
Modelling the evolution of theory of
mind

Lise Pijl
March 2011

Master Thesis
Artificial Intelligence

Dept of Artificial Intelligence
University of Groningen, The Netherlands

Prof. dr. L. C. Verbrugge (Artificial Intelligence, Univer-
sity of Groningen)
Dr. B. Verheij (Artificial Intelligence, University of Gronin-
gen)

Abstract

Theory of mind is the ability to attribute mental states to others and un-
derstand that these may be different from our own (Premack and Woodruff,
1978). This ability allows us to reason about the beliefs, intentions and goals
of others. Some examples of behavior that require theory of mind are co-
operation, deception and communication (Baron-Cohen, 1999). We discern
different orders of theory of mind. Zero-order theory of mind is not about
the mental states of others but about real events. First-order theory of mind
allows us to reason about the mental states of others. Second-order theory
of mind allows us to reason about what other people think about our mental
states. It is assumed that our capability of theory of mind is innate (Brüne
and Brüne-Cohrs, 2006), but it takes a few years to fully develop in humans.
From the age of two to five, children learn to master first-order theory of
mind (Wellman et al., 2001). When children are around six and seven years
old, they learn how to apply second-order attribution correctly (Perner and
Wimmer, 1985). Whether animals are capable of theory of mind is still
under debate (Penn and Povinelli, 2007; Burkart and Heschl, 2007).

There are different theories why humans have evolved theory of mind.
It has been suggested that the need for cooperation (Moll and Tomasello,
2007) or the need to deceive and manipulate others or mixed-motive in-
teractions (Verbrugge, 2009) lead to the evolution of theory of mind. A
fourth hypothesis is that theory of mind follows from larger group sizes due
to changes in habitat (Dunbar, 1992). To these hypotheses we add another
one: a competition environment may lead to the evolution of theory of mind.

To test this hypothesis we constructed an agent-based model. In this
model, we let agents interact competitively with each other. Agents select
their actions based on logical rules. Each agent uses the same mechanism
to select their actions and this is common knowledge. The logical rules are
evolved over time. The rules in an agent’s rule database reflect the agent’s
capability of theory of mind. Based on the agent’s beliefs on the beliefs of
its opponent, the agent selects its actions. The advantage of this approach
is that the agent’s rules and beliefs are insightful.

We ran experiments in which we varied the following parameters: re-
production method (either one-point crossover or linked genes), population
size and mutation probability. In 17 of the 18 simulations with one-point
crossover the average highest-order rule in the population was second-order
or higher. In the simulations where agents reproduced using linked-genes 9

i

ii ABSTRACT

of 18 simulations resulted in an average highest-order rule in the population
of second-order or higher. This lower percentage of evolution of second-
order rules may be due to the fact that the size of of the rule database was
significantly smaller in the simulations where the agents reproduced using
linked-genes than with one-point crossover.

We expected that n+1-order rules do not persist in the population when
agents do not use n-order rules. We found that this was the case in 32 of 36
simulations.

In this project we showed that theory of mind evolves in a competition
setting. We conclude that evolving rule databases is an insightful method
to investigate the possible driving forces behind the evolution of theory of
mind.

Contents

Abstract i

Chapter 1. Introduction 1
1.1. Theory of mind 1
1.2. Research question 2
1.3. Why an agent-based computer simulation 3

Chapter 2. Theoretical Background 5
2.1. Theory of mind in humans 5
2.2. Theory of mind in animals 8
2.3. Evolution of higher-order attribution in humans 15
2.4. Research methodology 18
2.5. Modeling the evolution of higher-order theory of mind 19
2.6. Chapter summary 22

Chapter 3. An agent-based model of the evolution of theory of mind 25
3.1. Task choice 25
3.2. Proposed task 26
3.3. Inferring actions and beliefs 27
3.4. Competitive Environment 45
3.5. Evolution of the rule database 46
3.6. Experiments and expected results 49
3.7. Chapter summary 51

Chapter 4. Results 53
4.1. Analysis 53
4.2. Example of a rule database 55
4.3. Short-cut rules 60
4.4. Evolution of higher-order rules 60
4.5. Errors in reasoning 61
4.6. Order of rules 62
4.7. Number of interactions 63
4.8. The effect of reproduction 64
4.9. The effect of the number of agents 64
4.10. The effect of the mutation probability 65
4.11. Summary 66

Chapter 5. Discussion 67

iii

iv CONTENTS

5.1. The role of competition in the evolution theory of mind 67
5.2. Evolving higher-order rules 67
5.3. Interpretation of theory of mind in the model 68
5.4. Relevance for research on theory of mind 69
5.5. Simulations 69

Chapter 6. Conclusion and future work 71
6.1. Conclusion 71
6.2. Future work 72

Appendix A. Results of the experiments 75
A.1. Overview experiments 75
A.2. Comparing reproduction method 75
A.3. Comparing mutation probabilities 86
A.4. Comparing population size 88
A.5. Plots ordered on rule database size 89

Appendix B. Model manual 99
B.1. Requirements 99
B.2. Running the simulation 99
B.3. Parameter files 99
B.4. Possible problems 101

Appendix C. Experiment data 103
C.1. The folders RdbRun0, RdbRun1, and so on 103
C.2. The files avgOrder1.csv, avgOrder2.csv, and so on 103
C.3. The files dominanceValues1.csv, dominanceValues2.csv, and so

on 103
C.4. The files evolvedRules1.txt, evolvedRules2.txt, and so on 103
C.5. The file experimentData.csv 103
C.6. The files orderSpread1.csv, orderSpread2.csv, and so on 104
C.7. The files preference0.csv, preference1.csv, and so on 104
C.8. The files results0.txt, results1.txt, and so on 104

Appendix. Bibliography 105

CHAPTER 1

Introduction

To interact with others, we greatly rely on social cognition skills. One of
these skills is theory of mind. Theory of mind is the ability to attribute
mental states such as beliefs, desires and intentions to others. Since such
mental states are not directly observable, we form theories about them.
Theory of mind is innate in humans, but it takes several years before the
skill is fully developed (Brüne and Brüne-Cohrs, 2006). Whether animals
are capable of some form theory of mind is still under discussion.

In the ongoing research on the development of human intelligence many
questions are yet unanswered. One of these questions is how and why hu-
mans are capable of theory of mind and why we are so good at it compared
to other animals. So far, we have only been able to theorize about the driv-
ing force behind the evolution of theory of mind. It has been suggested that
competition, cooperation or mixed-motive interactions may have played a
role (Verbrugge, 2009).

In this thesis a new approach to learn more about the evolution of theory
of mind is discussed. We develop an agent-based model where agents interact
using rules that may reflect theory of mind. These rules evolve over time.
Using this model we test different hypotheses on an agent population.

In this chapter we briefly introduce theory of mind and the research
questions and discuss why an agent-based computer simulation is used to
investigate these questions. In chapter 2 we discuss research on theory of
mind in more detail, elaborate on the research methodology we applied and
discuss several design choices of the model based on existing literature and
research.

1.1. Theory of mind

Premack and Woodruff (1978) first introduced the term theory of mind
in 1978. To be capable of theory of mind means that an individual is able
to attribute mental states to others and can understand that these mental
states may be different from its own.

We discern different orders of theory of mind (image 1.1). An individual
without theory of mind has a zero-order theory of mind. First-order theory
of mind is the capability to attribute mental states to others. Second-order
theory of mind is the capability to attribute mental states to others and also
the capability recognize that others may have a theory of mind about your
own state.

1

2 1. INTRODUCTION

Figure 1.1. The leftmost agent has a zero-order theory of
mind. It has no theory about the mental states of others.
The middle agent has a first-order theory of mind; it has a
theory about the mental state of the first agent. The right
agent has a second-order theory of mind.

Adults are capable of performing up to fourth-order theory of mind just
above chance level (Kinderman et al., 1998). This capability is innate, but
it takes several years before the skill is fully mastered. Whether animals are
capable of theory of mind is still under discussion. Behavior is found that
may indicate that some animals are capable of first-order theory of mind
(Hare et al., 2000, 2001; Call and Tomasello, 2008; Moll and Tomasello,
2007; Burkart and Heschl, 2007; Clayton et al., 2007), but there are also
other explanations for that behavior that do not involve theory of mind
(Penn and Povinelli, 2007; Burkart and Heschl, 2007).

1.2. Research question

At some point in primate development, first-order and higher-order the-
ory of mind arose. There are different theories on the driving force behind
the evolution of first-order theory of mind (Dunbar, 1996) and higher-order
theory of mind (Verbrugge, 2009): cooperation, mixed-motive interactions
and misleading and deception. In this thesis we focus on one hypothesis:
competition is a driving force behind the evolution of theory of mind.

To gain insight into how and why higher-order theory of mind evolved,
we want to investigate whether competition could be a possible explana-
tion for the evolution of theory of mind. To that end, we built a computer

1.3. WHY AN AGENT-BASED COMPUTER SIMULATION 3

model where we let heterogeneous and autonomous individuals interact. In-
dividuals will decide their actions using a rule database, which evolves over
generations. In this project we address the following questions:

• Can competitive interaction between individuals in a simulated
non-spatial environment give rise to the evolution of higher-order
theory of mind?
• Will an n+ 1-order attribution evolve only when the larger part of

the population has the ability of n-order attribution?

1.3. Why an agent-based computer simulation

To contribute to the research on the question whether higher-order the-
ory of mind arose from competitive interaction, we have built an agent-based
computer simulation where the agents choose their actions using a knowl-
edge base. There have been experiments with successfully evolving rule
databases before (Van der Vaart and Verbrugge, 2008; Grefenstette, 1992).
The gain of this approach is that the evolved rules are insightful. We do not
only gain insight into the behavior of the agents, but also in their mental
underpinnings.

Obviously we cannot reproduce the evolution of theory of mind in real
life. Simulating the evolution allows us to gain insight into the process much
more rapidly. Furthermore, we can control the virtual environment and ex-
periment with parameters that may influence the process. This is discussed
more thoroughly in chapter 2.

In the next chapter we discuss research on theory of mind in more detail,
elaborate on the research methodology we applied and discuss several design
choices of the model based on existing literature and research. In Chapter
3 the model is discussed in more detail. In Chapter 4 we present the results
of the simulations. These results will be discussed in Chapter 5. In the final
chapter we summarize our findings and present our conclusions. The model,
the data from the simulations and a PDF version of this thesis can be found
on http://tom.lisepijl.nl.

http://tom.lisepijl.nl

CHAPTER 2

Theoretical Background

Theory of mind provides us with the ability to learn from others and teach
others, to understand their motivations and goals, and to deceive and mis-
lead others. Humans are quite adept at it; most animals, however, are not.
In this chapter we provide an overview of research on theory of mind. We
look at the use of theory of mind in humans, and present research on the
ability of theory of mind in animals. Next, we discuss several hypotheses
on when and why we humans have evolved theory of mind. Then, a short
introduction in research methodology on agent-based simulations is given.
Lastly, we provide a short introduction on the algorithms that will be used
to evolve theory of mind in a computer-simulation.

2.1. Theory of mind in humans

The term theory of mind was first coined by Premack and Woodruff
(1978). They define theory of mind as follows:

An individual has a theory of mind if he imputes mental
states to himself and others.

This means that an individual has a theory of mind if he thinks of
other individuals as individuals with their own mental states such as beliefs,
intentions and goals. Next, the individual must realize that he himself has
beliefs, intentions, goals and so on and that those of others may be different
from his own. When interacting with others, reasoning about the mental
states of others allows us to predict and understand behavior of others.
These mental states cannot be directly observed. This makes reasoning
about the mental states of others quite a challenge. We can only observe
the behavior of others and derive a theory about the other’s mental state.
Usually, when we interact with another human, we assume that he too has
a theory of mind. Reasoning about what the other believes that we believe
requires a higher-order theory of mind, as will be explained next.

Perner and Wimmer (1985) provide an example of the use of first-order
and higher-order beliefs. The story is about John and Mary, who are both
interested in the location of an ice-cream van. John and Mary are both
at the park and it is announced that the van will stay in the park for the
afternoon. However, when Mary is on her way home and John is still at the
park, it is announced in the park that the van will be at the church for the
rest of the day. So, Mary does not know that the ice-cream van moved to

5

6 2. THEORETICAL BACKGROUND

the church. Now, we could ask ourselves the following question: where does
Mary go when she wants to get an ice cream? To answer this question we
have to access our mental representation of Mary. If we use our theory of
mind capabilities, we would answer that Mary will go to the park. After all,
she does not know that the ice-cream van moved to the church. She thinks
the van is in the park. This is an example of first-order belief attribution.

The story continues. When Mary is on her way home, the ice-cream van
passes. Mary asks the driver where he is going and he answers that he will
be at the church for the rest of the day. We then ask the following question:
where does John think Mary thinks the ice-cream van will be during the rest
of the day? To answer this question, we have to access our mental model of
John and therein his mental model of Mary. John does not know that Mary
knows that the van will be at the church. He believes that Mary believes
that the ice-cream van is still at the park. Therefore, we think that John
will think that Mary thinks that the ice-cream van is still at the church.
This is an example of second-order theory of mind or second-order belief at-
tribution, because we have to access two mental states (John’s mental state
of Mary’s mental state) to answer the question.

In philosophy, there are two approaches to theory of mind: theory-theory
and simulation-theory. In theory-theory it is assumed that when we use
theory of mind to predict or explain behavior, we use a theory of human
behavior. We are born with cognitive skills, but we need to learn theories to
make sense of the world. By observing and experimenting in the social world,
we develop and modify theories (Whiten, 2002). We learn that imputing
mental states on others help to accurately predict and explain the actions
of others. Children learn over time that first-order theory of mind does not
always give the expected results and more sophisticated forms of theory of
mind are developed.

The alternative is that instead of constructing a theory, we use our own
minds to simulate what the other may believe. One way to answer the
question ‘where will Mary go when she wants to get an ice cream’ is to put
ourselves in the shoes of Mary and use what we know of Mary’s observa-
tions to simulate her thought process (Cruz and Gordon, 2002). Thus far,
the debate whether theory-theory or simulation-theory describes theory of
mind better has not been solved.

As shown, theory of mind allows us to reason about the behavior of
others. But it also facilitates other types of behavior. Baron-Cohen (1999)
provides us with a list of types of behaviors that require theory of mind
(see below). He argues that the evolution of theory of mind like language
or bipedalism is a major milestone in primate evolution. After all, language
requires a theory of mind. Language allows for changing the knowledge
state of the listener. However, this requires one to know that the listener

2.1. THEORY OF MIND IN HUMANS 7

has indeed knowledge that can be influenced or changed. It requires a theory
of mind.

Other types of behavior that require theory of mind according to Baron-
Cohen (1999) are:

• Intentionally communicating with others Here, communica-
tion refers to the acts undertaken to change the knowledge state
of the listener. A dog who is barking at a cat may not intend to
change the knowledge state of the cat, but simply to make the cat
run away. To intentionally inform others requires the belief that
others have minds that can be informed.
• Repairing failed communication It requires a theory of mind to

understand that a message may not be understood and the message
needs to be communicated again in a different way.
• Teaching others When teaching one wants to change the knowl-

edge state of a less knowledgeable listener.
• Intentionally persuading others Persuading is changing some-

one else’s belief about something. Although the goal is often to
change the behavior of the other, it is realized by changing the
belief and intention state of the other.
• Intentionally deceiving others As above, intentionally deceiv-

ing others has as goal to change the belief state of the other. In
contrast, an animal with camouflage, whose appearance saves it
from being eaten by a predator, is not engaging in a deception that
requires theory of mind.
• Building shared plans and goals When sharing a goal with

another person, both must recognize the intention of the other and
work out how to coordinate their actions with those of the other
to achieve the shared goal. Animals hunting in packs may seem
to work together, but often they fail at building shared plans and
goals.
• Intentionally sharing a focus or topic of attention Looking

at the same target at the same time is not shared attention if each
is only aware of his own point of view. Shared attention requires a
theory of mind only if both individuals are aware of the other being
aware of looking at the same target.
• Pretending is to temporarily treat an object as if it were another,

or as if it had attributes that it clearly does not have. It requires
theory of mind in the sense that the pretender has to switch be-
tween thinking about his own knowledge of the real identity and
the pretend identity.

Despite the usefulness of theory of mind, it takes several years before
humans are capable of applying it correctly even though it is assumed that
our capability of theory of mind is innate (Brüne and Brüne-Cohrs, 2006).

8 2. THEORETICAL BACKGROUND

One-year old infants are already remarkably adept in goal recognition (first-
order theory of mind)(Gergely et al., 1995; Woodward, 1998), but they fail
at realizing that individuals may have beliefs different from their own. Then,
from the age of two to five children acquire full competence on first-order
theory of mind tasks (Wellman et al., 2001). When children are around
six and seven years old, they learn how to apply second-order attribution
correctly (Perner and Wimmer, 1985). Interestingly, it turns out that the
children’s application of second-order theory of mind depends on the task
that has to be carried out (Flobbe et al., 2008). Kinderman et al. (1998)
found in an experiment with undergraduates that the participants perform
up to fourth-order theory of mind just above chance level. 10 and 11 year-
olds perform at third-level theory of mind just above chance (Liddle and
Nettle, 2006). This, together with the findings by Flobbe et al. (2008) sug-
gest that children continue developing their theory of mind abilities through
their school years.

Liddle and Nettle (2006) also found that, not unexpectedly, the level of
theory of mind correlates with a person’s social competence. Children in
the age of ten and eleven years old were tested on their level of theory of
mind. They mention research by others which indicates that the develop-
ment of theory of mind is strongly influenced by non-heritable factors, such
as the quality of parental interaction, quantity of sibling and other family-
interaction and social deprivation and maltreatment. In their research they
found a correlation between the social competence of the children and their
level of theory of mind. Furthermore, a lower theory of mind-level was found
in schools with a socio-economic disadvantage.

In this section we discussed what theory of mind is, how it develops
in humans and what kind of behavior theory of mind facilitates. We are
perhaps not unique in our theory of mind ability. In the next chapter we
discuss theory of mind in animals.

2.2. Theory of mind in animals

Humphrey (1976) suggested that the primary driving force behind the
evolution of human intelligence is social competition that follows from living
in groups. Living in groups has its advantages. The chance of being killed by
a predator decreases when living in a large group for several reasons (Dunbar,
1996, p. 17). Humphrey (1976) provides another advantage. He argues that
for an individual to stay alive, not much creative intelligence is required.
Seemingly advanced techniques such as beating a termite heap with a stick to
encourage them to come to the surface, only requires trial-and-error learning
or imitation of others and not necessarily advanced reasoning techniques.
He guesses that most of the practical problems higher primates face, can be
dealt with by learned strategies. When learning those strategies, primates
benefit highly from living in a group. Young primates can safely learn by

2.2. THEORY OF MIND IN ANIMALS 9

imitation and trial-and-error whilst being taken care of by other primates.
Older animals remain useful as teachers.

However, the presence of dependent animals requires unselfish behav-
ior. Humphrey suggests that although every individual ‘is essentially selfish,
playing only to win, the selfishness of social animals is typically tempered
by what, for want of a better term, I would call sympathy. By sympathy I
mean a tendency on the part of one social partner to identify himself with the
other and so to make the other’s goals to some extent his own’ (Humphrey,
1976, p. 313).

If this hypothesis is true, it is not strange that animal behavior that
may result from a form of theory of mind is found in animals with complex
social lives, such as humans, chimpanzees (Hare et al., 2000, 2001; Call and
Tomasello, 2008; Moll and Tomasello, 2007; Burkart and Heschl, 2007) and
corvids (Clayton et al., 2007). However, there is critique that behavior that
may result from theory of mind can be explained in terms of behavioral rules
(Penn and Povinelli, 2007; Burkart and Heschl, 2007).

In this section we present research on chimpanzees and corvids and dis-
cuss whether or not these animals are capable of some form of theory of
mind.

2.2.1. Primates. Hare, Call and Tomasello (2001) found chimpanzee
behavior that could be explained in terms of theory of mind. They devised
an experiment where the chimpanzees interacted in a competitive situation.
From their experiments they conclude that chimpanzees know what other
chimpanzees have and have not seen in the immediate past and that they
therefore know what other chimpanzees do and do not know and that they
use this information strategically.

The experimental setup is as follows (Hare et al., 2000) (see figure 2.1
on page 10). A dominant and subordinate chimpanzee are housed in four
adjacent cages. At the beginning of a trial, each chimpanzee is locked up
in one of the extreme cages. The door between the two center cages is
fully opened. The apes can access the two center cages through guillotine
doors. When these doors are partly raised, the chimpanzees can observe
a human placing pieces of food at various locations within the two center
cages. They can also see the other chimpanzee looking under its door. Some
food is placed somewhere in the open space; other food is hidden behind a
barrier so that the dominant chimpanzee cannot see the food. The question
is whether the subordinate ape knows that the dominant ape does not know
that food was placed behind the barrier and can therefore safely take it.
The main finding was that subordinates did indeed go more often to the
food that was hidden from the dominant chimpanzee. From this, Hare et al.
(2001) conclude that in competitive situations chimpanzees know what other
chimpanzees have or have not seen and therefore do and do not know.

10 2. THEORETICAL BACKGROUND

Figure 2.1. Experimental setup in the experiments by Hare
et al. (2001, pg. 142)

Reaux et al. (1999) performed an experiment on chimpanzees where the
chimpanzees begged for food from one of two experimenters. One of the ex-
perimenters could not look at the chimpanzee and therefore not observe the
begging gesture. When the subject begged for food from the experimenter
who could see, the chimpanzee was rewarded with a treat. Six treatment
conditions were used. In the first condition, both experimenters were hold-
ing opaque screens, but one experimenter used the screen to cover his face.
In the second treatment, both experimenters held a bucket, but one had
a bucket placed over his head. In the third condition, the eyes of one ex-
perimenter were covered by a blindfold whereas the mouth of the second
experimenter was covered. In the fourth treatment, one experiment had his
eyes closed whereas the other’s eyes were open. In the fifth condition, one
experimenter was paying attention to the subject whereas the second ex-
perimenter was looking at a location above and behind the subject. In the
last condition, one experimenter was facing the subject whereas the second
experimenter was seated with his back towards the subject.

The chimpanzees did not appear to understand that they should beg
from someone who could see them as opposed to someone who could not.
The chimpanzees seem to learn stimulus-based rules instead. For example,
they seemed to learn that orientation of the experimenter, the face and the
eyes related to the receiving of rewards.

The experiments mentioned are cooperation experiments. Moll and
Tomasello (2007) characterize a cooperation activity by three features. First,
the participants in the cooperative activity share a goal, to which they are
jointly committed. Second, and relatedly, the participants take roles in or-
der to achieve this joint goal. And third, the participants are generally
motivated and willing to help one another accomplish their role if needed.

From the experiments by Reaux et al. (1999) and other experiments
done by others, the Moll and Tomasello (2007) conclude that chimpanzees
fail at each of the three features that characterize cooperation. Although

2.2. THEORY OF MIND IN ANIMALS 11

chimpanzees failed in cooperation tasks they are not wholly unaware of the
intentions of humans. In other experiments chimpanzees did recognize what
the human experimenter tried to accomplish rather than what the human ex-
perimenter actually did (see for an overview Call and Tomasello, 2008). Call
and Tomasello conclude that chimpanzees understand the actions of others
not just in terms of surface behaviors but also in terms of the underlying
goals and possibly intentions. But they remark that ‘chimpanzees probably
do not understand others in terms of a fully human-like belief-desire psy-
chology in which they appreciate that others have mental representations
of the world that drive their actions even when those do not correspond to
reality.’

Hare et al. (2001) conclude from their experiments and experiments of
others that cooperation is a too unnatural situation for chimpanzees. Moll
and Tomasello (2007) too were not able to get chimpanzees to cooperate.
Hare et al. (2001) suggest that it is likely that primate social-cognitive abil-
ities evolved to a large degree to allow individuals to defeat competitors,
so it is in competitive settings that we are most likely to see these abilities
expressed.

Figure 2.2. Marmoset. (Photograph shared by Carmem A.
Busko under the Creative Commons Attribution 2.5 Generic
license.

The experiment by Hare et al. (2001) was repeated by Burkart and
Heschl (2007) with marmosets. Marmosets are small, New World monkeys
(see figure 2.2 on page 11). Burkart and Heschl subjected the marmosets
to the same test as Hare et al. (2001) did. They also found that subordi-
nate marmosets prefer to take the hidden food over the food visible to the
dominant marmoset. To verify whether marmosets indeed know what the
other does or does not see, they performed a second experiment on the mar-
mosets. The marmosets had to select one out of six containers where only
one container contained food. The gaze of the human experimenter could
be used as a cue to select the right container. The containers were attached
to a wooden board; three on one side and three on another side. The board

12 2. THEORETICAL BACKGROUND

was either vertically or horizontally attached to the wall. The experimenter
was positioned in such a way that he could see only one side of the board,
so that he could see three containers while the other three were hidden from
him (see figure 2.3 on page 12). The marmoset could see the experimenter
and all six containers from its initial position.

Figure 2.3. Experiment by Burkart and Heschl (2007). In
a) the experimenter is positioned either left or right from the
board. In b) the experimenter is positioned either above or
below the board. On each side of the board, three contain-
ers are attached but only one is baited. The human experi-
menter indicated the baited container with a gaze from the
corresponding side.

When the marmoset was released from its cage (from which he could
not see the experimental setup), the experimenter was already providing
the gaze cue (head and body turned towards the container with food in
it and looking at the container). The marmoset was allowed to select one
container. Overall, the marmosets did not select the container with food
in it more than could be expected by random behavior. Neither did the
choice of the correct side of the board deviate from chance level. However,
the correct position of the baited container (regardless of the side on the
board) was selected above chance level. This suggests that marmosets do

2.2. THEORY OF MIND IN ANIMALS 13

not differentiate between what the experimenter could or could not see.
They were not able to deal with the visual barrier, but they did follow the
gaze of the experimenter to select the container.

Burkart and Heschl (2007) provide two possible explanations for the
discrepancy in the findings from these two experiments. The first is that
marmosets are able to understand what other individuals do or do not see
but they did not show it in the second experiment. This could be due to the
unnatural setting of the experiment. A second explanation could be that
marmosets do follow the gaze of others, but do not use the knowledge of what
the other is looking at to infer what the other may or not know. Instead, in
the competition experiment, they may use a two-step mechanism where the
marmosets first follow the gaze of the dominant competitor to the visible
piece of food and subsequently treat the look-at piece of food as belonging to
the dominant competitor. Therefore, the subordinate chooses the remaining
piece of food that is hidden from the view of the dominant marmoset.

This hypothesis was tested by presenting two pieces of food to the mar-
mosets. One group had to learn to pick the piece of food that was directly
looked at by the experimenter. The other group had to learn to pick the piece
of food that was not looked at by the experimenter. If the marmoset would
start to grasp the wrong piece of food, the experimenter quickly snatched
it away. It was hypothesized that marmosets would learn to use the human
gaze as a cue for avoiding a piece a food more quickly than using the gaze
as a cue for choosing a piece of food. These results were indeed found. The
group that had to choose the piece of food that was looked at by the ex-
perimenter performed on chance level. The group that had to choose the
piece of food not looked at by the experimenter consistently performed above
chance level. This supports the hypothesis that marmosets treat a piece of
food that is already looked at by another individual as belonging to that
individual and therefore avoid it. This would require no theory of mind at
all.

2.2.2. Corvids. Next to chimpanzees and marmosets, corvids (a fam-
ily of songbirds including crows and ravens) show behavior which could be
explained in terms of theory of mind. Corvids live in social societies which
share several features in common with chimpanzees. They live in a fission-
fusion society (a social group sleep together, but forage in small groups
during the day), form long-term alliances and understand third-party rela-
tionships. Young corvids experience a long developmental period in which
the juveniles interact with individuals who are not necessarily relatives. This
allows the juvenile to learn from many different group members. Another
commonality between corvids and primates is the relative size of their brains.
Corvids have the largest brains relative to their body size of any family of
birds, and the same relative size as that of apes (cited in Clayton et al.,
2007).

14 2. THEORETICAL BACKGROUND

Clayton et al. (2007) did experiments on western scrub-jays. Scrub-
jays, like most corvids, hide their food (caching), so that they can retrieve it
later. However, their caches are susceptible to pilfering by other individuals.
Corvids have different strategies to prevent their caches being pilfered. For
example, they tend to cache in areas where the density of conspecifics is very
low. If other corvids are present, they will wait with caching until potential
pilferers are hidden from view by a barrier or until they are distracted.
Other protective measures include caching food while being hidden behind
a barrier as opposed to caching in full view. This alone does not indicate
necessarily that the scrub-jay is aware what the observer does or does not
see. The researchers propose a simpler solution. They suggest that the
cachers are responding to what they themselves can see. When they cache
behind a barrier, the observer is effectively out of sight and therefore perhaps
out of mind.

However, scrub-jays also prefer to cache in a shady location as opposed
to a well-lit location and far away from an observer as opposed to close to
the observer. The ‘out of sight, out of mind’-hypothesis would not explain
this kind of behavior. This might indicate that a scrub-jay does know what
the other does or does not see. Still, approximately 25% of the caches
are not at the location which may seem optimal to us, such as behind a
barrier or in a shady spot. Earlier research seems to suggest that the cache
location also depends the social status of that competitor. For instance, the
social relationship between a cacher and an observer affects the choice of
the caching location. In an experiment by Clayton et al. (2007) scrub-jays
were given food to cache when another scrub-jay was present. The scrub-
jay could cache its food close to the other scrub-jay or further away. In
presence of a dominant scrub-jay or a subordinate scrub-jay the food was
cached further away significantly more often. When a scrub-jay was alone,
there was no significant difference between the choice of the two options.
Also, when a scrub-jay’s partner was present, no significant difference was
found. This may indicate that scrub-jays do not perceive their partner as a
competitor.

Another protective measure is re-caching food. When scrub-jays are
observed by a conspecific caching their food in a certain tray, they re-cache
their food. In fact, experiments support the hypothesis that scrub-jays
remember which individuals watched them cache and use this information
to re-cache their food. Does this mean that scrub-jays are capable of theory
of mind or know what others have or have not seen? Clayton et al. (2007,
p. 519) say on this: ‘In short, these studies show that scrub-jays keep an
eye on competition and protect their caches accordingly. Such behaviour
would appear to meet the behavioural criteria for one form of theory of
mind, namely knowledge attribution, if by the term we mean the ability to
attribute different informational states to particular individuals.’

However, it turned out that not all scrub-jays re-cache their food. In
a previous experiment it was found that re-caching behavior does not only

2.3. EVOLUTION OF HIGHER-ORDER ATTRIBUTION IN HUMANS 15

depend on whether the scrub-jay was observed earlier by another scrub-
jay, but it depended also on previous experience as a thief. Experienced
thieves engaged in re-caching much more often than birds who had never
been thieves in the past. This means that re-caching is not innate behavior.
This type of behavior is called experience projection. According to Clayton
et al. (2007) experience projection ‘refers to a second form of theory of mind,
namely the ability to use one’s own experiences, in this case of having been
a thief, to predict how another individual might think or behave, in this case
what the potential pilferer might do.’ So does the behavior of the scrub-jays,
chimpanzees and the marmosets as described above result from a theory of
mind?

2.2.3. Alternative explanation for theory of mind-like behav-
ior. Penn and Povinelli (2007) provide an alternative explanation for the
behavior of the chimpanzees and corvids. They show that the behavior of
chimpanzees in the experiments of Hare et al. (2000, 2001) and the behavior
of corvids in the experiments of Clayton and Emery (Clayton et al., 2007)
do not necessarily require a theory of mind. For example, in the experiment
run by Hare et al. (2001), it is possible to explain the behavior of the chim-
panzees not in terms of theory of mind, but rather in terms of perception
and memory of recent events. For example, the strategy of the subordinate
could simply be something like ‘Don’t go after food if a dominant who is
present has oriented towards it’.

For the experiments on corvids (Clayton et al., 2007) the same criticism
holds. Although it is possible that corvids are capable of reasoning on the
goals or observations of other corvids, it is equally possible that they have
simply learned rules as ‘re-cache food if a competitor has oriented towards
it in the past’ or ‘attempt to pilfer food if the competitor who cached it is
not present’ or ‘try to re-cache food in a site different from the one where it
was cached when the competitor was present’ and so on.

2.2.4. Summary. Based on the experiments described above, we con-
clude that there is no conclusive evidence that chimpanzees and corvids are
capable of full theory of mind as humans do. Although the behavior of the
chimpanzees and corvids can be explained in terms of theory of mind, they
can also be explained in terms of behavioral rules.

Behavior that might indicate a theory of mind is so far only observed in
a competition setting, as mentioned above. Therefore, we will examine in
this Master thesis the evolution of theory of mind in a competition setting.

2.3. Evolution of higher-order attribution in humans

As inconclusive as research about the existence of theory of mind in non-
human primates and other animals is, just as inconclusive is research about
the origins of first-order theory of mind and higher-order theory of mind in

16 2. THEORETICAL BACKGROUND

humans. There are, however, theories on the evolution of first-order theory
of mind and higher-theory of mind, which we will discuss in this section.

2.3.1. When did theory of mind evolve. When theory of mind
first arose among humans is not clear. We will discuss two possible options
(Baron-Cohen, 1999). The first holds that the capability of theory of mind
in humans evolved as early as 6 million years ago. The second hypothesis
holds that theory of mind evolved 30,000 years ago.

If existing monkey and ape species have a theory of mind, we can as-
sume that theory of mind evolved as early as the common ancestor between
us. This would have occurred 6 million years ago. However, there is no
convincing evidence that apes are capable of applying theory of mind (see
section 2.2). Also, none of the eight behaviors that require theory of mind as
mentioned by Baron-Cohen (1999) (see page 7) are displayed by non-human
primates or other animals.

The second theory holds that theory of mind arose 30,000 years ago.
This theory is supported by palaeo-archaeological evidence. Around that
time, statues of impossible entities were made, such as the half-man-half-
lion ivory statuette (see figure 2.4) from Holhenstein-Stadel, Germany, and
the painting of the half-man-half-reindeer (see figure 2.5), in Trois-Freres,
France, both dated around 30,000 years ago. These forms of art are inter-
esting because they are representations of imaginary persons. This shows
that the artist was capable of pretend play, since the animal depicted never
existed, only in the artist’s imagination. Pretend play requires a theory of
mind (see page 7).

Second, archaeological evidence shows that our ancestors were concerned
with death, because they buried other individuals. Around 28,000 years ago,
dead persons were adorned with jewelry. This might show that the decorator
cared about how other people either now or in the afterlife perceived the
adorned person. It requires theory of mind to care about how other people
perceive oneself or are perceived by them.

Interestingly, it is during that same period that the life span of individu-
als began to increase significantly, indicating increased survivorship of older
adults through human evolution (Caspari, 2004). Caspari and Sang-Hee
(2006) suggest that this is perhaps not directly a result of some biological
attribute, but the result of cultural adaptations. So what does this tell us
about the evolution of theory of mind in humans? As far as we can see,
not much at this point. But the research mentioned above does show that
archeology and anthropology might provide some valuable clues about the
circumstances at the time humans might have evolved the ability to apply
theory of mind.

2.3.2. Possible drives for the evolution of higher-order theory
of mind. In this Master’s project we are not so much concerned with the
question when theory of mind evolved in humans, but rather we want to
know how and why we humans evolved this ability. Different theories are

2.3. EVOLUTION OF HIGHER-ORDER ATTRIBUTION IN HUMANS 17

Figure 2.4. Half-man-half-lion statuette from Holhenstein-
Stadel, southern Germany

Figure 2.5. Half-man-half-reindeer painting from Trois-
Freres, France

proposed concerning the evolution of higher-order theory of mind in humans.
First, we discuss why humans have evolved first-order theory of mind in the
first place.

As mentioned in section 2.2 living in social groups provides several ad-
vantages. Among others, it allows individuals to learn from each other.
First, young animals are allowed a prolonged period in which they can freely
experiment and explore while being taken care of by older animals. Second,
they are brought into contact with older individuals from which they can
learn by imitation. However, since both young and older animals are de-
pendent on others, such learning and caretaking requires unselfish sharing
from other animals (Humphrey, 1976). For this to work, it is assumed that
theory of mind emerged as an adaptive response to increasingly complex
social interaction (Brüne and Brüne-Cohrs, 2006). First-order theory of
mind allows individuals to understand and predict the behavior of others to

18 2. THEORETICAL BACKGROUND

a certain degree. So why should we benefit from a higher-order theory of
mind?

Some authors claim that higher-order social cognition arose because of
the need for cooperative planning; others that it provided social glue by
enabling gossip and language (Dunbar, 1996). Dunbar (1992) argues that
the need for cooperative planning and language follows from larger primate
group sizes that were the result of a change of habitat. Others suggest
that the main purpose of higher-order social cognition was to manipulate
and deceive competitors (cited in Verbrugge, 2009) or recognize deception
(Brüne and Brüne-Cohrs, 2006). To these theories, Verbrugge (2009) adds
the theory that the need for mixed-motive interactions such as negotiation
explains evolution of higher-order theory of mind.

To gain insight into how and why higher-order theory of mind was
evolved, we suggest to build a model in which we try to facilitate the evo-
lution of a higher-order theory of mind. In particular, we test the theory
that the situation of agents in a competitive environment might result in the
evolution of higher-order theory of mind. If we can show that competitive
interaction between individuals can result in the evolution of higher-order
theory of mind, the competition hypothesis could provide an explanation
for the fact that humans evolved higher-order theory of mind.

2.4. Research methodology

To test our hypothesis we will build and examine an agent-based com-
putational model. An agent-based computational model makes it possible
to find possible explanations for regularities that results from the local in-
teractions of heterogeneous agents. Often, an explanation cannot be found
otherwise, because experiments (for example in real life) would take too long,
involve too many test subjects or because it is not possible to vary just one
property of the system. Phenomena that have been researched using agent-
based computational models are economic classes, spatial unemployment
patterns, segregation, epidemics, traffic congestion patterns, alliances and
voting behaviors (Epstein, 2006).

In an agent-based computational model, heterogeneous agents interact
locally with each other. Each individual determines its own behavior based
on local information (bounded information). The setup of the individu-
als and the environment is the micro-specification. If a microspecification
generates a macrostructure of interest (such as traffic congestion patterns
or segregation, as mentioned above), then the microspecification provides
a candidate explanation. Generating a macroscopic regularity from a mi-
crospecification may provide understanding of the regularity. This way of
finding explanations for macro regularities is called generative social science
(Epstein, 2006). The motto of generative social science according to Epstein
could be: ‘If you did not grow it, you did not explain its emergence’.

2.5. MODELING THE EVOLUTION OF HIGHER-ORDER THEORY OF MIND 19

In this project, we will try to grow evolution of higher-order theory of
mind. As mentioned before, our microspecification will be the competitive
setting. Growing higher-order theory of mind from a competition setting
may show that the competition hypothesis is a feasible one.

2.5. Modeling the evolution of higher-order theory of mind

To gain insight into how and why higher-order theory of mind was
evolved, we will investigate whether theory of mind is evolved in a pop-
ulation of agents who interact competitively. We prefer to model evolution
over learning. In this project, we will evolve theory of mind in terms of
rules. Below, we argue why.

2.5.1. Learning or evolution. There are two options for developing
higher-order theory of mind in a computer simulation: learning and evolu-
tion. Nolfi and Floreano (1999) describe the difference between evolution
and learning as follows.

Evolution is a process of selective reproduction and substi-
tution based on the existence of a geographically-distributed
population of individuals displaying some variability. Learn-
ing, instead, is a set of modifications taking place within
each single individual during its own life time. Evolution
and learning operate on different time scales. Evolution is
a form of adaptation capable of capturing relatively slow
environmental changes that might encompass several gen-
erations, such as perceptual characteristics of food sources
for a given bird species. Learning, instead, allows an indi-
vidual to adapt to environmental changes that are unpre-
dictable at the generational level.

This, however, does not mean that every skill is either only evolved
or only learned. For example, although it seems that humans evolved the
innate capability to learn and express language, much learning is required
before a human is able to use language correctly. This might also be true of
higher-order theory of mind. The ability is innate, but it requires experience
to bring it to fruition. Because the ability is innate, we prefer evolution over
learning.

2.5.2. Representing theory of mind in rules. We test the theory
that the situation of agents in a competitive environment might result in the
evolution of higher-order theory of mind. If we can show that competitive
interaction between individuals in a simulation results in the evolution of
higher-order social cognition, the competition hypothesis could provide an
explanation for the fact that humans evolved higher-order theory of mind.
To achieve this, we will supply every agent with a rule database that will be
evolved over time. If higher-order theory of mind arises, this will be clearly
visible in the evolved rules.

20 2. THEORETICAL BACKGROUND

Evolving rules in agent-based simulations has been done before (Van der
Vaart and Verbrugge, 2008; Grefenstette, 1992) and the results are promis-
ing. The agents in these experiments were quite capable of adapting to their
environment. The experiment described by Van der Vaart and Verbrugge
(2008) was a pilot project where the possibilities of evolving rules were ex-
plored. The rules of the agent determined the actions. Although there was
no intention to specifically evolve first-order theory of mind, the specifica-
tions did allow for the evolution of rules that represent theory of mind. In
this project, we will explore the possibilities of evolving rules that represent
first-order and higher-order theory of mind further.

The advantage of evolving rules is that existing knowledge can easily
be incorporated in the initial knowledge database (Grefenstette, 1992). A
second advantage is that rules are insightful. We not only gain insight into
the effective behavior given a certain environment, but also into the mental
reasoning processes behind the action selection process (Van der Vaart and
Verbrugge, 2008).

2.5.3. Genetic algorithms. The rules will be evolved using a genetic
algorithm. Genetic algorithms are based on evolution (for more information
on genetic algorithms, see Mitchell, 1996) . A living thing has genes that
hold information how to build and maintain an organism. Genes are usually
inherited from one’s parent(s). Roughly, one can think of a gene as a trait,
such as eye color. For a mouse, it may encode the color of his fur. In
many cases, it is to the mouse’s advantage if the color of its fur matches the
colors of its environment, so it is not easily noticed by predators. Genes may
change due to mutation. This means that genes are not correctly copied, but
slightly altered. In many cases, a mutated gene does not result in a directly
observable change. If, however, it turns out that the color of the fur of a
mouse which lives in a dark environment is a few shades lighter than that of
its parents, it may get eaten before it gets a chance to reproduce. Or, if the
new tone of fur has a better match to the color of the environment, it may
be very successful at reproducing, because it will not get eaten. In terms of
evolutionary algorithms, it has a high fitness compared to its conspecifics.

Genetic algorithms use these principles from evolution. In our case, the
genes are the rules used to select actions (see next chapter for details). The
success of the agent’s actions determines the agent’s fitness. The agents with
the highest fitness will reproduce. We will use two reproduction methods in
this project: linked genes or crossover.

Using linked genes reproduction only requires one parent. The off-
spring inherits the genes of its parent. This method resembles cloning. For
crossover the genes of two parents are used to construct the offspring. The
genes of each parent are split at a random point. A child receives one part
of the genes from every parent. This is called cut and splice.

Next, the genes received are subject to some modifications due to muta-
tion. In nature this may be caused by damage due to chemicals, radiation

2.5. MODELING THE EVOLUTION OF HIGHER-ORDER THEORY OF MIND 21

or viruses or errors that occur during DNA replication. Mutation allows
animals or virtual agents to adapt to their environment.

2.5.4. Domination. We already mentioned that individuals will be
placed in a competitive setting. Individuals are constantly interacting with
each other. The outcome of an interaction depends on the rules an agent
uses (see next chapter for details). These rules are evolved using a genetic
algorithm. However, to be able to do that, a suitable fitness function is re-
quired. A fitness function determines how well the agents perform. Agents
with the highest fitness values are allowed to reproduce. Part of the fitness
function is the dominance value. The dominance value reflects the social
status of an individual. A higher dominance value may lead to better ac-
cess to food, mates, or safe locations (Hemelrijk, 1999). Losing a fight will
decrease the individual’s dominance; winning will increase it.

Hemelrijk’s DomWorld, an agent-based model used to explain domi-
nance interaction and social structures, contains a formula (2.5.1) that is
used to change the dominance of two interacting individuals (Hemelrijk,
1999; Hemelrijk et al., 2003). The parameter StepDom varies from 0 to 1
and represents the intensity of aggression. A high value results in a great
change in the domination value when updating it. A low value results in a
small change.

The variable wi describes whether agent i won or lost the dominance
interaction, where wi = 1 means that it won and wi = 0 that it lost (2.5.2).
Losing or winning an interaction is based on chance; if the relative domi-
nance value of individual i is larger than a random number between 0 and
1, individual i wins the dominance interaction.

DOMi+ = (wi −
Di

Di +Dj
) ∗ STEPDOM

DOMj− = (wi −
Di

Di +Dj
) ∗ STEPDOM(2.5.1)

wi =
[1 DOMi

DOMi+DOMj
> RND(0, 1),

0 else.
(2.5.2)

What is interesting about this equation is that even when both individ-
uals start with the same dominance value, which means that their chance
of winning a dominance interaction is equally large, one individual has a
significant larger dominance over the other after a few turns. This is called
the winner-loser effect. After winning a dominance interaction, the chance
increases that the next dominance interaction is also won, because of the in-
creased dominance value after winning the first interaction. This effect has
been observed in real animals too. Research on insects, rodents, molluscs,
fish and birds indicate that a previous aggressive interaction can influence
the individuals’ behavior in subsequent interactions (Chase et al., 1994).

22 2. THEORETICAL BACKGROUND

In our model, winning or losing an interaction is not based directly on
chance but on the outcome of a fight. When two individuals have won the
same number of fights, the winner-loser effect will show. The winner-loser
effect is interesting. However, we choose to omit this effect in our project.
If any regularities arise in the model, we would have to decide if this is a
result of the winner-loser effect or because of other properties of the model.
We choose to omit the winner-loser effect to reduce the number of factors
that may influence the evolution of theory of mind in this model. Therefore,
we use another method of calculating the dominance value. We propose not
to use the formula in (2.5.1), but simply use the average number of fights
won to represent the dominance value (2.5.3). This will make the dominance
values more insightful when interpreting the results of the experiments. The
chosen formula and its effects are discussed in section 3.4.

DOMi =
fightsWoni − fightsLosti
fightsWoni + fightsLosti

(2.5.3)

We will discuss our model more specifically in the next chapter.

2.6. Chapter summary

In this chapter we introduced theory of mind. Theory of mind allows us
to attribute mental states to oneself and others. Furthermore, it also allows
us to understand that the mental states of others may be different from our
own. There are different orders of theory of mind. Zero-order theory of
mind is not about the mental states of others. An example of a zero-order
sentence is: ‘I think the ball is in the basket’. First-order theory of mind
is about the mental states of others. An example of a first-order sentence
is: ‘I believe Sally believes the ball is in the box’. Second-order theory of
mind is the ability to understand that others may have a first-order theory
of mind about you. An example of a second-order sentence is: ‘I think Sally
believes that I believe the ball is in the box’.

Our ability in theory of mind is assumed to be innate (Brüne and Brüne-
Cohrs, 2006). From the age of two to five children learn to master first-
order theory of mind (Wellman et al., 2001). When children are around
the age of six or seven they have learned to apply second-order theory of
mind (Perner and Wimmer, 1985). Humans can perform up to fourth-order
theory of mind at just above chance level (Kinderman et al., 1998). Whether
animals are capable of theory of mind and to what extent, is still unclear.
However, theory of mind-like behavior in animals was most often observed in
a competition setting. Therefore, in this project we will test the hypothesis
whether a competition environment could be a driving force behind the
evolution of theory of mind.

To investigate whether competition might have been a possible driv-
ing force behind the evolution of theory of mind, we use an agent-based
model. By programming agents with simple rules and letting them interact

2.6. CHAPTER SUMMARY 23

with each other and their environment interesting phenomena may be re-
produced. Reproducing an interesting phenomenon in this way allows us to
learn something about how it could have emerged, which is, in this project,
theory of mind. Agents will interact with each other competitively. The
agents select their action using rules. The agents who perform best will be
selected for reproduction. Agents reproduce using either the linked genes
method or crossover. In this model, the agent’s genes are the rules in the
agent’s rule database. In the next chapter, the model will be discussed in
further detail.

CHAPTER 3

An agent-based model of the evolution of theory
of mind

To answer the research questions presented in section 1.2 on page 2 and to
investigate whether evolving the rule database of rule-based action-selection
agents is a successful approach when simulating theory of mind, we built
a model where we let heterogeneous, autonomous individuals interact com-
petitively with each other in a non-spatial environment. Agents select their
actions using their rule database, their memory of earlier interactions and
their beliefs about their opponent’s rules and beliefs. The agent’s capability
of theory of mind is found in the rules that are stored in the agent’s rule
database. The rule database will be evolved over time.

Firstly, we introduce the task that the agents have to perform and take a
look at the tasks that have been omitted for this project but may be used in
future research. Secondly, in section 3.3 an explanation of the construction
of the rules and rule database is given. We will also explain how agents
can learn from experience and reason about the rules used and believed by
others. Next, we will provide some more information about the competitive
setting (see section 3.4) and look at the evolution of the rule database of the
agents (see section 3.5). Lastly, we will explain the experimental setup in
section 3.6. In Chapter 4, the results of the experiments will be discussed.

3.1. Task choice

If the model is to provide a plausible cause for the evolution of theory of
mind, the task the agents will perform must fulfill two requirements. Firstly,
the application of higher-order attribution must provide the individual with
a substantial evolutionary advantage over those who apply a lower-order
attribution. Secondly, the task should be ecologically plausible. We selected
a competition task that fulfills these requirements. Several other tasks were
also considered, but have been omitted. We do discuss these tasks, because
they may be suitable for future research.

Because of the first requirement, a cooperative task was omitted. This
is because if a group of individuals successfully completes a task, every
individual receives a small reward. This means that individuals with a first-
or lower-order attribution receive the same reward as an agent with a higher-
order attribution. Thus, we expect that evolutionary pressure is low.

25

26 3. AN AGENT-BASED MODEL OF THE EVOLUTION OF THEORY OF MIND

Next, as mentioned in the previous chapter, chimpanzee and corvid be-
havior that could perhaps be explained in terms of theory of mind always
took place in a competitive situation, never in a cooperative setting. The
cooperation tasks that were considered and might be considered for future
research were hunting and a coup d’état (Erdal and Whiten, 1996).

Other suitable tasks are tasks of a Machiavellian Intelligence nature and
tasks related to commitment (Mant and Perner, 1988). Machiavellian Intelli-
gence may be demonstrated by lying, deceiving, misleading and making and
breaking alliances (for examples, see Byrne and Whiten, 1988). These types
of tasks seem to require higher-order theory of mind, at least at first sight.
These tasks and tasks related to commitment are well worth investigating,
but in this project we have chosen another, simpler task.

For now, we propose a competition task where the goal is not to change
the knowledge state of the other (as would be the case in a Machiavellian
Intelligence task) nor the behavior of the other. Here, theory of mind is
used to reason about the action of the agent’s opponent. If we succeed
in simulating the evolution of higher-order theory of mind in a competition
setting, other settings, such as cooperation or commitment, can be explored.

With the above requirements in mind, the following task was constructed.

3.2. Proposed task

There are often conflicts about food and dominance in a primate popula-
tion (de Waal, 1982). An argument may sometimes result in a physical fight
between two individuals. In this model, the individuals fight each other and
try to win these fights by correctly reacting to the predicted action of the
opponent. In each interaction an agent either defends or attacks. There are
two possible actions: an agent defends or attacks with left or with right. If
an agent’s attack is not blocked, i.e. the attacker selects a different direction
than the defender does, it wins the interaction (see figure 3.1). Winning a
fight provides the individual with an increased dominance value. A higher
dominance value may result in more access to food, mates or safe hiding
places (Hemelrijk, 1999). In this experiment, an agent’s chance to repro-
duce is proportional to the agent’s dominance value.

Each agent uses rules in order to choose which action it will take. These
rules are stored in a rule database. The rule database does not change dur-
ing the agent’s lifetime. Based on its experience with its opponent (which is
stored in memory), the agent forms beliefs about the rules used by its oppo-
nent. The agent also forms beliefs about the beliefs of the opponent about
the agent’s own rules. These beliefs are stored into memory. The beliefs are
used to select an action using the rules in the agent’s rule database.

To execute this task successfully, reasoning about another agent’s rules
to select a suitable action is not the only method. For example, an agent
could select random attack and defend actions or choose its action based

3.3. INFERRING ACTIONS AND BELIEFS 27

Figure 3.1. Two agents interacting. The side an agent se-
lects to attack or defend with (left or right) is not relative to
the agent. When one agent attacks left and the other defends
right, an attack was successful. When an agent attacks left
and the opponent defends left, the attack is blocked.

on the previous action of its opponent. As a second alternative, the agent
could change its rules during its lifetime or choose to skip the usage of some
rules. A more complicated task such as a Machiavellian Intelligence-task
may not have these alternative solutions. However, if the proposed approach
is successful, other tasks can be investigated using the same method.

3.3. Inferring actions and beliefs

In this section we show how an agent selects its action and how the
agent reasons about the rules used by its opponent and about the beliefs of
its opponent. First, we show how the rules of an agent are constructed and
how they are stored in the agent’s rule database. Next, we discuss the prior
knowledge of the agents about each other and their task. Then, we discuss
how each agent chooses its action based on the following:

• the rules in the agent’s rule database,;
• memory of previous interactions with its opponent;
• beliefs about the opponent’s rules,;
• beliefs about the opponent’s beliefs about the agent’s rules.

3.3.1. Rule construction. The rules that are used by the agent and
stored in its rule database are evolved over time and do not change during
the agent’s lifetime. The rule database contains rules of two types: attack
rules and defend rules. A rule consists of a condition and an action:

[condition→ action]

28 3. AN AGENT-BASED MODEL OF THE EVOLUTION OF THEORY OF MIND

If we look at the rule from an agent’s point of view, the rule can be read as
‘if condition is the case, then I will execute the following action’. The rules
are evaluated in the order in which they are stored in the rule database.
The order of the rules does not change during the agent’s lifetime. The first
rule in the rule database for which the condition is true, is executed.

First, we provide several examples of valid rules. Then, the syntax of
valid rules is discussed.

3.3.1.1. Zero-order rule. First, we introduce a zero-order rule. No the-
ory of mind is required to use a zero-order rule. The condition of a zero-order
rule is always true. Below is an example:

Example 1.
[TRUE → RIGHTA]S

The condition of this attack rule is TRUE. This means that the corre-
sponding action is always executed. The subscript A denotes that the rule
is an attack rule: RIGHTA is an attack action where the agent attacks with
right. The subscript D denotes that the action is a defend action. The
superscript S means that this rule is used by the agent itself (S stands for
‘self’). Another valid zero-order rule is the defend rule below:

Example 2.
[TRUE → LEFTD]S

A zero-order rule is a behavioral rule. It does not require any kind of
reasoning. It is perhaps comparable to left- or right-handedness. A right-
handed person prefers to use his right hand over his left one, unless it is
beneficial to do otherwise.

3.3.1.2. First-order rules. Now, we introduce first-order rules. We call
these rules first-order rules, because they can be explained in terms of first-
order theory of mind. It requires the agent to form beliefs about the rules
its opponent uses. Below is an example of a first-order rule:

Example 3.
[BS [TRUE → LEFTA]O → LEFTD]S

This first-order defend rule means the following: if the agent believes
that its opponent uses the attack rule [TRUE → LEFTA]O then the agent
defends with left. This allows an agent to select an appropriate action when
it has established a belief about a rule its opponent uses.

3.3.1.3. Second-order rules. However, to outsmart an opponent who uses
first-order rules, an agent requires second-order rules. Second-order rules
are not only about the agent’s beliefs about the opponent’s rules, but also
about the agent’s beliefs about the opponent’s beliefs about the agent’s rules.
Below is an example of a second-order rule:

3.3. INFERRING ACTIONS AND BELIEFS 29

Example 4.[
BS
[
BO[TRUE → RIGHTA]S → RIGHTD

]O → LEFTA

]S
Again, we read the rule from the viewpoint of an agent that interacts

with its opponent. It states that if the agent believes the opponent uses the

rule [BO[TRUE → RIGHTA]S → RIGHTD
]O

, then the agent will attack
with left. BO denotes the belief of the opponent. In this rule, the belief of
the opponent concerns the rule of the agent itself: [TRUE → RIGHTA]S .
The opponent’s rule the agent is considering could be read as follows: ‘if
the opponent believes that I use the attack rule [TRUE → RIGHTA]S the
opponent will defend with right’.

3.3.1.4. Third-order rules. Only a higher-order defend rule, in this case
a third-order defend rule, can counter a second-order attack rule. Below
is an example of a third-order defend rule which counters the second-order
attack rule above.

Example 5.[
BS

[
BO
[
BS [TRUE → RIGHTA]O → RIGHTD

]S → LEFTA

]O
→ LEFTD

]S
It does not end here, however. Fourth- and higher-order rules are also

possible.

3.3.1.5. Rule syntax. Above we gave an example of zero-order, first-
order and higher-order rules. Now, we discuss what a valid rule looks like.
To that end, we introduce two rule building blocks which can be combined
to create any valid rule. We impose as few constraints as possible on the
contents of the rule.

The first valid rule is a zero-order rule:

Rule building block 1. [TRUE → actionα]m

For this rule and the following rules the following holds:

• action can either represent a LEFT or RIGHT action;
• {α..ζ} each represent the type of the rule: this can be an attack

rule (A) or defend rule (D);
• {m..z} each represent the agent whose rules are considered: this

can be either the agent itself (S) or its opponent (O). For each
{m..z} it holds that they may be equal or different.

Next, we introduce the second building block used to create first- and
higher-order rules:

Rule building block 2. [Bmrule
n
α → actionβ]o

30 3. AN AGENT-BASED MODEL OF THE EVOLUTION OF THEORY OF MIND

At the position of rulenα we insert a rule of type α that is used or believed
to be used by agent n. A rule based on either the first or on the second
building block can be inserted here. Note that for a rule to be used when
selecting an action, it should be the agent’s rule and not the opponent’s
rule. Rules in the database that are of the form [condition→ actionα]O, for
example due to mutation, will not be used.

3.3.2. Rule database. The agent’s rules are stored in its rule data-
base. When selecting and using rules, the following assumptions are made:

• The rules in the rule database do not change, nor does the order
change during an agent’s lifetime. The rules only change during
the reproduction step (see section 3.5 on page 46).
• The action of the first rule of which the agent believes that the

condition is true is executed. This means that when an agent es-
tablishes no new beliefs, it keeps executing the same action. It
also means that even though the rule database contains higher-
order rules that would benefit the agent, they are never reached if
a zero-order rule is evaluated first.
• When an agent is initialized, each agent receives a preference (com-

parable to left- or right-handedness). The first generation of agents
receives a random preference; later generations inherit their prefer-
ence from one of their parents. When no matching attack or defend
rule is found, the following rule is used: [TRUE → preferenceα]S .
This rule is then appended at the end of the rule database.

3.3.3. Memory. As mentioned before, the action that is selected by
the agent is determined by the agent’s rule database and the agent’s memory.
Each agent’s memory contains the following data for every opponent:

• Action of the agent and the action of its opponent in past inter-
actions (interactions are removed from memory when they are no
longer useful, see section 3.3.6);
• the rules the agent believes the opponent uses;
• rules the agent believes the opponent believes the agent uses.

It should be noted that agents are not allowed to believe that the op-
ponent uses two different rules rules that have the same condition and type
(attack or defend) but a different outcome. For example, an agent is not
allowed to believe that its opponent uses both rules below:

[TRUE → LEFTD]O

[TRUE → RIGHTD]O

In this model, every agent has the same reasoning mechanism and this
is known by all agents (see section 3.3.4). We explained earlier that the
first rule in an agent’s rule database of which the agent believes that the
condition is true, is used. So it cannot be the case that an opponent uses
two or more rules with the same condition (although they can be in the

3.3. INFERRING ACTIONS AND BELIEFS 31

rule database, they are just not being used), just as the agent does not use
two rules with the same condition. The same holds for higher-order rules.
Therefore it is not possible that an agent believes that its opponent uses two
or more rules of the same type that have the same condition but a different
action. Neither can the agent believe that its opponent does so. Allowing
agents to believe that opponents use rules that are the same except for the
actual action would violate the assumption that agents are aware that every
agent uses the same inference engine.

3.3.4. Initial knowledge about the task and opponents. Each
agent uses the inference engine that is described in section 3.3.6. Each agent
reasons about its opponent’s beliefs and rules perfectly, in the sense that it
does not make mistakes when establishing beliefs about its opponent’s beliefs
and rules. Furthermore, each agent knows that its opponent reasons with
the exact same reasoning mechanism and deduces the same beliefs as the
agent itself would given the same history of interactions and rule database.

This approach is fruitful if we want to evolve theory of mind because,
as discussed in section 3.3.1, the construction of the rules is free from con-
straints: the agents are allowed to reason about every type of rule or belief
by either itself or its opponent. It is difficult to allow an agent to estab-
lish beliefs about its opponent’s rules and beliefs, if an agent does not have
insight into the rules an opponent uses and also knows nothing about the
reasoning mechanism of the opponent. Therefore, we make the assump-
tion that every agent reasons perfectly and that every agent knows that its
opponents do so too and do not make mistakes or cheat.

3.3.5. Example: inferring actions and beliefs. In this section, we
give a brief overview how an agent selects an action using its inference engine
and how it reasons about rules used by its opponent and about its opponent’s
beliefs. In the next section, we explain how the inference engine works and
provide a more detailed example.

In this example one agent attacks an opponent several times. The agent’s
rule database (see table 3.1) contains four attack rules.[

BS
[
BO[TRUE → RIGHTA]S → RIGHTD

]O → LEFTA

]S[
BS [TRUE → LEFTD]O → RIGHTA

]S[
BS [TRUE → RIGHTD]O → LEFTA

]S
[TRUE → RIGHTA]S

Table 3.1. A rule database that contains four attack rules.
The first rule is a second-order attack rule. The second and
third rule are first-order attack rules. The last rule is a zero-
order attack rule.

32 3. AN AGENT-BASED MODEL OF THE EVOLUTION OF THEORY OF MIND

3.3.5.1. First contact. When an agent interacts for the first time with a
certain opponent, it has no previous experience with that opponent. There-
fore, all rules that involve beliefs about either the opponent’s rules or the op-
ponent’s beliefs do not match, since there is no information on which to base
these beliefs. The only rules that an agent can use in the first turn are zero-
order rules. In the first interaction, the agent attacks. The only rule that
is applicable during this turn is the zero-order rule [TRUE → RIGHTA]S .
Therefore the agent will attack with right. For now, let us assume that the
agent’s opponent defends with left.

3.3.5.2. Second interaction. In the second interaction we let the same
agent attack again. In the first attack the agent could not use the first
three attack rules, since the agent had no experience with its opponent on
which to base the corresponding beliefs. However, when evaluating its rule
database in the second interaction, the agent does have experience it can
use. When the agent starts to evaluate the rules in its database, then new
beliefs are established.

Although the first rule cannot match because more interactions are re-
quired to know that the agent’s opponent applies the rule

[
BO[TRUE →

RIGHTA]S → RIGHTD
]O

, the agent does learn that its opponent may

know that the agent uses the rule [TRUE → RIGHTA]S . When looking
at the second rule, the agent can derive that its opponent uses the rule
[TRUE → LEFTD]O and so the agent can apply the second rule in its rule
database.

For now, let’s assume that its opponent defended right this interac-
tion, for example, because it applied the following first-order defend rule:[
BS [TRUE → RIGHTA]O → RIGHTD

]S
.

3.3.5.3. Third interaction. Again, the same agent attacks. Now the first
rule can be used, because the agent now believes that the condition of the
first rule is true, since it both believes that its opponent believes that the
agent uses the zero-order attack rule [TRUE → RIGHTA]S and the oppo-
nent’s action in the previous turn corresponds with the action in the rule.
Therefore, the agent attacks with left.

3.3.6. Inference engine. Each agent uses an inference engine to select
an action and reason about opponents. The inference engine is the same for
every agent. The input of the inference engine is the memory of the agent
and the agent’s rule database (see figure 3.2).

In order to find an action, rules are evaluated until a rule is found of
which the agent believes that the condition is true. During this process an
agent might also establish beliefs about the rules used by its opponent and
beliefs about the opponent’s beliefs. Algorithm 1 on page 33 contains the
pseudo-code of this action-selection function.

3.3. INFERRING ACTIONS AND BELIEFS 33

Figure 3.2. Schema of the process of inferring beliefs and
actions. The inference engine uses the contents of the rule
database of the agent and the contents of the agent’s memory
to select an action. During that process the inference engine
may infer new beliefs which are stored into the agent’s mem-
ory for further use.

Algorithm 1 Pseudo-code of the action-selection mechanism. Its input is
the agent’s rule database, memory and the required type of the rule (defend
or attack). It returns an action (left or right).

1: procedure getAction(ruleDatabase, memory, type)
2: for i = 0 to ruleDatabase.length do
3: rule ← ruleDatabase[i]
4: if rule.type ! = type then
5: break
6: end if
7: if rule.user == OPPONENT then
8: continue
9: end if

10: if evaluateRule(rule) then
11: memory.close()
12: return rule.action
13: end if
14: end for
15: ruleDatabase.add([TRUE → preferencetype]

S)
16: return preference
17: end procedure

For every rule in the rule database, the algorithm first verifies if the rule
is of the required type (line 4) and if it has the right user (line 7). Then, the
inference engine evaluates the condition of the rule using algorithm 2 (line
10). If the agent believes that the condition is true, the action correspond-
ing to that rule is executed. Lastly, if no rule matches, a zero-order rule
containing the preference of the agent is added to the rule database (line

34 3. AN AGENT-BASED MODEL OF THE EVOLUTION OF THEORY OF MIND

15) and the preference action is executed.

Algorithm 2 Pseudo-code of the function that evaluates the condition of
a rule. The input is the rule that is evaluated. It returns true when the
condition is believed to be true and false when it is not.

1: procedure evaluateRule(rule)
2: beliefOperator ← rule.beliefOperator
3: rra ← rule.ruleReasonedAbout
4: user ← rra.user
5: if condition == TRUE then
6: return true
7: end if
8: if beliefOperator == OPPONENT AND user == SELF then
9: if retrieveRuleBelievedByOpponent(rra) OR inferRule-

BelievedByOpponent(rra) then
10: return true
11: end if
12: else if beliefOperator == OPPONENT AND user == OPPONENT

then
13: if retrieveRuleUsedByOpponent(rra) OR inferRuleUsedBy-

Opponent(rra) then
14: return true
15: end if
16: else if beliefOperator == SELF AND user == SELF then
17: if ruleInRuleDatabase(rra) then
18: return true
19: end if
20: else if beliefOperator == SELF AND user == OPPONENT then
21: if retrieveRuleUsedByOpponent(rra) OR inferRuleUsedBy-

Opponent(rra) then
22: return true
23: end if
24: end if
25: return false
26: end procedure

Algorithm 2 evaluates the condition of the agent’s rule. In different
words, it determines if the agent believes the condition is true based on
earlier interactions and the agent’s beliefs in memory.

To evaluate the condition of the rule, we use three elements of the con-
dition: the belief operator, the rule reasoned about and the user of the rule
that is reasoned about in the condition. As mentioned in section 3.3.1.5, a
condition of a rule is either TRUE or it looks like the condition in building
block 2: Bmrule

n
α. Bm refers to the belief operator, while rulenα refers to

3.3. INFERRING ACTIONS AND BELIEFS 35

the rule reasoned about where n is the user of the rule and α refers to the
type of the rule.

In algorithm 2 we discern five different kinds of conditions:

(1) TRUE: the condition is true (line 5);
(2) BOrule

S
α: the opponent believes that the agent uses ruleα (line 8);

(3) BOrule
O
α : the opponent believes that it uses ruleα (line 12);

(4) BSrule
S
α: this condition is true if the agent believes itself uses ruleα

(line 16);
(5) BSrule

O
α : the agent believes that the opponent uses ruleα (line 20).

If a rule is a zero-order rule, the evaluation of the condition is simple:
the condition is true and this is returned to getAction (algorithm 1). In
the other four cases the rules are about beliefs of either the agent or its
opponent.

The second condition is about the belief of an opponent about the agent’s
rule. The condition is true if it is found that the opponent believes that
the agent uses this rule. The functions retrieveRuleBelievedByOpponent
(algorithms 4) and inferRuleBelievedByOpponent (algorithm 6) check if
the agent believes that its opponent believes that the agent uses this rule.

The third condition is true when the agent believes that its opponent
uses this rule (functions retrieveRuleUsedByOpponent (algorithm 3) and
inferRuleUsedByOpponent (algorithm 5)). The same algorithms are also
used for the fifth condition. The truth values of these two conditions are
the same to the agent. If the agent believes that its opponent uses a certain
rule, the agent can be sure that its opponent can also believe that it uses
that rule and vice versa.

Lastly, the fourth condition is true when the rule is in the agent’s own
database. We assume that each agent is capable of introspection.

In lines 9, 13 and 21 two functions are called upon to determine whether
the condition is true.

These functions are retrieveRuleBelievedByOpponent (algorithm 4) and
inferRuleBelievedByOpponent (algorithm 6) for the second condition and
retrieveRuleUsedByOpponent (algorithm 3) and inferRuleUsedByOpponent
(algorithm 5) for the third and fifth condition.

The function retrieveRuleUsedByOpponent and the function retrieve-
RuleBelievedByOpponent search the agent’s memory whether the agent has
inferred in previous turns if the agent’s opponent uses a certain rule or
believes that the agent uses a certain rule. However, if this rule cannot
be found in memory, the functions inferRuleUsedByOpponent (algorithm 5)
and inferRuleBelievedByOpponent (algorithm 6) are used to infer if it is pos-
sible that the rule is respectively used by the opponent or if the opponent
believes that the agent uses the rule. Note that an agent only starts to infer
beliefs when it has to select an action and not, for example, at the end of

36 3. AN AGENT-BASED MODEL OF THE EVOLUTION OF THEORY OF MIND

its turn.

We will discuss later why the distinction is made between retrieve-
RuleUsedByOpponent and inferRuleUsedByOpponent. First, we will look
at the functions retrieveRuleUsedByOpponent (algorithm 3) and retrieve-
RuleBelievedByOpponent (algorithm 4). Both functions simply search the
agent’s memory if the agent has established a belief regarding a rule in an
earlier interaction.

Algorithm 3 Pseudo-code of the function that investigates whether the
agent already believes that its opponent uses a certain rule. Input: the
opponent’s rule and the opponent’s identity. Output: returns true if the
rule is already stored in memory and false if it is not.

1: procedure retrieveRuleUsedByOpponent(rule, opponent)
2: if memory.retrieveRuleUsedByOpponent(rule, opponent) then
3: return true
4: end if
5: return false
6: end procedure

Algorithm 4 Pseudo-code of the function that investigates whether the
agent believes whether its opponent believes that the agent uses a rule.
Input: the agent’s rule and the opponent’s identity. Output: returns true if
the rule is already stored in memory and false if it is not.

1: procedure retrieveRuleBelievedByOpponent(rule, opponent)
2: if memory.retrieveRuleBelievedByOpponent(rule, opponent) then
3: return true
4: end if
5: return false
6: end procedure

Next, we look at the functions inferRuleUsedByOpponent (algorithm 5)
and inferRuleBelievedByOpponent (algorithm 6). The function evaluateRule
(algorithm 2) uses these functions to determine if the agent believes the
condition of the rule is true while this was not known before.

First, we discuss the function inferRuleUsedByOpponent in algorithm
5. The question that is answered in this function by the agent is the fol-
lowing: does the opponent uses a certain rule? In other words, does the
opponent believe that the condition of its rule is true and does the action
of the rule match with the action in memory? First, we determine if the
opponent believes that the condition of its rule is true. Again, we have five
different kinds of conditions.

3.3. INFERRING ACTIONS AND BELIEFS 37

Algorithm 5 Pseudo-code of the function that investigates whether the
opponent possibly uses a certain rule. Input: opponent’s rule and the op-
ponent’s identity. Output: true when the agent believes its opponent uses
the rule and false when it does not.

1: procedure inferRuleUsedByOpponent(rule, opponent)
2:

Require: The agent does not believe the opponent uses a rule with a similar
type with the same condition

3: action ← rule.action
4: type ← action.type
5: beliefOperator ← rule.beliefOperator
6: rra ← rule.ruleReasonedAbout
7: user ← rra.user
8: interactions ← memory.getInteractionsWhereOpponent(type, oppo-

nent)
9: if interactions.size == 0 then

10: return false
11: end if
12: if beliefOperator == OPPONENT AND user == SELF then
13: if !retrieveRuleBelievedByOpponent(rra, opponent) then
14: inferRuleBelievedByOpponent(rra, opponent)
15: return false
16: end if
17: else if beliefOperator == OPPONENT AND user == OPPONENT

then
18: if !retrieveRuleUsedByOpponent(rra, opponent) then
19: inferRuleUsedByOpponent(rra, opponent)
20: return false
21: end if
22: else if beliefOperator == SELF AND user == SELF then
23: if !retrieveRuleBelievedByByOpponent(rra, opponent) then
24: inferRuleBelievedByOpponent(rra, opponent)
25: return false
26: end if
27: else if beliefOperator == SELF AND user == OPPONENT then
28: if !retrieveRuleUsedByOpponent(rra, opponent) then
29: inferRuleUsedByOpponent(rra, opponent)
30: return false
31: end if
32: end if
33: for i = 0 to interactions.length do
34: if action != interactions[i].actionOpponent then
35: return false
36: end if
37: end for
38: memory.addRuleUsedByOpponentToTemporaryMemory(rule,

opponent)
39: return true
40: end procedure

38 3. AN AGENT-BASED MODEL OF THE EVOLUTION OF THEORY OF MIND

• TRUE: the condition is true (line 5);
• BOruleSα: the opponent believes that this condition is true if the

opponent believes that the agent uses ruleα (line 12);
• BOruleOα : the opponent believes that this condition is true if it

believes that it uses ruleα (line 17);
• BSruleSα: the opponent believes that this condition is true if the

opponent believes the agent uses ruleα (line 22);
• BSruleOα : the opponent believes that this rule is true if the agent

believes that the opponent uses ruleα (line 27).

It is easy for the inference engine to assess whether the first condition is
true: it always is, also to the opponent.

The second condition is more complicated. The agent believes that its
opponent believes the condition is true when the opponent believes that the
agent uses ruleα. So, function retrieveRuleBelievedByOpponent (algorithm
4) is used to evaluate if the agent believes that the opponent believes that
the agent uses ruleα by assessing the stored beliefs in the agent’s memory.

The third condition is about the opponent’s belief about the opponent’s
rule. For the opponent, this condition is only true if the opponent itself
believes it uses ruleα. Therefore, the inference engine now uses the function
retrieveRuleUsedByOpponent (algorithm 3) to determine if the agent estab-
lished in an earlier interaction whether ruleα is indeed used by the agent’s
opponent. If that is the case, then this opponent can also believe that it
uses the rule since agents are capable of introspection into their own rule
database.

The fourth condition is similar, but now the opponent reasons about
the agent’s beliefs about the agent’s rule. The inference engine uses the
function retrieveRuleBelievedByOpponent (algorithm 4) to determine if the
opponent believes that the agent uses ruleα. If this is the case, it must also
believe that the agent believes that the agent uses ruleα, since agents have
introspection into their own database and this is common knowledge.

For the fifth condition, the inference engine uses the function retrieve-
RuleUsedByOpponent (algorithm 3) to determine if the opponent uses ruleα.
If the agent can infer in an interaction that it believes that its opponent uses
ruleα, then its opponent can infer that the agent can do so.

We have discussed five possible conditions of opponent’s rules and how
they are handled. For rules that are used by the agent itself, the function
retrieveRuleBelievedByOpponent (algorithm 4) is used. For rules that are
used by the agent’s opponent, the function retrieveRuleUsedByOpponent
(algorithm 3) is used. This is regardless of the believer of the rule. Although

it may seem silly to have a rule such as

[
BS
[
BS [TRUE → LEFTA]S →

LEFTD
]O → RIGHTA

]S
, the truth value of the condition is the same

3.3. INFERRING ACTIONS AND BELIEFS 39

for the agent as a seemingly more sensible rule such as

[
BS
[
BO[TRUE →

LEFTA]S → LEFTD
]O → RIGHTA

]S
. This could be explained as follows.

If the agent is able to infer that its opponent uses a certain rule, so can
the opponent infer that the agent is able to infer its opponent’s rule, since
they use the same reasoning mechanisms. This makes the belief operator
quite useless, except in the function evaluateRule (algorithm 2).

We have discussed how the inference engine determines if it is possi-
ble that the opponent believes that the condition of its rule is true. Now
we look at the corresponding action. If the inference engine finds that the
opponent believes the condition of its rule is true, the algorithm continues
to match the action of that rule to the actions in the agent’s memory. If
they match, it is possible that the agent’s opponent uses the rule. This
rule is then stored in the agent’s temporary memory. The temporary mem-
ory can be seen as a memory buffer of the inference engine. The functions
retrieveRuleUsedByOpponent (algorithm 3) and retrieveRuleBelievedByOpponent
(algorithm 4) do not access the temporary memory and therefore cannot
make use of its contents. This prevents the inference engine from using be-
liefs that are derived in the current turn from explaining behavior in previous
turns.

For example, let’s assume that an agent attacks left using a zero-order
attack rule in a first interaction and its opponent defends left, also based on
a zero-order attack rule. The agent may derive in the next turn that its op-
ponent believes that it uses the zero-order attack rule [TRUE → LEFTA]S .
But, it may, based on this belief, also infer that its opponent used the first-
order defend rule [BO[TRUE → LEFTA]S → LEFTD]O. But this cannot
be the case, since its opponent did not know the agent’s zero-order attack
rule in the first turn.

In the function inferRuleUsedByOpponent the agent’s regular memory
is accessed to determine whether the opponent believes that the condition
of its rule is true. If the rule the opponent reasons about is not found in
the agent’s memory (in other words, the rule was not derived in an earlier
turn), the function returns to its caller that it could not determine if the
rule is used by its opponent (for example line 13 - 16). However, in line
14 the algorithm does check if that rule could be inferred in the current
interaction. For example, if we look again at the second-order attack rule[
BS
[
BO[TRUE → LEFTA]S → LEFTD

]O → RIGHTA

]S
, the inference

engine cannot confirm this condition in the second interaction. However, it
can infer that its opponent believes that the agent uses the zero-order at-
tack rule [TRUE → LEFTA]. And if its opponent defends with left in the

40 3. AN AGENT-BASED MODEL OF THE EVOLUTION OF THEORY OF MIND

next interaction, the agent does believe that the condition of the rule is true.

After an action is selected in function evaluateRule (algorithm 1), the
memory of the agent is closed (line 11). In this procedure, the contents of
the temporary memory (the rules that were inferred during this interaction)
are transferred to the agent’s regular memory, so these beliefs can be used in
a future interaction. The interactions on which the inference of the beliefs
are based, are removed from memory. There is no use in keeping them, since
they do not reflect the current state of beliefs: these actions were the result
of a belief set which is now outdated.

Now we look at the function inferRuleBelievedByOpponent in algo-
rithm 6. This algorithm is comparable to algorithm 5 but now the inference
engine tries to determine whether the opponent believes that the agent uses
a certain rule, where in the previous algorithm the inference tries to deter-
mine whether the opponent uses a certain rule. The algorithm is essentially
the same as the previous one, but there is one difference. The action-part
of the rule is now matched to the action of the agent and not to the action
of the opponent.

3.3.7. More detailed example: inferring actions and beliefs in
an interaction. In section 3.3.5 we showed an example of two agents in-
teracting. The following example is the same, but this time we explain the
reasoning steps in more detail with the workings of the inference engine in
mind. Again, we look at the interactions from the viewpoint of the attacking
agent. Table 3.2 contains the attack rules of the agent.[

BS
[
BO[TRUE → RIGHTA]S → RIGHTD

]O → LEFTA

]S[
BS [TRUE → LEFTD]O → RIGHTA

]S[
BS [TRUE → RIGHTD]O → LEFTA

]S
[TRUE → RIGHTA]S

Table 3.2. Attack rules of a second-order agent

3.3.7.1. First contact. Function getAction (algorithm 1) is used to select
an action. First, the algorithm checks if the rule is of the right type (we
are looking for an attack rule, not a defend rule) and if the user matches
(the rule can only be used by the agent itself). Since the first rule is not
a zero-order rule, the agent evaluates the condition of the first rule using
evaluateRule (algorithm 2). Because the rule is about the agent’s own
belief about a rule used by the opponent, retrieveRuleUsedByOpponent
(algorithm 3) is used to see if this rule has been stored in memory during
a previous interaction. This is not the case, because there have not been
earlier interactions where the agent could have established this belief. Then
the agent checks using function inferRuleUsedByOpponent (algorithm 5)

3.3. INFERRING ACTIONS AND BELIEFS 41

Algorithm 6 Pseudo-code of the function that investigates whether the
opponent possibly believes a certain rule is used by the agent. Input: the
agent’s rule and the opponent’s identity. Output: true when the agent
believes its opponent believes the agent uses the rule and false when it does
not.

1: procedure inferRuleBelievedByOpponent(rule, opponent)
2: Require The agent does not believe the opponent believes a rule of

a similar type with the same condition
3: action ← rule.action
4: type ← action.type
5: beliefOperator ← rule.beliefOperator
6: rra ← rule.ruleReasonedAbout
7: user ← rule.user
8: interactions← memory.getInteractionsWhereAgent(type, opponent)
9: if interactions.size == 0 then

10: return false
11: end if
12: if beliefOperator == OPPONENT AND user == SELF then
13: if !retrieveRuleBelievedByOpponent(rra, opponent) then
14: inferRuleBelievedByOpponent(rra, opponent)
15: return false
16: end if
17: else if beliefOperator == OPPONENT AND user == OPPONENT

then
18: if !retrieveRuleUsedByOpponent(rra, opponent) then
19: inferRuleUsedByOpponent(rra, opponent)
20: return false
21: end if
22: else if beliefOperator == SELF AND user == SELF then
23: if !retrieveRuleBelievedByOpponent(rra, opponent) then
24: inferRuleBelievedByOpponent(rra, opponent)
25: return false
26: end if
27: else if beliefOperator == SELF AND user == OPPONENT then
28: if !retrieveRuleUsedByOpponent(rra, opponent) then
29: inferRuleUsedByOpponent(rra, opponent)
30: return false
31: end if
32: end if
33: for i = 0 to interactions.length do
34: if action ! = interactions[i].actionAgent then
35: return false
36: end if
37: end for
38: memory.addRuleBelievedByOpponentToTemporaryMemory(rule,

opponent)
39: return true
40: end procedure

42 3. AN AGENT-BASED MODEL OF THE EVOLUTION OF THEORY OF MIND

if it can infer whether the opponent uses rule [BO[TRUE → RIGHTA]S →
RIGHTD

]O
, but since there have been no previous interactions this also

fails and the agent continues to investigate the second rule.
Since both the second and third rule are about a rule of the opponent,

both rules fail and algorithm 1 continues to the fourth and last rule. First,
the algorithm checks again if the type and user are correct. Then it continues
to evaluate the condition. Since the condition is true because it is a zero-
order rule (see section 3.3.1.1), the algorithm returns the corresponding
action, which is in this case a right attack, and the algorithm finishes.

For now, we assume that the agent’s opponent defends with left. Lastly,
the actions of both agents are stored in the agent’s memory.

Table 3.3 contains the memory of the agent after the first interaction.

Interactions Rules used by Rules believed
S O opponent by opponent
RIGHTA LEFTD

Table 3.3. Memory of the agent after the first interaction

3.3.7.2. Second interaction. In the second interaction we let the same
agent attack again. The algorithm getAction is again used to select an
action. For every rule the algorithm first checks if the rule is of the correct
type and user. Then, getAction continues evaluating the condition of each
rule with evaluateRule.

Since the first rule is about the agent’s own belief about a rule used
by its opponent, retrieveRuleUsedByOpponent is used to see if the rule

BS
[
BO[TRUE → RIGHTA]S → RIGHTD

]O
has been stored in memory

during a previous interaction. This is not the case, since the agent could
not have established any beliefs about the opponent’s rules in the previous
turn, since there was no experience on which to base any beliefs.

Next, evaluateRule calls inferRuleUsedByOpponent to see if it is pos-
sible that its opponent did apply the rule [BO[TRUE → RIGHTA]S →
RIGHTD

]O
during previous turns. The opponent could only have used

this rule in a previous interaction if it believed that the condition was
true. Therefore, the inference engine must first determine if the opponent
might have believed that condition BO[TRUE → RIGHTA]S was true, in
other words, if the opponent might believe that the agent uses the rule
[TRUE → RIGHTA]S . To investigate this, inferRuleUsedByOpponent calls
the function retrieveRuleBelievedByOpponent (algorithm 4) to search the
agent’s memory if it derived in an earlier interaction that its opponent may
believe that the agent uses the rule [TRUE → RIGHTA]S .

However, this search will return nothing, since the opponent could not
have established any beliefs in the previous turn, since it was the first time

3.3. INFERRING ACTIONS AND BELIEFS 43

the agent interacted with its opponent. Because retrieveRuleBelievedBy-
Opponent returned false, inferRuleUsedByOpponent calls inferRuleBelievedBy-
Opponent to investigate if the agent can establish the belief that its oppo-
nent might believe that the agent uses the rule [TRUE → RIGHTA]S . This
is the case, since the agent executed a right attack action during the first
interaction. This belief is stored into temporary memory. The function
inferRuleUsedByOpponent returns false to evaluateRule since there is no
belief that the agent’s opponent used the rule [BO[TRUE → RIGHTA]S →
RIGHTD

]O
.

Since retrieveRuleBelievedByOpponent returned that it was not believed
in a previous interaction that the agent’s opponent might believe that the
agent used the rule [TRUE → RIGHTA]S , the function inferRuleBelievedBy-
Opponent is called to investigate if that belief can be established using the
information that became available after the previous interaction. This is
the case, so this rule is stored into the agent’s temporary memory. How-
ever, this new belief cannot be used for inferring other new beliefs, so

inferRuleUsedByOpponent returns that the condition
[
BS
[
BO[TRUE →

RIGHTA]S → RIGHTD
]O

could not be confirmed.

Now, the agent looks at the second rule:
[
BS [TRUE → LEFTD]O. The

function getAction first checks if the type and user of the rule is correct. This
is the case. The function evaluateRule is used to evaluate the condition of the
rule. Since the rule concerns the agent’s own belief about an opponent’s rule,
evaluateCondition uses retrieveRuleUsedByOpponent to search the agent’s
memory if the agent has established the belief in an earlier interaction that
the agent’s opponent uses the defend rule [TRUE → LEFTD]O. Such a rule
is not found, since the agent could not have known its opponent’s defend
rule in the previous turn, since it did not have any information to base this
belief on in the previous interaction.

However, the agent does have experience with its opponent that it can
use. The function inferRuleUsedByOpponent is then used by evaluateCon-
dition to evaluate if the opponent could have used the rule [TRUE →
LEFTD]O in the previous turn. This rule is a zero-order rule and there-
fore the inference engine only has to match defend actions of the opponent
in previous interactions with the action in the rule. The agent’s opponent
did defend with left in the previous turn, so the action of the rule and the
action in the agent’s memory correspond. Therefore, the inference engine
draws the conclusion that the rule [TRUE → LEFTD]O is indeed used by
the opponent. This rule is also stored into temporary memory and infer-
RuleUsedByOpponent returns to getAction that the rule the agent reasons
about is indeed used by the agent’s opponent. Therefore, the condition of
the second rule does match and the agent attacks with right.

Lastly, the contents of the temporary memory are stored into the agent’s
memory. Interactions where the agent attacked and the opponent defended

44 3. AN AGENT-BASED MODEL OF THE EVOLUTION OF THEORY OF MIND

are removed from memory, because they are no longer relevant. Let’s as-
sume the agent’s opponent defended right in this interaction, for exam-
ple, because it applied the following first-order defend rule:

[
BS [TRUE →

RIGHTA]O → RIGHTD
]S

. The actions of both agent are also stored in
memory.

Table 3.4 contains the memory of the agent after the second interaction.

Interactions Rules used by Rules believed
S O opponent by opponent

RIGHTA RIGHTD [TRUE → LEFTD]O [TRUE → RIGHTA]S

Table 3.4. Memory of the agent after the second interaction

3.3.7.3. Third interaction. Again, the agent attacks. When requested
for an action, the inference engine calls on getAction. First, the algo-
rithm looks at the first rule in the database. The type and user is correct,
so the algorithm uses evaluateRule to evaluate the condition of the rule.
First, retrieveRuleUsedByOpponent is used to find out if the rule in the
condition has been stored in memory during a previous interaction. This
is not the case, so evaluateRule calls inferRuleUsedByOpponent to find
out if the agent’s opponent used the rule [BO[TRUE → RIGHTA]S →
RIGHTD

]O
in previous interactions. The agent’s opponent could only have

applied this rule if it believed that the condition of this rule was true. So,
retrieveRuleBelievedByOpponent is used to find out if the agent believes
that its opponent believes that the agent uses rule [TRUE → RIGHTA]S .
This rule is already stored in memory.

Next, inferRuleUsedByOpponent matches the action of the opponent’s
rule with actions in memory. The action matches with those in mem-
ory, so the agent establishes the belief that its opponent uses the rule

[BO[TRUE → RIGHTA]S → RIGHTD
]O

. This rule is stored in tem-
porary memory. Since the condition of the first rule of the agent’s database
is true, the corresponding action is returned.

Lastly, the agent stores the contents from its temporary memory into
its permanent memory and earlier interactions where the agent’s opponent
executed a defend action are removed. The agent’s opponent defends with
right (perhaps because it only has zero- and first-order rules) and the agent
stores the actions of both agents in memory.

Table 3.5 contains the memory of the agent after the third interaction.

3.3.8. Initial rule database. The first generation of agents is given
a simple rule database to select actions from. The database contains only
zero-order rules (see table 3.3.8).

3.4. COMPETITIVE ENVIRONMENT 45

Interactions Rules used by opponent Rules believed by
S O opponent

LEFTA RIGHTD [TRUE → LEFTD]O [TRUE → RIGHTA]S[
BO[TRUE → RIGHTA]S

→ RIGHTD
]O

Table 3.5. Memory of the agent after the third interaction

Defense rules

[TRUE → preferenceD]S

Attack rules

[TRUE → preferenceA]S

Table 3.6. Zero-order rule database

3.4. Competitive Environment

The environment in which the agents interact is competitive in nature
in two ways. Firstly, interactions between agents are competitive. Secondly,
only the most successful individuals reproduce. In this section we take a
look at the environment of the agents.

3.4.1. Environment. The environment the agents live in is non-spatial,
since we are not looking for spatial effects. During a generation agents inter-
act with each other. Two agents are randomly selected for each interaction:
one agent is the attacker and the other is the defender. After one generation
the most successful agents are selected for reproduction.

3.4.2. Interaction. A new round of interactions starts when a new
population is created. Agents are selected randomly for interaction. During
an interaction, the following steps occur:

(1) Each agent selects an action; new beliefs that are established in
that process are stored;

(2) the actions are executed;
(3) the agents update their memory;
(4) the winner is selected and the dominance ranking is updated ac-

cordingly.

More information on action-selection can be found in section 3.3.

3.4.3. Dominance. How well the individuals do in comparison with
other agents is reflected in the dominance value. A higher dominance value
may lead to better access to food, mates or safe locations (Hemelrijk, 1999).
Individuals with the highest dominance are allowed to reproduce. Losing a

46 3. AN AGENT-BASED MODEL OF THE EVOLUTION OF THEORY OF MIND

fight will decrease the individual’s dominance; winning will increase it. In
section 2.5.4 on page 21 we introduced the formula below which we use to
calculate the domination value of agent i. The dominance value lies in the
range [−1, 1].

DOMi =
fightsWoni − fightsLosti
fightsWoni + fightsLosti

(3.4.1)

In this formula, the interactions where an attack was blocked are omit-
ted. In retrospect, this is an odd choice since the attacks where the defender
are blocked are not taken into account. This has an unfortunate effect. As-
sume an agent is a good defender and did not lose any interactions, but
is a poor attacker and won only a few interactions. According to formula
3.4.1, the agent has a high dominance value. Now, assume an agent which
is a good attacker and wins many interactions, but is a poor defender and
loses almost as many interactions as it won. The agent’s dominance value
is low. This is summarized in table 3.7. This has the effect that defensive
agents are favored over those that have better attack capabilities. However,
we expect that this will not influence the simulation results much. If most
agents are good defenders but poor attackers, agents who are capable of
successfully attacking their opponents have a higher dominance value than
agents who are not good attackers. Since agents are not punished for having
large databases, there is no disadvantage to having rules that either allow
agents to be good defenders or good attackers.

Attack Defend Numerator Denominator Dominance
capabilities capabilities value

Bad Good Small, positive Small, positive Large
Good Bad Small, positive Large, positive Small

Table 3.7. Expected effect of dominance function.

The dominance value is a measure for the fitness value which determines
how successful the agents are. Only the most successful agents are allowed
to reproduce. In the next section we explain how agents reproduce and how
they evolve over generations.

3.5. Evolution of the rule database

Since theory of mind follows from the rule database, we evolve the rule
database over time (see section 2.3 on page 15 for a short overview). We use
roulette-wheel selection to select agents for reproduction. The children of
the selected agents will inherit a mutated version of the rule database. We
test two methods of inheritance: fully linked genes and crossover.

3.5. EVOLUTION OF THE RULE DATABASE 47

3.5.1. Fitness function. Regardless of the reproduction method, we
require a fitness function. The fitness function determines how well the
individuals are doing. The chance of reproduction is proportional to the
agent’s fitness. The fitness function is shown in equation (3.5.1). The fitness
function for agent i (fi) depends only on the dominance value of agent i
(DOMi) which is described in equation (3.4.1).

fi = DOMi(3.5.1)

3.5.2. Roulette-wheel selection. In this model, we use roulette-wheel
selection (also called fitness proportionate selection) to select individuals
who will reproduce (de Jong, 2008, p.139). Suppose we want to select an
agent for reproduction from a set of n agents. Instead of placing n agents on
the roulette-wheel evenly (like a normal roulettewheel), we attribute each
agent space on the roulette wheel relative to its fitness. The result is that
more successful agents have more space on the roulette wheel and thus a
higher chance to get selected (see figure 3.3). Agents with a higher fitness
have a higher probability to get selected, but at the same time less successful
agents can also get selected. The result is that diversity is maintained in
the population since not only the best agents are selected for reproduction.

Figure 3.3. An example of roulette wheel selection. r is a
random number within the range of the total fitness. Here,
individual B is selected.

For the pseudo-code of this selection mechanism, see algorithm 7. The
fitness values of each agent are first transformed to a suitable range. Then,
the total fitness value is calculated. First, the fitness of each agent is squared
and then added to the total fitness value (line 6). Squaring the fitness value
allows us to favor agents with a higher fitness more strongly over those with
a lower fitness. Then, a random number between zero and the total fitness
value is selected (line 8). This can be compared to the phase in the roulette
game where the ball stops spinning and ends in one of the pockets. Next, it
is determined which agent corresponds with the pocket (line 10 - 16). We
use the squared dominance value to favor agents with a high fitness over
those with a lower fitness (lines 6 and 12).

48 3. AN AGENT-BASED MODEL OF THE EVOLUTION OF THEORY OF MIND

Algorithm 7 Pseudocode of roulette wheel selection algorithm.

1: procedure getParentUsingRWS(agentSet, dominance)
Require: Fitness values are transformed from range [−1..1] to [0..2].
2: totalFitness = 0
3: for i = 0 to agentSet.size do
4: agent ← agentSet[i]
5: fitnessValue ← dominance(agent)
6: totalFitness += fitnessValue * fitnessValue
7: end for
8: r ← random number between 0 and totalFitness
9: cumulativeFitness = 0

10: for i = 0 to agentSet.size do
11: fitnessValue ← dominance(agent)
12: cumulativeFitness = fitnessValue * fitnessValue
13: if cumulativeFitness > r then
14: return agentSet[i]
15: end if
16: end for
17: end procedure

3.5.3. Reproduction. After the parents have been selected, the par-
ents will reproduce. The children inherit the rule database of one or two
parents, depending on the reproduction method. We test two methods,
linked genes and crossover. Linked genes inheritance is quite simple. The
offspring inherits genes from a single parent (or in this case the rule data-
base) with a few changes due to mutation.

Crossover requires two parents; the offspring will inherit genes from both
of them. In one-point crossover the gene set is cut at some point. Each child
gets one part from each parent. In n-point crossover the gene set is divided
into more sections (de Jong, 2008, p.41). Crossover is expected to give
results faster than linked genes, because it allows for more diversity in the
agent set. We ran experiments with 1-point crossover.

Besides changes due to crossover, the rule database is subject to mu-
tation (see section 2.5.3 on page 20). Mutation occurs on database level
and on rule level. We vary the mutation probability between the following
values: 0.0005, 0.001, 0.005.

On the database level, the possible mutations are:

• A randomly selected rule is duplicated and inserted randomly in
the rule database;
• a randomly selected rule is removed from the rule database;
• a randomly selected rule is moved to a random location in the rule

database;
• a zero-order rule is inserted in the rule database;
• two rules swap locations in the rule database;

3.6. EXPERIMENTS AND EXPECTED RESULTS 49

• a randomly selected rule changes type: an attack rule becomes a
defense rule and vice versa.

On the rule level, the possible mutations are:

• Belief operators are changed, inserted or removed;
• the corresponding action changes from LEFT to RIGHT or vice

versa;
• the user of the changes from SELF to OPPONENT or vice versa.

If the rule reasons about another rule, this nested rule is also subject to
mutation.

After selection and reproduction, a new generation of agents is born.
The dominance ranking is reset and the agents start interacting.

3.6. Experiments and expected results

The basic setup will be as follows. First we will run experiments varying
the parameter values mentioned in table 3.8. Each experiment will be run
twice. This results in 36 simulations. The results of the experiment will be
discussed in Chapter 4. Appendix A.1 and table 3.9 contain an overview of
the simulations that were run.

Parameter Values
Number of agents 200, 350, 500
Mutation probability 0.005, 0.001, 0.0005
Reproduction method linked genes, crossover
Average number of attack actions to

each opponent 10

Table 3.8. Varied parameters in experiments

linked-genes crossover
MC / AC 200 350 500 200 350 500
0.0005 13 17 21 15 19 23
0.001 1 5 9 3 7 11
0.005 25 29 33 27 31 35

Table 3.9. Numbers of the experiments in which the agent
attacked every opponent on average 10 times.

3.6.1. Evaluation criteria. The model was created with two criteria
in mind. Firstly, we want to see higher-order theory of mind (at least second-
order theory of mind) evolve. Secondly, if theory of mind evolves we want to
gain an understanding why higher-order theory of mind evolves at it does.

50 3. AN AGENT-BASED MODEL OF THE EVOLUTION OF THEORY OF MIND

If theory of mind does not evolve at first, we can change the setup of the
model.

As discussed in section 3.3.1 on page 27 there is hardly any limit on
the contents of a rule. The rules can be about any agent, any action and
any type of rule. It could be possible that no rules that represent theory
of mind are evolved within the simulation time, because the search space is
too large. In that case can limit the search space by imposing constraints
on the construction of the rules. For example, we expect that an efficient
attack rule is about a defend rule, as we have seen in the examples of higher-
order rules in section 3.3. If no theory of mind evolves, we could limit the
rule syntax in such a way that attack rules are only about defend rules and
vice versa. Preferably we want to see theory of mind evolve with as few
constraints as possible.

3.6.2. Expected results basic setup. We expect that competitive
interaction between individuals in a simulated non-spatial environment with
the constraints mentioned earlier gives rise to the evolution of higher-order
theory of mind and that the average order of attribution will increase over
generations.

We predict that several parameters influence the evolution of higher-
order cognition: the reproduction method, the mutation probability, the
number of interactions per opponent and the number of agents. Varying
these parameters may give us insight into what parameters may influence the
evolution of higher-order cognition. The following parameters were omitted
due to lack of time: different types of initial rule database and the number of
agents who survive a generation and continue to live in the next generation.
Next, we discuss the predicted influence of varying the four parameters.

3.6.3. Reproduction. There are two methods of inheritance consid-
ered: linked genes and one-point crossover. We expect that crossover may
lead to the evolution of higher-order theory of mind faster. Because rule
databases are combined using one-point crossover, more diverse agents are
created.

3.6.4. Number of interactions. We expect that the number of inter-
actions will limit the order of theory of mind that can arise. To be able to
use a third-order attack rule, an agent has to attack its opponent at least
four times. This can be easily explained. Let us assume that one agent
attacks another agent four times. The first time both the attacking and the
defending agent use a zero-order rule because neither agent has interacted
with the other, so there are no memories and earlier established beliefs that
would allow both agents to select higher-order rules.

During the second turn, both agents can use a first-order rule since
they both have now experience to base beliefs about the used rules by their
opponents on. During the third turn both agents can use second-order rules
and during the fourth turn both agents can use third-order rules.

3.7. CHAPTER SUMMARY 51

We ran experiments where each agent on average attacked each other
agent 10 times and experiments where each agent attacked the other agent
on average 20 times. Theoretically, this could result in respectively ninth-
order rules and nineteenth-order rules.

Since we could not find any difference in results in both sets of simula-
tions, we have set the number of interactions to 10. This halves the simu-
lation duration. The total number of interactions during one generation is
calculated using equation 3.6.1.

numberOfInteractions = numberOfAgents ∗ numberOfAgents ∗ 10
(3.6.1)

3.6.5. Mutation probability. We expect that when a low mutation
probability is used, it will take longer to evolve higher-order rules than us-
ing a higher mutation probability, because less diversity is introduced in
the population. However, we expect that a very high mutation probability
does not result in higher-order rules quickly if at all. Because rule databases
change fast when using a very high mutation probability, we expect that
rule databases cannot adapt quickly enough to the rule databases of oth-
ers, because the databases of others are also likely to change. The lowest
mutation value we choose stills allows for changes in rule databases when
the agents reproduce, while the highest value does not result in very large
databases and in rule databases that are very different from those in a pre-
vious generation.

3.6.6. Number of agents. We expect that a larger number of agents
will provide a larger diversity in the agent set, therefore allowing higher-
order rules to evolve faster. Experiments with a population size larger than
500 resulted in simulations that took more than a week to run, so we did not
experiment with larger population sizes. In preliminary experiments with
a population size smaller than 200 we found that the evolution of higher-
order rules takes a long time, probably because there is little diversity in
the population because of the limited number of agents.

3.7. Chapter summary

In this chapter we showed how the model is constructed. Agents interact
competitively, using logical rules to select their actions. Whether a rule
is used by an agent depends on the agent’s previous experience with its
opponent, the beliefs an agent has about its opponent’s rules and the beliefs
an agent has about its opponent’s beliefs.

After one generation, the agents reproduce using either the linked-genes
reproduction method or one-point crossover. The agents with the high-
est dominance values are most likely to be selected for reproduction. The
offspring inherit a mutated version of their parents’ rule database. The

52 3. AN AGENT-BASED MODEL OF THE EVOLUTION OF THEORY OF MIND

following parameters are varied in simulation: population size, mutation
probability and the reproduction method.

With the experiments in Chapter 4 we hope to investigate whether
competitive interactions between individuals may result in the evolution
of higher-order theory of mind.

CHAPTER 4

Results

In this chapter we present the results of the experiments (see section 3.6 for
an overview). We discuss how the simulation results are analyzed and show
how the experiment parameters influenced the evolution of theory of mind
in the model.

4.1. Analysis

To analyze the results, we developed a method to determine the order
of a rule. We look at the contents of a rule to determine the order of a rule.
We explain how to determine the order of a rule. Then we give an example.
Finally, the pseudo-code of the algorithm that determines the order of a rule
is discussed.

4.1.1. Determining the order of a rule. A rule template is shown
below. This is building block 2 (see also section 3.3.1.5 on page 29). The
variables m, n and o can have the values SELF (S) or OPPONENT (O).
Actionsα and β can have the values ATTACK (A) or DEFEND (D).

[Bmrule
n
α → actionβ]o

To determine the order of a rule, we do not just count the number of
belief operators but we also look at the contents of a rule. The order of a
rule is increased when the following two conditions are met:

(1) n 6= o, where n and o have the values SELF or OPPONENT ;
(2) α 6= β where α and β have the values ATTACK or DEFEND.

In other words, two conditions must be fulfilled for an order of a rule
to increase. Firstly, an attack rule must reason about a defend rule or the
other way around. Secondly, a rule used by the agent itself must reason
about the rule of an opponent or the other way around.

4.1.2. Example.

Example 6.[
BS

[
BO
[
BS [TRUE → RIGHTA]O → RIGHTD

]S → LEFTA

]O
→ LEFTD

]S
53

54 4. RESULTS

Example 6 is a third-order rule. We will show how its order is deter-
mined. This defend rule, used by the agent itself, reasons about an op-
ponent’s attack rule. So, the two conditions above are met. This means
that this rule is at least a first-order rule. Then we look at the nested

rule:
[
BO
[
BS [TRUE → RIGHTA]O → RIGHTD

]S → LEFTA

]O
. The

attack rule of the opponent reasons about a defend rule of the agent itself.
So the order is increased to two. The next nested rule is

[
BS [TRUE →

RIGHTA]O → RIGHTD
]S

. This defend rule reasons about the attack rule
of the opponent, so the order of the rule is increased to three. The nested
rule [TRUE → RIGHTA]O does not reason about a rule, so we conclude
that the order of the rule is three.

When we analyze the rule in example 7, we notice that the first condition
is violated, since the attack rule used by the agent itself reasons about a
defend rule used by the agent. So, we say that this rule has no order. This
is denoted by a question mark. This allows us to distinguish these no-order
rules from true zero-order rules.

Example 7.[
BO
[
BS [TRUE → RIGHTD]S → LEFTD

]S → RIGHTA

]S
4.1.3. Algorithm. In algorithm 8 we describe the algorithm used to

determine the order of a rule in more detail. In lines 8 - 16 of algorithm 8
we describe four situations in which the order of a rule is not increased.

• When a rule that is used by the agent itself reasons about a rule
used by the agent itself;
• when a rule that is used by the agent’s opponent reasons about a

rule that is used by the agent’s opponent;
• when an attack rule reasons about an attack rule;
• or when a defend rule reasons about a defend rule.

Example 8.[
BO
[
BS [TRUE → RIGHTD]S → LEFTD

]O → RIGHTA

]S
If a rule does not belong to one of the four categories mentioned above,

an order is returned. The order depends on the order of the rule that
the rule reasons about. If the order of the rule that is reasoned about is
indeterminable, the order of the rule is set to one (line 19). According to
this method, the rule in example 8 is a first-order rule. The first part of this

rule,
[
BS [TRUE → RIGHTD]S → LEFTD

]O
, has no determinable order,

but since the agent takes into account the action of its opponent in this
rule, we can safely say that this rule is at least a first-order rule. We could
argue that this rule is a second-order rule, because the agent considers its
opponent’s beliefs about its own defend rule, but we choose to err on the
safe side.

4.2. EXAMPLE OF A RULE DATABASE 55

In all other cases, the order of a rule is the order of the rule that the
rule reasons about incremented by one (line 21).

Algorithm 8 Pseudo-code of algorithm used to determine the order of a
rule.

1: procedure getOrder(rule)
2: user ← getUser(rule)
3: type ← getType(rule)
4: rra ← getRuleReasonedAbout(rule)
5: if rule.isBehaviorRule() then
6: return 0
7: end if
8: if user == SELF AND getUser(rra) == SELF then
9: return ?

10: else if user == OPP AND getUser(rra) == OPP then
11: return ?
12: else if type == ATTACK AND getType(rra) == ATTACK then
13: return ?
14: else if type == DEFEND and getType(rra) == DEFEND then
15: return ?
16: end if
17: orderRRA ← getOrder(rra)
18: if orderRRA == ? then
19: return 1
20: else
21: return orderRRA + 1
22: end if
23: end procedure

4.2. Example of a rule database

In this section we take a closer look at one particular database. Although
different experiments yielded different results, this particular database and
its rules are representative for the rules evolved in most simulations. Table
4.2 shows the contents of a rule database. This is the rule database of the
best performing agent in experiment 31 (see Appendix A) at the end of
the simulation. In this experiment 350 agents interacted. They reproduced
using crossover. The simulation ran for 2000 generations. The agent won
more than half of its attack actions (see table 4.1) and it managed to lose
only a fifth of the interactions in which it was attacked.

The rules shown in table 4.2 are rules that are actually used by the
agent. Most rules in a rule database are never actually used. This is due to
ordering of the rules (the first rule that matches is used), duplicated rules,
rules with the same condition, rules of which the user is the opponent and

56 4. RESULTS

Won Not won
Attack action: 1800 1700

Not lost Lost
Defend action: 2800 700

Table 4.1. Estimated interactions won and lost by the
agent during one generation. The agent is particularly strong
in defending itself. The numbers are an estimation. It is only
known how often the agent won or lost, but the not the total
number of interactions the agent participated in. On aver-
age this agent attacks 3500 times and is attacked 3500 times
during one generation.

not the agent itself (see algorithm 1) and rules of which the condition is
never true. Only 10% to 30% of the rules are used by agents in simulations.
We expect that these junkrules do benefit the agent. A rule that is currently
not used may become useful when the rule mutates. Currently, there is no
penalty for having a large rule database.

So why was the particular agent so successful? First we look at the
agent’s defend rules, which are rule 2, 4, 8 and 11. Of these rules rules 2 and
8 are particularly successful (see table 4.3). The agent lost all interactions
where it used rule 4, but since this rule is hardly used it won’t effect the
agent’s performance very much.

The agent’s zero-order defend rule is rule 11. Although this rule does
not look like a zero-order rule, its condition is always true if the agent has
the rule [TRUE → actionD]S in its rule database (see algorithm 2 on page
2). The rule [TRUE → LEFTD]S is indeed somewhere in the agent’s rule
database, but is not depicted here because it is never actually used.

In the second rule (the second-order rule) something interesting happens.
The condition of the opponent’s rule is about a rule of the agent itself:
BO[TRUE → LEFTD]S . However, the agent never actually applied this
rule, but applying the first-order defend rule 8 did result in an action where
the agent defended on left. In section 4.5 this phenomenon is discussed in
more detail.

The agent’s attack rules are rule 1, 3, 5, 6, 7, 9 and 10. The agent lost
more interactions than it won using rule 1, 3 and 5. However, these rules
(together with the sixth and ninth rule) are hardly used. The seventh and
tenth rule are respectively zero-order and second-order rules.

Although this agent was the best performing agent of the population,
there are several other agents with a similar performance. These agents
outperformed other agents mostly because they had more rules that were
actually used (there was not much difference in total database size) and
because the rules were smarter. In table 4.4 the rule database of the worst
performing agent is shown.

4.2. EXAMPLE OF A RULE DATABASE 57

1.

[
BO

[
BS
[
BO[TRUE → RIGHTA]S → LEFTA]S → LEFTD]O → RIGHTA]S(108)(2)

2.
[
BS
[
BO[TRUE → LEFTD]S → RIGHTA

]O → RIGHTD

]S
(1223)(2)

3.

[
BS

[
BO

[
BS

[
BO

[
BS
[
BO[TRUE → RIGHTD]O → RIGHTD

]S → RIGHTD

]S
→ RIGHTD

]O
→ LEFTD

]O
→ LEFTD

]O
→ LEFTA

]S
(18)(1)

4.

[
BO

[
BS

[
BO

[
BO
[
BO[TRUE → LEFTD]O → RIGHTA

]O → RIGHTD

]S
→ LEFTD

]O
→ LEFTA

]S
→ LEFTD

]S
(11)(?)

5.

[
BO

[
BS

[
BO

[
BO
[
BS [TRUE → LEFTD]O → RIGHTA

]S → RIGHTD

]S
→ LEFTD

]O
→ LEFTD

]S
→ LEFTA

]S
(2)(?)

6.

[
BS

[
BO

[
BO
[
BO[TRUE → LEFTD]S → LEFTD

]S → RIGHTD

]S
→ LEFTA

]O
→ RIGHTA

]S
(10)(?)

7.
[
BS
[
BS [TRUE → RIGHTA]S → RIGHTD

]O → LEFTA

]S
(2274)(2)

8.
[
BS [TRUE → LEFTA]O → LEFTD

]S
(1279)(1)

9.
[
BO
[
BS [TRUE → LEFTD]O → LEFTD

]O → LEFTA

]S
(31)(1)

10. [TRUE → RIGHTA]S(1086)(0)

11.
[
BS [TRUE → LEFTD]S → RIGHTD

]S
(1003)(?)

Table 4.2. Rule database of best performing agent in the
last generation of experiment 31. The first number to the
right of the rules represents the number of times the rule
was used during the last generation. The second number
represents the order of the rule. Rules that were never used
by the agent are not printed.

If we let the best agent (and its best performing colleagues) interact
against agents from another simulation with the same experiment param-
eters, this agent is not the best performing agent. This means that, not
unexpectedly, this agent has adapted to the behavior of the agents in its

58 4. RESULTS

No. rule Utility No. rule Utility
1. -.20 7. 0.23
2. 0.94 8. 0.62
3. -1.0 9. 0.09
4. -1.0 10. -0.34
5. -1.0 11. 0.15
6. 0.6

Table 4.3. Utility of rules of the agent. The value ranges
from -1 to 1. For attack rules a positive number means that
more interactions were won than not won using a particular
rule. For defend rules a positive number means that more
interactions were not lost than lost using a particular rule.

[
BO

[
BO
[
BO[TRUE → RIGHTA]O → LEFTD

]O → RIGHTD

]S
→ RIGHTA

]S
(205)(?)

[TRUE → RIGHTA]S(3211)(0)[
BS [TRUE → LEFTD]S → RIGHTD]S(3580)(0)

Table 4.4. Rule database of worst performing agent.

own simulation but cannot cope with agents from other simulations. This
can be explained as follows.

In figure 4.1 a graph is shown which describes the average composition
of the rule databases of the agents of one simulation over time. We calculate
this as follows. At the end of each generation n, we retrieved from each agent
what proportion of the rules in its rule database were zero-order rules, first-
order rules, second-order rules and so on. We use this data to calculate
what the average rule database composition for all agents in generation n is.
Then, we calculated the average rule database composition of the population
for each generation.

The average rule database composition (see figure 4.1) is from the same
simulation as the agent we have discussed. 24% of the rules in the population
are zero-order rules, 19% are first-order rules and 24% are second-order rules.

Ideally, a rule database contains rules to handle all possible rules an
opponent may use. In that case, the composition of a rule database would
look more like the plot in figure 4.2. It would consist of two zero-order rules
(a defend rule and an attack rule) and four first-order rules (one for every
zero-order rule possibly used by the opponent). For every possible first-order
rule used by an opponent second-order rules are constructed. This results
in a lot more second-order rules than first-order rules, and more third-order
rules than second-order rules and so on. An ideal database would be able
to produce an appropriate response to every possible rule an opponent may

4.2. EXAMPLE OF A RULE DATABASE 59

Figure 4.1. Composition of an average rule database.

Figure 4.2. Composition of the rule database in an ideal situation.

use. The best performing agent does not have such a database, as we can
observe by looking at the database in table 4.2. The agent’fs database is
specifically suited to handle the rules of its opponents in its simulation but
the rule database is not adapted for other possible rules it may encounter
in different simulations.

This is not unexpected. An ideal database requires many rules that have
to be in the correct order. More importantly, those rules are not useful if
the rules they reasoned about are not used by the agent’s opponents. There
is no incentive to evolve rules that are never required. Therefore, if those
rules are not required, they do not necessarily persist in the population.

60 4. RESULTS

4.3. Short-cut rules

When we started the experiments, we expected that the most effective
attack rules would be rules that reasoned about the defend action of the
opponent and effective defend rules would be rules that reasoned about
the attack action of the opponent. However, we found in simulations rule
databases that contain attack rules that reason about the opponent’s belief
about the agent’s attack rule and not about the opponent’s defend action.
An example of this phenomenon is presented below:

Example 9. [
BO[TRUE → LEFTA]S → RIGHTA

]S
The condition of this attack rule is about the opponent’s belief about

the agent’s attack rule. If the agent believes that its opponent believes the
agent will attack with left, the agent attacks with right. The defend action
of the opponent is not taken into account.

The fact that these rules are persistent in the population show these
rules do benefit the agent. If most opponents in a population use the first-

order rule
[
BS [TRUE → LEFTA]O → LEFTD

]S
applying the rule above

is useful. The agent is one step ahead of its opponent; it uses a short-
cut. Short-cut rules are not effective on their own. They are only useful if
they are co-evolved with ‘normal’ rules such as

[
BS [TRUE → LEFTA]O →

LEFTD
]S

.
We found that in 34 of the 36 simulations short-cut rules with a function-

ality of a second-order rule were used as a response to first-order rules that
were already used in previous generations. For example, the short-cut order
rule in example 9 was first applied when the first-order rule

[
BS [TRUE →

LEFTA]O → LEFTD
]S

is already present in the rule databases of agents
in previous generations.

4.4. Evolution of higher-order rules

In chapter 1 we hypothesized that n + 1-order attribution evolves only
when the larger part of the population has the ability of n-order attribution,
since it only makes sense to use n+1-order rules if other agents apply n-order
rules. We found that in 32 of the 36 experiments n + 1-order rules arose
after n-order rules are found in the population. We found this by analyzing
graphs of the average rule database composition.

In the four experiments where n + 1-order rules arose before the corre-
sponding n-order rules, the n + 1-order rules were either short-cut rules or
the rules did not persist in the population. In experiment 15 (see figure 4.3)
an example of the evolution of n + 1-order rules can be seen without the
prior evolution of n-order rules.

4.5. ERRORS IN REASONING 61

Figure 4.3. Average rule database composition for exper-
iment 15. From generation 1296 to 1515, third-order rules
persist in the population, but no second-order rules are used.
The rule persists because of the presence of a short-cut rule.

An example of when n+ 1-order rules were found when no n-order rules
are present can be found in experiment 15 (see figure 4.3). In this particular
example the following third-order rule persisted in the population:

[
BS

[
BS
[
BO[TRUE → LEFTD]O → RIGHTA

]
S → RIGHTD

]O
→ LEFTA

]S
It turned out that is was quite useful for the agents to use this rule, since

the following short-cut rule with a second-order rule functionality was used
in the population:[

BO[TRUE → LEFTD]S → RIGHTD
]S

This rule states that if the agent believes that its opponent believes that
the agent’s zero-order defend rule is to defend with left, then the agent will
defend with right. This short-cut order rule was only useful because the
following first-order rule was used in the population:[

BS [TRUE → LEFTD]O → RIGHTA
]S

In this rule the agent will attack with right when it believes that its
opponent uses a zero-order defend rule in which it defends with left. We
have shown that in the experiments where n + 1-order rules evolve when
there are no n-order rules present, the n+ 1-order rules are still useful.

4.5. Errors in reasoning

Although every agent has a perfectly functioning reasoning mechanism
(see section 3.3), agents can make wrong inferences about the rules or beliefs

62 4. RESULTS

of their opponent. This may occur when an agent fails to establish certain
beliefs about the rules or the beliefs of its opponent. We will provide a short
example to explain this phenomenon.[

BS
[
BO[TRUE → RIGHTD]S → LEFTA]O → LEFTD]S[

BS [TRUE → RIGHTA]O → RIGHTD]S

[TRUE → LEFTD]S

Table 4.5. Rule database that can lead to wrong inferences

We introduce an agent with the rule database shown in table 4.5. As-
sume that in the first interaction the agent has to select a defend action.
It will use the zero-order defend rule [TRUE → LEFTD]S]. The agent’s
opponent attacks with right.

In the second turn, the agent defends again. The agent first evaluates
the second-order rule (for a detailed explanation on evaluating rules, see
section 3.3). The agent will not use the second-order rule. When evaluating
this rule the agent investigates if it is possible that its opponent believes
the agent’s zero-order defend rule is [TRUE → RIGHTD]S . This is not the
case.

So, the agent will next evaluate the first-order rule. It establishes the
belief that its opponent’s zero-order attack rule is [TRUE → RIGHTA]O.
Therefore, the agent defends with right. Up to this point, the agent did not
establish incorrect beliefs.

However, when the agent is attacked again it will err. When evaluating
the second-order rule, the agent will verify whether it is possible that its
opponent believes that the agent uses the zero-order defend rule [TRUE →
RIGHTD]S . The agent will conclude that this is indeed the case, since it
is in the agent’s memory that the agent defended with right in the previous
interaction.

What happened here was that the agent failed to derive that its opponent
may believe that the agent’s zero-order defend rule is [TRUE → LEFTD]S],
because never did the agent evaluate a rule in which this belief may have
been established.

For this agent, this is not necessarily a bad thing. Even though it did
not correctly infer its opponent’s beliefs, it may still give an appropriate
response to the action of its opponent.

4.6. Order of rules

In most experiments the order of the rules in the agents’ databases
ranged from zero to three. The highest-order rule found was a fifth order
rule. Appendix A contains graphs of the average maximum order of rules
in the rule databases for each agent in the population of the simulations we

4.7. NUMBER OF INTERACTIONS 63

ran. We calculated these values as follows. First, we determined for the rule
database of every agent in the population the order of the highest-order rule
in the rule database. We then calculated the average maximum order for
the population.

Each line in the graphs in Appendix A represents a run of a particular
experiment. On the x-axis the number of generations is depicted. On the
y-axis the average maximum order of the rules in the agents’ databases is
shown.

In table 4.6 we summarized the average maximum order at the end of
the simulations for all the parameter values. Note that these values are not
the highest values for the average maximum order. In some simulations the
average maximum order increased and decreased later on.

linked-genes crossover
MC / AC 200 350 500 200 350 500
0.0005 1.0, 2.8 1.0, 2.0 1, 2.4 3.0, 1.0 2.4, 1.9 2.0, 2.5
0.001 1.1, 2.0 1.0, 1.7 1.1, 1.8 2.0, 2.9 3.0, 2.0 2.8, 3.3
0.005 2.5, 2.0 2.0, 2.0 2.0, 2.1 2.0, 1.9 2.0, 2.1 2.1, 2.5

Table 4.6. Average maximum order of rules at the end of
an experiment. Each value represents one simulation. In
chapter A.2 the average maximum order over time is shown.

In all experiments first- and higher-order rules evolve, but the stability
and the order of the rules varies. In the following sections we discuss the
influence of the parameters on the evolved rules. Sometimes the effects are
difficult to determine, because each experiment was only run twice. The
reason is that simulations may take more than a week to run.

4.7. Number of interactions

In preliminary experiments we found that in order for theory of mind
to evolve, a minimum number of interactions is required. If agents do not
interact with each other often enough, the agents have no experience with
their opponents that allows them to use higher-order rules. In that case,
no theory of mind will arise, because the agents are not capable of using
higher-order rules.

This can be explained as follows. In order to make use of an attack
rule with order n, an agent has to attack at least n+1 times to benefit
from its rules. Let us assume that one agent attacks another agent four
times. The first time both the attacking and the defending agent use a
zero-order rule because neither agent has interacted with each other, so
there are no memories and earlier established beliefs that would allow both
agents to select higher-order rules. In the second turn, both agents can use
a first-order rule since they both have now experience which they can use to

64 4. RESULTS

determine of the condition of their first-order rule is true. During the third
turn both agents can use second-order rules and during the fourth turn both
agents can use third-order rules.

We then ran experiments in which each agent attacked on average each
opponent either 10 times or 20 times. There is no notable effect of changing
this parameter, apart from the fact that it takes at least twice as long to
run an experiment in which each agent attacks its opponent 20 times.

4.8. The effect of reproduction

In experiments we used two reproduction methods: linked-genes and
one-point crossover (see section 3.6.3). We expected that crossover would
lead to the evolution of higher-order rules faster than linked genes, because
rule databases of the offspring of the agents would be more diverse in the
crossover condition. From the graphs in Chapter A.2 we can see that this is
indeed the case in 7 of the 9 cases where we compared the results of exper-
iments in which only the reproduction method was varied. Furthermore, in
17 of the 18 experiments where the agents reproduced using crossover the
average maximum order was two or higher. In the experiments where the
agents reproduced using linked genes this happened in half of the experi-
ments.

An unexpected effect was that linked-genes reproduction led to much
more variation of the average maximum order over generations. The varia-
tion was less when the mutation probability increased. We discuss the effect
of the mutation probability in section 4.10.

Another effect we found was that in experiments where the agents re-
produced using crossover the rule databases were larger than in experiments
where the agents reproduced using linked genes. Table 4.7 shows the aver-
age rule database size at the end of an experiment (after 2000 generations)
for all experiments. We did not find an explanation for this phenomenon.

linked-genes crossover
MC / AC 200 350 500 200 350 500
0.0005 23 23 25 35 38 38
0.001 33 36 27 49 51 52
0.005 93 53 87 101 108 95

Table 4.7. Average rule database size at the end of a simulation

4.9. The effect of the number of agents

In experiments we varied the number of agents to 200, 350 and 500
agents. From the graphs in section A.4 we could not observe an effect in
the experiments where the agents reproduced using cross-over. From the
graphs it can seen that in the experiments where agents reproduced using

4.10. THE EFFECT OF THE MUTATION PROBABILITY 65

the linked genes method, higher-order rules are evolved faster when the
population size is increased. However, this effect was only observed when
the mutation probability was 0.0005 and 0.001 and not in the experiments
where the mutation probability was 0.005.

There is a possible explanation that accounts for both the lack of effect
in the crossover group and the lack of effect in the linked-genes group with
a mutation probability of 0.005. A larger population causes more diversity
in the population, because when agents reproduce, mutation occurs. Hav-
ing more agents may thus lead to the evolution of higher-order rules more
quickly. In the experiments where agents reproduced using crossover more
diversity is already introduced because the rule databases of two agents are
recombined when they reproduce. Similarly, the lack of effect of the number
of agents in the experiments where agents reproduced using linked-genes
may be attributed to the fact that the mutation probability in those exper-
iments was high. Therefore, there was more diversity in the population.

Since we did not include a method to measure the genetic diversity in the
population for the difference experiments, we cannot verify this hypothesis.

4.10. The effect of the mutation probability

In experiments we used the following values for the mutation probability:
0.0005, 0.001 and 0.005 (see 3.6.5 for the choice on the mutation probability
values). We expected that higher-order rules would evolve more quickly
when the mutation probability was high. However, when we look at the
graphs in section A.3 we could not find such a relation.

We discussed in section 4.8 that the maximum average order of the rule
databases of the agents varied more over time when the agents reproduced
using linked genes as opposed to when the agents reproduced using crossover.
A possible explanation for this phenomenon is that there is a difference in
diversity in the two conditions. When agents reproduce using linked-genes
diversity in the rule databases is introduced by mutation. In the populations
where agents reproduce using crossover, diversity is not only introduced by
mutation but also by recombining the rule databases of the agents’ parents
(see section 3.5.3).

Assume we have a population of agents who reproduce using linked
genes. One agent in the population evolves a first-order rule while the oth-
ers have zero-order rules. This agent is highly successful. Its dominance
value is very high compared to the values of others. This agent reproduces
many children and the average maximum order of the next generation in-
creases. Because one agent is responsible for so many children, the average
maximum order may increase from 0 to 1, or from 1 to 2 in one generation.
Similarly, assume we have a population which reproduces using linked genes
where almost every agent has a first-order rule that gives an appropriate
response to a particular zero-order rule. An agent who does not use such a
zero-order rule does not suffer from the second-order rule. If the agent has

66 4. RESULTS

a high dominance value and produces many offspring, the second-order rule
may become useless since it can never be applied and the rule disappears
from the population altogether.

This is less likely to happen in a population in which the agents repro-
duce using crossover. Because the diversity is larger in the population not
all agents necessarily lose most interactions against an agent with a higher-
order rule. Suppose that an agent has evolved a second-order attack rule
that is capable of dealing with a specific first-order defend rule. Not all
agents may use such a defend rule and the agent may perform well in the
population but not against all agents.

This finding can also be observed from the dominance values in the
experiment data. There is less variation in the dominance values in exper-
iments where the agents reproduced using crossover. We did not include a
measurement for the rule database diversity in the population. This may
have aided in verifying this explanation.

4.11. Summary

In this chapter we have given an example of a rule database (section
4.2) and we showed that higher-order rules are evolved when agents interact
with each other in a competition setting (section 4.6). In most experiments
the order of the rules varied between 0 and 3. The highest-order rule found
was a fifth order rule. We found that n + 1-order rules only persist in the
population when the corresponding n-order rule is present or when there are
short-cut rules in the population (section 4.3). Also, we have shown that the
evolved rule databases are adapted to the population (section 4.2). Agents
do not always establish correct beliefs about their opponents’ beliefs or rules
(section 4.5), but this does not necessarily result in poor action selection.

We found that the average maximum order of rules varies more greatly
over time in populations where agents reproduced using linked genes (section
4.8). The reproduction method also influenced the average rule database
size at the end of a population: crossover resulted in larger databases. As
expected, letting agents reproduce using crossover led to the evolution of
higher-order rules faster than when the agents reproduced using the linked
genes method.

CHAPTER 5

Discussion

In this chapter we discuss what the results presented in Chapter 4 implicate
for research on theory of mind. We look at the role of competition in the
evolution of theory of mind and discuss the orders of theory of mind that
evolve.

5.1. The role of competition in the evolution theory of mind

The first hypothesis presented in Chapter 1 was that competition is a
possible driving factor behind the evolution of theory of mind. We showed
that a competitive task can lead to the evolution of agents with a higher-
order theory of mind. In our model, the highest order of rules that persisted
in the population were fourth-order rules. Coincidentally, this corresponds
with the highest order of theory of mind humans are capable of (Kinderman
et al., 1998).

The fact that we were capable of evolving theory of mind in a competitive
situation corresponds with the fact that theory of mind-like behavior in
animals is mostly found in a competition setting (see section 2.2).

5.2. Evolving higher-order rules

The second hypothesis was that n + 1-order attribution evolves only
when the larger part of the population has the ability of n-order attribution,
because it only makes sense to use n + 1-order rules if other agents apply
n-order rules. We found this phenomenon in 32 of the 36 experiments (see
section 4.4). We also found that n + 1-order rules do not persist in a rule
database when there is no corresponding n-order rule unless short-cut rules
with a similar function are found (see section 4.3).

In short-cut rules the agent selects its action based on the agent’s oppo-
nent’s beliefs on the agent’s rule. The agent does not take the opponent’s
action into account. An example of a short-cut rule is the rule in example
10. This rule is not assigned an order because the rule does not take the
action of the opponent into account (section 3.3).

Example 10. [
BO[TRUE → LEFTA]S → RIGHTA

]S
If a short-cut rule with the functionality of an n-order rule is found in

the population, rules with order n+1 persist. The short-cut rule in example

67

68 5. DISCUSSION

10 only benefits the agent when most agents in the population use the rule[
BS [TRUE → LEFTA]O → LEFTD

]S
. These short-cut rules were found

in 34 of the 36 experiments (see section 4.3). This shows that when most
individuals in the same population use a similar strategy, individuals can
exploit this. In this model there was no punishment for evaluating longer
rules. However, in real life it seems plausible that higher-order theory of
mind requires more effort. Using a short-cut may reduce this effort.

We discussed in section 4.3 that short-cut rules do not necessarily work
when agents interact against agents from a different population. When we
placed agents who performed well in their own population in a population
that was the result of an experiment with the same parameters, the agent
did not perform so well. This indicates that an agent’s behavior is adapted
to its own environment. The same phenomenon can be found in nature. If
we place the mouse with light fur (as discussed in section 2.5.3) in a dark
environment, it may not perform as well as it would in its own light colored
environment since the mouse is not adapted to its new environment.

The highest rules found in simulations were rules with an order up to five
but those rules did not persist. However, in most simulations the most com-
mon higher-order rules are up to order three. In theory, given the fact that
each agent attacked each opponent on average ten times, ninth order rules
could have been evolved. Rules of order ten and higher would not benefit the
agent, since those would never be applied (see section 3.6.4 for more on this).
One possible explanation for the fact that the order of rules was usually not
larger than three or four is the fact that the resulting databases were too
small for higher-order rules to be effective. A rule database that contains
third-order rules that are suitable to respond to every possible second-order
rule an opponent may use, contains almost 300 rules (see page 58 for an
explanation). The largest database that was found only had 108 rules (see
table 4.7 on page 64).

Letting the simulations run for a longer period could lead to higher
orders of theory of mind. We choose not to run longer simulations, since
running a simulation already lasted up to a week.

5.3. Interpretation of theory of mind in the model

When we started to develop this model, we chose to evolve rules that
represent theory of mind. The contents of the rule could be freely varied
but the rules had a fixed format (see section 3.3). We made two strong
assumptions about the agent’s reasoning capability. Firstly, an agent is
consistent in its rule evaluation and given the information it has it reasons
perfectly. In other words, given a specific instance of a rule database and
memory, the inferred actions and beliefs are always the same for every agent.
Secondly, all agents behave this way and this is known by all agents. This
allows agents to reason about other agents’ rules and beliefs. If an agent
cannot be sure about its opponent’s rules nor about the opponent’s reasoning

5.5. SIMULATIONS 69

mechanism, it is almost impossible for the agent to establish beliefs about
its opponent’s rules and beliefs.

This approach has similarities with theory-theory which is discussed in
section 2.1. The agents have a reasoning mechanism, just as humans have
cognitive capabilities. The agents in this model evolve their theories whereas
humans develop them during their lifetime (Whiten, 2002). We also could
have approached the problem from the simulation-theory point of view. In
that case we would have given the agents sensible rules in which the agents
respond appropriately to the expected action of their opponent. The quality
of each agent’s reasoning mechanism could differ. For example, the agent
may be able to keep up only with a limited order of theory of mind, because
of computational limitations. This would require the agent to assess, or
rather simulate, the ‘cleverness’ of its opponent. After finishing this project
we still feel that evolving the agent’s rules rather than the reasoning mech-
anism is a practical choice, because it allows easy insight into the workings
of the agent.

5.4. Relevance for research on theory of mind

In this project we showed that it is possible to develop an agent-based
model in which the evolution of theory of mind can be simulated. Unfor-
tunately, since there is little known about the evolution of theory of mind
in humans, we cannot compare the results of the model to empirical data.
The next step is to devise tasks that are hypothesized to be a driving force
behind the evolution of theory of mind, such as mixed-motive interactions
and cooperation.

Lastly, with this project we showed that we do no longer only have to
theorize about the evolution of theory of mind, but that we can actually
simulate it in an insightful way. This model has to be extended with costs
and perhaps other environmental factors, but it is worthwhile to continue
research on the evolution of theory of mind with the proposed setup.

5.5. Simulations

The simulations were run on the Millipede Cluster1 of the University
of Groningen. Running simulations on the cluster allowed us to run all
experiments simultaneously. The cluster contains 255 nodes with multiple
Opteron 2.6 GHz cores. These nodes are connected to 110 TB of storage.
For each experiment, one core was used. In each experiment, two simulations
were run (each experiment was run twice) successively on one core. It would
have been possible to reprogram the simulation in such a way that two
simulations would have been run on two cores, thus reducing the time it
would take to run experiment by half.

The duration of each experiment varied between one day (for a simu-
lation with 200 agents) and a week (for a simulation with 500 agents). A

1http://www.rug.nl/cit/hpcv/faciliteiten/HPCCluster

70 5. DISCUSSION

queuing mechanism is used on the Millipede cluster to allow everyone a fair
share of computing time. However, it happened rarely that a job was in
queue before it was run. 2

2I strongly recommend everyone who is running simulations that take more than a
few hours to request on account on the Millipede cluster and use it to run simulations.
It is easy (if you have some skill with Linux) and it allows you to use your computer for
other tasks (such as writing a thesis, for example).

CHAPTER 6

Conclusion and future work

To contribute to the research on higher-order social cognition we constructed
a model that allows us to experiment with the evolution of higher-order
theory of mind (see Chapter 3). In this model the agents were given a com-
petition task. The agents competed with individuals within the population.
The agents’ behavior followed from rules in the agents’ rule databases. Rules
allow agents to reason about their opponent’s beliefs and rules. The rule
databases were evolved over time. Two reproduction methods were used:
linked genes and one-point crossover. We have chosen a model in which
the form of the rules is fixed, but the contents of the rules can be varied.
Two assumptions were made. Firstly, all agents have the same reasoning
mechanism which works perfectly given the agent’s rules and the agent’s
observations. Secondly, this information is common knowledge. We found
that competition is a driving force behind the evolution of theory of mind
in this model (see Chapter 4 and Chapter 5).

In this chapter we summarize the main findings of this project and pro-
pose how the model can be expanded and used in future projects.

6.1. Conclusion

In the agent-based model higher-order theory of mind has evolved in a
competition setting. In every simulation higher-order rules evolved. The
order of the rules usually varied between zero and three. The highest-order
rule evolved was a fifth-order rule (section 4.6). The size of the rule databases
varies between 23 and 108, depending on the experiment parameters. Only
10% to 30% of the rules in the rule database are actually used. This does
not mean those rules are useless. Unused rules may be useful to maintain
genetic diversity, since unused rules may become useful when they change
due to mutation (section 4.2).

We found that the agents’ rules are adapted to the environment. When
the best performing agent from one population interacts with agents from
another population that was simulated using the same experiment param-
eters, the agent was not as successful as it was in its original population.
One reason is that the evolved rule database of the agents are too small to
give an appropriate response to every possible rule of the opponent (section
4.2). A second reason is that some of the rules in the agents’ rule databases
are specifically suited to deal with rules in the population. These are the

71

72 6. CONCLUSION AND FUTURE WORK

short-cut rules (section 4.3). A short-cut rule takes only the opponent’s be-
lief about the agent’s rule into account, but not the action of the opponent.
This rule can backfire against an agent, unless most agents in the popula-
tion use the corresponding rule. We expected that n+ 1-order rules evolve
when the corresponding n-order rules are present in the population. We
found that n + 1-order rules persist when the corresponding n-order rules
are found or when the corresponding short-cut rules are also found in the
population (section 4.3).

6.2. Future work

In the current model we made the assumption that each agent has the
same perfect reasoning mechanism and this is common knowledge; it would
be very interesting to investigate if higher-order theory of mind will arise
when less constraints are applied to the model. One option is to expand
the action set with a random action. We suspect this will not lead to the
evolution of higher-order theory of mind at all, because there is no better
response to an opponent who selects random actions than to select a random
action yourself. Another option is to introduce errors in action execution
(the agents selects an action but another is executed) or errors in memory.
This adds a probabilistic factor to the model.

As discussed in section 5.3 we can deviate from the theory-theory ap-
proach used in this model to the simulation-theory. We give the agents sen-
sible rules but let the reasoning mechanism evolve over time. This requires
the agents to make predictions about their opponents’ reasoning capabilities.

In the current model the agents are not punished for having large rule
databases. 70% to 90% of the rules in the agents’ rule databases are not
used. We expect that these junk rules help the agent in evolving useful rules
by maintaining genetic diversity (section 4.2). To test this hypothesis we
can punish agents with larger rule databases. Also, we can punish the agents
for using rules that require extensive reasoning about the mental states of
others, since, in real life, this may require mental effort. We expect that this
results in more short-cut rules and that the rule databases of the agents are
even more strongly adapted to the population.

The order of the rules evolved in simulations were usually not higher
than three. We expect that this is caused by the limited database size at
the end of a simulation (see section 5.2). Running a simulation for a longer
period than 2000 generations may result in agents with larger rule databases
and perhaps rules with an order higher than three. However, simulations
with 500 agents already take a week to run. Running the experiment on
the Millipede cluster of the university allowed us to run all the experiments
simultaneously.

The current program can be rewritten in such a way that multiple com-
puter nodes are used to calculate the outcome of interactions within a gen-
eration. This allows us to calculate the outcome of more interactions at

6.2. FUTURE WORK 73

the same time and thus reduces simulation time. This will also allow us to
experiment with larger populations.

In this project we have shown that it is possible to simulate the evolution
of theory of mind in a competition setting using an agent-based model in
which the agents select their actions using rules. No longer do we have to
theorize about the evolution of theory of mind; we can simulate it in an
insightful way. This allows us to test other hypotheses on the evolution
of theory of mind (see section 2.3.2), which are cooperation, mixed-motive
interactions and deception.

APPENDIX A

Results of the experiments

In this Appendix we show some of the results in graphs. The complete data
set may be found on http://tom.lisepijl.nl. Chapter C contains further
information on the files in the data set.

In this chapter present the average maximum order of the rule databases
of the agents in graphs. For every agent in the population we determined
what the highest order of the rules in the agent’s database was. We then
averaged these orders for every agent in a generation.

The x-axis represents the generations. The y-axis represents the average
maximum order of rules for every agent in the simulation. Each line rep-
resents one run of the simulation. These results of the simulations are not
averaged, so we can clearly see if an order increases from n to n + 1 over
time.

In section A.1 the experiments and their corresponding parameters are
listed. Section A.2 contains the average maximum order over time for every
experiment that was run. The graphs are placed in such a way that the
influences of the reproduction method are easily observed. In section A.3
the effects of different mutation probabilities are compared and in section
A.4 the effects of different population sizes are compared. Lastly, in section
A.5 the graphs of the average maximum order of the rules are ordered by
the average size of the rule database at the end of the different simulations.

A.1. Overview experiments

We devised 36 experiments, of which 18 experiments (the experiments
with an even number) were only run in preliminary experiments. Table A.1
contains an overview.

A.2. Comparing reproduction method

On each page, two graphs are printed. The parameters of the experi-
ments that resulted in these graphs are equal, except for the reproduction
method.

75

http://tom.lisepijl.nl

76 A. RESULTS OF THE EXPERIMENTS

No. Agent count Mutation probability Interactions Reproduction
1 200 0.001 10 linked genes
2 200 0.001 20 linked genes preliminary
3 200 0.001 10 crossover
4 200 0.001 20 crossover preliminary
5 350 0.001 10 linked genes
6 350 0.001 20 linked genes preliminary
7 350 0.001 10 crossover
8 350 0.001 20 crossover preliminary
9 500 0.001 10 linked genes
10 500 0.001 20 linked genes preliminary
11 500 0.001 10 crossover
12 500 0.001 20 crossover preliminary
13 200 0.0005 10 linked genes
14 200 0.0005 20 linked genes preliminary
15 200 0.0005 10 crossover
16 200 0.0005 20 crossover preliminary
17 350 0.0005 10 linked genes
18 350 0.0005 20 linked genes preliminary
19 350 0.0005 10 crossover
20 350 0.0005 20 crossover preliminary
21 500 0.0005 10 linked genes
22 500 0.0005 20 linked genes preliminary
23 500 0.0005 10 crossover
24 500 0.0005 20 crossover preliminary
25 200 0.005 10 linked genes
26 200 0.005 20 linked genes preliminary
27 200 0.005 10 crossover
28 200 0.005 20 crossover preliminary
29 350 0.005 10 linked genes
30 350 0.005 20 linked genes preliminary
31 350 0.005 10 crossover
32 350 0.005 20 crossover preliminary
33 500 0.005 10 linked genes
34 500 0.005 20 linked genes preliminary
35 500 0.005 10 crossover
36 500 0.005 20 crossover preliminary

Table A.1. Overview of experiments

A.2. COMPARING REPRODUCTION METHOD 77

Figure A.1. Experiment: 1. Number of agents: 200; muta-
tion probability: 0.001; reproduction method: linked genes;
interactions: 10.

Figure A.2. Experiment: 3. Number of agents: 200; mu-
tation probability: 0.001; reproduction method: crossover;
interactions: 10.

78 A. RESULTS OF THE EXPERIMENTS

Figure A.3. Experiment: 5. Number of agents: 350; muta-
tion probability: 0.001; reproduction method: linked genes;
interactions: 10.

Figure A.4. Experiment: 7. Number of agents: 350; mu-
tation probability: 0.001; reproduction method: crossover;
interactions: 10.

A.2. COMPARING REPRODUCTION METHOD 79

Figure A.5. Experiment 9. Number of agents: 500; muta-
tion probability: 0.001; reproduction method: linked genes;
interactions: 10.

Figure A.6. Experiment: 11. Number of agents: 500; mu-
tation probability: 0.001; reproduction method: crossover;
interactions: 10.

80 A. RESULTS OF THE EXPERIMENTS

Figure A.7. Experiment: 13. Number of agents: 200;
mutation probability: 0.0005; reproduction method: linked
genes; interactions: 10.

Figure A.8. Experiment: 15. Number of agents: 200; mu-
tation probability: 0.0005; reproduction method: crossover;
interactions: 10.

A.2. COMPARING REPRODUCTION METHOD 81

Figure A.9. Experiment: 17. Number of agents: 350;
mutation probability: 0.0005; reproduction method: linked
genes; interactions: 10.

Figure A.10. Experiment: 19. Number of agents: 350; mu-
tation probability: 0.0005; reproduction method: crossover;
interactions: 10.

82 A. RESULTS OF THE EXPERIMENTS

Figure A.11. Experiment: 21. Number of agents: 500;
mutation probability: 0.0005; reproduction method: linked
genes; interactions: 10.

Figure A.12. Experiment: 23. Number of agents: 500; mu-
tation probability: 0.0005; reproduction method: crossover;
interactions: 10.

A.2. COMPARING REPRODUCTION METHOD 83

Figure A.13. Experiment: 25. Number of agents: 200;
mutation probability: 0.005; reproduction method: linked
genes; interactions: 10.

Figure A.14. Experiment: 27. Number of agents: 200; mu-
tation probability: 0.005; reproduction method: crossover;
interactions: 10.

84 A. RESULTS OF THE EXPERIMENTS

Figure A.15. Experiment: 29. Number of agents: 350;
mutation probability: 0.005; reproduction method: linked
genes; interactions: 10.

Figure A.16. Experiment: 31. Number of agents: 350; mu-
tation probability: 0.005; reproduction method: crossover;
interactions: 10.

A.2. COMPARING REPRODUCTION METHOD 85

Figure A.17. Experiment: 33. Number of agents: 500;
mutation probability: 0.005; reproduction method: linked
genes; interactions: 10.

Figure A.18. Experiment: 35. Number of agents: 500; mu-
tation probability: 0.005; reproduction method: crossover;
interactions: 10.

86 A. RESULTS OF THE EXPERIMENTS

A.3. Comparing mutation probabilities

(a) Mutation probability:
0.0005

(b) Mutation probability:
0.001

(c) Mutation probability:
0.005

Figure A.19. Agents: 200; reproduction: crossover

(a) Mutation probability:
0.0005

(b) Mutation probability:
0.001

(c) Mutation probability:
0.005

Figure A.20. Agents: 350; reproduction: crossover

(a) Mutation probability:
0.0005

(b) Mutation probability:
0.001

(c) Mutation probability:
0.005

Figure A.21. Agents: 500; reproduction: crossover

A.3. COMPARING MUTATION PROBABILITIES 87

(a) Mutation probability:
0.0005

(b) Mutation probability:
0.001

(c) Mutation probability:
0.005

Figure A.22. Agents: 200; reproduction: linked-genes

(a) Mutation probability:
0.0005

(b) Mutation probability:
0.001

(c) Mutation probability:
0.005

Figure A.23. Agents: 350; reproduction: linked-genes

(a) Mutation probability:
0.0005

(b) Mutation probability:
0.001

(c) Mutation probability:
0.005

Figure A.24. Agents: 500; reproduction: linked-genes

88 A. RESULTS OF THE EXPERIMENTS

A.4. Comparing population size

(a) Population size: 200 (b) Population size: 350 (c) Population size: 500

Figure A.25. Mutation probability: 0.0005; reproduction: crossover

(a) Population size: 200 (b) Population size: 350 (c) Population size: 500

Figure A.26. Mutation probability: 0.001; reproduction: crossover

(a) Population size: 200 (b) Population size: 350 (c) Population size: 500

Figure A.27. Mutation probability: 0.005; reproduction: crossover

A.5. PLOTS ORDERED ON RULE DATABASE SIZE 89

(a) Population size: 200 (b) Population size: 350 (c) Population size: 500

Figure A.28. Mutation probability: 0.0005; reproduction:
linked-genes

(a) Population size: 200 (b) Population size: 350 (c) Population size: 500

Figure A.29. Mutation probability: 0.001; reproduction:
linked-genes

(a) Population size: 200 (b) Population size: 350 (c) Population size: 500

Figure A.30. Mutation probability: 0.005; reproduction:
linked-genes

A.5. Plots ordered on rule database size

90 A. RESULTS OF THE EXPERIMENTS

Figure A.31. Experiment: 31

Figure A.32. Experiment: 27

A.5. PLOTS ORDERED ON RULE DATABASE SIZE 91

Figure A.33. Experiment: 33

Figure A.34. Experiment: 35

92 A. RESULTS OF THE EXPERIMENTS

Figure A.35. Experiment: 29

Figure A.36. Experiment: 11

A.5. PLOTS ORDERED ON RULE DATABASE SIZE 93

Figure A.37. Experiment: 7

Figure A.38. Experiment: 3

94 A. RESULTS OF THE EXPERIMENTS

Figure A.39. Experiment: 19

Figure A.40. Experiment: 23

A.5. PLOTS ORDERED ON RULE DATABASE SIZE 95

Figure A.41. Experiment: 5

Figure A.42. Experiment: 1

96 A. RESULTS OF THE EXPERIMENTS

Figure A.43. Experiment: 15

Figure A.44. Experiment: 9

A.5. PLOTS ORDERED ON RULE DATABASE SIZE 97

Figure A.45. Experiment: 21

Figure A.46. Experiment: 17

98 A. RESULTS OF THE EXPERIMENTS

Figure A.47. Experiment: 13

Figure A.48. Experiment: 25

APPENDIX B

Model manual

B.1. Requirements

To run the program java1.6.0 or newer is required, as well as the file
ToM.zip which can be requested by sending an e-mail to the author of this
thesis or downloaded on http://tom.lisepijl.nl.

B.2. Running the simulation

To prepare the simulation, extract the file ToM.zip first. The folder
ToM\Experiments contains an experiment setup called ‘experiment.props’.
This file contains the experiment parameters. Without a parameter file, the
program will not run. Now, open a command line or terminal and change
directory to the folder ‘ToM’.

Then, enter the following command ‘java -jar ToM.jar -Xms800m’ and
press enter. The simulation then starts. It prints the parameter values and
reports that the agent set is initialized. If debug information is requested the
program starts to print information on the evolved agents. If not, nothing
will show on the console. When the simulation has ended, the command
prompt is returned.

The output from the simulation is printed to the data folder in the
‘ToM’-folder.

B.3. Parameter files

Every file in the ‘Experiments’-folder will be treated as a parameter file
regardless of name and contents. Errors in the parameter file will cause
the program to abort. It is possible to place multiple parameter files in
the experiment folder. Adding more parameter files when the simulation is
already running is pointless, since those parameter files will not be read.

In Java, it is good practice to use the extension .props for parameter
files. However, you can name these files any way you like.

An example of the contents of a parameter file is presented in table B.1.

B.3.1. debug. Setting this value to TRUE results in more detailed
output. This is only useful for debugging purposes.

B.3.2. name. The name of the experiment can be set. It should con-
tain at least one character.

99

http://tom.lisepijl.nl

100 B. MODEL MANUAL

debug=false
name=Exp
agentcnt=350
generations=2000
interactioncnt=10
pctCSAgents=1
pctFOAgents=0
pctSOAgents=0
pctTOAgents=0
randomAgents=false
repetitions=1
RWS=true
LinkedGenes=false
mutationchance=0.001
survivors=0
reporter=true

Table B.1. Contents of a parameter file

B.3.3. agentcnt. This parameter determines the number of agents in
each generation. Values higher than 500 are not recommended, since it
requires a large working memory and may result in memory errors.

B.3.4. generations. This parameter determines for how many gener-
ations the experiment will run.

B.3.5. interactioncnt. This parameter determines how often an agent
on average will attack each opponent.

B.3.6. pctZOAgents, pctFOAgents, pctSOAgents, pctTOAgents.
Sets the percentage of respectively zero-order agents, first-order agents,
second-order agents and third-order agents at the start of the experiment.
This numbers must add up to one; otherwise the program will exit with an
error.

B.3.7. randomAgents. If this value is set to TRUE, agents will start
with a random database.

B.3.8. repetitions. Sets the number of times the experiment will be
run with the settings in the parameter file.

B.3.9. RWS. If this is set to TRUE, agents are selected using the
roulette-wheel selection method. If this value is FALSE, agents are randomly
selected.

B.3.10. linkedGenes. If this value is set to TRUE, agents reproduce
using the linked genes method. If this value is set to FALSE, agents repro-
duce using recombination.

B.4. POSSIBLE PROBLEMS 101

B.3.11. mutationChance. This parameter determines the mutation
probability.

B.3.12. survivors. This parameter sets the percentage of agents se-
lected using the reproduction method set in the parameter ‘linkedGenes’
that survives from one generation to the other.

B.4. Possible problems

B.4.1. Java reports a memory issue. The command ‘java -jar ToM.jar
-Xms800m’ tells Java to reserve 800 MB of memory for the program. How-
ever, if a simulation has many agents or runs for a very long time, this may
not be enough. Change ‘800m’ to a larger size.

B.4.2. Output directory already exists. To prevent overwriting re-
sults of earlier experiments, the program requires that each experiment has
a different name. An experiment name consists of two parts: a name given
by the user in the parameter file and a short summary of parameters. An
example of a name is mentioned below.

testAC350IN10GE1000MC0.01LGfalseRWStrueRNDfalseSU0.0

In this experiment name, ‘test’ is the name of the experiment given by
the user. The last part is a summary of the experiment setup. Changing
the name of the experiment in the parameter file will solve this problem.

APPENDIX C

Experiment data

Running the model results in several data files. The contents of the data
files will be discussed in this chapter.

C.1. The folders RdbRun0, RdbRun1, and so on

In these folders the rule databases of agents are stored. This allows us
to let agents from different experiments, repetitions interact. During the
simulation the rule databases of the five best performing agents of every
hundredth generation.

C.2. The files avgOrder1.csv, avgOrder2.csv, and so on

These files contains the average maximum order of the agents’ rule
databases for each generation and the average rule database size for each
repetition. Each row represents a generation. The first column contains
the average maximum order of all the agents’ rule databases. The second
column contains the average maximum order of the 10% best performing
agents. The third column contains the average rule database size.

C.3. The files dominanceValues1.csv, dominanceValues2.csv, and
so on

These files contain the dominance values of all agents for each generation.
Each row represents a generation. The dominance values are sorted from
large to small.

C.4. The files evolvedRules1.txt, evolvedRules2.txt, and so on

These files contain the rule databases of all agents at the end of a sim-
ulation. The rules that were never used are not included. It also contains
information on the size of the agents’ rule databases. The first number after
the rule represents the number of times the rule is used. The second number
represents the proportion of the interactions won/not won or not lost/lost
using that particular rule. The last number refers to the order of the rule.

C.5. The file experimentData.csv

This file summarizes the parameters of the simulation.

103

104 C. EXPERIMENT DATA

C.6. The files orderSpread1.csv, orderSpread2.csv, and so on

These files contain the average rule database composition. Every row
represents a generation. The first column represents the proportion of zero-
order rules, the second column the proportion of first-order rules, the third
column the proportion of second-order rules, and so on. The tenth column
represent the proportion of rules that was not assigned an order.

C.7. The files preference0.csv, preference1.csv, and so on

These files contain the agents preference. This data was not used in the
analysis of the results. It only reflects an innate property that may never be
used. The preference of an agent is only used when an agent does not have
a zero-order rule to select its action. This does not happen often.

C.8. The files results0.txt, results1.txt, and so on

These files contain the rule databases of the ten best performing agents
for each generation.

Bibliography

Baron-Cohen, S. (1999). Evolution of a theory of mind? In The Descent of
Mind: Psychological Perspectives on Hominid Evolution. Oxford Univer-
sity Press, Oxford.

Brüne, M. and Brüne-Cohrs, U. (2006). Theory of mind - evolution, on-
togeny, brain mechanisms and psychopathology. Neuroscience and Biobe-
havioral Reviews, 30:437–455.

Burkart, J. M. and Heschl, A. (2007). Understanding visual access in com-
mon marmosets, Callithrix jacchus: perspective taking or behaviour read-
ing? Animal Behaviour, 73:457–469.

Byrne, R. and Whiten, A. (1988). Machiavellian Intelligence. Oxford Uni-
versity Press, Oxford.

Call, J. and Tomasello, M. (2008). Does the chimpanzee have a theory of
mind? 30 years later. Trends in Cognitive Sciences, 12(5):187–192.

Caspari, R. and Sang-Hee, L. (2006). Is human longevity a consequence of
cultural change or modern biology. American Journal of Physical Anthro-
pology, 129:512–517.

Caspari, R. & Lee, S. H. (2004). Older age becomes common late in human
evolution. Proc. Natl Acad. Sci. USA, 101:1089510900.

Chase, I. D., Bartalomeo, C., and Dugatkin, L. A. (1994). Aggressive in-
teractions and inter-contest interval: how long do winners keep winning?
Animal Behaviour, 48:393–400.

Clayton, N. S., Dally, J. M., and Emery, N. J. (2007). Social cognition
by food-caching corvids. the western scrub-jay as a natural psychologist.
Philosophical Transactions of Royal Society B, 362:507–522.

Cruz, J. and Gordon, R. M. (2002). Simulation theory. In Nadel, L., editor,
Encyclopedia of Cognitive Science. John Wiley and Sons Ltd, US.

de Jong, K. A. (2008). Evolutionary Computation: A Unified Approach.
The MIT Press, Cambridge (MA).

de Waal, F. (1982). Chimpanzee Politics: Power and Sex among Apes. The
John Hopkins University Press, London.

Dunbar, R. (1992). Neocortex size as a constraint on group size in primates.
Journal of Human Evolution, 20:469–493.

Dunbar, R. (1996). Grooming, Gossip and the Evolution of Language. Faber
and Faber, London.

Epstein, J. M. (2006). Generative Social Science, chapter 1, pages 4–45.
Princeton University Press, New Jersey.

105

106 Bibliography

Erdal, D. and Whiten, A. (1996). Egalitarianism and Machiavellian in-
telligence in human evolution. In Mellars, P. and Gibson, K., editors,
Modelling the Early Human Mind, chapter 12. McDonald Institute Mono-
graphs, Cambridge.

Flobbe, L., Verbrugge, R., Hendriks, P., and Kramer, I. (2008). Children’s
application of theory of mind in reasoning and language. Journal of Logic
Language and Information, 17:417–442.

Gergely, G., Násady, Z., Csibra, G., and B́ıró, S. (1995). Taking the inten-
tional stance at 12 months of age. Cognition, 56:165–193.

Grefenstette, J. J. (1992). The evolution of strategies for multiagent envi-
ronments. Adaptive Behavior, 1(1):65–90.

Hare, B., Call, J., Agnetta, B., and Tomasello, M. (2000). Chimpanzees
know what conspecifics do and do not see. Animal Behaviour, 59:771 –
785.

Hare, B., Call, J., and Tomasello, M. (2001). Do chimpanzees know what
conspecifics know? Animal Behaviour, 61:139 – 151.

Hemelrijk, C. K. (1999). An individual-orientated model of the emergence of
despotic and egalitarian societies. Proc. Roy. Soc. Lond. B, 266:361–369.

Hemelrijk, C. K., Wantia, J., and Dätwyler, M. (2003). Female co-dominance
in a virtual world: Ecological, cognitive, social and sexual causes. Be-
haviour, 140(10):1247–1273.

Humphrey, N. (1976). Growing points in ethology, chapter 9, pages 303–317.
Cambridge University Press, Cambridge, UK.

Kinderman, P., Dunbar, R., and Bentall, R. P. (1998). Theory-of-mind
deficits and causal attributions. British Journal of Psychology, 89:191–
204.

Liddle, B. and Nettle, D. (2006). Higher-order theory of mind and social
competence in school-age children. Journal of Cultural and Evolutionary
Psychology, 4(3-4):231–246.

Mant, C. M. and Perner, J. (1988). The child’s understanding of commit-
ment. Developmental Psychology, 24(3):343–351.

Mitchell, M. (1996). An Introduction to Genetic Algorithms. MIT Press,
Cambridge (MA).

Moll, H. and Tomasello, M. (2007). Cooperation and human cognition:
the Vygotskian intelligence hypothesis. Philosophical Transactions of the
Royal Society B: Biological Sciences, 362(1480):639–648.

Nolfi, S. and Floreano, D. (1999). Learning and evolution. Autonomous
Robots, 7(1):89–113.

Penn, D. C. and Povinelli, D. J. (2007). On the lack of evidence that non-
human animals possess anything remotely resembling a ‘theory of mind’.
Philosophical Transactions of the Royal Society B, 362:731–744.

Perner, J. and Wimmer, H. (1985). ”John thinks that Mary thinks that...”
attribution of second-order beliefs by 5- to 10-year-old children. Journal
of Experimental Child Psychology, 39:437–471.

Bibliography 107

Premack, D. G. and Woodruff, G. (1978). Does the chimpanzee have a
theory of mind? Behavioral and Brain Sciences, 1:515–526.

Reaux, J. E., Theall, L. A., and Povinelli, D. J. (1999). A longitudinal
investigation of chimpanzees’ understanding of visual perception. Child
Development, 70(2):275–290.

Van der Vaart, E. and Verbrugge, R. (2008). Agent-based models for animal
cognition: a proposal and prototype. In AAMAS ’08: Proceedings of the
7th international joint conference on Autonomous agents and multiagent
systems, pages 1145–1152, Richland, SC. International Foundation for
Autonomous Agents and Multiagent Systems.

Verbrugge, R. (2009). Logic and social cognition. Journal of Philosophical
Logic, 38(6):649–680.

Wellman, H. M., Cross, D., and Watson, J. (2001). Meta-analysis of theory-
of-mind development: The truth about false beliefs. Child Development,
72:655–684.

Whiten, A. (2002). Theory of mind. In Nadel, L., editor, Encyclopedia of
Cognitive Science. John Wiley and Sons Ltd, US.

Woodward, A. L. (1998). Infants selectively encode the goal object of an
actor’s reach. Cognition, 69:1–34.

	Abstract
	Chapter 1. Introduction
	1.1. Theory of mind
	1.2. Research question
	1.3. Why an agent-based computer simulation

	Chapter 2. Theoretical Background
	2.1. Theory of mind in humans
	2.2. Theory of mind in animals
	2.3. Evolution of higher-order attribution in humans
	2.4. Research methodology
	2.5. Modeling the evolution of higher-order theory of mind
	2.6. Chapter summary

	Chapter 3. An agent-based model of the evolution of theory of mind
	3.1. Task choice
	3.2. Proposed task
	3.3. Inferring actions and beliefs
	3.4. Competitive Environment
	3.5. Evolution of the rule database
	3.6. Experiments and expected results
	3.7. Chapter summary

	Chapter 4. Results
	4.1. Analysis
	4.2. Example of a rule database
	4.3. Short-cut rules
	4.4. Evolution of higher-order rules
	4.5. Errors in reasoning
	4.6. Order of rules
	4.7. Number of interactions
	4.8. The effect of reproduction
	4.9. The effect of the number of agents
	4.10. The effect of the mutation probability
	4.11. Summary

	Chapter 5. Discussion
	5.1. The role of competition in the evolution theory of mind
	5.2. Evolving higher-order rules
	5.3. Interpretation of theory of mind in the model
	5.4. Relevance for research on theory of mind
	5.5. Simulations

	Chapter 6. Conclusion and future work
	6.1. Conclusion
	6.2. Future work

	Appendix A. Results of the experiments
	A.1. Overview experiments
	A.2. Comparing reproduction method
	A.3. Comparing mutation probabilities
	A.4. Comparing population size
	A.5. Plots ordered on rule database size

	Appendix B. Model manual
	B.1. Requirements
	B.2. Running the simulation
	B.3. Parameter files
	B.4. Possible problems

	Appendix C. Experiment data
	C.1. The folders RdbRun0, RdbRun1, and so on
	C.2. The files avgOrder1.csv, avgOrder2.csv, and so on
	C.3. The files dominanceValues1.csv, dominanceValues2.csv, and so on
	C.4. The files evolvedRules1.txt, evolvedRules2.txt, and so on
	C.5. The file experimentData.csv
	C.6. The files orderSpread1.csv, orderSpread2.csv, and so on
	C.7. The files preference0.csv, preference1.csv, and so on
	C.8. The files results0.txt, results1.txt, and so on

	Bibliography

