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Chapter 1

Beyond complex numbers

1.1 Introduction

While at best marginally familiar to most current students of mathematics, the
history of quaternions makes for an important footnote of early modern mathe-
matics. Perhaps one of the most important in the sense that it can be viewed to
have stood as part of the early development of modern abstract algebra, which
has since then steered mathematics towards the pure and standalone science of
today.

The story begins with the development of complex analysis in the early nine-
teenth century, when results by among others Augustin Cauchy, Bernhard Rie-
mann and Karl Weierstrass make ever more apparent the inherent elegance of
the subject of complex analysis. Among the people involved in this then new and
exciting field of mathematics is also Irish physicist, astronomer and mathemati-
cian William Rowan Hamilton who, following earlier work by Caspar Wessel,
Jean-Robert Argand and Carl Friedrich Gauss, in 1835 completes his Theory
of Couplets which amounts to the view of complex numbers as ordered pairs of
real numbers, or points on a complex plane, so familiar to us today.

Given the success of the planar view little comes more natural to a mathe-
matician than the idea of next extending the notions from the two-dimensional
plane to three-dimensional space and Hamilton subsequently sets out to do just
that, hoping to construct a Theory of Triplets to parallel the success of complex
numbers and, perhaps, eventually complex analysis itself.

Natural as it may be though, this turns out to also be naive. In modern termi-
nology the complex numbers form an algebraic structure we call a real division
algebra and as we shall see, no such three-dimensional structure exists. In fact,
Ferdinand Frobenius shows in 1877 that the one-dimensional real numbers R,
two-dimensional complex numbers C and the four-dimensional quaternions H
that Hamilton eventually does construct are (up to isomorphism) the only finite-
dimensional associative real division algebras, and in the latter case only at the
cost of losing commutativity. In 1898 Adolf Hurwitz then shows that only one
more finite-dimensional real division algebra O of eight-dimensional octonions
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Figure 1.1: The complex plane Figure 1.2: A triplet space?

results if we forego even associativity and require only the in complex analysis
vital concept of having available an absolute value or modulus.

Proving these results by Frobenius and Hurwitz will be the substance of this
first chapter, while we will in the next chapter see that erecting an analogue of
complex analysis for the quaternions and octonions proves to be an in fact only
marginally viable undertaking.

1.2 Quaternions

As said, with his Theory of Couplets identifying a complex number x+ iy with
the point (x, y) in R2 freshly developed, Hamilton sets out to now conversely
identify a point (x, y, z) in R3 with a new type of number x + iy + jz, hoping
to parallel the success of complex numbers.

As an extension of the complex numbers he implicitly requires that the new
triplet space needs to embed the complex plane as its (1, i) plane in the same
way that R3 embeds R2 which means 1i = i1 = i and i2 = −1 same as for the
complex numbers. He furthermore requires 1j = j1 = j simply per definition
of 1 and since, as figures 1.1 and 1.2 demonstrate, multiplication of 1 by i
amounts to a ninety degree counterclockwise rotation about the origin in the
complex plane in the same way that multiplication of 1 by j amounts to this
same rotation in the (1, j) plane, he requires j2 = −1 as well.

Already in trying to decide what to do with the product ij he runs into the fun-
damental problem of all this though. With the concepts hardly even explicitly
available at the time, Hamilton also wants to simply assume distributivity and
associativity but if we set ij = x+ iy+ jz and left-multiply by i we then obtain

−j = i(x+ iy + jz) = ix− y + ijz = ix− y + (x+ iy + jz)z

which is to say xz − y + i(x+ yz) + j(z2 + 1) = 0. By perpendicularity of 1, i
and j therefore xz − y = x+ yz = z2 + 1 = 0 which is impossible for z ∈ R. It
follows that ij can not in fact be an element of the triplet space and thereby that
the triplet space is not closed under multiplication — something which clearly
won’t do for an analogue of the very algebraically clean complex numbers.

However, even an innocent formulation such as a space being closed under mul-
tiplication hints at the sort of modern algebraic footing which was at the time
still unavailable and Hamilton in fact spends quite some time stuck at this point.
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To a modern reader it is readily apparent that ij is simply a fourth linearly
independent element but not only hadn’t the concept of linear spaces nor linear
independence been developed yet, the entire notion of a fourth dimension was a
still decidedly esoteric one. It is therefore not until 1843 that Hamilton realizes
that he needs to add a fourth dimension for, as he puts it in a letter to his friend
John Graves, the purpose of calculating with triplets1.

However, as mathematically significant the acceptance of a fourth dimension
may itself have been at the time, acceptance of a specific consequence seems
in retrospect more significant still. Having developed his Theory of Couplets,
Hamilton is very much aware that the norm on R2 functioning as a multiplicative
absolute value on C is one of the most important properties of the complex
numbers, seeing as how it provides the basic ingredient of analytic concepts
such as limit and derivative.

Therefore, in the same way that for a complex number z = x+ iy the definition

|z| =
√
x2 + y2

together with the computationally natural product

(x1 + iy1)(x2 + iy2) = x1x2 − y1y2 + i(x1y2 + y1x2)

means |z1z2| = |z1| |z2| for all complex numbers z1 and z2, Hamilton requires
that for a quaternion q = t+ ix+ jy + kz the definition

|q| =
√
t2 + x2 + y2 + z2

together with the similarly natural product needs to mean |q1q2| = |q1| |q2| for
all quaternions q1 and q2. He had already noticed before that for a triplet (now
a special type of quaternion) q = t+ix+jy the computationally natural product
means

q2 = (t+ ix+ jy)(t+ ix+ jy) = t2 − x2 − y2 + i(2tx) + j(2ty) + (ij + ji)xy

whereas by the above definition of absolute value

|q|2 = t2 + x2 + y2 =
√

(t2 − x2 − y2)2 + (2tx)2 + (2ty)2

so that the requirement
∣∣q2
∣∣ = |q|2 very strongly suggests ij+ji = 0. Moreover,

now that ij lies in an actual fourth direction he at this point definitively needs
ij 6= 0 and from ji = −ij 6= 0 needs to thereby accept noncommutativity of his
new quaternions.

At the time, this was a still largely unheard of thing to do and, we feel, the
perhaps biggest contribution Hamilton made to mathematics consists of not
simply discarding quaternions then and there. As we shall see later, it takes
Graves only two months from hearing of them to come up with the octonions
that forego even associativity, a word which may not even have existed up to
that point in time, and which shows the quaternions to have been an important
early inroad into modern abstract algebra.

1On Quaternions: Letter to John T. Graves, Esq. [4]
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Be that as it may, Hamilton now has all the parts he needs. Setting k = ij and
thereby ji = −ij = −k he notices

k2 = (ij)(ij) = −(ij)(ji) = −i(jj)i = ii = −1

whereby k shows itself to be just like i and j and with 1k = k1 = k and

kj = (ij)j = i(jj) = −i jk = j(ij) = (ji)j = −kj = i

ik = i(ij) = (ii)j = −j ki = (ij)i = i(ji) = −ik = j

he completes the rules of quaternion multiplication, summarised as

i2 = j2 = k2 = −1 ij = k = −ji jk = i = −kj ki = j = −ik (1.1)

or in their most compact form as i2 = j2 = k2 = ijk = −1. Also note the above
tabular and mnemonic formats.

Identifying the new space of quaternions H (as we denote it now in his honour)
with R4, he declares two quaternions

q1 = t1 + ix1 + jy1 + kz1 and q2 = t2 + ix2 + jy2 + kz2

to be equal if and only if t1 = t2, x1 = x2, y1 = y2 and z1 = z2 and endows
them with the regular componentwise addition

(t1 + ix1 + jy1 + kz1) + (t2 + ix2 + jy2 + kz2) =

(t1 + t2) + i(x1 + x2) + j(y1 + y2) + k(z1 + z2) (1.2)

and his desired computationally natural product

(t1 + ix1 + jy1 + kz1)(t2 + ix2 + jy2 + kz2) =

(t1t2 − x1x2 − y1y2 − z1z2) + i(t1x2 + x1t2 + y1z2 − z1y2) +

j(t1y2 − x1z2 + y1t2 + z1x2) + k(t1z2 + x1y2 − y1x2 + z1t2) (1.3)

Then, after carefully verifying that with the desired absolute value

|t+ ix+ jy + kz| =
√
t2 + x2 + y2 + z2 (1.4)

he now indeed has |q1q2| = |q1| |q2| for all quaternions q1 and q2, Hamilton
finally declares victory over years of contemplating the subject.

We note associativity of the product (1.3), verification of which is a straight-
forward if rather tedious process. We will also show this rigorously later when
we reconstruct the quaternions in a more structured way. For now, we will only
quickly list a few properties so as to establish basic familiarity.

5



Firstly note that

(t1 + ix1 + j0 + k0) + (t2 + ix2 + j0 + k0) = (t1 + t2) + i(x1 + x2) + j0 + k0

and

(t1 + ix1 + j0 + k0)(t2 + ix2 + j0 + k0) =

(t1t2 − x1x2) + i(t1x2 + x1t2) + j0 + k0

so that C embeds as naturally into H as R in turn embeds naturally into C.

With the absolute value (1.4) no other than the regular Euclidean norm on R4

it of course shares all the properties of a norm so that we have all in all, same
as for R and C

nonnegativity |q| ≥ 0 for all q ∈ H
nondegeneracy |q| = 0 if and only if q = 0
triangle inequality |q1 + q2| ≤ |q1|+ |q2| for all q1, q2 ∈ H
multiplicativity |q1 · q2| = |q1| |q2| for all q1, q2 ∈ H

We define for the quaternion q = t+ ix+ jy + kz ∈ H the conjugate of q to be

q̄ = t− ix− jy − kz (1.5)

Clearly ¯̄q = q and by easy direct verification, for all q1, q2 ∈ H

q1 + q2 = q1 + q2 and q1 · q2 = q2 · q1 (1.6)

Moreover, same as for the complex numbers

qq̄ = q̄q = t2 + x2 + y2 + z2 = |q|2 (1.7)

so that together with nondegeneracy of the absolute value any q 6= 0 admits a
unique inverse

q−1 = |q|−2
q̄ (1.8)

satisfying qq−1 = 1 = q−1q and enabling the concept of division in H. We do
of course need separate left and right quotients q−1

2 q1 and q1q
−1
2 of two general

quaternions q1 and q2 due to general noncommutativity of H. By its nondegen-
erate and multiplicative absolute value, H is clearly without zero divisors.

As is easily directly verified we have for q = t+ ix+ jy + kz ∈ H

t = −1

4
(−q + iqi+ jqj + kqk) x = − i

4
(q − iqi+ jqj + kqk)

y = − j
4

(q + iqi− jqj + kqk) z = −k
4

(q + iqi+ jqj − kqk)

(1.9)

With q ∈ Cen(H) = {q ∈ H | qr = rq for all r ∈ H} therefore

t = −1

4
(−q+ iqi+ jqj+kqk) = −1

4
(−q+ iiq+ jjq+kkq) =

1

4
(q+q+q+q) = q

so that Cen(H) ⊆ R. By construction or easy verification conversely qr = rq
for all r ∈ R whereby we conclude that Cen(H) = R.
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We note at this point that this also means that setting q = t + ix + jy + kz
versus q = t+ xi+ yj + zk amounts to taste only. The former is more common
in an analytic context whereas the latter is used more in an algebraic one.

The real and pure parts of q = t+ ix+ jy + kz are defined to be

Re(q) =
1

2
(q + q̄) = t and Pu(q) =

1

2
(q − q̄) = ix+ jy + kz (1.10)

The latter is sometimes also referred to as the imaginary part and denoted
Im(q) but is unlike its complex counterpart not real but quaternion-valued;
with C ⊂ H we will therefore reserve Im for use in the complex context.

Historically these quantities were denoted Sc(q) and Ve(q) for the scalar and
vector part respectively, and we note that both words actually originate in this
quaternionic context. In fact, as expressed in his aforementioned statement
of introducing the fourth dimension for the purpose of calculating with triplets
Hamilton at least for now still considers quaternions to be tools for constructing
a three-dimensional calculus, and with modern vector calculus still undeveloped
at the time many of the early developments in the field trace their origin to this
quaternionic past.

For example, with v1 = ix1 + jy1 + kz1 and v2 = ix2 + jy2 + kz2 we have

v1v2 = −x1x2 − y1y2 − z1z2 + i(y1z2 − z1y2) + j(z1x2 − x1z2) + k(x1y2 − y1x2)

and by combining modern notation with quaternionic history therefore

〈v1, v2〉 = −Sc(v1v1) and v1 × v2 = Ve(v1v2)

from which we see the alternative names scalar product and vector product for
the inner and cross product take form. We moreover note that the utility of these
products in respectively determining the angle between vectors and constructing
a third perpendicular vector should be taken to sufficiently explain Hamilton’s
choice of identifying the last three dimensions of H with R3 rather than the first
three as he set out for originally back when they were still triplets. Our use of
the standard names i, j and k for the three basis vectors of R3 is also still a
result of this decision and one of the most visible remnants of the period now
that modern vector calculus has fully replaced any quaternionic approach.

Note that whereas −1 has exactly two square roots i and −i in C it has an
infinite number of them in H, since

(ix+ jy + kz)2 = −x2 − y2 − z2 = −(x2 + y2 + z2) = −1

for any point (x, y, z) of the unit sphere S2 ⊂ R3. This has the effect that there
are also an infinite number of possible choices for i, j and k, with any first one
chosen freely from among all unit vectors (0, x, y, z) ∈ R4 and the other two as
to that first and each other perpendicular unit vectors among the same. We will
see this effect in the upcoming proof of the theorem of Frobenius in the sense
that we need to avoid suggesting unicity and instead stress trivial isomorphism
with any other choice.

Before getting there though, we will need to formally introduce the concept of
an algebra, which is to say a linear space together with a bilinear product.
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1.3 Algebras

Definition 1.1. A linear space or vector space V over a field F is a set V
together with an element 0V ∈ V and two operations

+: V × V → V, (x, y) 7→ x+ y · : F × V → V, (a, x) 7→ ax = a · x

called addition and scalar multiplication such that

(V1) ∀x, y ∈ V x+ y = y + x
(V2) ∀x, y, z ∈ V (x+ y) + z = x+ (y + z)
(V3) ∀x ∈ V x+ 0V = x
(V4) ∀x ∈ V x+ (−1F )x = 0V
(V5) ∀a ∈ F, x, y ∈ V a(x+ y) = ax+ ay
(V6) ∀a, b ∈ F, x ∈ V (a+ b)x = ax+ bx
(V7) ∀a, b ∈ F, x ∈ V a(bx) = (ab)x
(V8) ∀x ∈ V 1F · x = x

With x, y ∈ V and a ∈ F, a 6= 0F : −x := (−1F )x, y−x := y+(−x), xa := a−1x.

Definition 1.2. An algebra V over a field F is a linear space V over F together
with a third operation

· : V × V → V, (x, y) 7→ xy = x · y

called multiplication such that

(A1) ∀x, y, z ∈ V x(y + z) = xy + xz
(A2) ∀x, y, z ∈ V (x+ y)z = xz + yz
(A3) ∀a, b ∈ F, x, y ∈ V (ax)(by) = (ab)(xy)

The dimension of the algebra is the dimension of the underlying linear space.

Definition 1.3. An algebra V is said to be commutative if

(A4) ∀x, y ∈ V xy = yx

and said to be associative if

(A5) ∀x, y, z ∈ V x(yz) = (xy)z

It is called alternative if less generally

(A6) ∀x, y ∈ V x(xy) = (xx)y and (xy)y = x(yy)

and is said to be unital if there exists an element 1V ∈ V such that

(A7) ∀x ∈ V 1V · x = x = x · 1V
Definition 1.4. By the center of an algebra V is meant the set

Cen(V ) = {x ∈ V |xy = yx for all y ∈ V }
Lemma 1.5. For any unital algebra V over a field F we have F ·1V ⊆ Cen(V ).

Proof. For all a ∈ F and x ∈ V

(a · 1V )x = (a · 1V )(1F · x) = (a · 1F )(1V · x) = ax

= (1F · a)(x · 1V ) = (1F · x)(a · 1V ) = x(a · 1V )
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Definition 1.6. A division algebra is an algebra V 6= {0V } such that for all
y, z ∈ V , y 6= 0V the two equations xy = z and yx = z each have a unique
solution x ∈ V .

Lemma 1.7. A division algebra is without zero divisors.

Proof. Let V be a division algebra, x, y ∈ V and suppose xy = 0V with y 6= 0V .
Since 0V · y = 0V by definition of 0V we have x = 0V by unicity.

Lemma 1.8. A finite-dimensional algebra V 6= {0V } without zero divisors is a
division algebra.

Proof. Let y ∈ V , y 6= 0V . The linear transformation T : V → V , x 7→ xy
has kernel N(T ) = {0V } by V being without zero divisors. T is therefore
injective and as a linear transformation from a finite-dimensional linear space
to itself therefore bijective. xy = T (x) = z therefore has the unique solution
x = T−1(z) ∈ V . By considering T : V → V , x 7→ yx instead, yx = z similarly
has.

Lemma 1.9. An alternative division algebra is unital.

Proof. Let V be an alternative division algebra and y ∈ V , y 6= 0V . Let
x = 1V ∈ V be the unique solution of xy = y. Since 0V · y = 0V 6= y we have
1V 6= 0V . By alternativity and by being without zero divisors we obtain

12
V · y = 1V (1V · y) = 1V · y ⇐⇒ (12

V − 1V )y = 0V ⇐⇒ 12
V = 1V

Therefore, for all x ∈ V

1V (1V · x− x) = 1V (1V · x)− 1V · x = 12
V · x− 1V · x = 1V · x− 1V · x = 0V

so that 1V · x = x by V being without zero divisors. In the same way,

(x · 1V − x)1V = (x · 1V )1V − x · 1V = x · 12
V − x · 1V = x · 1V − x · 1V = 0V

so that x · 1V = x.

We concern ourselves exclusively with finite-dimensional real algebras which is
to say finite-dimensional algebras over the field of real numbers R. Together
with the regular 0 and regular addition and multiplication R, C and H are such
of dimension 1, 2 and 4 respectively by trivial verification of the axioms. R and
C are commutative whereas H is not, and all three are associative and unital.
All three are without zero divisors by their multiplicative and nondegenerate
absolute values, and are therefore division algebras.

We will now be proving that R, C and H are in fact (up to isomorphism) also
the only finite-dimensional associative real division algebras.
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1.4 Frobenius

Theorem 1.10 (Frobenius). If D is a finite-dimensional associative real divi-
sion algebra, then it is isomorphic to R, C or H.

The proof that we present is a split off version of the first part of (a slight
adaptation of) an elegant proof due to A. Oneto [13] of the generalised theorem
of Frobenius for alternative division algebras, which is itself a generalised version
of an elegant proof due to R.S. Palais [10] of this original theorem.

Other than by implying existence of a unit in the first step, alternativity will
for now only play the role of being implicitly assumed at a number of places
throughout the proof and associativity that of being assumed in the final step
only. We will get back to the issue later when we adopt all but the final step of
this proof unchanged as the first part of the proof of the generalised theorem.

Proof. D is unital by being alternative and we denote 0 = 0D and 1 = 1D. Let
R = R1 be the natural inclusion of R in D. R is clearly a subspace of D and
trivially isomorphic to R. For all a ∈ R and x ∈ D ax = xa by lemma 1.5.

(1) If x ∈ D then x2 ∈ R+Rx.

Proof. Let n = dimD and x ∈ D. The set of powers
{

1, x, x2, . . .
}
⊆ D has

from 1 to n linearly independent elements meaning that for any n+ 1 elements
xi0 , xi1 , . . . , xin with im < im+1 for all m < n there exist λ0, λ1, . . . , λn−1 ∈ R
not all equal 0R such that

λ0x
i0 + λ1x

i1 + · · ·+ λn−1x
in−1 + xin = 0

or if we denote by Φx : R[X]→ D the evaluation homomorphism2 f 7→ f(x),

Φx
(
λ01Xi0 + λ11Xi1 + · · ·+ λn−11Xin−1 +Xin

)
= 0

The argument to Φx is a nonconstant monic polynomial in R[X] ∼= R[X] which
by the fundamental theorem of algebra factors into irreducible quadratic and
linear polynomials in R[X]. That is, for some ai, bi, ci ∈ R

Φx

(∏
(ai + biX +X2)

∏
(ci +X)

)
= 0

and by Φx being a homomorphism therefore

0 =
∏

Φx(ai + biX +X2)
∏

Φx(ci +X) =
∏

(ai + bix+ x2)
∏

(ci + x)

As a division algebra, D is without zero divisors so either ai + bix+ x2 = 0 for
one or more i, meaning x2 = −ai − bix ∈ R+Rx, or ci + x = 0 for one or more
i, meaning x2 = c2i ∈ R ⊆ R+Rx, as it was to show.

We will from this point on no longer explicitly remark on D being without zero
divisors. We need the fact throughout though.

2Note that the fact that it is a homomorphism needs ax = xa for all a ∈ R.
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So as to not drown ourselves in notational detail we will identify a = aR · 1 ∈ R
with aR ∈ R in taking for example a > 0 to mean aR > 0 and setting

1

a
:=

1R
aR
· 1 and

√
a :=

√
aR · 1

We moreover let lemma 1.5 enable us to pull elements of R, especially −1 ∈ R,
through products without hesitation or mention. We do note that for x ∈ D the
product xa is strictly speaking defined only for a ∈ R which warrants not being
completely implicit about R versus R but the reader should feel free to project
an innate understanding of R onto R.

The first point above will function as a lemma and the remainder of the proof
consists of a set of consecutive subproofs that we will in the end gather up to
arrive at the conclusion.

(2) If D 6= R then there exists an element i ∈ D such that i2 = −1.

Proof. Let x ∈ D \R. By the above, x2 ∈ R+Rx, say x2 = a+ bx for a, b ∈ R.(
x− b

2

)2

= a+
b2

4

Since a+ b2

4 ≥ 0 would mean x = b
2 ±

√
a+ b2

4 ∈ R we have a+ b2

4 < 0. Setting

0 6= c =

√
−
(
a+

b2

4

)
∈ R and i =

1

c

(
x− b

2

)
∈ D

we obtain i2 = −1.

We assume from this point on that D 6= R and i ∈ D is such that i2 = −1.

(3) C = {x ∈ D |xi = ix} is isomorphic to C.

Proof. We claim that C = R+Ri, which is trivially isomorphic to C.

(⊆) Let x ∈ C. R ⊆ C by lemma 1.5 so either x ∈ R ⊆ R + Ri or x /∈ R and
then by the above (

x− b

2

)2

= −c2

for some b, c ∈ R. Together with xi = ix and i2 = −1 we then have(
x− b

2
+ ci

)(
x− b

2
− ci

)
=

(
x− b

2

)2

+ c2 = 0

and thereby x = b
2 ± ci ∈ R+Ri also in that case.

(⊇) Let x ∈ R+Ri, say x = a+ bi for a, b ∈ R. Trivially xi = ix, so x ∈ C.
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(4) D = C ⊕ C− in which C− = {x ∈ D |xi = −ix}.

Proof. Consider the linear transformation T : D→ D, x 7→ ixi and note that

C = {x ∈ D |xi = ix} = {x ∈ D | ixi = −x} = {x ∈ D |T (x) = −x}
and

C− = {x ∈ D |xi = −ix} = {x ∈ D | ixi = x} = {x ∈ D |T (x) = x}
which shows C and C− to be eigenspaces of T belonging to eigenvalues −1 and
1 respectively. Furthermore note that T 2 = I from

T 2(x) = T (ixi) = i(ixi)i = (ii)x(ii) = x

This firstly shows eigenvalues of T to be simple eigenvalues (since a nontrivial
Jordan-block would mean Tn 6= I for any n) and secondly that −1 and 1 are
the only possible eigenvalues. Therefore D =

⊕
λ∈σ(T )Eλ = C ⊕ C− as it was

to show.

(5) If D 6= C then there exists an element j ∈ C− such that j2 = −1.

Proof. If D = C ⊕ C− 6= C then C− 6= {0} meaning there exists an x ∈ C−,
x 6= 0. Using xi = −ix we obtain

x2i = (xx)i = x(xi) = −x(ix) = −(xi)x = (ix)x = i(xx) = ix2

However, by (1) above x2 ∈ R+Rx, say x2 = a+ bx for a, b ∈ R, so also

x2i = (a+ bx)i = ai+ bxi = ai− bix = ix2 − 2bix

Comparing and using x 6= 0 we see b = 0 and thereby x2 = a ∈ R. Moreover,
since a ≥ 0 would imply x =

√
a ∈ R and thereby x ∈ R ∩ C− = {0}, we must

have a < 0. C− is closed under scalar multiplication as a subspace and setting

j =
1√−a x ∈ C

−

we obtain j2 = −1.

We assume from this point on that D 6= C and j ∈ C− is such that j2 = −1.

(6) C + Cj is isomorphic to H.

Proof. Set k = ij. From j ∈ C− we have ji = −ij = −k and further obtain

k2 = (ij)(ij) = −(ij)(ji) = −i(jj)i = ii = −1

and

kj = (ij)j = i(jj) = −i jk = j(ij) = (ji)j = −kj = i

ik = i(ij) = (ii)j = −j ki = (ij)i = i(ji) = −ik = j

Together we have exactly the defining relations (1.1) of H

i2 = j2 = k2 = −1 ij = k = −ji jk = i = −kj ki = j = −ik
whereby C+Cj = R+Ri+(R+Ri)j = R+Ri+Rj+Rk is trivially isomorphic
to H.
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(7) D = C + Cj.

Proof. Clearly C+Cj ⊆ D and we need to show D ⊆ C+Cj. Since D = C+C−

by (4) it moreover suffices to show that C− ⊆ Cj.
Let to this end y ∈ C− and x = −yj. Then x ∈ C since

xi = −(yj)i = −y(ji) = y(ij) = (yi)j = −(iy)j = −i(yj) = ix

by definition of x, associativity and y ∈ C−. We furthermore have

xj = −(yj)j = y

by definition of x and alternativity and therefore y ∈ Cj as it was to show.

We now only need to gather up these arguments to end the proof. Specifically,
if D is a finite-dimensional associative real division algebra it could firstly be R
and thereby trivially isomorphic to R. If it is not R then it can by (4) be C
which is isomorphic to C by (2) and (3). If it is also not C then it is by (7)
C + Cj which is by (5) and (6) isomorphic to H, ending the proof.

We quickly note at this point that we see associativity explicitly featured in the
above last point (7) whereas points (1) to (6) in fact use only alternativity as
we will show in more detail later.

1.5 The Cayley-Dickson construction

Step (6) in the proof of the theorem of Frobenius shows that we have a rather
more structured view of H available than the one resulting from the historic
development by which we have introduced it.

That is, analogous to our view of the complex numbers C as R + Ri we can by

a+ bi+ cj + dk = a+ bi+ (c+ di)j

consider the quaternions H to be nothing other than C + Cj, thereby hinting
at a generic process of constructing a new algebra of twice the dimension from
an existing one. Indeed such a generic process exists, and it requires no more
of the parent algebra than availability of conjugation.

Definition 1.11. A ∗-algebra V over a field F is an algebra V over F together
with an F -linear operation

∗ : V → V, x 7→ x∗

called conjugation such that

(C1) ∀x ∈ V x∗∗ := (x∗)∗ = x
(C2) ∀x, y ∈ V (xy)∗ = y∗x∗

Remark 1.12. Note that 0∗V = (0F · 0V )∗ = 0F · 0∗V = 0V .

13



Lemma 1.13. If V is a ∗-algebra then so is W = V ⊕ V with multiplication
and conjugation inductively defined by respectively

(x1, x2)(y1, y2) = (x1y1 − y2x
∗
2, x
∗
1y2 + y1x2) and (x1, x2)∗ = (x∗1,−x2)

Proof. W is by definition of the direct sum the linear space W = V ×V together
with 0W = (0V , 0V ) and addition and scalar multiplication inductively defined
by respectively

(x1, x2) + (y1, y2) = (x1 + y1, x2 + y2) and a(x1, x2) = (ax1, ax2)

As to it being an algebra, for all a, b ∈ F and (x1, x2), (y1, y2), (z1, z2) ∈W

(A1) (x1, x2)[(y1, y2) + (z1, z2)] = (x1, x2)(y1 + z1, y2 + z2)

= (x1(y1 + z1)− (y2 + z2)x∗2, x
∗
1(y2 + z2) + (y1 + z1)x2)

= (x1y1 + x1z1 − y2x
∗
2 − z2x

∗
2, x
∗
1y2 + x∗1z2 + y1x2 + z1x2)

= (x1y1 − y2x
∗
2, x
∗
1y2 + y1x2) + (x1z1 − z2x

∗
2, x
∗
1z2 + z1x2)

= (x1, x2)(y1, y2) + (x1, x2)(z1, z2)

(A2) [(x1, x2) + (y1, y2)](z1, z2) = (x1 + y1, x2 + y2)(z1, z2)

= ((x1 + y1)z1 − z2(x2 + y2)∗, (x1 + y1)∗z2 + z1(x2 + y2))

= (x1z1 + y1z1 − z2x
∗
2 − z2y

∗
2 , x
∗
1z2 + y∗1z2 + z1x2 + z1y2)

= (x1z1 − z2x
∗
2, x
∗
1z2 + z1x2) + (y1z1 − z2y

∗
2 , y
∗
1z2 + z1y2)

= (x1, x2)(z1, z2) + (y1, y2)(z1, z2)

(A3) (a(x1, x2))(b(y1, y2)) = (ax1, ax2)(by1, by2)

= ((ax1)(by1)− (by2)(ax2)∗, (ax1)∗(by2) + (by1)(ax2))

= ((ax1)(by1)− (by2)(ax∗2), (ax∗1)(by2) + (by1)(ax2))

= ((ab)x1y1 − (ba)y2x
∗
2, (ab)x

∗
1y2 + (ba)y1x2)

= ((ab)x1y1 − (ab)y2x
∗
2, (ab)x

∗
1y2 + (ab)y1x2)

= (ab)(x1y1 − y2x
∗
2, x
∗
1y2 + y1x2) = (ab)((x1, x2)(y1, y2))

and as to it being a ∗-algebra, for all (x1, x2), (y1, y2) ∈W

(C1) (x1, x2)∗∗ = (x∗1,−x2)∗ = (x1, x2)

(C2) ((x1, x2)(y1, y2))∗ = (x1y1 − y2x
∗
2, x
∗
1y2 + y1x2)∗

= ((x1y1 − y2x
∗
2)∗,−x∗1y2 − y1x2) = (y∗1x

∗
1 − x2y

∗
2 ,−y1x2 − x∗1y2)

= (y∗1 ,−y2)(x∗1,−x2) = (y1, y2)∗(x1, x2)∗

Remark 1.14. dimW = dim(V ⊕ V ) = dimV + dimV = 2 dimV .

This process of constructing a new ∗-algebra W from an existing ∗-algebra V
is called the Cayley-Dickson process after mathematicians Arthur Cayley and
Leonard Dickson who first investigated it and W is called the Cayley-Dickson
double of V .

Applying the process iteratively for any starting ∗-algebra V we are provided
with an infinite sequence of ∗-algebras doubling in dimension at each step.

Let from this point on V be a ∗-algebra and W its Cayley-Dickson double.
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Lemma 1.15. If x∗ = x for all x ∈ V then W is commutative.

Proof. V is firstly itself commutative by, for all x, y ∈ V

(A4) xy = (xy)∗ = y∗x∗ = yx

and therefore, for all (x1, x2), (y1, y2) ∈W

(A4) (x1, x2)(y1, y2) = (x1y1 − y2x
∗
2, x
∗
1y2 + y1x2)

= (x1y1 − y2x2, x1y2 + y1x2)

= (y1x1 − x2y2, y1x2 + x1y2)

= (y1x1 − x2y
∗
2 , y
∗
1x2 + x1y2) = (y1, y2)(x1, x2)

Remark 1.16. A ∗-algebra V for which x∗ = x for all x ∈ V is sometimes said
to be real but we reserve use of the adjective real for an algebra over the field
of real numbers R.

Lemma 1.17. If V is commutative and associative then W is associative.

Proof. Let (x1, x2), (y1, y2), (z1, z2) ∈W .

(A5) (x1, x2)[(y1, y2)(z1, z2)] = (x1, x2)(y1z1 − z2y
∗
2 , y
∗
1z2 + z1y2)

= (x1(y1z1 − z2y
∗
2)− (y∗1z2 + z1y2)x∗2,

x∗1(y∗1z2 + z1y2) + (y1z1 − z2y
∗
2)x2)

= (x1y1z1 − x1z2y
∗
2 − y∗1z2x

∗
2 + z1y2x

∗
2,

x∗1y
∗
1z2 + x∗1z1y2 + y1z1x2 − z2y

∗
2x2)

= (x1y1z1 − y2x
∗
2z1 − z2y

∗
2x1 + z2x

∗
2y
∗
1 ,

y∗1x
∗
1z2 − x2y

∗
2z2 + z1x

∗
1y2 + z1y1x2)

= ((x1y1 − y2x
∗
2)z1 − z2(y∗2x1 + x∗2y

∗
1),

(y∗1x
∗
1 − x2y

∗
2)z2 + z1(x∗1y2 + y1x2))

= ((x1y1 − y2x
∗
2)z1 − z2(x∗1y2 + y1x2)∗,

(x1y1 − y2x
∗
2)∗z2 + z1(x∗1y2 + y1x2))

= (x1y1 − y2x
∗
2, x
∗
1y2 + y1x2)(z1, z2) = [(x1, x2)(y1, y2)](z1, z2)

Lemma 1.18. If V is unital with unit 1V then 1∗V = 1V .

Proof. 1∗V = 1∗V · 1V = 1∗V (1∗V )∗ = (1∗V · 1V )∗ = (1∗V )∗ = 1V .

Lemma 1.19. If V is unital with unit 1V then W is unital with unit (1V , 0V ).

Proof. Let (x1, x2) ∈W . Note again that 0∗V = 0V for any ∗-algebra V .

(A7) (1V , 0V )(x1, x2) = (1V · x1, 1
∗
V · x2) = (1V · x1, 1V · x2)

= (x1, x2)

= (x1 · 1V , 1V · x2) = (x1, x2)(1V , 0V )
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Now, starting with the commutative and associative real unital ∗-algebra V = R
with trivial conjugation x∗ = x, its Cayley-Dickson double is W = R⊕ R with
regular addition and scalar multiplication and multiplication

(x1, x2)(y1, y2) = (x1y1 − y2x
∗
2, x
∗
1y2 + y1x2) = (x1y1 − x2y2, x1y2 + x2y1)

Setting

1 = (1R, 0R) = 1W and i = (0R, 1R)

we obtain

i2 = (0R, 1R)(0R, 1R) = (−1R, 0R) = −(1R, 0R) = −1

and together with R1 ⊆ Cen(W ) by lemma 1.5, W shows itself to be trivially
isomorphic to C. Lemma 1.15 expresses the familiar fact that C is commutative
and 1.17 the familiar fact that C is associative. Also note that the induced
conjugation (x1, x2) = (x1,−x2) on W is no other than the regular conjugation
on C.

Repeating the process, we start with the commutative and associative real unital
∗-algebra V = C with conjugation x∗ = x̄ and Cayley-Dickson doubleW = C⊕C
again with regular addition and scalar multiplication and multiplication

(x1, x2)(y1, y2) = (x1y1 − y2x
∗
2, x
∗
1y2 + y1x2) = (x1y1 − x̄2y2, x̄1y2 + x2y1)

Setting

1 = (1C, 0C) = 1W and i = (iC, 0C) and j = (0C, 1C)

we obtain

i2 = (iC, 0C)(iC, 0C) = (iCiC, 0C) = (−1C, 0C) = −(1C, 0C) = −1

j2 = (0C, 1C)(0C, 1C) = (−1̄C, 0C) = (−1C, 0C) = −(1C, 0C) = −1

and

ji = (0C, 1C)(iC, 0C) = (0C, iC) = −(0C,−iC) = −(iC, 0C)(0C, 1C) = −ij

Lemma 1.17 says that W is associative and setting k = ij we now obtain in the
same way as in step (6) of the proof of the theorem of Frobenius the defining
relations (1.1) of H

i2 = j2 = k2 = −1 ij = k = −ji jk = i = −kj ki = j = −ik

Together with R1 ⊆ Cen(W ) by lemma 1.5, W therefore shows itself to be
trivially isomorphic to H. The induced conjugation (x1, x2)∗ = (x̄1,−x2) is
moreover again no other than the regular conjugation on H.

Specifically note that we now proved that H is in fact associative, whereas we
previously only mentioned this being straightforward to verify. We also proved
that H is not commutative simply by for example ij = −ji but have a more
structured method available as well, which will moreover show why we cannot
expect to usefully continue this doubling process forever.

Let from this point on V be a unital ∗-algebra and W its Cayley-Dickson double.
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Lemma 1.20. We cannot have (x1, x2)∗ = (x1, x2) for all (x1, x2) ∈W .

Proof. (0V , 1V )∗ = (0V ,−1V ) = −(0V , 1V ) 6= (0V , 1V ).

Starting with the commutative and associative real unital ∗-algebra R with
trivial conjugation x∗ = x, the above lemma expresses the fact that in the first
step of the Cayley-Dickson process we lose the property of trivial conjugation
as indeed we know to be the case for C.

Lemma 1.21. If W is commutative then x∗ = x for all x ∈ V .

Proof. Let x ∈ V . (x∗, 0V ) = (0V , x)(0V ,−1V ) = (0V ,−1V )(0V , x) = (x, 0V ).

The above lemma reverses lemma 1.15 for unital ∗-algebras. Given that the first
step already lost trivial conjugation, we now know that after the second step we
lose commutativity and specifically that H is therefore indeed not commutative.

Lemma 1.22. If W is associative then V is commutative and associative.

Proof. Let x, y, z ∈ V .

(A4) (xy, 0V ) = (x, 0V )(y, 0V ) = [(0V , x
∗)(0V ,−1V )] (y, 0V )

= (0V , x
∗) [(0V ,−1V )(y, 0V )] = (0V , x

∗)(0V ,−y) = (yx, 0V )

(A5) ((xy)z, 0V ) = (xy, 0V )(z, 0V ) = [(x, 0V )(y, 0V )] (z, 0V )

= (x, 0V ) [(y, 0V )(z, 0V )] = (x, 0V )(yz, 0V ) = (x(yz), 0V )

Reversing lemma 1.17 for unital ∗-algebras, the above lemma now says that
having lost commutativity at the second step we lose associativity at the third so
that we know that the next algebra in the sequence can no longer be associative.

We will see shortly that it does remain a division algebra whereby the proved
theorem of Frobenius of course already implied as much. We will also see that
it is alternative, and that it is in fact the last division algebra in the sequence.

1.6 Octonions

We have up to now concentrated on associativity but recall that associativity
in fact played an only implicit role in the development of quaternions, with
availability of a multiplicative absolute value the guiding principle.

Let us therefore now firstly introduce a norm on these ∗-algebras. We will also
specialise to real algebras at this point.

Definition 1.23. A real ∗-algebra V is said to be nicely normed if it is unital
and

(N1) ∀x ∈ V x+ x∗ ∈ R1V
(N2) ∀x ∈ V, x 6= 0V xx∗ = x∗x ∈ R+1V

We define Re(x)1V := 1
2 (x+ x∗) and ‖x‖2 1V := xx∗ for x ∈ V .
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Remark 1.24. If V is nicely normed it is trivially verified that

〈x, y〉 = Re(xy∗)

is an inner product on V whereby ‖x‖ =
√
〈x, x〉 is in fact a norm.

Lemma 1.25. If V is nicely normed then ‖x∗‖ = ‖x‖ for all x ∈ V .

Proof. ‖x∗‖2 1V = x∗(x∗)∗ = x∗x = xx∗ = ‖x‖2 1V .

Lemma 1.26. If V is nicely normed then W is nicely normed.

Proof. W is unital with unit 1W = (1V , 0V ) by lemma 1.19. Let (x1, x2) ∈W .

(N1) (x1, x2) + (x1, x2)∗ = (x1, x2) + (x∗1,−x2) = (x1 + x∗1, 0V )

= (2 Re(x1)1V , 0V ) = 2 Re(x1)1W

(N2) (x1, x2)(x1, x2)∗ = (x1, x2)(x∗1,−x2) = (x1x
∗
1 + x2x

∗
2,−x∗1x2 + x∗1x2)

= (‖x1‖2 1V + ‖x2‖2 1V , 0V ) = (‖x1‖2 + ‖x2‖2)1W

Similarly (x1, x2)∗(x1, x2) = (‖x1‖2 +‖x2‖2)1W = (x1, x2)(x1, x2)∗. If moreover

(x1, x2) 6= (0V , 0V ) = 0W then at least one of ‖x1‖2 and ‖x2‖2 is positive

whereby ‖x1‖2 + ‖x2‖2 is positive.

Remark 1.27. Note that this also showed that ‖(x1, x2)‖2 = ‖x1‖2 + ‖x2‖2.

Lemma 1.28. If V is associative and nicely normed then W is alternative.

Proof. Let (x1, x2), (y1, y2) ∈W . As to the left alternative law we have

(A6) (x1, x2)[(x1, x2)(y1, y2)] = (x1, x2)(x1y1 − y2x
∗
2, x
∗
1y2 + y1x2)

= (x1(x1y1 − y2x
∗
2)− (x∗1y2 + y1x2)x∗2,

x∗1(x∗1y2 + y1x2) + (x1y1 − y2x
∗
2)x2)

= (x1x1y1 − x1y2x
∗
2 − x∗1y2x

∗
2 − y1x2x

∗
2,

x∗1x
∗
1y2 + x∗1y1x2 + x1y1x2 − y2x

∗
2x2)

= (x1x1y1 − (x1 + x∗1)y2x
∗
2 − y1x2x

∗
2,

x∗1x
∗
1y2 + (x∗1 + x1)y1x2 − y2x

∗
2x2)

= (x1x1y1 − 2 Re(x1)y2x
∗
2 − ‖x2‖2 y1,

x∗1x
∗
1y2 + 2 Re(x1)y1x2 − ‖x2‖2 y2)

= (x1x1y1 − y2x
∗
2(x1 + x∗1)− x2x

∗
2y1,

x∗1x
∗
1y2 + y1(x∗1 + x1)x2 − x2x

∗
2y2)

= (x1x1y1 − y2x
∗
2x1 − y2x

∗
2x
∗
1 − x2x

∗
2y1,

x∗1x
∗
1y2 + y1x

∗
1x2 + y1x1x2 − x2x

∗
2y2)

= ((x1x1 − x2x
∗
2)y1 − y2(x∗2x1 + x∗2x

∗
1),

(x∗1x
∗
1 − x2x

∗
2)y2 + y1(x∗1x2 + x1x2))

= (x1x1 − x2x
∗
2, x
∗
1x2 + x1x2)(y1, y2) = [(x1, x2)(x1, x2)](y1, y2)

and similarly as to the right alternative law.
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Lemma 1.29. If V is finite-dimensional, nicely normed and alternative then
V is a division algebra.

Proof. Lemma 1.8 says that we need to show that V is without zero divisors.
Let therefore x, y ∈ V , y 6= 0V and suppose that xy = 0V . Using the left
alternative law we obtain

‖x‖2 y = (x∗x)y = ((x+ x∗)x)y − (xx)y = 2 Re(x)(xy)− x(xy)

= 2 Re(x) · 0V − x · 0V = 0V

Taking the norm of both sides we have ‖x‖2 = 0R and therefore x = 0V , as it
was to prove.

R with trivial conjugation x∗ = x is clearly nicely normed with xx∗ = x∗x = x2

and ‖x‖ = |x| =
√
x2 whereby its entire sequence of Cayley-Dickson doubles

is nicely normed per the above. We are moreover now guaranteed yet another
division algebra in the sequence after H so let us pick things up where we left
off in the previous section.

That is, we let V = H be the nicely normed associative real unital ∗-algebra
with conjugation x∗ = x̄ and Cayley-Dickson double W = H ⊕ H with regular
addition and scalar multiplication and multiplication

(x1, x2)(y1, y2) = (x1y1 − y2x
∗
2, x
∗
1y2 + y1x2) = (x1y1 − y2x̄2, x̄1y2 + y1x2)

Setting

1 = i0 = (1H, 0H) = 1W i1 = (iH, 0H) i2 = (jH, 0H) i3 = (kH, 0H)

we add i4 = (0H, 1H) and complete a basis for the eight-dimensional W with

i5 = i1i4 = (iH, 0H)(0H, 1H) = (0H, ı̄H) = (0H,−iH) =−(0H, iH)

i6 = i2i4 = (jH, 0H)(0H, 1H) = (0H, ̄H) = (0H,−jH) =−(0H, jH)

i7 = i3i4 = (kH, 0H)(0H, 1H) = (0H, k̄H) = (0H,−kH) =−(0H, kH)

We briefly note that in the case of the quaternions writing k = ij caused

kH = iH · jH = (iC, 0C)(0C, 1C) = (0C, ı̄C) = (0C,−iC) = −(0C, iC)

in the same way that the minus signs in i5, i6 and i7 above are introduced.
Were we to simply reverse their definition we would forego the minus signs but
the current definitions best serve the algebraic notational style of writing for
example Ri versus iR. This is clearly otherwise irrelevant.

Straightforward direct calculations such as for example

i24 = (0H, 1H)(0H, 1H) = (−1H1̄H, 0H) = (−1H, 0H) = −(1H, 0H) = −1

i5i1 = −(0H, iH)(iH, 0H) = −(0H, iHiH) = −(0H,−1H) = (0H, 1H) = i4

provide us with the below multiplication table 1.2 for W which together with
R1 ⊆ Cen(W ) and distributivity lays down the rules of multiplication for this so
constructed eight-dimensional alternative real division algebra that has become
known as the space of octonions O.
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i1 i2 i3 i4 i5 i6 i7
i1 −1 i3 −i2 i5 −i4 −i7 i6
i2 −i3 −1 i1 i6 i7 −i4 −i5
i3 i2 −i1 −1 i7 −i6 i5 −i4
i4 −i5 −i6 −i7 −1 i1 i2 i3
i5 i4 −i7 i6 −i1 −1 −i3 i2
i6 i7 i4 −i5 −i2 i3 −1 −i1
i7 −i6 i5 i4 −i3 −i2 i1 −1

Table 1.2: Octonion multiplication

Analogously to C and H, the induced conjugation on O is given simply by

ō = a0 − a1i1 − a2i2 − a3i3 − a4i4 − a5i5 − a6i6 − a7i7

for an octonion o = a0 + a1i1 + a2i2 + a3i3 + a4i4 + a5i5 + a6i6 + a7i7 ∈ O.

It is these octonions, which he called octaves, that John Graves discovered in
December 1843 only two months after being told about the quaternions by
Hamilton. They were one of the first ever uses of the concept of nonassociativity
and are as such interesting from an historic viewpoint. Graves at the time
communicated their discovery back to Hamilton who offered to publish about
them but who, being absorbed by quaternions, kept putting it off until Arthur
Cayley rediscovered them in 1845.

Hamilton then tried to remedy the situation by announcing Graves’ priority but
it was already too late and the octaves became known as the Cayley numbers
instead. With Graves’ interest in algebra having put Hamilton on the path to
quaternions in the first place, it would have been a fitting tribute to this early
pioneer of abstract algebra had they beared his name. These days we call them
octonions by analogy with quaternions.

Nonassociativity of the octonions is easily directly verified by for example

(i1 · i2)i4 = i3 · i4 = i7 6= −i7 = i1 · i6 = i1(i2 · i4)

and we will at this point recap what we have done.

We have, assuming known no more than commutativity and associativity of R,
proved that R and C are commutative and associative real division algebras,
that H is a noncommutative associative real division algebra and that O is a
noncommutative nonassociative alternative real division algebra.

We have by the theorem of Frobenius seen that R, C and H are up to isomor-
phism the only finite-dimensional associative real division algebras and therefore
that R and C are up to isomorphism the only finite-dimensional commutative
and associative real division algebras. We will next be proving the generalised
theorem of Frobenius which says that R, C, H and O are up to isomorphism the
only finite-dimensional alternative real division algebras.

However, recall once more a multiplicative absolute value being the guiding
principle for the development of the quaternions and note that we have not yet
actually shown O to possess such an absolute value. We will do this now.
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Definition 1.30. A real ∗-algebra V is said to be absolute-valued if it is nicely
normed and, for all x, y ∈ V

‖xy‖ = ‖x‖ ‖y‖

We sometimes denote |x| = ‖x‖ in that case.

Lemma 1.31. If V is absolute-valued and associative then W is absolute-valued.

Proof. From section 6.5 of Kantor and Solodovnikov [11].

Let V be absolute-valued and associative and let (x1, x2), (y1, y2) ∈ W . We
have by remark 1.27 firstly

‖(x1, x2)‖2 ‖(y1, y2)‖2 = (‖x1‖2 + ‖x2‖2)(‖y1‖2 + ‖y2‖2)

and secondly

‖(x1, x2)(y1, y2)‖2 1V = ‖(x1y1 − y2x
∗
2, x
∗
1y2 + y1x2)‖2 1V

= (‖x1y1 − y2x
∗
2‖2 + ‖x∗1y2 + y1x2)‖2)1V

= (x1y1 − y2x
∗
2)(x1y1 − y2x

∗
2)∗ + (x∗1y2 + y1x2)(x∗1y2 + y1x2)∗

= (x1y1 − y2x
∗
2)(y∗1x

∗
1 − x2y

∗
2) + (x∗1y2 + y1x2)(y∗2x1 + x∗2y

∗
1)

= x1y1y
∗
1x
∗
1 − x1y1x2y

∗
2 − y2x

∗
2y
∗
1x
∗
1 + y2x

∗
2x2y

∗
2

+ x∗1y2y
∗
2x1 + x∗1y2x

∗
2y
∗
1 + y1x2y

∗
2x1 + y1x2x

∗
2y
∗
1)

= (‖x1y1‖2 + ‖y2x
∗
2‖2 + ‖x∗1y2‖2 + ‖y1x2‖2)1V

− x1y1x2y
∗
2 − y2x

∗
2y
∗
1x
∗
1 + x∗1y2x

∗
2y
∗
1 + y1x2y

∗
2x1

= (‖x1‖2 ‖y1‖2 + ‖y2‖2 ‖x∗2‖2 + ‖x∗1‖2 ‖y2‖2 + ‖y1‖2 ‖x2‖2)1V

− x1y1x2y
∗
2 − y2x

∗
2y
∗
1x
∗
1 + x∗1y2x

∗
2y
∗
1 + y1x2y

∗
2x1

= (‖x1‖2 ‖y1‖2 + ‖x2‖2 ‖y2‖2 + ‖x1‖2 ‖y2‖2 + ‖x2‖2 ‖y1‖2)1V

− x1y1x2y
∗
2 − y2x

∗
2y
∗
1x
∗
1 + x∗1y2x

∗
2y
∗
1 + y1x2y

∗
2x1

= (‖x1‖2 + ‖x2‖2)(‖y1‖2 + ‖y2‖2)1V

− x1y1x2y
∗
2 − y2x

∗
2y
∗
1x
∗
1 + x∗1y2x

∗
2y
∗
1 + y1x2y

∗
2x1

We therefore need to show x∗1y2x
∗
2y
∗
1 − x1y1x2y

∗
2 + y1x2y

∗
2x1 − y2x

∗
2y
∗
1x
∗
1 = 0V .

Assume x1 to have zero imaginary part, x1 = Re(x1)1V . Then x∗1 = x1 and

x∗1y2x
∗
2y
∗
1 − x1y1x2y

∗
2 + y1x2y

∗
2x1 − y2x

∗
2y
∗
1x
∗
1

= Re(x1)(y2x
∗
2y
∗
1 − y1x2y

∗
2 + y1x2y

∗
2 − y2x

∗
2y
∗
1) = Re(x1) · 0V = 0V

Next assume x1 to be purely imaginary, Re(x1) = 0R. Then x∗1 = −x1 and

x∗1y2x
∗
2y
∗
1 − x1y1x2y

∗
2 + y1x2y

∗
2x1 − y2x

∗
2y
∗
1x
∗
1

= −x1y2x
∗
2y
∗
1 − x1y1x2y

∗
2 + y1x2y

∗
2x1 + y2x

∗
2y
∗
1x1

= (y2x
∗
2y
∗
1 + y1x2y

∗
2)x1 − x1(y2x

∗
2y
∗
1 + y1x2y

∗
2)

= 2 Re(y2x
∗
2y
∗
1)x1 − 2 Re(y2x

∗
2y
∗
1)x1 = 0V

For a general x1 we write x1 = Re(x1)1V + (x1 − Re(x1)1V ) and use linearity
of the conjugate.
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R with trivial conjugation x∗ = x is clearly not only nicely normed but absolute-
valued with xx∗ = x∗x = x2 and ‖x‖ = |x| =

√
x2 and we therefore have now

shown R, C, H and O to all four be absolute valued alternative real division
algebras.

The next algebra in the sequence, called S for the algebra of sedenions, is no
longer a division algebra by introducing zero divisors. For example,

(i3, i2)(i6,−i7) = (i3 · i6 + i7 · i2, i3 · i7 + i6 · i2)

= (i5 − i5,−i4 + i4) = (0O, 0O) = 0S

Zero divisors clearly lay to rest any hope of a multiplicative and nondegenerate
absolute value and moreover, if a ∗-algebra V has zero divisors then so does its
Cayley-Dickson double W by, if xy = 0V for some x, y ∈ V , x 6= 0V , y 6= 0V

(x, 0V )(y, 0V ) = (xy, 0V ) = (0V , 0V ) = 0W

R, C, H and O are therefore the only division algebras in this otherwise infinite
sequence of doubles.

1.7 Alternativity

Before getting to the generalised theorem of Frobenius in the next section we
will need to quickly derive a few important results on alternativity for use in
the proof. Let D be any alternative real division algebra (therefore unital) and
denote 0 = 0D and 1 = 1D.

Definition 1.32 (Associator). We define for x, y, z ∈ D

A(x, y, z) = x(yz)− (xy)z

The associator is clearly R-linear in all three variables and identically zero if D
is associative.

Lemma 1.33 (Antisymmetry of the associator). For all x, y, z ∈ D

A(x, y, z) = −A(y, x, z) = −A(x, z, y)

Proof. By the left alternative law and linearity of the associator we obtain

0 = A(x+ y, x+ y, z)

= A(x, x, z) +A(x, y, z) +A(y, x, z) +A(y, y, z) = A(x, y, z) +A(y, x, z)

thereby proving the first equality. Similarly by the right alternative law

0 = A(x, y + z, y + z)

= A(x, y, y) +A(x, y, z) +A(x, z, y) +A(x, z, z) = A(x, y, z) +A(x, z, y)

thereby proving the second equality.

Corollary 1.34. A(x, y, z) = A(y, z, x) = A(z, x, y) = −A(z, y, x).
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Lemma 1.35 (The flexible law). For all x, y ∈ D

(xy)x = x(yx)

and we will denote this common value by xyx.

Proof. A(x, y, x) = −A(x, x, y) = 0.

Lemma 1.36 (Anticommutativity). If xy = −yx for x, y ∈ D then for all z ∈ D

x(yz) = −y(xz) and (zx)y = −(zy)x

Proof of left part. By A(x, y, z) = −A(y, x, z) and xy + yx = 0 we obtain

0 = A(x, y, z) +A(y, x, z) + (xy + yx)z

= x(yz)− (xy)z + y(xz)− (yx)z + (xy)z + (yx)z = x(yz) + y(xz)

Proof of right part. By A(z, x, y) = −A(z, y, x) and xy + yx = 0 we obtain

0 = A(z, x, y) +A(z, y, x)− z(xy + yx)

= z(xy)− (zx)y + z(yx)− (zy)x− z(xy)− z(yx) = −(zx)y − (zy)x

Lemma 1.37 (The Moufang identities). For all x, y, z ∈ D

z(x(zy)) = (zxz)y (zx)(yz) = z(xy)z ((xz)y)z = x(zyz)

Proof.

We will prove all three identities, respectively called the left, middle and right
Moufang identity, if only because it makes for a somewhat more memorably
structured proof but will use the middle one only, when it will be referred to
simply as the Moufang identity or even just Moufang.

Proof of left Moufang identity.

z(x(zy))− (zxz)y = z(x(zy))− (zx)(zy) + (zx)(zy)− (zxz)y

= A(z, x, zy) +A(zx, z, y) = A(z, x, zy) +A(z, y, zx)

Let T (x, y, z) = A(z, x, zy) +A(z, y, zx). Then T (y, x, z) = T (x, y, z) and

T (x, x, z) = 2A(z, x, zx) = −2A(z, zx, x) = −2[z((zx)x)− (z(zx))x]

= −2[z(z(xx))− ((zz)x)x] = −2[(zz)(xx)− (zz)(xx)] = 0

for all x, y, z ∈ D by both left and right alternative laws. T moreover inherits
linearity from A so that

0 = T (x+ y, x+ y, z)

= T (x, x, z) + T (x, y, z) + T (y, x, z) + T (y, y, z) = 2T (x, y, z)

and thereby z(x(zy))− (zxz)y = T (x, y, z) = 0 as it was to show.
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Proof of middle Moufang identity.

(zx)(yz)− z(xy)z = z(x(yz))− z(xy)z − z(x(yz)) + (zx)(yz)

= zA(x, y, z)−A(z, x, yz)

= zA(y, z, x) +A(z, yz, x)

= z[y(zx)− (yz)x] + z((yz)x)− (zyz)x

= z(y(zx))− (zyz)x = 0

in which the last step is the left Moufang identity with the roles of x and y
reversed.

Proof of right Moufang identity.

((xz)y)z − x(zyz) = ((xz)y)z − (x(zy))z + (x(zy))z − x(zyz)

= −A(x, z, y)z −A(x, zy, z)

= −A(z, y, x)z +A(zy, x, z)

= −[z(yx)− (zy)x]z + (zy)(xz)− ((zy)x)z

= (zy)(xz)− z(yx)z = 0

in which the last step is the middle Moufang identity, again with the roles of x
and y reversed.

Remark 1.38. Note that while we proved that alternativity implies the
Moufang identities above, the left and right Moufang identities

z(x(zy)) = (zxz)y and ((xz)y)z = x(zyz)

conversely imply in any unital algebra V the left and right alternative laws

z(zy) = (zz)y and (xz)z = x(zz)

by simply taking x = 1V in the left case and y = 1V in the right.

Lemma 1.39 (Powerassociativity). Defining inductively x1 = x, xn+1 = xnx
for n ≥ 1 we have for all x ∈ D and m ≥ 1, n ≥ 1

xmxn = xm+n

Proof. We firstly prove, by induction on n, xxn = xn+1 for all n ≥ 1.

For n = 1 we have xx1 = xx = x1x = x2 = x1+1 and for the induction step,

xxn+1 = x(xnx) = (xxn)x = xn+1x = xn+2

by respectively definition, the flexible law, the induction hypothesis and defini-
tion again, as it was required to show.

Now proving the lemma by induction on m, the base case m = 1 is exactly the
foregoing. In the induction step, for n = 1 the result is true by definition and
for n > 1 we have

xm+1xn = (xxm)xn = (xxm)(xn−1x) = x(xmxn−1)x

= xxm+n−1x = xxm+n = xm+n+1

by respectively the foregoing, definition, Moufang, induction hypothesis, defini-
tion and lastly the foregoing again, as it was required to show.
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1.8 Generalised Frobenius

We are now ready for the proof of the generalised theorem of Frobenius, generally
attributed to Max Zorn.

Theorem 1.40 (Generalised Frobenius). If D is a finite-dimensional alternative
real division algebra, then it is isomorphic to R, C, H or O.

Proof. As mentioned at the time we have in fact already presented the first
part of this proof as the proof of the original theorem of Frobenius. Since O
is not associative we could of course have presented the original theorem as
an immediate corollary to this more general theorem as well but thought it
useful to present the first part of the proof without needing to worry about
nonassociativity. We will revisit it now so as to make sure it still works in the
alternative context. We will not fully repeat it here but ask the reader to refer
to it while we comment.

D is still unital by being alternative and without zero divisors by being a division
algebra. The notational identification of R with R is also still in effect.

(1) If x ∈ D then x2 ∈ R+Rx.

Proof. The powers of x remain well-defined by powerassociativity of D and
while the polynomial product should now be written out using brackets, nothing
changes in the conclusion which only needs that D is without zero divisors.

(2) If D 6= R then there exists an element i ∈ D such that i2 = −1.

Proof. Step (2) does not feature an issue of associativity.

(3) C = {x ∈ D |xi = ix} is isomorphic to C.

Proof. Step (3) does not feature an issue of associativity.

(4) D = C ⊕ C− in which C− = {x ∈ D |xi = −ix}.

Proof. We are justified in writing and manipulating ixi by the flexible law.

(5) If D 6= C then there exists an element j ∈ C− such that j2 = −1.

Proof. In the expression for x2i we see the left and right alternative laws and
the flexible law featured.

(6) C + Cj is isomorphic to H.

Proof. In the expression for k2 we see Moufang and in the others the left and
right alternative laws and flexible law featured.

The final step of the former proof explicitly featured associativity and will now
be replaced by the first step of the second half of the proof.
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(7) H = C ⊕ (C− ∩H) in which H = {x ∈ D |xk = (xi)j}.

Proof. We adjust subproof (4) by now considering T to be a linear transforma-
tion from H to H instead of from D to D.

That is, consider the linear transformation T : H → H, x 7→ ixi. Since C + Cj
is according to (6) isomorphic to H, we have C ⊆ C + Cj ⊆ H. Therefore

C = C ∩H = {x ∈ H |xi = ix} = {x ∈ H | ixi = −x} = {x ∈ H |T (x) = −x}

meaning that C still shows itself to be the eigenspace of T belonging to the
eigenvalue −1. Together with

C− ∩H = {x ∈ H |xi = −ix} = {x ∈ H | ixi = x} = {x ∈ H |T (x) = x}

the conclusion H = C ⊕ (C− ∩H) therefore follows in the same manner as in
subproof (4). It however remains to show that T is in fact well-defined, which
is to say that we need to show T (H) ⊆ H.

Let to this end y ∈ T (H), say y = T (x) = ixi for x ∈ H. We firstly obtain

yk = (ixi)k = −((ix)k)i = ((ix)(−k))i = ((ix)(ji))i = (i(xj)i)i = −i(xj)

by anticommutativity of i and k for the first equality and respectively Moufang
and alternativity for the last two. By alternativity only

(yi)j = ((ixi)i)j = −(ix)j

By definition of H and antisymmetry of the associator, for any x ∈ H

0 = A(x, i, j) = −A(i, x, j) = −i(xj) + (ix)j (1.11)

so that yk = −i(xj) = −(ix)j = (yi)j and therefore y ∈ H as it was to show.

(8) H = C + Cj.

Proof. We already noted in subproof (7) above that C + Cj ⊆ H so that it
remains to show that H ⊆ C+Cj. Since H = C+ (C− ∩H) by (7) it moreover
suffices to show that C− ∩H ⊆ Cj.
Let to this end y ∈ C− ∩H and x = −yj. Then x ∈ C since

xi = −(yj)i = (yi)j = −(iy)j = −i(yj) = ix

by respectively definition of x, anticommutativity of j and i, y ∈ C−, y ∈ H
together with (1.11) above, and lastly again definition of x. We furthermore
have

xj = −(yj)j = y

by definition of x and alternativity and therefore y ∈ Cj as it was to show.
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(9) D = H ⊕H− in which H− = {x ∈ D |xk = −(xi)j}.

Proof. Consider similarly to subproof (4) the linear transformation T : D→ D,
x 7→ ((xi)j)k and note that

H = {x ∈ D |xk = (xi)j} = {x ∈ D |x = −((xi)j)k} = {x ∈ D |T (x) = −x}

and

H− = {x ∈ D |xk = −(xi)j} = {x ∈ D |x = ((xi)j)k} = {x ∈ D |T (x) = x}

By a series of invocations of anticommutativity and alternativity we see

T 2(x) = T (((xi)j)k) = (((((xi)j)k)i)j)k = −(((((xi)j)k)i)k)j

= (((((xi)j)k)k)i)j = −(((xi)j)i)j = (((xi)j)j)i = −(xi)i = x

so that again T 2 = I and D = H⊕H− in the same manner as in subproof (4).

The next point functions as a lemma for the remaining three points.

(10) If x ∈ H− then x anticommutes with i, j and k.

Proof. Let x ∈ H−. Right-multiplying xk = −(xi)j by −k we have x = ((xi)j)k
and therefore

kx = k((xi)j)k = (k(xi))(jk) = (k(xi))i = ((ij)(xi))i = (i(jx)i)i = −i(jx)

by Moufang and alternativity. By antisymmetry of the associator therefore

kx = −1

2
A(i, j, x) = −1

2
A(x, i, j) = −1

2
(xk − (xi)j) = −xk

Similarly, from x = ((xi)j)k = −((xi)k)j we obtain xj = (xi)k and

jx = −j((xi)k)j = −(j(xi))(kj) = (j(xi))i

= −((ik)(xi))i = −(i(kx)i)i = i(kx)

by Moufang and alternativity and thereby

jx =
1

2
A(i, k, x) =

1

2
A(x, i, k) =

1

2
(−xj − (xi)k) = −xj

Lastly by i = jk, anticommutativity of k and x, j and x, j and k, definition of
H− and alternativity

ix = (jk)x = −(jx)k = (xj)k = −(xk)j = ((xi)j)j = −xi
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(11) If D 6= H then there exists an element l ∈ H− such that l2 = −1.

Proof. If D = H ⊕H− 6= H then H− 6= {0} meaning there exists an x ∈ H−,
x 6= 0. By (10) H− ⊆ C− so that we can simply repeat subproof (5).

That is, using alternativity, xi = −ix and flexibility we obtain

x2i = (xx)i = x(xi) = −x(ix) = −(xi)x = (ix)x = i(xx) = ix2

However, by (1) we have x2 ∈ R+Rx, say x2 = a+ bx for a, b ∈ R, so also

x2i = (a+ bx)i = ai+ bxi = ai− bix = ix2 − 2bix

Comparing and using x 6= 0 we see b = 0 and thereby x2 = a ∈ R. Moreover,
since a ≥ 0 would imply x =

√
a ∈ R and thereby x ∈ R ∩H− = {0}, we must

have a < 0. H− is closed under scalar multiplication as a subspace and setting

l =
1√−a x ∈ H

−

we obtain l2 = −1.

Assume from this point on that D 6= H and l ∈ H− is such that l2 = −1.

(12) H +Hl is isomorphic to O.

Proof. We set i0 = 1, i1 = i, i2 = j, i3 = k, i4 = l, i5 = il, i6 = jl and i7 = kl.

Straightforward calculations using anticommutativity, alternativity and Mo-
ufang such as

i5i1 = (il)i = −(li)i = l = i4

i5i5 = (il)(il) = −(li)(il) = −li2l = l2 = −1

now again provide us with the defining set of relations for the octonions as
collected in table 1.2, whereby

H +Hl = C + Cj + (C + Cj)l

= R+Ri+ (R+Ri)j + (R+Ri+ (R+Ri)j)l

= R+Ri+Rj +Rk + (R+Ri+Rj +Rk)l

= R+Ri1 +Ri2 +Ri3 +Ri4 +Ri5 +Ri6 +Ri7

is trivially isomorphic to O.
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(13) D = H +Hl.

Proof. Clearly H+Hl ⊆ D and we need to show D ⊆ H+Hl. Since D = H+H−

by (9) it moreover suffices to show that H− ⊆ Hl.
Let to this end y ∈ H− and x = −yl. Then x ∈ H since

xk = −(yl)k = (yk)l = −((yi)j)l = ((yi)l)j = −((yl)i)j = (xi)j

by respectively definition of x, anticommutativity of l and k, y ∈ H−, anticom-
mutativity of j and l, of i and l and lastly definition of x again. We furthermore
have

xl = −(yl)l = y

by definition of x and alternativity and therefore y ∈ Hl at is was to show.

As before, we now only need to gather up these arguments to end the proof.

Specifically, if D is a finite-dimensional alternative real division algebra it could
firstly be R and thereby trivially isomorphic to R. If it is not R then it can by
(4) be C which is isomorphic to C by (2) and (3). If it is also not C then it can
by (9) be H which is isomorphic to H by (5), (6), (7) and (8). Finally, if it also
not H then it is by (13) H +Hl which by (10), (11) and (12) is isomorphic to
O, ending the proof.

1.9 Hurwitz and sums of squares

While we haven’t mentioned it up to now, the history of especially the octonions
is intertwined with a somewhat more number-theoretical sounding problem.

Note that with the absolute value on R, C, H and O no other than the regular
Euclidean norm on R, R2, R4 and R8 respectively, the squared form of the
fundamental relation |xy| = |x| |y| is

〈xy, xy〉 = 〈x, x〉〈y, y〉

for the regular Euclidean inner product 〈x, y〉 =
∑n
i=1 xiyi. If we set z = xy we

therefore obtain a relation of the form(
n∑
i=1

x2
i

)(
n∑
i=1

y2
i

)
=

n∑
i=1

z2
i

which expresses that the product of two sums of n squares is again a sum of n
squares, here for n = 1, 2, 4 and 8, and it was in the context of looking for a
relation of this type for 8 squares that Arthur Cayley rediscovered the octonions
in 1845.

As it turns out, this number-theoretical subject and alternative division algebras
are not just related but very intimately related.
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Definition 1.41. A normed algebra V is a real algebra V for which an inner
product exists such that 〈xy, xy〉 = 〈x, x〉〈y, y〉 for all x, y ∈ V . We define the
norm on V by ‖x‖ =

√
〈x, x〉.

While this is the usual definition, the reader is cautioned that terminology is
not completely stable across authors, with some preferring to call these algebras
absolute-valued instead.

We ourselves have previously used the adjective absolute-valued for a nicely
normed (and therefore unital by definition) real ∗-algebra with multiplicative
norm and have remarked by way of remark 1.24 that the norm on any nicely
normed algebra derives from an inner product

〈x, y〉 = Re(xy∗)

An absolute-valued algebra is therefore clearly a normed algebra through

〈xy, xy〉 = |xy|2 = (|x| |y|)2 = |x|2 |y|2 = 〈x, x〉〈y, y〉

Specifically R, C, H and O are normed algebras, and a theorem of Hurwitz that
we will now be proving as a corollary to the generalised theorem of Frobenius
says that they are up to isomorphism also the only finite-dimensional normed
unital algebras.

Lemma 1.42. A finite-dimensional normed algebra V 6= {0V } is a division
algebra.

Proof. Let x, y ∈ V , y 6= 0V . If xy = 0V then 〈x, x〉〈y, y〉 = 〈xy, xy〉 = 0. Since
〈y, y〉 6= 0 we must have 〈x, x〉 = 0 meaning x = 0V . It follows that V is without
zero divisors and therefore that it is a division algebra by lemma 1.8.

Lemma 1.43. A normed unital algebra is alternative.

Proof. From section 10.1 of Ebbinghaus et al. [12].

If in the primary relation for a normed algebra V , for all x, y ∈ V

〈xy, xy〉 = 〈x, x〉〈y, y〉

we replace x by x + x′ we obtain using bilinearity and symmetry of the inner
product

〈(x+ x′)y, (x+ x′)y〉 = 〈x+ x′, x+ x′〉〈y, y〉
= [〈x, x〉+ 2〈x, x′〉+ 〈x′, x′〉] 〈y, y〉
= 〈xy, xy〉+ 2〈x, x′〉〈y, y〉+ 〈x′y, x′y〉

whereas using bilinearity and symmetry only we have

〈(x+ x′)y, (x+ x′)y〉 = 〈xy + x′y, xy + x′y〉
= 〈xy, xy〉+ 2〈xy, x′y〉+ 〈x′y, x′y〉

Comparing, we see that 〈xy, x′y〉 = 〈x, x′〉〈y, y〉 for all x, x′, y ∈ V .
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If in this result we now replace y with y + y′ we obtain similarly first

〈x(y + y′), x′(y + y′)〉 = 〈x, x′〉〈y + y′, y + y′〉
= 〈x, x′〉 [〈y, y〉+ 2〈y, y′〉+ 〈y′, y′〉]
= 〈xy, x′y〉+ 2〈x, x′〉〈y, y′〉+ 〈xy′, x′y′〉

and then second

〈x(y + y′), x′(y + y′)〉 = 〈xy + xy′, x′y + x′y′〉
= 〈xy, x′y〉+ 〈xy, x′y′〉+ 〈xy′, x′y〉+ 〈xy′, x′y′〉

so that 〈xy, x′y′〉+ 〈xy′, x′y〉 = 2〈x, x′〉〈y, y′〉 for all x, x′, y, y′ ∈ V .

Setting first x′ = x, y′ = z and second x′ = z, y′ = y we get, for all x, y, z ∈ V

〈xy, xz〉 = 〈x, x〉〈y, z〉 (1.12)

〈xy, zy〉 = 〈x, z〉〈y, y〉 (1.13)

whereas setting third x′ = 1V , y′ = z and fourth x′ = z, y′ = 1V we obtain

〈xy, z〉+ 〈xz, y〉 = 2〈x, 1V 〉〈y, z〉 (1.14)

〈xy, z〉+ 〈x, zy〉 = 2〈y, 1V 〉〈x, z〉 (1.15)

If in (1.14) we replace y by xy and in (1.15) x by xy and use (1.12) and (1.13)
respectively we obtain

〈x(xy), z〉+ 〈x, x〉〈y, z〉 = 2〈x, 1V 〉〈xy, z〉
〈(xy)y, z〉+ 〈x, z〉〈y, y〉 = 2〈y, 1V 〉〈xy, z〉

Rearranging using bilinearity and symmetry we therefore have, for all x, y, z ∈ V

〈x(xy) + 〈x, x〉y − 2〈x, 1V 〉xy, z〉 = 0

〈(xy)y + 〈y, y〉x− 2〈y, 1V 〉xy, z〉 = 0

and therefore by nondegeneracy, for all x, y ∈ V

x(xy) = 2〈x, 1V 〉xy − 〈x, x〉y and (xy)y = 2〈y, 1V 〉xy − 〈y, y〉x (1.16)

Setting y = 1V in the first of these and x = 1V in the second therefore

xx = 2〈x, 1V 〉x− 〈x, x〉 and yy = 2〈y, 1V 〉y − 〈y, y〉 (1.17)

and right multiplying by y respectively left multiplying by x therefore also

(xx)y = 2〈x, 1V 〉xy − 〈x, x〉y and x(yy) = 2〈y, 1V 〉xy − 〈y, y〉x (1.18)

Comparing (1.16) and (1.18) we see the left and right alternative laws emerge,
as it was to show.

Theorem 1.44 (Hurwitz). If D is a finite-dimensional normed unital algebra,
then it is isomorphic to R, C, H or O.

Proof. D is a finite-dimensional alternative real division algebra by the above
two lemmas so that this is now an immediate corollary to the generalised theo-
rem of Frobenius.
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Now, returning to the problem of the sums of squares, let us first make things a
bit more precise3. Suppose the objective is to find all values n for which there
exists a bilinear form

Φ = (Φ1, . . . ,Φn) : Rn × Rn → Rn

such that for all x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , yn) ∈ Rn(
n∑
i=1

x2
i

)(
n∑
i=1

y2
i

)
=

n∑
i=1

Φ2
i (x, y)

We already know n = 1, 2, 4 and 8 to qualify by letting Φ(x, y) = xy be the
multiplication on R, C, H and O respectively.

Now suppose we have a (finite) value n and bilinear form Φ. Let V be the real
vector space V =

⊕n
i=1 R together with multiplication xy = Φ(x, y). Trivially

(A1) x(y + z) = Φ(x, y + z) = Φ(x, y) + Φ(x, z) = xy + xz

(A2) (x+ y)z = Φ(x+ y, z) = Φ(x, z) + Φ(y, z) = xz + yz

(A3) (ax)(by) = Φ(ax, by) = (ab)Φ(x, y) = (ab)(xy)

whereby V is a real algebra. It is moreover a normed algebra under the usual
inner product 〈x, y〉 =

∑n
i=1 xiyi by

〈xy, xy〉 = 〈Φ(x, y),Φ(x, y)〉 =

n∑
i=1

Φ2
i (x, y) =

(
n∑
i=1

x2
i

)(
n∑
i=1

y2
i

)
= 〈x, x〉〈y, y〉

If V were necessarily unital we could now by the theorem of Hurwitz conclude
that V is isomorphic to R, C, H or O and specifically that n = dim(V ) can
be only 1, 2, 4 or 8, but V is not in fact necessarily unital with respect to this
multiplication xy = Φ(x, y). The same conclusion still holds, however.

To see this, let y ∈ V , y 6= 0V and u = ‖y‖−1
y and define linear transformations

L : V → V, x 7→ ux and R : V → V, x 7→ xu

L and R are norm preserving by ‖L(x)‖ = ‖ux‖ = ‖u‖ ‖x‖ = ‖x‖ and similarly
for R. Any norm preserving linear transformation T : V → V is invertible by

T (x) = 0V ⇐⇒ ‖T (x)‖ = 0 ⇐⇒ ‖x‖ = 0 ⇐⇒ x = 0V

so that T is injective and as a linear transformation from a finite-dimensional
linear space to itself therefore bijective. T−1 is moreover norm preserving by∥∥T−1(x)

∥∥ =
∥∥T (T−1(x))

∥∥ = ‖x‖

Now define a new multiplication on V in terms of the old multiplication by

x ◦ y = R−1(x)L−1(y)

3We proceed along the lines of section 18.2 of Kantor and Solodovnikov [11].
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It is once again trivially verified that V is a real algebra also with the new
multiplication by

(A1) x ◦ (y + z) = R−1(x)L−1(y + z) = R−1(x)
[
L−1(y) + L−1(z)

]
= R−1(x)L−1(y) +R−1(x)L−1(z) = x ◦ y + x ◦ z

(A2) (x+ y) ◦ z = R−1(x+ y)L−1(z) =
[
R−1(x) +R−1(y)

]
L−1(z)

= R−1(x)L−1(z) +R−1(y)L−1(z) = x ◦ z + y ◦ z

(A3) (ax) ◦ (by) = R−1(ax)L−1(by) = (ab)R−1(x)L−1(y) = (ab)(x ◦ y)

and that it is a normed algebra under the same inner product by

〈x ◦ y, x ◦ y〉 = ‖x ◦ y‖2 =
∥∥R−1(x)L−1(y)

∥∥2

=
∥∥R−1(x)

∥∥2 ∥∥L−1(y)
∥∥2

= ‖x‖2 ‖y‖2 = 〈x, x〉〈y, y〉
It is therefore also a division algebra and we claim V to be unital with respect
to the new multiplication with unit u2. We have after all

uL−1(u2) = L(L−1(u2)) = u2 and R−1(u2)u = R(R−1(u2)) = u2

so that both L−1(u2) = u and R−1(u2) = u by unicity and thereby

(A7) u2 ◦ x = R−1(u2)L−1(x) = uL−1(x) = L(L−1(x)) = x and

x ◦ u2 = R−1(x)L−1(u2) = R−1(x)u = R(R−1(x)) = x

as it was to show.

It follows that to any finite-dimensional normed algebra V there corresponds a
normed unital algebra of the same dimension so that still n = dim(V ) can be
only 1, 2, 4 or 8 by the theorem of Hurwitz, confirming the promised intimate
relation between the problem of the sums of squares and the only four finite-
dimensional alternative real division algebras R, C, H and O.

Note lastly that although no one-dimensional normed nonunital algebra exists
we can by starting with the normed unital algebra V = C, H or O easily
construct a normed nonunital algebra by equipping it with for example the
multiplication

x ◦ y = xȳ

It is again trivially verified that V with this new multiplication and regular
absolute value is a normed algebra. It is not unital since if e ◦ x = x = x ◦ e for
an element e ∈ V and all x ∈ V then for all x ∈ V

x = e ◦ x = x ◦ e = x̄

which is definitely not the case. That is, normed nonunital algebras do in fact
exist and we can as such not leave out the word unital from the formulation of
the theorem of Hurwitz.

In the context of the problem of the sums of squares this means that although
the problem was proved to be solveable only for n = 1, 2, 4 and 8 the solution
for n = 2, 4 and 8 in terms of the regular multiplication on C, H and O is not
unique.
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1.10 Finite-dimensional

The reader will have noticed the specification of finite-dimensionality in the
theorems of Frobenius and Hurwitz and while finite-dimensional algebras are
all that we are personally interested in given the context of an analogue of
complex numbers and, perhaps, complex analysis we should in closing remark
on the significance, or rather insignificance, of the phrase.

We have used finite-dimensionality in the first step of the proof of the theorems
of Frobenius and here and there in the equivalence of being a finite-dimensional
division algebra and being without zero divisors. As it turns out, it is not
fundamentally significant though and an advanced result proved independently
by Rauol Bott and John Milnor [8] and Michel Kervaire [9] in 1958 enables
dropping finite-dimensionality from these theorems all together.

Theorem 1.45 (Bott-Milnor-Kervaire). A real division algebra can have di-
mension 1, 2, 4 or 8 only.

Generally called the (1, 2, 4, 8)-Theorem, this result to date resists a purely
algebraic proof and is obtained instead as a corollary to a topological property
called the parallelizability of the n-sphere.

Although we will not further belabour the point, we note that it is strictly
speaking really also only at this point that a remark in the introduction to this
chapter that a three-dimensional real division algebra does not exist has been
substantiated.

What we have proved rigorously in this first chapter is that R, C, H and O are up
to isomorphism the only finite-dimensional alternative (or normed and unital)
real division algebras. In the next chapter we will come to further appreciate
the importance of alternativity.
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Chapter 2

Beyond complex analysis

2.1 Introduction

While the previous chapter showed that real division algebras such as R and
C are quite exceptional, we have of course two more of them in H and O and
with the original goal in all of this having been not only an analogue of complex
numbers but explicitly also of complex analysis we may therefore still entertain
a notion of a quaternionic or even octonionic analysis. We will however in this
chapter find either to be an only marginally viable concept.

In constructing any sort of analogue of real and complex analysis, having avail-
able the concept of differentiability would seem to be the first order of business
and given its definition in both the real and complex case in terms of existence
of a limit

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

we will first of all want to take a look at this concept of limit. We let in this
chapter D stand for either R, C, H or O and consider the identification of R
with R1D to be implicit.

2.2 Limits and continuity

Recall from real analysis that for D ⊆ R an open interval, ξ ∈ D, f : D → R a
real-valued function of a real variable and y ∈ R we take the symbolism

lim
x→ξ

f(x) = y

to mean that for all ε ∈ R, ε > 0 there exists a δ ∈ R, δ > 0 such that

x ∈ D, 0 < |x− ξ| < δ =⇒ |f(x)− y| < ε

whereas we call limx→ξ f(x) non-existent if no such y ∈ R exists.
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The same symbolism features unchanged in complex analysis for a domain (a
non-empty, open, connected set) D ⊆ C, f : D → C a complex-valued function
of a complex variable and a value y ∈ C as long as we understand that | · | then
signifies the complex modulus, and we desire to extend this concept of limit to
a quaternion-valued function of a quaternionic variable and an octonion-valued
function of an octonionic variable as well.

We already have available a well-behaved quaternionic and octonionic modulus
(by design, as we’ve seen in the previous chapter) and can therefore simply
adopt the concept unchanged as we do in the complex case but our first stop
will need to be reviewing the proof of the following foundational theorem for
issues of commutativity and associativity.

Theorem 2.1. Let ξ ∈ D and f, g : D → D be functions such that

lim
x→ξ

f(x) = y and lim
x→ξ

g(x) = z

for certain y, z ∈ D. Then we have

(i) lim
x→ξ

(f(x) + g(x)) = y + z (ii) lim
x→ξ

(f(x)g(x)) = yz

(iii) lim
x→ξ

(g(x)−1f(x)) = z−1y (iv) lim
x→ξ

(f(x)g(x)−1) = yz−1

provided, in cases (iii) and (iv), that z 6= 0.

Proof of (i). We write

f(x) + g(x)− (y + z) = (f(x)− y) + (g(x)− z) (2.1)

Let ε > 0 be given and δ1 > 0 and δ2 > 0 be such that

x ∈ D, 0 < |x− ξ| < δ1 =⇒ |f(x)− y| < ε/2 and (2.2)

x ∈ D, 0 < |x− ξ| < δ2 =⇒ |g(x)− z| < ε/2 (2.3)

Then for x ∈ D, 0 < |x− ξ| < δ = min(δ1, δ2) we have

|f(x) + g(x)− (y + z)| = |(f(x)− y) + (g(x)− z)|
≤ |f(x)− y|+ |g(x)− z| < ε/2 + ε/2 = ε

Proof of (ii). Using commutativity with −1 ∈ R only we write

f(x)g(x)− yz = f(x)(g(x)− z) + (f(x)− y)z. (2.4)

Let δ1 > 0 be such that

x ∈ D, 0 < |x− ξ| < δ1 =⇒ |f(x)− y| < 1

Since |f(x)| = |f(x)− y + y| ≤ |f(x)− y|+ |y| we then also have

x ∈ D, 0 < |x− ξ| < δ1 =⇒ |f(x)| < 1 + |y| (2.5)

Let ε > 0 be given, δ2 > 0 be such that

x ∈ D, 0 < |x− ξ| < δ2 =⇒ |g(x)− z| < ε

2(1 + |y|) (2.6)
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and δ3 > 0 be such that, allowing for z = 0 through a random δ3 > 0,

x ∈ D, 0 < |x− ξ| < δ3 =⇒ |f(x)− y| |z| < ε

2
(2.7)

Then for x ∈ D, 0 < |x− ξ| < δ = min(δ1, δ2, δ3) we have

|f(x)g(x)− yz| = |f(x)(g(x)− z) + (f(x)− y)z|
≤ |f(x)| |g(x)− z|+ |f(x)− y| |z| < (1 + |y|) ε

2(1 + |y|) +
ε

2
= ε

These standard proofs of the first and second statements, then, show themselves
to be unexcitingly generic but the standard proof of the third and fourth state-
ments does in fact require slight vigilance. Before continuing we will therefore
now first state a basic result on behalf of the octonionic case.

Lemma 2.2. The left and right alternative laws satisfied by all x, y ∈ D

x(xy) = (xx)y and (xy)y = x(yy) (2.8)

are equivalent to, respectively, the left and right cancellation laws

x−1(xy) = y and (xy)y−1 = x (2.9)

for x, y ∈ D, x 6= 0 respectively y 6= 0.

Proof. We will prove that the alternative laws (2.8) are equivalent to

x̄(xy) = |x|2 y and (xy)ȳ = x |y|2 (2.10)

after which setting x−1 = |x|−2
x̄ for x 6= 0 respectively y−1 = ȳ |y|−2

for y 6= 0
and observing that (2.8) is automatically satisfied when either x = 0 or y = 0
proves the lemma.

Proof of left part. Setting λ = 2 Rex = x+ x̄ ∈ R we write

x̄(xy) = (λ− x)(xy) = λ(xy)− x(xy) = (λx)y − x(xy) (2.11)

whereas on the other hand we have

|x|2 y = (x̄x)y = ((λ− x)x)y = (λx− xx)y = (λx)y − (xx)y (2.12)

Assuming the left part of (2.8) we make equal the right-hand sides of these
thereby proving the left part of (2.10) and conversely assuming the left part of
(2.10) we make equal the left-hand sides thereby proving the left part of (2.8).

Proof of right part. Analogous by setting λ = 2 Re y = y + ȳ ∈ R.

Armed with this lemma we will now continue the proof of Theorem 2.1.

Proof of (iii) and (iv). We will in fact prove the special case statement

lim
x→ξ

g(x)−1 = z−1 (2.13)

after which the second statement proves both the third and fourth.
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Proof of special case statement. Using our just proved lemma in the first step
and commutativity with −1 ∈ R in the third we write

g(x)−1 − z−1 =
[
g(x)−1z

]
z−1 − z−1

=
[
g(x)−1z − 1

]
z−1 =

[
g(x)−1(z − g(x))

]
z−1

(2.14)

Noting that we are assuming z 6= 0, we can let δ1 > 0 be such that

x ∈ D, 0 < |x− ξ| < δ1 =⇒ |g(x)− z| < |z|
2

Since |g(x)| ≤ |z|2 would lead to the impossible inequality

|z| = |z − g(x) + g(x)| ≤ |z − g(x)|+ |g(x)| < |z|
2

+
|z|
2

= |z|

it follows that we then have |g(x)| > |z|
2 and therefore

x ∈ D, 0 < |x− ξ| < δ1 =⇒ 1

|g(x)| <
2

|z| (2.15)

Now let ε > 0 be given and δ2 > 0 be such that

x ∈ D, 0 < |x− ξ| < δ2 =⇒ |g(x)− z| < |z|
2
ε

2
(2.16)

Then for x ∈ D, 0 < |x− ξ| < δ = min(δ1, δ2) we have∣∣g(x)−1 − z−1
∣∣ =

∣∣g(x)−1(z − g(x))
∣∣ ∣∣z−1

∣∣ =
∣∣g(x)−1

∣∣ |z − g(x)|
∣∣z−1

∣∣
=

1

|g(x)| |g(x)− z| 1

|z| <
2

|z|
|z|2 ε

2

1

|z| = ε

proving the special case statement (2.13) and thereby the third and fourth
statements of Theorem 2.1.

Corollary 2.3. Let ξ ∈ D and f : D → D be a function such that

lim
x→ξ

f(x) = y

for a certain y ∈ D. Then for any c ∈ D we have

lim
x→ξ

cf(x) = cy and lim
x→ξ

f(x)c = yc

In particular limx→ξ −f(x) = −y.

Proof. Follows directly from the second statement of Theorem 2.1 by noting
that a constant function f : D → D, x 7→ c has limx→ξ f(x) = c.

Alternativity has thus equipped us with a functional limit and, same as in
the real case, we therefore immediately get the important analytic concept of
continuity for free.
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Definition 2.4. A function f : D → D is said to be continuous at ξ ∈ D if

lim
x→ξ

f(x) = f(ξ)

It is said to be continuous on D or simply continuous if it is continuous at all
ξ ∈ D.

Theorem 2.5. Let f, g : D → D be functions continuous at ξ ∈ D. Then so
are the functions

(i) x 7→ f(x) + g(x) (ii) x 7→ f(x)g(x)

(iii) x 7→ g(x)−1f(x) (iv) x 7→ f(x)g(x)−1

provided, in cases (iii) and (iv), that g(ξ) 6= 0.

Proof. Follows immediately from Theorem 2.1.

By noting that a constant function x 7→ c and the identity function x 7→ x
are both trivially continuous this last theorem already allows us to recursively
construct a few interesting classes of continuous functions, from monomials to
polynomials to rational functions.

Of more current interest to us though is that our limit has paved the way for
the introduction of the sought after concept of differentiability.

2.3 Differentiability

Definition 2.6. A function f : D → D is said to be left differentiable at x ∈ D
if the limit

d

dx
f = lim

h→0
h−1(f(x+ h)− f(x)) (2.17)

exists and is said to be right differentiable at x if the limit

f
d

dx
= lim
h→0

(f(x+ h)− f(x))h−1 (2.18)

exists. It is said to be left (right) differentiable on D or simply left (right)
differentiable if it is left (right) differentiable at all x ∈ D.

These notions of left and right differentiability obviously coincide with each
other and agree with the standard definition for the commutative R and C, in
which cases we call them simply differentiability, whereas they as we shall see
need not coincide for the noncommutative H and O.

One way in which they are always equivalent is that either sided differentiability
implies continuity. Of some interest here is that the use of the cancellation laws
once more emphasizes the role of the alternativity of O.

Theorem 2.7. If a function f : D → D is either left or right differentiable at
ξ ∈ D it is continuous at ξ.
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Proof. Noting use of the left and right cancellation laws respectively we have in
the case of left differentiability

lim
x→ξ

f(x) = lim
h→0

f(ξ + h) = lim
h→0

[
f(ξ) + h

(
h−1 [f(ξ + h)− f(ξ)]

)]
= f(ξ) + lim

h→0
h · lim

h→0
h−1 [f(ξ + h)− f(ξ)] = f(ξ) + 0 · ddξf = f(ξ)

and similarly in the case of right differentiability

lim
x→ξ

f(x) = lim
h→0

f(ξ + h) = lim
h→0

[
f(ξ) +

(
[f(ξ + h)− f(ξ)]h−1

)
h
]

= f(ξ) + lim
h→0

[f(ξ + h)− f(ξ)]h−1 · lim
h→0

h = f(ξ) + f d
dξ · 0 = f(ξ)

Be that as it may, at this point and given our functional concepts of limits and
continuity, including continuous functions, what our concept of differentiability
now needs are differentiable functions.

In real analysis the two directions only in which h can approach 0 (from the
left and from the right) lets differentiability amount to no more than a mild
smoothness condition but from complex analysis we recall that the additional
dimension available from the complex plane already leads to the significantly
sterner condition of having to satisfy a pair of partial differential equations
known as the Cauchy-Riemann equations.

With the quaternions and octonions making available another two respectively
six dimensions we may as such certainly expect to experience further restrictions
on the class of differentiable functions — but what we needn’t immediately
expect is the following result, first pioneered by G. Scheffers [18] in 1893 and
proved by N.M. Krylov [19] in 1947 and more generally by his student A.S.
Meilikhson [20] a year later.

Theorem 2.8 (Meilikhson). Let D ⊆ H be a domain. A function f : D → H is
left (right) differentiable on D if and only if it is of the form

f(q) = a+ qb (f(q) = a+ bq) (2.19)

on D for some constants a, b ∈ H.

That is, while the usefulness of complex analysis is testament to the fact that
complex differentiability does not in fact overly restrict the class of complex
differentiable functions, it appears that already in the quaternionic case we
are left with nothing but linear functions and, hence, with little more than an
academic exercise.

M.S. Marinov [29] proves the same result for the octonionic case but we will
limit ourselves to the quaternions in what follows. The octonionic proof is
analogous to the quaternionic one and moreover, given Meilikhson’s result and
the embedding of H in O this same result is of course the best one could hope for
in the octonionic case anyway, while having only linear differentiable functions
available is already quite a bit too restrictive for our tastes.

Specifically noteworthy though is the fact that the octonionic case does not fur-
ther restrict the class of differentiable functions, again pointing to alternativity
rather than associativity as the important concept in all of this.
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2.4 Meilikhson

We first of all quickly note that the left- and right-linear functions (2.19) do,
for a general domain D, denote two different classes of functions. Specifically,
let D = H and assume that both

f(q) = a+ qb and f(q) = c+ dq

for constants a, b, c, d ∈ H. By firstly setting q = 0 we obtain c = a and by
secondly setting q = 1 and subtracting we get d = b. Comparing the general
forms we then have qb = bq for all q ∈ H and therefore b ∈ Cen(H) = R which
shows us to be looking at a subset of linear functions only.

Secondly we note that the if part is obvious since if f : D → H is of the form

f(q) = a+ qb or f(q) = a+ bq

then we have respectively

d

dq
f = lim

h→0
h−1(f(q + h)− f(q)) = lim

h→0
h−1(hb) = b

f
d

dq
= lim
h→0

(f(q + h)− f(q))h−1 = lim
h→0

(bh)h−1 = b

confirming left respectively right differentiability at any q ∈ D.

It is the only if part that will formally need some work but the idea is in fact
quite simple and the result was in that sense already known to Hamilton himself.

Specifically, take even the simplest quadratic function f(q) = q2. Then

d

dq
f = lim

h→0
h−1((q + h)(q + h)− q2) = lim

h→0
h−1(qh+ hq + h2)

= lim
h→0

h−1qh+ q + lim
h→0

h = q + lim
h→0

h−1qh

and similarly f d
dq = q + limh→0 hqh−1.

Existence of these limits means they must be independent of the path that h
takes towards 0 but if we set q = t+ ix+ jy+ kz and let h = ∆t→ 0 along the
real axis we obtain

d

dq
f = f

d

dq
= q + lim

∆t→0

∆t

∆t
q = q + q = 2q

whereas letting h = i ·∆x→ 0 along the i axis we have

d

dq
f = f

d

dq
= q + lim

∆x→0
−∆x

∆x
iqi = q − iqi

and in the same way for h = j ·∆y → 0 along the j axis and h = k ·∆z → 0
along the k axis

d

dq
f = f

d

dq
= q − jqj d

dq
f = f

d

dq
= q − kqk
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Comparing these results, we see we must have q = −iqi = −jqj = −kqk and
thereby q = 1

4 (q − iqi− jqj − kqk) = t ∈ R.

However, D can as a non-empty subset of H not be a subset of R (any ball around
any point q ∈ R leaves R) proving that f is neither left nor right differentiable
on all of D.

This same directional limit argument is at the heart of the general proof as
well, and in the same way as it is at the heart of the classic Cauchy-Riemann
equations. We will therefore now quickly review those to prepare ourselves for
the quaternionic case.

Let D ⊆ C be a domain and f : D → C a complex-valued function of a complex
variable. We have defined f to be differentiable at z ∈ D if the limit

f ′(z) =
df

dz
=

d

dz
f = f

d

dz
= lim
h→0

f(z + h)− f(z)

h

exists which means it must be independent of the path that h takes towards
0. Writing z = x + iy and f(z) = u(x, y) + i v(x, y) where u and v are two
real-valued functions of two real variables we firstly let h = ∆x → 0 along the
real axis to obtain

df

dz
= lim

∆x→0

u(x+ ∆x, y)− u(x, y)

∆x
+ i lim

∆x→0

v(x+ ∆x, y)− v(x, y)

∆x
=
∂u

∂x
+ i

∂v

∂x

and secondly let h = i ·∆y → 0 along the imaginary axis to obtain

df

dz
= lim

∆y→0

u(x, y + ∆y)− u(x, y)

i ·∆y + i lim
∆y→0

v(x, y + ∆y)− v(x, y)

i ·∆y

= lim
∆y→0

v(x, y + ∆y)− v(x, y)

∆y
− i lim

∆y→0

u(x, y + ∆y)− u(x, y)

∆y
=
∂v

∂y
− i∂u

∂y

where in both cases we understand the partial derivatives to be evaluated at the
point (x, y) ∈ R2. Comparing the real and imaginary parts of these expressions
we then immediately see the Cauchy-Riemann equations emerge as a condition
for complex differentiability of f at z:

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
(2.20)

or, notationally identifying f with the complex-valued function of two real vari-
ables (x, y) 7→ f(x+ iy) more compactly

∂f

∂x
+ i

∂f

∂y
= 0 (2.21)

It is a basic fact from complex analysis that if we assume continuity of these
partial derivatives, (2.20) or (2.21) is not only necessary but in fact also sufficient
for differentiability of f at z.

Note for later use that the argument also shows that, given (2.21)

df

dz
=

1

2

(
∂f

∂x
− i∂f

∂y

)
(2.22)
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Generalizing to the quaternionic case, we have defined the quaternion-valued
function of a quaternionic variable f : D → H to be left (right) differentiable at
q ∈ D ⊆ H if the limit

d

dq
f = lim

h→0
h−1(f(q + h)− f(q))

(
f
d

dq
= lim
h→0

(f(q + h)− f(q))h−1

)
exists. Writing q = t+ ix+ jy + kz and

f(q) = s(t, x, y, z) + i u(t, x, y, z) + j v(t, x, y, z) + k w(t, x, y, z)

where s, u, v and w are now four real-valued functions of four real variables we
proceed in the same way again and first let h = ∆t → 0 along the real axis,
second h = i ·∆x → 0 along the i-axis, third h = j ·∆y → 0 along the j axis
and finally h = k ·∆z → 0 along the k-axis to straightforwardly obtain

d

dq
f =

∂s

∂t
+ i

∂u

∂t
+ j

∂v

∂t
+ k

∂w

∂t

d

dq
f =

∂u

∂x
− i ∂s

∂x
+ j

∂w

∂x
− k ∂v

∂x

d

dq
f =

∂v

∂y
− i∂w

∂y
− j ∂s

∂y
+ k

∂u

∂y

d

dq
f =

∂w

∂z
+ i

∂v

∂z
− j ∂u

∂z
− k ∂s

∂z



f
d

dq
=
∂s

∂t
+ i

∂u

∂t
+ j

∂v

∂t
+ k

∂w

∂t

f
d

dq
=
∂u

∂x
− i ∂s

∂x
− j ∂w

∂x
+ k

∂v

∂x

f
d

dq
=
∂v

∂y
+ i

∂w

∂y
− j ∂s

∂y
− k∂u

∂y

f
d

dq
=
∂w

∂z
− i∂v

∂z
+ j

∂u

∂z
− k ∂s

∂z


where we of course now understand these partial derivatives to be evaluated
at the point (t, x, y, z) ∈ R4. By comparing parts we then arrive at the twelve
partial differential equations that will together be referred to as the left (right)
quaternionic Cauchy-Riemann equations.

Theorem 2.9. Let D ⊆ H be a domain, q = t+ix+jy+kz ∈ D and f : D → H
the quaternion-valued function of a quaternionic variable

f(q) = s(t, x, y, z) + i u(t, x, y, z) + j v(t, x, y, z) + k w(t, x, y, z)

in which s, u, v and w are four real-valued functions of four real variables. If f
is left (right) differentiable at q, the left (right) quaternionic Cauchy-Riemann
equations

∂s

∂t
=

∂u

∂x
=

∂v

∂y
=

∂w

∂z

∂s

∂x
=−∂u

∂t
=−∂v

∂z
=

∂w

∂y

∂s

∂y
=

∂u

∂z
=−∂v

∂t
=−∂w

∂x

∂s

∂z
=−∂u

∂y
=

∂v

∂x
=−∂w

∂t



∂s

∂t
=

∂u

∂x
=

∂v

∂y
=

∂w

∂z

∂s

∂x
=−∂u

∂t
=

∂v

∂z
=−∂w

∂y

∂s

∂y
=−∂u

∂z
=−∂v

∂t
=

∂w

∂x

∂s

∂z
=

∂u

∂y
=−∂v

∂x
=−∂w

∂t


are satisfied at the point (t, x, y, z) ∈ R4.

Proof. The rows in these representations are nothing but the columns of the
expressions above.
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While the reader will have to compensate for the reuse of symbols, we of
course recognize the classic Cauchy-Riemann equations (2.20) in the upper-
left quadrant of either left or right quaternionic Cauchy-Riemann equations in
the representations above, in accordance with the embedding of C in H and the
equivalence of left and right differentiability in this subset.

Like before in the complex case, notationally identifying f with the quaternion-
valued function of four real variables (t, x, y, z) 7→ f(t+ ix+ jy + kz), we may
condense the equations into the equivalent but rather more memorable form,
for the left version

∂f

∂t
+ i

∂f

∂x
= 0

∂f

∂t
+ j

∂f

∂y
= 0

∂f

∂t
+ k

∂f

∂z
= 0 (2.23)

and for the right version

∂f

∂t
+
∂f

∂x
i = 0

∂f

∂t
+
∂f

∂y
j = 0

∂f

∂t
+
∂f

∂z
k = 0 (2.24)

and we will be using them in this form, albeit to immediately split them into
complex equations again.

The proof that we will present is due to A. Sudbery [26] and uses a few basic
results from the theory of complex-valued functions of several complex-variables,
a theory not widely known at the undergraduate level. The interested reader
unacquainted with it is referred to any one of the many available sources on the
subject such as H. Cartan [25] or S.G. Krantz [27]; here, we will simply state
the few results that we need directly.

First a few basics from regular complex analysis though.

Definition 2.10. Let D ⊆ C be a non-empty open set. A function f : D → C is
said to be analytic at z ∈ D if it is differentiable throughout some neighbourhood

Bε(z) =
{
ζ ∈ C

∣∣ |z − ζ| < ε
}
⊆ D

of z and is said to analytic on D or simply analytic if it is analytic at all z ∈ D.

Theorem 2.11. Let D ⊆ C be a domain and f : D → C an analytic function.
Then f has continuous derivatives of all orders on D.

Theorem 2.12. Let D ⊆ C be a domain and f : D → C an analytic function.
If f ′(z) = 0 everywhere on D, then f(z) is constant on D.

Corollary 2.13. Let D ⊆ C be a domain and f : D → C an analytic function.
If f ′′(z) = 0 everywhere on D, then f(z) is linear on D.

This next theorem is in fact a corollary to a non-trivial result from the theory of
several complex variables known as Hartogs’ theorem (on separate analyticity)
but for our purposes we may consider it to simply define analyticity of a function
of several complex variables.

Theorem 2.14. Let D ⊆ Cn be a domain. A function f : D → C is analytic if
and only if it is analytic in each variable separately.
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By analytic in each variable separately we mean that for each j = 1, . . . , n
and for each fixed set of points z1, . . . , zj−1, zj+1, . . . , zn, the complex-valued
function of a single complex variable

ζ 7→ f(z1, . . . , zj−1, ζ, zj+1, . . . , zn)

is analytic on the set

D(z1, . . . , zj−1, zj+1, . . . , zn) =
{
ζ ∈ C

∣∣ (z1, . . . , zj−1, ζ, zj+1, . . . , zn) ∈ D
}

Note that with D open as a subset of Cn, D(z1, . . . , zj−1, zj+1, . . . , zn) is obvi-
ously open as a subset of C and that if D is convex D(z1, . . . , zj−1, zj+1, . . . , zn)
also is, it being the intersection of the convex set D with a copy of the con-
vex complex plane (alternatively, by it being the kind of straight line by which
convexity is defined). It is therefore then certainly connected, and thereby a
domain as a subset of C.

We will now first introduce a bit of notation. Let D ⊆ Cn be a non-empty open
set, z = x+ iy ∈ D. Writing x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , yn) ∈ Rn,
we denote for a function f : D → C

∂f

∂zj
=

1

2

(
∂f

∂xj
− i ∂f

∂yj

)
∂f

∂z̄j
=

1

2

(
∂f

∂xj
+ i

∂f

∂yj

)
and, understanding the real partial derivatives to be evaluated at the point
(x, y) ∈ Rn × Rn, call these expressions the complex partial derivative respec-
tively complex conjugate partial derivative of f with respect to zj at z.

This formulation may appear slightly puzzling at first glance but is in fact to a
large extent dictated by notational consistency. Specifically, if we take just n=1
and pretend that z and z̄ are normal, independent variables, we set

x(z, z̄) =
z + z̄

2
y(z, z̄) =

z − z̄
2i

to identify f with the function (z, z̄) 7→ f(x(z, z̄) + iy(z, z̄)) and write using the
regular two dimensional chain rule familiar from real analysis

∂f

∂z
=
∂f

∂x

∂x

∂z
+
∂f

∂y

∂y

∂z
=
∂f

∂x

∂

∂z

(
z + z̄

2

)
+
∂f

∂y

∂

∂z

(
z − z̄

2i

)
=

1

2

(
∂f

∂x
− i∂f

∂y

)
∂f

∂z̄
=
∂f

∂x

∂x

∂z̄
+
∂f

∂y

∂y

∂z̄
=
∂f

∂x

∂

∂z̄

(
z + z̄

2

)
+
∂f

∂y

∂

∂z̄

(
z − z̄

2i

)
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
These so defined complex partial derivatives behave in all the expected ways
but do note that since z and z̄ are obviously anything but independent variables
they are strictly speaking still to be considered notational devices only.

Using this notation, classic Cauchy-Riemann (2.21) and (2.22) take the partic-
ularly compact form

∂f

∂z̄
= 0 and

df

dz
=
∂f

∂z
(2.25)

and we will be using this formulation in the upcoming proof.
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Theorem 2.15. Let D ⊆ Cn be a domain. An analytic function f : D → C has
continuous complex partial derivatives of all orders throughout D.

This theorem parallels theorem 2.11 from the single variable case. Note that
the continuity of course includes the conjugate complex partial derivatives; one
is continuous if and only if the other is. Mixed continuous complex partial
derivatives may, moreover, be applied in any order same as in real analysis.

Finally, we have available the important uniqueness principle, unaltered from
the case of a single complex variable.

Theorem 2.16. Let D ⊆ Cn be a domain, U ⊆ D a non-empty open set and
f, g : D → C analytic functions. If f(z) = g(z) for all z ∈ U then f(z) = g(z)
for all z ∈ D.

We are now ready for the proof of Meilikhson’s theorem. We showed the if part
to be satisfied already at the start of the section and, having given both left and
right versions of the quaternionic Cauchy-Riemann equations above, we further
prove directly the left version of the theorem only, rendering the right version
to obvious analogy. That is, we prove the following.

Theorem 2.17 (Meilikhson). If a function f : D → H is left differentiable on
D, it is of the form f(q) = a+ qb on D for some constants a, b ∈ H.

Proof. Let q = t + ix + jy + kz ∈ D. f is left differentiable at q meaning that
the quaternionic Cauchy-Riemann equations (2.23) hold at the point (t, x, y, z).

Identifying H with C2, we set v = t + ix ∈ C and w = y − iz ∈ C to write
q = v + jw and f(q) = g(v, w) + j h(v, w) where g and h are complex-valued
functions of two complex variables. Under the usual notational identifications
we write

∂f

∂t
=
∂g

∂t
+ j

∂h

∂t

∂f

∂x
=
∂g

∂x
+ j

∂h

∂x

∂f

∂y
=
∂g

∂y
+ j

∂h

∂y

∂f

∂z
=
∂g

∂z
+ j

∂h

∂z

and thereby

∂f

∂t
+ i

∂f

∂x
=

(
∂g

∂t
+ j

∂h

∂t

)
+ i

(
∂g

∂x
+ j

∂h

∂x

)
=

(
∂g

∂t
+ i

∂g

∂x

)
+ j

(
∂h

∂t
− i∂h

∂x

)
∂f

∂t
+ j

∂f

∂y
=

(
∂g

∂t
+ j

∂h

∂t

)
+ j

(
∂g

∂y
+ j

∂h

∂y

)
=

(
∂g

∂t
− ∂h

∂y

)
+ j

(
∂h

∂t
+

∂g

∂y

)
∂f

∂t
+ k

∂f

∂z
=

(
∂g

∂t
+ j

∂h

∂t

)
+ k

(
∂g

∂z
+ j

∂h

∂z

)
=

(
∂g

∂t
− i∂h

∂z

)
+ j

(
∂h

∂t
− i∂g

∂z

)
which splits the three quaternionic equations (2.23) into the six complex equa-
tions

∂g

∂t
+ i

∂g

∂x
= 0

∂g

∂t
− ∂h

∂y
= 0

∂g

∂t
− i∂h

∂z
= 0

∂h

∂t
− i∂h

∂x
= 0

∂h

∂t
+
∂g

∂y
= 0

∂h

∂t
− i∂g

∂z
= 0
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or formulated more explicitly

∂g

∂t
= −i ∂g

∂x
=

∂h

∂y
= i

∂h

∂z

∂h

∂t
= i

∂h

∂x
= −∂g

∂y
= i

∂g

∂z

In terms of complex partial derivatives we then firstly have

∂g

∂v̄
=

1

2

(
∂g

∂t
+ i

∂g

∂x

)
= 0

∂g

∂w
=

1

2

(
∂g

∂y
+ i

∂g

∂z

)
= 0

∂h

∂v
=

1

2

(
∂h

∂t
− i∂h

∂x

)
= 0

∂h

∂w̄
=

1

2

(
∂h

∂y
− i∂h

∂z

)
= 0

showing by the Cauchy-Riemann formulation (2.25) g to be separately analytic
as a function of v and as a function of w̄ and h to be separately analytic as a
function of v̄ and as a function of w. By theorem 2.14 therefore g to be analytic
as a function of v and w̄ and h to be analytic as a function of v̄ and w, and by
theorem 2.15 therefore either to have continuous complex partial derivatives of
all orders so that we can freely interchange mixed partial derivatives.

Secondly we have

∂g

∂v
=

1

2

(
∂g

∂t
− i ∂g

∂x

)
=

1

2

(
∂h

∂y
+ i

∂h

∂z

)
=

∂h

∂w

∂g

∂w̄
=

1

2

(
∂g

∂y
− i∂g

∂z

)
= −1

2

(
∂h

∂t
+ i

∂h

∂x

)
= −∂h

∂v̄

(2.26)

and thereby then

∂2g

∂v2
=

∂

∂v

(
∂g

∂v

)
=

∂

∂v

(
∂h

∂w

)
=

∂

∂w

(
∂h

∂v

)
= 0

∂2g

∂w̄2
=

∂

∂w̄

(
∂g

∂w̄

)
= − ∂

∂w̄

(
∂h

∂v̄

)
= − ∂

∂v̄

(
∂h

∂w̄

)
= 0

∂2h

∂v̄2
=

∂

∂v̄

(
∂h

∂v̄

)
= − ∂

∂v̄

(
∂g

∂w̄

)
= − ∂

∂w̄

(
∂g

∂v̄

)
= 0

∂2h

∂w2
=

∂

∂w

(
∂h

∂w

)
=

∂

∂w

(
∂g

∂v

)
=

∂

∂v

(
∂g

∂w

)
= 0

If we for the moment assume that D is convex, then by separate analyticity and
the remark following theorem 2.14 we can apply corollary 2.13 to find that g
is linear as a function of v and linear as a function of w̄ and h is linear as a
function of v̄ and linear as a function of w:

g(v, w) = α+ βv + γw̄ + δvw̄

h(v, w) = ε+ ζv̄ + ηw + θv̄w

for some α, β, γ, δ, ε, ζ, η, θ ∈ C.
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Using the relations (2.26) again, we get firstly

δ =
∂

∂w̄
(β + δw̄) =

∂

∂w̄

(
∂g

∂v

)
=

∂

∂w̄

(
∂h

∂w

)
=

∂

∂w̄
(η + θv̄) = 0

θ =
∂

∂v̄
(η + θv̄) =

∂

∂v̄

(
∂h

∂w

)
=

∂

∂v̄

(
∂g

∂v

)
=

∂

∂v̄
(β + δw̄) = 0

and then secondly

ζ = ζ + θw =
∂h

∂v̄
= − ∂g

∂w̄
= −(γ + δv) = −γ

η = η + θv̄ =
∂h

∂w
=
∂g

∂v
= β + δw̄ = β

We therefore have

g(v, w) = α+ βv + γw̄

h(v, w) = ε− γv̄ + βw

and, noting that for any z ∈ C we have jz = z̄j, by a straightforward calculation

f(q) = g(v, w) + j h(v, w) = α+ βv + γw̄ + j(ε− γv̄ + βw)

= α+ jε+ (v + jw)(β − jγ)

= a+ qb

where we have set a = α+ jε and b = β − jγ, thereby proving the result in the
case of a convex D.

The remainder of the argument consists of the in complex analysis familiar
process of covering the general domain D by more specific, overlapping sets and
invoking the uniqueness principle 2.16 on the overlaps.

In this case, the domain D can be covered by convex sets, any two of which
can be connected by a chain of convex sets which overlap in pairs. Invoking the
uniqueness principle on the overlaps, we see that f(q) = a + qb with the same
constants a and b throughout D, proving the theorem.

2.5 Analyticity

While we have up to this point concentrated on differentiability and have found
the concept to be a rather limiting one in the quaternionic and octonionic cases,
complex analysis is of course rather the study of complex analytic functions and
it is just part of the charm of the subject that differentiabiliy and analyticity
coincide.

Our concept of analyticity as differentiability of a function throughout some
open subset is however alternatively reffered to as holomorphicity with, same
as for a real-valued function of a real variable, analyticity of a complex-valued
function of a complex variable more fundamentally defined in terms of local
representability by a convergent power series.
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Definition 2.18. Let D ⊆ C be a non-empty open set. A function f : D → C
is said to be (complex) analytic at z0 ∈ D if there exist ε > 0 and cn ∈ C such
that

f(z) =

∞∑
n=0

cn(z − z0)n

whenever |z − z0| < ε or equivalently if f(z+z0) =
∑∞
n=0 cnz

n whenever |z| < ε.

Suppose f(x + iy) = u(x, y) + iv(x, y) is analytic at x0 + iy0. Then for some
ε > 0 and cn ∈ C

u(x+ x0, y + y0) + iv(x+ x0, y + y0) =

∞∑
n=0

cn(x+ iy)n =

∞∑
n=0

n∑
k=0

un,kx
kyn−k + i

∞∑
n=0

n∑
k=0

vn,kx
kyn−k

for some un,k ∈ R and vn,k ∈ R whenever ‖(x, y)‖ < ε or equivalently

u(x, y) =

∞∑
n=0

n∑
k=0

un,k(x− x0)k(y − y0)n−k

v(x, y) =

∞∑
n=0

n∑
k=0

vn,k(x− x0)k(y − y0)n−k

whenever ‖(x, y)− (x0, y0)‖ < ε which is precisely to say that both u and v are
real analytic at the point (x0, y0).

A complex analytic function therefore implies two real analytic component func-
tions but note that it is conversely certainly not the case that two real analytic
functions of two real variables make one complex analytic function. For example

f(x+ iy) = x

consists of the two everywhere real analytic component functions u(x, y) = x
and v(x, y) = 0 but is itself certainly nowhere complex analytic due to

∂u

∂x
= 1 6= 0 =

∂v

∂y

Complex analyticity is a much stronger condition than real analyticity of the
component functions.

This changes in the quaternionic case however. We define a quaternionic mono-
mial of degree n in its most general form to be an expression

c0qc1q · · · cn−1qcn

for some c0, . . . , cn ∈ H and again call a function f : D → H with D ⊆ H
(quaternionic) analytic at q0 ∈ D if it is locally a convergent sum of monomials.
That is, f is said to be analytic at q0 if for some ε > 0 and cn,k ∈ H and
whenever |q| < ε one has

f(q + q0) =

∞∑
n=0

cn,0qcn,1q · · · cn,n−1qcn,n (2.27)
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Setting q = t+ ix+ jy + kz, q0 = t0 + ix0 + jy0 + kz0 and

f(q) = s(t, x, y, z) + iu(t, x, y, z) + jv(t, x, y, z) + kw(t, x, y, z) (2.28)

we analogously to the complex case above find that if f is quaternionic analytic
at q0 then s, u, v and w are four at (t0, x0, y0, z0) real analytic functions,

s(t, x, y, z) =

∞∑
n=0

n∑
i+j+k=0

sn,i,j,k(t− t0)i(x− x0)j(y − y0)k(z − z0)n−i−j−k

and similarly for u, v and w.

However, if we are in this case conversely supplied four at (t0, x0, y0, z0) real
analytic functions s, u, v and w of four real variables, we plug in the relations
(1.9)

t = −1

4
(−q + iqi+ jqj + kqk) x = − i

4
(q − iqi+ jqj + kqk)

y = − j
4

(q + iqi− jqj + kqk) z = −k
4

(q + iqi+ jqj − kqk)

and end up with four convergent quaternionic power series. Therefore with an
at q0 quaternionic analytic function f defined through (2.28).

It follows that a theory of quaternionic analytic functions is no other than a
theory of real analytic functions of four real variables, a this time much too
broad a class of functions to be interesting.

This important distinction with the complex case is very fundamentally due to

q̄ = −1

2
(q + iqi+ jqj + kqk)

which expresses the conjugate q̄ as a quaternionic analytic function of q and
enables the above relations (1.9). In the complex case no such analytic function
exists since, as expressed by the Cauchy-Riemann formulation

∂f

∂z̄
= 0,

a function is complex analytic if and only if it depends only on z and not its con-
jugate. A complex analytic function thereby treats its variable z = x+ iy as one
single entity and fundamentally not as an of x and y composed number. Con-
versely formulated, a complex number is (smoothly, analytically) inseparably
one and it is this property of complex numbers that makes them as interesting
as they are.

Like in the case of differentiability the situation is also again no different for the
octonions where, with the flexible law justifying the notation,

ō = −1

6
(o+ i1oi1 + i2oi2 + i3oi3 + i4oi4 + i5oi5 + i6oi6 + i7oi7)

and with both these fundamental inroads into complex analysis unavailable in
the quaternionic and octonionic cases, we are about ready to give up on the
endeavour.
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2.6 Fueter

We should however not leave without at least noting that there does in fact
exist a well-developed quaternionic analysis, albeit one somewhat removed from
the sort of natural analogue of complex analysis that we were looking for.

We have seen the quaternionic Cauchy-Riemann equations in the form

∂f

∂t
+ i

∂f

∂x
= 0

∂f

∂t
+ j

∂f

∂y
= 0

∂f

∂t
+ k

∂f

∂z
= 0

for the left version and

∂f

∂t
+
∂f

∂x
i = 0

∂f

∂t
+
∂f

∂y
j = 0

∂f

∂t
+
∂f

∂z
k = 0

for the right, and in comparison with the classic Cauchy-Riemann equation

∂f

∂x
+ i

∂f

∂y
= 0

also a different analogy presents itself in, for a left and right version respectively

∂f

∂t
+ i

∂f

∂x
+ j

∂f

∂y
+ k

∂f

∂z
= 0 and

∂f

∂t
+
∂f

∂x
i+

∂f

∂y
j +

∂f

∂z
k = 0

We call functions that satisfy these equations left respectively right regular.

As is seen by considering f(q) = q = t+ ix+ jy + kz, since as to left regularity

∂f

∂t
+ i

∂f

∂x
+ j

∂f

∂y
+ k

∂f

∂z
= 1 + i2 + j2 + k2 = −2

and same as to right, not even linear quaternionic functions are regular in this
sense, and while this may at first glance appear to now limit us to constant
functions there does in fact exist an interesting class of regular functions.

Let gi and hi be complex analytic functions of a single complex variable and

fi(t+ ix+ jy + kz) = gi(t+ ix) + hi(t+ ix)j

Then fi is left regular since by classic Cauchy-Riemann

∂fi
∂t

+ i
∂fi
∂x

+ j
∂fi
∂y

+ k
∂fi
∂z

=

(
∂gi
∂t

+
∂hi
∂t

j

)
+ i

(
∂gi
∂x

+
∂hi
∂x

j

)
+ j0 + k0

=

(
∂gi
∂t

+ i
∂gi
∂x

)
+

(
∂hi
∂t

+ i
∂hi
∂x

)
j = 0 + 0j = 0

The function fi(t + ix + jy + kz) = gi(t + ix) + jhi(t + ix) is similarly right
regular.

Note that with the (1, j) plane just another copy of the complex plane we can of
course also take two complex analytic functions gj and hj defined on that plane
and with

fj(t+ ix+ jy + kz) = gj(t+ jy) + hj(t+ jy)k
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obtain in the same way, as to left regularity

∂fj
∂t

+ i
∂fj
∂x

+ j
∂fj
∂y

+ k
∂fj
∂z

=

(
∂gj
∂t

+
∂hj
∂t

k

)
+ i0 + j

(
∂gj
∂y

+
∂hj
∂y

k

)
+ k0

=

(
∂gj
∂t

+ j
∂gj
∂y

)
+

(
∂hj
∂t

+ j
∂hj
∂y

)
k = 0 + 0k = 0

and again similarly for fj(t+ ix+ jy+ kz) = gj(t+ iy) + khj(t+ iy) as to right
regularity.

Repeating once more with gk and hk complex analytic functions on the (1, k)
plane and

fk(t+ ix+ jy + kz) = gk(t+ kz) + hk(t+ kz)i

respectively

fk(t+ ix+ jy + kz) = gk(t+ kz) + ihk(t+ kz)

we again find fk to be left (right) regular and moreover, a sum of left (right)
regular functions is clearly again left (right) regular so that specifically a function
such as f = fi+fj+fk of the complete quaternionic variable is again left (right)
regular.

Although not polynomial in a quaternionic sense, we are therefore now provided
with an interesting class of functions to study and it is upon this definition of
regular that Rudolf Fueter in the 1930s built a theory of regular functions to
parallel complex analysis.

Both the in complex analysis primary Cauchy results have an analogue in this
theory, in the (left) form of ∫

C

Dq f = 0

where C is any smooth closed 3-manifold in H and Dq is a certain natural
quaternion-valued differential 3-form, and in the form of the integral formula

f(q0) =
1

2π2

∫
∂D

(q − q0)−1

|q − q0|2
Dq f(q)

for q0 ∈ D where D is a domain in H.

However, said differential 3-form Dq is with q = t+ ix+ jy + kz given by

Dq = dx ∧ dy ∧ dz − i dt ∧ dy ∧ dz − j dt ∧ dz ∧ dx− k dt ∧ dx ∧ dy

and together with a somewhat involved definition of a (left) quaternionic deriva-
tive that it induces through

d(dq ∧ dq f) = Dq f ′(q)

uses of the theory remain quite specialised and are in that sense certainly not
on par with complex analysis.

The interested reader is referred to Deavours [24] and Sudbery [26] but we will
therefore, and while remarking that there have also been different and differently
succesful approaches to quaternionic analysis throughout the years, leave things
at that and draw our conclusions.
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2.7 Conclusion

Having set out on a generalisation of C, we have in the first chapter seen real
division algebras such as C to in fact be quite rare.

They specifically exist only in dimension 1, 2, 4 and 8 and if we additionally
require them to be alternative (or normed and unital) then R, C, H and O are
up to isomorphism the only ones.

In the second chapter we first encounter the importance of alternativity for the
basic concept of limit and second the importance of the additional dimensions
and of alternativity for the concept of differentiability. These concepts that we
tend to take for granted for R and that were so succesfully extended to C by
complex analysis are not in fact to be taken overly lightly it seems.

Finally we run into what we feel to be the most fundamental issue in all of this
and which consists of the concept of analyticity being a remarkable one for com-
plex functions. A quaternionic or octonionic analytic function is nothing other
than a componentwise real analytic function due to quaternions and octonions
being smoothly decomposable into their constituent real parts, but decomposing
a complex number into its real and imaginary part requires the force of a blunt
instrument.

A complex number is much more one in that sense and therefore also much
more interesting as a mathematical entity. We eventually feel that it should
therefore not actually come as a surprise that complex analysis is also special
and rather uniquely interesting.

We shall no more underestimate a complex number.
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