Molecular relationships in POTENTIALLY HYBRIDISING SPECIES OF THE ACROPORA 'PALMATA'-GROUP

Hanneke van Vugt Thesis
Supervisors: dr. M.J.H. van Oppen, dr. D.J. Miller and dr. W.T. Stam
September 1999
Biochemistry and Molecular biology / Mariene biologie JCU (Townsville, Australia) / Rijks Universiteit Groningen (The Netherlands)

The picture on the front page shows two coral colonies from a reef near Bonaire. In the back a coral colony of Acropora palmata and in the front a coral colony of A. prolifera can be seen.
Contents
Summary 1
Introduction 2
Materials and methods 10
Results 13
Discussion 24
Acknowledgment 28
References 29
Appendix 34

Summary

Molecular relationships were investigated among the three Caribbean Acropora species Acropora palmata, A. cervicornis and A. prolifera. To examen the possibility of interspecific hybridisation occurring in the field sequence analysis of rDNA ITS1, ITS2 and the 5.8 S coding region and Pax-C intron was performed.
Phylogenetic analysis showed no or hardly any genetic structure and uncorrected pdistance showed a maximum of 9.84% sequence difference for the total region (ITS 1 and 2 , and 5.8 S). In addition, variances calculated with Analysis of Molecular Variance showed no significant fraction of the total genetic variance being partitioned among species. These results may be correlated with interspecific hybridisation events whether occurring at present or in the past. Results from other research projects involving morphological features, morphometrics and reproductive characters (Stockwell and Willis pers comm), spawning time (Szmant 1986) and fossil record (Budd et al. 1994) of these coral species, support this. However, the three Caribbean Acropora morphospecies could also have descended from a common ancestor and the sharing of similar sequence repeats may represent ancestral polymorphism. Whether speciation is occurring and the three species are diverging or merging is not known and questions concerning the mechanism behind the maintenance of different morphological features remain unclear.

Introduction

Coral diversity on the reef today is threatened by several influences including storms (Jones and Endean 1973; Rützler and MacIntyre 1982) and climate changes - resulting among others in coral bleaching - and human impact as the result of urbanisation, tourism and coastal development (Ogden et al. 1994; Meesters et al. 1994; Fiege and Neumann 1994; Zann 1994; Bak and Nieuwland 1995). Changes in coral cover over time and a decrease in numbers, during the last two decades could be observed (Bak and Nieuwland 1995; Meesters et al. 1994). To maintain this precious underwater habitat, conservation and maintenance is required. To make important decisions on this level, it is necessary to obtain knowledge concerning factors including population structure, evolution, ecology, growth and reproduction.

Systematics and morphology of corals
When studying corals, one of the very basic items is systematics because basic knowledge of which species is involved is important for performing research on other levels. In systematic research, an attempt is made to define or redefine taxa by a combination of all available information from biological, molecular and other relevant areas of science. In the past, for corals this has merely been done based on morphological features (Veron 1995; Miller and Babcock 1997). However, a clear classification of species could not be made in all cases.
Corals are known to have a high morphological plasticity due to environmental and genetic variation (Foster 1979; Willis and Ayre 1985; Van Veghel and Bak 1993; Veron 1995). This makes determination of species boundaries difficult (Gattuso 1991; Veron 1994; Wallace and Willis 1994).
An example of phenotypic plasticity and taxonomic difficulties in corals can be found in Montastrea anmularis. Three different morphotypes exist, which are 'bumpy', 'columnar' and 'massive' and even intermediate morphothypes are present on the reef - although these are only infrequently observed (Foster 1979). In Montastrea annularis and Siderastrea siderea, several mature colonies have been transplanted between different reef environments (shallow and deep) in Jamaica. In a study on skeletal morphologies, corallite characters were analysed using multivariate analysis of colonies from different depths, a range in light intensity, water activity, sedimentation rate and food availability. Results showed that both coral species displayed plastic response of phenotype to the environment (Foster 1979). However, life history aspects apart from growth appeared to be significantly different among the M. annularis morphotypes and independent techniques (i.e. growth rate, banding and isotopic comparisons) provided completely consistent confirmation of the specific distinctiveness of the three shallow water colonies (Knowlton et al. 1992; van Veghel and Bak 1993). Although no difference in spawning time and behaviour could be observed (van Veghel 1994) significant differences in fecundity and other reproductive characteristics could be found between the three morphotypes (van Veghel and Kahmann 1994). However, new data from studies on ITS sequences of nuclear ribosomal RNA (ITS1, 5.8S and ITS2), showed that the three proposed species (M. anmularis, M. faveolata, and M. franksi) from Florida reefs to be a single evolutionary entity (Medina et al. 1999).

It is still not known which mechanisms influences morphology and on which level (genetic or environmental) this is determined in corals but it is obvious that applying systematics to corals is a complicated issue. Some phenotypic indicators of genotype variability can be observed directly. For instance, growth form changes in response to transplantation provide a clear indication of physical environmental influence on genotype expression. Experiments on Turbinaria mesenterina involving transplantation experiments show that 'flat' and 'convulted' ecomorphs have a phenotypic response to a depth-related factor, which is believed to be light. Similar research, which has been performed on Pavona cactus, including some genetic analysis, showed that specific morphotypes are associated with specific genotypes (Wallace and Willis 1994).
In Stylopora, the two growth forms showed different depth distributions and physiological characters. Compared with deeper living colonies, S. mordax, living at 1 m showed large differences in physiological and morphological characters. The rather massive growth form and the lower growth rate in the colonies growing at 1 m depth could be explained by water motion and light. This, however, could not account for some of the differences observed (Gattuso et al. 1991; Knowlton 1994) and it was decided that the 'mordax' and 'pistillata' ecomorphs of S. pistillata should be recognized again as separate species (Gattuso et al. 1991; Wallace and Willis 1994).

Coral taxonomy and involved species concepts

In coral taxonomy describing and naming taxa is done according to the rules of nomenclature, while at the same time an attempt is made to meet the requirements of a currently acceptable species concept (Veron 1995; Wallace and Willis 1994). Linnaeus started to define the diversity of life in the last century using a system in which he hierarchically classified species based on morphology. A species was given two names consisting of a genus and a species name. Later, species were classified based on common ancestors. Species were believed to evolve gradually from common ancestors and could be classified in a hypothetical phylogenetic tree. Therefore, species in the same genus were more similar because they originated from a more recent common ancestor than species from different genera (Futuyma 1998).
However, it is not easy to define a species or a species concept that can be applied in general to classify the diversity of life. Several attempts have been made and today five major species concepts exist, but they all seem to have little bearing on operational coral taxonomy (Veron 1995). One of the concepts invoives biological species (Mayr 1942; Veron 1995; Futuyma 1998). In this concept biological species are seen as units within which genes are, or can be, freely exchanged, but between which gene flow does not occur (at least under normal circumstances). Consequently, species were considered as reproductively isolated from other species. In the evolutionary species concept, species are based upon developmental, genetic and ecological constraints, not just heredity. Species are seen as populations that have had a common evolutionary history. Besides the biological and evolutionary species concept there are three others which are the recognition, the cohesion and the phylogenetic species concept. They are respectively based on the most inclusive population of biparental organisms which share a common fertilisation system, having the potential for cohesion through intrinsic cohesion mechanisms or having a unique combination of characters based on which the species can be recognised (Avise 1994; Futuyma 1998). Today, in coral taxonomy the biological species concept is still used, assuming morphological differences between
coral species to be correlated with reproductive isolation (Wallace and Willis 1994; Miller and Babcock 1997).

Reproduction in corals
In corals both asexual and sexual reproduction forms can be found. Asexual reproduction can take place in the form of fragmentation or asexual production of larvae. Sexual reproduction can occur during the release of gametes into the water after which fertilisation and development of planula larvae occurs. Another form is the brooding of planula larvae after internal fertilisation. When the cycle is completed the larvae will be released into the water after which settlement will occur (Harrison et al. 1984; Veron 1995). Broadcasting of gametes for external fertilisation during a brief annual spawning is now seen as probably the most common mode of reproduction among scleractinians (Harrison et al. 1984; Veron 1995; Willis et al. 1997).

For the majority of the broadcasting species on the Great Barrier Reef, Australia, spawning has been shown to occur on the same nights. In addition, the time of spawning (hours after sunset) was generally consistent within each population and between populations at different sites. In 17 of the 33 Great Barrier Reef species that were studied at more than one reef, allopatric populations spawned within an hour of each other on the same lunar day (Babcock et al. 1986). The eggs and egg-sperm bundles of most gamete-spawning corals, whether hermaphroditic or dioecious, are buoyant and float to the surface layers of the sea. After the egg-sperm bundles reach the surface they break apart, releasing the eggs and sperm. No sign of fertilisation were observed prior to the fragmentation of the egg-sperm bundles and the first signs of fertilisation were not observed until approximately 2.5 hours after spawning. Larvae did not become strongly mobile until approximately 36 hours after fertilisation (Babcock et al. 1986). However, more recent experimental breeding trials in Platygyra suggested that fertilisation occurred immediately after eggs had been introduced into the vials, independent of morphotype of the parental colonies (Miller and Babcock 1997).

Hybridisation, polyploidy and reticulate evolution

With this synchronised multi-species mass spawning in corals, gametes of different species become mixed and hybridisation may occur. Results from in vitro crosses between 42 species pairs from Acropora, Montipora and Platygyra showed that more than one-third of the pairs is capable of interspecific hybridisation (Willis et al. 1997). Coral species belonging to the genus Acropora are known to reach reproductive maturity after at least four years and to date Acropora hybrids have been maintained for up a few years only (Willis pers comm). Hence, nothing is yet known about fertility and other aspects of hybrids in this genus and more research has still to be performed (Willis pers comm; Wallace and Willis 1994). Hybridisation has been seen as to increase morphological variation within interbreeding units (Arnold 1997; Dowling and Secor 1997). This could be an explanation for the high morphological variation of scleractinian corals (Willis et al. 1997).

Hybridisation has already been studied in a number of plants and animals, although it was believed earlier that hybridisation in animals is rare (Arnold 1997; Dowling and

Secor 1997). This is probably due to the fact that untill recent times, less research on interspecific hybridisation has been performed in animals (Dowling and Secor 1997). In addition, the proportion of successful progeny from hybrids is much lower for animals, which was thought to be due to low levels of introgression (Dowling and Secor 1997). To date more studies have been done on animals including whales, fishes, insects, amphibians and reptiles (Dowling and Secor 1997; Dowling and Hoeh 1991; Bérubé and Aquilar 1998).
Veron (1995) has suggested that corals are like plants. A shared number of attributes including benthic origin, asexual propagation through fragmentation or fission, high fecundity and dispersal capacities, and polyploidy (Kenyon 1997) can be found in both plants and corals. In addition, the frequently found interspecific hybridisation in plants is one of the parallels with corals that has interested coral biologists. As a consequence of hybridisation, introgression and sometimes polyploidy can occur. This latter is an important mechanism of speciation, which can be found in both plants and animals (Kenyon 1997; Dowling and Secor 1997; Arnold 1997). Polyploidy is a chromosomal alteration in which an organism possesses more than two complete chromosome sets. In a karyotyping study of a range of Acropora species, polyploidy has been found in six instances (Kenyon 1997). Two categories of polyploidy exist namely allopolyploidy and autopolyploidy. Autopolyploid organisms derive a replicate chromosome set from a single parent species. In allopolyploidy, hybridisation between two chromosomally different taxa provides a hybrid, which is usually sterile. The hybrid species may be able to propagate itself asexually and fertility can sometimes be restored (Kenyon 1997). Polyploidy is thought to allow for adaptation to a wider range of environments provided by multiple sets of genes obtained (Dowling and Secor 1997). The result of introgression in hybridising species could have an impact on evolution in increasing the level of taxonomic variation and with this allowing evolution to proceed. New variations in species could inhabit niches, which have become available by changes of environment (Dowling and Secor 1997).

Reticulate evolution, coupled with hybridisation events, is dominated by sequential division and merging (Veron 1995) of clades and gene flow between different species (i.e. introgression). For corals it has been hypothesised that this may be based on surface circulation vicariance, causing taxa to become repeatedly isolated and reconnected (Veron 1995). Reticulate evolution, based upon chromosome numbers, has recently been proposed, to occur within the coral genus Acropora (Veron 1995; Kenyon 1997; Willis et al 1998; van Oppen et al., submitted) and Platygyra (Miller and Babcock 1997). In Platygyra, morphospecies are widespread throughout the IndoPacific and a varied level of differentiation and merging between the morphological or taxonomic units can be seen. Surface circulation vicariance mechanisms and reticulate evolution may well be the basis for the morphological and genetic variation in Platygyra populations across both local and geographic scales (Miller and Babcock 1997). In order to study reticulate evolution and hybridisation and speciation events proceeding from this the use of a large and extant coral genus would be ideal (Wallace and Willis 1994).

The coral genus Acropora

A coral genus, which is large and extant, is Acropora. With over 370 nominal species and around 150 valid species even after extensive revision, it is by far the largest extant reef-building coral genus. Acropora is widespread throughout the tropical Indian,

Pacific, and West Atlantic Oceans, where colonies are typically a dominant component of the shallow reef assemblage. In the geological record, the genus first appears in the Eocene and is widely distributed by the Miocene (Veron 1995). Records today, give evidence for up to 70 species of Acropora living sympatrically not being unusual (Veron 1993). All species within the subgenus Acropora are known to be hermaphroditic broadcast spawners. They release buoyant bundles of eggs and sperm that break apart at the surface of the sea, after which fertilisation takes place (Willis et al. 1985; Babcock et al, 1986). Many species spawn within one or two hours of each other (Babcock et al. 1986) and, because eggs and sperm of Acropora are viable for up to eight hours after release (Willis et al. 1997), this creates widespread opportunities for interspecific hybridisation and introgression and makes the coral genus Acropora an ideal subject for study of the nature and evolution of scleractinian reef coral species (Wallace and Willis 1994).

The Caribbean Acropora 'palmata' group

In the Caribbean only three different morphospecies of the genus Acropora (Gregory 1895; Vaughan 1901; Vaughan 1919) can be found. Early in the $18^{\text {th }}$ century Linnaeus described the genus in the Caribbean for the first time under the name Millepora. From that time it changed into Madrepora (Lamarck 1816) and later into Isopora (Vaughan 1901). At the end of the $19^{\text {th }}$ century it was first suggested by Brook (1853) that the three species were probably only one. After a thorough examination, this one species complex was again devided into three distinct species in 1899, which was also supported by Vaughan (1901 and 1919). The three morphotypes are currently separated into three species Acropora palmata, A. cervicornis and A. prolifera (Vaughan 1919). He (Vaughan 1919) also mentioned forma cervicornis standing on one side and forma palmata on the other. Nothing however was mentioned about hybridisation and evolution.

Together with morphology habitat differs as well, although there can be some overlap. All three forms can be found throughout the whole Caribbean, the Florida keys, the Bahamas and the West Indies

Figure 1A. Acropora palmata (Goreau 1959; Adey 1977; Rützler and Macintyre 1982; Budd 1994) and although broad zonation patterns divide the three species into different zones (Adey 1977; Goreau 1959), all three show overlapping patterns (Rützler and MacIntyre 1982). Acropora palmata has broad, flat, frond-like branches, forming colonies meters in diameter and is very common in turbulent shallow waters (1-8 m) (Figure 1A). Acropora cervicornis (Figure 1B) has more cylindrical branches, can form colonies up to 3 m high and can be found more on the outer ridge of the

Figure 1 B. Acropora cervicornis
outer fore reef deeper (till 24 m). Acropora prolifera (Figure 1C) has more crowded branches than A. cervicornis that are often crossing over and fusing, producing flabelliform or reticulate branches. Usually A. prolifera is smaller than A. cervicornis and not found in dense thickets. A. prolifera can be found on seaward side of reef crest ($0.5-2 \mathrm{~m}$) in very turbulent waters (Goreau 1959; Adey 1977; Rützler and MacIntyre 1981). According to Rützler and MacIntyre (1982), all three species are differentiated by growth form with A. prolifera being the intermediate, linking A. palmata with A. cervicornis.

All three Caribbean Acropora species are known to spawn at the same time in August and there is only one reproduction cycle per year (Szmant 1986). Evidence for the possibility of hybridisation in the form of in vitro hybridisation experiments (Willis pers comm) showed in crosses between A. palmata sperm and A. cervicornis eggs up

Figure 1C. Acropora prolifera to approximately $80-90 \%$ fertilisation and survival of viable hybrids for up to several days. This does not however, imply that hybridisation occurs in the field. Isolating mechanisms can operate on several levels of which two important types are premating and postmating. The first prevents the crossing of two different species and the second reduces the full success of the inter-specific cross (Veron 1995). Examples of the first are seasonal and habitat isolation or behaviour isolation and the latter, a reduced viability of the F1 hybrid or full viability but being sterile and being unable to reproduce sexually.

This morphology and habitat difference together with the uncertain taxonomic status of these three species, serves to be an interesting topic for new information on the role of hybridisation in speciation and evolution. In other organisms, hybrids were initially recognised as being intermediate between the two parent species although now it has been discovered that this does not necessarily have to be the case (Dowling and Secor 1997). Hybrid lineages have been identified by looking at morphological intermediates,
increased heterozygosity of nuclear gene loci and polyploidy of the species. In addition mtDNA variation has been investigated (Dowling and Secor 1997). Here I have applied molecular techniques to gain more information on whether natural hybridisation is occurring in the Caribbean Acropora 'palmata' group and to unravel the evolutionary history of these morphospecies.

Nucleotide sequence comparison

Today with the discovery of DNA and by studying the genetic material it is possible to build a classification of the living world that is based not so much on taxonomic convenience but on phylogenetic facts (Li and Graur 1991; Wallace and Willis 1994). In all form of life, nuclear genomes are large and extremely complex, and nuclear DNA provides almost endless arrays of characters with different structural and functional properties and evolutionary rates (Chen 1995), which in turn can give information on different levels in phylogeny.
A part of the nuclear DNA which is highly repeated, consists of the multigene family coding for the ribosomal RNAs, which is most widely used in phylogenetic analyses (Li and Graur 1991, Avise 1994). In eukaryotes, three of the four RNA components of ribosomes are encoded by a single transcription unit, which is generally tandemly repeated many times. Each transcription unit consists of one copy of each of the three coding regions, $18 \mathrm{~S}, 5.8 \mathrm{~S}$ and 28 S , separated by internal transcribed spacers (ITS1 and ITS2), and an external transcribed spacer (ETS) located upstream of the 18S gene. These transcribed spacers contain signals for processing the rDNA transcript. Adjacent, ribosomal RNA transcription units are separated by a non-transcribed spacer (NTS) or intergenic spacer (IGS) (Figure 2). This region contains subrepeating elements, which enhance transcription (Chen 1995).

Figure 2. Schematic overview of the nuclear rDNA repeat unit, containing ITS1 and ITS2 regions, which can be found between 18S, $5,8 \mathrm{~S}$ and 28 S rRNA genes. This unit can be found in many repeats in the genome.

Looking at evolution of the multigene family, one would expect that all members of a multigene family would evolve separately. This however, is not the case. In the frog Xenopus laevis homogenisation of the gene family encoding for rDNA has been shown within this species (Brown et al. 1972; Futuyma 1998). Thus a multigene families evolves in concert which means that individual members do not evolve independently of the other members of the family. This results in more variation between species - or interbreeding populations - than within one species. Multigene families have a high number of tandem repeats and when studying the evolutionary history it is unlikely that the same mutation could have occurred independently at each locus and being fixed by
selection. A system, which provides homogenisation within this family, must occur. Two mechanisms have been discovered, known as unequal crossing over and gene conversion. Unequal crossing over is a reciprocal recombination process that creates a sequence duplication in one chromatid or chromosome and a corresponding deletion in the other. Gene conversion is a non-reciprocal recombination process in which two sequences interact in such a way that one is converted by the other. Only one chromatid of chromosome sequence is altered (Ridley 1996; Li and Graur 1991; Futuyma 1998). For phylogenetic purposes, nuclear ribosomal sequences can be of great use. Both coding and non-coding regions have been used to investigate phylogenetic relationships from the phylum to the genus level (van Oppen 1993; Odorico and Miller 1997; Avise 1994; Chen and Miller 1996).

Nuclear introns are useful as well and generally accumulate mutations at a much higher pace than the coding regions and they may therefore be useful for comparisons more at the inter and intraspecific level. In contrast with ITS1 and ITS2, the nuclear DNA PaxC gene is single copy and occurs at only a single locus (Catmull et al. 1998; Galliot 1999). An intron is present at the 5 'end of the homeobox of this gene at a position corresponding to residues $46 / 47$ in the homeodomain (Catmull et al. 1998). Apart from a pilot study on a range of Indo-Pacific Acropora species (van Oppen, unpubl.), nothing is known to date about the use of Pax-C intron sequences as molecular markers. However, in addition to the rDNA ITS regions the Pax-C intron could provide more information on polymorphism and interspecific variation of the Caribbean Acropora species.. Evolution of single copy DNA occurs due to recombination and mutation events. Several types of mutation can be found, among others at a single base like point mutation but also mutations involving whole pieces of chromosomes (Ridley 1996; Futuyma 1998). Through selection and drift, mutations can become fixed in a population. When comparing populations with each other, differences can be found through evolution of these populations, for instance due the lack of gene flow created by specific barriers. Nuclear introns have, compared to coding regions, a higher rate of obtaining mutations, what makes these regions more suitable for studying interspecific relationships.

Aim of this research

In this research the three Caribbean morphospecies, A. palmata, A. cervicornis and A. prolifera, are analysed at the molecular level. These species have evolved independently from the Indo-Pacific Acropora species for at least 3 million years (i.e. the closure of the Isthmus of Panama (Kennett 1982). They represent a good model to study evolutionary processes and hybridisation and being a relative small and therefore simple system the results of this study will be useful for comparison with similar data on Indo-Pacific Acropora species.. The three species show differences in morphology but the question remains whether these three species represent a single polymorphic species or whether they can be defined as true species. In this research ITS1, ITS2, 5.8 S and Pax-C intron sequences were analysed to investigate the questions mentioned above.

Materials and methods

- Sampling corals

Samples of Acropora palmata, Acropora prolifera and Acropora cervicornis were collected on the reefs off Bonaire and Curaçao using scuba by Dr. B.L. Willis (Bonaire) and Onno Diekmann (Curaçao). Samples from Bonaire were from different places along the leeward side of the island: Redslave, Invisibles and Bonaire Beach Bungalows (Table 1). From Curaçao only two species (A. palmata and A. cervicornis) were collected from Buoy I - 500 m from the research institute Carmabi on the leeward side of the island at $4.0 \mathrm{~m}, 4.5 \mathrm{~m}$ and 5.5 m depth. Samples from Bonaire were taken from colonies of A. palmata growing near A. prolifera in the high energy zone on the reef crest and samples from colonies of A. cervicornis were from a few meters further out and a few meters deeper on the reef slope. In addition these samples were compared with samples, already sampled and sequenced, taken from Panama. These samples were taken from San Blas Island, one sample per species (van Oppen pers comm.).

Table 1. Number of samples taken per reef and per species.

	A. palmata	A. prolifera	A. cervicornis
Bonaire (3 reefs)	5	5	4
Curaçao (1 reef)	3	-	3
Panama (1 reef)	1	1	1

- DNA-extraction from coral tissue

Part of a branch $(1-2 \mathrm{~cm})$ was cut of a stock sample, grounded in liquid nitrogen and added to SE-buffer ($3 \mathrm{ml} 50^{\circ} \mathrm{C}$, see appendix 1) with Proteinase-K (25 ul of 20 $\mathrm{mg} / \mathrm{ml}$). The solution was incubated overnight at 50 to $55^{\circ} \mathrm{C}$ while gently shaking (70 $\mathrm{rpm})$. Then $1750 \mu 1$ of 4.0 M NaCl and 1 volume (4.750 ml) Chloroform was added and the solution was gently mixed for 15 min ., followed by centrifugation (20 min , $\max 3,500 \mathrm{rpm}$). The supernatant was transferred to a new tube to which isopropanol $\left(2 / 3\right.$ volume) was added. The solution was kept in freezer $\left(-20^{\circ} \mathrm{C}\right)$ for at least 30 min . Centrifugation of the solution was performed for $15 \mathrm{~min}(15,000 \mathrm{rpm})$ after which it. was decanted. The DNA pellet was washed twice with 0.3 ml ice-cold 70% ethanol and air-dried. The pellet was resuspended in $200 \mathrm{ul} 1.0 \mathrm{x} \mathrm{TE}\left(\mathrm{o} / \mathrm{n}, 4^{\circ} \mathrm{C}\right.$),

- Amplification of ITS-regions and Pax-C intron using PCR

For each sample 1 ul of a $1 / 50$ dilution of DNA and 24 ul master mix (see appendix 1) with ACF and ACR-primers for ITS-regions (Gibco BRL, see Table 2 for primer sequences) or AmHD FP1 and RP1 for Pax-C intron (Gibco BRL) were used. PCR-
program BD1BD2 (BD1BD2: $95^{\circ} \mathrm{C} 5 \mathrm{~min}, 47^{\circ} \mathrm{C} 1 \mathrm{~min}, 72^{\circ} \mathrm{C} 2 \mathrm{~min}, 94^{\circ} \mathrm{C} 30 \mathrm{sec}, 47^{\circ} \mathrm{C}$ $30 \mathrm{sec}, 72^{\circ} \mathrm{C} 1 \mathrm{~min} 30 \mathrm{sec}$, go to step 4 and repeat this $5 \mathrm{x}, 94^{\circ} \mathrm{C} 30 \mathrm{sec}, 52^{\circ} \mathrm{C} 30 \mathrm{sec}$, $72^{\circ} \mathrm{C} 1 \mathrm{~min} 30 \mathrm{sec}$, go to step 8 and repeat this $22 \mathrm{x}, 72^{\circ} \mathrm{C} 10 \mathrm{~min}$, hold at $4^{\circ} \mathrm{C}$ or $20^{\circ} \mathrm{C}$) was used to amplify the regions. Five ul Loading Dye was added and the samples were run on a 0.8% TAE-agarose gel along with a 1 kb -ladder (4 ul , Promega) to estimate the length of the bands.
Visualisation of the amplified ITS and Pax-C intron regions was accomplished with UV-light using a trans-illuminator. Bands were cut from the gel and purified according to the DNA-matrix gel extraction protocol (Jetsorb, GibcoBrl, Life-technologies). Concentration of DNA was measured using a diode array spectrophotometer at 260 nm.

Table 2. Specific Acropora primers and their sequences used in amplification of the ITS and the Pax-C intron regions and colony PCR.

primer	sequence $\left(5^{\prime} \mathbf{- 3}^{\prime}\right)$
T7	TAATACGACTCACTATAGGGCGA
SP6	GTATTCTATAGTGTCACCTAAAT
A18F	GAACTTGATCGTTTAGAG
A28R	CTGGTTAGTTTCTCGTCC
AmHdF	TCCAGAGCAGTTAGAGATGCTGG
AmHdR	GGCGATTTGAGAACCAAACCTGTA

- T-vector cloning of ITS-region and Pax-C intron into PGEM * T vector

PCR-products were ligated into the pGEM-T vector following the manufacturer's instructions (Promega). One hundred ul of CaCl_{2} competent cells (NM500 cells) were added to entire ligation mixture (on ice) and incubated for 30 min . Afterwards a heatshock ($42^{\circ} \mathrm{C}, 2 \mathrm{~min}$.) was given and the mixture was added to 900 ul SOC medium. Incubation of the solution followed, first in a waterbath ($37^{\circ} \mathrm{C}, 10 \mathrm{~min}$.) and than in a shaker ($37^{\circ} \mathrm{C}, 45 \mathrm{~min}$). Afterwards the solution was spun down (5 min . at 3500 rpm) and the supernatant was decanted ($\sim 100 \mathrm{ul}$ remained). The pellet was dissolved and the total volume was pipetted onto a plate (XIA LB-plates, see appendix 1) (o/n incubation at $37^{\circ} \mathrm{C}$).

- Automated sequencing of ITS and Pax-C intron-clones by colony PCR

Filtered sterile water (1 ul) was pipetted into PCR tubes and a white colony was lightly touched with a sterile toothpick and rinsed in tube. For ITS, five different colonies were taken per sample. The tubes were placed in the PCR-machine and run under the program 95 (95: 95■C 5 min , hold at 20ロC). Afterwards 24 ul mastermix with for the ITS-regions primers T7 and SP6 was added. PCR was performed using the program COL (COL: 95■C $30 \mathrm{sec}, 52 \square \mathrm{C} 30 \mathrm{sec}, 72 \square \mathrm{C} 40 \mathrm{sec}$, go to step 1 and repeat 29x, $72 \square \mathrm{C} 2 \mathrm{~min}$, Hold at $22 \square$ C). 5 ul LD was added to the sample and loaded on a gel. Gel extraction and purification with the gel extraction kit (Jetsorb, GibcoBrl, Life-
technologies) and concentration measurement of the DNA followed afterwards using a diode array spectrophotometer at 260 nm (value times 50 times dilution).
A total volume of 20 ul , including 4 ul BigDye mix (PE Applied Biosystems), 1 ul 3.3 uM primer (A18F or A28R for ITS and AmHD FP1 and RP1 for Pax-C intron) and a total of 15 ul sample ($70-100 \mathrm{ng}$ DNA) plus additional water, sample was ran using the program ABIT in the PCR-reaction (ABIT: $96^{\circ} \mathrm{C} 30 \mathrm{sec}, 50^{\circ} \mathrm{C} 15 \mathrm{sec}, 60^{\circ} \mathrm{C} 4 \mathrm{~min}$, go to step 1 and repeat this 24 x , hold at $4^{\circ} \mathrm{C}$). PCR-products were purified according to a Sephadex purification protocol (appendix 2) to remove unincorporated dyeterminators. This purification protocol involved the preparing of the Sephadex (G50 Med) by prewelling in H 2 O for a minimum of 2 hours. After welling the final concentration of Sephadex beats was adjusted to 50%. One ml of 50% beats (mixed well) was added to a 2 ml column (column in 2 ml eppendorf tubes) and allowed to drip dry (a squeeze with a rubber bulb on top of the column was required to start the flow). The column was spun at $2,500 \mathrm{rpm}$ for 2 min exactly with the hinge outside, after which the sample was loaded in middle of column (column in clean $1.5-\mathrm{ml}$ eppendorf tube) and spun at $2,500 \mathrm{rpm}$ for 2 min exactly. The sample was then dried in a vacuum centrifuge (low setting) for 20 min (do not overdry, check whether sample is dry by flicking the tube). The samples were now ready to be run on a 310 genetic. analyser (ABI Prism) automated sequencer, which makes use of fluorescent labels. Elongating strands are terminated when a ddNTP with a fluorescent label is incorporated. All four ddNTP's have different emission wavelengths, which can be separated during gel separation (PE-Applied Biosystems).

- Analyses of sequences

An alignment of the sequences was madet by hand in Sequencher 3.0 (Gene Code Corporation). A phylogenetic analysis (Neighbour-joining bootstrap tree; 100 bootstrap replicates, pairwise-distance) was performed in PAUP 3.1.1. and MEGA 1.02 (Molecular Evolutionary Genetics Analysis) together with bootstrap trees. MEGA was also used to calculate distances of Pax-C intron sequences and a comparison to the Pax-C intron sequences of some Great Barrier Reef Acropora species was made. With MacClade 3.05 and Word 98, the files from Sequencher 3.0 were transformed to readable files for Mega 1.02.
With Arlequin 1.1 for population genetic data analysis, AMOVA (analysis of molecular variances) was performed to calculate variances between all samples from Bonaire, Curaçao and Panama of all three species. However, because of differences in numbers of samples from the different regions, variances were in addition calculated for samples from A. palmata between Bonaire, Curaçao and Panama, what also was calculated for A. cervicornis. In addition between the three species from samples of Bonaire the variances was also determined.

Results

Ninety-nine clones of the three Caribbean Acropora morphospecies were sequenced. Length varied between 83 and $100 \mathrm{bp}, 110$ and 127 bp and 162 and 163 for ITS1, ITS2 and 5.8 S respectively. The GC-content (Tables 3a and b) shows an average of 55.4% for the whole rDNA region. Between the different regions little difference can be found ranging from 45.5% for ITS1 to 52.5% for ITS2. The 5.8S rDNA region shows the highest amount of GC with almost 61%. When looking between different species for the whole region approximately the same amount can be found which is about 55%. Pax-C intron shows a lower amount of GC contents of 39.3 \%.

Table 3a. Mean base frequencies from different regions, all three species and within species for total regions (ITS, ITS2 and 5.8S), ITS1, 5.8S and ITS2 are shown from two Acropora groups. The Acropora 'aspera'-group (van Oppen et al., submitted) is from the Great Barrier Reef.

group	'palmata'		'aspera'	
Region	$G+C$	Length (bp)	$G+C$	Length (bp)
Total	55.4	$355-390$		
ITS1	39.1	$83-100$	$30.7-44.6$	$66-85$
ITS2	52.2	$110-127$	$44.9-56.9$	$102-140$
5.8S	61.4	$162-163$	$55.5-58.5$	$152-155$
Pax-C intron	39.3	$434-461$		

	$G+C$
A.cervicornis	55.1
A. palmata	55.0
A. prolifera	56.0

A number of repeats indicate the occurrence of microsatellites within both ITS regions. (see Figs 3A and B). For example, a GA-repeat can be seen which is shared by all three species, from both Bonaire and Curacao. The other samples from both Bonaire, Curaçao and Panama did not have that GA repeat. The other microsatellite which can be found in the ITS 1-region is a TCCA-repeat (Figure 3B). This TCCA-repeat shows variation in repeat-number ranging from 1 to 6 . This TCCA-repeat shows several sequence repeats shared by all three species from sample sites from both Bonaire, Curaçao and Panama. What can point to more intraspecific variation than interspecific variation.
Furthermore, from the ITS sequences, variation within an individual can be found. In Figure 3A three clones can be observed from A. cervicornis (sample no. 28.1, 28.2 and 28.4) showing differences in repeat-number of the TCCA-repeat unit in the microsatellite.

Ace27. 3

TCGATCGATCGATCC: CACGTGAAAGGTAGTTCATCATCTTCTATTGACCTATGAGAGAGAG: : : : : : : CCTC
 TCGATCGATGGATCCATCCATCCATCC $:::::::$ CACGTGAAAGGTAGTTCATCATCTTCTATTGACCTATGAGAGAGAG: : : : : : : :CCTC TCGATCGATGGATCCATCCATCC: :: : : : : : : : : : : CACGTGAAAGGTAGTTCATCATCTTCTATTGACCTATGAGAGAGAG: : : : : : : :CCTC TCGATCGA: :: :TCC: CACGTGAAAGGTAGTTCATCATCGTATATTGACCTATGAGAGAGAGAG: : : : :CATC TCGATCGATGGATCCATCCATCCATCC::::::: : CACGTGAAAGGTAGTTCATCATCTTCTATTGACCTATGAGAGAGAG: :: : : : : CCTC TCGATC゙GATCGATCC: :CACGTGAAAGGTAGTTCATCATCGTATATTGACCTATGAGAGAGAGAGAG: : :CCTC
 TCGATCGATCGATCC: :: :: : : : : : : : : : : : : : : :: :CACGTGAAAGGTAGTTCATCATCGTATATTGACCTATGAGAGAGAGAG: : : : : CCTC TCGATCGATCGATCC: $::::::::::::::::$: $::$ CACGTGAAAGGTAGTTCATCATCGTATATTGACCTATGAGAGAGAGAG: : : : : CCTC TCGATCGATGGATCCATCCATCCATCC: : : : : : : : CACGTGAACGGTAGTCTATCATCGTATATTGACGTATA: : : : : : : : : : : : : :TCGTATC TCGATCGATGGATCCATCCATCCATCC: : : : : : : : CACGTGAACGGTAGTCCATCATCGTATATTGACGTATA: :: :: :: :: : : : : :TCGTATC

B

Abstract

TCGATCGA: :::TCC::::::::: :::::::::::CACGTGAAAGGTAGTTCATCATCGTATATTGACCTATCAGAGAGAGAG: : ::CCTC TCGATCGATCGATCC::::::::::::::::::::::1/:ACGTGAAAGGTAGTTCATCATCGTATATTGACCTATGAGAGAGAGAG: : : :CCTC TCGATCGATCGATCC: :: :: :: :: :: :: : : : : : : : : : CACGTGAAAGGTAGTTCATCATCGTATATTGACCTATGAGAGAGAGAGA: : GCCTC TCGATCGATCGATCC: :: : : : : : : : : : : : : : : : :: : CACGTGAAAGGTAGTTCATCATCGTATATTGACCTATGAGAGAGAGAG: : :: CCTC TCGATCGATGGATCCATCCATCC: : : : : : : : : : : : CACGTGAAAGGTAGTTCATCATCTTCTATTGACCTATGAGAGAGAG: : : : : :CCTC TCGATCGATGGATCCACCCATCC: : : : : : : : : : : : CACATGAACGGTAGTCTATCATCGTATATTGACGTATC : : : : : : : : : : : : TCGTATC TCGATCGATGGATCCATCCATCC:::::: :::::: : CACGTGAATGGTAGTCTATCATCGTATATTGACGTATA $::::::::::::$:TCGTATC TCGATCGATGGATCCATCCATCCATCC : : : : : : :: : :CACGTGAACGGTAGTCCATCATCGTATATTGACGTATG $::::::::::::$ TCGTATC TCGATCGATGGATCCATCCATCCATCC $:::::::$ CACGTGAACGGTAGTCCATCATCGTATATTGACGTATG $::::::::::::$ TCGTATC TCGATCGATGGATCCATCCATCCATCC : : : : : : : : CACGTGAACGGTAGTCTATCATCGTATATTGACGTATA : : : : : : : : : : : : TCGTATC TCCATCCATCCATCCATCCATCCATCC : : : : : :: : CACCTCAACCCTACTCCATCACCCTATATTGACCTATA: :: :: :: :: ::: :TCCTATC TCGATCGATGGATCCGTCCATCCATCC : : : : : : : : CACGTGAAAGGTAGTTCATCATCGTATATTGACGTATA : : : : : : : : : : : : : TCGTATC TCGATCGATGGATCCATCCATCCATCC $::::::$: CACGTGAACGGTAGTCCATCATCGTATATTGACGTATA $:::::::::::::$:TCATATC TCGATCGATGGATCCATCCATCCATCC: :::::: : CACGTGAAAGGTAGTTCATCATCGTATATTGACGTATA: :: :: :: :: :: : : TCGTATC TCGATCGATGGATCCATCCATCCATCC $:::::::$: $:$ ACGTGAACGGTAGTCCATCATCGTATATTGACGTATA $:::::::::::$:TCGTATC TCGATCGATGGATCCATCCATCCATCCATCC : : : : CACGTGAACGGTAGTCCATCATCGTATATTGACGTATA : : : : : : : : : : : : :TCGCATC TCGATCGATGGATCCATCCATCCATCCATCC: : : : CACGTGAACGGTAGTCCATCATCGTATATTGACGTATA : : : : : : : : : : : : TCGCATC TCGATCGATGGATCCATCCATCCATCCATCC : : : : CACGTGAACGGTAGTCCATCATCGTATATTGACGTGTA : : : : : : : : : : : : : TCGTATC TCGATCGATGGATCCATCCGTCCATCCATCC ::: : CACGTGAACGGTAGTCCATCATCGTATATTGACGTATA $::::::::::::$:TCGTATC TCGATCGATGGATCCATCCATCCATCCATCC : :: : CACGTGAACGGTAGTCTATCATCGTATATTGACGTATA $::::::::::::$ TCGTATC TCGATCGATGGATCCATCCATCCATCCATCC : : : : CACGTGAAAGGTAGTTCATCATCGTATATTGACGTATG $:::::::::::$:TCGTATC TCGATCGATGGATCCATCCATCCATCCATCC : : : : CACGTGAAAGGTAGTTCATCATCGTATATTGACGTATG: : : : : : : : : : : : :TCGTATG TCGATCGATGGATCCATCCATCCATCCATCC : : : : CACGTGAAAGGTAGTTCATCATCGTATATTGACGTATA : : : : : : : : : : : : TCGTATC TCGATCGATGGATCCATCCATCCATCC $:::::::$: $:$ ACGTGAACGGTAGTCTATCATCGTATATTGACGTATA $::::::::::::$ TCGTATC TCGATCGATGGATCCATCCATCCATCC: :::::: : CACGTGAACGGTAGTCCATCATCGTATATTGACGTATG:::::::::::: : : : : : : $:$:GTATC TCGATCGATGGAATCATCCATCCATCCATCC: : : : CACGTGAAAGGTAGTTCATCATCGTATATTGACGTATG: $::::::::::$:TCGTATG TCGATCGATGGATCCATCCATCCATCCATCC : : : : CACGTGAAAGGTAGTTCATCATCGTATATTGACGTATG: : : : : : : : : : : : :TCGTATG TCGATCGATGGATCCATCCATCCATCCATCC : : : : CACGTGAAAGGTAGTTCATCATCGTATATTGACGTATG: : : : : : : : :: :: :TCGTATG TCGATCGATGGATCCATCCATCCATCCATCC : : : : CACGTGAAAGGTAGTTCATCATCGTATATTGACGTATA: : : : : : : : : : : : :TCGTATC

Figure 3. Sequence data of a number of representative clones, which show differences in the ITS1 (A and B) region. Samples are named based on species (Ace $=A$. cervicornis, $\mathrm{Apa}=A$. palmata and $\mathrm{Apr}=A$. prolifera, see also appendix 2) names, sample number and clone number. Samples names containing a T are from Panama (Teun van Rheede)

Figures 4 A and B show partial sequences of the IT\$2-region. In Figure 4A, a part of the ITS can be seen which shows a TCGGAA region. Variation can be seen in copy number of the TGCC and of one of the A's. The sequence, which shows both TGCC and AA, is shared by Bonaire, Curaçao and Panama samples of all three species. In Figure 4B two different regions can be seen having CCTT followed by a number of A's or no CCTT and having a region of 20 bp (GGTGATCACGCATCTTTGTT). Again this repeat is shared by all three species and all different sites. A difference in number of A's can be seen as well.

A

Ace28.2
Apa11.1
Apa13. 5
Apa 15.1
Apa 15.5
Apa39. 2
Apr 3.2
Ace27.1 GCCTGCCTGCC:ATCTTTG Ace28.5 GCCTGCCTGCC:ATCTTTG Ace 42.2
Ace 44.4
Ace 43.5
Apr22.5
Apr 3.5
Apr414T
Ace 403 T
Ace30.1 GCCTGCCTGCCAATTTTTG Ace 42.5 GCCTGCCTGCCAATTTTTG Ace 44.2
Apa15.2
Apa 38.1
Apa 40.1
Apa 7.1
Apa11. 3
Apa13. 3
Apa 7.3
Apr22.3
Apr21.3
Apr 4.1
Apr 5.3
Apa391T
Apa394T
Apa395T
Apr41.5T

GCCTGCC: : : : AATTTTTG GCCTGCC: : : : AATTCTTG GCCTGCC: : : : AATTTTTG GCCTGCCTGCC: ATCTTTG GCCTGCCTGCC: ATCTTTG GCCTGCCTGCC: ATCTTTG GCCTGCCTGCC:ATCTTTG GCCTGCCTGCC: ATCTTTG GCCTGCCTGCC: ATCTTTG GCCTGCCTGCC: ATCTTTG GCCTGCCTGCCAATTTTTG GCCTGCCTGCCAATTTTTG GCCTGCCTGCCAATTTTTG GCCTGCCTGCCAATTTTTG GCCTGCCTGCCAATTTTTG GCCTGCCTGCCAATTTTTG GCCTGCCTGCCAATTTTTG GCCTGCCTGCCAATTTTTG GCCTGCCTGCCAATTTTTG GCCTGCCTGCCAATITTTTG GCCTGCCTGCCAATTTTTG GCCTGCCTGCCAATTTTTG GCCTGCCTGCCAATTTTTG GCCTGCCTGCCAATTTTTG GCCTGCCTGCCAATTTTTG GCCTGCCTGCCAATTTTTG

Figure 4. Sequence data of several clones which show much difference in ITS2 (A and B) region. Samples are named based on species $($ Ace $=A$. cervicornis, Apa $=A$. palmata and Apr =A. prolifera, see also appendix 2) names, sample number and clone number. Samples names containing a T, are from Panama (Teun van Rheede)

Ace27. 3
Ace 28.3
Ace 30.2
Ace 35.1
Ace 42.2
Ace 43.5
Ace 44.5
Ace 42.3
Apa11. 3
Apal3. 3
Apa 40.4
Apa 7.3
Apr 3.1
Apr22.3
Ace 27.1
Ace 27.4
Ace 28.1
Ace 30.1
Ace 35.3
Ace 42.5
Ace 43.1
Ace 4.1
Apa11.1
Apa12.1
Apa13.2
Apa15.1
Apa38.1
Apa40.1
Apa 39.2
Apr 3.2
Apr415T
Apa 7.1
Apr21.1
Apr22.1
Apr 3.5
Apr 4.1
Apr 5.3 Ace 403 T
Apa391T
Apr4.14T
Apa38.4.

CCGCCTTAAAAAA: :: : : : : : : : : : : : : : : : : :TTG: :AATCAGTCA CCGCCTTAAAAAA:::::::::::::::::::TTG::AATCAGTCA CCGCCTTAAAAAA: : : : : : : : : : : : : : : : : : : :TTG: :AATCAGTCA CCGCCTTAAAAAA: : : : : : : : : : : : : : : : : : : :TTG: :AATCAGTCA CCGCCTTAAAAAA: :: :: :: :: :: :: : :: :: ::TTG: :AATCAGTCA CCGCCTTAAAAAA: :: : : : : : : : : : : : : : : : : :TTG: :AGTCAGTCA CCGCCTTAAAAAA: :: :: :: :: :: :: :: :: : :: TTG::AATCAGTCA CCGCCTTAAAAAAA: :: : : : : : :: :: :: : : : : :TTG: :AATCAGTCA CCGCCTTAAAAAAA: : : : : : : : : : : : : : : : : : : TTG: :AATCAGTCA CCGCCTTAAAAAAA: : : : : : : : : : : : : : : : : : TTTG: : AATCAGTCA CCGCCTTAAAAAAA: : : : : : :: :: :: : : :: :: :TTG: : AATCAGTCA CCGCCTTAAAAAAA: :: :: :: :: :: :: :: :: :: TTG: :AATCAGTCA CCGCCTTAAAAAA: TTG: : AATCAGTCA CCGCCTTAAAAAAA: :: :: :: :::::::::: ::TTG: :AATCAGTCA CCG:: : : AAAAAAAA:GGTGATCACGCATCTTTGTTACTTAGTCA CCG: : : : AAAAAAAA:GGTGATCACGCATCTTTGTTACTTAGTCA CCG: : : : AAAAAAAA: GGTGATCACACATCTTTGTTACTTAGTCA CCG:: : : AAAAAAAA:GGTGATCACACATCTTTGTTGCTTAGTCA CCG:: : : AAAAAAAA: GGTGATCACACATCTTTGTTACTTAGTCA CCG:: : : AAAAAAAA: GGTGATCACACATCTTTGTTACTTAGTCA CCG: : : : AAAAAAAA: GGTGATCACGCATCTTTG?TACTTAGTCA CCG: : : : AAAAAAAA: GGTGATCACACATCTTTGTTACTTAGTCA CCG: : : : AAAAAAA: : GGTGATCACACATCTTTGTTACTTAGTCA CCG:: : : AAAAA: :: :GGTGATCACACATCTTTGTTACTTAGTCA CCG:: : : AAAAAAA: : GGTGATCACACATCTTTGTTACTTAGTCA CCG:: : : AAAAAAAA: GGTGATCACACATCTTTGTTACTTAGTCA CCG: : : : AAAAAAAA: GGTGATCACACATCTTTGTTACTTAGTCA CCG: : : : AAAAAAAA: GGTGATCACACATCTTTGTTACTTAGTCA CCG: : : : AAAAAAAA: GGTGATCACGCATCTTTGTTACTTAGTCA CCG: : : : AAAAAAAA: GGTGATCACACATCTTTGTTACTTAGTCA CCG:: : : AAAAAAAA: GGTGATCACACATCTTTGTTACTTAGTCA CCG: : : : AAAAAAAA: GGTGATCACACATCTTTGTTACTTAGTCA CCG: : : : AAAAAAAA: GGTGATCACACATCTTTGTTACTTAGTCA CCG:: : : AAAAAAAA: GGTGATCACACATCTTTGTTACTTAGTCA CCG: :: : AAAAAAAAAGGTGATCACACATCTTTGTTACTTAGTCA

Pax-C intron sequences show 28 sites where variation can be seen. This variation was spread rather evenly over the whole sequence. Three mutations occur in two or more sequences and hence are (potentially) phylogenetically informative. Sequences differing at these sites were assumed to represent different alleles (underlined in Figure 5). Variation in other sites (mutation in only a single sequence) could be due to PCR errors. It is however unlikely that all of those are due to PCR errors because most of the Pax-C intron sequencing was performed by direct sequencing.

Apa 7.2 CGECAGATATATAATETTTCTATATACC Apa11 CGecAGATATATAATGTTTTTATATACC Apal2 CGCCAGATATATAATGTTTTTATATACC Apa13.2 CGGCAGATATATAATGTTTTTATATACC Apa13.1 CGCCAGATATATAATETTTTTATATACC Apa15.2 CGCCGCGTATATAATGCTTTTATATACC Apa15.1 CGCGAGATATATAATETTTTCATATACC Apa 7.1 CGCCAGATATATAACGTCTTTACGTACT Apa382 CGCCAGATATATAATGTTTTTATATACC Apa 38
Apa 39.2
Apa 39.1
Apa 39.3
Apa39.4
Apa39
CGCCAGATATATAATGTTTTTATATAEC
Apa 40 CGGCAGATATATAATGTTTTTATATACC
Apa40.1 CGeCAGATATATAATCTITTTATATATC
Apa40.2 CGE゙CAGATATAT:ATGTTTTTACATACC
Ace28 CGC̈CAGATATATAATETTTTTATATATC
Ace 30.1 CGecAGATATATAATCTTTTTCTACA C Ace 35.1 CGCCAGATATATAATCTTTTTATATATC Ace40.5 CGCCAGATATATAAT TITTTTATATATE
Ace 40.4 CGCCAGATATATAATCTTTTTATATATC
Ace40.3 CGGCAGATATATAATGTTTTTATATAC
Ace 42 CGecAGATATATAATGTTTTTATATAEC
Ace 422 CGCCAGATATATAATGTTTTTATATACC
Ace 43 CGECAGATATATAAT TTTTTATATA C
Apr 3 CGGCAGATATATAATGTTTTTATATACC Apr20.2 GGCCAGATATATAGTGTTTTTATATACC Apr20.1 CGCCAGATATATAATCTTCTTATATATC Apr21. 1 CGCCAGATATATAATCTTTTTATATA C Apr21.2 CGGCAGATATATAAT TTTTTATATATC
Apr22.1 CGECAGATATACAATGTTTTTATATGCC

Figure 5. Variable sites within the Pax-C intron. In grey, three sites where phylogenetically informative variation could be found. Underlined sequences show two alleles of the Pax-C intron, which can be found in all three species. Other highlighted areas(yellow) show sites where point mutations can be found.

A pairwise distance comparison of the ITS-regions and the 5.8 S region shows for ITS1, ITS2 and 5.8 S respectively up to $13 \%, 6.9 \%$ and 2.2% variation, using a pdistance analysis (Table 4). For Pax-C intron lower distances are found. Within species between different sampling sites, not much variation can be found either.

Table 4. Uncorrected pairwise distances for the ITS and 5.8 S regions separately and all three combined (total) and for the Pax-C intron and in comparison with samples of two Acropora groups, 'aspera' and 'hyacinthus' the Great Barrier Reef (van Oppen et al., submitted; Márquez pers comm). Pax-C intron with GBR is comparison of Caribbean samples with samples of Acropora species from the Great Barrier Reef (see appendix 3). Furthermore distances have also been calculated within species.

Group	'palmata'	'aspera'	'hyacinthus'
Region	Distance (\%)	Distance (\%)	Distance (\%)
ITS1	$0-13.0$	$0-61.6$	$13.7-55.9$
5.8S	$0-3.1$	$0-11.0$	$0.6-2.6$
ITS2	$0-6.9$	$0-42.2$	$0.9-31.1$
total	$0-5.2$	$0-26.0$	$0.4-17.8$
Pax-C intron	$0-2.2$		
Pax-C intron with GBR	$0-12.5$		
A. cervicornis(total)	$0-5.2$		
A. palmata (total)	$0-4.2$		
A. prolifera (total)	$0-4.9$		

The 5.8 S rDNA sequence can be folded according to the secondary structure model, showing stems and loops (Odorico and Miller 1997). The variation in the sequences could be found merely, 20 out of 26 mutations, in the loops, which are not directly involved, in the secondary structure of the 5.8 S rDNA gene.

The Neighbour joining p-distance tree based on ITS1 and ITS2 and 5.8S rDNA sequences resulted in a tree with no or hardly any phylogenetic structure (Figure 6). The tree does not show a distinction between the three species. Clusters can be found in which a combination of A. cervicornis and A. prolifera, A. prolifera and A. palmata, and A. cervicornis and A. palmata can be seen. Also the low bootstrap values for a high number of clades indicate no or hardly any phylogenetic structure within this tree.
The phylogenetic tree, which is a neighbour joining p-distance tree (100 bootstrap replications), based on Pax-C intron does not show any structure either (Figure 7).
Comparing the Caribbean sequences of Pax-C with sequences of Acropora species from the Great Barrier Reef show a distinct clade for the Caribbean species. Although hardly any structure can be found within this clade (Figure 8).

Figure 6. Phylogenetic (neighbour joining, p-distance) tree of Caribbean samples based on ITS 1 and ITS2 and 5.8S rDNA sequences (100 bootstrap replications) (For meaning of abbreviations see appendix 2, the samples from Panama have a T in the abbreviation). Numbers below branches indicate bootstrap values.

Bootstrap

Figure 7 Bootstrap tree. (p-distance $\mathrm{n}-\mathrm{j}, 100$ bootstrap replications) of Pax-C intron sequences of Bonaire and Curaçao samples.

Bootstrap

Figure 8 Bootstrap tree (p -distance, n -j tree, 100 bootstrap replications) of Pax-C intron sequences of Bonaire and Curaçao samples in comparison with Great Barrier Reef samples (van Oppen in publ.) For abbriviated Acropora names of Great Barrier Reef see Appendix 3).

The AMOVA test showed no significant variance component between the three different morphotypes (Table 5). However, within species a significant fraction of variation is present between sample sites and also between individuals within a sample site. When the AMOVA analysis was done within a species from Bonaire, Curaçao and Panama samles it showed for both A. palmata and A. cervicornis no significant variation between the samples from the different sampel sites. Also no significant variation was shown within Bonaire between the three species.
The occurrence of negative variance results (Table 4) can be explained by the fact that they are rather covariances. Usually, slightly negative variance components can occur in absence of genetic structure, because the true value of the parameter to be estimated is zero (Arlequin FAQs). Thus, if the expectation of the estimator is zero, slightly positive or slightly negative variance components can occur by chance. Most of the time, these negative variance components indicate an absence of genetic structure. The biological meaning is that, for instance in outcrossing organisms, genes from different populations can be more related to each other than genes from the same populations, which can point in this case to hybridisation events.

Table 5A.A: AMOVA analysis of the total region (total region = ITS1 and ITS2 and 5.8 S rDNA sequences) of of all three species of the Caribbean and Panama; B and C : AMOVA analysis of the total region of A.cervicornis (B) and A. palmata (C) samples from Bonaire, Curaçao and Panama; D: AMOVA analysis of samples of all three species from Bonaire.
A.

Source of variation	d.f.	Percentage of variation	\boldsymbol{P}-value
Between species	2	-28.54	0.747
Among sample sites within species	6	65.91	<0.0001
Within sample sites	100	62.63	<0.0001
Total	108		

B. A. cervicornis

Source of variation	d.f.	Percentage of variation	\boldsymbol{P}-value
Between species	2	46.68	0.326
Among sample sites within species	1	-4.13	0.887
Within sample sites	35	57.45	<0.0001
Total	38		

C. A.palmata

Source of variation	d.f.	Percentage of variation	\boldsymbol{P}-value
Between species	2	68.04	0.081
Among sample sites within species	2	1.00	0.350
Within sample sites	31	30.96	<0.0001
Total	35		

This table (5D) is continued from the page before
D. Bonaire

Source of variation	d.f.	Percentage of variation	P-value
Between species	2	6.17	0.087
Among sample sites within species	3	-2.60	0.653
Within sample sites	30	96.43	0.283
Total	35		

Discussion

GC-contents
Comparison of the GC-content of species in the Acropora 'palmata' group with those in the Acropora 'aspera' group of the Great Barrier Reef shows that slightly higher amounts are present in ITS regions of the former, although the 5.8 S gene of the 'aspera' group is higher than that of the Acropora 'palmata' group (van Oppen unpublished). This is not against expectations, for related species should show relative comparable GC-content. Rhodactis species show similar GC-contents ranging from 45.4% to 52.5% in ITS1 regions (Chen and Miller 1996). In comparison, the plant Zea mais has much higher GC-content (up to approximately 70% for ITS1 and ITS2), mosquitoes show only slightly higher contents of 50% to 58% (Wesson et al. 1992) and the African malaria vector Anopheles funestus contains approximately 50% GC in ITS2 (Mukabyire et al. 1999).

Distance analysis

Uncorrected pairwise proportional distances of the two rDNA ITS -and the 5.8 S regions among the three Caribbean Acropora species were substantially lower than those between the species in the A. 'aspera' group (van Oppen et al., submitted). In the Acropora 'aspera' group p-distances for ITS1, 5.8S and ITS2 were approximately $62 \%, 11 \%$ and 42% respectively, whilst distances of only $13 \%, 3.1 \%$ and 6.9% were observed in the A. 'palmata' group. The 'aspera'-group on the Great Barrier Reef consist of more species than the Caribbean 'palmata'-group. Relations within this group are probably more complicated than in the 'palmata'-group. In relation to other anthozoan studies on for instance Rhodactis species ITS can show high amount of divergence between species (Chen and Miller 1996). In this study Rhodactis species from several different regions worldwide, among others the Great Barrier Reef, the Red Sea and the Caribbean Sea, showed an average of 71.85% between the sequences. Intraspecific similarity observed between samples from was very high (>98 $\%$ on reefs on Great Barrier Reef to 100% in Eilat and Caribbean samples). Zea mais shows even higher amounts of divergence between different species, up to $50-59 \%$ (Buckler and Holtsford 1996). In these last two studies, the species examined were distinct from each other as revealed by phylogenetic analyses.
However, studies on the malaria vector Anopheles funestus showed for ITS2 almost identical sequences. Although nothing was mentioned on percentage divergence, both mitochondrial Cytochrome b and rDNA ITS2 showed a lack difference between isolated chromosomal taxa within this species-complex (Mukabayire et al. 1999). It was thought that this lack is due to recent speciation events. In addition, a recent study on rDNA ITS in the scleractinian coral M. anmilaris showed only 19 variable sites for ITS of which 6 were phylogenetically informative. The whole region was 665 nucleotides long. Nevertheless, none of these sites was fixed within the proposed species (Medina et al. 1999). Based on these results, the M. anmularis group is now considered as species again.

Pax-C intron and the fossil record of Acropora in the Caribbean
The Pax-C intron does not show a high level of variation between these three morphospecies and the phylogenetic analysis reveals hardly any phylogenetic structure. This was unexpected for the Pax-C intron if hybridisation events were assumed not to take place. Nuclear introns have higher rates of mutation accumulation than the coding regions and should show more divergence between than within species due to lineage sorting. Indeed, interspecific difference are large among Acropora species from the Great Barrier Reef (van Oppen, unpubl.). Table 4a shows pairwise sequence distances between the Caribbean and some of the Indo-Pacific Acropora species. The maximum value of 12.5% is an underestimation of the real maximum genetic distance among these groups of species, since sequences that created too many gaps within the alignment or were almost unalignable in some regions were left out. The fossil record indicates that A. cervicornis dates from the late Pliocene (-5 My ago), A. palmata from the Pleistocene (~ 1 My years ago) whilst A. prolifera is of Holocene origin (last 10,000 years) (Budd et al. 1994, Veron 1995). Whether this history is relatively short compared to the history of the Great Barrier Reef species, is not known. The fossil record of Indo-Pacific species is not very extensive. If the Caribbean Acropora species are younger than the Indo-Pacific species, it could explain the lower divergence in the Acropora 'palmata' group. Alternatively, interspecifc hybridisation may explain the differences in divergence of the Caribbean versus Indo-Pacific species groups. The Indo-Pacific Acropora species can potentially hybridise with many species (up to 70 species can occur sympatrically and most of those spawn simultaneously), whereas only three Acropora species occur in the Caribbean. Occasional hybridisation with very divergent species may result in introgression of extremely different ITS sequences, hence leading to the observed high levels of intraspecific and intra-individual variability at these loci in the Indo-Pacifc Acropora species. Interspecific hybridisation may also explain the lack of phylogenetic structure within the Caribbean Acropora species. However, it is impossible from the data presented in this study to say whether hybridisation happened in the past or if it is still occurring. Moreover, there is no evidence for A. prolifera being an intermediate between A. palmata and A. cervicornis as expected based on earlier studies (Vaughan 1919). It is possible that A. prolifera has originated from hybridisation between A. palmata and A. cervicornis, but the sequence data suggest that it is able to back-cross with both A. palmata and A. cervicornis since all three species share similar sequence types. From research on ITS and 5.8 S rDNA sequences of Acropora species from the Great Barrier Reef (Odorico and Miller 1997, van Oppen et al. submitted), it has been suggested that the at least some species in the genus Acropora exhibit extensive interspecific hybridisation.
Alternatively, the shared presence of several sequence repeats among the three morphospecies may represent an ancestral polymorphism. This is a less plausible explanation because the fossil record shows that the three species are of different age and two of them are relatively old (i.e. A. cervicornis is approximately 3 My old and A. palmata approximately 1 My old).

Furthermore, other Acropora species that used to occur in the Caribbean are A. panamensis and A. saludensis which both date from the late Oligocene ($\sim 25 \mathrm{Mya}$) to the early Pliocene (~ 4 to 5 Mya). With the turnover in Caribbean reef corals during the Plio-Pleistocene about 4-1 Mya, possibly related to changes in climate and oceanic circulation patterns resulting from the closure of the Isthmus of Panama at approximately 3.5 Mya , these species became extinct (Johnson et al. 1995). An explanation given for the modern Acropora species according to Frost (1977) could be
that hybridisation between A. cervicornis and the extinct A. pananmensis have resulted in A. palmata (Veron 1995).

Molecular variance of ITS and other research results

The analysis of molecular variance of the ITS-sequence data shows no significant partitioning of genetic variation between species, which is concordant with the results from the phylogenetic analyses. Further analysis of the variation within a species and between the tree species on Bonaire showed no significant variation either. Samples from Bonaire, Curaçao and Panama cluster in the same clades and in addition, clades can be found in which the different sample sites on Bonaire are grouped together. In contrast to the DNA sequence results from the present study, morphometric studies based on colony and corallite morphology, and reproductive characters, based on size and amount of eggs produced, show that A. palmata and A. cervicornis are distinct and it was be concluded that they may represent separate morphological species. In this latter research, A. prolifera showed to be intermediate between A. palmata and A. cervicornis and was suggested to be a hybrid between the other two Caribbean Acropora species (Stockwell and Willis pers comm).

Evolutionary history

Despite its geological record back to the early Tertiary, Acropora does not seem to acquire its modern ecological prominence until several million years ago during the Pliocene and Pleistocene period (Budd 1994). It is possible that new niches became available during the climate changing, allowing speciation via hybridisation to proceed. Evidence for such an evolutionary pathway has been found in angiosperms and ferns (Stebbins 1950; Dawson 1962). High incidence of polyploid species in glacial regions of North Europe has been interpreted as an effect of species from different refugia moving quickly into the land that was newly made available for colonisation, after the retreat of the Pleistocene ice-sheets (Kennett 1982). This form of speciation may also be an explanation for the Caribbean Acropora 'palmata' group. Rapid sympatric speciation involving polyploidy, may have been facilitated in Acropora by the availability of new shallow water habitats during sea level changes and changing patterns of ocean circulation (Veron 1995). It is possible that A. palmata and A. cervicornis have descended from now extinct Acropora species then hybridised, resulting in A. prolifera. Due to changing environments, new niches became available and A. prolifera could have taking position in the back-reef, where it is most abundant today. To test this hypothesis it would be very informative to investigate polyploidity of the Acropora species in the Caribbean.

The comparison of Platygyra with Acropora

Comparable to Acropora is the Platygyra case. In a study on the coral Platygyra on the Great Barrier Reef (Miller and Babcock 1997, Miller and Benzie 1997) a lack of genetic structure was found. No fixed allelic differences were observed at any of the nine investigated allozyme loci between three Platygyra species. In addition, no clearcut habitat in Platygyra has been shown, since all morphospecies can be found in various habitats on a single reef and Platygyra species are known to participate in the
annual mass-spawning event. Fertilisation trials showed that the production of viable larvae is possible among all seven morphospecies on the Great Barrier Reef. Possible explanations for these observations were hypothesised to be recent speciation due to which no genetic fixation (Miller and Benzie 1997) nor complete reproductive isolation between the morphotypes of Platygyra has yet occurred (Miller and Babcock 1997).

In conclusion, ITS and Pax-C intron sequences show a lack of phylogenetic structure between the three Caribbean Acropora morpospecies. Several sequence repeats could be found in all three species what points to more variation within than between species and this suggests that reticulation is an important aspect of the evolutionary history of the species in the A. 'palmata' group. From the current data set it remains difficult to assess the extent to which hybridisation takes place and whether it occurred in the past or is still occurring at present. It is also not possible to verify that A. prolifera originated by hybridisation of A. palmata and A. cervicornis. Therefore, further research is needed, such as additional in vitro hybridisation experiments and investigation of polyploidy of the three species in the Acropora 'palmata'-group. An attempt is being made to study microsatellites in Acropora species of the Great Barrier Reef (Márqez, pers. comm.). Microsatelites evolve even quicker than ITS-regions, which could reveal more details on population structure within the A. 'palmata' group. Finally, it would be interesting to find out which genes are involved in morphology and study variation at these loci.

Acknowledgement

I would like to dedicate this thesis to my parents for making it supporting me on several levels during my stay here in Australia, thank you very much!
In addition, I would like to thank the following people for making it possible to perform this research. First of all my supervisors Madeleine van Oppen and David Miller for guiding me and teaching me more about molecular techniques and using the required facilities in the lab and also for having, I had a very good time here in Australia.
The funding of my stay was among others supported by the Marco Polo Fonds, Groninger Universiteits Fonds, Christine Buisman Fonds and the Schimmel Schuurman-van Outeren Stichting and I would like to thank them as well.
Furthermore, I would like to thank dr. Bette Willis, Onno Diekmann and Wiebe Kooistra for the collecting of the samples used in this study. Teun van Rheede I would like to thank for using the sequences from Panama.
Luis Márquez and Madeleine for explaining and helping in performing the methods in this research and allowing me to use additional results on the Acropora 'aspera' and the 'hyacinthus' group of the Great Barrier Reef. I am also very grateful to Bette Willis and Brian Stockwell for using additional results on morphometrics and reproductive strategies and hybridisation experiments with the Caribbean Acropora species.
Finally, I would like to thank Wytze Stam for being my supervisor in the Netherlands and my mother and father and sisters for supported me during good and bad times.

References

Adey W.H. 1977. Field guide book to the reefs and reef communities of St. Croix, Virgin Islands. Third international symposium on coral reefs.

Arnold M.L. 1997. Natural Hybridization and Evolution. Oxford University Press, New York

Avise J.C. 1994. Molecular Markers, Natural History and Evolution. Chapman \& Hall, Inc., USA

Babcock R.C., Bull G.P., Harrison P.L., Heyward A.J., Oliver J.K., Wallace C.C., Willis B.L. 1986. Synchronous spawnings of 105 scleractinian coral species on the Great Barrier Reef. Mar. Biol. 90: 379-394

Bak R.P.M. and Nieuwland G. 1995. Long-term change in coral communities along depth gradients over Leeward reefs in the Netherlands Antilles. Bull. Mar. Sci. 56(2): 609-619

Bérubé M., Aquilar A. 1998. A new hybrid between a blue whale, Balaenoptera musculus, and a fin whale, B. physalus: frequency and implications of hybridization. Mar. Mamm. Sci. 14(1): 82-98

Bridge D., Cunningham CW,. Desalle R., Buss LW. 1995. Class-level relationships in the phylum Cnidaria - molecular and morphological evidence Mol. Biol. and Evol: 12(4):679-689

Brown, D.D., Wensink, P.C., Jordan, E. 1972. A comparison of the ribosomal DNAs of Xenopus laevis and Xenopus mulleri: The evolution of tandem genes. J. Mol. Biol. 63: 59-73

Buckler IV E.S. and Hortsford T.P. 1996a. Zea Systematics: Ribosomal ITS evidence. Mol. Biol. Evol. 13: 612-622

Budd A.F., Stemann T.A. and Johnson K.G. 1994. Stratigraphic distributions of genera and species of Neogene to recent Caribbean reef corals. J. Paleont. 68(5): 951977

Catmull J., Hayward D.C., McIntyre N.E., Reece-Hayes J.S., Mastro R., Callaerts P., Ball E.E., Miller D.J. 1998. Pax-6 origins-implications from the structure of two coral Pax genes. Dev. Genes. Evol. 208:352-356

Chen C.A., 1995. Molecular phylogenetic studies of the tropical corallimorpharians (Cnidaria; Anthozoa; Corallimorpharia), PhD-study, JCU of North Queensland

Chen C.A. and Miller D.J. 1996. Analysis of ribosomal ITS sequences indicate a deep divergence between Rhodactis (Cnidaria: Anthozoa: Coralliporharia) species from the Caribbean and the Indo-Pacific/Red Sea. Mar. Bio. 126: 423-432

Dawson, G.W.P. 1962. An introduction to the cytogenetics of polyploids. Blackwell Scientific, Oxford

Dowling T.E., Hoeh W.R. 1991. The extent of introgression outside the contact zone between Notropis cornutus and Notropis chrysocephalus. Evol. 45(4): 944-956

Dowling TE. Secor CL. 1997. The role of hybridisation and introgression in the diversification of animals. Ann. Rev. of Ecol. \& Syst. 28: 593-619

Fiege D. Neumann V. Li JH. 1994. Obervations on coral reefs of Hainan Island, South China Sea. Mar. Poll. Bull. 29(1-3): 84-89

Foster A.B. 1979. Phenotypic plasticity in the reef corals Montastraea anmularis (Ellis \& Solander) and Siderastrea siderea (Ellis \& Solander). J. Exp. Mar. Biol. Ecol. 39: 25-54

Foster A.B. 1983. The relationship between corallite morphology and colony shape in some massive reef-corals. Coral Reefs 2: 19-25

Futuyma D.J. 1998. Evolutionary biology. Third edition. Sinauer Associates, Inc., Massachusetts.

Galliot B., de Vargas C., Miller D.J. 1999. Evolution of homeobox genes: Q50 pairedlike genes founded the paired class. Dev. Genes. Evol. 209: 186-197

Gattuso J.P., Pichon M. and Jaubert J. 1991. Physiology and taxonomy of scleractinian corals: a case study in the genus Stylophora. Coral Reefs 9:173-182

Goreau T.F. 1959. The ecology of Jamaican coral reefs I species composition and zonation. Ecol. 40(1): 67-90

Gregory J.W. 1895. Contributions to the palaeontology and physical geology of the West Indies. Palaeontology 51:255, 281-282

Harrison P.L., Babcock R.C., Bull G.P., Oliver J.K., Wallace C.C., Willis B.L. 1984. Mass spawning in tropical coral reefs. Science 223: 1186-1189

Johnson K.G., Budd A.F. and Stemann T.A., 1995. Extinction selectivity and ecology of Neogene Caribbean reef corals. Palaeobiol. 21(1): 52-73

Jones O. A. and Endean R. 1976. Biology and geology of coral reefs. Vol. 1 Biology2. Chapter 1 Caribbean coral reefs. Academic press, New York.

Kennett J.P. 1982. Marine Geology. Prentice-Hall, Inc., Engelwood Cliffs
Kenyon J.C. 1997. Models of reticulate evolution in the coral genus Acropora based on chromosome numbers: parallels with plants. Evol. 51: 756-767

Knowlton N., Weil E., Weight L.A. and Gazman H.M. 1992. Sibling species in M. annularis, coral bleaching, and the coral climate record. Science 225:330-333

Knowiton N. and Jackson J.B.C. 1994. New taxonomy and niche partitioning on coral reefs: jack of all trades or masters of some? TREE 9:7-9

Li W. and Graur D. 1991. Fundamentals of molecular evolution. Sinauer Associations inc, USA

Mayr E., 1942. Systematics and the origin of species. Columbia University Press, New York.

McMillan J., Mahony T., Veron J.E.N. and Miller D.J. 1991. Nucleotide sequencing of highly repetitive DNA from seven species in the coral genus Acropora (Cnidaria: Scleractinia) implies a division contrary to morphological criteria. Mar. Biol. 110: 323327

Medina M., Weil E. Szmant AM. 1999. Examination of the Montastraea annularis species complex (Cnidaria Scleractinia) using ITS and COI sequences. Mar. Biotech. 1(1): 89-97

Meesters E.H., Noorderloos M., Bak R.P.M. 1994. Damage and regeneration: links to growth in the reef-building coral Montastrea anmularis. Mar. Ecol. Prog. Ser. 112: 119-128

Miller K. and Babcock R.C. 1997. Conflicting morphological and reproductive species boundaries in the coral genus Platygyra. Biol. Bull. 192: 82-110

Miller K.J. and Benzie J.A.H. 1997. No clear genetic distinction between morphological species within the coral genus Platgyra. Bull. Of Mar. Sci. 61(3): 907917

Mukabayire O., Boccolini D., Lochouarn L., Fontenille D., Besansky N.J. 1999. Mitochondrial and ribosomal internal transcribed spacer (ITS2) diversity of the African malaria vector Anopheles funestus. Mol. Ecol. 8: 289-297

Mundy C.N. and Babcock R.C. 1998. Role of light intensity and spectral quality in coral settlement: Implications for depth-dependant settlement? J. Exp. Mar. Biol. Ecol. 223: 235-255

Odorico D.M. and Miller D.J. 1997. Variation in the ribosomal internal transcribed spacers an d 5.8 S rDNA among five species of Acropora (Cnidaria; Scleractinia): Patterns of variation consistent with reticulate evolution. Mol. Biol. Evol. 14(5): 465473

Ogden JC. Porter JW. Smith NP. Szmant AM. Jaap WC. Forcucci D. 1994. A longterm interdisciplinary study of the Florida-Keys seascape. Bull. Mar. Sci. 54(3): 10591071

Ridley M. 1996. Evolution. Chapter 10. Second edition. Blackwell Science, Inc., USA Rützler K. and Macintyre I.G. 1981. The Atlantic barrier reef ecosystem at Carrie Bow Cay, Belize, I structure on communities. The habitat distribution and Community structure of the barrier reef complex at Carrie Bow Cay, Belize, p 9-45. R.B. Burke:

Reconnaissance study of the geomorphology and benthic communities of the outer barrier reef platforms, Belize. p509-526. Smithsonian institution press, Washington.

Stebbins, G.L. 1950. Variation and evolution in plants. Columbia Univ. Press, New York

Szmant A.M. 1986. Reproductive ecology of Caribbean reef corals. Coral Reefs 5:4354
van Oppen M.J.H., Draisma S.G.A., Olson J.L. and Stam W.T. 1995. Multiple transArctic passages in the red alga Phycodrys rubens: evidence from nuclear rDNA ITS sequences. Mar. Biol. 123: 179-188
van Rheede T. 1998. A. pulchra and A. millepora: One, two, or three species? Evidence for a reticulate evolutionary history in the coral genus Acropora from experimental hybridisation and molecular ITS data. Thesis.

Van Veghel M.L.J. and Bak R.P.M. 1993. Intraspecific variation of a dominant Caribbean reefbuilding coral, M. annularis: genetic, behavioural and morphometric aspects. Mar. Ecol. Progr. Ser. 92: 255-265

Vaughan T.W. 1901. The stony corals of the Porto Rican waters. Bull. of the United States fish Commision 20(2): 312-314

Vaughan T.W. 1919. Contributions to the geology and palaeontology of the canal zone, Panama, and geologically related areas in central America and the West Indies. Fossil corals from central America, Cuba, and Porto Rico, with an account of the American tertiary, Pleistocene, and recent coral reefs. Extract from Bulletin 103, 478483. Smithsonian institution US National Museum, Washington Government printing office.

Veron, J.E.N. 1993. A biogeographic database of hermatypic corals; species of the central Indo-Pacific, genera of the world. Australian Institute of Marine Science Monographs Series 9

Veron J.E.N. 1995. Corals in space and time. The biogeography \& evolution of the scleractinia. UNSW PRESS, Sydney.

Wallace C.C. and Willis B.L. 1994, Systematics of the coral genus Acropora. Implications of new biological findings for species concepts. Annu. Rev. Ecol. Syst. 25: 237-262

Willis B.L., Babcock R.C., Harrison P.L. and Wallace C.C. 1997. Experimental hybridisation and breeding incompatibilities within the mating systems of mass spawning reef corals. Coral Reefs 16: S53-S65

Willis, B.L. and Ayre, D.J. 1985. Asexual reproduction and genetic determination of growth form in the coral Pavona cactus: biochemical genetic and immunogenic evidence. Oecologia (Berlin) 65: 516-525

Yap H.T., Alvarez R.M., Custodia III H.M. and Dizon R.M. 1997. Physiological and ecological aspects of coral transplantation. J. Exp. Mar. Biol. Ecol. 229: 69-84

Zann L.P. 1994. The status of coral reefs in South Western Pacific Islands. Mar. Poll. Bull. 29(1-3): 52-61

Internet: Arlequin FAQs: http://anthropologie.unige.ch/arlequin/faq.html http://www.perkin-elmer.com

Appendix

1. Solutions 35
2. Sample codes 38
3. Great Barrier Reef samples 39
4. Sequencing results 40

1. Solutions

- SE-buffer:

3 ml 5 M NaCl
10 ml 0.5 M EDTA (pH 8.0)
$5 \mathrm{ml} 10 \%$ SDS
182 ml sterile dd H 2 O

- Tris-HCl pH 8.0 (11):
121.1 g Tris-base

800 ml dd H 2 O
adjust pH using concentrated HCl
top up to 11 using dd H 2 O

- 10% SDS pH $7.2(500 \mathrm{ml})$:

50 g SDS
400 ul dd H2O
adjust pH with paper only
top up to 500 ul

1. TE-buffer pH 8.0 (1 1):

10 ml 1 M Tris HCl pH 8.0
2 ml 0.5 M EDTA pH 8.0
adjust pH with concentrated HCL
top up to 11

- 0.5 M EDTA pH 8.0 (200 ml):
37.22 g EDTA

190 ml dd H2O
adjust pH with NaOH (approximately 5 g needed)
autoclave

- $4 \mathrm{M} \mathrm{NaCl}(250 \mathrm{ml})$:
58.443 g NaCl

250 ml dd H 2 O

- Ethanol (250ml)
100% ice-cold (-20C):
direct from stock
70% ice-cold (-20C):
70 ml ethanol
30 ml sterile dd H 2 O
- Isopropanol (250 ml):

Take 250 ml direct from stock and put into -20 C

- Chloroform (250 ml):

Take 250 ml direct from stock

- Mastermix:

1 ul FP (10 uM)
$1 \mathrm{ul} \mathrm{RP}(10 \mathrm{uM})$
2.5 ul dNTP (2 mM)
2.5 ul 10x buffer
2.0 ul MgCl 2
0.26 ul Taq-polymerase
14.87 ul sterile filtered H 2 O

Done in hood

- SOC-medium (100 ml):
2.0 g Bacto-tryptone
0.5 g Bacto-yeast extract

1 ml 1 M NaCl
0.25 ml 1 M KCl
$1 \mathrm{ml} 2 \mathrm{M} \mathrm{Mg} 2+$ stock ($1 \mathrm{M} \mathrm{MgCl}_{2} \bullet 6 \mathrm{H}_{2} 0 / 1 \mathrm{M} \mathrm{MgSO} 4 \cdot 7 \mathrm{H}_{2} \mathrm{O}$), filter-sterilised
1 ml 2 M glucose, filter-sterilised
97 ml dd H 2 O
autoclave and cool to room temperature. Add $2 \mathrm{M} \mathrm{Mg} 2+$ stock and 2 M glucose, each to a final concentration of 20 mM . Bring to 100 ml with sterile, distilled water. Filter the complete medium through a 0.2 mm filter unit. The final pH should be 7.0

- $2 \mathrm{M} \mathrm{Mg} 2+$ stock:
20.33 g MgCl2. 6H2O
24.65 g MgSO 4.7 H 2 O

Add distilled water to 100 ml . Filter sterilise.

- LB-medium (500 ml):

5 g Bacto-Tryptone
2.5 g Bacto-Yeast Extract
2.5 g NaCl

Adjust pH too 7.0 with NaOH

- LB-plates with ampicillin:

Make 11 LB-medium (for approximately 90 plates):
10 g Bacto-Tryptone
5 g Bacto-Yeast Extract
10 g NaCl
in 950 ml dd H 2 O , dissolve and adjust pH to 7.0 with NaOH and adjust volume to 11 . Add 15 g agar just before autoclaving. Autoclave and when medium is removed from autoclave, swirl vigorously to distribute agar evenly over solution. Allow medium to cool to 50C and add:
2 ml ampicillin ($50 \mathrm{mg} / \mathrm{ml}$)
2 ml IPTG ($0.1 \mathrm{M}=23.6 \mathrm{mg} / \mathrm{ul}$)
4 ml X -gal ($20 \mathrm{mg} / \mathrm{ml}$)
Mix by swirling to avoid bubbles. To remove bubbles in the plate, flame the surface of the medium with a Bunsen burner before the agar hardens. Let then harden on bench and put open in hood for 20 min to dry a bit.

2. Sample codes

Code used in this research	Species	$\begin{array}{\|l\|} \hline \text { Comment (no. } \\ \text { or description) } \\ \text { B. Willis } \\ \hline \end{array}$	No.	Location	Date(sampli ng)	ITS	Pax-c intron
Apa 1	A. palmata	711	1	Redslave	8/8/98		
Ace 2	A. cervicornis	641	1	S. Windsock	8/9/98		
Apr 3	A. prolifera	637	2	Redslave	8/8/98	x	x
Apr 4	A. prolifera	638	3	Redslave	8/8/98	x	
Apr 5	A. prolifera	639	4	Redslave	8/8/98	x	x
Apa 6	A. palmata	712	2	Redslave	8/8/98		
Apa 7	A. palmata	713	3	Redslave	8/8/98	x	x
Ace 8	A. cervicornis	722	2	S. Windsock	9/8/98		
Ace 9	A. cervicornis	721	3	S. Windsock	9/8/98		
Apal0	A. palmata	714	4	Redslave	8/8/98		
Apall	A. palmata	715	5	Redslave	8/8/98	x	x
Apal2	A. palmaia	626	6	Redslave	8/8/98	x	x
Apal3	A. palmata	627	7	Redslave	8/8/98	X	X
Apal4	A. palmata	628	8	Redslave	8/8/98		
Apal5	A. palmata	629	9	Redslave	8/8/98	x	x
Apa 16	A. palmata	630	10	Redslave	8/8/98		
Apr 17	A. prolifera	640)	5	Redslave	8/8/98		
Aprl8	A. prolifera	715	6	Redslave	8/8/98		
Apr19	A. prolifera	717	7	Redslave	8/8/98		
Apr20	A. prolifera	718	8	Redslave	8/8/98		x
Apr21	A. prolifera	719	9	Redslave	8/8/98	x	x
Apr22	A. prolifera	720	10	Redslave	8/8/98	x	x
Ace23	A. cervicornis	609	4	BBB	9/8/98		
Ace24	A. cervicornis	655	5	BBB	9/8/98		
Ace 25	A. cervicornis		6	BBB	9/8/98		
Ace 26	A. cervicornis	701	7	Invisible	9/8/98		
Ace27	A. cervicornis	702	8	Invisible	9/8/98	x	
Ace28	A. cervicornis	703	9	Invisible	9/8/98	x	X
Ace29	A. cervicornis	704	10	Invisible	9/8/98		
Ace30	A. cervicormis	705	11	Invisible	9/8/98	x	X
Ace31	A. palmata	colony H. red		N. Windsock	9/8/98		
Apa 32	A. palmata	colony J. yellow		N. Windsock	9/8/98		
Apa 33	A. palmata	colony D. red		BBB	10/8/98		
Ace34	A. cervicornis			BBB	10/8/98		
Ace35	A. cervicornis			BBB	10/8/98	x	x
Ace36	A. cervicornis			BBB	10/8/98		
Ace37	A. cervicornis			BBB	10/8/98		
Apa 38	A. palmata	BI 1		Curaçao		x	X
Apa39	A. palmata	BI 2		Curaçao		x	x
Apa40	A. palmata	BI 3		Curaçao		x	X
Apa41	A. palmata	BI 4		Curaçao			
Ace42	A. cervicornis	4.0 m		Curaçao	25/5/98.	x	X
Ace 43	A. cervicornis	4.5 m		Curaçao	25/5/98	x	x
Ace44	A. cervicornis	5.5 m		Curacao	25/5/98	x	x

3. Great Barrier Reef samples

The code of the samples in the tree consist of an abbreviation and a number. The abbreviation is for the Acropora species used and the number is the sample used together with the clone. MO, in the Pax-C intron samples of the Caribbean Acropora species, stands for Madeleine van Oppen, who sequenced these samples.

Abbreviation	name
Apal	A. palmata
Apro	A. prolifera
Ace	A. cervicornis
Apul	A. pulchra
Aval	A. valida
Alon	A. longicyathus
Acer	A. ceralis
Alis	A. listeri
Aels	A. elseyi
Afor	A. formosa
Adig	A. digitifera
Amic	A. microphtalma
Anob	A. nobilis
Acyt	A. cytherea
Agra	A. grandis

：：：TCGTATCACCGGACCTCATCGTCGTCG ：：：：：：：CCTCACCTGACCTCATCGTCGTCG
 $::::$ ：CCTCACCTGACCTCATCGTCGTC
G：－：CCTCACCCGACCTCATCGTCGTCG
$:::$ ：СCTCACCTGACCTCATCGTCGTCG $:::-$ ．．CTCTCACCTGACCTCATCGTCGTCG $::=-$ CCTCACCTGGCCTCATCGTCGTCG
 - TCGCATCACC GGACCTCATCGTCGTCG
$:$ ：TCGTATCACCGGACCTCATAGTCGTCG $::$ TCGTATCACCGGACCTCATCGTCGTCG

 U $:$ TCGTATCACCGGACCTCATCGTCGTCG ：－：：TCGCATCACCGGACCTCATCGTCGTCG䗉
橧號
 $:=-::::::$ TCGTATGACCTGACCTCATCGTCGTCG A：－：

 $\stackrel{\text { V9W9 }}{=}$ $\begin{array}{lll}1 & 1 \\ ! & 0 \\ !: ~ \\ 0 & 0 \\ 0\end{array}$
 $\because::$
$\because:$
$\because:$
$:$ $\because: \ddot{ }$
$\because \because$
$\because \because$
\because ：$\because: \quad$ ： 1 ATA．
ATGA
ATGA CGTA $:$ ：CACGTGAAAGGTAGTTCATCATCTTCTATTGACCTAT

 GTATATTGAC偲思术閶 L甘LDO甘פLL甘L甘
 ATCT CGGTA TGAA包 UUU0 U
\qquad CACGTGAACGGTAGTCCATCATCGTATATTGAC ：：：：：：：：：：！
 ：：
 ： Ü

 U
获
范 ：： I： ： ：$:$ ！
保：：

 TCGATCGATGGATCCATCCATCCATCC：：：：：：：：CACGTGAACGGTAGTCCATCATCGTATATGACGTATA：
TCGATCGATGGATCCATCCATCCATCCATCC：$:$ CACGTGAACGGTAGTCCATCATGTATATTGACGTGTA：
TCGATCGATGGATCCATCCATCCATCCATCCATCCCACGTGAACGGTAGTCTACCATCGTATATTGACGTATA： TCGATCGATGGATCCATCCATCCATCC：：：：：：：：CACGTGAACGGTAGTCCATCATCGTATATGACGTATA：
TCGATCGATGGATCCATCCATCCATCATCC：$:$ CACGTGAACGGTAGTCCATCATCGTATATTGACGTGTA：
TGATCATGGATCCATCCATCCATCCATCCATCCCACGTGAACGGTAGTCTACCATCGTATATTGACGTATA：

GTATCACCTGACCTCATCGTCGTCG
GTATCACGGACTTCATGGTGTCGG GTATCACGACCCAAGTCGTG

 U.謁
 : : ©CTCAACCGAACCTATIGTTGGEG GTATCACGGACCTCAAAGTCGTCG

苞
 TCGAATCACCTGACCTCATCGTTGTCG
TCGTATCACCGACTCATGTTGTCG
TGTARCTCATCGTCGTCG

[^0]TCGATCGATGGATCCATCCATCCATCCATCC : : : :CACGTGAAAGGTAGTTCATCATCGTATATTGACGTATG: : : : : : : : : : : :TCGTATGACCTGACTTCATCGTCGTCG TATGACCTGAC TTCATCGTCGTC GTATCACCGGACCTCATCGTCGTC GTATCACCGGACCTCATAGTCGTCG

 TATGACCTGACCTCATCGTCGTC
 U

> U

:: :: :: :: :: U U U U U U $\because::$:: $:$ ư

CATC
U U

[^1]$\stackrel{A G G C}{ }$数

 U⿳亠口冋刂 O
 प्ट్ U U ƯO苞苞䍚荷

 H花荷

萿

 эээษээษ

苞萿
 O U U U U U U U U U U U U
 つつ」 U U U Hy Hy

 トDO पु氐

GAGGC U H灾 花出 U U U UUU U UUUUU

志 GGTTC GTCCGA TGTCC AAGGC AGCAA | 0 |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |

：TTG：：AATCAGTCA TTTGTCACTTAGTCA

兵芯
U
念
E ヤOLOHILJVULIOL ？

 AAAAA
 $\begin{array}{r}48 \\ 4 \\ \hline 48\end{array}$

 AATTCATTTTATTGTAGTAGCTCTCTATTGATAACAAATCAAGTTCATATTGCAATAGCTGGGTAATGGATTACATATTAAGTGATGGTAATAAATGGCTTT Apr3con
 AATTCATTTTATTGTAGTAGCTCTCTATTGATAACAAATCAAGTTCATATTGCAATAGCTGGGTAATGGATTACATATTAAGTGATGGCAATAAATGGCTTT
 GTCACTTTTACGCGCCTAGAACCATGCCTITGTGGCACGT GAAAAAAACT GACCCTCGTGTTAAAATCAATACTGT TCCGCTAAGACACGCAATTTTAATAGTATAGAGTAACTTTTTGTGCCTATCGATG

 AATTCATTTTATTGTAGTAGCTCTCTATTGATAACAAATCAAGTTCATATTGCAATAGCTGGGTAATGGATTACATATTAAGTGATGGCAATAAATGGCTTT

信
 AATTCATTTTATTGTAGTAGCTCTCTATTGATAACAAATCAAGTTCATATTGCAATAGCTGGGTAATGGATTACATATTAAGTGATGGCAATAAATGGCTTT
 AATTCATTTT ATTGTAGTAGCTCTCTATTGATAACAAATCAAGTTCATATTGCAATAGCTGGGTAATGGATTACATATTAAGTGATGGCAATAAATGGCTTT
 AATTCATTTTATTGTAGTAGCTCTCTATTGATAACAAATCAAGTTCATATTGCAATAGCTGGGTAATGGATTACATATTAAGTGATGGTAATAAATGGCTTT
 AATTCATTTTATTGTAGTAGCTCTCTATTGATAACAAATCAAGTTCATATTGCAATAGCTGGGTAATGGATTACATATTAAGTGATGGCAATAAATGGCTTT

 ATTTTATTGTAGTAGCTCTCTATTGATAACAAATCAAGTTCATATTGCAATAGCTGGGTAATGGATTACATATTAAGTGATGGCAATAAATGGCTTT

 TGTTCACCAAAAAAAAATTTATAGACTTACGCTAACTTGAAAGTAGCTTAAATCGTTGTCACTTTTACGCGCCTAGAACCCATGCCTTTGTGGCACCGTCTGC
TTTTATTGTAGTAGCTCTCTATTGATAACAAATCAAGTTCATATTGCAATAGCTGGGTAATGGATTACATATATTAAACCCATGCCTTTGTGGCACCGTCTG
俗 TTTTATTGTAGTAGCTCTCTATTGATAACAAATCAAGTTCATATTGCAATAGCTGGGTAATGGATTACATATTAAGTGATGGCAATAAACCGTCTGCTT
AAAAAACTGACCCTCGTGTTAAAATCAATACTGTTCCGCTAAGACACGCAACTTAATAGTATAGAGTAACTTTTTGTGCCTATCGATGTTCAAGAGGACAGCACCTGGTCGACGCAAGTGCTACTATGAGCATAGTAACTTTAGACAAAATAATATACTC ATTTTATTGTAGTAGCTCTCTATTGATAACAAATCAAGTCCATATTGCAATAGCTGGGTAATGGATTACATATTAAGTGATGGGCAATAAATGGCTTT
 TTTTATTGTAGTAGCTCTCTATTGATAACAAATCAAGTTCATATTGCAATAGCTGGGTAATGGATTACATATTAAGTGATGGCAATAAATGGCTTT
AAAAACTGACCCTCGTGTTAAAATCAATACTGTTCCGCTAAGACACGCAACTTAATAGTATAGAGTAACTTTTTGTGCCTATCGATGTTCAAGAGGACAGCACCTCGTCGACGCAAGTGCTACTATGAGCATAGTAACTTTAGACAAAAATAATATACTC TTTTATTGTAGTAGCTCTCTATTGATAACAAATCAAGTTCATATTGCAATAGCTGGGTAATGGATTACATATTAAGTGATGGTAATAAATGGCTTT -1
$\stackrel{2}{2}$
$\stackrel{4}{c}$
$\stackrel{4}{4}$
 TTTTATTGTAGTAGCTCTCTATTGATAACAAATCAAGTTCATATTGCAATAGCTGGGTAATGGATTACATATTAAGTGATGGCAATAAATGGCTTT
AAAAAACTGACCCTCGTGTTAAAATCAATACTGTTCCGCTAAGACACACAACTTAATAGTATAGAGTAACTTTTTGTGCCTATCGATGTTCAAGAGGACAGCACCTCGTCGACGCAAGTGCTACTATGAGCATAGTAACTTTAGACAAAATAATATACTC TTTTATTGTAGTAGCTCTCTATTGATAACAAATCAAGTTCATATTGCAATAGCTGGGTAATGGATTACATATTAAGTGATGGCAATAAATGGCTTT
AAAAAACTGACCCTCGTGTTAAAATCAATACTGTTCCGCTAAGACACGCAACTTAATAGTATAGAGTAACTTTTTGTGCCTATCGATGTTCAAGAGGACAGCACCTCGTCGACGCAAGTGCTACTATGAGCATAGTAACTTTAGACAAAATAATATACTC TTTATTGTAGCAGCTCTCTATTGATAACAAATCAAGTTCATATTGCAATAGCTGGGTAATGGATTACATATTAAGTGATGGCAATAAATGGCTTT
 TTTTATTGTAGTAGCTCTCTATTGATAACAAATCAAGTTCATATTGCAATAGCTGGGTAATGGATTACATATTAAGTGATGGCAATAAATGGCTTT
AраMO39. 4 FP
 TTCATTTTATTGTAGTAGCTCTCTATTGATAACAAATCAAGTTCATATTGCAATAGCTGGGTAATGGATTACATATTAAGTGATGGCAATAAATGGCTTT

 AATTCATTTTATTGTAGTAGCTCTCTATTGATAACAAATCAAGTTCATATTGCAATAGCTGGGTAATGGATTACATATTAAGTGATGGTAATAAATGGCTTT

 AATTCATTTTATTGTAGTAGCTCTCTATTGATAACAAATCAAGTTCATATTGCAATAGCTGGGTAATGGATTACATATTAAGTGATGGTAATAAATGGCTTT
Apr20.2FP1

 AATTCATTTTATTGTAGTAGCTCTCTATTGATAACAAATCAAGTTCATATTGCAATAGCTGGGTAATGGATTACATATTAAGTGATGGCAATAAATGGCTTT
Apr22.1FP1

 AATTCATTTTATTGTAGTAGCTCTCTATTGATAACAAATCAAGTTCATATTGCAATAGCTGGGTAATGGATTACATATTAAGTGGTGGCAATAAATGGCTTT
ApR21.2FP1
 AATTCATTTTATTGTAGTAGCTCTCTATTGATAACAAATCAAGTTCATATTGCAATAGCTGGGTAATGGATTACATATTAAGTGATGGTATATAAATGGCTTT
 AATTCATTTTATTGTAGTAGCTCTCTATTGATAACAAATCAAGTTCATATTGCAATAGCTGGGTAATGGATTACATATTAAGTGATGGTAATAAATGGCTTT
 AATTCATTTTATTGTAGTAGCTCTCTATTGATAACAAATCAAGTTCATATTGCAATAGCTGGGTAATGGATTACATATTAAGTGATGGCAATAAATGGCTTT
A42CON2
 ATTCATTTTATTGTAGTAGCTCTCTATTGATAACAAATCAAGTTCATATTGCAATAGCTGGGTAATGGATTACATATTAAGTGATGGCAATAAATGGCTTT

[^0]:

[^1]:

