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Abstract

Some basic properties of the bosonic string theory are discussed. First
the classical string theory is discussed and two different methods to quan-
tise, the covariant approach and the light-cone gauge approach. Using the
covariant approach one can get the whole amount of information about
which states are possible at different massive levels, but only by tough cal-
culations. The light-cone gauge approach is much easier to perform but
does not give the whole amount of information. It is tried to find a new
method which, only by comparing the dimensions of the representations,
gives the same amount of information as the covariant approach, without
doing the tough calculations. A method is found which succeeds for the
lowest five massive levels but it is not proved that it will work in general.
More investigation and more proofs are needed, but it can give some tools
to analyse the massive states of bosonic strings.
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1 Introduction

String theory, in being an attempt to unify gravity and all the other forces in
nature, as well as all the particles, in just one conceptual structure is a very
dominant and exciting branch of the contemporary theoretical physics. It is
a very promising candidate for a unified theory. String theory is a quantum
theory of gravity.

There is not just one string theory. Two broad subdivisions can be made.
One between string theories which consider only closed strings and theories
which consider both closed and open strings. Open strings do have free end-
points and closed string do not have endpoints at all because they are closed.

The second broad subdivision is between bosonic string theories and super-
string theories. The vibrational modes of bosonic strings represent only the
bosonic particles. For describing the fermionic particles as well one needs su-
perstringtheory.

This thesis will be only about the open bosonic strings. Though fermionic
particles can’t be described, the most important concepts of string theory can be
explained with the bosonic theory. The bosonic string theory is much simpler
and thus the concepts can be made clear much easier. Open strings can be
closed to form closed strings and if one understand the open strings, the closed
string will not give much new phenomena to understand.

Vibrational modes can represent massive as well as massless particles. Most
of the time physicists are working with string theory they do not give any
attention to the massive states. They are only interested in the massless states
which can be interpreted as well known particles. But because the massive
states follow from the same method as the massless states it is interesting to
know what kind of massive states one can expect.

First the classical theory of strings will be described. Because string theory
needs to be a quantum theory to be a candidate for a unified theory, it has to
be quantised. The quantisation of this theory can be done in two different ways.
Both of these approaches does have their own (dis)advantages. In trying to find
the ideal method for the interested but lazy physicist, these two approaches will
be combined. There will be made an attempt to short-cut the tough calculation
of the covariant approach by finding a simpler method.

2 Classical String Theory

In string theory everything is described in terms of strings and the vibrations on
these strings. All strings are the same, apart from the distinction between the
open en closed strings. On these strings are certain vibrational modes possible
which determines what kind of particle is represented by the string. Depending
on at which level the string is only certain vibrational modes are possible. To
determine what kind of modes are possible the equations of motions have to be
derived.



2.1 The Action

First of all it is convenient to introduce the action from which we can derive
the equations of motions. This action is proportional to the proper area of the
world sheet of the string. The world sheet is the surface spanned by the string
when it is moving through spacetime.

Before looking at the action the coordinates have to be introduced. X* are
the coordinates of the embedding space-time and ¢ = (7,0) are the coordi-
nates on the string. Here will be made use of the convention for denoting the
derivatives of the space-time coordinates:
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The action is then given by:
S=-— T/dA
=— T/d%\/(X X2 - X2X"2 (1)
=— T/d2a\/—77

This form is called the Nambu-Goto form of the action. Here v = det(va3),
while v,g is the induced metric on the world-sheet:

_ OXH XV
Taf =T gea "9gB
more explicitly, in matrix notation:
(X2 X-x'
Yap = xX. X' (X/)Q
Let’s introduce a new world-sheet metric, hog(7,0). This heg is a dynamical

variable, so it will give its own equations of motions. If this new metric is
introduced it gives the Polyakov form of the string action:

T
S=-3 / 2o VhhBO, X105 X 1,0

; (2
=-3 / d*0VhhP .5
It can be shown (see [4]) that this form is classically equivalent to the Nambu-
Goto form of the action (1).
This action is invariant under reparametrisation. We can use this fact to
simplify the form of our metric. We can set hog = p*(0)na5. Here 1,5 is the
two-dimensional Minkowski metric, given by:

n=(%1)



With this restriction on our metric h,g, this metric is called conformally flat.
The choice for this restriction is called the conformal gauge and in this gauge

(see e.g. [4]):
V—hh*f = naﬁ
With this the action can be rewritten in the form:

S:fgffmwmx%x (3)

This is the Polyakov form of the action and from this action we can easily derive
the equations of motion. By varying the action with respect to X* we find the
equations of motion:

OXxX*=0

By doing this the boundary terms have to set to zero. This can be done in two
different ways. First one can impose the so-called Neumann boundary condition:

0, XH(1,0) = 0, X" (7,m) =0

Another possibility is that it is imposed that the endpoints of the string are
fixed. This can be done by imposing 6X,(7,0) = 6X,(7,7) = 0. This implies
the Dirichlet boundary conditions:

0; XH(7,0) = 0; XH(1,m) =0

2.2 Constraints

Because our metric is a dynamical variable in our action, we have to get the
equations of motion for the metric also. By the variation of our action with
respect to the metric we get the equations of motion which actually are con-
straints on our equation of motions for our coordinates. These constraints are
given by!:

1
Top =Yap — §(h “Y)hap =0 (4)
Our action (3) is scale invariant. Due to this:
UQ’BTag =0
From this we have:
Too =T = 3i?+ 3(2)?
T01 = T10 = I Jf/ =0

Summarizing we have as our constraints:

(#£2)2=0

IFor the derivation of these constraints see e.g. [1] or [3]



2.3 Solution

It is possible to solve the equation of motion of the string. A general solution
is given by:

1 1 .
XH*(r,0) = q" + EPMT + il Z Eaﬁe_”” cos no (5)
n#0
Here g* is the position of the center of mass of the string, P* the total mo-

mentum and ¢ just a parameter with dimension of length. From this solution
follows for the constraints:

ita’ =1 Z aftetn(rE0)

where we defined: .
B P;L
%o ¢

For convenience later on we can rewrite the constraints:

1
2 Z O = 0
m

Ly

This last calculation is not trivial but it can be shown? by using Fourier analysis
that L, = 0 indeed implies that T,,3 = 0.

3 Quantisation

Up to here only the classical theory of strings is considered. But a quantum
theory is needed, so the results found so far have to be quantised. This quantisa-
tion can be done in two different ways, namely by the covariant or the light-cone
gauge approach. Each way has its own advantages and disadvantages.

But let’s first introduce the quantum operators and their commutators. No
calculations will be performed, only the results will be given®. First of all we

have the equal-time commutation relation between the coordinate and momenta
[X¥(7,0), P, (7,0")] = i8/hé(0 — o’)

n < 0: creation operator

There exist also the oscillator operators: a, { n > 0: annihilation operator

Their commutation relations are given by

[QZ5 aum] = ndm—&-n,odllj

2[3] says a little more about this calculation
3most of these calculations are written down in [4] or [2]



Note also that

ot = it

—n n

Furthermore, the constraint operators:

L, = % %: ab o _m

1
T onhT

oo a, N
Lo P? 4 ;aﬁnaw — ﬁzﬂ + N

with N(®) the level operator:
oo
N(a) = Z Oélina;m
n=1

and o some constant: 1
/

“ T onT

The definition for Ly is slightly different due to normal ordering problems* which
would arise when the general definition of L,, for n = 0 would be used.

From this follows:

m

[Lﬂ? afrj;l] = _man+m

The last important commutation relation is between two constraint operators:

26
[Lma Ln] = (m - n)Lern + = 2

12m(m

- 1)5m+n,0

The 26 in the last term actually is the dimension of the embedding space in
which the string lives. This dimension follows from analysis of the quantised
states. See e.g. [1] or [4]

3.1 Covariant Approach

In the covariant approach one imposes the constraints by demanding that for
physical states holds:

L,|¢) =0forn >0, (Ly—1)|¢)=0

Once again the slightly modificated constraint for Ly is due to the normal or-
dering problems. The value of the constant in the constraint for Ly, which is
just 1, is determined by the same analysis as the dimension of the embedding
space.

4see e.g. [2]



To find the possible states for a certain level in the covariant approach, one has
to do four things:

1. write down the most general form of the state

2. determine the constraints

3. determine the dimensions of the contributing states
4. determine the physical null states

The most general state of a level contains contributions consisting of the ground
state |0) with creation operators which raise it to the appropriate level. States
are just denoted with in the bra or ket the eigenvalue of N, i.e. its level.

The constraints are determined by imposing the conditions for the L,-operators
on the states. The dimension of the states can be calculated by analysing
the indices of the state and their symmetries. For further explanation of this
calculation see Appendix A.

Physical null states are states which are physical but do not contribute to any
measurable property. This is because they have zero inner product with itself
as well as with each other physical state. Let’s take a look at some examples.

o N=0:

The general form of the level zero state is just [0). For N = 0 only the Lg
constraint gives a real constraint because the L, for n > 1 automatically anni-
hilates |0). This is always the case for L,, and |Np) with n > Ny. This is due
to the fact that a state can’t have a negative eigenvalue of the N-operator®.
The Ly constraint always determines the mass of the state:

h
— 2 _
(Lo—1)]0)=0=>M =—=
So this state has a negative mass and thus a momentum satisfying k2 > 0 what
is inconsistent with special relativity. This state is called the tachyon and it can

be avoided in superstring theory, but not in the bosonic theory.
e N=1:
The general form of the state at level one is:
1) = " a1,,[0)

Here £# is some polarisation vector. The constraints give:

(Lo—1D|1) =0= M?*=k*=0

5see e.g. [4]



For L,>2 no new constraints are given. This constraints can be satisfied by 25
different states. But there is one null state. This state is of the form:

[91) = L_1]x)

This state is orthogonal to all physical states |1)py,), by definition of the physical
states:

(U1lvpn) = (xalLilvpn) =0

Furthermore it is physical itself:

Lultn) =0 < (2Lo+ L1 L1)pa) = 0
(LO - 1)|1/}1> =0 < L_1L0|X> =0

Due to this null state the dimension of the state at this level is lowered to
24. This state corresponds to the well known photon. For a more deliberate
description of the correspondence between this representation and the massless
vector field of the photon, see [1].

o N=2:
The most general form of a level two state is

12) = [€*7(a-1)? + £%a]|0) (6)

where %7 is a symmetric matrix. The total dimension of this state is

dd+1) +d= dd+3) = 377 for d = 26
2 2
From the constraints we get:
_ o _ N

[2a/
L1|2> :O = g,u, = — 7kp€#ﬂ
1 [2a/
L2|2> =0= §£p077p0 = - A k/tf“

So this is the first massive level and the d+ 1 constraints from L; and L, reduce
the dimension of this level to @ — 1. Because these states are massive they
have to correspond to irreducible SO(d — 1) states. This is indeed the case. We
get the right number of states if we take a massive scalar (1), one massive vector

(d — 1) and one massive symmetric traceless 2-tensor (@ —-1).



But there can be found two different kinds of physical null states. These are of
the form:

|p1) = xpL-10"]0)

62 = (L2 + 312,)[0)

These correspond to a massive scalar and a massive vector. These two states
are physical null states and they do not contribute to any measurable property.
Actually these states are pure gauge: if we add a null state to a physical state
nothing measurable will be altered. So we are left over with only the massive
traceless 2-tensor of dimension @ — 1 =324 for d =26 . So this is the only
possible state on the second level.

3.2 Light-cone gauge approach

In the light-cone gauge approach first the constraints of the equations of motion
are solved. This can be done by simplifying the coordinate system which has
been used for the worldsheet. If a coordinate transformation on our action (3)
and our constraints (4) is applied, the new coordinates have to satisfy some
conditions. These conditions® are given by:

7 = 0%

Here 7 and & are the new coordinates on the string. These conditions are
satisfied by the following coordinate transformation:

n-X
- _ T
T= 5T
&ZL/Jda'n-PT(T a’)
TLP 0 ’

Let’s now introduce first the light-cone coordinates

Xtf=—(Xx"+x1

Sl

and then the light-cone gauge
n* =(-1,1,0,...,0)

From this follows that
o P+ .
X" = —7
T (7)

Sfor derivation of this conditions see [1]

10



Let’s drop the tilde everywhere. The constraints can be rewritten with this in

the form: T
. ’ i . -/
X +X = (X"+X")?
2P+( )

Now is it possible to solve for a,, . We get:
_ 1 h S
O =5\ 50 Zaﬁakk (8)
k

i h
Qn = T./P

with

%

With these equations a complete solution is given of the equations of motions
and the constraints. By comparing of (7) with (5) we conclude that there are
no dynamics in de X T-coordinate and from (8) it can be concluded that there
are no independent vibrational modes in de X ~-coordinate”.

3.3 Quantisation of the Light-Cone gauge

For quantizing in the light-cone gauge approach we use the same operators as
in the covariant approach but in the light-cone coordinates. Because there are
no constraints which have to be imposed by hand and no physical null states
the procedure in the light-cone gauge approach is much simpler. There are only
two things to do:

1. write down the most general form of the state

2. determine the dimensions of the contributing states

The most general form of the state is of course the same as in the covariant
approach. Determining the dimension of the states is even more simpler because
there are no constraints to be taken into account. For the calculation of the
dimensions of the different states see Appendix A.

Let’s take a look again at the examples. Level zero still corresponds to the
tachyon. At level one the general state is:

|1> = gﬂa—l,u|0>

This corresponds in the light-cone gauge to 24 dimensional representation. For
level two we have:
12) = [£*7(a=1)® + €%a_1]|0)

with dimension

(d=2)(d-1)
2

"For a more deliberate derivation of this solution and the use and meaning of the light-cone
gauge and coordinates see [4] or [1]

d(d — 1)

+d—2= = 324 for d = 26

11



These are exactly the dimensions given by the covariant approach. But in
the light-cone gauge approach the physical interpretation of the states is not
obvious. You can get the right total dimension but you don’t know how to
interpret them. Only by comparing the two different approaches you get the
full amount of information.

3.4 Comparison of the two approaches

So let’s take a look at the (dis)advantages of the two different approaches:

Light-Cone Gauge:
e gives the right number of states (relative easy to get)
e the physical meaning of the representations is not clear

Covariant Approach:

e it is not easy to get the right number of states, due to the null-states

e physical meaning is clear, after a lot of work

In combining the advantages of the two you can try to get a strategy which gives
you the same amount of information with less effort. In this approach there are
four steps:

e write down general state

e determine dimensions of the states (both in the light-cone and in the
covariant approach)

e determine total dimension of the light-cone gauge states

e find appropriate covariant representations which gives the same total di-
mension

Let’s take a look again on the second level. The general form of this state is
given by (6):
12) = [£*%(a—1)? + €%a1]0)

In table 1 the dimensions of the different representations are written down. Here
we see that the total dimension of the light-cone gauge is 324 and that the only
way to get 324 as the total of dimension of the covariant representations also,
is to take the traceless 2-tensor with dimension 324. This means that the states
represented by the other representations, the massless vector and scalar, have
to be null states. So, without determining the physical null states explicitly, it
is possible to find out which states are allowed in the second level. Just because
the only way to get the right total dimension is allowing only the symmetric
traceless 2-tensor.

12



4 Conjectures and their verifications

On the basis of the results found in the section before, a first conjecture was
made:

1) By combining the two different approaches it is possible to get the same
amount of information as in the covariant approach only by comparing the
dimensions of the different representations. That means: The combination
of covariant representations which combines to the same amount as the
total dimension of the representations in the light-cone gauge is unique
and therefore has to be the combination of physical states at a certain
level.

We can check this conjecture for some of the lower massive levels. In table 1
are the results given for the first three massive levels.

[ Level [ States | Representation | Covariant | LCG |
N=2](a)? i 324 300
Qa_o O 25 24
scalar ° 1
324 324
N=3](a_1)? O 2900 2600
_o0i_1 N 324 300
H 300 276
a_3 O 25 24
scalar ° 1
3200 3200
N=4] (a1 |oo 20150 17550
a_sla_)? | H 5175 4600
RN 2900 2600
(a_s)? m 324 300
_300_1 N 324 300
H 300 276
Ql_y O 25 24
scalar ° 1
25650

Table 1. Results of counting on the dimensions of representations of the two
different approaches, the covariant and the light-cone gauge (LCG) approach.
The bold numbers in the covariant column sum op to the same total amount
as the whole LCG column. For the meaning of de Young-tableaus in the repre-
sentation collumn and the calculation of the dimensions see Appendix A. The
results for level 5 and 6 are given in Appendix B.

Here we can see that for the first two levels the approach succeeds in finding a
unique set of states. For level N = 4 however, there is no unique solution due

13



to two facts. First there are two ways to sum op the dimensions of the covariant
representations to the total amount of 25650, namely:

20150

or

20150

+

H

o175

5175

+

1] + °

324 1
(9)

H + O

300 25

(10)

Apart from that, in the first possibility a [11 representation is used but there
are two of them. So its is not possible to determine which one would be the null
state and which one the one contributing to the physical states at this level. Or
maybe is the physical state even a combination of these two states. Both these
two problems take the edge of our conjecture. So it proves not to be possible
to get the same amount of information just by counting the dimensions of the

representations of the two different approaches.

Two more conjectures were made:

2) Tt is possible to decompose the contributing physical states of the covari-
ant representation in irreducible traceless SO(24)-representations got by
decomposing the light-cone gauge representations.

3) This decomposability is a criterion on the basis of which it is possible to
make distinction between two possible combinations of states which both
were found with the method described in conjecture 1)

Take for example level four. First let’s decompose the light-cone gauge repre-
sentations in irreducible traceless SO(24)-representations:

14



OO = OIO + O + e

17550 17250 299 1
H = B + o
4600 4576 24
[T = [T + O
2600 2576 24
[N = (| + (]
300 299 1
[1] = (| —+ °
300 299 1
5 - B
276 276
O = |
24 24
[ ] = [ ]
1 1

So, these representations have been made irreducible by taking apart all the
traces they contained. Now it can be tried to decompose the found combination
of representations of the covariant approach in the same irreducible traceless
SO(24)-representations. This turns out to be possible. Let’s take the first
combination (9):

oM = OooOo4b + OO + &+ O 0+ e
20150 17250 2576 299 24 1
Bj = Hj + H + 0O + MO + e
5175 4575 276 24 299 1
J = | + O + .

324 299 24 1

[ = [ ]

1 1

Here exactly the same SO(24) representations have been used as above. But
if we take a look at the second combinations (10), and compare it with the
analysis of the first combination, it seems not to be possible to decompose this
combination in the same way. Only the two smallest representations of the
second combination differ from that of the first combination, but by trying to
decompose this combination in the same way, would give us:

H = [ + e
300 299 1
O = O + e
25 24 1

And this seems not to be correct, because [11 is not likely to be decomposed

in H. Trying to do it in an other way, would not work either, because then

15



there have to be used other representations than that which are given by the
decomposition of the covariant representations:

H - B + o

300 276 24
o = 0O 4+ e
25 24 1

In this case there are, for example, two H’s used but in the decomposition of
the covariant representations there was only one of this representation.
Conjectures 2) and 3) can be checked for the other massive levels in the same
way. By checking this for levels N = 2 until N = 6 both the conjectures are
ratified. This means that for level 2,...,6 it is proved to be possible, when the
method of conjecture 1) gives just one possible combination, to decompose the
representations of this combination in irreducible traceless SO(24) representa-
tions. When there is not found a unique combination (this is the case at level 4
and 6, in both cases there are two possible combinations, see appendix B) one
of these combinations can be decomposed into the SO(24)-representations and
the other can not. So it distinguishes the two found combinations.

So, for the first five massive states it is possible to either find just one unique
combination or, if there are two different combinations, to make a distinction
between them. This fact was the reason for another conjecture:

4) The physical states are given by the combination of states of which the
representations can be decomposed into irreducible traceless SO(24) rep-
resentations.

This conjecture is checked and confirmed up to level 4 for which the physical
states were know from [2]. For higher levels it is neither checked nor can be
given a proof of this statement here.

If this conjecture is true some statements can be made about which states will
contribute at a certain level. If conjecture 4) is true they seem to have be true
also, but they can be true also if conjecture 4) is not. So they can be stated as
independent conjectures:

5) At level N = n states of the form («_1)™ as well as states of the form
(a—_1)"2a_5 have to be always among the physical states.

6) In general: states with representations which have 'new features’ have to
be among the physical states.

The 'new features’ of the representations are features of representations which
appear for the first time at the lists of the covariant or the SO(24)-representations
at a certain level. The lower levels do not contain representations with this fea-
ture. One can think of features as the first representation with k indices (as in
conjecture 5)) or the first representations with m asymmetrical indices.

16



These conjectures are based on the fact that if conjecture 4) is true it has to be
the case that each irreducible traceless SO(24)-representations has to be used
as a composite of the covariant representations. So, if there is in the list of

the SO(24)-representations a representation of the form HH there has to be a
representation in the covariant approach in which Bﬂ is ’contained’. If it is the

first time that the TH appears in the list with the SO(24)-representations, the
only representation in which it is contained in the covariant list is also of the

form Hﬂ This is of course due to the fact that each other representations which
contains it, would have more indices, like

Ho. P

These conjectures have not been proved but only confirmed for the first five
massive levels. See also Appendix B.

It is been tried to perform the analysis on level seven also but because of some
uncertainties about how to decompose certain representations, no conclusion
are based on that analysis. Actually, this analysis was a lot of work and it is
easy to make errors. It is not clear what has to be concluded from this analysis
but it shows that also this approach is not without disadvantages. The analysis
for higher levels become quite a lot of work.

5 Conclusion

It can be concluded that it is not possible to get the full amount of informa-
tion about which states can exist at a certain level just by looking for a unique
combination of covariant representations which dimension sums op to the same
amount as the total dimension of the light-cone gauge representations. But,
at least for the first five massive states, you can get either a unique combi-
nation or you can make a distinction between the two alternatives by looking
at the decomposability of the representations in irreducible traceless SO(24)-
representations. It is not proved that this is possible for all states nor it is
proved that the combination with the decomposable states is the one with the
physical states at a certain level. But if this would be true some more pre-
dictions can be made about which states do contribute to the physical states.
These predictions follow from the fact that in that case you have to use all
the SO(24)-representations, so you have to look for covariant representations in
which they (and especially the one with features which no representation had
on a lower level) are ’contained’. Again these statements are not proved but
only ratified for the five lowest massive levels.

So, maybe it is possible to short-cut the tough calculation on the constraints and
the physical null states by just looking at the dimensions of the representations
of the states. But this is not sure yet because none of the necessary proofs can
be given.

17



Apart from that, one can wonder if this new method is much easier to perform
and more transparent than just performing the covariant approach with using
the light-cone gauge approach to determine the number of possible states. Any-
way, if one wants to analyse the massive states of bosonic strings it would be
helpful to have two different approaches to get to the same answer. But before
it can be used the conjectures stated above have to be proved.

18



Appendices

A

Young-tableaus and the dimensions of the dif-
ferent representations

To calculate the dimensions of representations it is convenient to make use of
Young-tableaus. Young-tableaus of states are generated in the following way:

for each index the Young-tableau has one []

for symmetric indices the [ s are placed on the same horizontal line
for asymmetric indices the [ s are placed beneath each other
indices of the same kind of creation operators are always symmetric

indices on different kind of creation operators can be symmetric as well as
asymmetric

the length of the column ¢, with ¢ < j, must be bigger then or equal to
the length of column j

the length of the row i, with ¢ < j, must be bigger then or equal to the
length of row j

Let us take for example a level four state of the form

Py, a0, —10p,-10)

This level give rise to the following representations:

o, B

The dimensions of such representations is easily calculated using these tableaus.
This can be done in the following way:

put in each [] a number due to the following rules:

— put in the upper-left [] the dimension in which you are working
— for each [] you go to the right you raise the number with one

— for each [] you go to beneath you lower the number with one

multiply all these numbers and divide it by another number which you get
by:

— put in each [] the sum of the [ I's which are to the right of it and the
[ I's which are beneath it plus one (for itself)

19



— multiply these numbers to get the number by which you have to
divide

So for the representations of the level four state this gives:

D(D +1)(D +2)

U= =7
D(D+1)(D 1)
0o +u¢

The bosonic stringtheory is using a 26-dimensional space-time as the embedding
space. In the different approach for quantisations each index counts for a differ-
ent amount. In the light-cone gauge approach each index counts for d — 2 = 24.
This is because of the fact that in two coordinates there are no (independent)
osscilations.

In the covariant approach the constraints determine the dimensions of the states.
It proves to be that all the states in the covariant approach can be represented by
the irreducible representations of the SO(25) group. For this reason the indices
counts in the covariant approach for d —1 = 25. But the representations have to
be made traceless by hand. This can be done by subtracting the dimension of
the Young-tableaus of the state with two horizontal [ I's less. These correspond
of course to two symmetric indices which are contracted. So, this gives:

T Light-cone: w = 2600
S =D ) oy
H:‘ Light-cone: (d=2)(d ; DE=3) _ 4600
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B Results for the massive levels 5 and 6

Level | States Representation | Covariant | LCG Decom- | Not-
posable | Dec.

N=5](a_y)? 115830 98280 115830
a_s(a—1)3 20150 17550
52350 44850 52350
a_s(a_q)? 2900 2600
5175 4600 5175
a_400_q 324 300
a_s5 25 24
scalar 1 1
(a_9)?a_; 2900 2600 2900
5175 4600
a_300_9 324 300
300 276

176256 | 176256

maa%%ggﬁgwmmwwég B " 880 B

N=6 a,1)6 573300 475020 573300 573300

a_a(a_p) 115830 | 98280

387920 322920 387920 387920
a_s(a—1)3 20150 17550

52350 44850 52350
a_g(a_q1)? 2900 2600 2900 2900

5175 4600 5175 5175
Q_50_1 324 300 324

300 276 300
a_g 25 24 25 25
scalar 1 1
(a_2)%(a_1)? 20150 17550 | 20150

32175 27600 32175
(a_s)3 2900 2600
Q_300_90_1 2900 2600

5175 4600

2300 2024 2300 2300
(a_3)? 324 300
_g40_9 324 300

300 276

1024270 | 1024270 | 1024270

In this table the results of the method described in conjecture 1) are given for
N = 5,6. For level five there is one unique combination which gives the right
total amount. For level six there are two different combinations possible. For one
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of these combinations all the states are decomposable in SO(24)-representations
but for the other that’s not possible. That this is not possible can easily be
seen, because the second combination is not containing the H representation

or something which it contains (see conjecture 5) and 6) and the explanation
about them).
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