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Abstract: Optical music recognition (OMR) is a form of optical character recognition (OCR). 
Instead  of  automatic  recognition  of  text,  like  OCR,  OMR  focuses  on  the  recognition  of 
musical scores. Commercial software that performs OMR on machine printed scores already 
exists and produces great  results. When the same software gets handwritten music as input, 
its performance drops dramatically. In this report we explore the recognition of handwritten 
musical  scores.  With  the  use  of  connected  components,  structural-  and statistical  pattern 
recognition to deal with the variability of handwritten musical symbols we  obtained a total 
precision of 96.2% and a recall of 85.1%. This article focuses on the structural recognition of 
the  music,  while  the  article  of  Michiel  Bergmans  (2008)  focuses  on  the  statistical  part. 
Furthermore some issues concerning the use of connected components will be discussed as 
well as the poor recognition of some symbols.

1. Introduction

1.1  Optical  Music  Recognition  in  Artificial 
Intelligence
Artificial  intelligence  (AI)  is  a  field  that  is 
focused  on  understanding  and  building 
intelligent entities (agents). AI can be divided 
in different research fields. On the one hand, 
some fields  focus  on  the  'human'  part,   like 
modelling  brain  functions  with  the  help  of 
neuroscience,  psychology and linguistics.  On 
the other hand, there are very practical uses of 
AI,  like  building  robots  and  intelligent 
computer  programs  for  solving  specific 
problems,  using  logic,  mathematics  and 
computer engineering. 

The aim of the research project was to 
build  such  an  intelligent  agent.  A  basic 
intelligent  agent  consists  roughly  out  of  the 
following  three  parts:  a  perception  part,  a 
reasoning part and some actuators. The optical 
music  recognition  software  we  developed is 

focused on the first two parts. First we worked 
on the perception part, the reading of  symbols 
from  a  scanned  image.  Secondly,  we 
developed on the reasoning part,  using logic 
and  shape  information  to  decide  how  a 
symbol should be classified. After recognition, 
we  used  an  existing  program  to  render  the 
results as musical scores that were compared 
with  the  original  handwritten  input.  This 
correspondents, roughly, to the actuators.

1.2 Earlier research 
Optical music recognition (OMR) is a form of 
optical character recognition (OCR). OMR has 
a big advantage compared to typical OCR, 
because it is bounded by a lot more rules. 
Rules concerning position, size and the low 
number of available symbols are constraining 
the possible classifications of symbols. There 
has already been done a lot of research on 
OMR on machine printed music. Rossant and 
Bloch (2002, 2004, 2007)  for example have 
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Figure 1: Example of an input image



used  template  matching  for  recognizing 
machine printed music and this approach has 
proved  to  be  successful.  There  are  multiple 
solutions  to  the  problem  of  recognizing 
musical scores, Bainbridge and Bell (2003) for 
example used graph-search and grammars for 
OMR.  The  results,  from  these  studies  and 
others, get up to 99 percent recognition rates. 
There  is  already  commercial  software  like 
Photoscore 
(http://www.neuratron.com/photoscore.htm) 
that  gives  similar  results.  However  these 
programs fail on handwritten pages of music. 
Figure  1  shows  an  example  of  input  to  our 
program. Programs like Photoscore work well 
on machine printed music because, in machine 
printed music, the notes and other symbols are 
printed  exactly  the  same  within  a  certain 
typeset. Unfortunately this is not the case with 
the  handwritten  music.  Each  handwritten 
symbol is written with great variety in shape 
and  size  across  the  pages.  Figure  2  shows 
some  example  of  handwritten  musical 
symbols and makes clear the shape variability. 
Because  of  this  great  variety,  there  are 
currently no programs that can deal properly 
with  the  offline  recognition  of  handwritten 
music. Also little or no research has been done 

on  the  offline  recognition  of  handwritten 
music. There has been some research on online 
recognition,  but  this  concerns writing  with a 
digital  pen on preset  staves.  Also the  online 
writing gives a lot of information on the shape 
of  a  symbol  during  the  writing  process, 
information that is not available in the offline 
variant.  The  thesis  of  Taubman  (2005)  is  an 
example of online recognition of handwritten 
music.

1.3 Classified symbols
The symbols we attempt to classify are listed 
in  Figure  3.  These  symbols  are  machine 
printed for clarity reasons . Table 1 shows the 
distinction  we  made  between  structurally 
classified  symbols  and  statistically  classified 
symbols.
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Figure 2: Shape variation within a class

Figure 3: Different classified musical symbols

http://www.neuratron.com/photoscore.htm


1.4 The optical music recognizer
In  this  project,  that  has  been  done  in 
cooperation with Michiel Bergmans, we used, 
two recognition approaches. On the one hand 
we used structural  pattern recognition  using 
logic,  as described in the book of Russel and 
Norvig (2003). This type of pattern recognition 
is discussed in this paper. On the other hand 
we  used  statistical  pattern  recognition  as 
described in the book of Duda, Hart & Stork. 
(2001). This statistical part is discussed in the 
article of Bergmans (2008).

There is a lot of information on a page 
of music. Most importantly there are the notes 
that  are  positioned  on  a  certain  height  on  a 
stave to indicate  the pitch.  These notes have 
durations and so have the rests.  Furthermore 
there are symbols like  clefs,  flats  and sharps 
that  give  information  about  the  pitch  of  the 
notes following after them. In this research our 
aim is  to use this information to successfully 
process  scanned pages of  handwritten music 
and  print  them  with  the  program  Lilypond 
http://www.lilypond.org)  for  visual 
assessment.  We  will  also  create  a  MIDI  file 
which  contains  an  audible  representation  of 
the  found  music. Structural  pattern 

recognition is done on symbols that are either 
very large or very small. These symbols have a 
simple  structure  without  many  details.  The 
advantage  of  the  structural  approach  is  the 
simplicity  and  the  speed  when  using  it  in 
software. In this paper only the recognition of 
structural classified symbols  is described. For 
all  other  symbols  we  use  statistical  pattern 
recognition that is  described in the article  of 
Bergmans  (2008).  By  using  statistical 
classification,  one is  able  to  deal  with  shape 
variation and still produce good results, while 
structural  classification fails  in this  case.  The 
technique is more computation-intensive than 
the  structural  variant  and  it  is  suitable  for 
symbols  with  shape  details.  For  simple  and 
large  symbols  we  prefer  structural 
classification.  Furthermore  some  musical 
knowledge is used for better recognition. The 
program  was  tested  with  a  dataset  of  200 
staves  with  handwritten  monophonic  music. 
The  staves  were  machine  printed  and  the 
music was all written by the same writer. We 
evaluated the software by counting the errors 
and computing the precision and recall  rates 
per symbol. 
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Table 1: Structurally vs. Statistically classified symbols
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2. Method

2.1 Preprocessing the image

Input  for  our  software  is  a  scanned 
handwritten  musical  score  consisting  of 
several pages. An example is given in Figure 1. 
Before  we  can  start  recognizing  musical 
symbols  we need to do  some preprocessing, 
because  the  images  in  our  dataset  contain 
multiple  pages.  We  have  a  page  by  page 
approach:  we  have  cut  the  images  into 
separate pages and  stored them in memory. 
After cutting one page, the program processes 
the page and writes the recognized music to a 
Lilypond music file.

The  Lilypond  file  is  a  text  file  that 
represents the recognized music in such a way 
that the Lilypond program is able to build a 
MIDI  file  that  contains  the  audible 
representation of the music on the page.

 
2.2 Finding staff lines
Before we will be able to detect any music, we 
need  to  know  where  to  look  for  musical 
symbols. Therefore we have to detect the staff 
lines in the preprocessed pages and, after we 
have  found  them,  we  need  to  store  their 
positions in memory. These positions are used 

later to determine the position of a symbol on 
a  stave.  In  this  way,  for  example,  we  can 
establish  the  pitch  of  a  note.  When the staff 
lines  are  found  we  remove  them  from  the 
picture,  so  we  can  use  a  connected 
components  approach  that  will  be  discussed 
later.  First  we  will  discuss  the  method  to 
detect the staff lines and in the second part the 
removal of the found staff lines.

2.2.1 Detecting staff lines
For  the  detection  of  the  staff  lines  we  have 
developed an algorithm that searches for five 
equally  spaced  maxima  within  a  preset 
vertical  range. To find these maxima we use 
projections of horizontal lines. Projections are 
represented by an array  of which the indices 
are  the  positions  of  horizontal  lines  in  the 
picture.  The  values  in  the  array  are  the 
average gray scale values of a horizontal line 
within the range. Because the lines tend to be a 
bit  skewed sometimes,  we  look  for  the  staff 
lines separately at the left and the right side of 
the page,  see also  Figure 4. We use  up to a 
forth of the page width. To find these 5 starts 
and 5 ends we use a vertical projection to find 
the start and the end of the staff lines. When 
we have made the vertical projections we need 
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Figure 4: Stave with marked ranges for finding maxima

Figure 5: example of the smoothed projections



to find a very steep slope in the projection. The 
steep slope indicates a start  or an end. Then 
we  create  an  horizontal  projection.  After 
creating the horizontal projections we need to 
find the maxima.

To avoid finding noise, we smooth the 
projections  using  a  3-point  averager.   In 
Figure  5,  the  average  gray  scale  value  is 
plotted against the image row index. The five 
red  peaks  in  Figure  5  represent  the  starting 
points  of  the  staff  lines,  the  five  blue  peaks 
represent  the  ends.  The  blue  peaks  are 
positioned  more  to  the  right  than  the  red 
peaks, this reveals that the staff lines are a bit 
skewed. The found maxima are used to make 
a representation of the different staff lines.  A 
straight line is calculated from the first peak in 
the left projection to the first peak in the right 
projection.  Figure  6  shows  the  result  when 
drawing the calculated line. After finding and 
storing the staff lines in memory, we need to 
remove them from the image.

2.2.2 Removing staff lines
When  the  staff  lines  are  found  it  is  quite 
simple to remove them. Using a vertical run-
length while going over the found staff lines 
enables us to remove the staff lines completely 
without  damaging  the  objects  on the  staves. 
Figure 7 illustrates this process. If the vertical 
run-lengths within the ranges are shorter than 
a set length they will be removed, if they are 
too long they won't be removed. We also take 
into account that it is possible to have one or 
two white pixels above or below before there 
are  more  black  pixels.  This  approach  makes 
sure that the objects stay intact  and only the 
staff  lines  are  removed.  The  result  of  this 
removing process is shown in Figure 8. 

2.3 Detecting connected components

After removing the staff lines from the image, 
what is left are meaningful musical tokens and 
some garbage.  To  find  and use  the  different 
symbols  on  the  page  we  use  the  connected 
components algorithm. This works as follows. 
For every black pixel in the image all adjacent 
black  pixels  get  the  same  id.  All  the  white 
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Figure 6: Found staff lines are drawn with red on the original picture

Figure 7: 
Using vertical 
runlength to 
remove lines

Figure 8: 
Objects are 
preserved after 
removing staff 
lines

Figure 9: All connected 
components get a different 
id number



pixels  are  set  to  zeros.  Figure  9  shows  an 
example  of  this  approach  where  for  clarity 
reasons the tokens are colored green and red 
instead of black. As is visible in Figure 9, this 
leads to clusters of pixels with the same value. 
Most of these connected components contain 
musical symbols or parts of them.

When  the  connected  components 
(cocos)  are  found we  have  an  image  that  is 
similar to Figure 10. In  Figure 10 the different 
connected components are visible and colored 
to illustrate them. The connected components 
are stored in memory with their top, bottom, 
left  and right  positions in  the image.  This  is 
similar to drawing a box around the connected 
component. From this point on it is possible to 
classify a connected component, or a group of 
connected components as a musical symbol.

2.4 Recognition of connected components

The found connected components enable us to 
classify a connected component or a group of 
connected  components  as  a  symbol.  The 
different  symbols  discussed  in  the  following 
paragraphs  are  the  only  symbols  that  are 

classified with structural  pattern recognition. 
For other symbols recognized using statistical 
methods please read the paper by Bergmans 
(2008) on this subject.

2.4.1 The treble clef
The treble  or  'G'  clef  is  shown in Figure  11. 
This key is classified according to its size and 
position.  First  of  all  it  is  important  that  the 
symbol is positioned on a stave. The top of the 
symbol  must  lie  above  the  stave  and  the 
bottom  must  lie  below  the  stave.  Also  the 
width is important. If it is too narrow it could 
be a bar line for example. So we set the desired 
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Figure 10: Connected components obtained after removing the staff lines

Figure 11: Left: Treble Clef, 
right: Bar line



width  between  50  and  80  pixels.  These 
constraints are sufficient to successfully detect 
the treble clefs.

2.4.2 Bar lines
The  bar  lines  are  simple  approximately 
vertical lines. The important factor here is the 
position and the height of the lines.  The line 
must  be  on a  stave  and the  height  must  be 
approximately the same as the stave height. It 
is  important  not  to  be  too  strict  about  this 
because  the  writer  varies  the  height  a  lot. 
Therefore  the  top  must  be  higher  than  the 
height of the first staff line plus 15 pixels and 
the bottom lower than the fifth staff line minus 
15.  This  is  shown in  Figure  11  with  the  red 
double arrow. The width of the imaginary box 
drawn around the bar must be smaller than 15 
pixels and bigger than 3 pixels to be classified 
as a bar line.

2.4.3 Whole and half measure rests
The  whole  and half  measure  rests  shown in 
Figure 12 are fairly small objects for structural 
pattern  recognition  in  comparison  to  treble 
clefs  and  bar  lines,  but  because  of  the 
restriction of being small and rectangular it is 
possible  to  detect  these  without  the  use  of 
statistical pattern recognition. Furthermore the 
position of the whole and half measure rests 
are of crucial importance for the classification. 
A  small  connected  component  with  a 
rectangular  shape  that  lies  between the  first 
and the third staff line could be a whole rest. If 

the  middle  of  the  connected  component  is 
closest to the second line it will be classified as 
a whole rest. For the half rest a similar method 
is  used,  but   in  this  case  we  check  if  a 
connected component lies between the second 
and fourth staff line and the closest staff line 
should be the third staff line.

2.4.4 Multi-measure rests
A multi-measure rest  is  shown in Figure 13. 
The big rectangular shape is easily recognized 
because  of  its  size.  Multi-measure  rests  are 
always positioned on staves. And they mainly 
consist  out  of  two  semi-horizontal  parallel 
lines.   To recognize  these symbols  we check 
for  big  connected  components  that  lie  on  a 
stave.  Then  we  check  the  middle  of  the 
connected  component  (see  the  red  line  in 
Figure 13) for the parallel horizontal lines.  If 
there are black pixels followed by white pixels 
and again followed by black pixels it  will  be 
classified  as  a  multi-measure  rest.  We  have 
chosen to ignore the numbers above the multi-
measure  rests  that  indicate  the  number  of 
measures  to  rest,  because  of  the  time 
consuming and fairly complicated job it  will 
be  to  recognize  them.  This  could  be  an 
interesting item for further improvements.

2.4.5 Legatos
The writer of our dataset always puts a legato 
(Figure  14)  above  the  staves.  Because  of  the 
big size and fixed position of the legatos it is 
fairly simple to recognize  one. We check the 
sides of the connected component for square 
angles. This is done because the, in our dataset 
rarely seen, Volta-brackets are also large and 
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Figure 12:  On the left: Whole rest or semibreve 
and on the right: Half rest or minim Figure 13: Multi-measure rest



above a stave. For an example see Figure 14 
The big difference however is the square angle 
on the left and sometimes on the right as well. 
So if  the sides  do not  contain square angles, 
the connected component is very wide and it 
lies completely above the second staff line it is 
classified  as  a  slur.  This  is  a  premature 
classification, because it is important to know 
if  the  ends  of  the  slur  are  near  a  note.  This 
issue  involves  introducing  some  musical 
knowledge  and  the  notes  must  be  classified 
already.  This  will  be  further  discussed  in 
paragraph 2.5.

2.4.6 Notes
After  the  structural  classification  of  the 
symbols we discussed above we remove them 
from  the  image,  leaving  the  notes  and  the 
other, unclassified symbols. The recognition of 
notes is done in three stages. We recognize in 
the following order possible stems, note heads 
and beams or flags. First we use a horizontal 
run-length algorithm to  find  all  thin  vertical 
lines  in  the  image  and store  them in  a  new 
image.  After  running  the  connected 
components algorithm on the new image, we 
remove  all  the  small  garbage,  while  leaving 
the longer lines. In our images the cocos that 
are possible stems have a height  between 25 
and 130 pixels. Where the lines are found, we 
remove  them  from  the  original  image  (see 
Figure 15) and this leaves the note heads and 
the flags intact. 

The closed note heads and the intact 
open note heads are classified by a statistical 
classifier  that  is  discussed  in  the  article  of 
Bergmans  (2008).  The  open  note  heads  that 
consists  of a top part and a bottom part,  see 
Figure 16, are classified in a structural way. If 
we encounter two small  pen strokes that are 
roughly vertical aligned and very close to each 
other,  then we merge them to an open note 
head. This combined picture is then classified 
statistically. 

If  the closed note heads have a stem 
directly  above or  below them,  the  head and 
the stem are merged to a note with a duration 
of  ¼ .  An open note head does not  have to 
have a stem. So if  a stem is  found, the head 
and the stem are merged and the duration is 
set to ½. If no stem is found, then the duration 
is set to 1.

The  whole  and  half  notes  are  now 
fully  classified and stored.  For  quarter  notes 
there is the possibility of a flag or beam on the 
end of the stem. We check for parts of cocos in 
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Figure 14: Legato and Volta bracket

Figure 15: Notes and stems. Possible stems found by algorithm are colored gray

Figure 16: 
Broken 
open note 
head



a  box  of  30  by  30  pixels.  If  a  connected 
component  is  found  and if  the  size  is  large 
enough (wider  than 20  pixels,  higher  than 8 
pixels), see Figure 17, the duration of the notes 
with the flag or the same beam is set to ⅛ and 
the  notes  are  merged  with  the  beams.  If 
different notes have the same beam, then they 
are  connected  notes.  Notes  with  more  than 
one beam or flag do exist,  but in this project 
we  chose  for  a  limitation  of  a  single  flag  or 
beam. Notes with multiple beams or flags are 
classified  as  eighth  notes.  In  fact  this  is 
incorrect, but for now it is sufficient to show 
that the basic principle is working. The notes 
are  now fully  classified.  The  classified  notes 
are now like the structural classified symbols 
removed from the image. 

The rest if the cocos is classified using 
template  matching.  A  nearest-neighbor 
classifier  is  built  by collecting and labeling a 
reference dataset of patterns. More details are 
found in Bergmans (2008).

When  the  statistical  classification  is 
finished we need to check for some symbols in 
the vicinity of the notes, like legatos, staccatos 
and duration dots. Also the pitch of the notes 
is  still  not found, we will  discuss this  in  the 
next paragraph.

2.5 Introducing musical knowledge
After  symbols  are  classified  by  their  size, 
shape  and  position,  we  use  some  musical 
knowledge  to  detect  the  pitch  of  notes, 
staccato dots, notes that belong to legatos and 
duration dots. In the following paragraphs we 

will  discuss the different types of knowledge 
used for the extraction of this information.

2.5.1 Assessing pitch
To assess  the pitch of a  note,  we have three 
sources of information: the key, the height of 
the  note  head  and  the  detected  staves.  In 
music  scores the key assigns  a pitch to each 
staff  line  and the gaps between them. When 
the key is  correctly classified,  we are able to 
use the information of the height of the note 
head,  or  in  other  words  the  position  of  the 
note head on the stave. For closed note heads 
we simply use the middle of the note head as 
the height The middle is found by looking for 
the highest density in the note head. For open 
note heads we use  the middle  of  the  empty 
white  middle  portion  of  the  head  as  the 
height.  When  we  compare  the  height  and 
horizontal position of the head with that same 
point on the staves, we find the pitch that is 
dictated by the clef.

2.5.2 Staccato dots
Staccato dots are little dots that are positioned 
directly  above  or  below  a  note  head.  The 
easiest way to detect these dots is not just to 
find them, but to look for them only directly 
above  or  below  a  note  head.  Using  the 
knowledge  of  the  restricted  position  of  a 
staccato  dot  it  is  possible  to  distinguish 
staccato dots from duration dots, but also from 
ordinary noise in the image.  

2.5.3 Duration dots
Duration  dots  are  found  very  similar  to  the 
staccato  dots.  The difference  here  is  that  we 
are  not  looking  directly  above  or  below  the 
note head, but directly at the right of it. Again 
we only use the position in relation to the note 
head.

2.5.4 Legato starts and -ends
Legatos are meaningful when the start and the 
end  of  the  legato  is  placed  above  a  note. 
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Figure 17: Detecting beams in the red 
box



Because  of  this  restriction  the  legatos  are 
relatively roughly classified. Then we use this 
musical knowledge to look for the notes that 
the legatos are connecting to. At the start and 
at the end of the legatos we look for the closest 
note  head  on  the  same  stave  as  the  legatos 
using  the  middle  of  the  note  head.  The 
calculated distance is the horizontal distance. 
The  closest  note  at  the  start  and the  closest 
note at the end are connected by the legatos.

3. Results
To check the  performance of  our  algorithms 
we have tested the program on 200 staves. We 
selected  staves  that  contain  monophonic 
music.  The  selected  staves  are  all  non-piano 
staves. We selected staves with different clefs 
and staves with note heads that are not more 
than one extended staff  line  above or  below 
the standard stave. In short, we have selected 
staves  that  contain  symbols  our  program 
should be able to recognize. The output of the 
program is compared to the original image of 
the stave by hand, ignoring the indication of 
the key in which the music is written, because 
the program is not yet equipped to deal with 
that  kind  of  information.  The  results  of  the 
symbols that are (partly) structurally classified 
and discussed in the method section are found 
in  Table 2.  The results  for the statistical  part 
are found in appendix A and in the article of 
Bergmans (2008). See below for a legend of the 
different  terms.  The  results  in  Table  3  show 
the  number  of  complete  staves  that  the 
program  failed  to  remove,  the  number  of 
staves  where  not  all  five  of  the  lines  were 
removed and the total amount of staves tested.

Hit: number of correct classifications

Miss: number of missed symbols

FA: false  alarm,   symbols  assigned  wrongly  to  
class

OK: the start and end of a slur correctly found

Dur: number of symbols with the correct class and  
correct duration.

Pitch: number of  symbols  with  the  correct  class  
and correct pitch

Total: total  of  all  symbols,  structurally  and  
statistically classified

Relevant: total  symbols  of  class  on paper,  hit  +  
missed

Retrieved: total symbols of class found, hit + FA

Precision: hits divided by the number of retrieved  
symbols of class

Recall: hits  divided  by  the  number  of  relevant  
symbols of class
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Table 2: Results for structural pattern recognition

G_clef Hit 82 Relevant 87 Precision 95.3%
Miss 5 Retrieved 86 Recall 94.3%
FA 4

Bar line Hit 848 Relevant 1039 Precision 99.9%
Miss 191 Retrieved 849 Recall 81.6%
FA 1

Slur Hit 137 Relevant 170 Precision 98.6%
Miss 33 Retrieved 139 Recall 80.6%
FA 2
OK 104

Measure Rest Hit 60 Relevant 71 Precision 98.4%
Miss 11 Retrieved 61 Recall 84.5%
FA 1

Whole rest Hit 14 Relevant 15 Precision 53.8%
Miss 1 Retrieved 26 Recall 93.3%
FA 12

Half rest Hit 8 Relevant 9 Precision 44.4%
Miss 1 Retrieved 18 Recall 88.9%
FA 10

Staccato Dot Hit 9 Relevant 18 Precision 75.0%
Miss 9 Retrieved 12 Recall 50.0%
FA 3

Duration Dot Hit 223 Relevant 236 Precision 96.1%
Miss 13 Retrieved 232 Recall 94.5%
FA 9

Open note Hit 303 Relevant 384 Precision 95.6%
Miss 81 Retrieved 317 Recall 78.9%
Dur 300 99.0%
Pitch 290 95.7%
FA 14

Closed note Hit 756 Relevant 826 Precision 94.5%
Miss 70 Retrieved 800 Recall 91.5%
Dur 734 97.1%
Pitch 693 91.7%
FA 44

Total Hit 2822 Total relevant 3318 Total Precision 96.2%
Total retrieved 2934 Total Recall 85.1%

Perc. Dur
Perc. Pitch

Perc. Dur
Perc. Pitch

Table 3: Results for staves

nr. staves not found 2
nr. lines not found 5
total staves 202
total lines 1000



4. Discussion
The  results  shown  in  section  3  show  the 
performance of the program on the 200 staves 
it was presented with. In general the program 
had a very high precision of 96.2%. This can be 
attributed  to the  fact  that  the  most  common 
symbols  were  very  well  recognized  and  the 
poor recognized symbols were fairly rare. The 
overall recall rate of 85.1% is considered to be 
pretty  good.  A  big  portion  of  the  missed 
figures was caused by a fundamental problem 
of the connected component approach. When 
two  different  symbols  become  a  single  coco 
because  they  overlap,  they  will  often  be 
missed  or  falsely  classified.  An  example 
shown in Figure 18 shows a bar line,  that is 
missed because it is intersected by a slur. This 
intersection causes the creation of a large coco 
that  is  not  recognized  by  the  program.  By 
solving problems caused by this phenomenon 
it  is  possible  to  improve  the  recall  rate 
significantly.  Another  big  factor  causing  the 
missing of symbols is premature commitment 
to  a  certain  classification.  By  removing 
classified  symbols  from  the  image,  the 
program  commits  to  a  certain  classification 
which  can  lead  to  errors.  For  example,  a 
separated open note  head on a  staff  line  on 
which whole and half rests are found as well, 
is  partly  removed  when  classified  as  a  rest. 
This makes it  impossible to correctly classify 
the open note in Figure 19, in which the top 
half of the note head is classified as a half rest. 
By not removing some classified symbols and 
delaying the commitment to a classification, it 
may be possible to detect the open note head 
and  to  discard  the  earlier  classification  of  a 
half rest. Some objects like G-clefs can still be 
removed  because  of  the  already  very  good 
classification. If we do not remove them, some 
of them have a part that is classified as a note. 
This  shows  that  both  approaches  have  their 
own advantages and disadvantages.

The recognition of the staves was very 
good,  only 2 out  of  202 staves  were missed. 
Both times  this   was  a  result  of  finding  too 
many  line  starts  or  -ends.  However,  with  a 
recall  of  99.0% percent  we  can  say,  that  the 
stave finding algorithm works very well. The 
precision  was  also  very  high,  when  a  stave 
was found only 5 of the 1000 lines were not 
removed. This means that 99.5% of the found 
staff lines were successfully removed.

In the next paragraphs we will discuss 
the  individual  results  and  class  restricted 
errors  of  the  structural  recognized  symbols. 
The  statistical  results  are  discussed  by 
Bergmans (2008).

The G-clefs were found almost every 
time, with a few exceptions. These clefs were 
missed  because  of  the  intersecting  symbols 
(Figure 18). Fortunately this happened only on 
a few occasions.

Bar lines were also found well, some 
of the errors in finding bar lines were due to 
the  large  size  of  some  of  the  bar  lines  and 
again the intersecting  of symbols has played 
its  part.  With  some looser  constraints  and a 
solution  for  the  connected  component  issue, 
the  program  will  be  able  to  find  the  lines 
almost perfectly.

Measure  rests  have  a  really  good 
precision,  but  their  recall  may be  improved. 
Some  measure  rests  were  missed  when  the 
horizontal lines sticked together in the middle 
(Figure  20).  If  the  existing  constraints  of 
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Figure 18: Slur intersects 
a bar line

Figure 19: 
Premature 
commitment



finding  the  open  part  in  the  middle  are 
loosened by checking at multiple points in the 
symbol  ,  it  will  be  possible  to  improve  the 
recall rate.

The  problem  of  the  whole  and  half 
rests  has  already  been  explained  at  the 
beginning  of  this  chapter.  Instead  of 
committing  to  a classification later  on in  the 
program, it is also possible to check a possible 
whole or half rest  for neighboring connected 
components  and  avoid  premature 
classification  in  this  way.  By  not  classifying 
possible  rests  straight  away,  the precision of 
the  rest  will  improve  radically.  This  will 
improve the recall of the open notes as well.

Staccato  dots  were  missed  often 
because  of  bad  positioning  by  the  writer. 
Officially a staccato dot is put above or below 
the note head. The writer of the sheet music 
we used varies this,  sometimes he puts them 
incorrectly above or below the end of the stem 
instead of close to the note head. It is possible 
to find these dots, by also checking the ends of 
the stems. This is a choice between sticking to 
the rules  and expect  writers to  do so too or 
adapting  to  writer  habits  even  if  they  are 
incorrect.

Duration dots were found very well. 
This is because the position of the duration dot 
is  always  the  same.  By  using  this  musical 
knowledge it  is  possible  to  get  a  very  good 
precision and recall.

The precision of open notes was very 
good, but the recall  could be improved. This 
has  already  been  discussed  earlier  in  this 
chapter. A few open note heads that lay above 
or  below  the  staves  and  have  an  extra  line 

indication like the first note in Figure 16 were 
missed. This may be improved by giving more 
examples  to  the  statistical  classifier.  The 
duration  and  the  pitch  were  almost  perfect 
and it will be hard to improve that.

Closed  notes  were  better  classified 
than  the  open  notes.  Some  common  errors 
were false classifications of written comments 
on the  staves.  Furthermore  there  were  some 
pitch errors. These errors were fairly small, for 
an illustration of this see Figure 21. The same 
problem with  closed notes  above and below 
the staves were seen as with open notes. These 
errors can be improved with more examples 
for the statistical  classifier,  but keep in mind 
that the errors were not very common. There 
is  a  lot  of  room  for  improvement  of  the 
program. In the restricted test we performed 
the  results  were  fairly  good.  However  by 
dealing with multiple beams and flags, notes 
that lie a long way above or below the staves, 
polyphonic  music,  time  restrictions  and 
registering in which key a piece of music is, it 
is  possible  to  use  a  lot  more  musical 
knowledge  and  improve  the  results  and 
robustness of the program.

5. Conclusion
In  this  research  we  have  tried  to  build  a 
perceptive,  reasoning  agent  to  classify 
handwritten  music  scores.  We  have  focused 
on image processing and pattern recognition 
We  have  done  this  by  using  connected 
components  and  two  types  of  pattern 
classification. Structural classification for large 
symbols or symbols with little shape variation 
and statistical classification for relatively small 
symbols  with  a  lot  of  shape  variation.   We 
have used projections of the image to detect 
and remove staff  lines.  The removal  of  staff 
lines  is  essential  to  be  able  to  use  the 
connected  component  algorithm.  The  staff 
detecting  and removing  algorithm  is  able  to 
deal with lines that are a bit skewed. After the 
removal of the staff lines we were left with an 
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Figure 20: Slur with 
joined horizontal lines

Figure 21: Pitch 
error



image  without  staff  lines  but  with  all  the 
musical  symbols.  These  tokens  were  turned 
into  objects  by  using  the  connected 
components  algorithm  and  after  that  they 
were put into a structural classifier. 

The structural classifier used  logic to 
be able to reason about shape and positional 
information to classify some of the large and 
simple  symbols.  The  classified  objects  were 
then  removed  from  the  original  image.  In 
some cases this led to premature commitment 
and  caused  some  of  the  errors  in  the 
classification  of  open  notes.  The  connected 
components approach also led to the missing 
of  symbols  that  were  intersecting.  To  find 
notes in the image we removed possible stems 
from  the  image  and  used  the  statistical 
classifier to detect the note heads  and stems 
left  in  the  image. This  approach  led to  very 
high precision (open notes 95.6%, closed notes 
94,5%),  but  because  of  the  removal  of  the 
detected notes this also led to the missing of 
some symbols (recall open notes 78,9%). 

The  problem  of  the  premature 
commitment  still  needs  to  be  adressed.  Not 
removing  classified  symbols  will,  in  the 
current  implementation,  lead   to  multiple 
classifications  of  a  single  symbol.  This 
problem  could  presumably  be  solved  by 
delaying  final  classification  and  using  a 
measure  of  confidence  in  a  certain 
classification. 

The detection of pitch and duration of 
the notes was very good, but the duration of 
detectable  notes  was  limited  from  whole  to 
eighth notes,  classifying  shorter  durations as 
eighth  notes.  Using  musical  knowledge 
enables  the  program  to  detect  pitch,  to 
distinguish meaningful dots from meaningless 
dots and to detect notes with legatos. 

The program was tested on a total of 
202  staves  that  were  selected  by  hand.  The 
results (overall  precision 96.2%, overall recall 
85.1%) showed that the limited program was 
able  to  perform well  on  the  symbols  it  was 

designed to deal with. Noting the fact that this 
program is not complete yet, it  is not able to 
classify all possible musical symbols. 

The results show that it is possible to 
use  statistical  and  structural  pattern 
recognition to recognize most symbols. Future 
improvement  must  be  concentrated  on  the 
symbols that were ignored until now, multiple 
writers,  issues with intersecting symbols and 
the  problem  of  premature  classification. 
Furthermore  the  use  of  musical  knowledge 
was  very  limited.  Presumably  it  is  useful  to 
use  more  knowledge  about  time  constraints 
and the key in which the music is written to 
restrict the number of possible classifications. 
Most  of  these  improvements  concern 
improving  the  robustness  of  the  current 
program. 

Although  a  lot  of  improvement  is 
needed to deal with the discussed limitations 
of  the  program,  we  have  shown  that  the 
limited perceptional reasoning agent is able to 
get  good  results  on  the  offline  detection  of 
handwritten music  and  there  seems  to  be  a 
bright future in to solving the problem.
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Appendix A: Recognition results for the statistical approach ( Bergmans (2008) )

Bass_clef Hit 62 Relevant 104 Precision 96.9%
Miss 42 Retrieved 64 Recall 59.6%
FA 2

Alto_clef Hit 8 Relevant 10 Precision 72.7%
Miss 2 Retrieved 11 Recall 80.0%
FA 3

Sharp Hit 28 Relevant 38 Precision 100.0%
Miss 10 Retrieved 28 Recall 73.7%
FA 0

Flat Hit 6 Relevant 10 Precision 75.0%
Miss 4 Retrieved 8 Recall 60.0%
FA 2

Natural Hit 14 Relevant 22 Precision 100.0%
Miss 8 Retrieved 14 Recall 63.6%
FA 0

Crochet Hit 226 Relevant 240 Precision 98.3%
Miss 14 Retrieved 230 Recall 94.2%
FA 4

Quaver Hit 38 Relevant 39 Precision 97.4%
Miss 1 Retrieved 39 Recall 97.4%
FA 1

Open note Hit 303 Relevant 384 Precision 95.6%
Miss 81 Retrieved 317 Recall 78.9%
Dur 300 99.0%
Pitch 290 95.7%
FA 14

Closed note Hit 756 Relevant 826 Precision 94.5%
Miss 70 Retrieved 800 Recall 91.5%
Dur 734 97.1%
Pitch 693 91.7%
FA 44

Total Hit 2822 Total relevant 3318 Total Precision 96.2%
Total retrieved 2934 Total Recall 85.1%

Perc. Dur
Perc. Pitch

Perc. Dur
Perc. Pitch
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