
Optical Music Recognition of handwritten scores using
structural pattern recognition

Bachelor project

Report by: Tom Doesburg, s1581791, t.doesburg@student.rug.nl

Project realized in collaboration with Michiel Bergmans, under the supervision of Marius Bulacu

Abstract: Optical music recognition (OMR) is a form of optical character recognition (OCR).
Instead of automatic recognition of text, like OCR, OMR focuses on the recognition of
musical scores. Commercial software that performs OMR on machine printed scores already
exists and produces great results. When the same software gets handwritten music as input,
its performance drops dramatically. In this report we explore the recognition of handwritten
musical scores. With the use of connected components, structural- and statistical pattern
recognition to deal with the variability of handwritten musical symbols we obtained a total
precision of 96.2% and a recall of 85.1%. This article focuses on the structural recognition of
the music, while the article of Michiel Bergmans (2008) focuses on the statistical part.
Furthermore some issues concerning the use of connected components will be discussed as
well as the poor recognition of some symbols.

1. Introduction

1.1 Optical Music Recognition in Artificial
Intelligence
Artificial intelligence (AI) is a field that is
focused on understanding and building
intelligent entities (agents). AI can be divided
in different research fields. On the one hand,
some fields focus on the 'human' part, like
modelling brain functions with the help of
neuroscience, psychology and linguistics. On
the other hand, there are very practical uses of
AI, like building robots and intelligent
computer programs for solving specific
problems, using logic, mathematics and
computer engineering.

The aim of the research project was to
build such an intelligent agent. A basic
intelligent agent consists roughly out of the
following three parts: a perception part, a
reasoning part and some actuators. The optical
music recognition software we developed is

focused on the first two parts. First we worked
on the perception part, the reading of symbols
from a scanned image. Secondly, we
developed on the reasoning part, using logic
and shape information to decide how a
symbol should be classified. After recognition,
we used an existing program to render the
results as musical scores that were compared
with the original handwritten input. This
correspondents, roughly, to the actuators.

1.2 Earlier research
Optical music recognition (OMR) is a form of
optical character recognition (OCR). OMR has
a big advantage compared to typical OCR,
because it is bounded by a lot more rules.
Rules concerning position, size and the low
number of available symbols are constraining
the possible classifications of symbols. There
has already been done a lot of research on
OMR on machine printed music. Rossant and
Bloch (2002, 2004, 2007) for example have

1

mailto:t.doesburg@student.rug.nl

2

Figure 1: Example of an input image

used template matching for recognizing
machine printed music and this approach has
proved to be successful. There are multiple
solutions to the problem of recognizing
musical scores, Bainbridge and Bell (2003) for
example used graph-search and grammars for
OMR. The results, from these studies and
others, get up to 99 percent recognition rates.
There is already commercial software like
Photoscore
(http://www.neuratron.com/photoscore.htm)
that gives similar results. However these
programs fail on handwritten pages of music.
Figure 1 shows an example of input to our
program. Programs like Photoscore work well
on machine printed music because, in machine
printed music, the notes and other symbols are
printed exactly the same within a certain
typeset. Unfortunately this is not the case with
the handwritten music. Each handwritten
symbol is written with great variety in shape
and size across the pages. Figure 2 shows
some example of handwritten musical
symbols and makes clear the shape variability.
Because of this great variety, there are
currently no programs that can deal properly
with the offline recognition of handwritten
music. Also little or no research has been done

on the offline recognition of handwritten
music. There has been some research on online
recognition, but this concerns writing with a
digital pen on preset staves. Also the online
writing gives a lot of information on the shape
of a symbol during the writing process,
information that is not available in the offline
variant. The thesis of Taubman (2005) is an
example of online recognition of handwritten
music.

1.3 Classified symbols
The symbols we attempt to classify are listed
in Figure 3. These symbols are machine
printed for clarity reasons . Table 1 shows the
distinction we made between structurally
classified symbols and statistically classified
symbols.

3

Figure 2: Shape variation within a class

Figure 3: Different classified musical symbols

http://www.neuratron.com/photoscore.htm

1.4 The optical music recognizer
In this project, that has been done in
cooperation with Michiel Bergmans, we used,
two recognition approaches. On the one hand
we used structural pattern recognition using
logic, as described in the book of Russel and
Norvig (2003). This type of pattern recognition
is discussed in this paper. On the other hand
we used statistical pattern recognition as
described in the book of Duda, Hart & Stork.
(2001). This statistical part is discussed in the
article of Bergmans (2008).

There is a lot of information on a page
of music. Most importantly there are the notes
that are positioned on a certain height on a
stave to indicate the pitch. These notes have
durations and so have the rests. Furthermore
there are symbols like clefs, flats and sharps
that give information about the pitch of the
notes following after them. In this research our
aim is to use this information to successfully
process scanned pages of handwritten music
and print them with the program Lilypond
http://www.lilypond.org) for visual
assessment. We will also create a MIDI file
which contains an audible representation of
the found music. Structural pattern

recognition is done on symbols that are either
very large or very small. These symbols have a
simple structure without many details. The
advantage of the structural approach is the
simplicity and the speed when using it in
software. In this paper only the recognition of
structural classified symbols is described. For
all other symbols we use statistical pattern
recognition that is described in the article of
Bergmans (2008). By using statistical
classification, one is able to deal with shape
variation and still produce good results, while
structural classification fails in this case. The
technique is more computation-intensive than
the structural variant and it is suitable for
symbols with shape details. For simple and
large symbols we prefer structural
classification. Furthermore some musical
knowledge is used for better recognition. The
program was tested with a dataset of 200
staves with handwritten monophonic music.
The staves were machine printed and the
music was all written by the same writer. We
evaluated the software by counting the errors
and computing the precision and recall rates
per symbol.

4

Table 1: Structurally vs. Statistically classified symbols

http://www.lilypond.org/

2. Method

2.1 Preprocessing the image

Input for our software is a scanned
handwritten musical score consisting of
several pages. An example is given in Figure 1.
Before we can start recognizing musical
symbols we need to do some preprocessing,
because the images in our dataset contain
multiple pages. We have a page by page
approach: we have cut the images into
separate pages and stored them in memory.
After cutting one page, the program processes
the page and writes the recognized music to a
Lilypond music file.

The Lilypond file is a text file that
represents the recognized music in such a way
that the Lilypond program is able to build a
MIDI file that contains the audible
representation of the music on the page.

2.2 Finding staff lines
Before we will be able to detect any music, we
need to know where to look for musical
symbols. Therefore we have to detect the staff
lines in the preprocessed pages and, after we
have found them, we need to store their
positions in memory. These positions are used

later to determine the position of a symbol on
a stave. In this way, for example, we can
establish the pitch of a note. When the staff
lines are found we remove them from the
picture, so we can use a connected
components approach that will be discussed
later. First we will discuss the method to
detect the staff lines and in the second part the
removal of the found staff lines.

2.2.1 Detecting staff lines
For the detection of the staff lines we have
developed an algorithm that searches for five
equally spaced maxima within a preset
vertical range. To find these maxima we use
projections of horizontal lines. Projections are
represented by an array of which the indices
are the positions of horizontal lines in the
picture. The values in the array are the
average gray scale values of a horizontal line
within the range. Because the lines tend to be a
bit skewed sometimes, we look for the staff
lines separately at the left and the right side of
the page, see also Figure 4. We use up to a
forth of the page width. To find these 5 starts
and 5 ends we use a vertical projection to find
the start and the end of the staff lines. When
we have made the vertical projections we need

5

Figure 4: Stave with marked ranges for finding maxima

Figure 5: example of the smoothed projections

to find a very steep slope in the projection. The
steep slope indicates a start or an end. Then
we create an horizontal projection. After
creating the horizontal projections we need to
find the maxima.

To avoid finding noise, we smooth the
projections using a 3-point averager. In
Figure 5, the average gray scale value is
plotted against the image row index. The five
red peaks in Figure 5 represent the starting
points of the staff lines, the five blue peaks
represent the ends. The blue peaks are
positioned more to the right than the red
peaks, this reveals that the staff lines are a bit
skewed. The found maxima are used to make
a representation of the different staff lines. A
straight line is calculated from the first peak in
the left projection to the first peak in the right
projection. Figure 6 shows the result when
drawing the calculated line. After finding and
storing the staff lines in memory, we need to
remove them from the image.

2.2.2 Removing staff lines
When the staff lines are found it is quite
simple to remove them. Using a vertical run-
length while going over the found staff lines
enables us to remove the staff lines completely
without damaging the objects on the staves.
Figure 7 illustrates this process. If the vertical
run-lengths within the ranges are shorter than
a set length they will be removed, if they are
too long they won't be removed. We also take
into account that it is possible to have one or
two white pixels above or below before there
are more black pixels. This approach makes
sure that the objects stay intact and only the
staff lines are removed. The result of this
removing process is shown in Figure 8.

2.3 Detecting connected components

After removing the staff lines from the image,
what is left are meaningful musical tokens and
some garbage. To find and use the different
symbols on the page we use the connected
components algorithm. This works as follows.
For every black pixel in the image all adjacent
black pixels get the same id. All the white

6

Figure 6: Found staff lines are drawn with red on the original picture

Figure 7:
Using vertical
runlength to
remove lines

Figure 8:
Objects are
preserved after
removing staff
lines

Figure 9: All connected
components get a different
id number

pixels are set to zeros. Figure 9 shows an
example of this approach where for clarity
reasons the tokens are colored green and red
instead of black. As is visible in Figure 9, this
leads to clusters of pixels with the same value.
Most of these connected components contain
musical symbols or parts of them.

When the connected components
(cocos) are found we have an image that is
similar to Figure 10. In Figure 10 the different
connected components are visible and colored
to illustrate them. The connected components
are stored in memory with their top, bottom,
left and right positions in the image. This is
similar to drawing a box around the connected
component. From this point on it is possible to
classify a connected component, or a group of
connected components as a musical symbol.

2.4 Recognition of connected components

The found connected components enable us to
classify a connected component or a group of
connected components as a symbol. The
different symbols discussed in the following
paragraphs are the only symbols that are

classified with structural pattern recognition.
For other symbols recognized using statistical
methods please read the paper by Bergmans
(2008) on this subject.

2.4.1 The treble clef
The treble or 'G' clef is shown in Figure 11.
This key is classified according to its size and
position. First of all it is important that the
symbol is positioned on a stave. The top of the
symbol must lie above the stave and the
bottom must lie below the stave. Also the
width is important. If it is too narrow it could
be a bar line for example. So we set the desired

7

Figure 10: Connected components obtained after removing the staff lines

Figure 11: Left: Treble Clef,
right: Bar line

width between 50 and 80 pixels. These
constraints are sufficient to successfully detect
the treble clefs.

2.4.2 Bar lines
The bar lines are simple approximately
vertical lines. The important factor here is the
position and the height of the lines. The line
must be on a stave and the height must be
approximately the same as the stave height. It
is important not to be too strict about this
because the writer varies the height a lot.
Therefore the top must be higher than the
height of the first staff line plus 15 pixels and
the bottom lower than the fifth staff line minus
15. This is shown in Figure 11 with the red
double arrow. The width of the imaginary box
drawn around the bar must be smaller than 15
pixels and bigger than 3 pixels to be classified
as a bar line.

2.4.3 Whole and half measure rests
The whole and half measure rests shown in
Figure 12 are fairly small objects for structural
pattern recognition in comparison to treble
clefs and bar lines, but because of the
restriction of being small and rectangular it is
possible to detect these without the use of
statistical pattern recognition. Furthermore the
position of the whole and half measure rests
are of crucial importance for the classification.
A small connected component with a
rectangular shape that lies between the first
and the third staff line could be a whole rest. If

the middle of the connected component is
closest to the second line it will be classified as
a whole rest. For the half rest a similar method
is used, but in this case we check if a
connected component lies between the second
and fourth staff line and the closest staff line
should be the third staff line.

2.4.4 Multi-measure rests
A multi-measure rest is shown in Figure 13.
The big rectangular shape is easily recognized
because of its size. Multi-measure rests are
always positioned on staves. And they mainly
consist out of two semi-horizontal parallel
lines. To recognize these symbols we check
for big connected components that lie on a
stave. Then we check the middle of the
connected component (see the red line in
Figure 13) for the parallel horizontal lines. If
there are black pixels followed by white pixels
and again followed by black pixels it will be
classified as a multi-measure rest. We have
chosen to ignore the numbers above the multi-
measure rests that indicate the number of
measures to rest, because of the time
consuming and fairly complicated job it will
be to recognize them. This could be an
interesting item for further improvements.

2.4.5 Legatos
The writer of our dataset always puts a legato
(Figure 14) above the staves. Because of the
big size and fixed position of the legatos it is
fairly simple to recognize one. We check the
sides of the connected component for square
angles. This is done because the, in our dataset
rarely seen, Volta-brackets are also large and

8

Figure 12: On the left: Whole rest or semibreve
and on the right: Half rest or minim Figure 13: Multi-measure rest

above a stave. For an example see Figure 14
The big difference however is the square angle
on the left and sometimes on the right as well.
So if the sides do not contain square angles,
the connected component is very wide and it
lies completely above the second staff line it is
classified as a slur. This is a premature
classification, because it is important to know
if the ends of the slur are near a note. This
issue involves introducing some musical
knowledge and the notes must be classified
already. This will be further discussed in
paragraph 2.5.

2.4.6 Notes
After the structural classification of the
symbols we discussed above we remove them
from the image, leaving the notes and the
other, unclassified symbols. The recognition of
notes is done in three stages. We recognize in
the following order possible stems, note heads
and beams or flags. First we use a horizontal
run-length algorithm to find all thin vertical
lines in the image and store them in a new
image. After running the connected
components algorithm on the new image, we
remove all the small garbage, while leaving
the longer lines. In our images the cocos that
are possible stems have a height between 25
and 130 pixels. Where the lines are found, we
remove them from the original image (see
Figure 15) and this leaves the note heads and
the flags intact.

The closed note heads and the intact
open note heads are classified by a statistical
classifier that is discussed in the article of
Bergmans (2008). The open note heads that
consists of a top part and a bottom part, see
Figure 16, are classified in a structural way. If
we encounter two small pen strokes that are
roughly vertical aligned and very close to each
other, then we merge them to an open note
head. This combined picture is then classified
statistically.

If the closed note heads have a stem
directly above or below them, the head and
the stem are merged to a note with a duration
of ¼ . An open note head does not have to
have a stem. So if a stem is found, the head
and the stem are merged and the duration is
set to ½. If no stem is found, then the duration
is set to 1.

The whole and half notes are now
fully classified and stored. For quarter notes
there is the possibility of a flag or beam on the
end of the stem. We check for parts of cocos in

9

Figure 14: Legato and Volta bracket

Figure 15: Notes and stems. Possible stems found by algorithm are colored gray

Figure 16:
Broken
open note
head

a box of 30 by 30 pixels. If a connected
component is found and if the size is large
enough (wider than 20 pixels, higher than 8
pixels), see Figure 17, the duration of the notes
with the flag or the same beam is set to ⅛ and
the notes are merged with the beams. If
different notes have the same beam, then they
are connected notes. Notes with more than
one beam or flag do exist, but in this project
we chose for a limitation of a single flag or
beam. Notes with multiple beams or flags are
classified as eighth notes. In fact this is
incorrect, but for now it is sufficient to show
that the basic principle is working. The notes
are now fully classified. The classified notes
are now like the structural classified symbols
removed from the image.

The rest if the cocos is classified using
template matching. A nearest-neighbor
classifier is built by collecting and labeling a
reference dataset of patterns. More details are
found in Bergmans (2008).

When the statistical classification is
finished we need to check for some symbols in
the vicinity of the notes, like legatos, staccatos
and duration dots. Also the pitch of the notes
is still not found, we will discuss this in the
next paragraph.

2.5 Introducing musical knowledge
After symbols are classified by their size,
shape and position, we use some musical
knowledge to detect the pitch of notes,
staccato dots, notes that belong to legatos and
duration dots. In the following paragraphs we

will discuss the different types of knowledge
used for the extraction of this information.

2.5.1 Assessing pitch
To assess the pitch of a note, we have three
sources of information: the key, the height of
the note head and the detected staves. In
music scores the key assigns a pitch to each
staff line and the gaps between them. When
the key is correctly classified, we are able to
use the information of the height of the note
head, or in other words the position of the
note head on the stave. For closed note heads
we simply use the middle of the note head as
the height The middle is found by looking for
the highest density in the note head. For open
note heads we use the middle of the empty
white middle portion of the head as the
height. When we compare the height and
horizontal position of the head with that same
point on the staves, we find the pitch that is
dictated by the clef.

2.5.2 Staccato dots
Staccato dots are little dots that are positioned
directly above or below a note head. The
easiest way to detect these dots is not just to
find them, but to look for them only directly
above or below a note head. Using the
knowledge of the restricted position of a
staccato dot it is possible to distinguish
staccato dots from duration dots, but also from
ordinary noise in the image.

2.5.3 Duration dots
Duration dots are found very similar to the
staccato dots. The difference here is that we
are not looking directly above or below the
note head, but directly at the right of it. Again
we only use the position in relation to the note
head.

2.5.4 Legato starts and -ends
Legatos are meaningful when the start and the
end of the legato is placed above a note.

10

Figure 17: Detecting beams in the red
box

Because of this restriction the legatos are
relatively roughly classified. Then we use this
musical knowledge to look for the notes that
the legatos are connecting to. At the start and
at the end of the legatos we look for the closest
note head on the same stave as the legatos
using the middle of the note head. The
calculated distance is the horizontal distance.
The closest note at the start and the closest
note at the end are connected by the legatos.

3. Results
To check the performance of our algorithms
we have tested the program on 200 staves. We
selected staves that contain monophonic
music. The selected staves are all non-piano
staves. We selected staves with different clefs
and staves with note heads that are not more
than one extended staff line above or below
the standard stave. In short, we have selected
staves that contain symbols our program
should be able to recognize. The output of the
program is compared to the original image of
the stave by hand, ignoring the indication of
the key in which the music is written, because
the program is not yet equipped to deal with
that kind of information. The results of the
symbols that are (partly) structurally classified
and discussed in the method section are found
in Table 2. The results for the statistical part
are found in appendix A and in the article of
Bergmans (2008). See below for a legend of the
different terms. The results in Table 3 show
the number of complete staves that the
program failed to remove, the number of
staves where not all five of the lines were
removed and the total amount of staves tested.

Hit: number of correct classifications

Miss: number of missed symbols

FA: false alarm, symbols assigned wrongly to
class

OK: the start and end of a slur correctly found

Dur: number of symbols with the correct class and
correct duration.

Pitch: number of symbols with the correct class
and correct pitch

Total: total of all symbols, structurally and
statistically classified

Relevant: total symbols of class on paper, hit +
missed

Retrieved: total symbols of class found, hit + FA

Precision: hits divided by the number of retrieved
symbols of class

Recall: hits divided by the number of relevant
symbols of class

11

12

Table 2: Results for structural pattern recognition

G_clef Hit 82 Relevant 87 Precision 95.3%
Miss 5 Retrieved 86 Recall 94.3%
FA 4

Bar line Hit 848 Relevant 1039 Precision 99.9%
Miss 191 Retrieved 849 Recall 81.6%
FA 1

Slur Hit 137 Relevant 170 Precision 98.6%
Miss 33 Retrieved 139 Recall 80.6%
FA 2
OK 104

Measure Rest Hit 60 Relevant 71 Precision 98.4%
Miss 11 Retrieved 61 Recall 84.5%
FA 1

Whole rest Hit 14 Relevant 15 Precision 53.8%
Miss 1 Retrieved 26 Recall 93.3%
FA 12

Half rest Hit 8 Relevant 9 Precision 44.4%
Miss 1 Retrieved 18 Recall 88.9%
FA 10

Staccato Dot Hit 9 Relevant 18 Precision 75.0%
Miss 9 Retrieved 12 Recall 50.0%
FA 3

Duration Dot Hit 223 Relevant 236 Precision 96.1%
Miss 13 Retrieved 232 Recall 94.5%
FA 9

Open note Hit 303 Relevant 384 Precision 95.6%
Miss 81 Retrieved 317 Recall 78.9%
Dur 300 99.0%
Pitch 290 95.7%
FA 14

Closed note Hit 756 Relevant 826 Precision 94.5%
Miss 70 Retrieved 800 Recall 91.5%
Dur 734 97.1%
Pitch 693 91.7%
FA 44

Total Hit 2822 Total relevant 3318 Total Precision 96.2%
Total retrieved 2934 Total Recall 85.1%

Perc. Dur
Perc. Pitch

Perc. Dur
Perc. Pitch

Table 3: Results for staves

nr. staves not found 2
nr. lines not found 5
total staves 202
total lines 1000

4. Discussion
The results shown in section 3 show the
performance of the program on the 200 staves
it was presented with. In general the program
had a very high precision of 96.2%. This can be
attributed to the fact that the most common
symbols were very well recognized and the
poor recognized symbols were fairly rare. The
overall recall rate of 85.1% is considered to be
pretty good. A big portion of the missed
figures was caused by a fundamental problem
of the connected component approach. When
two different symbols become a single coco
because they overlap, they will often be
missed or falsely classified. An example
shown in Figure 18 shows a bar line, that is
missed because it is intersected by a slur. This
intersection causes the creation of a large coco
that is not recognized by the program. By
solving problems caused by this phenomenon
it is possible to improve the recall rate
significantly. Another big factor causing the
missing of symbols is premature commitment
to a certain classification. By removing
classified symbols from the image, the
program commits to a certain classification
which can lead to errors. For example, a
separated open note head on a staff line on
which whole and half rests are found as well,
is partly removed when classified as a rest.
This makes it impossible to correctly classify
the open note in Figure 19, in which the top
half of the note head is classified as a half rest.
By not removing some classified symbols and
delaying the commitment to a classification, it
may be possible to detect the open note head
and to discard the earlier classification of a
half rest. Some objects like G-clefs can still be
removed because of the already very good
classification. If we do not remove them, some
of them have a part that is classified as a note.
This shows that both approaches have their
own advantages and disadvantages.

The recognition of the staves was very
good, only 2 out of 202 staves were missed.
Both times this was a result of finding too
many line starts or -ends. However, with a
recall of 99.0% percent we can say, that the
stave finding algorithm works very well. The
precision was also very high, when a stave
was found only 5 of the 1000 lines were not
removed. This means that 99.5% of the found
staff lines were successfully removed.

In the next paragraphs we will discuss
the individual results and class restricted
errors of the structural recognized symbols.
The statistical results are discussed by
Bergmans (2008).

The G-clefs were found almost every
time, with a few exceptions. These clefs were
missed because of the intersecting symbols
(Figure 18). Fortunately this happened only on
a few occasions.

Bar lines were also found well, some
of the errors in finding bar lines were due to
the large size of some of the bar lines and
again the intersecting of symbols has played
its part. With some looser constraints and a
solution for the connected component issue,
the program will be able to find the lines
almost perfectly.

Measure rests have a really good
precision, but their recall may be improved.
Some measure rests were missed when the
horizontal lines sticked together in the middle
(Figure 20). If the existing constraints of

13

Figure 18: Slur intersects
a bar line

Figure 19:
Premature
commitment

finding the open part in the middle are
loosened by checking at multiple points in the
symbol , it will be possible to improve the
recall rate.

The problem of the whole and half
rests has already been explained at the
beginning of this chapter. Instead of
committing to a classification later on in the
program, it is also possible to check a possible
whole or half rest for neighboring connected
components and avoid premature
classification in this way. By not classifying
possible rests straight away, the precision of
the rest will improve radically. This will
improve the recall of the open notes as well.

Staccato dots were missed often
because of bad positioning by the writer.
Officially a staccato dot is put above or below
the note head. The writer of the sheet music
we used varies this, sometimes he puts them
incorrectly above or below the end of the stem
instead of close to the note head. It is possible
to find these dots, by also checking the ends of
the stems. This is a choice between sticking to
the rules and expect writers to do so too or
adapting to writer habits even if they are
incorrect.

Duration dots were found very well.
This is because the position of the duration dot
is always the same. By using this musical
knowledge it is possible to get a very good
precision and recall.

The precision of open notes was very
good, but the recall could be improved. This
has already been discussed earlier in this
chapter. A few open note heads that lay above
or below the staves and have an extra line

indication like the first note in Figure 16 were
missed. This may be improved by giving more
examples to the statistical classifier. The
duration and the pitch were almost perfect
and it will be hard to improve that.

Closed notes were better classified
than the open notes. Some common errors
were false classifications of written comments
on the staves. Furthermore there were some
pitch errors. These errors were fairly small, for
an illustration of this see Figure 21. The same
problem with closed notes above and below
the staves were seen as with open notes. These
errors can be improved with more examples
for the statistical classifier, but keep in mind
that the errors were not very common. There
is a lot of room for improvement of the
program. In the restricted test we performed
the results were fairly good. However by
dealing with multiple beams and flags, notes
that lie a long way above or below the staves,
polyphonic music, time restrictions and
registering in which key a piece of music is, it
is possible to use a lot more musical
knowledge and improve the results and
robustness of the program.

5. Conclusion
In this research we have tried to build a
perceptive, reasoning agent to classify
handwritten music scores. We have focused
on image processing and pattern recognition
We have done this by using connected
components and two types of pattern
classification. Structural classification for large
symbols or symbols with little shape variation
and statistical classification for relatively small
symbols with a lot of shape variation. We
have used projections of the image to detect
and remove staff lines. The removal of staff
lines is essential to be able to use the
connected component algorithm. The staff
detecting and removing algorithm is able to
deal with lines that are a bit skewed. After the
removal of the staff lines we were left with an

14

Figure 20: Slur with
joined horizontal lines

Figure 21: Pitch
error

image without staff lines but with all the
musical symbols. These tokens were turned
into objects by using the connected
components algorithm and after that they
were put into a structural classifier.

The structural classifier used logic to
be able to reason about shape and positional
information to classify some of the large and
simple symbols. The classified objects were
then removed from the original image. In
some cases this led to premature commitment
and caused some of the errors in the
classification of open notes. The connected
components approach also led to the missing
of symbols that were intersecting. To find
notes in the image we removed possible stems
from the image and used the statistical
classifier to detect the note heads and stems
left in the image. This approach led to very
high precision (open notes 95.6%, closed notes
94,5%), but because of the removal of the
detected notes this also led to the missing of
some symbols (recall open notes 78,9%).

The problem of the premature
commitment still needs to be adressed. Not
removing classified symbols will, in the
current implementation, lead to multiple
classifications of a single symbol. This
problem could presumably be solved by
delaying final classification and using a
measure of confidence in a certain
classification.

The detection of pitch and duration of
the notes was very good, but the duration of
detectable notes was limited from whole to
eighth notes, classifying shorter durations as
eighth notes. Using musical knowledge
enables the program to detect pitch, to
distinguish meaningful dots from meaningless
dots and to detect notes with legatos.

The program was tested on a total of
202 staves that were selected by hand. The
results (overall precision 96.2%, overall recall
85.1%) showed that the limited program was
able to perform well on the symbols it was

designed to deal with. Noting the fact that this
program is not complete yet, it is not able to
classify all possible musical symbols.

The results show that it is possible to
use statistical and structural pattern
recognition to recognize most symbols. Future
improvement must be concentrated on the
symbols that were ignored until now, multiple
writers, issues with intersecting symbols and
the problem of premature classification.
Furthermore the use of musical knowledge
was very limited. Presumably it is useful to
use more knowledge about time constraints
and the key in which the music is written to
restrict the number of possible classifications.
Most of these improvements concern
improving the robustness of the current
program.

Although a lot of improvement is
needed to deal with the discussed limitations
of the program, we have shown that the
limited perceptional reasoning agent is able to
get good results on the offline detection of
handwritten music and there seems to be a
bright future in to solving the problem.

References
Bainbridge, D. & Bell, T. (2003). A music

notation construction engine for
optical music recognition. Software –
Practice and Experience (33), 173-200.

Bellini, P., Bruno, I. & Nesi, P. (2007).
Assessing optical music recognition
tools. Computer Music Journal (31),
68-93.

Bergmans, M (2008). Optical Music
Recognition of handwritten scores, using
statistical pattern recognition. Bachelor's
thesis. Department of Artificial
Intelligence, University of Groningen

15

Dalitz, C., Droettboom, M., Pranzas, B. &
Fujinaga, I. (2008). A comparative
study of staff removal algorithms.
IEEE Transactions on Pattern Analysis
and Machine Intelligence (30), 753-766.

Duda, R., Hart, P. & Stork, D. (2001). Pattern
Classification. New York: John Wiley &
Sons.

Göcke, R. (2003). Building a system for writer
identification on handwritten music
scores. In M.H. Hamza (ed.),
Proceedings of the IASTED
International Conference on Signal
Processing, Pattern Recognition,
and Applications SSPRA 2003, pages
250-255, Rhodes, Greece, 30 June - 3
July 2003. Acta Press, Anaheim, USA.

Nienhuys, H. & Nieuwenhuizen, J.
Retrieved on July 11th, 2008 from
http://lilypond.org/web/about/

Rossant, F. (2002). A global method for music

symbol recognition in typeset music
sheets. Pattern Recognition
Letters (23), 1129-1141.

Rossant, F. & Bloch, I. (2004). A fuzzy model
for optical recognition of musical s
cores. Fuzzy Sets and Systems (141),
165-201.

Rossant, F. & Bloch I. (2007). Robust and
adaptive OMR system including fuzzy
modelling, fusion of musical rules,
and possible error detection.
EURASIP Journal on Advances in Signal
Processing, 1-25.

Russell, S. & Norvig, P. (2003). Artificial
Intelligence: A Modern Approach. Upper
Saddle River (NJ): Prentice Hall

Taubman, G. (2005). MusicHand: a handwritten
music recognition system.
Undergraduate thesis, Brown
University.

16

Appendices

Appendix A

17

Appendix A: Recognition results for the statistical approach (Bergmans (2008))

Bass_clef Hit 62 Relevant 104 Precision 96.9%
Miss 42 Retrieved 64 Recall 59.6%
FA 2

Alto_clef Hit 8 Relevant 10 Precision 72.7%
Miss 2 Retrieved 11 Recall 80.0%
FA 3

Sharp Hit 28 Relevant 38 Precision 100.0%
Miss 10 Retrieved 28 Recall 73.7%
FA 0

Flat Hit 6 Relevant 10 Precision 75.0%
Miss 4 Retrieved 8 Recall 60.0%
FA 2

Natural Hit 14 Relevant 22 Precision 100.0%
Miss 8 Retrieved 14 Recall 63.6%
FA 0

Crochet Hit 226 Relevant 240 Precision 98.3%
Miss 14 Retrieved 230 Recall 94.2%
FA 4

Quaver Hit 38 Relevant 39 Precision 97.4%
Miss 1 Retrieved 39 Recall 97.4%
FA 1

Open note Hit 303 Relevant 384 Precision 95.6%
Miss 81 Retrieved 317 Recall 78.9%
Dur 300 99.0%
Pitch 290 95.7%
FA 14

Closed note Hit 756 Relevant 826 Precision 94.5%
Miss 70 Retrieved 800 Recall 91.5%
Dur 734 97.1%
Pitch 693 91.7%
FA 44

Total Hit 2822 Total relevant 3318 Total Precision 96.2%
Total retrieved 2934 Total Recall 85.1%

Perc. Dur
Perc. Pitch

Perc. Dur
Perc. Pitch

	Optical Music Recognition of handwritten scores using structural pattern recognition
	1. Introduction
	1.1 Optical Music Recognition in Artificial Intelligence
	1.3 Classified symbols

	2. Method
	2.1 Preprocessing the image
	2.2.1 Detecting staff lines
	2.2.2 Removing staff lines

	2.3 Detecting connected components
	2.4 Recognition of connected components
	2.4.1 The treble clef
	2.4.2 Bar lines
	2.4.3 Whole and half measure rests
	2.4.5 Legatos
	2.4.6 Notes
	2.5 Introducing musical knowledge
	2.5.1 Assessing pitch
	2.5.2 Staccato dots
	2.5.3 Duration dots
	2.5.4 Legato starts and -ends

	3. Results
	References
	Appendices
	Appendix A

