.04878	ERR	4	ERR	-	1.037037	1 177778	0.6	1.552632	1.3125	1.035088	0.875	1.676471	2.035714	1.935484	1.341463	1.44444	1.485714	1.571429	1.351351		55	α.
E head ur	dn npali	4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	σ	>	c	1 9		000	2	17	10	12		5		3	6	6	2	4	9	6	5	8	2	2	8	9	3	5	9	9	4	•
F proc T	2 4	~	=	G	,	-		-	2	-	19	5	6		3		4	9	10	2	4	4	7	2	4	0	-	3	2	2	4	e	3	0	C
F peck T	19	23	28	29		17	20	11	25	7	35	24	21		8		ø	27	25	5	33	21	31	7	23	27	29	31	29	31	29	23	27	28	29
F feed T	27	28	52	39		21	23	15	33	6	74	34	41		16		15	54	45	20	38	32	57	16	34	58	31	41	36	35	35	3/	34	33	30
F nb peck	54	58	53	55		41	49	27	48	13	47	47	43		16		15	56	53	12	59	42	59	14	57	19	60	55	52	52	55	00	75	5	- 40
Mpeckrat2	ERR	ERR	ERR	ERR	1.526316	1.666667	1.472222	1.758621	1.545455	1.733333	2.190476	1.421053	1.636364	1.268293	1.829268	1.545455	1.368421	ERR	ERR		1			1.411765	./69231	1.45	.545455	אצו			.636364	EKK	30/092		1 671.1
Mpeckrat1		ERR	ERR	ERR	1.017544	0.862069	0.706667	1.0625	-	1.083333	393939	0.586957	0.9		1.041667	-	2	ERR	ERR	0.909091	ERR	1.170732 1	1			0.435484	1 41/024.0		EKK	0./36842 1	6.0		102000.0		0.0
Head u	0				7	16	20	10	11	10	80				10	9	6			15		8		12	2	0 4	0		c	0	2	4	T	c	4
M proc T	0				6	6	12	11	12	10	2	2	19	14	=	9	10			9	ľ	,		20	שמ		7		-	- 0	2		-	c	>
M peck T	0				38	30	36	29	33	30	21	19	44	41	41	33	38			33		2		34	07 00	1	=		40	20	77	13	2	8	>
M feed T	0				57	58	75	48	60	48	33	46	00	6/	21	41	8			ŝ	11	7	75	0	31	35	3		38		F	29		10	2
M nb peck	0				58	50	53	51	51	52	40	17	77	22	22	10	70		0.5	20	40	0	40	40	20	17	=		28	36	8	17		6	
Perc of #	0	0	0	0	0	0	0	0	0																	c	o c	00			16.93989	7.936508	6.995885	0.680272	
Nb of turf	17	18	19	2	21	22	23	24	25	27	17	07	AN OC	24	22	32	24	26	20	37	38	30	40	41	42	43	44	45	46	47				51	I

											3 fighting			4	2		4			5										1						
Biomass	12.15947	9.401993	12.72425	10.69767	8.106312	7.275748	-	8.770764	7.873754	7.707641	9.335548	8.106312	9.734219	9.734219	7.375415	9.302326	5.415282	7.641196	ol	8.538206	O	11.52824	9.269103	10.7309	6.41196	6.943522	10.23256	7.840532	12.49169	8.471761	12.45847	10.09967	7.707641	7.508306	9.700997	9.667774
Intake rate	0.508444	0.203306	0.157316	0.21542	0.153285	0.163943	0.166532	0.186704	0.182341	0.112381	0.201615	0.134795	0.168201	0.159247	0.123484	0.085098	0.096457	0.117124		0.211188	0.266292	0.255	0.167278	0.051142		0.198887	0.169827	0.145361	0.129353	0.298307	0.225037	0.113017	0.113576	0.160732	0.226167	0.361229
Bite size	0.053848	0.024267	0.025016	0.034189	0.030229	0.025487	0.02752	0.028819	0.032155	0.019255	0.036542	0.023576	0.028616	0.037794	0.020014	0.016574	0.019933	0.016998	0.033459	0.038961	0.044832	0.044347	0.026455	0.01018	0.02625	0.032717	0.026555	0.024661	0.021714	0.056119	0.037962	0.015648	0.019818		0.039981	0.050338
Total peck	54	58	53	55	58	91	102	78	66	65	93	74	115	52	91	51	67	56	53	62	59	06	59	62	103	86	77	55	52	80	91	50	69	51	63	54
Nb of turf	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52

Dry W#2	0	0	0.33	0	0	0	0.28	0	0.18	0	0	0.46	0.08	0	0.3	0	0	0.31	0.25	0	0.08	0.31	0.4	0	0	0	0	0.37	0.33	0	0.7	0.66	0	0	0.44	0.21	2.47	0.83
Dry WG2	4.07	5.62	3.88	3.62	3.35	3.68	3.34	3.29	3.31	3.16	3.37	2.9	2.72	3.34	2.67	3.79	4.27	3.19	3.67	3.91	2.58	2.84	3.21	3.29	4.2	3.77	0	3.18	3.04	3.25	2.37	2.7	e	2.34	2.12	1.74	1.44	3.12
W bags	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.57	2.57		2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57
Dry W #1	2.59	2.59	2.92	2.59	2.59	2.59	2.87	2.59	2.77	2.59	2.59	3.05	2.67	2.59	2.89	2.59	2.59	2.9	2.84	2.59	2.67	2.9	2.99	2.59	2.57	2.57		2.94	2.9	2.57	3.27	3.23	2.57	2.57	3.01	2.78	5.04	3.4
Dry W G1	6.66	8.21	6.47	6.21	5.94	6.27	5.93	5.88	5.9	5.75	5.96	5.49	5.31	5.93	5.26	6.38	6.86	5.78	6.26	6.5	5.17	5.43	5.8	5.88	6.77	6.34		5.75	5.61	5.82	4.94	5.27	5.57	4.91	4.69	4.31	4.01	5.69
Intake g		1.835294	1.058451	1.440268	2.66619	2.910417	-	1.281744	2.5856	2.954103	-	1.568333	1.879851	2.997	1.814737	1.435269	1.2735	1.076667	3.691159	3.695		1.207105	2.213077	3.009241		2.750909	ERR	1.855352		_	-	2	2.036		2.065366	1.742241	4.568	2.562
otal evap	0.043548	0.024706	0.021549	0.089732	0.08381	0.089583	0.048387	0.108256	0.0644	0.035897	0.140299	0.011667	0.050149	0.063	0.115263	0.064731	0.0765	0.093333	0.118841	0.055	0.070769	0.102895	0.096923	0.110759	0.019683	0.089091	ERR	0.024648	0.014906	0.019565	0.054545	0.005679	0.064	0.056989	0.054634	0.097759	0.062	0.048
evap-fee	225	210	255	283	220	215	210	245	230	200	235	210	210	210	365	215	255	220	205	165	230	230	270	175	310	245		175	395	225	300	230	240	265	280	405	310	240
In,ev,lo	1.69	1.86	1.08	1.53	2.75	3	1.15	1.39	2.65	2.99	1.94	1.58	1.93	3.06	1.93	1.5	1.35	1.17	3.81	3.75	1.66	1.31	2.31	3.12	2.73	2.84		1.88	1.41	2.81	2.28	2.17	2.1	0.8	2.12	1.84	4.63	2.61
Int,eva	1.86	1.91	1.09	1.61	3.08	3.14	1.21	1.55	3.03	3.3	2.58	1.74	2.17	3.25	2:17	1.75	2.02	1.5	4.28	4.02	1.95	1.37	2.55	3.55	2.77	2.94		1.98	1.49	3.04	2.42	2.24	2.39	0.84	2.36	1.93	4.77	2.7
T evap	310	425	355	410	315	360	434	430	500	390	335	360	335	400	285	465	300	330	345	360	325	380	390	395	315	330		355	265	230	385	405	300	465	410	290	300	300
W evap	0.06	0.05	0.03	0.13	0.12	0.15	0.1	0.19	0.14	0.07	0.2	0.02	0.08	0.12	0.09	0.14	0.09	0.14	0.2	0.12	0.1	0.17	0.14	0.25	0.02	0.12		0.05	0.01	0.02	0.07	0.01	0.08	0.1	0.08	0.07	0.06	0.06
E/F	Ŀ	Ľ	ш	ш	Ŀ	L	ш	ш	Ŀ	Ŀ	ш	ų	Ŀ	Ŀ	ш	ш	ш	ш	u.	u.	ш	ш	Ŀ	u.	L	Ŀ	ш	ш	L	Ŀ	ш	ш	Ŀ	Ŀ	ш	ш	ш	ш
site	L1	3	R1	R2	L1	12	R1	R2	L1	12	R1	R2	L1	12	R1	R2	L1	12	R1	R2	L1	L2	R1	R2	L1	L2	R1	R2	L1	12	R1	R2	L1	7	R1	R2	5	2
nb block	K6																																				K9	
Nb of turf	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	88	6

Fpeckrat2	1.75	2.304348	2.071429	1.9		2.034483	1.888889	1.166667	2	2.034483	1.833333	2	2.068966	2	1.694444	1.862069	1.428571	1.928571	1.903226	1.892857	2	1.631579	1.935484	2.12	2.037037	2.26087	ERR		2.173913	2.16	1.594595	1.5	1.826087	ERR	1.703704	1.606061	1.727273	1.69697
	1.513514	1.827586	1.657143	1.425	1.793103	1.787879	1.5	0.710145	1.621622	1.966667	0.977778	1.8125	1.818182	1.870968	1.564103	1.542857	0.793651	1.636364	1.787879	1.709677	1.071429	1.087719	1.621622	1.962963	1.666667	1.733333	ERR	1.148936	1.785714	1.8	0.602041	1.307692	1	ERR	1.15	1.394737	1.1875	-
F head up	ω	5	2	5	5	4	7	8	2	2	8	3	3	3	3	4	13	4	1	9	12	7	5	3	4	5		10	5	9	12	5	11		10	4	12	13
F proc T	9	3	e	80	3	2	5	15	e	0	5	2	0	-	-	3	4	2	2	2	3	3	4	2	4	3		3	-	1	2	-	3		3	0	2	80
F peck T	32	23	28	30	25	29	27	42	30	29	24	29	29	29	36	29	35	28	31	28	30	38	31	25	27	23		33	23	25	37	34	23		27	33	33	33
F feed T	37	29	35	40	29	33	34	69	37	30	45	32	33	31	39	35	63	33	33	31	56	57	37	27	33	30		47	28	30	98	39	42		40	38	48	56
F nb peck	56	53	58	57	52	59	51	49	60	59	44	58	60	58	61	54	50	54	59	53	60	62	60	53	55	52		54	50	54	59	51	42		46	53	57	56
Mpeckrat2	1.25	1.8	1.454545	ERR	1.56	1.5	ERR	ERR	1.666667	1.565217	1.5	1.470588	1.28	1.090909	1.461538	1.538462	ERR	1.357143	1.222222	1.375	1.77778	1.3125	1.411765	1.2	ERR	ERR	ERR	1.222222	1.6	1.72	1.227273	ERR	1.8	1.857143	1.352941	ERR	1.375	ERR
Mpeckrat1 Mpeckrat2	0.357143	0.346154	0.4	ERR	0.928571	0.888889	ERR	ERR	0.918367	1.125	0.45	0.925926	0.780488	0.774194	0.513514	0.555556	ERR	0.5	0.785714	0.647059	0.313725	0.344262	0.705882	0.685714	ERR	ERR	ERR	0.407407	0.761905	1.131579	0.245455	ERR	0.9	1.268293	0.630137	ERR	0.619718	ERR
Head u	9	4	7		13	9			11	9	11	4	9	5	80	ø		13	9	8	7	13	5	6				11	7	œ	13		14	2	16		14	
M proc T	0	-	2		9	-			2	5	4	-	2	3	2	2		2	3	6	2	-	2	3				2	3	4	*		4	2	80		S	
M peck T	12	5	11		25	16			27	23	18	17	25	22	13	13		14	18	16	6	16	17	20				18	20	25	22		30	28	34		32	
M feed T	42	26	40		42	27			49	32	60	27	41	31	37	36		38	28	34	51	61	34	35				54	42	38	110		60	41	73		71	
Perc of # M nb peck M feed	15	6	16		39	24			45	36	27	25	32	24	19	20		19	22	22	16	21	24	24				22	32	43	27		54	52	46		44	
-	0	0	7.83848	0	0	0	7.734807	0	5.157593	0	0	13.69048	2.857143	0	10.10101	0	0	8.857143	6.377551	0	3.007519	9.84127	11.08033	0	0	0	ERR	10.42254	9.792285	0	22.8013	19.64286	0	0	17.1875	10.76923	63.17136	21.01266
Nb of turf	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	62	80	81	82	83	84	85	86	87	88	89	06

																											missing											
Biomass	13.52159	18.6711	12.89037	12.02658	11.12957	12.22591	11.09635	10.93023	10.99668	10.49834	11.19601	9.634551	9.036545	11.09635	8.870432	12.59136	14.18605	10.59801	12.19269		8.571429	9.435216	10.66445	10.93023		12.52492	0	10.56478	10.09967	10.79734	7.873754	8.9701	9.966777	7.774086	7.043189	5.780731	4.784053	10.36545
Intake rate	0.124317	0.217762	0.090165	0.159498	0.177156	0.21487	0.13555	0.101388	0.150702	0.188736	0.142359	0.11327	0.115655	0.195232	0.123041	0.113532	0.120883	0.085166	0.250265	0.278994	0.13538	0.074265	0.153175	0.222166	0.333495	0.397358	ERR	0.120862	0.107788	0.185411	0.125314	0.211483	0.127625	0.08816	0.112487	0.175399	0.233478	0.257928
Bite size	0.023189	0.029602	0.014303	0.025268	0.029299	0.035065	0.0216	0.026158	0.024625	0.031096	0.025348	0.018896	0.020433	0.036549	0.022684	0.019396	0.02547	0.014749	0.04557	0.049267	0.020911		0.026346	0.039081	0.049278	0.052902	ERR		0.017013	0.028767	0.025877	0.042438	0.021208	0.014289	0.02245	0.032872	0.045228	0.04575
Total peck	71	62	74	57	91	83	51		105	95	71	83	92	82	80	74	50	73	81	75	76	83	84	77	55	52	0	76	82	67	86	51	96	52	92	53	101	56
Nb of turf	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	62	80	81	82	83	84	85	86	87	88	89	06

Dry W#2	1.87	0.78	0.89	0.75	2.18	1.88	1.67	0.94	0.16	0.8	0.16	1.26	1.33	0.69	0.39	0.37	0.63	0.61	1.25	0.42	0.66	0.56	1.38	1.42	2.13	0.36	1.13	1.01	2.04	1.48	0.62	0.71	0	0	3.32	2.55	
32	2.51	3.89	1.7	2.98	1.05	1.49	0.59	0.79	1.83	2.3	4.44	2.07	2.44	3.14	2.95	1.63	2.37	2.47	1.73	0.89	1.85	2.57	2.84	1.73	1.99	1.06	2.27	1.73	1.86	0.83	4.07	1.64	1.25	0.69	2.91	2.7	
st	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	
Dry W #1	4.44	3.35	3.46	3.32	4.75	4.45	4.24	3.51	2.73	3.37	2.73	3.83	3.9	3.26	2.96	2.94	3.2	3.18	3.82	2.99	3.23	3.13	3.95	3.99	4.7	2.93	3.7	3.58	4.61	4.05	3.19	3.28	2.57	2.57	5.89	5.12	
Dry W G1	5.08	6.46	4.27	5.55	3.62	4.06	3.16	3.36	4.4	4.87	7.01	4.64	5.01	5.71	5.52	4.2	4.94	5.04	4.3	3.46	4.42	5.14	5.41	4.3	4.56	3.63	4.84	4.3	4.43	3.4	6.64	4.21	3.82	3.26	5.48	5.27	
_	5.794348	4.0925	2.451765	1.835	1.5	2.021136	0.920962	0.782174	1.401447	2.994419	3.586957	3.856923	1.75	1.989655	2.635846	1.532115	1.362632	2.627188	4.646	1.47875	1.664915	1.538889	3.300159	2.56	5.274528	2.643462	0.659839	2.033676	4.19	4.6525	1.589677	2.960769	1.159714	3.32	2.3	4.865714	
	0.095652	0.0675	0.058235	0.035	0	0.058864	0.009038	-	0.108553			0.023077	0.05	0.060345	0.044154	0.057885	0.047368	0.092813	0.224	0.04125	0.065085	0.071111	0.029841	0	0.055472	0.086538	0.220161	0.166324	0.11	0.0675	0.090323	0.129231	0.070286	0.2	0.06	0.214286	
evap-fee	220	210	220	175	195	185	235	340	275	250	190	225	250	350	205	215	300	495	1680	220	240	240	235	240	210	225	325	435	240	225	280	420	205	240	240	225	
In,ev,lo	5.89	4.16	2.51	1.87	1.5	2.08	0.93	0.93	1.51	3.07	3.62	3.88	1.8	2.05	2.68	1.59	1.41	2.72	4.87	1.52	1.73	1.61	3.33	2.56	5.33	2.73	0.88	2.2	4.3	4.72	1.68	3.09	1.23	3.52	2.36	5.08	
Int,eva	6.1	4.39	2.75	2.18	1.5	2.13	0.99	0.93	1.76	3.36	4.28	4.34	1.94	2.05	2.85	1.59	1.41	2.92	5.37	1.52	1.81	1.61	3.47	2.72	5.92	2.83	1.01	2.4	4,59	4.9	1.76	3.16	1.33	3.81	2.65	5.51	
Tevap	230	280	340	300	360	220	260	345	380	430	345	390	300	290	325	260	380	320	300	320	295	270	315	255	265	260	310	340	240	300	310	390	350	360	360	210	
W evap	0.1	60.0	0.09	0.06	0	0.07	0.01	0.15	0.15	0.13	0.06	0.04	0.06	0.05	0.07	0.07	0.06	0.06	0.04	0.06	0.08	0.08	0.04	0	0.07	0.1	0.21	0.13	0.11	0.09	0.1	0.12	0.12	0.3	0.09	0.2	
E/F	Ŀ	L	u	ш	L	L	ш	ш	L	L	L	Ŀ	ш	ш	Ŀ	L	ш	ш	L	L	ш	ш	ш	ω	L	L	ш	L	L	L	ш	ш	Ŀ	Ŀ	L	Ŀ	
site	R1	R2	15	2	R1	R2	2	5	8	R2	1	12	R1	R2	5	5	R1	R2	5	5	R1	R2	5	5	R1	R2	1	12	R1	R2	1	12	R1	R2	L1	12	
nb block	K9	6X	6X	6X	K9	K9	6X	K9	K9	K9	K10	K10	K10	K10	K10	K10	K10	K10	K10	K10	K10	K10	K11	K11	K11	K11	K11	K11	K11	K11	K11	K11	K11	K11	K12	K12	
Nb of turf		92	93	94	95	96	97	98	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	

Fpeckrat2	2.08	1.882353	1.625	1.821429		1.933333	1.487179	1.428571	1.894737	1.764706		2.428571	1.785714		2.208333	1.966667	ERR	2	2	1.857143	1.827586	2.115385	2.148148	1.809524	1.846154	1.866667	2.083333	1.8	2.22222	1.432432	2	1.5	1.833333	1.8		2.04	
Fpeckrat1	1.485714	1.52381	-	1.545455	1.12	1.288889	0.417266	1.111111	1.2	_	2.148148	0.910714	0.757576	ERR		1.552632	ERR	1.405405	1,5	1.368421	1.019231	0.753425	1.611111	1.117647		1.302326	0.735294	0.428571	0.8	0.963636	1.227273	0.274194	1.666667	0.978261	1.333333	1.307692	
F head up	ω	7	4	3	4	7	12	4	5	18	2	15	10		2	7		9	9	8	10	13	8	9	6	8	8	14	7	10	7	17	4	6	თ	œ	
F proc T	4	5	-	F	5	7	10	0	e	ø	0	4	9		0	5		2	5	5	œ	7	9	5	œ	3	-	4	3	9	3	2	0	e	9	9	
F peck T	25	34	40	28	38	30	39	14	19	17	25	21	28		24	30		26	27	28	29	26	27	21	26	30	12	15	6	37	27	34	30	25	35	25	
F feed T	35	42	48	33	50	45	139	18	30	48	27	56	66		26	38		37	36	38	52	73	36	34	36	43	34	63	25	55	44	186	33	46	45	39	
nb peck	52	64	65	51	56	58	58	20	36	30	58	51	50		53	59		52	54	52	53	55	58	38	48	56	25	27	20	53	54	51	55	45	60	51	
Apeckrat2F	1.77778	0.9	ERR	ERR	ERR	ERR	ERR	ERR	1.83871	1.555556	1.555556	1.666667	1.478261	1.588235	1.368421	1.4	1.092593	0.8	1.625	-	1.833333	2	1.458333	1.606061	1.689655	2	1.5	1.571429	1.486486	1.346154	1.666667	1.282051	1.761905	1.263158	1.77778	1.576923	
Mpeckrat1 Mpeckrat2	1.090909	0.439024		ERR	ERR	ERR	ERR	ERR	0.802817	0.8	0.903226	0.806452	0.404762	0.931034	0.764706	0.318182	0.393333	0.603774	0.928571	0.296296	0.417722	0.068493	0.777778	0.815385	-	0.341463	0.355263	0.384615	0.859375	0.5	0.142857	0.273224	0.948718	0.539326	0.680851	0.931818	
Head u	12	8							15	27	13	18	20	15	12	7	24	15	6	4	14	80	10	15	14	5	13	21	15	თ	7	20	1	10	14	7	
M proc T	6	9							4	9	9	10	80	8	5	2	13	e	80	0	5	0	5	2	6	0	2	7	80	5	-	4	1	2	3	5	
M peck T	27	20							31	36	18	30	23	34	19	10	54	40	24	80	18	5	24	33	29	7	18	35	37	26	6	39	21	38	18	26	
M feed T	44	41							71	70	31	62	84	58	34	44	150	53	42	27	79	146	45	65	49	41	76	143	64	70	105	183	39	89	47	44	
	48	18							57	56	28	50	34	54	26	14	59	32	39	8	33	10	35	53	49	14	27	55	55	35	15	50	37	48	32	41	
Perc of # M nb peck	42.69406	16 70236	34 36293	20 10724	67.49226	55 78635	73 89381	54 33526	8 040201	25.80645	3.478261	37.83784	35.27851	18.01567	11.67665	18.5	21	19,80519	41.94631	32.06107	26.29482	17.89137	32.70142	45.07937	51.69903	25.35211	33.23529	36.86131	52.30769	64.06926	13.21962	30.21277	0	0	53.29053	48.57143	
Nb of turf	-	65	93	Γ	95	Γ		Γ	Τ		Γ	Γ	Γ	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	

	-							09/10	9							e					5												2			
Biomass 8.33887	12.92359	5.647841	9.900332	3.488372	4.950166	1.960133	2.624585	6.079734	7.641196	14.75083	6.877076	8.106312	10.43189	9.800664	5.415282	7.873754	8.20598		2.956811				5.747508	61	.521	S.	5.747508	.17940	2.757475	13.52159	5.448505	4.152824	2.292359	9.667774	8.9701	
Intake rate 0.370199	0.251784	0.203635	0.217727	ς.		0.078453	0.185613	0.093119	0.187703	0.277135	0.251249	0.113999	0.194416	0.20365	0.127252	0.083834	0.132245	0.302651	0.136466		0.164922	0.21498	0.1575	0.318606	0.237358	0.073072	0.135128	0.302614	0.245346	0.146703	0.134746	0.075546	0.175078	0.144174	0.316964	
Bite size 0.057943	0.049909	0.037719	0.03598	02	0.034847	0.015879	0.039109	0.015069	0.034819	0.041709	0.038187	0.020833	0.036845	0.033365	0.020988	0.023095	0.031276	0.049957	0246	0	8	0.035486	0.028132	0.054377	0.037764	0.012689	02	05	0.052869	0.023039	0.029315	0.012606	0.035699	0.025	0.052888	
Total peck 100	82	65	51	56	58	58	20	63	86	86	101	84	54	79	73	59	84	93	60	86	65	93	91	67	70	52	82	75	88	69	101	92	93	92	92	
Nb of turf 91	92	93	94	95	96	97	98	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	

Dry W#2	1.24	1	0	0	0	0	1.61	2.52	0.98	0.83	0.84	0	1.22	0.43	0.38	0.44	0.24	0.51	0.22	0	0.3	0.11				
Dry WG2	2.28	2.94	0	0	0	0	2.82	2.85	2.77	1.68	2.46	0	2.47	1.68	1.78	1.45	1.77	1.13	1.02	0	0.59	0.55				
W bags	2.57	2.57					2.57	2.57	2.57	2.57	2.57		2.57	2.57	2.57	2.57	2.57	2.57	2.57		2.57	2.57				
Dry W #1	3.81	3.57					4.18	5.09	3.55	3.4	3.41		3.79	ო	2.95	3.01	2.81	3.08	2.79		2.87	2.68				
Dry W G1	4.85	5.51					5.39	5.42	5.34	4.25	5.03		5.04	4.25	4.35	4.02	4.34	3.7	3.59		3.16	3.12				
Intake g	2.989286	2.516875	ERR	ERR	ERR	ERR	1.32	3.454545	2.903548	3.211429	1.533111	ERR	1.958571	2.91	1.195	2.423913	1.539462	1.609544	1.039666	ERR	1.289729	1.769617				
otal evap	0.030714	0.073125	ERR	ERR	ERR	ERR	0.02	0.045455	0.046452	0.068571	0.106889	ERR	0.051429	0.08	0.055	0.226087	0.000538	0.000456	0.000334	ERR	0.000271	0.000383				
evap-fee	215	260					320	250	240	360	370		360	240	220	1300	1.54	1.61	1.04		1.22	1.77				
In,ev,lo	3.02	2.59					1.34	3.5	2.95	3.28	1.64		2.01	2.99	1.25	2.65	1.54	1.61	1.04		1.29	1.77				
Int.eva	3.28	2.89					1.39	3.7	3.22	3.56	1.73		2.12	3.2	1.32	2.65	510	006	320		280	280				
Tevap	280	320					320	440	310	315	450		210	270	240	230	315	600	280		180	370				
W evap	0.04	0.09					0.02	0.08	0.06	0.06	0.13		0.03	0.09	0.06	0.04	0.11	0.17	0.09		0.04	0.08				
E/F	ш	ш	L	u	ш	ш	ш	ш	L	L	ш	W	L	L	ш	ш	L	L	ш	ш	L	L.				
site	R	R2	1	2	R1	R2	L1	5	R1	R2	11	5	R1	R2	L1	3	R1	R2	L1	2	R1	R2				
nb block	K12	K12	K12	K12	K12	K12	K13	K13	K13	K13	K13	K13	K13	K13	K13	K13	K13	K13	K13	K13	K13	K13				
Nb of turf	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148				

Fneckrat2	1 706007	700001.1	1.8333333	ERR			צאח	ERK	1.191489	1.774194	2.107143	2.16	1.827586	aaa	000000	2.038462	2.375	1.628571	1.818182	2 068966	1 061000	1.904200	1.647059	ERR	1.75	0	
E head un Eneckrat1	_	1.234043	1.375	ERR			EKK K	ERR	0.835821	1.447368	1.404762 2.107143	0.857143	1.325			1.514286	1.809524	1.266667	1.176471	1 875		1.309524	0.622222	ERR	1.333333	0 316667	
E head un		7	6						11	5	6	6	ø			7	თ	5	ი	e	5	R	9		7	17	-
E aroc T		٥	S						œ	4	2	9	6			4	0	S	0			8	2			v	2
E nock T	L pech	34	30						47	31	28	25	29			26	16	35	33	00	87	28	17		32	10	10
E food T	L Leeu L	47	40						67	38	42	63	40	2		35	21	45	51		32	42	45		42	120	120
1000 40	L no peck	58	55						56	55	29	54	53	2		53	38	57	en en	200	00	55	28		56	000	30
Charlen	peckratz	1.5	578947			ERR	ERR	ERR	ERR	1 571429	1 681818	1 758621	1 615385	200010-1	EKK	1.40625	1.625	FRR	1 520412	71-670-1	CC.1	ERR	FRR	ERR.		0.0000	7000669.0
	Mpeckrat1 Mpeckrat2	0.658537	0.344828			ERR	ERR	ERR	ERR	Ξ	+-	_	_	0.0	ERR	0.661765	-	RRR	0.65	00000	1.068966	ERR	FRR			_	0.129032
Τ	Head u	ω	11							2		0	2 4	0		15	14		4.4	=	80						14
	M proc T	ო	~	-						c	0	4 0	0	>		2		,	4	5	3						16
	M peck T	18	10	2						6	- 00	7 6	87	13		32	32	3		34	20						23
-+	-	41	87	5						10	10	1	2	9		68	52	75		ßÜ	29						124
	M nb peck	27	00	200						4.4		21	10	21		45	5	75	-	25	31						16
	Nb of turf Perc of # M nb peck M feed T	35 22727	75 20071	1 1000.02	ERR	ERR	FRR		26 24242	20.04012	40.92/3/	20.13333	33.06//3	25.45455	ERR	22 M6722	00.00E00	21.5/512	ACZAC'/I	23.28042	11.9403	21 NO756	100100.10	10.4-04	EKK	33./0/8/	16 66667
	Vb of turf	127	t	1	129	130	131	122	102	201	t	1	136	137	138	130	000	140	141	142	143	144		C41	146	14/	148

			missing	missing	missing	missing						on utilisab	h.		2					on utilisab		
Biomass	7.574751	9.767442	0	0	0	0	9.368771	9.468439	9.202658	5.581395	8.172757	0	8.20598	5.581395	5.913621	4.817276	5.880399	3.754153	3.388704	0	1.960133	1.827243
ERR	0.190984	0.170647	ERR	ERR	ERR	ERR	0.093306	0.302024	0.192927	0.197578	0.121271	ERR	0.112188	0.201412	0.113431	0.120192	0.104377	0.190976	0.203179	ERR	0.1339	0.139979
Bite size	0.035168	0.02961	ERR	ERR	ERR	ERR	0.023571	0.052342	0.030245	0.030585	0.020718	ERR	0.019985	0.032333	0.020965	0.021642	0.016917	0.029264	0.037131	ERR	0.023031	0.032771
Total peck	85	85	0	0	0	0	56	66	8	105	74	0	98	60	57	112	91	55	28	0	56	54
Nb of turf	-	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148